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ABSTRACT

Strong gravitational lensing is a powerful tool to provide constraints on galaxy mass distributions and cosmological parameters, such
as the Hubble constant, H0. Nevertheless, inference of such parameters from images of lensing systems is not trivial as parameter
degeneracies can limit the precision in the measured lens mass and cosmological results. External information on the mass of the
lens, in the form of kinematic measurements, is needed to ensure a precise and unbiased inference. Traditionally, such kinematic
information has been included in the inference after the image modeling, using spherical Jeans approximations to match the measured
velocity dispersion integrated within an aperture. However, as spatially resolved kinematic measurements become available via IFU
data, more sophisticated dynamical modeling is necessary. Such kinematic modeling is expensive, and constitutes a computational
bottleneck that we aim to overcome with our Stellar Kinematics Neural Network (SKiNN). SKiNN emulates axisymmetric modeling
using a neural network, quickly synthesizing from a given mass model a kinematic map that can be compared to the observations to
evaluate a likelihood. With a joint lensing plus kinematic framework, this likelihood constrains the mass model at the same time as
the imaging data. We show that SKiNN’s emulation of a kinematic map is accurate to a considerably better precision than can be
measured (better than 1% in almost all cases). Using SKiNN speeds up the likelihood evaluation by a factor of ∼200. This speedup
makes dynamical modeling economical, and enables lens modelers to make effective use of modern data quality in the JWST era.
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1. Introduction

Gravitational lensing is a powerful tool that can measure the
mass distributions of galaxies, and even offers a method to mea-
sure the Hubble parameter, H0, which is independent of the
distance ladder (Refsdal 1964). In this context, the lens is typ-
ically an early-type galaxy (ETG) with a time-variable source,
from which time delays between the multiple images can be used
alongside a model of the lensing potential to provide a measure
of distance. However, lensing degeneracies can introduce sys-
tematic uncertainties in the lens mass distribution which must
be accounted for to recover an accurate H0. The most critical
of such degeneracies is the mass-sheet degeneracy (MSD; Falco
et al. 1985), which expresses a specific transformation of the
mass distribution that leaves all imaging observables invariant,
but affects the time delays. This leads to a measure of H0 which
is dependent on the choice of model. One must turn to external
information to break the degeneracy and decide which model
to keep. One such form of external information is the stellar

kinematics of the lens galaxy, which must be measured and
modeled in conjunction with the lensing model if one wishes
to derive an accurate value of H0 (Treu & Koopmans 2002a,b;
Koopmans et al. 2003).

The historically established method to use kinematics to
break the MSD has consisted of combining lens models with
a single aperture measurement of the galaxy’s velocity disper-
sion (e.g., Suyu et al. 2010; Sonnenfeld et al. 2012; Wong et al.
2017; Birrer et al. 2019; Rusu et al. 2020). First, a lens model
is performed, which provides a mass model and light model
of the lens galaxy. From this model, one can use spherical
Jeans approximations (Binney & Tremaine 1987) to estimate a
predicted aperture velocity dispersion. Joining these observa-
tions together is performed by comparing the predicted velocity
dispersion value to the observed value, and combining this kine-
matic χ2 together with the lens model likelihood to determine
the parameters that match both observations with the maximum
total likelihood. Typically this kinematic constraint is included
in post-processing, with only a single aperture constraint to help
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decide between the already converged lensing-inferred results
near the maximum of the imaging likelihood. The main lim-
itation of this approach is that the velocity dispersion is not
considered jointly with the lens model to help guide the sam-
pling of the likelihood. Typically, a single aperture measurement
only weakly favors a given lens model over another, with rela-
tively little constraining power and a relatively low contribution
to the total likelihood.

As the quality of data improves, the constraining power
of kinematic information becomes more valuable. Telescopes
are increasingly capable of measuring spatially resolved veloc-
ity dispersions in galaxies. Through integral field unit (IFU)
spectrographs such as the Multi Unit Spectroscopic Explorer
(MUSE; Bacon et al. 2010), the Keck Cosmic Web Imager
(KCWI; Morrissey et al. 2012), and the James Webb Space Tele-
cope (JWST) NIRSpec IFU (Yıldırım et al. 2020), pixelated
maps of velocity measurements for lens systems are becoming
available, providing constraints on the mass over a range of radii.
If combined with lens models, this information can break the
MSD and improve the precision of cosmological measurements
(Birrer & Treu 2021; Yıldırım et al. 2023; Shajib et al. 2023).

The challenge is that these data require more sophisticated
dynamical models than the spherical Jeans models historically
used for this task. Beyond spherical Jeans, the next level of
generalization is to allow the model to be axisymmetric. Imple-
mentation of this model is possible using the Jeans Anisotropic
Multiple Gaussian expansion (JAM; Cappellari 2008) method,
which decomposes a mass profile using multiple Gaussian
expansion (MGE), deprojects the Gaussian components given

an inclination, and calculates the vrms =

√
v2rot + σ

2
v in the sky

plane, where vrot is the rotational velocity and σv is the velocity
dispersion.

JAM has been used to study the structure of nearby ETGs
(Cappellari et al. 2011). Spatially resolved kinematic data
measured by the SAURON survey has shown that ETGs come
in two distinct kinematic classes: fast rotators and slow rotators
(Cappellari et al. 2007; Emsellem et al. 2007). Fast rotators are
well matched by an oblate axisymmetric model, and as such
are well modeled by JAM (Cappellari 2016). Slow rotators,
meanwhile, typically have position angles of their light dis-
tributions that are misaligned with the kinematic axis, which
implies they tend to have prolate or triaxial shapes (Weijmans
et al. 2014; Loubser et al. 2022). As such, the use of JAM carries
the implicit assumption that these axes are aligned for a given
lens galaxy, which Krajnović et al. (2011) found to be true for
approximately 90% of nearby ETGs. Using JAM would provide
a natural way to self-consistently model lens systems, except
that the calculation is much more expensive than spherical
Jeans. Combining more computationally expensive dynamical
modeling with the already-expensive lens modeling in a joint
inference framework is at present prohibitive without significant
computational resources.

