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Abstract
Introduction Modern comprehensive instrumentations provide an unprecedented coverage of complex matrices in the form 
of high-dimensional, information rich data sets.
Objectives In addition to the usual biomarker research that focuses on the detection of the studied condition, we aimed to 
define a proper strategy to conduct a correlation analysis on an untargeted colorectal cancer case study with a data set of 102 
variables corresponding to metabolites obtained from serum samples analyzed with comprehensive two-dimensional gas 
chromatography coupled to high-resolution time-of-flight mass spectrometry (GC × GC-HRTOF-MS). Indeed, the strength 
of association existing between the metabolites contains potentially valuable information about the molecular mechanisms 
involved and the underlying metabolic network associated to a global perturbation, at no additional analytical effort.
Methods Following Anscombe’s quartet, we took particular attention to four main aspects. First, the presence of non-linear 
relationships through the comparison of parametric and non-parametric correlation coefficients: Pearson’s r, Spearman’s rho, 
Kendall’s tau and Goodman–Kruskal’s gamma. Second, the visual control of the detected associations through scatterplots 
and their associated regressions and angles. Third, the effect and handling of atypical samples and values. Fourth, the role 
of the precision of the data on the attribution of the ranks through the presence of ties.
Results Kendall’s tau was found the method of choice for the data set at hand. Its application highlighted 17 correlations sig-
nificantly altered in the active state of colorectal cancer (CRC) in comparison to matched healthy controls (HC), from which 
10 were specific to this state in comparison to the remission one (R-CRC) investigated on distinct patients. 15 metabolites 
involved in the correlations of interest, on the 25 unique ones obtained, were annotated (Metabolomics Standards Initiative 
level 2).
Conclusions The metabolites highlighted could be used to better understand the pathology. The systematic investigation of 
the methodological aspects that we expose allows to implement correlation analysis to various fields and many specific cases.

Keywords Metabolic correlations · GC × GC · Comprehensive gas chromatography · Untargeted metabolomics · QC 
system · Colorectal cancer
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1 Introduction

Colorectal cancer (CRC) is the third deadliest (9.2%, 0.86 
million deaths) and the fourth most diagnosed (6.1% of all 
cancers, 1.1 million new cases in 2018) cancer worldwide 
(Bray et al., 2018). Because of its increase in countries in 
transition, and despite the stabilization and decrease in 
mortality observed in developed countries where the rates 
of incidence are the highest, it is expected to reach 2.2 
million new cases and 1.1 million deaths by 2030 (Arnold 
et al., 2017). The internationally recognized diagnosis 
relies on the analysis of a tissue sample by a pathologist 
obtained by an invasive method of clinical examination. 
Metabolic profiling (Lin et al., 2019; Zhang et al., 2017), 
the untargeted analysis of the metabolites in a sample, is 
widely performed in translational research (Collino et al., 
2013; Mamas et al., 2011). Since it aims to measure as 
many compounds as possible, it is mostly a discovery, 
hypothesis generating approach (Kell & Oliver, 2004). 
Modern instrumentations, particularly comprehensive ones 
such as comprehensive two-dimensional gas chromatog-
raphy (GC × GC) (Zanella et al., 2021), generate high-
dimensional, complex data sets that present a considerable 
challenge in terms of their interpretation (Mendes et al., 
2005; Weckwerth & Morgenthal, 2005) and therefore 
require adapted statistical tools to extract as much chemi-
cal information as possible to be translated into biologi-
cally relevant knowledge (Tebani et al., 2018). Centered on 
diagnosis capability, biomarker research provides limited 
biological knowledge even when the marker metabolites 
are linked to their metabolic pathways, an approach that 
has become more frequent over the years (Farshidfar et al., 
2012; Mal et al., 2012; Tan et al., 2013). On the other 
hand, the correlations or strength of association exist-
ing between the metabolites, calculated as the statistical 
dependence between them, are rarely considered. This is 
despite the publication more than 15 years ago of pio-
neer studies (Camacho et al., 2005; Mendes et al., 2005; 
Steuer et al., 2003), the facility to perform such an analysis 
through available workflows (Xia & Wishart, 2016), and 
the potentially valuable information they contain about the 
specific metabolic changes induced in the underlying met-
abolic network associated to a biological process (Alonso 
et al., 2015; Kotze et al., 2013; Steuer, 2006). Indeed, the 
correlation analysis can be seen as a fingerprint of the 
enzymatic and regulatory reaction network and a measure 
of their alterations between the biological groups com-
pared in the biomarker discovery study (Siska & Kechris, 
2017). It has the potential to improve the understanding 
of the various molecular mechanisms involved in a phe-
nomenon -for example the occurrence, progression, remis-
sion and recurrence of a disease- through the generation 

of interesting hypothesis (Wilcox & Rousselet, 2018). 
Such analysis is particularly interesting in cases where the 
concentrations of the metabolites are not strongly altered 
and when the effect measured is a combination of many 
low impact factors that are thus hard to unveil individu-
ally (Tebani et al., 2018). In addition, they make possible 
to complete the metabolic pathways as they are already 
known as well as to discover and to model associations 
outside them (Kotze et al., 2013; Weckwerth & Fiehn, 
2002). Finally, they require no additional analytical effort 
since they are purely data processing. On the other hand, 
they demand strong metabolic knowledge for their inter-
pretation (Camacho et al., 2005; Steuer, 2006). This study 
aims to investigate the methodological aspects of correla-
tion analysis, based on Anscombe’s quartet (Anscombe, 
1973), i.e. to develop strategies in order to properly detect 
and visually control the significant correlations and varia-
tions of correlations through a case study where a metabo-
lomics data set of colorectal cancer was obtained through 
serum samples from four subgroups of patients analyzed 
with comprehensive two-dimensional gas chromatography 
(GC × GC) coupled to time-of-flight mass spectrometry 
(TOF–MS).

2  Results and discussion

2.1  Parametric coefficient. Presence of atypical 
samples

Regarding the samples, no outlier (consistently out of the 
limits defined by the 95% ellipses or clustered at a high 
dissimilarity (HCA)) was observed with PCA, HCA and 
PLS plots in the log-transformed data, but 6 samples were 
dissimilar (regularly out of or close to the limits) from the 
group they belong to: CRC18, HC23, R-CRC38, R-CRC46, 
R-HC56 and R-HC58 (see SI S-1A). In the raw data, we 
detected two outliers: CRC18 and HC37, and 4 dissimilar 
points: CRC17, R-CRC38, R-HC56 and R-HC65. Overall, 
the best homogenization of the samples in each subgroup 
was obtained with the log transformation, particularly when 
looking at the HCA plots.

Based on the robust z-scores and the relative ranks, one 
outlier: HC37, and 4 dissimilar points: CRC14, CRC18, 
HC32 and R-CRC38 were detected in the log-transformed 
data (SI S-1B). Similarly, 6 outliers were observed in the 
raw data: CRC18, HC37, R-CRC38, RCRC-39, R-CRC40 
and R-HC57, along with 4 dissimilar points: CRC9, CRC17, 
R-HC55 and R-HC56. Overall, CRC 18 and R-CRC38 were 
consistently found as dissimilar points in the log-trans-
formed data while CRC18 and HC37 were consensus outli-
ers and CRC 17, R-CRC38 and R-HC56 were found consen-
sus dissimilar points in the raw data. Again, as expected, the 
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log transformation made the data more Gaussian and less 
sensitive to the atypical samples. And this procedure showed 
efficient to highlight the main atypical samples.

