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Abstract

Dendric languages were introduced a decade ago as a generalization of both
Arnoux-Rauzy languages and codings of regular interval exchange transfor-
mations. Right away, it was proved that dendric languages possess strong
algebraic properties and are preserved under some fundamental operations,
namely derivation and decoding with respect to a bifix code. A few years
later, Dolce and Perrin studied the more general concept of eventual den-
dricity and proved that this notion is stable under topological conjugacy.

In this thesis, we explore another aspect of (eventual) dendricity and
delve deeper into the link between dendricity and morphisms. We mainly
answer four questions.

We first look at the evolution of the factor complexity when applying
a morphism and show that for many languages, including the eventually
dendric ones, it grows at most by an additive constant.

We then turn to the preservation of dendricity and show that the mor-
phisms for which the image of a dendric language is always dendric are
precisely those generated by the Arnoux-Rauzy morphisms.

Continuing on this idea of describing when the image of a dendric lan-
guage under some morphism is dendric, we focus on particular morphisms
related to return words, and for these so-called return morphisms, we obtain
a practical characterization.

Finally, given any set of return morphisms, we show how to characterize
the sequences of morphisms in this set generating a dendric language, ob-
taining an S-adic characterization of (eventual) dendricity. Consequently,
we prove that (eventual) dendricity is decidable for morphic languages.

Keywords: Combinatorics on words · Symbolic dynamics · Dendric
words · Neutral words · Morphisms · Factor complexity · S-adic representa-
tions · Return words
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Résumé

Les langages dendriques ont été introduits il y a dix ans comme étant à la fois
une généralisation des langages d’Arnoux-Rauzy et des codages d’échanges
d’intervalles réguliers. Dès le départ, leurs propriétés algébriques ainsi que
leur stabilité pour des opérations telles que la dérivation ont été mises en
évidence. Quelques années plus tard, Dolce and Perrin ont étudié la no-
tion plus générale de dendricité ultime et ont notamment montré que cette
propriété était stable pour la conjugaison topologique.

Dans cette thèse, nous nous intéressons à un autre aspect de la den-
dricité (ultime) et explorons plus en profondeur le lien entre dendricité et
morphismes. Plus précisément, nous répondons à quatre questions.

Nous commençons par regarder l’évolution de la complexité lors de l’ap-
plication d’un morphisme et montrons que pour de nombreux langages, y
compris les ultimement dendriques, elle augmente d’au plus une constante
additive.

Nous nous tournons ensuite vers la préservation de la dendricité et mon-
trons que les morphismes pour lesquels l’image d’un langage dendrique est
toujours dendrique sont engendrés par les morphismes d’Arnoux-Rauzy.

Toujours dans cette idée de décrire quand l’image d’un langage dendrique
est elle-même dendrique, nous nous intéressons à des morphismes particuliers
liés aux mots de retour. Pour ces morphismes dit de retour, nous obtenons
une caractérisation effective.

Enfin, étant donné un ensemble de morphismes de retour, nous montrons
comment caractériser les suites de morphismes dans cet ensemble qui engen-
drent un langage dendrique, obtenant ainsi une caractérisation S-adique de
la dendricité (ultime). En conséquence, nous montrons que la dendricité
(ultime) est décidable pour les langages morphiques.

Keywords: Combinatoire des mots · Dynamique symbolique · Mots
dendriques · Mots neutres · Morphismes · Complexité · Représentations S-
adiques · Mots de retour
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Introduction

Combinatorics on words is a fairly recent field at the intersection of mathe-
matics and theoretical computer science. Indeed, while the notion of words
already implicitly appeared in works of adjacent domains, the first com-
binatorics on words paper is often attributed to Thue at the beginning of
the 20th century [Thu06, Thu12] and the first reference book of the field
dates back to 1983 [Lot97]. Since then, Combinatorics on words has been
vastly developed due to its strong links with other domains such as symbolic
dynamics, group theory, number theory, and graph theory for example.

A perfect example of this connection to various fields is the Sturmian
words (or sequences). They were introduced by Morse and Hedlund in
1940 [MH40], although they can be related to the much earlier work of
Bernoulli III [Ber71]. They admit the following combinatorial definition:
they are the (right) infinite words containing n+ 1 distinct length-n words
for all n ≥ 0. Sturmian words can also be defined in symbolic dynamics as
the codings of irrational rotations, or from a number theory point of view
using continued fractions, for example.

This diversity of approaches and applications made (and still makes) the
Sturmian words some of the most studied sequences in combinatorics on
words. Two well-known surveys ([Lot02, Chapter 2] and [Fog02, Chapter
6]) list some of their numerous properties.

By definition, Sturmian sequences are on a two-letter alphabet and it
was then natural to search for generalizations on larger alphabets. Due to
the different definitions of Sturmian words, several versions were studied.
We focus here on two that can, in some sense, be considered to be antag-
onistic while still keeping many properties. The first one is the family of
Arnoux-Rauzy languages. They originated in a combinatorial characteriza-
tion of Sturmian words and were first introduced on a three-letter alphabet
in [AR91], then studied in a more general setting under the name of strict
episturmian sequences in [DJP01, JP02]. The second family is the set of
languages of interval exchange transformations (or IET), which extend the
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x Introduction

symbolic dynamics point of view of Sturmian words and were extensively
studied in [Kea75, Vee78, Rau79, FZ08] for example.

Inspired by a study of Arnoux-Rauzy languages and the properties of
their bifix codes in [BDFP+12], a group of researchers introduced a new gen-
eralization of Sturmian languages unifying both Arnoux-Rauzy languages
and languages of regular interval exchange transformations: the dendric
languages [BDFD+15a].

With each element w of a language L on the alphabet A, we can associate
three sets that represent the different ways of extending the word w. More
precisely, we have the set ELL(w) of letters preceding w in L, the set ERL (w)
of letters following w and the set EL(w) of pairs of letters surrounding w.
We then define a graph whose left (resp., right) vertices are the elements of
ELL(w) (resp., ERL (w)) and a left vertex a is connected to a right vertex b
whenever (a, b) ∈ EL(w). We then say that w is dendric if this graph is a
tree and the language L itself is dendric if all of its elements are.

The initial study of dendric languages done in [BDFD+15a, BDFD+15c,
BDFD+15d] showed that they possessed remarkable properties in terms of
return words and bifix codes, as well as being stable under two classical op-
erations: derivation and maximal bifix decoding. Since then, several papers
have studied other aspects of dendric languages. We mention here [AC16] fo-
cusing on the Schützenberger group, [BDD+18] studying the morphisms sta-
bilizing dendric sequences and the continuous eigenvalues, [BCB19] proving
that balancedness on letters implies balancedness on words, and [BCBD+21]
in which the authors extend this last result and study dimension groups.

Relaxing the hypothesis on small words, the notion of eventual dendricity
was studied in [DP21] where the authors prove that the class of eventually
dendric shift spaces is stable under topological conjugacy. Independently,
they were also introduced by Damron and Fickenscher [DF22] who pro-
vided bounds on their number of ergodic measures. Note that the notion
of eventual dendricity also contains a third natural generalization of Stur-
mian languages: the recurrent balanced languages [DDP23]. Let us also
mention the suffix-connected languages [GO22], another generalization of
dendric languages.

The main goal of this thesis is to study an aspect of (eventually) dendric
languages that, while related to some of the existing results, has not been
fully explored yet: their behavior with respect to morphisms.

The concept of morphisms, i.e., applications preserving some pre-defined
structure, is fundamental in most branches of mathematics, and combina-
torics on words is no exception. Indeed, (word) morphisms appear as early
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as in Thue’s work [Thu06, Thu12]. The morphic sequences, generated by
two morphisms, form a classically studied family, see [AS03] for a survey.

Here, we mainly explore three questions on (eventually) dendric lan-
guages regarding morphisms: the properties of their images under a mor-
phism, the preservation of dendricity when applying a morphism, and S-adic
representations generalizing the idea of a morphism generating a language.

This work is divided into five chapters detailed below. Moreover, at the
end of each chapter (except the first one), we list some open questions and
perspectives of research related to the results of the corresponding chap-
ter. The content of this work is mainly extracted from the following three
papers [GLL22, GL22, Ghe23] but also contains new results.

The first chapter recalls the basic notions of combinatorics on words
found in any book of the domain ([Lot97, AS03, Fog02] for example). We
particularly emphasize the notions of languages (i.e., factorial bi-extendable
sets of finite words) and morphisms since both concepts are central through-
out this work.