Current methods exist that are capable of combining spa-
tially resolved kinematics and lensing information to varying
degrees. Barnabè & Koopmans (2007) first created a joint kine-
matics+lensing modeling code with a goal of studying galaxy
structure (see also Barnabè et al. 2009, 2012), and as such it
has not been used for H0 inference. van de Ven et al. (2010)
self-consistently compared a lens model of imaging data with
an axisymmetric kinematic model of resolved kinematic data,
but the models were fit separately. More recently Yıldırım et al.
(2020, 2023) implemented a joint lensing and dynamics frame-
work using JAM which is capable of time-delay cosmography,

but is computationally very demanding to fit simultaneously the
many lensing and kinematic measurements.

One source of inspiration for this work is that the boom-
ing field of machine learning (ML) has helped solve similar
problems in related fields (e.g., see review by Huertas-Company
& Lanusse 2023). Neural networks (NNs) have been used to
replace expensive solver operations in cosmological applications
(Albers et al. 2019; Bonici et al. 2022), to replace stellar pop-
ulation synthesis in spectral modeling (Alsing et al. 2020), to
extract physical properties from velocity measurements of galax-
ies (Dawson et al. 2021), and even to speed up gravitational lens
modeling itself (Hezaveh et al. 2017; Perreault Levasseur et al.
2017; Pearson et al. 2019; Park et al. 2021; Schuldt et al. 2021,
2023; Biggio et al. 2023). This work applies a similar strategy
by using a NN to emulate the expensive kinematics computation
step for use within a joint lensing+dynamics modeling frame-
work. Rather than constructing a NN to learn both the kinematics
and lensing physics, our NN emulates only the kinematics. This
strategy also allows the NN to be implementable in a modular
fashion with existing lens modeling frameworks. This ensures
both pieces (the lens model and the emulated kinematic model)
retain physical meaning independently, as we can both check that
realistic kinematics maps are created and leverage existing lens
modeling software to handle the lensing physics.

Having originally unveiled the prototype at NeurIPS 2022
(Gomer et al. 2022), in this work we present the Stellar Kine-
matics Neural Network (SKiNN), which replaces the kinematics
computation for a joint lens+kinematics modeling framework.
SKiNN is built to emulate JAM, producing a high-resolution
velocity map of a galaxy, given a parametric description of the
mass and light of the lensing galaxy as input. Figure 1 shows
a schematic of such a joint framework, wherein mass and light
profiles are modeled through lens modeling and kinematic mod-
eling to evaluate a joint likelihood. We highlight SKiNN’s role
in orange, which calculates the velocity map associated with a
particular model. SKiNN is open source and available for use as
a python package1.

In this work we show that SKiNN is capable of emulating
JAM to a high accuracy, and does so at a greatly increased speed.
Although SKiNN can be incorporated into virtually any existing
lens modeling code, in this work we demonstrate its usage in
lenstronomy2 (Birrer & Amara 2018; Birrer et al. 2021). How-
ever, SKiNN is fully differentiable by construction and thus its
usage is optimal within fully differentiable lens modeling codes
(Gu et al. 2022; Galan et al. 2022; Biggio et al. 2023). This work
represents a proof of concept, and as such we restrict ourselves
to a training set constructed via relatively simple mass and light
models (see Sect. 3), with the mindset that the SKiNN method
could be expanded to more general training sets via transfer
learning. The positive results obtained with SKiNN in this con-
text suggest that generalizing its approach could pave the way
for proper utilization of high-quality data expected from the next
generation of telescopes.

This paper is organized as follows. Section 2 reviews the
details of JAM, Sect. 3 describes the creation of the training set
and SKiNN architecture, Sect. 4 quantifies the performance of
SKiNN, and Sect. 5 describes the implementation into a joint
framework, Sect. 6 discusses these results, and finally Sect. 7
concludes this work.

1 https://github.com/mattgomer/SKiNN
2 https://github.com/lenstronomy/lenstronomy
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Fig. 1. SKiNN’s role in a joint modeling framework. SKiNN takes, as input, a parametric description of the lens mass profile, lens light profile,
anisotropy of the stellar orbits in the lens galaxy, and lens inclination and outputs a vrms map used to evaluate a kinematic likelihood (χ2

kin). This
likelihood is then combined with the lensing likelihood (χ2

img) to give a total likelihood (χ2
tot), which is then sampled. In the case of a variable lensed

source with measured time delays, a time-delay likelihood (χ2
TD, not shown in the figure) can be added to the inference (see Sect. 5).

2. Jeans Anisotropic Multiple Gaussian expansion
(JAM)

To model the kinematics of galaxies, one must implement
some simplifying assumptions, chief among them being the
assumption that the galaxy is in a steady state. Under this
assumption, the dynamics are completely described by the grav-
itational potential and the 6D distribution function (DF) f (x, u),
describing the positions and velocities of the tracer population
(Cappellari 2016). The problem of reconstructing the DF and
the mass distribution from line-of-sight data is inherently under-
constrained, worsened by the nonuniqueness of deprojection
(Gerhard & Binney 1996). To reduce the dimensionality of the
problem, a triaxial shape, axisymmetry, or spherical symmetry
is often imposed.

Noting these difficulties, there are three main methods to
model dynamics: Schwarzschild modeling, in which a large col-
lection of orbits are computed to represent the whole galaxy
(Schwarzschild 1979); N-body simulations, in which particles
are simulated to match the density and other observables (Syer &
Tremaine 1996); and using the stellar hydrodynamics equations
developed by Jeans (1922) to describe the DF within a gravita-
tional potential.For this work, the third method is ideal to predict
second-order velocity moments from a mass distribution without
the expense of large simulations.

The Jeans equations are derived by multiplying the veloc-
ity moments by the collisionless Boltzmann equation, which
assumes a steady-state system operating solely under the force of
gravity (Binney & Tremaine 1987). Within a cylindrical coordi-
nate system under axisymmetry, the two equations are expressed
as:

νv2R − νv
2
ϕ

R
+
∂(νv2R)
∂R

+
∂(νvRvz)
∂z

= −ν
∂Φ

∂R
(1)

νvRvz
R
+
∂(νv2z )
∂z

+
∂(νvRvz)
∂R

= −ν
∂Φ

∂z
, (2)

where vR, vz, and vϕ describe the velocity components in cylindri-
cal coordinates, ν is the tracer density (zeroth velocity moment),

and Φ is the gravitational potential, using the notation that
νviv j =

∫
viv j f (x, u)d3u.