2.2  Parametric coefficient. Presence of atypical 
values

Many atypical values were observed in all four groups. 
Indeed, in the 29 selected correlations, we found 36 vari-
ables that had at least one outlier and 45 variables that had 
at least one outlier or one dissimilar value in the raw data, 
for a total of 55 outliers and 69 dissimilar values. After the 
log transformation, 19 variables had a least one outlier and 
42 had at least one outlier or one dissimilar value, for a total 
of 24 outliers and 53 dissimilar values. Globally, for each 
type of data, 27 correlations had at least one outlier or one 
dissimilar value while 25 (raw data) and 14 (log-transformed 
data) had at least one outlier. This is likely because the 29 
correlations were selected precisely for their differences of 
values between the coefficients, which is probably due to 
the presence of outliers. In addition, we observed that the 
atypical values in the raw and log-transformed data were 
often high and low ones, respectively (SI S-2A). This is 
likely due to the application of the log transformation, which 
reduces the right skewness of a distribution by moving it 
globally to the left, to (almost) symmetrical data. As for the 
atypical samples, we also confirmed on our specific data set 
that the log-transformed data were less prone to atypical 
values, especially to outliers. From a methodological point 
of view, looking at the detection methods, in almost half 
the cases, univariate (boxplots and Grubbs and Dixon tests) 
and multivariate (2D scatterplots) tools were in agreement. 
However, in agreement with previous observations (Pernet 
et al., 2013), bivariate visualization was found useful to take 
into account the alignment of a value with the other points 
of a specific correlation as well as to evaluate properly the 
reality of the correlation (Anscombe, 1973; Wilcox, 2004) 
(SI S-2B). Indeed, the alignment was found responsible for 

the different status (normal value, dissimilar one or outlier) 
of a single value according to the correlation involved. As 
the Dixon test is limited to the detection of one outlier, it 
logically underestimated the presence of outliers. Therefore, 
it is overall recommended to use Grubbs test and boxplots, 
along with scatterplots that allow to visualize the correla-
tions by considering both variables simultaneously, and to 
pay particular attention to the non-aligned values. Finaly, the 
percentages of outliers and dissimilar values in the selected 
correlations designated the CRC sample 18 as an outlier and 
the HC sample 19 as a dissimilar sample in the raw data, 
with respectively 38 and 12% of outlier values and 45 and 
33% of dissimilar values. In the log-transformed data, they 
highlighted the CRC sample 18 as a dissimilar sample with 
21% and 29% of outlier and dissimilar values.

2.3  Effect of atypical samples and values on r and Z

Combining the results above, it was found that the samples 
CRC18 and HC37 were potential outliers in the raw data 
while CRC17, R-CRC38 and R-HC56 were dissimilar sam-
ples. In the log-transformed data, CRC18 and R-CRC38 
were dissimilar samples. The effect of those atypical sam-
ples was assessed by removing them, which is equivalent to 
a skipped-correlation coefficient (McClelland, 2000; Per-
net et al., 2013), and by comparing the values of r and Z 
 (ZCRC  and  ZR-CRC ) with and without them (Wilcox, 2004). 
Other options exist that were tested elsewhere and found less 
powerful and less efficient (Pernet et al., 2013), particularly 
with bivariate outliers, such as the winsorizing of the data 
(Hardin et al., 2007) or the use of alternative coefficients 
such as Tukey’s biweight (Wilcox, 1994) or a percentage 
bend Pearson coefficient (Janse et al., 2021). As expected, 
the dissimilar samples were less influential than the outliers, 
especially for Z where the effect of atypical samples in two 
subgroups could combine (Tables 1 and 2). In addition, the 
dissimilar samples in the log-transformed data (CRC 18) 

Table 1  Effect of the atypical 
samples on Pearson’s r

Mean and median absolute and relative (in percentage of the correlation values with the outliers) differ-
ences of Pearson’s correlation coefficients r in the four subgroups of samples, for all the 5151 correlations 
in the data set, when removing the atypical samples

r Mean Median

Absolute % Absolute %

CRC Raw 1 Outlier 0.21 221 0.15 58
HC Raw 1 Outlier 0.16 313 0.08 41
CRC Raw 1 Dissimilar 0.07 95 0.03 17
R-CRC Raw 1 Dissimilar 0.13 197 0.06 28
R-HC Raw 1 Dissimilar 0.04 64 0.02 10
CRC Log 1 Dissimilar 0.09 158 0.06 23
R-CRC Log 1 Dissimilar 0.09 169 0.06 22
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and in the raw data (R-CRC 1) produced similar absolute 
and relative differences, for both r and Z.

The atypical values also had a clear effect on Pearson’s 
r and on the differential Z, especially with the raw data 
(Table 3). Again, and as expected, the raw data were more 
sensitive to the presence of atypical values than the log-
transformed ones (Wilcox, 2004), but the two suffered from 
this phenomenon. Therefore, the log transformation revealed 
efficient but not sufficient to make the GC × GC-TOF–MS 
data fully Gaussian.

This was observed visually on the scatterplots where 
the deviant values biased the linear regressions and the 
corresponding angles between them (Anscombe, 1973; 

Wilcox, 2004) (SI S-3A). When considering the angles, 
scaling the data prior to the calculation was reported to be 
of importance to perform a relevant analysis and to avoid 
misinterpretations (Camacho et al., 2005). Four types of 
scaling were tested, consisting in the multiplication of the 
slopes of the linear regressions by the ratio of the means, 
the medians, the maxima or the ranges of values of the 
subgroups considered (CRC and HC or R-CRC and R-HC). 
Logically since the correlations values depend on the range 
of observations (Giovanni et al., 2020), we found that the 
range method was the most consistent with the associa-
tions observed in the scatterplots as well as with the angles 
calculated on the ranks, taken as the reference since they 
measure the metabolites on the same scale and thus do 
not require any change (SI S-3B). The results obtained 
confirmed what was seen with the numerical calculations 
since with the raw data, even the dissimilar values were 
influential, while with the log-transformed data, only the 
clear outliers represented an issue (SI S-3C). Overall, and 
to conclude on this section, when using Pearson’s r on 
GC × GC-TOF–MS, we found appropriate to use the log-
transformed data along with a proper, uni- and multivari-
ate outlier detection strategy, that includes a visual control 
through 2D graphical representations (Wilcox, 2004), in 
order to look for the presence of atypical samples and val-
ues. In our view, the same procedure could be applied to 
biomarker research as well, particularly if non-parametric 
statistical methods are not included in the biomarker selec-
tion process.