We then turn to the three well-known families mentioned earlier: Stur-
mian languages, Arnoux-Rauzy languages, and languages of regular interval
exchange transformations. In particular, we give a combinatorial character-
ization of languages of regular interval exchange transformations, which will
be more practical than the usual definition in the following chapters.

We end this chapter with weak, neutral, and strong languages. A word
w is weak (resp., neutral ; resp., strong) if EL(w) − ELL(w) − ERL (w) + 1 is
negative (resp., zero; resp., positive). These notions are fundamental since
the study of weak and strong words allows to completely describe the factor
complexity of the language [Cas96, Cas97]. In particular, neutral languages
(i.e., exclusively containing neutral words) have affine factor complexity.
Since dendricity implies neutrality, some results presented in this work are
stated in the more general setting of neutral languages.

In Chapter 2, we introduce (eventual) dendricity and familiarize our-
selves with some basic properties. As stated earlier, dendric languages are
strongly related to the families of languages mentioned so far. Namely, Stur-
mian languages, Arnoux-Rauzy languages, and languages of regular interval
exchange transformations (or RIET) are dendric [BDFD+15a, BDFD+15b],
and dendric languages are neutral [BDFD+15a]. A complete diagram syn-
thesizing the interactions between these families and a few more is repre-
sented in Figure 2.2.

Requiring a property to be true “eventually” often implies some addi-
tional closure property. In the case of dendricity, this is the stability under
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topological conjugacy. This operation is the dynamical version of an iso-
morphism and is thus fundamental. A property stable under topological
conjugacy is often said to be dynamical. Therefore, eventual dendricity be-
ing a dynamical property while dendricity is not was the original motivation
of Dolce and Perrin for the introduction of eventually dendric languages
in [DP21].

The family of eventually dendric languages seems particularly important
since it admits many alternative definitions. Indeed, we show in Section 2.3
that being eventually dendric is equivalent to being eventually neutral (resp.,
eventually acyclic; resp., eventually ordinary) even though these four prop-
erties are all distinct when removing the adverb “eventually”.

We devote the last section of Chapter 2 (before the open questions) to
some new graphs. Indeed, while the dendricity of a language is defined using
graphs associated with each word, we provide an alternative characterization
by looking at two graphs per length. More precisely, for a given language L
and an integer n, we define GLn(L) (resp., GRn (L)) as the graph whose vertices
are the letters, and two letters a and b are connected by an edge labeled by
length-n word v if a, b ∈ ELL(v) (resp., a, b ∈ ERL (v)). While all these graphs
are needed to characterize dendricity, we will more specifically be interested
in their limit behavior when n tends to infinity. The two obtained graphs
GL(L) and GR(L) are then closely related to asymptotic pairs, a classical
tool in symbolic dynamics. In the following chapters, we will use both the
original definition of dendricity and this new approach in the results and
proofs.

The core concept behind the families of languages mentioned in this
work is the notion of left, right, and bilateral extensions of words inside the
language defined at the beginning of this introduction. As stated earlier,
they determine the factor complexity [Cas96, Cas97] but can also be used
to count various other objects. In the third chapter, we assess the influence
of extensions on three different aspects of languages. We will mostly be
interested in the number of extensions and less in their interactions. In other
words, most of the results of this chapter are stated in terms of neutrality
and not of dendricity.

We first look at the classical notion of codes [BPR10]. These objects,
at the intersection between combinatorics on words and algebra, were cen-
tral in the first papers on dendricity [BDFD+15a, BDFD+15c, BDFD+15d].
They were also the topic of the paper [DP17] on neutral languages. There-
fore, many properties of codes included in a neutral or dendric language are
known. We focus here on a refinement of the link between neutrality and
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factor complexity. More precisely, we obtain a description of the total num-
ber of left (resp., right) extensions of the elements of a prefix (resp., suffix)
code.

The second object we consider is the factor complexity, not of a neutral
or dendric language as this is already known, but of the image of such a
language under a non-erasing morphism. A classical result [AS03, CN10]
states that, when applying such a morphism to a language, the factor com-
plexity cannot increase by more than a multiplicative constant. The proof
of this result relies on the simple observation that any length-n word in the
image appears in the image of a length-n word w of the initial language. It
is sometimes sufficient to look at a suffix of w. Therefore, instead of con-
sidering all length-n words of the initial language, we look at the elements
of a code. Using the result proved in the first part of the chapter, we show
that, for a large family of languages (including eventually dendric ones), the
factor complexity can only increase by an additive constant when applying
a non-erasing morphism. However, this is not the case in general for the
Thue-Morse language.

Finally, we turn to the properties of return words in dendric and neu-
tral languages. Introduced by Durand in [Dur98], they are strongly related
to topological induction in dynamical systems. Return words can be seen
as natural blocks to decompose an infinite word, the operation consisting
of looking at the sequence of blocks instead is then called derivation. The
most famous result on dendric languages to date, called the Return The-
orem [BDFD+15a], states that the sets of return words in a dendric lan-
guage are bases of the free group over the alphabet. In particular, there
are as many return words as letters in the alphabet. More generally, the
relation between neutrality and the number of return words was studied
in [BPS08, DP17]. We recall these results and slightly extend them in Sub-
section 3.3.1. Another famous result on dendric languages is their stability
under derivation [BDFD+15d]. We extend it to eventually dendric languages
in Subsection 3.3.2.

Two of the first results on dendricity were about the stability under some
operations: derivation [BDFD+15d] and maximal bifix decoding [BDFD+15a,
BDFD+15d]. These operations can be seen as desubstitution (or taking the
pre-image) under some particular morphisms. The opposite question of the
preservation of dendricity when applying a morphism is the theme of the
fourth chapter. However, this question is too broad so we focus on three
partial answers.

We first obtain large families of morphisms that never preserve dendricity
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based on the following simple idea: dendric languages have a restricted
factor complexity, strongly linked to the size of their underlying alphabets.
Moreover, using the results of Chapter 3, we obtain a bound on the factor
complexity of the image of a dendric language. Consequently, if the image
alphabet is larger than the initial alphabet, the image of a dendric language
is never dendric.

We can also look at the morphisms for which the image of a dendric lan-
guage is always dendric. It is well-known that the only morphisms preserving
Arnoux-Rauzy languages are the so-called Arnoux-Rauzy morphisms [JP02].
It turns out that we obtain the same morphisms for dendricity. On the
other hand, the morphisms preserving languages of regular interval exchange
transformation, starting from an alphabet of size at least three, are all triv-
ial.

We then focus on preservation for specific morphisms called return mor-
phisms. We chose them as they are behind the derivation operation and
will be the building blocks of the results of Chapter 5. Moreover, these
morphisms have interesting recognizability properties which allow us to ob-
tain (reasonably) simple results. Indeed, we can fully characterize, for each
return morphism, for which languages it preserves dendricity. This result
is especially interesting in the case of a return morphism associated with a
word or a set of letters. Indeed, in these cases, this characterization only
depends on the graphs GL(L) and GR(L) introduced in the second chapter
(and sometimes on the length-2 elements of L).

On the other hand, the question of preserving eventual dendricity may
admit a much simpler answer since we are not aware of any example of an
eventually dendric language whose image under a morphism is not eventu-
ally dendric. As we show in Section 4.5, this is closely related to a question
of Dolce and Perrin [DP21] on the stability of eventual dendricity under
topological factorization. We also show that eventual dendricity is closed
under the application of (resp., desubstitution with respect to) a recogniz-
able morphism, which includes the case of return morphisms.

Chapter 5 focuses on a powerful tool to understand the structure and
properties of a language: the S-adic representations. The terminology first
appears in [Fer96] and is inspired by the work of Vershik [VL92] due to
the historical link between S-adic representations and Bratelli-Vershik dia-
grams [Dur10]. S-adic representations quickly gained traction in symbolic
dynamics as they seemed to be an appropriate tool to study other objects
classically associated with topological spaces: dimension groups [BCBD+21],
topological rank [DDMP21] and ergodic measures [BHL23], for example.
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They are also of interest for the combinatorics on words community since
they generalize the idea of morphic (or substitutive) languages, and many
known families of languages can be characterized by their S-adic represen-
tations: Sturmian [Fog02], linearly recurrent [Dur00, Dur03] and of at most
linear complexity [Esp23], to mention a few.

The goal of the last chapter of this thesis is to show that recurrent (even-
tually) dendric languages can also be characterized by their S-adic repre-
sentations. To obtain this result, we use theorems coming from every other
chapter: the properties of the graphs GL(L) and GR(L) for (eventually)
dendric languages from Chapter 2, the stability of (eventual) dendricity un-
der derivation from Chapter 3 and the preservation of (eventual) dendricity
when applying a return morphism from Chapter 4.