Cappellari (2008) introduced JAM as a way to efficiently
solve these equations. Two more assumptions are implemented:
(1) the velocity ellipsoid is aligned with the coordinate system,
and (2) the anisotropy βz = 1 − v2z/v2R is a constant spatially.
This parameter represents the degree to which stellar orbits are
radially aligned, axially aligned, or isotropic. These assumptions
reduce Eqs. (1) and (2) to:

βzνv2z − νv
2
ϕ

R
+
∂(βzνv2z )
∂R

= −ν
∂Φ

∂R
(3)

∂(νv2z )
∂z

= −ν
∂Φ

∂z
. (4)

These equations allow the tracer density and gravitational poten-
tial to yield the second-order velocity moments. From here, they
must be projected given an inclination angle i (where i = 90◦ is
edge-on) to give the observed velocity v2rms = v

2
rot + σ

2
v (for pro-

jection integrals, see Cappellari 2008), where vrot represents the
observed mean LOS velocity often associated with rotation and
σv represents the velocity dispersion. This inclination angle i is
the second parameter introduced (along with βz) to describe an
axisymmetric velocity model.

For a general mass profile, solving these equations to return a
vrms can require computationally expensive numerical integrals.
However, for a two-dimensional Gaussian profile, the integral
can be performed analytically. Leveraging this, JAM uses the
Multiple Gaussian Expansion technique (MGE; Emsellem et al.
1994; Cappellari 2002) to describe a particular profile as a sum
of many elliptical Gaussian profiles, then efficiently calculates
the vrms of the whole profile by summing the contributions of
the Gaussian components. Requiring the two parameters βz and
i, the final result is a vrms map which can be compared with
observations.

The MGE method offers a physically realistic deprojection
interpretation, producing oblate axisymmetric 3D densities, with
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axis ratio

q2
3D =

q2 − cos2 i

sin2 i
, (5)

where q refers to the 2D projected axis ratio. The deprojection
is still not unique (Rybicki 1987), although the nonuniqueness
has been found to have only a marginal effect on the dynam-
ics of realistic elliptical galaxies (so-called konus densities;
see van den Bosch 1997). The effect worsens for lower inclina-
tions, and the axisymmetric oblate interpretation is only defined
if cos2 i < q2, as beyond this point the deprojected 3D axis ratio
becomes imaginary. This leads to a flattest possible q for a given
Gaussian component below which deprojection is not physical.

In summary, JAM solves the axisymmetric Jeans equations
and projects the velocity distribution functions along the line of
site using MGE. The end result is a map of vrms which we will
use to build the training set for SKiNN.

3. Stellar Kinematics Neural Network (SKiNN)

The goal of SKiNN is to mimic JAM and thus construct a high-
resolution map of vrms in the plane of the sky. The input for
SKiNN is a list of specific values for the 8 parameters in Table 1
which describe the mass and light distributions of the lensing
galaxy, as well as its inclination and anisotropy.

As a proof of concept, the present version of SKiNN is
restricted to a single class of mass profiles and light profiles,
although in principle the method can be expanded in the future
to more general lens models (discussed in Sect. 6). At present,
SKiNN is compatible with a Power-law Elliptical Mass Distri-
bution (PEMD; Barkana 1998) and elliptical Sérsic light profiles
(Sérsic 1963). These profiles are widely used models in lens
modeling. The PEMD mass distribution is expressed in terms
of convergence (dimensionless surface density) as

κPEMD(x, y) = θγ−1
E

(
3 − γ

1 + qM

) x2 +
y2

q2
M

 1−γ
2

, (6)

with three parameters: θE sets the mass normalization which
in the circular case corresponds to the Einstein radius where∫ 2π

0

∫ θE
0 κ(x, y)rdrdϕ = πθ2E; γ represents the slope of the profile

with γ = 2 corresponding to isothermal; and qM represents the
axis ratio of the mass distribution. The Sérsic profile has a 2D
light distribution expressed as

I(x, y) = A exp

−k




√

x2 +

(
y

q2
L

)2

RSersic


1/nSersic

− 1



 . (7)

Three parameters are relevant for the kinematics calculation:
RSersic sets the effective radius within which half of the light is
contained; nSersic sets the shape of the profile; and qL represents
the axis ratio of the light. The normalization A does not matter
for the kinematics calculation, and k is a constant set to ensure
the half-light property of RSersic (Sérsic 1963).

3.1. Training set construction

Care is necessary in constructing the training set for the NN. To
simply allow all parameters to take any value would waste time

Table 1. Settings for the creation of training sets for the NN.

Parameter Description Training set bounds

θE Einstein radius [0.5, 2′′]
γ 2D profile slope (mass) [1.5, 2.5]
qM Axis ratio (mass) [0.6, 1.0]
qL Axis ratio (light) [0.6, 1.0]
RSersic Sérsic radius (light) [0.5θE, θE]
nSersic Sérsic index (light) [2, 4]
βz Anisotropy [−0.4, 0.4]
i Inclination [arccos(0.6), 90◦]

Map resolution 0.02′′
Map size 11′′

Notes. Parameters are sampled uniformly within the range indicated by
square brackets.

training over nonphysical solutions, and could worsen the accu-
racy over physical solutions. On the other hand, the applicability
of the end product is limited to the range of the training set, so
one must be sure to allow relevant parameters to vary over the
whole range of interest to a modeler. We detail here our rationale
for how our training set is created.

The training set consists of a paired set of labels and images.
The input label x is a list of 8 parameters used to describe a lens
system listed in Table 1. The image y is a corresponding vrms map
of the lens created using JAM as detailed further in this section3.
Our training set consists of 4000 randomly generated pairs, our
validation set uses 1000 additional random pairs, and our test set
uses another 4000 additional random pairs.