Table 2  Effect of the atypical samples on the differential correlation 
coefficient  ZCRC  and  ZR-CRC 

Mean and median absolute and relative (in percentage of the correla-
tion values with the outliers) differences of the differential  ZCRC  and 
 ZR-CRC , for all 5151 correlations in the data set, when removing the 
atypical samples

Z Mean Median

Absolute % Absolute %

CRC/HC Raw–2 Outliers 0.96 332 0.74 95
CRC/HC Raw–1 Dissimilar 0.22 102 0.10 16
R-CRC/R-HC Raw–2 Dissimilar 0.44 249 0.23 37
CRC/HC Log–1 Dissimilar 0.28 138 0.17 29
R-CRC/R-HC Log–1 Dissimilar 0.25 132 0.17 25

Table 3  Effect of the atypical values on Pearson’s r and on the differential  ZCRC  and  ZR-CRC 

Mean and median absolute (above) and relative (in percentage of the (variation of) correlation values with the outliers, below) differences 
between the correlation coefficients r and their variations  ZCRC  and  ZR-CRC  with and without the outliers or all atypical values, for all 5151 cor-
relations

Absolute r Z

Raw Outliers All atypical Outliers All atypical

Mean 0.21 0.28 1.34 1.62
Median 0.12 0.21 0.63 0.95

Log Outliers All atypical Outliers All atypical

Mean 0.06 0.13 0.40 0.74
Median 0.00 0.08 0.00 0.68

% r Z

Raw Outliers All atypical Outliers All atypical

Mean 99 136 98 124
Median 31 64 60 74

Log Outliers All atypical Outliers All atypical

Mean 18 44 20 44
Median 0 17 0 29



Correlations for untargeted GC × GC-HRTOF-MS metabolomics of colorectal cancer  

1 3

Page 5 of 19    85 

2.4  Non‑parametric coefficients. Presence of ties 
observed through analytical precision

To begin with, thresholds were defined to distinguish 
between ties from non-ties. The three ways selected to 
assess the presence of ties agreed that a distance under 
10% of the combined RSD of two consecutive values, 
which corresponds to a very small effect size (< 0.2), a 
t-value < 0.6 and a corresponding probability of rejecting 
the tie hypothesis (p-value) of less than 70%, could be seen 
as a confident tie (Table 4). On the contrary, a distance 
over 40% of the combined RSD, which corresponds to a 

large effect size (> 0.8), a t-value > 2.4 and a correspond-
ing p-value > 99%, was a confident non-tie. In between, the 
decision was less clear but it appeared that under 25% of 
the RSD, equivalent to a medium effect size (0.5), a t-value 
of 1.5 and a p-value of 90%, the points were probably tied, 
while over those values they were likely to be not. The 
thresholds were confirmed visually through scatterplots 
of the raw data against their respective ranks, constructed 
for 8 metabolites manually selected as representatively dis-
tributed over the data set. To take the uncertainty of meas-
ure into account, error bars were drawn that were equal to 
combined the RSD in the QC samples (Fig. 1). In addition, 
the signal axis was log-transformed when the data range 
exceeded 10, which was often the case. As observed by 
Anscombe (Anscombe, 1973), this allowed the lowest sig-
nals and their error bars to be visible in comparison to the 
highest ones. Overall, the thresholds made sense visually 
for our specific data set but were also consistent with the 
more standard notions of effect size, t-values and p-values, 
which tends to show that the procedure and the criteria are 
generalizable to other studies, while the thresholds values 
would likely have to be adapted, particularly as a function 

Table 4  Defined thresholds for confident and probable ties and non-
ties

* p-values for sample sizes 17 ≤ n ≤ 19

t-value p-value* (%) Hedges’s g RSD (%)

Confident tie 0.60 70 0.20 10
Probable (non-) tie 1.50 92 0.50 25
Confident non-tie 2.40 99 0.80 40

Fig. 1  Visualization of the 
rank attribution in the form of 
the scatterplot (right) of the 
values and their uncertainties 
according to their ranks, along 
with the corresponding relative 
distances (table, left). In green, 
the relative distances were large 
enough (> 40% of the combined 
RSD) for confident rank attribu-
tions (confident non-ties); in 
red, the relative distances were 
small enough (< 10%; confident 
ties); in orange, the cases were 
intermediate (between 10 and 
25%, probable non-ties; between 
25 and 40%, probable ties)

Table 5  Ties, groups of ties and numbers of points left in the data set

Mean and median aggregated numbers (above) and percentages (below) of groups of ties, ties and numbers of points left when considering the 
confident and probable ties

Number Groups of ties Ties Points left

Confident Probable Confident Probable Confident Probable

Mean 3.5 3.8 9.0 14.0 13.0 8.3
Median 3 4 9 14 13 9

% Confident Probable Confident Probable Confident Probable

Mean 19 21 49 75 70 45
Median 16 22 49 76 70 49
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of the sample size and the dynamic range of the detector 
(SI S-4).

The application of the thresholds to the entire data set 
showed numerous ties and groups of ties (Table 5), with fre-
quent ‘chains’ of ties difficult to interpret. The resultant num-
ber of points left to calculate the correlations was reduced 
by 30% and more than 50% with the confident and prob-
able ties, respectively. As a result, the precision of the data 
appeared to be low in comparison to the distances between 
consecutive values to get confident rank attributions. Despite 
the care taken in the measurements and the partial correction 
of the peak volumes for the analytical variation measured 
in the QC samples through a locally estimated scatterplot 
smoothing (LOESS) procedure (Metsämuuronen, 2021a). 
This led to what we regard as an excessive attribution of 
the ranks that could impair the efficiency of the non-par-
ametric correlation coefficients if this issue is not raised, 
which, again, depends on the specific case at hand through 
both the sample size and the dynamic range of the analyti-
cal method employed. On the other hand, the frequency of 
such a case in the GC × GC-TOFMS data set analyzed here, 
and the consecutive reduction of the number of points left 
to evaluate the correlations could also be a problem, which 
tends to favor the consideration of the confident ties against 
the probable ones.

The effect of the ties on the correlations was moderate 
in absolute values (0.03 mean and median variations of the 
coefficients due to the confident ties, 0.05–0.1 for the prob-
able ones), especially in comparison to the changes induced 
in Pearson’s r by the atypical values, but it was important 
in relative terms. Indeed, the median and mean variations 
were respectively around 10 and 40% when considering the 
confident ties and around 30 and 120% when considering the 
probable ones. The differential correlation coefficient  ZCRC  
was influenced by the ties in a similar manner, with median 
and mean variations both around 0.05–0.1 in absolute values 
and respectively around 20 and 80% in relative terms for 
the confident ties. For the probable ones, the median and 
mean variations were both around 0.3 and 0.7 in absolute 
values, representing around 40 and 200% median and mean 

relative variations. Logically, the significant variations of 
correlations were also influenced by the ties: their number 
remained the same (but their identity changed) in the case of 
Spearman and it was increased with Goodman–Kruskal as 
well as with Kendall, but in a lesser extent. Detailed results 
for this entire section are given in SI S-5. The higher infla-
tion of Goodman–Kruskal due to the ties could be explained 
by the fact that it explicitly takes them into account, through 
an adjustment of the sample size, while Kendall’s tau leaves 
them aside from the correlation calculation. However, it is 
also argued that this phenomenon could be due to its implicit 
directional nature that automatically uses the narrower varia-
ble as the independent one (Metsämuuronen, 2021b; Walker 
et al., 2003). The detailed visual evaluation of the 8 selected 
correlations confirmed the effect of the ties but it was found 
somewhat limited, particularly on the regressions and with 
the confident ties, as illustrated in Fig. 2.