The characterization we obtain uses a theoretical graph that we effec-
tively build in the case of a ternary alphabet (Figure 5.3). We also explain
how to deduce an S-adic characterization of the languages of regular interval
exchange transformations in Subsection 5.3.3.

In fact, given any set of return morphisms, we characterize all the den-
dric languages having an S-adic representation using exclusively morphisms
from this set. We exploit this stronger formulation to characterize the den-
dric languages having exactly one right special word of each length in Sub-
section 5.3.2.

Finally, this stronger version is also fundamental to show that (eventual)
dendricity is decidable for uniformly recurrent morphic languages. Indeed,
using results of Durand [Dur98, Dur13b], we first obtain a constructive S-
adic representation using only two return morphisms, then apply our char-
acterization to show that dendricity is equivalent to the existence of some
finite paths in a constructive graph.

Let me end this introduction by mentioning that, while dendric lan-
guages were my main focus of research during my PhD years, I also had the
opportunity to work on other topics, mainly on string attractors on which I
have co-authored a paper [GRS23].





Chapter 1

Preliminaries

This chapter contains the background definitions which will be fundamental
in the following chapters. While most notions presented here are classical, we
would like to emphasize two possibly unusual conventions used throughout
this work: a language is always factorial and biextendable, and Sturmian
and Arnoux-Rauzy languages are not necessarily recurrent.

We start by recalling in Section 1.1 the usual notions of combinatorics on
words, focusing on languages and morphisms. We also recall the definition
of the extensions of a word as it is a central concept for dendric languages.

In the following sections, we then give an overview of four families of
languages: Sturmian, Arnoux-Rauzy, regular interval exchange transforma-
tions and neutral languages. The study of these families is at the origin of
the definition of dendricity.

In Section 1.2, we start with the Sturmian words which are in some
sense the simplest sequences whose properties are not trivial. In fact, most
of the tools presented in this work were first introduced for or inspired by
properties of Sturmian languages.

We then turn to two different generalizations of Sturmian languages in
Sections 1.3 and 1.4: the Arnoux-Rauzy languages and the languages of reg-
ular interval exchange transformations. Indeed, Sturmian words are always
on a binary alphabet and the idea was to generalize to larger alphabets one
of the many alternative ways of defining Sturmian words. As we will see in
Section 2.1, these are particular examples of dendric languages.

Finally, in Section 1.5, we introduce the notions of weak, neutral and
strong words leading to the definition of neutral languages who, once again,
are a generalization of Sturmian languages but which includes the dendric
languages this time.
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2 Chapter 1. Preliminaries

1.1 Words, languages and morphisms

We recall some fundamental notions of combinatorics on words that will be
used throughout this work. This section is relatively brief as we assume that
the reader is already familiar with most of these concepts. A more complete
introduction can be found in [Fog02] for example.

Words and shift spaces

Definition 1.1. An alphabet is a finite non empty set A whose elements
are called letters. A (finite) word on the alphabet A is a finite sequence of
letters in A. The length of a word w = w1w2 · · ·wn, wi ∈ A, is the number
n of letters and is denoted |w|. The only word of length 0 is the empty
word ε. We denote An the set of words of length n ≥ 0 on the alphabet
A, A∗ = ∪n≥0An the set of finite words and A+ = A∗ \ {ε} the set of
non-empty finite words. The set A∗ is a monoid when endowed with the
concatenation, the empty word being the neutral element. Formally, the
concatenation of u = u1u2 · · ·un and v = v1v2 · · · vm is defined as the word
u · v = u1 · · ·unv1 · · · vm. We will denote it uv instead most of the time.

A right (resp., left ; resp., bi-) infinite word on the alphabet A is an
element of AN (resp., A−N; resp., AZ) where N denotes the set of non-
negative integers. Right infinite words are also sometimes called (one-sided)
sequences. When representing a bi-infinite word, we will sometimes add a ·
between the letters at positions −1 and 0.

In this work, if the alphabet plays a role, we will always assume that we
are working with the minimal alphabet, i.e., the set of letters that appear
in the words we are working with. To make the distinction clearer we will
sometimes say that a word is over the alphabet A if all the letters of A
appear in the word.

We can define relations between the words as follows.

Definition 1.2. A finite word u is a factor of w ∈ A∗ if there exist p, s ∈ A∗
such that w = pus. If p = ε (resp., s = ε), we say that u is a prefix (resp.,
suffix ) of w. If u 6= w, we moreover say that u is a proper factor (resp.,
proper prefix ; resp., proper suffix ). We denote Fac(w) (resp., Pref(w); resp.,
Suff(w)) the set of factors (resp., prefixes; resp., suffixes) of w, and Fac∗(w)
(resp., Pref∗(w); resp., Suff∗(w)) the set of proper factors (resp., proper
prefixes; resp., proper suffixes) of w. We similarly define the notion of
factor of a (one sided or two sided) infinite word by allowing p and/or s to
be infinite.
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An occurrence of a factor u of a (finite or infinite) word w is an index i
such that u = wiwi+1 · · ·wi+|u|−1 = w[i,i+|u|−1]. We denote |w|u the number
of occurrences of u in w.

We will also sometimes take a more dynamical point of view.

Definition 1.3. The shift map is the map S : AZ → AZ such that for all
x ∈ AZ and for all n ∈ Z,

S(x)n = xn+1.

A shift space on the alphabet A is a closed subset X of AZ (if AZ is endowed
with the product topology of the discrete topology over A) which is S-
invariant, i.e., S(X) ⊆ X. Shift spaces are particular examples of topological
dynamical systems.

Languages

In this work, some of the concepts we consider are typically studied from the
combinatorics on words point of view while others originate in dynamical
systems. As most of the properties of this work depend only on the associ-
ated language, we attempt to unify both points of view and hopefully make
the results accessible to a larger panel of readers by talking mostly about
languages, as was done in the original paper on dendricity [BDFD+15a].

Definition 1.4. The language of a (one-sided or two-sided) infinite word x
is the set of its factors. We denote it L(x). The language of a shift space X
is the union of the languages of its elements and we denote it L(X).

We will consider languages without necessarily caring about a corre-
sponding word or shift space. In what follows and contrary to what is often
found in the literature, a language is not any set of finite words as we will
assume that it possesses some additional properties by definition.

Warning. In this work, we always assume that a language is a set of finite
words which satisfies the following two hypotheses:

• the language is factorial, i.e., it contains the factors of its elements;

• the language is biextendable, i.e., for each of its elements w, there exist
two letters a and b (not necessarily different) such that awb is in the
language.
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In particular, a language is always infinite.

These are two natural assumptions which are automatically satisfied if we
consider the language of a bi-infinite word, of a recurrent one-sided infinite
word (see Definition 1.6) or of a shift space.

Moreover, a language is over A if each letter of A appears in (at least)
one word of the language.

We will then abusively assimilate an infinite word or shift space with its
language as explained below.

Definition 1.5. Let P be a property defined on languages. An infinite
word x satisfies P if and only if L(x) satisfies P . Similarly, a shift space X
satisfies P if and only if L(X) does.

To simplify the notations, we also assume that if a notation is defined
for languages, then there are corresponding notations for infinite words and
shift spaces by replacing L(x) by x and L(X) by X. The only exceptions
are the notations defined in the following paragraph.

As we are sometimes only interested in words of particular lengths in
the language, we will denote Ln (resp., L≥n; resp., L≤n) the set of words of
length n (resp., at least n; resp., at most n) in L. We similarly define L>n
and L<n.

We mentioned above the notion of a recurrent one-sided infinite word.
We properly define it here.

Definition 1.6. A language L is recurrent if for all u, v ∈ L there exists
w such that uwv ∈ L. For infinite words, recurrence is often understood
as “each factor appears infinitely many times”. A language L is uniformly
recurrent if for all u ∈ L, there exists n ≥ 0 such that u is a factor of all
v ∈ Ln. Once again, there is an equivalent approach for infinite words by
saying that every factor appears infinitely often with bounded gaps between
the occurrences.

For shift spaces, we use a different terminology.

Definition 1.7. A shift space X is minimal if it is non-empty and its only
closed S-invariant subsets are ∅ and X itself.

The following characterizations are also well-known: a shift space X is
minimal if and only if, for all x ∈ X, we have L(x) = L(X), if and only if
the language L(X) is uniformly recurrent.
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Morphisms

A classical way of generating a language is through the use of morphisms.