We constructed the training set by drawing these parame-
ters uniformly from the ranges indicated in Table 1. The ranges
from which these parameters are drawn were chosen based
on the priors for the Time Delay Lens Modeling Challenge
(TDLMC; Ding et al. 2021), as they reflect typical properties
of observed lensed quasars. We allowed for a varying slope
through the parameter γ and for the light distributions to have
different ellipticities than the mass through the parameters qM
and qL. Meanwhile, we assumed that the centroid positions and
position angles of the mass and light align. These assumptions
are based on the observed lens population, for which the mass
and light models generally have mostly aligned position angles
and centroid positions, but they may have different axis ratios
(Shajib et al. 2019). Anisotropy is motivated by the prior used by
Yıldırım et al. (2020), and additionally by the JAM models of
SAURON observations of early-type galaxies (Cappellari et al.
2007). Minimum inclination was set by the flattest Gaussian of
the MGE decomposition.

While the ranges of parameters are described above, numer-
ical limitations lead us to choose a few more specifications for
our training set. A singular PEMD mass distribution (i.e., with
a vanishing core radius) introduces numerical effects at the lens
center. The PEMD mass profile diverges in the center which, in
turn, will lead to unphysical vrms maps with very high vrms values
in the center. To avoid this, we set a core radius of rc = 0.08′′

3 JAM allows one to assign a different q and different βz for each com-
ponent of the MGE, creating the capacity to allow these quantities to
change with radius. For this work, we set the values of βz to be constant
for each training lens. While we do not directly restrict q to be constant
for each MGE component, the profiles we use to build the training set
use a constant q, and as such the axis ratio for a given profile ends up
not changing significantly with radius.
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which is the minimum value for which the test maps produce
central vrms values of <500km s−1. We consider this a reasonable
threshold for numerical effects seeing as ETGs at intermediate
redshift rarely have vrms above this value (two cases in a sample
of 90 galaxies; Derkenne et al. 2021). In addition, we set a lower
bound on the axis ratio qMGE of the Gaussians that are deter-
mined in the MGE routine, because single Gaussian components
can have a very low qMGE although the sum of all Gaussians
follows well the input light and mass profiles. Since the min-
imum inclination angle is set by the flattest Gaussian of the
MGE decomposition, those low qMGE Gaussians would artifi-
cially skew the distribution of inclination angles toward 90◦. We
use qMGE ∈ [0.6, 1], which is the same range from which we draw
the axis ratio of the mass and light for the training set.

With the parameters described above, the training set was
constructed as follows. From a given input label, a PEMD mass
distribution and Sérsic light profile is defined. We then use
the GLEE lens modeling software (Gravitational Lens Efficient
Explorer; Suyu & Halkola 2010; Suyu et al. 2012) to create the
light and mass profiles that JAM requires as inputs. These pro-
files are then fed into JAM, which outputs the vrms image, which
we set to have a 551 × 551 pixel size at 0.02′′ resolution. The
creation of each vrms map takes about 21 seconds on a AMD
Ryzen Threadripper 3970X CPU. Approximately 90% of this
time comes from the MGE decomposition, for which a faster
method is possible in the case of constant ellipticity (Shajib
2019), but JAM does not use this method in order to allow for
a changing axis ratio with each MGE component.

We create vrms maps with much higher resolution and larger
field of view than typical data quality for this construction, with
the intention that the map will eventually be rotated and interpo-
lated down to data resolution. Additionally, for a general lens, the
values of each pixel must be renormalized by the angular diame-
ter distance to the lens. These steps are not necessary to evaluate
the loss function of the NN, and so we postpone their discussion
until Sect. 5.

3.2. Architecture

SKiNN can be seen as a function Ψθ : R8 → Rd×d, mapping an
8-dimensional vector of galaxy mass and light parameters into a
d × d map of vrms in the plane of the sky. Here, θ represents the
set of all trainable parameters of the network. Given a training
dataset D = {xi, yi}

N
i=1 where x ∈ R8, y ∈ Rd×d and N is the size

of the dataset, the training process consists in finding an optimal
set of parameters θ∗, such that a loss function L, measuring the
performance of Ψ onD, is minimized. In this work, the standard
mean-squared-error loss is chosen:

L =
1

Nd2

N∑
i=1

d2∑
(Ψθ(xi) − yi)2, (8)

which we optimize using the Adam optimizer routine (Kingma
& Ba 2014).

While the original prototypes for SKiNN used convolu-
tional architectures (Gomer et al. 2022), the current version of
SKiNN is based on the Conditionally Independent Pixel Synthe-
sis architecture (CIPS; Anokhin et al. 2020). Rather than using
convolutions, this architecture uses the coordinates of each pixel
as well as the parameter vector. The architecture comprises two
main components: a mapping network M and a generator G.
The mapping network takes as input the parameter vector x and
outputs a vector w, called the style vector. The pixel coordi-
nates are processed by a positional encoding e, which ultimately

results in a significant improvement in the output image qual-
ity. The generator takes these encodings as inputs and generates
the values corresponding to each pixel, where the style vector
w is used to condition the generator by modulating its weights
as indicated in Eq. (2) in Anokhin et al. (2020). Overall, the
final image is obtained by passing all the pixel coordinates as
well as the parameter vector to the model, that is, Ψθ(xi) =
G(e(mgrid(d, d))|M(x)), where mgrid(d, d) is the meshed grid of
pixel coordinates spanning from 0 to d for each coordinate. For
more information about the architectural details of the model,
we refer the interested reader to Anokhin et al. (2020). The
CIPS architecture has been shown to produce photorealistic color
images with more realistic power spectra than competing image
generators such as StyleGANv2. While our output has only one
vrms channel, rather than three color channels, we find that the
CIPS architecture results in improved accuracy over our ear-
lier convolutional models. We note that the CIPS architecture
requires a graphics processing unit (GPU), and as such a GPU is
a hardware requirement for SKiNN.

To facilitate faster training, we exploit the symmetry of the
model. Specifically, the NN is trained on only one fourth of the
image (d = 226), and when generating a full map, the output is
mirrored fourfold, creating the 551 × 551 image. This increase
in speed allows us to use the more updated CIPS architecture
without a significant loss in training time. Our last step in the
output is to set any negative pixels to zero. These negative pixels
only happen on rare occasions for individual pixels in the NN
output, but would be nonphysical to interpret as vrms.