Regarding the coefficients, it comes from our results, 
detailed in SI S5 and S-6, that with no ties or the only con-
fident ties, Spearman’s rho was the most different coeffi-
cient of the three (the highest, with a mean rank of 1.1, in 
Table S17, panels A and C; see also the left part of Table S11 
for the absolute values). However, when the probable ties 
were taken into account, Goodman–Kruskal’s gamma caught 
up and Kendall’s tau became the coefficient with the most 
different values (with the lowest mean rank of 2.9, panel C 
of Table S17). After transforming Kendall’s tau and Good-
man–Kruskal’s gamma to be directly comparable to Pear-
son’s r and Spearman’s rho (Siqueira Santos et al., 2014) 
(right part of Table S11 and panels B and D of Table S17), 
they were much closer to Spearman at first (no tie) and then 
their inflation due to the ties, in addition to separate them 
from Spearman as well as from each other, made them the 
highest coefficients. Again, this affected particularly Good-
man–Kruskal’s gamma that became the most different coef-
ficient (mean ranks of 1.1 and 1.0 with the confident and 
probable ties, panel D of Table S17). Those observations 
were confirmed by the differential correlation coefficient 
 ZCRC  (Tables S14 for the absolute values and S18 for the dif-
ferences between coefficients). Overall, Goodman–Kruskal 

Fig. 2  Visual representation of the correlation between metabolites 
78 and 83 with no consideration of the ties (left) and the considera-
tion of the confident (middle) and probable ties (right). The HC sam-

ples and regressions are in orange and the CRC samples and regres-
sions are in blue. The full lines represent the linear regressions, the 
dashed lines represent the polynomial ones
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was found the most liberal coefficient, and Spearman the 
most conservative, both by quite far, especially with the ties. 
Globally, the mean and median correlation coefficients r and 
differential  ZCRC  were relatively low, with respective values 
of 0.2—0.3 (up to 0.4 for Goodman–Kruskal after transfor-
mation and the consideration of the ties, Table S11) and 0.7 
(up to 1 and more for Goodman–Kruskal when considering 
the ties, Table S14). The  75th percentiles were moderate, 
respectively around 0.4 (up to 0.6 for G-K) and a bit more 
than 1 (up to 1.8 for G- K). While the comparison between 
the non-parametric coefficients will be continued in the next 
section, it already comes from this investigation of the ties 
and their effects that, in order to take them into account 
without risking to artificially change the results, it seems a 
good compromise to calculate those coefficients with only 
the confident ties. To conclude on this section, when using 
a non-parametric correlation coefficient, it appears impor-
tant to consider the presence of possible ties that could bias 
the results. To do so, the proposed strategy based on the 
definition and application of specific thresholds for three 
parameters able to highlight such ties, and the evaluation of 
their effects on the data and the various coefficients worked 
well on our GC × GC-TOF–MS data set and should be gen-
eralizable, given that the results are properly adjusted to the 
specific case considered.

2.5  Determination of the appropriate coefficient

To find the appropriate coefficient to perform the cor-
relation analysis, here on our untargeted metabolomics 

GC × GC-TOFMS data set, the methodology consisted in 
comparing Pearson’s r calculated on the log-transformed 
data, without the outlier samples and values previously 
determined, to the non-parametric coefficients applied with 
the consideration of the confident ties. We first assessed the 
aggregated (5151 correlations) absolute values for both the 
correlation coefficients and their differential  ZCRC . The first 
ones and their respective ranks were quite similar for the 
four coefficients. Spearman’s rho and Goodman–Kruskal’s 
gamma were the most different coefficients with respectively 
the lowest and highest values (0.28 and 0.34, mean ranks 
of 1.5 and 3.2; Table 6). The aggregated absolute differ-
ences between the coefficients, however, showed that the 
parametric one, Pearson’s r, was the most different. Thus, 
the effect of the confident ties to separate the non-parametric 
measures from each other was not sufficient in comparison to 
the difference between parametric and non-parametric coef-
ficients. Kendall’s tau, despite being very close to Good-
man–Kruskal’s gamma, was the most central coefficient, 
with no maximum and only 11% of minimum values.

Those observations were confirmed, and even ampli-
fied, in the aggregated differential correlations  ZCRC , par-
ticularly regarding the difference between Pearson’s r and 
the non-parametric coefficients (Table 7). The number of 
significant variations of correlations led to the same con-
clusions, whatever the threshold used, with a ranking of the 
coefficients from the more liberal to the more conservative: 
Goodman–Kruskal’s gamma > Kendall’s tau > Pearson’s 
r > Spearman’s rho (Table 8). Regarding the thresholds for 
significance, the 0.05 and 0.01 p-values, used in the absence 

Table 6  Comparison of the correlation coefficients

Aggregated absolute values, ranks and absolute differences between the correlation coefficients, for all 5151 correlations. Goodman–Kruskal’s 
gamma (G-K) and Kendall’s tau (K) were transformed to be directly comparable to Pearson’s r (P) and Spearman’s rho (Sp) (Siqueira Santos 
et al., 2014)

Distribution P G-K K Sp

0.25 0.13 0.15 0.14 0.12
Mean 0.30 0.34 0.32 0.28
Median 0.27 0.31 0.29 0.25
0.75 0.44 0.50 0.47 0.42
Max 1.00 1.00 0.99 0.98
Mean rank 2.7 1.5 2.6 3.2
Median rank 3 1 2 3
% of Max 35 60 0 5
% of Min 43 0 11 45

Distribution P/G-K P/K P/Sp G-K/K G-K/Sp K/Sp

0.25 0.04 0.03 0.03 0.01 0.02 0.02
Mean 0.10 0.09 0.08 0.02 0.06 0.04
Median 0.08 0.07 0.06 0.01 0.05 0.04
0.75 0.14 0.13 0.12 0.02 0.08 0.06
Max 0.86 0.87 0.91 0.12 0.25 0.18
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of appropriate direct thresholds for the correlation coeffi-
cients (Rousselet & Pernet, 2012), led to dozens and even 
hundreds (with 0.05 and/or ties) of significant results. How-
ever, when Bonferroni and Benjamini-Yekutieli corrections 
for multiple testing were introduced (0.05 p-value threshold) 
(Pernet et al., 2013; Schwarzkopf et al., 2012), very few 
results were left for further exploitation (Table 8). Given 
the exploratory nature of the procedure, and the fact that the 
true significance can only be achieved through replication 
(Chok, 2010; Wilcox & Rousselet, 2018), we found most 

appropriate to compromise between the quality (necessary 
with low sample sizes (Camacho et al., 2005)) and the quan-
tity of the results (Pernet et al., 2013) through an uncorrected 
p-value threshold of 0.001.

Given the recognized capacity of non-parametric correla-
tion coefficients to be more robust to atypical observations 
(and to provide higher statistical power in their presence 
(Hazra & Gogtay, 2016; Winter et al., 2016)), to non-line-
arity and to non-normal, sparse or small data sets (Walker 
et al., 2003), they were expected to give a more accurate 
assessment of the differential correlations.

This was confirmed with the 29 selected correlations, 
through their numerical comparison and their visual con-
trol. It came out that all coefficients, used taking into 
account the outliers or the ties, gave similar results -with 
Pearson’s r confirmed as the most different (Fig. 3)- and 
seemed to correctly represent numerically the visual dis-
tributions and correlations. However, Goodman–Kruskal’s 
gamma tended to inflate a bit the correlations, on the con-
trary to Pearson’s r and Spearman’s rho who appeared 
sometimes to underestimate them (Table 9). Based on 
those observations, as well as on the previous analysis 
conducted on all correlations where it was found liberal 
but not as much as Goodman–Kruskal’s gamma, Kendall’s 
tau seemed the method of choice to perform an untargeted 
exploratory correlation study on our GC × GC-TOF MS 
metabolomics data. This is in agreement with the usual 

Table 7  Comparison of the differential correlation coefficients  ZCRC 

Aggregated absolute values, ranks and absolute differences between the differential correlation coefficients, for all 5151 correlations. Pearson’s r 
(P), Goodman–Kruskal’s gamma (G-K), Kendall’s tau (K) and Spearman’s rho (Sp)

Distribution P G-K K Sp

0.25 0.31 0.36 0.34 0.29
Mean 0.80 0.92 0.87 0.76
Median 0.66 0.77 0.73 0.64
0.75 1.16 1.33 1.26 1.09
Max 8.64 5.13 4.77 4.18