Definition 1.8. Throughout this work, a morphism is a monoid morphism
σ : A∗ → B∗, i.e., σ(uv) = σ(u)σ(v) for all u, v ∈ A∗. It is therefore sufficient
to give the images of the letters. We then naturally extend the morphism
to infinite words by saying that

σ(x0x1x2 · · · ) = σ(x0)σ(x1)σ(x2) · · ·

and

σ(· · ·x−2x−1 · x0x1 · · · ) = · · ·σ(x−2)σ(x−1) · σ(x0)σ(x1) · · · .

We now define particular types of morphisms.

Definition 1.9. Let σ : A∗ → B∗ be a morphism. We say that σ is

1. non-erasing if σ(A) ⊆ B+;

2. letter-to-letter (or a coding) if σ(A) ⊆ B;

3. primitive if B ⊆ A and there exists n ≥ 1 such that, for all a ∈ A and
b ∈ B, b is a factor of σn(a);

4. prolongable on a ∈ A if B ⊆ A and σ(a) ∈ aB+.

A morphism can also be extended to languages and shift spaces, or more
precisely, a morphism induces a map from languages to languages and from
shift spaces to shift spaces as described below. Observe that, if σ is erasing,
then {σ(w) : w ∈ L} might not be infinite, and σ(x), x ∈ AZ, is potentially
a finite word. Therefore, we will restrict ourselves to the non-erasing case.

Definition 1.10. Let σ be a non-erasing morphism. The image of a lan-
guage L is defined as ⋃

w∈L
Fac(σ(w)).

It is a language (in the sense given in the Warning of page 3) and we will
abusively denote it σ(L).

Similarly, the image (induced by σ) of a shift space X is the shift space

{Sk(σ(x)) : x ∈ X, 0 ≤ k < |σ(x0)|}

that we will abusively denote σ(X).
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Note that σ(L(x)) = L(σ(x)) and σ(L(X)) = L(σ(X)) for any infinite
word x and any shift space X.

Definition 1.11. Let σ : A∗ → A∗ be a primitive morphism. The language
generated by σ is the set of factors of the words σn(a), n ≥ 0, a ∈ A. It is a
language by hypothesis on σ (if #A ≥ 2). Moreover, if σ is prolongable on
a, then the language generated by σ is the language of the fixed point

lim
n→∞

σn(a) = auσ(u)σ2(u) · · ·

where σ(a) = au.

The two previous definitions can be slightly more general (by requiring
weaker hypotheses on the morphism σ) but they will suffice in this work.

Let us consider the following language which will be a running example
throughout this work.

Definition 1.12. Let ϕ : {0, 1, 2}∗ → {0, 1, 2}∗ be such that ϕ(0) = 0012,
ϕ(1) = 12 and ϕ(2) = 012. The (ternary) Chacon language is the language
generated by the morphism ϕ.

Since the morphism ϕ is primitive and prolongable on 0, the Chacon
language is also the language of the sequence

lim
n→∞

ϕn(0).

Example 1.13. The first elements of the Chacon language L are described
below:

L0 = {ε}, L1 = {0, 1, 2}, L2 = {00, 01, 12, 20, 21},

L3 = {001, 012, 120, 121, 200, 201, 212},

L4 = {0012, 0120, 0121, 1200, 1201, 1212, 2001, 2012, 2120},

and

L5 = {00120, 00121, 01200, 01212, 12001,

12012, 12120, 20012, 20120, 20121, 21201}.
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Factor complexity and extensions

Definition 1.14. The factor complexity of a language L is the map

pL(n) : N→ N n 7→ #Ln.

We will often also use the first difference of complexity which is the map
sL(n) : N→ N such that, for all n ≥ 0,

sL(n) = pL(n+ 1)− pL(n).

Note that, by Example 1.13, we have pL(n) = 2n+1 for all n ∈ {0, . . . , 5}
for the Chacon language. This observation is more general as stated in the
following result due to Ferenczi [Fog02, Chapter 5].

Proposition 1.15. Let L be the Chacon language. For all n ≥ 0, sL(n) = 2
and pL(n) = 2n+ 1.

The notion of extensions will be fundamental in this work. Indeed, all
of the families of languages that we study can be defined using properties
of their words’ extensions.

Definition 1.16. Let L ⊆ A∗ be a language and let w ∈ L. The set of left ,
right and bi-extensions of w in L are defined respectively as follows

ELL(w) = {a ∈ A : aw ∈ L}
ERL (w) = {a ∈ A : wa ∈ L}
EL(w) = {(a, b) ∈ A×A : awb ∈ L}.

The word w is left (resp., right) special if #ELL(w) ≥ 2 (resp., #ERL (w) ≥ 2).
It is bispecial if it is both left and right special.

Observe that the set of left (resp., right) extensions of the empty word
in L will always be equal to L1, and the bi-extensions of ε correspond to L2.

Let us continue Example 1.13.

Example 1.17. Let L be the Chacon language. We describe below the left,
right and bi-extensions of three particular (and well-chosen as will become
clear in Example 1.45) words. For ε, we have

ELL(ε) = {0, 1, 2}, ERL (ε) = {0, 1, 2},

and
EL(ε) = {(0, 0), (0, 1), (1, 2), (2, 0), (2, 1)}.
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For 012, we have

ELL(012) = {0, 2}, ERL (012) = {0, 1}

and

EL(012) = {(0, 0), (0, 1), (2, 0), (2, 1)}.

Lastly, for 120, we have

ELL(120) = {0, 2}, ERL (120) = {0, 1}, EL(120) = {(0, 0), (2, 1)}.

Studying the extensions of words also gives precious information on the
factor complexity, as shown by Cassaigne [Cas97] (or [Cas96] in English).

Proposition 1.18. Let L be a language. For all n ≥ 0, we have

sL(n) =
∑
w∈Ln

(#ERL (w)− 1) =
∑
w∈Ln

(#ELL(w)− 1).

1.2 Sturmian languages

The following fundamental result in combinatorics on words by Morse and
Hedlund is at the origin of the study of Sturmian words.

Theorem 1.19 (Morse-Heldund [MH38]). Let x be a right infinite word.
The following are equivalent:

1. x is eventually periodic;

2. px(n) is bounded;

3. there exists n such that px(n) = px(n+ 1).

In other words, if an infinite word x is not eventually periodic, then its
factor complexity satisfies

px(n) ≥ n+ 1

for all n ≥ 0. This led to the definition of Sturmian sequences as the
aperiodic infinite words with the smallest factor complexity, i.e., the words
x such that px(n) = n + 1 for all n. In particular, these words are on two
letters and the Morse-Hedlund Theorem implies that they are recurrent.

The most famous Sturmian sequence is the Fibonacci word defined in
the example below.
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Example 1.20. Let σ : {0, 1}∗ → {0, 1}∗ be the morphism such that σ(0) =
01, σ(1) = 0. As σ is prolongable on 0, it admits a fixed point

f = lim
n→∞

σn(0).

This infinite word is called the Fibonacci word due to its link with the
sequence of Fibonacci numbers.

Sturmian words are sometimes also defined using balancedness of their
factors, as mechanical words or as codings of rotations for example. They ad-
mit many characterizations and have been vastly studied, see [Lot02, Chap-
ter 2] and [Fog02, Chapter 6] for partial surveys on this topic.

By extension, we will define a Sturmian language as follows.

Definition 1.21. A language L is Sturmian if, for all n ≥ 0, it satisfies
pL(n) = n+ 1.

Every recurrent Sturmian language corresponds to a Sturmian sequence.
However, a Sturmian language is not necessarily recurrent and might there-
fore not be the language of a right infinite (Sturmian) sequence. This is the
case of the language below which is also a recurring (counter-)example in
this work.

Example 1.22. Let L = {0n : n ≥ 0}∪{0n10m : n,m ≥ 0}. It is a language
and, for all n ≥ 1, we have

Ln = {0n} ∪ {0i10n−1−i : 0 ≤ i ≤ n− 1}

so pL(n) = n+1. By definition L is a Sturmian language. It is not recurrent
since it is impossible to find a word containing two 1’s. It is therefore not the
language of a right infinite word. It is however the language of the bi-infinite
word · · · 0001000 · · · = ω010ω.

Using Cassaigne’s result on the first difference of complexity (Proposi-
tion 1.18), we obtain the following alternative definition.