4. Performance

4.1. Accuracy

We gauge SKiNN’s accuracy using the test set. Figure 2 shows
both a typical example emulation of a vrms image (top row) and
an example of a poor emulation (bottom row) which we con-
sider to be a worst-case scenario. This scenario can arise in rare
cases because for some parts of the parameter space, there can
be segments of the map where the JAM truth has pixel values
of 0 km s−1. We discuss this case in more detail below. Because
of this, relative residuals are often not the best metric to quan-
tify error, and so instead we will use the nonrelative error (third
column in Fig. 2) to quantify our performance. Figure 3 shows
the residuals for 35 systems. We have selected the first ten sys-
tems, including our worst-case system (boxed in black in Fig. 3)
to explore in the context of joint lensing+kinematics inference in
Sect. 5, while the remaining 25 examples are randomly selected
from the test set. The 31st (bottom left) system in Fig. 3 is another
example with zero-valued pixels, albeit a less egregious case
than our worst-case example.

Aside from the two instances with zero-valued pixels, every
single pixel across the remaining 33 images has an error of less
than 10 km s−1, with typical error significantly less than that. To
give an estimate of the accuracy of each image, we calculate the
error averaged over each image,

E =
1
d2

d2∑
Ψθ(x) − y, (9)

as well as the absolute error averaged over each image,

|E| =
1
d2

d2∑
|Ψθ(x) − y|. (10)
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Fig. 2. Accuracy of SKiNN emulation of vrms maps in a typical case
(top) and in a particularly poor case (bottom). The first two columns give
the truth and predicted vrms maps. Residual differences (third column,
km s−1) and relative residuals, evaluated as (prediction−truth)/truth
(fourth column) are also plotted. Where pixels have zero values, rela-
tive residuals are shown in orange. The black circle corresponds to a
2′′ radius, inside which real data are most constraining.

Fig. 3. Example residuals (SKiNN prediction−JAM truth, km s−1) are
shown for several randomly selected systems. The first ten systems
(boxed in black) are later used for joint inference in Sect. 5. The third
and tenth systems are those from Fig. 2.

These measures give an idea of the average error of a typical
pixel across an image. We plot these measures for each image in
our set of 4000 test images in Fig. 4. Most systems are very well
emulated: the mean error averaged over each image E is centered
on 0.16 km s−1, with a spread of approximately 0.88 km s−1, indi-
cating that SKiNN does not introduce a bias by overpredicting or
underpredicting the image values. The image-averaged absolute
error |E| has a median of 0.6 km s−1, with the 95th percentile cor-
responding to an error of 2 km s−1. We find that the distributions
of these measures of error are quite similar when considering
only the pixels in the innermost 2′′ (black circles in Fig. 2), indi-
cating that the central region, where real data are most sensitive,

Fig. 4. Error evaluated as (prediction−truth), averaged across each
vrms image in the test set. Top: mean error averaged over each image
(Eq. (9)). Bottom: mean absolute error averaged over each image
(Eq. (10)).

is equally well emulated. With the knowledge that typical maps
of lensing ETGs have vrms ∼ 200 km s−1, this indicates the emu-
lated images are accurate to better than 1% in nearly all cases.
Considering that real observations of vrms have an approximate
precision of 6−7 km s−1 (Cappellari et al. 2011), we consider this
an excellent emulation of JAM.

While most systems are very well emulated, there is a tail to
the absolute error distribution, and so we looked for the systems
with the highest error to see if we could diagnose any weaknesses
in the emulation. This led us to discover systems like the worst-
case system in the bottom row of Fig. 2, where the truth maps
have pixels with a value of zero in the outer regions. These sys-
tems comprise approximately 5% of the training and test sets. In
the inner regions of the maps, these systems still provide quite
good emulations, even in the worst case, indicating that the NN
has learned well how to handle these inner features. Diagnosing
the cause of the zero-valued pixels, we find that these cases are
confined to a region of parameter space with high βz and high qL,
as shown in Fig. 5. This region of parameter space is unlikely to
be relevant for real ETGs, which typically have βz < 0.7ϵ where
ϵ = 1 − q (Cappellari 2016). SKiNN is less successful with fit-
ting these systems than with the full set, likely because the sharp
dropoff to zero must be captured precisely to avoid substantial
residuals. The absolute error for these systems is about twice
that of the full set, with median 1.4 km s−1 and 95th percentile of
3.9 km s−1.

We visually inspect the mean absolute error over the whole
parameter space to check to see if there are any other regions
in which SKiNN performs better or worse. We find that SKiNN
performs slightly worse than average for systems with high βz or
low γ. More quantitatively, in the regions where βz > 0.3 or γ <
1.6, the median absolute error is approximately 0.9 km s−1 with
95th percentile of 3.1 km s−1. These regions are also unlikely to
be sampled by realistic galaxies based on the βz constraints of
Cappellari (2016) and the fact that ETGs have nearly isothermal
slopes (Shajib et al. 2019, 2021).

Altogether, SKiNN emulates JAM to within ∼1 km s−1 in
most cases, with some parts of the parameter space having errors
in the recreation ∼5 km s−1. While this is still sufficient for most
applications, we note that a user can always use SKiNN to find
an approximate solution and afterwards use JAM to confirm the
accuracy of converged minimum, which still saves considerable
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Fig. 5. Scatter plot where each point represents the input parameters for
each of the 4000 test-set images. Maps with zero-valued pixels (orange)
are predominately confined to a small region of parameter space with
high βz and qL, compared to those with nonzero pixel values (blue). The
black line indicates the cutoff of Cappellari (2016), above which ETGs
have not been observed.

computational time. In Sect. 5, we will show that using SKiNN
to recover the input parameters results in an accurate constraint
for the ten systems in the black box in Fig. 3 shown above,
including the worst-case scenario with zero-valued pixels.

4.2. Speed

Using the same machine as before, emulation of a vrms image
with SKiNN takes approximately 100 ms using an NVIDIA
GeForce GTX 1660 Super GPU, which is about 200 times faster
than generating the same image using JAM. This does require
the upfront cost to build the training and test sets, which took
approximately 2.5 days, as well as the training cost, which took
approximately 3 days. However, these costs only need to be per-
formed once, and have already been done for the current setup,
for which we make the trained weights publicly available as part
of the SKiNN python package. This speed increase makes it pos-
sible to sample vrms kinematics within a Markov chain Monte
Carlo (MCMC), which we implement and demonstrate in the
following section.