Distribution of the diff P G-K K Sp

Mean rank 2.7 2.5 2.4 2.4
Median rank 3 3 2 2
Number of Max 1836 1547 394 1374
% of Max 36 30 8 27
Number of Min 2559 1436 256 900
% of Min 50 28 5 17

Distribution of the diff P/G-K P/K P/Sp G-K/K G-K/Sp K/Sp

0.25 0.19 0.17 0.15 0.02 0.08 0.06
Mean 0.48 0.45 0.41 0.06 0.21 0.16
Median 0.39 0.36 0.33 0.04 0.17 0.13
0.75 0.68 0.64 0.57 0.08 0.29 0.23
Max 10.63 10.42 10.16 1.05 1.55 0.86

Table 8  Comparison of the significant differential correlation coeffi-
cients  ZCRC 

Numbers of significant variations of differential correlations coeffi-
cients Z between CRC and R-CRC samples, depending on the thresh-
old considered, for all 5151 correlations in the data set. Pearson’s r 
(P), Goodman–Kruskal’s gamma (G-K), Kendall’s tau (K) and Spear-
man’s rho (Sp)

Threshold uncor-
rected α

P G-K K Sp

5.10–2 284 492 397 221
10–2 59 139 104 47
10–3 9 38 17 5
10–4 1 7 3 1
Bonferroni 1 3 1 0
BY 1 1 0 0



Correlations for untargeted GC × GC-HRTOF-MS metabolomics of colorectal cancer  

1 3

Page 9 of 19    85 

preference for robust algorithms in the case of atypical 
data, particularly with small sample sizes and unknown 
distributions (Armstrong, 2019; Chok, 2010; Dunn et al., 
2013; Rousselet & Pernet, 2012; Siska & Kechris, 2017). 
However, this is in disagreement with the observation that, 
because of the way it handles them, Goodman–Kruskal’s 
gamma is generally preferred to Spearman or Kendall for 
data sets with many tied ranks (Walker et al., 2003). This 
is possibly because we decided to use only the confident 
ties in the calculation of the correlations. In addition to 
the strategy that consisted in comparing the coefficients in 
multiple ways (aggregated values, significant results and 
representative cases) and revealed appropriate, the scatter-
plots were found very useful from a methodological point 
of view, confirming previous recommendations (Ans-
combe, 1973; Schwarzkopf et al., 2012), despite the small 
data sizes available leading to incomplete distributions. 
The use of regressions helped a lot to determine the ten-
dencies in the data (SI S-7). Especially with moderate cor-
relations (between 0.3 and 0.6), of which the significance 
was more difficult to evaluate, as well as when comparing 
correlations with ranges and scales that differed between 
the subgroups studied. Most frequently, we observed quite 
clear linear behaviors that were well modeled by linear 
regressions, which made the polynomial ones superfluous. 
However, the polynomial approximation, limited to the 
second order to avoid overfitting, could be compared to the 
linear regression to inform, through its curvature, about 
the linearity of the data. It was also able to model alterna-
tives trends present in the subgroups of the data, again 
through its curvature as well as through the length of the 
curve on each side of it. In addition to the log-transformed 
data used in the calculations, the graphs included the raw 
data for comparison purpose. The main observation was 

a logical increase in linearity of the distributions through 
the reduction of the distances between the points.

2.6  Specific significant variations of correlations 
associated to colorectal cancer

Using the 0.001 p-value threshold chosen above led to 
the selection of 17 correlations significantly altered in the 
“active” state of colorectal cancer (CRC samples) in com-
parison to the gender and age matched healthy controls (HC 
samples; Table 10). Among those, 10 were found specific to 
the active state in comparison to the CRC samples in remis-
sion (R-CRC).

Using the mass spectra, the linear retention indices (LRI) 
and the exact mass led to the confident annotation (MSI 
level 2) of 15 molecules on the 25 unique ones involved in 
the correlations of interest (Table 11), providing 3 correla-
tions with two annotated metabolites, 11 with one metabolite 
annotated and 3 with no metabolites annotated. All were 
found to have biological functions. Since the annotation of 
a correlation requires both metabolites to be annotated, the 
issue of identifying the metabolites of interest is even more 
crucial than in biomarker research (Bingol et al., 2016; Cha-
leckis et al., 2019; Giovanni et al., 2020b; Nash & Dunn, 
2019) and therefore constitutes a major bottleneck. This is 
illustrated in the network visualization, where the two main 
metabolic hubs highlighted (metabolites 45 and 77 in the 
data set) could not be reliably annotated (Fig. 4). There-
fore, there was limited interest to perform a specific network 
analysis (Weckwerth & Morgenthal, 2005) (such as hubs, 
connectivity, centrality parameters; Fig. 4).

Most publications about the CRC molecular aspects 
studied the subtypes of CRC as well as the CRC-initiat-
ing or tumorigenesis cellular pathways (Dai et al., 2019; 

Fig. 3  Scatterplot of the differ-
ential correlations  ZCRC  of the 
29 representative correlations 
selected for the four coefficients 
tested. Pearson’s r values are in 
blue, Spearman’s rho in green, 
Kendall’s tau in yellow, and 
Goodman–Kruskal’s gamma in 
orange
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Dienstmann et al., 2017; Vecchia & Sebastián, 2020; Wan 
et al., 2020; Wang et al., 2019; Warburg, 1956). However, 
alterations of the metabolic pathways have been observed 
in various matrices (serum, tissues, urine, feces and breath) 
that can be informatively compared to the ones observed 
in the study (Table 12 and in bold below). They include: 
cell energetic metabolism according to the Warburg effect 
(Qiu et al., 2009) (glycolysis and TCA cycle), urea cycle, 

structural maintenance through glycerol and ketone bodies, 
oxidative stress, cytochrome P450 activity and lipids, amino 
acids, fatty acids, bile acids and nucleotides metabolisms 
(Eylem et al., 2020; Monedeiro et al., 2020; Qiu et al., 2010; 
Serra et al., 2018; Seyfried & Shelton, 2010; Tan et al., 
2013; Zhang et al., 2017; Zhu et al., 2014) (including mul-
tiple potential contributions of the microbiota (Wan et al., 
2020)). The metabolic pathways highlighted here suffer from 

Table 9  Differential 
correlations  ZCRC  of the 29 
selected correlations for the four 
coefficients tested

88 96 0.7 2.4 2.3 2.1 

89 91 -1.9 -2.0 -1.8 -1.5 

Differential correlations ZCRC of the 29 selected correlations for the four coefficients tested. 

