

USE OF RECYCLED FINE AGGREGATES IN HIGH ADDED VALUE APPLICATIONS

1st International Conference on Advances in Engineering and Technology for Sustainable Development

Julien Hubert, Yeakleang Muy, Frédéric Michel & Luc Courard University of Liège Hanoï, 2nd of November 2023

RECYCLED FINE AGGREGATES FOR 3D PRINTED CONCRETE

- ► Influence of the use of recycled fine aggregates
- Influence of the printing process
- Pilot application

RAMMED CONCRETE WALL

- Mix design
- **▶** Pilot application

Comparison of the mechanical performances of a reference virgin sand mortar and a mortar designed with RFA:

Both mixtures are designed to present the same workability

Washed concrete recycled fine aggregates 0/2

Natural crushed limestone 0/2

Similar workability and printability:

RFA 0/2 Tradecowall [kg/m³]	Vicat cement Performat CEM I 52.5N [kg/m³]	W _{eff} /C	SP [% SP/C]	VMA [% VMA/C]
995.6	905	0.29	2.50%	0.2%

	Slump [mm]	Spread [mm]		
		10 chocs	15 chocs	25 chocs
RFA	43.7 ± 2.3	121,0 ± 1,9	$128,0 \pm 2,4$	140,0±3,1
Natural sand	45,4 ± 2,0	118,6± 1,5	124,8± 1,6	134,1±1,9

Mechanical characterization:

- Compressive strength
- Flexural strength
- Cast samples: prisms 4x4x16 cm

Printing of « S » shaped elements cut to extract prisms of dimensions 4x4x16 cm:

► Start of the humid curing after 48h (logisitics)

Compressive strength:

- Comparison of cast vs printed samples : significant loss of performances
- Anisotropy of the mechanical performances Rc (oz) < Rc (ox) (wolf et al., 2019; Ma et al., 2019; Mechtcherine et al., 2020)

Layer adherence (measured via direct tension test)

	7 days	28 days	56 days	91 days
Cast samples	-	-	-	2,92 ± 0,06
Printed samples	2,03 ± 0,11	2,51 ± 0,20	2,69 ± 0,31	2,25 ± 0,13

Influence of the type of sand:

- ► Slight decrease of the compressive strength (max 8%)
- ► No significant influence on the flexural strength

Performances more than satisfying

Influence of the printing process:

Additive manufacturing : Loss of mechanical performance but still behaves very well
No « weakness planes » at the interface between printed layers

Urban furniture – bench Parc Bernard Serin in Seraing, Belgium

Luc Courard

Professeur Université de Liège

Julien Hubert

Ingénieur de recherche Université de Liège

MERCI POUR VOTRE ATTENTION

Develop the most environmentally friendly masonry material possible:

► Substitution of the primary ressources Use of recycled concrete aggregates : Pre-scalping fines

Develop the most environmentally friendly masonry material possible:

- ► Reduce cement content
- ► Reduce water consumption

Comparison of the performances of a rammed earth wall with natural sand, washed recycled sand ans pre-scalping fines :

Significant loss of performance with pre-scalping fines but the samples still verify the minimal required compressive strength for masonry elements

Optimisation of the mix design (wt%):

- ▶ Influence of the water content: 5%, 10%, 15%
- ▶ Influence of the cement content : 5%, 10%, 15%

First draft of the composition: 80% pre-scalping fines, 10% water et 10% cement,