Proposition 1.23. Let L be a language. The following are equivalent:

1. L is Sturmian;

2. for all n ≥ 0, L contains exactly one left special word of length n and
it has two left extensions;

3. for all n ≥ 0, L contains exactly one right special word of length n and
it has two right extensions.
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1.3 Arnoux-Rauzy languages

In [AR91], Arnoux and Rauzy introduced a family of sequences on an alpha-
bet of size 3 inspired by the Sturmian sequences, and more specifically, by
Proposition 1.23. The definition of the so-called Arnoux-Rauzy sequences
has been extended for an alphabet of any size as follows.

Definition 1.24. A language L over A is Arnoux-Rauzy if, for all n ≥ 0,
L contains exactly one left special factor of length n and this factor has
#A left extensions, and exactly one right special factor of length n and this
factor has #A right extensions.

A right infinite word x is an Arnoux-Rauzy sequence if it is recurrent
and L(x) is Arnoux-Rauzy.

Arnoux-Rauzy sequences are also sometimes called strict episturmian
sequences [JP02].

Note that, as in the definition of Sturmian languages, recurrence is not
required for Arnoux-Rauzy languages.

Similarly to the Fibonacci language of Example 1.20, we can define the
Tribonacci language over 3 letters. It is an Arnoux-Rauzy language.

Example 1.25. Let σ : {0, 1, 2}∗ → {0, 1, 2}∗ be the morphism such that
σ(0) = 01, σ(1) = 02 and σ(2) = 0. The Tribonacci language is the language
generated by σ, or equivalently, it is the language of the fixed point

t = lim
n→∞

σn(0).

Observe that
t = 0102010010201010 · · · .

By definition, the Arnoux-Rauzy languages over an alphabet of size 2
are exactly the Sturmian languages by Proposition 1.23. More generally,
if L is an Arnoux-Rauzy language over A, then pL(n) = (#A − 1)n + 1
by Proposition 1.18. This is however not a characterization as the Chacon
language has complexity 2n+1 (Proposition 1.15) but is not Arnoux-Rauzy
since, for example, it has two left special words of length 3 by Example 1.17.

To end this section, we recall the notion of ordinary words. It was
introduced by Cassaigne in [Cas96] on an alphabet of size 2 and was later
generalized in [CN10] for an alphabet of any size.

Definition 1.26. Let L be a language. A word w ∈ L is ordinary if there
exist a, b such that

EL(w) = (ELL(w)× {b}) ∪ ({a} × ERL (w)).
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We can use this definition to give the following characterization of Arnoux-
Rauzy languages.

Proposition 1.27. A language L is Arnoux-Rauzy if and only if every
w ∈ L is ordinary.

1.4 Interval exchange transformations

Interval exchange transformations originate in the dynamical point of view
of Sturmian words. Indeed, a Sturmian word can be seen as the coding of
a rotation of irrational angle on the torus [MH40]. The idea is to replace
this simple rotation by an exchange of several intervals, usually given by
the interval lengths and a permutation of the set of intervals. We give here
the (equivalent) definition based on interval lengths and two orders over the
set of intervals due to its closer link with the combinatorial characterization
that we detail in this section.

Definition 1.28. Let ≤ and � be two total orders on A = {a1, . . . , ak} and
let k lengths λa1 , . . . , λak > 0 be such that

∑k
i=1 λi = 1. The associated

interval exchange transformation (or IET for short) is the bijective map
T : [0, 1[→ [0, 1[ such that

T (z) = z −
∑
aj<ai

λaj +
∑
aj≺ai

λaj if z ∈

∑
aj<ai

λaj ,
∑
aj≤ai

λaj

 .
In other words, it is the piecewise translation mapping the length-λai interval

Iai :=
[∑

aj<ai
λaj ,

∑
aj≤ai λaj

[
to the interval

[∑
aj≺ai λaj ,

∑
aj�ai λaj

[
.

Example 1.29. In Figure 1.1, we have represented the first few (positive
and negative) iterations starting from the point z = 0.07 for an interval
exchange transformation T corresponding to the orders 0 < 1 < 2 and
2 ≺ 1 ≺ 0, and some rationally independent lengths λ0 ∼ 0.2, λ1 ∼ 0.27
and λ2 ∼ 0.53. The second line represents an intermediary step to see
the translations of intervals. This representation is the reason behind the
notation

(≤
�
)

which is sometimes used to represent the two orders giving an
IET.

In this work, we will focus on interval exchange transformations that
satisfy an additional property.



12 Chapter 1. Preliminaries

0 1

z T (z)T 2(z) T 3(z)T−1(z)

Figure 1.1: Example of the first iterations of an interval exchange transfor-
mation.

Definition 1.30. Let T be an interval exchange transformation and let us
reuse the notations from Definition 1.28. If the orbits (under T ) of the non-
zero

∑
aj<ai

λaj , i ∈ {1, . . . , k}, are infinite and disjoint, then we say that T
is a regular interval exchange transformation, or RIET for short.

Not every pair of orders can correspond to an RIET, as shown below.

Remark 1.31. If T is regular, then for all 0 < n < k, the n smallest
elements for the order ≤ cannot coincide with the n smallest elements for
�. Indeed, by contradiction, if these elements are denoted b1, . . . , bn and if
c (resp., d) is the n+ 1 smallest element for ≤ (resp., �), then∑

ai<c

λai =
∑
bi

λbi =
∑
ai≺d

λai .

Therefore the orbits of the discontinuity points are not disjoint (if c 6= d)
or infinite (if c = d). A pair of orders satisfying this condition is called
irreducible.

To each interval exchange transformation, we can associate a language
by coding the orbits of all points.

Definition 1.32. Let T be an IET and let us reuse the notations from
Definition 1.28. The (natural) coding of a point z ∈ [0, 1[ is the bi-infinite
word x ∈ AZ such that, for all n ∈ Z, xn = ai if and only if Tn(z) is in the
interval Iai . The language L(T ) of the transformation T is the union of the
languages of the codings of the points z ∈ [0, 1[.

Example 1.33. Let us continue Example 1.29. In Figure 1.1, the red inter-
val corresponds to I0, the gray one to I1 and the blue one to I2. Therefore,
the coding x of z = 0.07 is such that x0 = 0, x1 = 2, x2 = 1, x3 = 2 and
x−1 = 2.
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02 12 20 21 22

0 1

021 022 120 121 202 212 220

0 1

Figure 1.2: Partitions of [0, 1[ given by the intervals Iw for w of length 2
(above) and length 3 (below).

Using the notations of Definition 1.32, we see that w = x[m,m+n−1] if
and only if

Tm(z) ∈ Iw1 ∩ T−1(Iw2) ∩ · · ·T−n+1(Iwn).

For a length-n word w, we will thus denote

Iw = Iw1 ∩ T−1(Iw2) ∩ · · ·T−n+1(Iwn).

It is a (possibly empty) sub-interval of [0, 1[. We then easily see that

L(T ) = {w : Iw 6= ∅}.

Observe that, for a fixed length n, the non-empty intervals Iw, |w| = n, form
a partition of [0, 1[.

Example 1.34. Starting once again from Example 1.29, we have repre-
sented in Figure 1.2 the partitions given by the intervals corresponding to
words of length 2 and 3. We then have

L(T )2 = {02, 12, 20, 21, 22}

and
L(T )3 = {021, 022, 120, 121, 202, 212, 220}.

A famous result by Keane [Kea75] states that if an interval exchange
transformation is regular, then the orbit of each z ∈ [0, 1[ is dense. In that
case, the language of the RIET is given by the language of the coding of any
point. Moreover, the language is then uniformly recurrent.

For this work, it will often be more practical to study regular interval
exchanges through a more combinatorial point of view. Namely, we will
use the following characterization of languages of regular interval exchange
transformations by Ferenczi and Zamboni [FZ08].
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Theorem 1.35. A language L over A is the language of a regular interval
exchange transformation over A with the orders

(≤
�
)

if and only if L is
uniformly recurrent and, for each w ∈ L, we have

1. ELL(w) is an interval for � and ERL (w) is an interval for ≤;

2. for all (a1, b1), (a2, b2) ∈ EL(w), if a1 ≺ a2, then b1 ≤ b2;

3. for all a1, a2 ∈ ELL(w), if a1, a2 are consecutive for �, then ERL (a1w)∩
ERL (a2w) is a singleton.

An interval for � (resp., for ≤) is understood here as a set I for which
there exist two letters a, b ∈ A such that I = {c ∈ A : a � c � b} (resp.,
I = {c ∈ A : a ≤ c ≤ b}).