5. Joint inference

In a joint implementation, the lens light and mass models are
used to generate models of both the imaging data and binned
kinematic data which are respectively compared to the observed
image of the lensing system and the kinematics of the lensing
galaxy (Fig. 1). Each comparison leads to a likelihood esti-
mation, and the summed log likelihood is optimized, hence
constraining the lens mass and light parameters by using both
imaging and kinematic data. Some parameters, such as the
source parameters (not shown in this work), are constrained only
from lensing. On the other hand, some parameters, such as the
inclination and anisotropy, are specific to the kinematic data
and cannot be constrained by the lensing imaging information.
Meanwhile, the mass profile and lens light profile are constrained
by both types of data, reducing modeling degeneracies.

5.1. Kinematic likelihood

In this section, we describe the steps needed to transform the
output from SKiNN into a binned kinematic data and evaluate
a likelihood. SKiNN outputs a high-resolution vrms image at a
fiducial cosmological distance, which must be rescaled, rotated,
sampled, and binned to compare with the observed kinematic
data.

The first step necessary is to rescale the map from the fiducial
cosmological distances to those of the system. Rescaling with
cosmological distance is a straightforward multiplicative factor
on the values of each vrms pixel (Birrer et al. 2020; Yıldırım et al.
2023), scaling as

vrms ∝

√
D∆t

Dd(1 + zd)
, (11)

where Dd is the distance to the deflector, zd is the deflector red-
shift, and the time-delay distance D∆t = (1 + zd) DdDs

Dds
can be

expressed in terms of the distance to the source Ds and the dis-
tance between the deflector and source Dds. In a joint framework,
D∆t is constrained by the lensing model of imaging and time
delays, allowing the kinematics to constrain Dd through Eq. (11).
Our training set uses fiducial distances corresponding to a lens
redshift of zd = 0.5 and source redshift of zs = 2 for a flat uni-
verse with H0 = 72 km s−1 Mpc−1 and Ωm = 0.32, resulting in
Dd = 1216 Mpc and D∆t = 2887 Mpc.

Once rescaled according to the lens distances, the SKiNN
image must be resampled to match the observed data. SKiNN-
generated images are originally aligned with the x-axis centered
on the origin, and as such must be first rotated and translated to
align with the light distribution before binning down to the lower
resolution of the observed data. Finally, the generated image is
binned according to the same bins as the observed data, which
uses Voronoi binning (Cappellari & Copin 2003) to construct
bins of approximately the same signal to noise ratio (S/N). In
each bin, the luminosity-weighted vrms is calculated using the
modeled light distribution. We are left with a list of predicted
vpred values in each of the data bins, which can be compared
with observed vdata to evaluate a likelihood, which to within a
normalization constant is expressed as:

logLkin = −
1
2
χ2

kin = −
1
2

(vpred − vdata)⊤C−1(vpred − vdata), (12)

where C is the covariance matrix giving the precision to which
vrms can be measured in a each bin. This likelihood term is
added to the lensing likelihood to construct a joint likelihood
which can be maximized to recover a best-fit model of the
lensing+kinematic data.

We have implemented this joint likelihood in lenstronomy,
which is already capable of recovering a likelihood of a lens
model given imaging data. The addition of SKiNN allows
lenstronomy to evaluate a kinematic likelihood by using
SKiNN to construct a vrms map from the eight parameters in
x and then applying the rescaling, translation, and rotation to
allow for sampling over the center position, position angle, and
cosmological distances. The five parameters which dictate this
transformation are listed in Table 2. All in all, a given map from
which a kinematic likelihood can be evaluated is produced using
the 13 parameters in Tables 1 and 2.

5.2. Testing the joint inference framework

To test the joint implementation of lensing+SKiNN, we created
mock lensing and kinematic data which we fit both separately
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Table 2. Parameters describing the translation, rotation, and rescaling
from a SKiNN output map to data resolution.

Parameter Description Sample range

ϕ Position angle [0, 90◦]
xcenter x-coordinate of center [−0.15′′,−0.15′′]
ycenter y-coordinate of center [−0.15′′,−0.15′′]
D∆t Time-delay distance 2887 Mpc ±20%
Dd Angular distance

to the deflector
1216 Mpc ±20%

Notes. Parameters are sampled uniformly within the range indicated
when constructing mock data.

and jointly to demonstrate the utility of SKiNN in a realistic
test case. We created ten sets of mock imaging and kinematic
data from the boxed systems in Fig 3. These systems were ran-
domly selected, except for the tenth system, which as discussed
in Sect. 4 was selected specifically to gauge our accuracy in the
worst-case scenario. For a given system, a member of the test
set provides the truth velocity map and the eight parameters in
Table 1. We then randomly draw truth values for ϕ, xcenter, ycenter,
D∆t, and Dd according to the ranges in Table 2. For each system,
we add an external shear with magnitude 0.02 and a position
angle which is offset from the ellipse major axis by 30◦. We show
these mock observations in Fig. 6. Mock lensing imaging infor-
mation is shown on the left. The binned vrms image (far right)
is constructed using the deflector light as a weight map for the
unbinned vrms, which itself comes from JAM but has been rotated
and rescaled according to the truth distance values for a given
system. The remainder of this section discusses the creation of
these mock data in more detail.

For the mock kinematic data, a light map is needed to define
the binning scheme. We construct a mock image of the Sér-
sic light distribution, where the goal of this mock is to have a
realistic binning scheme with ∼20−50 bins to test the SKiNN
implementation rather than to perfectly calibrate to the real noise
levels of any particular telescope. That said, our brightness and
noise settings correspond to setting the integrated brightness to
a magnitude 19 galaxy with a 200s exposure time using a zero
point of 26 magnitude and read out noise of 21 e−1/s with the
magnitude of the sky background set to 20 mag. The vrms mock
image is created using a 55 × 55 pixel grid with a resolution of
0.05′′. We evaluate the luminosity-weighted vrms using the test
image, which was created using JAM. To mimic the effects of
atmospheric seeing, we convolve the high-resolution JAM vrms
as well as the light during the weighting step using a Gaussian
PSF with a FWHM of 0.1′′ before binning. We apply Voronoi
binning to the data with a target S/N ∼ 15 for each bin. Finally,
for each vrms bin, we independently add noise drawn from a
Gaussian distribution with a width depending on the bin S/N:
the width is set to 10% at S/N = 10 and narrows with increas-
ing S/N to a minimum width of 5% when the bin S/N ≥ 40.
This scatter added to the vrms values is intended to represent the
imperfect accuracy to which the velocity can be measured from
the spectrum of a given bin. The covariance matrix in Eq. (12)
is therefore a diagonal matrix where the entry for each bin is the
variance of each Gaussian. These binned data are taken to be our
observed vrms data, shown in the far right column of Fig. 6.