Variable 

ID number 
P G-K K Sp 

1 10 -2.0 -2.6 -2.5 -2.4 

1 69 1.7 2.2 2.0 1.7 

5 68 2.3 2.8 2.6 2.3 

5 78 4.5 5.1 4.8 4.2 

6 25 2.2 1.8 1.7 1.4 

7 48 0.4 0.7 0.7 0.6 

7 62 0.0 0.2 0.2 0.2 

7 69 1.5 1.4 1.3 1.2 

14 51 2.7 3.6 3.4 3.0 

14 57 2.7 2.5 2.4 2.3 

14 85 2.0 2.8 2.7 2.5 

18 77 3.1 3.1 3.0 2.9 

19 77 1.8 2.5 2.4 2.3 

20 22 -1.9 -2.7 -2.5 -2.5 

20 68 2.3 2.5 2.4 2.3 

22 74 2.0 2.3 2.2 2.0 

22 82 1.0 2.4 2.2 1.8 

25 77 1.4 2.3 2.2 2.0 

28 93 -1.9 -3.2 -2.7 -2.3 

29 98 1.8 3.0 2.6 2.3 

54 55 1.7 3.6 3.3 3.0 

58 90 -1.7 -3.6 -3.3 -2.8 

62 95 0.8 0.6 0.6 0.3 

76 96 2.0 3.0 2.9 2.5 

76 98 1.8 2.9 2.7 2.3 

77 101 2.7 3.3 3.2 3.0 

78 83 1.3 2.6 2.4 2.1 

The values which absolute difference with the nearest other coefficient is ≥ 0.5 and 1, the empirical 
thresholds chosen to represent the medium and large differences, are respectively in light grey and grey. 
Pearson’s r (P), Goodman–Kruskal’s gamma (G-K), Kendall’s tau (K) and Spearman’s rho (Sp)
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two weaknesses. First, they are only very weakly enriched, 
except for aminoacyl-tRNA biosynthesis. Second, they are 
rather non-specific and seem to be only indirect conse-
quences of colorectal cancer.

2.7  Limitations

Just like the candidate biomarkers, the correlations of inter-
est are only primary results. They require to be properly con-
firmed through a targeted quantitative analysis of the varia-
tions observed, followed by a proper validation conducted on 
an independent, larger set of patients, to see if they translate 
to different groups of patients with the same significant dis-
tributions. After that, further biological investigation would 
have to be performed, that ideally would lead to a better 
understanding of the metabolic effects of the disease process 
and its remission state detectable in serum samples. In this 
perspective, a powerful but complex approach would be to 
integrate other omics data obtained on the specific biological 
samples analysed for this study.

Indeed, besides the risk of overfitting and the annota-
tion of the metabolites mentioned above, another recurrent 
limitation in metabolomics that was highlighted here is the 
analytical stability. Indeed, the generation of quality data 
requires high accuracy (Weckwerth & Morgenthal, 2005) 
and therefore suffers from the intrinsic noise present in 
high-dimensional data sets (Dias & Koal, 2016). In addi-
tion to its effect on the non-parametric coefficient investi-
gated above, it reduced the number of signals available to 

discover candidate biomarkers and correlations of inter-
est. Missing values, besides the problem they can be for 
correlation calculation by producing incomplete profiles 
difficult to process (an issue that had no particular con-
sequence in this work), are another important cause of 
the loss of potentially interesting signals. Here, despite 
the care given to the chromatography, the implementa-
tion of an external QC system, coupled to a LOESS par-
tial correction, and the replacement of all missing values 
by the half of the lowest signal measured for the specific 
metabolite, the metabolic coverage was decreased by the 
selection of only the stable metabolites (RSD in the QC 
samples under 30% (Kotze et al., 2013)) and the ones pre-
sent in at least half the samples of any class. Therefore, 
through the various preprocessing steps (summarized in 
SI S-8), we went from 646 quality features in the chro-
matographic template to 102 variables corresponding to 
metabolites in the final data set, confirming a previous 
study performed on Crohn’s disease samples where 524 
quality features became 183 high-quality metabolites. If 
it obviously downgrades any biomarker research where it 
linearly decreases the number of potential candidate bio-
markers, it harms even more a correlation analysis where 
every additional variable can have potentially interesting 
links with every other and where, therefore, the number 
of correlations available is proportional to the number 
of metabolites at the power 2. However, such a selection 
seems necessary in order to get confident results, as it was 
shown how even lower analytical variations have a clear 

Table 10  Differential 
correlations Z and associated 
p-values for the indirect 
comparison between CRC and 
R-CRC samples

The differential Z between CRC and R-CRC,  ZCRC/R-CRC, is the difference between the two differential Z 
obtained individually against the gender and age matched healthy controls,  ZCRC  and ZR-CRC . In bold, the 
variations of correlations specific to CRC 

Variable ID numbers ZCRC p-value ZR-CRC ZCRC/R-CRC p-value

5 78 4.8 0.000002 0.7 4.1 0.00004
45 57 −4.3 0.00002 −0.5 −3.8 0.0001
77 98 4.2 0.00003 0.6 3.6 0.0003
45 90 −3.8 0.0001 −0.1 −3.8 0.0002
7 77 3.8 0.0002 0.9 2.9 0.004
20 95 3.7 0.0002 0.9 2.8 0.005
8 43 3.6 0.0003 −0.6 4.2 0.00003
44 92 −3.5 0.0004 −1.4 −2.1 0.033
3 43 −3.5 0.0004 −1.1 −2.4 0.014
14 51 3.4 0.0007 1.9 1.5 0.14
54 55 3.3 0.0008 −0.9 4.3 0.00002
45 70 −3.3 0.0008 −0.1 −3.2 0.001
6 14 3.3 0.0009 0.7 2.6 0.009
45 51 −3.3 0.0009 −0.1 −3.2 0.001
29 77 3.3 0.0010 0.6 2.7 0.008
56 98 3.3 0.0010 −1.1 4.4 0.00001
18 71 3.3 0.0010 −2.9 6.2  < 0.00001
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effect on the non-parametric correlation estimations. This 
drawback is shared by all analytical platforms, in various 
extents, and no single instrumentation is able to provide 
a complete and fully stable coverage of a complex sam-
ple. Because of the exploratory nature of the analysis, if 

the number of significant variations of correlations was 
limited with the threshold applied, it could nevertheless 
be sufficient to provide interesting metabolic insights and 
associations with colorectal cancer alterations and regula-
tions. Because of those limitations, only a small number of 
annotated correlations of interest were obtained and thus a 
very small network. The last, but not the least, limitation 
of our study is the small sample size we used (17 ≤ n ≤ 19), 
due to clinical constraint (Bujang & Baharum, 2016).

Among the several potential effects mentioned in SI 
S-9, the reduced statistical power and the inflation of the 
correlation values are the most dangerous for us. Here, we 
investigated not only correlations but also variations of 
correlation  (ZCRC  or  ZR-CRC ) and differences in the varia-
tions of correlation between different states of the pathol-
ogy  (ZCRC /R-CRC ). This makes difficult to evaluate the 
power as well as the metabolic effect sizes of interest and 
their significance, particularly prior to the study. Indeed, 
the size of the variations of interest not only depends on 
the specific metabolites involved, like the simple correla-
tions, but also on both the initial and final correlation val-
ues r, as investigated for Pearson’s r by Bujang and Baha-
rum, 2016 (Hulley et al., 2013). Power calculation applied 
to our study shows that with n ≥ 17, the minimal correla-
tion value detectable with a power of 80% at a signifi-
cance level of 0.05 is around 0.6 (Yarkoni, 2009), which 
is already a large correlation. Regarding the variations of 
correlations, we observed that the significant ones always 
involved a low or medium correlation and a very high one 
(in absolute value). While the very high correlations are 
much likely inflated by the low sample size (Rakotomalala, 
2005), the statistical power can nevertheless be estimated 
by calculating the sample size necessary to detect the low 
or medium values. With a significance threshold (type I 
error) of 0.05 the power to detect the variations of cor-
relations significant at 0.05, 0.01, 0.001 and 0.0001 are 
respectively of 32, 38, 63 and 90%.