Example 1.36. We consider the interval exchange transformation given in
Example 1.29. Recall that the orders are 0 < 1 < 2 and 2 ≺ 1 ≺ 0. Since the
pair of orders is irreducible and we assumed that the interval lengths were
rationally independent, the interval exchange transformation T is regular.
The small words in its language are given by Example 1.34. Let us check
Theorem 1.35 for the empty word. Observe that Condition 1 is always
satisfied for ε, no matter the language L. For Condition 2, we need to check
that ERL(T )(0) � ERL(T )(1) � ERL(T )(2) in the sense that the inequality is true

for any choice of elements in the sets. Since ERL(T )(0) = {2}, ERL(T )(1) = {2}
and ERL(T )(2) = {0, 1, 2}, this is satisfied. Finally, for Condition 3, we can
see that 2 is in all the sets of right extensions and is the only common letter
for any two sets. We can similarly check the conditions for the words 0,
1 and 2 using L(T )3. Notice that, for 0 and 1, the conditions are trivially
satisfied since they are neither left nor right special.

Observe that Condition 1 is redundant as it is implied by Condition 2
if we consider all w ∈ L. Indeed, assume by contrary that w is the shortest
word such that ELL(w) is not an interval for � and let a1 ≺ a2 ≺ a3 be such
that a1, a3 ∈ ELL(w) but a2 6∈ ELL(w). As w 6= ε, let us denote w = w′b
for some letter b. By minimality of w, we have a2 ∈ ELL(w′). But using
Condition 2 for w′, the only possible right extension of a2w

′ is b. So, a2 is
in ELL(w′b), which contradicts its definition. The proof of the condition for
ERL (w) is similar.

Observe also that, for Condition 3, it is sufficient to ask that, for all
a1, a2 ∈ ELL(w) consecutive, the set ERL (a1w) ∩ ERL (a2w) is non-empty. In-
deed, by Condition 2, this set can never contain two or more elements.

We can therefore replace Theorem 1.35 by the following simplified ver-
sion.



1.4. Interval exchange transformations 15

Theorem 1.37. A language L over A is the language of a regular interval
exchange transformation over A with the orders

(≤
�
)

if and only if L is
uniformly recurrent and, for each w ∈ L, we have

1. for all (a1, b1), (a2, b2) ∈ EL(w), if a1 ≺ a2, then b1 ≤ b2;

2. for all a1, a2 ∈ ELx (w), if a1, a2 are consecutive for �, then ERx (a1w)∩
ERx (a2w) is non-empty.

A well-known property of languages of RIET is that the long enough left
(resp., right) special factors only have two left (resp., right) extensions. In
fact, we show here that it is sufficient to satisfy Condition 1 of Theorem 1.37
eventually to obtain this result.

Proposition 1.38. Let L be a uniformly recurrent language and let N ≥ 0
such that every w ∈ L≥N satisfies Condition 1 of Theorem 1.37. There are
only finitely many words w ∈ L such that #ELL(w) ≥ 3 (resp., #ERL (w) ≥ 3).

Proof. By contrary, assume that there are infinitely many words having k
left extensions for some k ≥ 3 and let us denote W the set of such words. Let
u ∈ L≥N be a prefix of infinitely many elements of W . By definition of u, it
has at least k left extensions and, up to taking a longer u, we can assume that
it has exactly k left extensions. Therefore, there exists a right extension b of
u such that ub is a prefix of infinitely many elements of W , and in particular,
ub has at least k left extensions. This implies that ELL(ub) = ELL(u). As
k ≥ 3, let a1 ≺ a2 ≺ a3 be three left extensions of u. In particular, u has
the bi-extensions (a1, b), (a2, b) and (a3, b). By Condition 1 on u, the only
right extension of a2u is b. In particular, a2u is not right special.

We can iterate the reasoning on ub, then ubb2, etc. to show that no
word beginning with a2u is right special. As L is uniformly recurrent, any
long enough word contains the factor a2u and is therefore not right special.
Using Proposition 1.18, this implies that long enough factors are also not
left special, which contradicts the hypothesis on W .

As a consequence, we have a complete description of the sets of left (resp.,
right) extensions of the long enough words in the language of an RIET.

Proposition 1.39. Let L be the language of a regular interval exchange
transformation with the orders

(≤
�
)
.

1. There exists N such that for every left special word w ∈ L≥N , we have
ELL(w) = {a, b} for two letters a, b consecutive for �.
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2. For every two letters a, b consecutive for � and for all n ≥ 0, there
exists a (unique) word w ∈ Ln such that a, b ∈ ELL(w).

There is a similar result for right extensions and the order ≤.

Proof. The first claim is a direct consequence of Proposition 1.38 and of Con-
dition 1 from Theorem 1.35. The second claim can be shown by induction.
It is directly true for n = 0. For the induction, if w is the unique length-n
word such that a, b ∈ ELL(w), then by Condition 3 from Theorem 1.35, there
exists c such that ERL (aw) ∩ ERL (bw) = {c}, or in other words, wc is the
unique length-(n+ 1) word such that a, b ∈ ELL(wc).

We can use this to show that the pair of orders given in Theorem 1.37
is unique.

Proposition 1.40. Let L be a uniformly recurrent language. If L satisfies
Conditions 1 and 2 of Theorem 1.37, then the corresponding pair of orders(≤
�
)

is unique, up to reversal.

Proof. Assume that L satisfies Conditions 1 and 2 of Theorem 1.37 for a pair
of orders. Using Theorem 1.37 and Proposition 1.39, the pairs of consecutive
letters for the orders are entirely determined by L. In other words, for each
order, there are two candidates which are reversal of one another. Let us
denote ≤∗ the reversal of an order ≤, i.e.,

a ≤ b ⇐⇒ b ≤∗ a.

Assume that L satisfies the conditions for
(≤
�
)
. We therefore have only four

candidates for the pairs of orders:
(≤
�
)
,
(≤∗
�
)
,
( ≤
�∗
)
, and

(≤∗
�∗
)
. It is easy to

check that if we reverse both orders, then the conditions are still true, i.e.,
L satisfies the conditions for

(≤∗
�∗
)
. However, if we only reverse one order

they are not. Indeed, let am (resp., bm) denote the smallest letter for �
(resp., ≤) and aM (resp., bM ) denote the largest letter for the same order.
By Condition 1 of Theorem 1.37 for (≤,�), we have (am, bm) ∈ EL(ε).
Similarly, we have (aM , bM ) ∈ EL(ε). This shows that Condition 1 is not
satisfied for

(≤∗
�
)

and
( ≤
�∗
)
.

1.5 Weak, strong and neutral words

The families introduced in the previous sections are some of the most well-
known. We now turn to slightly lesser-known families defined using proper-
ties of their elements’ extensions. These notions were studied in [CN10] for
their link with the factor complexity.
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Definition 1.41. Let L be a language and let w ∈ L. The multiplicity of
w (in L) is defined as

mL(w) = #EL(w)−#ELL(w)−#ERL (w) + 1.

We say that w is weak if mL(w) < 0, neutral if mL(w) = 0 and strong if
mL(w) > 0.

Example 1.42. Let us go back to the Chacon language L. Using Exam-
ple 1.17, we see that

mL(ε) = 5− 3− 3 + 1 = 0

mL(012) = 4− 2− 2 + 1 = 1

mL(120) = 2− 2− 2 + 1 = −1

therefore ε is neutral, 012 is strong and 120 is weak.

The motivation behind the study of the multiplicity is its close link
with the first difference of complexity, as obtained as a direct corollary of
Proposition 1.18.

Corollary 1.43. Let L be a language. For all n ≥ 0, we have

sL(n+ 1)− sL(n) =
∑
w∈Ln

mL(w).

This statement is more practical when multiplicities cannot cancel each
other out, meaning that we will be interested in languages whose elements
are all neutral (resp., weak or neutral; resp., strong or neutral). By exten-
sion, such a language will also be called neutral (resp., weak or neutral ; resp.,
strong or neutral). This hypothesis is sometimes too strong and we will in-
stead require that only elements of length at least N are neutral (resp.,
weak or neutral; resp., strong or neutral) and call the corresponding lan-
guage eventually neutral (resp., eventually weak or neutral ; resp., eventually
strong or neutral). The minimal such N is then called the threshold .

Using Corollary 1.43, we can directly deduce information on the factor
complexity of such languages. We only give here the most useful ones for
us, as will become clear later on.

Corollary 1.44. Let L be a language over an alphabet of size k.

1. If L is neutral then, for all n ≥ 0,

pL(n) = (k − 1)n+ 1.
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2. If L is eventually neutral of threshold N then there exist K ≥ 0 and
C ∈ Z such that, for all n ≥ N

pL(n) = Kn+ C.