The lensing imaging data are constructed in a similar fashion
to the previously mentioned mock light map used for the kine-
matics weighting. We use the same exposure times and noise
settings, but add in arcs from a lensed source. To create these

Fig. 6. Mock observations for the 10 systems used for joint inference.
From left to right: the lensing image used for lens modeling (in com-
bination with time delays); the deflector light only, with the lensing
arcs removed, used to define the kinematics binning and weighting; the
noiseless vrms map created by JAM, translated, rotated, and sampled at
the data resolution; and the binned vrms with noise added, i.e. the input
for the kinematics modeling. The red square in the lensing imaging indi-
cates the tighter field of view of the remaining three panels.

arcs, we randomly draw a source position from within the region
of the source plane capable of producing four lensed images. In
this position, we place a point source with an intrinsic magnitude
of 21.75 in the center of an extended circular Sérsic source with
RSersic = 0.1 and intrinsic magnitude of 22.5. Unlike the kine-
matic light map, we change the image cutout to a 70 × 70 pixel
cutout with a resolution of 0.1′′. Since the lensing imaging
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includes point sources, we use the PSF from the TDLMC
(Ding et al. 2021), which is more realistic than a Gaussian PSF
for imaging data. These changes allow for a larger cutout than the
velocity map to ensure that all the lensed images are observed.

In addition to the imaging information, the lens data include
mock relative time-delay measurements of the multiple images.
These measurements are given a relative uncertainty of 2% or
1 day, whichever is higher, and are used to evaluate a time-delay
likelihood which is added into the total likelihood to sample D∆t.

In the joint framework, the kinematic data and the lens imag-
ing data are combined together along with the time-delay data
to optimize a total log likelihood by adding their respective log
likelihoods (i.e., treating observations as independent and multi-
plying their likelihoods), which to within the normalization of L
is equivalent to a summed χ2:

log Ltot = −
1
2
χ2

tot = −
1
2

(
χ2

img + χ
2
kin + χ

2
TD

)
. (13)

However, we note that the log likelihood of lens imaging data
is preponderant over the kinematic and time-delay likelihoods.
Indeed, images encompass a lot of pixels (∼5000) while the
number of kinematic bins is restricted to the order of ∼30 and
the time-delay likelihood is restricted to 3 observations at most.
When images are taken with the best telescopes, that is with
higher resolution, the relative contribution of the imaging data
gets even higher (e.g., TDCOSMO systems; Millon et al. 2020).
The optimal way to combine likelihoods of different magnitudes
may require rescaling individual component likelihoods and is
a general problem which is beyond the scope of this work. In
our case, we simply combine likelihoods with no rescaling as in
Eq. (13) and show that the inclusion of kinematics still improves
the overall constraint.

5.3. Results of the joint framework test

For each of the systems in Fig. 6, we model the lensing image
and the kinematic image individually as well as jointly.

The lens modeling is performed on the mock images and
time delays using a PEMD+external shear model. Strictly speak-
ing this is more optimistic for a lens model than we should expect
from real systems because we know in this case that the true
mass distribution is the same as our model, meaning we will
artificially break the MSD by giving the lens model the correct
profile. As such, our lensing inference will reflect a precision for
the slope γ which is overestimated relative to a more realistic
case. Nonetheless we will show that the kinematic information
helps constrain γ to break the MSD in the more natural way by
measuring the mass distribution directly.

In all cases, we use an MCMC to sample the posterior
parameter space near the truth label. This assumes that a blind
inference would find a maximum likelihood for parameters near
the truth value from which to start an MCMC, which may not
always be true. However, seeing as we ultimately find that the
MCMC converges to a region surrounding the truth value, we
are satisfied that this maximum would be recovered from a blind
starting point, and felt our computational resources were better
spent on exploring more systems than on converging from an
arbitrary starting point.

We plot the MCMC results for one system in Fig. 7. Sam-
pling using the lensing data alone (blue) provides constraints on
most parameters, with no ability to constrain Dd, βz, or i, since
these three parameters are not sampled in a lensing-only model.
As such, we have replaced them with uniform distributions for
visualization in Fig. 7. The kinematics-only result (orange) typi-
cally cannot constrain individual parameters such as θE as tightly

as the lensing information can, but it is able to probe all of
the parameters of interest. When sampled jointly (green), the
resulting posteriors narrow around the truth values, indicating
the kinematics constraints have helped the lensing constraints
inform the mass distribution. In addition, we also find the exter-
nal shear closely matches the input for all systems (not plotted).
The recovered shear has a value of 0.021 ± 0.003 for both the
lensing-only and joint results, indicating the kinematic informa-
tion does not bias the recovery of the shear. Further testing may
be required for an input shear parallel to or orthogonal to the
major axis of the lens.

In Fig. 8 we plot the results of the MCMC for the worst-case
scenario system with zero-valued pixels. The results are quite
similar, possibly because the weighting of the light distribution
favors the central regions, as represented by the black circle in
Fig. 2. This makes the outer regions where numerical effects are
present less relevant. One possible bias in the kinematics-only
result is that the truth centroid position (xcenter and ycenter) lies
just outside the ∼1σ level of the posterior. Fortunately the cen-
troid positions are well constrained by imaging information, and
the joint inference strongly favors the correct centroid positions.
Noting this, one could also consider for a specific modeling con-
text to fix the centroid positions to the values determined by the
lens model. For our tests, we find that fixing these centroid posi-
tions does not significantly change the other parameter posterior
distributions.

6. Discussion

We have shown that SKiNN offers a fast way to emulate JAM
to high accuracy. The speed increase has made it possible to
jointly model lensing and kinematics for several system on a sin-
gle GPU. Here we summarize the joint inference results of the
10 systems and discuss our outlook for SKiNN in the future.