Fig. 4  Network representation of the correlations positively (green) 
and negatively (red) altered between the CRC and their matched HC 
samples. The candidate biomarkers of CRC vs HC previously high-
lighted (Rodriguez-Salas et al., 2017) are framed in blue. The correla-
tions that were found specific to the active state of colorectal cancer 
(CRC samples) in comparison to the remission state (R-CRC sam-
ples) are indicated by an asterisk

Table 12  Metabolic pathways 
most altered when considering 
the highlighted candidate 
biomarkers and correlations of 
interest

CB + Corr* refers to the case where the same metabolite(s) was (were) highlighted in the biomarker 
research and the correlation analysis; CB + Corr means that different metabolites were highlighted in the 
two processes that are involved in the same pathway. The match status is the number of metabolites high-
lighted through the biomarker research and the correlation analysis over the total number of metabolites 
present in the pathway

CB/Corr Pathway name Match status

CB + Corr Aminoacyl-tRNA biosynthesis 5/48
CB Alanine, aspartate and glutamate metabolism 3/28
CB + Corr* Phenylalanine, tyrosine and tryptophan biosynthesis 2/4
CB + Corr* Phenylalanine metabolism 2/10
CB + Corr* Butanoate metabolism 2/15
CB Glycolysis/Gluconeogenesis 2/26
CB Glyoxylate and dicarboxylate metabolism 2/32
CB + Corr Purine metabolism 2/65
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3  Materials and methods

3.1  Samples

Patient recruitment and serum sample intakes were per-
formed at the university hospital of Liège, through the 
Bibliothèque hospitalière universitaire de Liège (BHUL), 
Belgium. The sample intake, processing and storage pro-
cedures were standardized and followed our biobanking 
guidelines developed for proteomics studies and utilized for 
clinical trials (Metsämuuronen, 2021a). We analyzed serum 
samples from patients with colorectal cancer (CRC; n = 18) 
and with colorectal cancer in remission (R-CRC; n = 17) as 
well as their respective controls (HC and R-HC) matched 
for gender and age (n = 19 and n = 17). Based on endoscopic 
examination confirmed on surgical resection specimen, 
patients with confirmed cancer lesions (primary adenocar-
cinoma according to the Tumor Node Metastasis (TNM) 
staging system, CRC group) or with a previous history and 
no evidence of remaining disease of cancer (R-CRC group) 
were included. The (“healthy”) control groups consisted of 
patients screened by colonoscopy and diagnosed negative 
for CRC (no visible lesion or hyperplastic polyp) as well as 
for any other pathology affecting the bowel (as inflammatory 
bowel disease, diverticulitis…) or any other known cancer 
at the time of sample intake. The internal QC samples con-
sisted in 30 μL aliquots of the study samples, made through 
one freeze–thaw cycle.

3.2  Data acquisition and processing

The clinical data of the patients as well as the chemicals 
used and all the steps leading to the data set used in this 
study (sample preparation, GC × GC-HRTOF-MS analysis, 
data (pre)processing, annotation of the compounds of inter-
est) have been described in Giovanni et al., (2020); Rodri-
guez-Salas et al., (2017) and a summary can be found in 
the Supplementary Materials (SI S-10). All calculations and 
plots were made in Microsoft® Excel® except for the cor-
relation coefficients that were calculated using the Excel® 
add-in Tanagra (Xia et al., 2015) and the HCA, PCA, PLS 
and sPLS plots that were constructed using the web-resource 
MetaboAnalyst (Shannon et al., 2003). The correlation net-
works were drawn in Cytoscape® software (Tufte, 2001).

3.3  Correlations analysis

In a previous study, we looked for specific candidate bio-
markers of the ‘active state’ of colorectal cancer (CRC) in 
comparison to healthy controls (HC) and patients in remis-
sion (R-CRC) (Rodriguez-Salas et al., 2017). As a result, in 

the data set of 102 metabolites, 24 metabolites were found 
significantly altered and able to discriminate the CRC and 
HC samples: Receiver Operating Characteristic (ROC) area 
under the curve (AUC) of 0.86, sensitivity and specificity 
of 0.72 and 0.78. Ten of those were found to have signals 
close to healthy levels also in the R-CRC samples and were 
therefore potentially specific to the CRC samples analysed. 
Here, in order to go further, take advantage of their above-
mentioned benefits and complement the previous study, we 
aimed to investigate in a similar manner the correlations 
between metabolites, on the same data set. To do so, we 
first looked for the most appropriate way to calculate them, 
given the type and structure of the data at hand. Follow-
ing Anscombe’s quartet (Anscombe, 1973; Ark & Aert, 
2015), we identified four main points to take into account: 
the presence of non-linear relationships, the role and han-
dling of atypical samples and values, the effect of the ana-
lytical and biological noise in the data and the need for a 
visual control of the detected associations. Therefore, four 
types of correlation parameters were examined: Pearson’s 
r (parametric) as well as Spearman’s rho (Pearson’s r on 
the ranks), Kendall’s tau and Goodman–Kruskal’s gamma 
(non-parametric). The two later belong to the same family 
of coefficients, Kendall’s tau being the parent measure to 
which the others reduce in the absence of ties, and can be 
interpreted as the ranked pairs in agreement between two 
variables (Gorrie, 2020; Metsämuuronen, 2021b). The other 
coefficient of the family, Somers’ D, was contemplated at 
first but finally left aside since it treats the variables asym-
metrically, with a dependent variable and an independent 
one, producing two results for each correlation. To be use-
ful, it would require to completely annotate the molecules 
and to determine their biological hierarchy prior to the cor-
relation analysis, which was not the case in this exploratory 
work. For the same reason, partial correlations, which were 
also considered, were finally left aside. Indeed, without the 
proper prior biological knowledge, the determination of the 
influences between the metabolites would be purely math-
ematical, which is particularly dangerous with low sample 
sizes and non-negligible analytical errors. Besides, the use 
of partial correlations would also have limited the use of the 
visual control tools that are an important part of the protocol 
proposed (Anscombe’s quartet (Anscombe, 1973)).

3.4  Parametric coefficient. Presence and effect 
of atypical samples and values

For Pearson’s r, we assessed the influence of the data struc-
ture on the results from both the raw and log-transformed 
data (Armstrong, 2019; Weckwerth & Morgenthal, 2005), 
the one that was used in the biomarker research (Rodriguez-
Salas et al., 2017). Both atypical samples and values can 
be a serious practical problem for correlation calculation 
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(Wilcox, 2004; Wilcox & Rousselet, 2018) and produce mis-
leading results (Anscombe, 1973; Pernet et al., 2013). The 
appropriateness of the Pearson’s correlation depends more 
on the presence of outliers in the data than on shape of the 
empirical or theoretical distribution (Winter et al., 2016). 
The atypical samples were investigated through hierarchi-
cal clustering analysis (HCA), principal component analy-
sis (PCA) and partial least squares (PLS) plots constructed 
on all metabolites as well as through the aggregation of 
several parameters: mean and median ranks, mean and 
median robust z-scores, proportion of robust z-scores > 1, 
2 and 3.5 (Grubbs & Beck, 1972; Leys et al., 2013; Miller 
& Miller, 2010). The atypical values were studied through 
robust versions of Grubb’s and Dixon’s tests (Dekking et al., 
2005; Rorabacher, 1991), as well as boxplots and scatter-
plots (Anscombe, 1973). Two types of atypical samples 
and values were distinguished, with the aim to differenci-
ate the clear outliers (to be reconsidered for inclusion in 
the data set) from the dissimilar samples. The outliers were 
defined as the samples and values well outside their respec-
tive defined thresholds (95% ellipses for the PCA, PLS and 
sparse partial least squares (sPLS) plots; high dissimilarity 
for HCA, 95% probability values for Grubbs and Dixon’s 
tests; 1.5 IQR limit (Iglewicz et al., 1993) for the boxplots; 1, 
2 and 3.5 (Dunn et al., 2011; Grubbs & Beck, 1972) for the 
z-scores (see SI S-11 for details)) and that were not aligned, 
monotonically, in the scatterplots. The dissimilar samples 
and values were defined as the ones inside but close to the 
thresholds and distant in the scatterplots so that they could 
affect the calculation of the correlations. We then investi-
gated the effects (Wilcox, 2004) of those atypical samples 
and values on the correlation coefficients as well as on the 
variations of correlations  ZCRC  and  ZR-CRC  defined as the 
difference between the correlation coefficients adjusted for 
the global variance (Rodriguez-Salas et al., 2017) (SI S-12), 
between the serum samples from patients with colorectal 
cancer (CRC) or from patients in remission (R-CRC) and 
their matched “healthy” controls (HC and R-HC), for all 
5151 correlations existing between the 102 variables cor-
responding to metabolites of the data set.