The previous result is not a characterization as shown by the Chacon
language. Indeed, recall that, by Proposition 1.15, its factor complexity is
given by 2n+ 1 for all n ≥ 0. However, the Chacon language is not neutral
by Example 1.42, and it is not even eventually neutral, nor is it eventually
weak or neutral, or eventually strong or neutral as shown below.

Example 1.45 (Dolce–Perrin [DP21, Example 3.4]). Let us show that the
Chacon language L contains infinitely many weak (resp., strong) words. By
Example 1.42, 120 is weak and 012 is strong. Their extensions are given in
Example 1.17. Observe in particular that 1 (resp., 2) is a left (resp., right)
extension of neither of them. However, a simple computation shows that if
ELL(w) ⊆ {0, 2} and ERL (w) ⊆ {0, 1}, then EL(w) = EL(012ϕ(w)) where ϕ
is the morphism defining the Chacon language, i.e., ϕ(0) = 0012, ϕ(1) = 12
and ϕ(2) = 012.

This implies that, from the weak word 120, we can find infinitely many
weak words in L by iterating w 7→ 012ϕ(w). We reach the same conclusion
for strong words. Observe that, as 012 and 120 share the same letters,
each weak word built like this has the same length as a strong word defined
using this construction. This shows that there is indeed a cancellation of
the multiplicities when taking the sum over the words of a given length.



Chapter 2

Dendricity and co

We now turn to the main actors of this work, namely the dendric and even-
tually dendric languages. The study of dendric words began a decade ago in
a series of papers [BDFD+15a, BDFD+15c, BDFD+15d] under the name of
tree words. In this chapter, we only give a soft introduction to these words.
Some of the main properties of dendric languages such as the Return Theo-
rem (Theorem 3.33) and the stability under derivation (Corollary 3.44) will
be recalled in Chapter 3. The curious reader can of course find many other
interesting results in the original papers such as the stability under bifix
decoding.

Instead of just studying the number of left, right and bi-extensions as
done through the multiplicity, one can sometimes want more information on
the relation between these sets. Indeed, for any language L and any word
w, we have by definition EL(w) ⊆ ELL(w) × ERL (w). This means that the
bi-extensions define a relation between the left and the right extensions. In
mathematics, there are many ways of representing a relation between two
finite sets, one of them being the use of a bipartite graph. This led to the
definition of extension graphs.

Definition 2.1. Let L be a language and let w ∈ L. The extension graph
of w (in L) is the bipartite graph EL(w) whose set of vertices is the disjoint
union of ELL(w) and ERL (w), and such that there is an edge between a ∈
ELL(w) and b ∈ ERL (w) if and only if (a, b) ∈ EL(w).

These graphs will be represented with the vertices from ELL(w) in a col-
umn on the left (they will sometimes be called left vertices) and the vertices
from ERL (w) in a column on the right (we will call them right vertices).
When needed, we use the terminologies of left vertex a (denoted aL) and

19
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EL(ε)

0

1

2

0

1

2

EL(012)

0

2

0

1

EL(120)

0

2

0

1

Figure 2.1: The extension graphs of ε (on the left), 012 (in the center) and
120 (on the right) in the Chacon language L.

right vertex a (denoted aR) to distinguish the two possible vertices labeled
by the letter a.

Example 2.2. Let L be the Chacon language. Using the extensions of
ε, 012 and 120 found in Example 1.17, we obtain the extension graphs of
Figure 2.1.

As we have now associated a graph with each word, we can define fam-
ilies of words based on the properties of their corresponding graphs. These
notions were introduced in [BDFD+15a].

Definition 2.3. Let L be a language. A word w ∈ L is acyclic (resp.,
connected ; resp., dendric) if its extension graph is acyclic (resp., connected;
resp., a tree).

Example 2.4. Coming back to Example 2.2, we see that ε is neither acyclic
nor connected in the Chacon language, but 012 is connected (not acyclic)
and 120 is acyclic (not connected).

Observe that, as a language is always assumed to be biextendable, the
extension graphs cannot have isolated vertices, which would not be the case
when considering the factors of a non-recurrent one-sided infinite word for
example. In particular, this implies that if #ELL(w) = 1 or #ERL (w) = 1,
then the extension graph EL(w) is a tree, or in other words, we have the
following direct result.

Lemma 2.5. Let L be a language and w ∈ L. If w is not bispecial in L,
then w is dendric in L.
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As with neutral languages, we extend these notions to languages by
saying that a language is dendric (resp., acyclic; resp., connected) if all of
its elements are.

This chapter is organized as follows.

In Section 2.1, we study the link between dendric languages and the
languages introduced in Chapter 1. We summarize the different relations in
a diagram (Figure 2.2). In particular, many of the families defined before
provide examples of dendric languages. We will give a method to generate
infinitely many other examples in Chapter 5.

Afterwards, we turn to the link between dendricity and topological con-
jugacy and show that dendricity is not a dynamical property in Section 2.2.
This was the main motivation for the introduction of eventually dendric
languages by Dolce and Perrin.

The family of eventually dendric languages appears as the natural “even-
tual” closure of many other properties already mentioned in this work, or
small variations of them. In Section 2.3, we study the many alternative ways
of defining eventually dendric languages.

Finally, in Section 2.4, we introduce a new family of graphs which will
be a key concept behind many results in Chapter 4 and Chapter 5. These
graphs provide a new way of defining dendric languages (Corollary 2.44).
They can also be used to characterize eventually dendric languages as shown
in Proposition 2.61.

2.1 Dendricity and the families of Chapter 1

The purpose of this section is to list the inclusions between dendric languages
and the other families of languages defined in Chapter 1. These relations
are summarized in Figure 2.2.

Dendric languages were originally introduced to generalize some proper-
ties of Sturmian and Arnoux-Rauzy languages. It is therefore quite natural
that these families are examples of dendric languages. To convince ourselves
of this, it suffices to observe that any ordinary word is dendric. In fact, the
extension graph of a bispecial ordinary word is a particular type of tree as
its diameter is equal to 3, such a graph is called a simple tree in [DP21]. By
Proposition 1.27, we conclude that any Sturmian or Arnoux-Rauzy language
is dendric.

For languages of regular interval exchanges, it might not be as easy to
see that they are dendric from their original definition. However, it can be
deduced from the combinatorial characterization of Ferenczi and Zamboni.
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Indeed, let us recall Condition 1 of Theorem 1.37. If L is the language of
an RIET with orders

(≤
�
)
, then for all w ∈ L and for all (a1, b1), (a2, b2) ∈

EL(w), if a1 ≺ a2, then b1 ≤ b2. In other words, if we order the left vertices
of EL(w) according to � and the right vertices according to ≤, then we can
draw the edges as straight non-crossing segments. This leads to the following
definition.

Definition 2.6. A bipartite graph is planar for the orders ≤1 and ≤2 if,
whenever we place the left vertices on a line according to ≤1, the right
vertices on a parallel line according to ≤2, and we draw the edges as straight
segments, then the edges do not cross in this representation.

By extension, we will say that a word is planar for some orders if its
extension graph is planar for these orders.

Example 2.7. Among the extension graphs represented in Figure 2.1, the
first two contain a cycle and can therefore not be planar. The extension
graph of 120 however is planar for any pair of orders (≤1,≤2) such that
0 <1 2 if and only if 0 <2 1.

Theorem 1.37 can then be restated as follows.

Proposition 2.8. A language L over A is the language of a regular interval
exchange transformation over A with the orders

(≤
�
)

if and only if L is
uniformly recurrent and, for each w ∈ L, we have

1. w is planar for � and ≤;

2. w is connected.

We invite the reader to pay attention to the orders here. Indeed, while
we talk about an RIET for the orders

(≤
�
)
, the words are planar for the pair

of orders (�,≤).

As planarity of a bipartite graph implies in particular that this graph is
acyclic, we deduce that languages of RIET are indeed dendric.

Observe that while Arnoux-Rauzy languages and languages of RIET
are both dendric generalizations of Sturmian languages, they are disjoint
families as soon as the alphabet is of size at least 3. This can be seen
by looking at the number of left (or right) extensions of the long enough
special words. Indeed, in an Arnoux-Rauzy language, they will always have
a number of extensions equal to the size of the alphabet whereas, in the
language of an RIET, they will have two extensions by Proposition 1.38.
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There is also a link between acyclic, connected and dendric words, and
weak, strong and neutral words. This is a consequence of the following
classical result from graph theory.