Seeing as the full cornerplots are somewhat cumbersome
to show for all 10 systems, we show the 1D histograms for
the 13 parameters, normalized to the truth values in Fig. 9.
These plots are constructed by stacking together all the chains of
∆x = (x− truth) for each parameter x, and plotting all 10 systems
as one distribution. We note that this visualization can be lacking
for parameters with truth values near the edge of the prior: some
distributions, such as D∆t, βz, and i were uniform distributions
in the corner plots, but when stacked together can result in non-
centered distributions. This is because D∆t for example cannot go
below zero so it is possible to be considerably offset in the posi-
tive direction but impossible to as offset in the negative direction.
Other distributions, such as γ, may result in narrowed distribu-
tions due to the prior width limiting the maximum amount by
which a fit can possibly be offset (0.5 on average in the case of
γ). Despite these limitations, this visualization serves to demon-
strate the precision with which data of this quality is able to
constrain the truth.

A caveat that bears repeating is that since this test used a
PEMD lens model to fit a PEMD mass distribution, the MSD
is artifically broken due to having the external knowledge of the
functional form of the mass model. As such, the uncertainty of
the lensing-only γ result is underestimated. This makes it all
the more important that the kinematics-only γ result be cen-
tered on the truth to show that the kinematics helps to break this
degeneracy, which is the result we find in Fig. 9.

From the plots, it is clear that most parameters are con-
strained by lensing alone, with the inclusion of kinematics
helping only slightly. Some parameters are constrained even bet-
ter by lensing alone than by a joint inference such that it may
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Fig. 7. Corner plot for the MCMC sampling of input parameters using SKiNN for the first example in Fig. 2.

be preferable to simply fix them to the lensing result: namely
θE , xcenter, and ycenter. Meanwhile the anisotropy and inclination
are mostly informed by the kinematics, with the lensing helping
only slightly. The notable exception to systems being constrained
predominately by one form of information or the other is Dd,
which clearly requires joint information to constrain. The kine-
matic constraint can only recover a combination of Dd and D∆t,
a degeneracy which is broken by the lensing measure of D∆t.
The precise constraint of these cosmological distances is criti-
cal for a reliable recovery of H0. We show that for all systems
the combination of lensing and kinematic data is consistently

able to break the degeneracy and recover accurate cosmological
distances.

Despite the significant speed increase SKiNN has over JAM,
it is still the bottleneck, taking approximately 90% of the time
for a each likelihood evaluation. A typical joint fit in this test
undergoes nearly 106 likelihood evaluations, each of which takes
approximately 100 ms using a single GPU (∼28 GPU-hours per
system). It is important to note, however that if the same test
were done using JAM, we estimate it would recover the same
results but take ∼5800 CPU-hours per system, a prohibitive cost
for modelers without the use of cluster computing.
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Fig. 8. Corner plot for the MCMC sampling of input parameters using SKiNN for the worst-case system with zero-valued pixels (second example
in Fig. 2).

The application of SKiNN in its current form is limited
to the assumptions used to create the training set. Constructed
with lensed quasar systems in mind, the training set used in this
work may not be suitable for all applications, depending on the
expected range of parameter values (for example demanding that
RSersic < θE , which is not always true for lower redshift galaxy-
galaxy lenses). Being an emulation of JAM, SKiNN inherits
JAM’s limitations: the mass is assumed to be oblate, axisym-
metric, and with a deprojectable axis ratio. SKiNN is limited
at present to a constant-anisotropy power-law mass model and a
single Sersic light profile, with the position angles and centroids

aligned. Even with these limitations, we note that SKiNN can
quickly find an approximate solution within its allowed param-
eter space, which one could use as a starting point for more
sophisticated dynamical modeling, saving significant time.

We anticipate that generalization of the SKiNN method is
possible, as we have previously generalized from an isothermal
prototype to the power-law mass profile discussed in this work.
Such generalization requires recreating (or supplementing) the
existing training set and retraining the neural network. For exam-
ple, one could expand the method beyond the limitations of the
JAM model if one had access to a large training set created from

A59, page 11 of 13



Gomer, M. R., et al.: A&A, 679, A59 (2023)

Fig. 9. Recovery of the 13 parameters from Tables 1 and 2 shown as 1D
distributions. Plotted results are stacked from those of the ten systems
in Sect. 5.

N-body simulations or some other method of emulating galaxy
kinematics. In such a case, one could speed up training time
by using transfer learning starting from the weights learned in
this work.

Thinking more broadly, it may even be possible to modify
the method of SKiNN to input a mass and light map instead
of a parametric description, providing great flexibility, but this
would require an update to the architecture as well as retrain-
ing, and is beyond the scope of this current work. However,
there is reason to be optimistic about such modifications: we
have already iterated on the design of SKiNN from the NeurIPS
version (Gomer et al. 2022) to a new architecture and a larger
training set, indicating that similar iterations are possible in
the future.

7. Conclusion

We present SKiNN, which emulates vrms maps for dynamical
modeling in the context of joint modeling with strong gravi-
tational lensing. SKiNN is trained to emulate JAM dynamical
modeling, which it does to a high precision (better than 1%
in nearly all cases), with no indications of a bias. SKiNN
makes it possible to compute kinematic likelihoods approxi-
mately 200 times faster than with JAM. This speedup reduces
the severity of the computational bottleneck that makes joint
kinematic+lensing inference expensive, allowing us to sample

MCMC chains for a kinematic likelihood in a timely manner on
a single GPU. We show that these sampling methods are able
to recover the input parameters associated with the truth when
provided mock data using JAM.

SKiNN is currently available for use as a python package
and ready to use for time-delay cosmography applications. While
SKiNN is currently implemented in lenstronomy, its modular
nature makes it suitable to be implemented in other lens mod-
eling codes. SKiNN is fully differentiable, and so its value can
be further optimized if used in conjunction with differentiable
modeling software. With updates to the training set and/or archi-
tecture, the method of SKiNN can likely be further generalized
to a wider range of mass and light profiles.

This work represents a step forward in making modern
dynamical methodology tractable for strong lens modeling,
increasing the complexity from spherical Jeans to axisymmet-
ric Jeans. This increased model complexity allows lens modelers
to make proper use of upcoming spatially resolved kinematics
from modern JWST-era telescopes.
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