3.5  Non‑parametric coefficients. Presence 
and effect of ties

For the non-parametric coefficients, the frequent proxim-
ity of consecutive values in the GC × GC-TOF–MS data set 
relatively to the uncertainty of measure, evaluated as the 
residual standard deviation in the QC samples (RSD), led 
us to take the influence of the precision of the data on the 
assignment of the ranks into account. Indeed, the QC sys-
tem we implemented only partially corrects for the analyti-
cal variations that affect the data and since the selection of 
the stable metabolites allows their residual RSD to go up to 

30%, which is the conventional threshold used for GC–MS 
(Borenstein et al., 2009). Therefore, the attribution of the 
ranks can be somewhat misleading since it sets equal dis-
tances between the values whatever their differences in terms 
of signal measured in the data set and whatever their uncer-
tainty. This could lead to false positive and negative results 
when looking for the significant (variations of) correlations. 
To solve this issue, we first investigated the presence of ties 
through three different aspects, for each pair of consecu-
tive values. First, the ratio between their absolute difference 
and their combined residual standard deviation measured on 
the QC samples (Borenstein et al., 2009; Metsämuuronen, 
2021a) (see SI S-13 for the formulas). Second, the Hedges’g 
effect size (the corrected Cohen’s d for sample sizes < 20) 
(Rodriguez-Salas et al., 2017; Student., 1908). Third, the 
one-tailed t-tests (Broadhurst & Kell, 2006) corresponding 
to the probability of correct ranking. Then, the effect of the 
ties on the correlation coefficients and on the variations of 
correlation  ZCRC , between CRC and HC groups of samples, 
was investigated, after proper transformation for Kendall’s 
tau and Goodman–Kruskal’s gamma (Rodriguez-Salas et al., 
2017; Rousselet & Pernet, 2012; Siqueira Santos et al., 2014; 
Walker et al., 2003).

3.6  Selection and application of the appropriate 
correlation coefficient

After that, considering the atypical values and the ties and 
knowing that no single method is optimal in all situations 
(Pernet et al., 2013; Wilcox & Rousselet, 2018), the four 
coefficients were compared in three different ways in order 
to determine the method of choice to perform correlation 
analysis on the untargeted metabolic GC × GC TOF–MS 
data at hand. First, through their aggregated absolute val-
ues, differences and ranks for all 5151 correlations present 
in the data set. Second, through the visual monitoring of 
the scatterplots established for 29 correlations selected 
to be representative of the data set (detailed in Table 9). 
Third, by looking at the significant variations of correla-
tion  ZCRC  using multiple thresholds (p-value obtained under 
the assumption of normality of  ZCRC , Bonferroni correction 
(Benjamini & Yekutieli, 2001) and Benjamini-Yekutely false 
discovery rate (FDR) procedure (Hyötyläinen, 2010) applied 
because of the possible dependency of the metabolic signals 
measured).

Finally, the selected method was applied with the aim to 
determine the significantly and specifically altered correla-
tions in the active state of colorectal cancer (CRC samples), 
in the same way that it was done for the specific candidate 
biomarkers of CRC in a previous study (Rodriguez-Salas 
et al., 2017). To do so, the significant variations of cor-
relations  ZCRC  between the CRC and their age and gender 
matched healthy controls (HC) were highlighted. Then, 
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their specificity to the active state in regard to the remission 
state (R-CRC) measured on distinct samples was assessed 
by comparing them to the variations of correlation  ZR-CRC  
measured between the R-CRC and their distinct age and 
gender matched healthy controls (R-HC). This comparison, 
indirect to avoid any bias due to the fact that the CRC and 
R-CRC samples were not matched, was done through the 
absolute difference between the two respective  ZCRC  and 
 ZR-CRC  (Kotze et al., 2013) that led to  ZCRC/R-CRC  as well as 
through the associated p-values obtained under the assump-
tion of normality. The metabolites involved in the correla-
tions of interest were identified using full mass spectra, exact 
mass and linear retention indices (LRI) (Bingol et al., 2016; 
Wishart et al., 2018), according to a procedure described in a 
previous publication (Rodriguez-Salas et al., 2017) that uses 
the following acceptance thresholds: match factor of >  70023 
or > 600 with a probability of > 50%, ΔLRI <  2580 and mass 
error < 1 ppm for any specific fragment. Then, the biological 
plausibility of the annotated candidates was assessed with 
the Human Metabolome Database (HMDB (Kanehisa et al., 
2017)) and the Kyoto Encyclopaedia of Genes and Genomes 
(KEGG (Motulsky et al., 2019)) in order to avoid analyti-
cal artefacts. After that, a literature review of the metabolic 
pathways potentially altered by colorectal cancer was con-
ducted to see if, among the annotated candidates, some had 
already been associated to and would therefore be likely 
to play a role in CRC. Finally, a correlation network was 
drawn with the significantly (and specifically) altered vari-
ations along with the significantly (and specifically) altered 
metabolites (candidate biomarkers) already highlighted 
(Rodriguez-Salas et al., 2017). Importantly, further biologi-
cal interpretation and exploration of the results are beyond 
the scope of the present paper that focuses on the methodo-
logical aspects of correlation analysis. Ideally, they should 
include a targeted confirmation of the variations observed, 
conducted on an independent set of patients of a much larger 
size. A powerful approach would be to integrate other omics 
data obtained on these specific biological samples.

4  Conclusions

This study confirmed the interest of conducting correlation 
analysis in addition to the more frequent biomarker research 
in order to increase the metabolic information obtained 
about the changes induced by the phenomenon investi-
gated. To do so, the issues raised by Anscombe’s quartet 
are of primary importance. Therefore, a global strategy has 
been proposed to cover them, which methodological aspects 
were systematically examined in order to allow the interested 
reader to implement it to its own specific case. The strategy 
includes descriptive visual tools such as scatterplots that 
were found necessary (Anscombe, 1973; Hardin et al., 2007; 

Schwarzkopf et al., 2012) to study the relationships between 
metabolites, either with parametric or non-parametric coef-
ficients, in order to overcome the limitations of purely tech-
nical calculations, namely to assimilate the data in all their 
complexity [86], to detect the trends and irregularities and to 
control the summarized statistical values (Armstrong, 2019). 
If Kendall’s tau was found the most appropriate coefficient 
to use with our own data obtained from serum samples ana-
lyzed with GC × GC-TOFMS, the other ones tested were effi-
cient as well to translate numerically the visual tendencies of 
associations and should, in our view, be considered.
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