Lemma 2.9. Let G be a graph with v vertices and e edges. If G has c
connected components, then

e− v + c ≥ 0

and the equality occurs exactly when G is acyclic.

Proposition 2.10. Let L be a language and w ∈ L.

1. If w is acyclic, then it is weak or neutral.

2. If w is connected, then it is strong or neutral.

3. If w is dendric, then it is neutral.

4. The word w is weak or neutral, and connected, if and only if it is
dendric.

5. The word w is strong or neutral, and acyclic, if and only if it is dendric.

Proof. The result directly follows from Lemma 2.9 and the observation that,
in the extension graph EL(w), the number of vertices is given by #ELL(w) +
#ERL (w) and the number of edges is #EL(w).

The converses of Assertions 1, 2 and 3 of the previous proposition are
true on an alphabet of size 2 but are false if the alphabet contains at least
three letters. For exemple, in the Chacon language, the empty word is
neutral but is neither acyclic, nor connected (Examples 1.42 and 2.4).

Using all of the observations made in this section, we can represent the
interactions between the families in a diagram as done in Figure 2.2.

There is one last known relation between dendric languages and other
families of languages, this time it is a “negative” result.

Proposition 2.11 (Berthé et al. [BDD+18]). Let L be a recurrent dendric
language over an alphabet of size at least 2. Then L cannot be generated by
a primitive k-uniform morphism, nor can it be the language of a Toeplitz
bi-infinite word.
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Figure 2.2: Interactions between the families defined in Chapter 1 and in
Chapter 2. For readability, lines that are close together should be understood
as overlapping.
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A morphism is k-uniform if the images of the letters are all of length k.
The fixed points of such morphisms are particular examples of k-automatic
sequences which form a deeply studied families of words, see [AS03] for
example.

On the other hand, a bi-infinite word x is Toeplitz if for all n ∈ Z, there
exists p ≥ 1 such that xn = xn+kp for all k ∈ Z. Conceptually, every finite
factor of x appears periodically. This does not however necessarily imply
that x itself is periodic. For a survey on Toeplitz sequences, see [Dow05].

2.2 Dendricity and conjugacy

Shortly after its introduction, people realized that dendricity is not a dy-
namical property as the family of dendric shift spaces is not stable under
topological conjugacy. We detail this observation here.

Conjugacy is to shift spaces what isomorphism is to groups, or homeo-
morphism is to topological spaces. In other words, if we can go from one
shift space to another with a conjugacy then the two shift spaces can be
seen as essentially equal. The question of whether two given shift spaces
are conjugate or not has interested researchers for many years and, in most
cases, only admits partial answers using invariants. It was however recently
shown that this question is decidable for substitutive shift spaces [DL22].

Definition 2.12. Let X and Y be two shift spaces. A map ϕ : X → Y is
a (topological) factor map if it is continuous, surjective and commutes with
the dynamics, i.e., ϕ ◦ SX = SY ◦ ϕ where SX (resp., SY ) is the shift map
on X (resp., Y ). We then say that Y is a (topological) factor of X.

If, moreover, ϕ is a bijection, then we say that it is a conjugacy and that
X and Y are (topologically) conjugate.

From the symbolic dynamics viewpoint, a “good” property is then a
property such that, if a shift space satisfies it, then so does any of its con-
jugates. In that case, we say that it is a dynamical property. Unfortunately,
one can easily observe that dendricity is not a dynamical property. To see it,
we use the other point of view of conjugacies given by the so-called Curtis-
Hedlund-Lyndon Theorem (see [LM95] for example).

Theorem 2.13. Let X ⊆ AZ and Y ⊆ BZ be two shift spaces. A map
ϕ : X → Y is a factor map if and only if there exist s, r ≥ 0 and a map
f : Ls+r+1(X) → B such that, for all x ∈ X and for all n ∈ Z, we have
ϕ(x)n = f(x[n−s,n+r]).
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Since ϕ(X) = S−s ◦ ϕ(X) and ϕ is a factor map if and only if S−s ◦ ϕ
is, we will assume that s = 0 to ease the notations.

In some way, the Curtis-Hedlund-Lyndon Theorem states that a factor
map can be decomposed into two steps: first we map X to γ(X) where, for
all x ∈ X and n ∈ Z, γ(x)n = x[n,n+r] seen as a letter of the alphabet Ar+1,
then we apply the map f , now seen as a letter-to-letter morphism. This
intermediary shift space is called a higher block shift space.

Definition 2.14. Let X ⊆ AZ be a shift space and let N ≥ 1. The N -th
higher block shift space of X is the shift space γ(X) over the alphabet AN
where

γ(x)n =

 xn
...

xn+N−1


for all x ∈ X, n ∈ Z. We then denote X(N) = γ(X).

It is well known that X(N) is indeed a shift space and, moreover, it is a
conjugate of X. In some sense, the maps γ defined as in Definition 2.14 are
the simplest conjugacies. We also directly see that X(1) = X.

Example 2.15. Let X be the Tribonacci shift space (corresponding to
the Tribonacci language of Example 1.25). The 2-nd higher block shift
space is on the alphabet

{(
0
0

)
,
(

0
1

)
,
(

0
2

)
,
(

1
0

)
,
(

2
0

)}
. Let γ denote the map of

Definition 2.14. We then have, for example,

γ(· · · 10 · 01020 · · · ) = · · ·
(

1

0

)(
0

0

)
·
(

0

1

)(
1

0

)(
0

2

)(
2

0

)
· · · .

The extension graphs in the higher block shift spaces are closely related
to the extension graphs in the original shift space. This link is described in
the following result.

Proposition 2.16. Let X be a shift space, let N ≥ 1 and let w ∈ L(X(N)).

1. If w = ε, then

EX(N)(w) ∼=
⊔

v∈LN−1(X)

EX(v).

2. If w =

 v1
...
vN


 v2

...
vN+1

 · · ·
 vn

...
vN+n−1

 for n ≥ 1, then

EX(N)(w) ∼= EX(v1v2 · · · vN+n−1).
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Proof. Let


a1

...
aN

 ,

 b1
...
bN


 be a bi-extension of w.

1. If w = ε, then it is equivalent to say that

a1
...
aN


 b1

...
bN

 is a factor

of X(N), or in other words that a2 · · · aN = b1 · · · bN−1 ∈ LN−1 and
(a1, bN ) ∈ EX(a2 · · · aN ). Therefore, EX(N)(ε) is made of copies of
EX(u), u ∈ LN−1, and these copies are disjoint as u is the suffix (resp.,
prefix) of the corresponding left (resp., right) vertices.

2. If w =

 v1
...
vN


 v2

...
vN+1

 · · ·
 vn

...
vN+n−1

, then


a1

...
aN

 ,

 b1
...
bN


 is

an extension of w if and only if we have a2 · · · aN = v1 · · · vN−1,
b1 · · · bN−1 = vn+1 · · · vN+n−1 and (a1, bN ) ∈ EX(v1 · · · vN+n−1). We
directly deduce the link between the extension graphs.

As a consequence, if X is a shift space over an alphabet of size at least
2 and N ≥ 2, then ε is not connected in X(N). This shows that the family
of dendric shift spaces is not closed under conjugacy.

2.3 Eventual dendricity and other eventual prop-
erties

The observation done in the previous section was the main motivation for the
study of eventual dendricity initiated by Dolce and Perrin [DP21], following
a suggestion by Durand.

Definition 2.17. A language L is eventually dendric if there exists N ≥ 0
such that every w ∈ L≥N is dendric. The minimal such N is called the
threshold .

If the threshold is 0, we recover the notion of dendric languages.

Example 2.18. For the Chacon language, Example 1.45 and Proposi-
tion 2.10 show that it contains infinitely many words which are not acyclic
(resp., connected). Therefore, this language is not eventually dendric.
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Using Proposition 2.16, we then directly have the following observation.

Corollary 2.19. Let X be an eventually dendric shift space of threshold N
over an alphabet of size at least 2 and let M ≥ 1. Then X(M) is eventually
dendric of threshold max{1, N − M + 1}. In particular, every eventually
dendric shift space has an eventually dendric conjugate of threshold 1.

Using this observation, Dolce and Perrin proved the following theorem
stating that eventual dendricity is a dynamical property.

Theorem 2.20 (Dolce–Perrin [DP21]). The family of eventually dendric
shift spaces is closed under topological conjugacy.

We will come back to this result in Section 4.5 as it is closely linked to
the question of stability when taking the image under a morphism.

However, stability under conjugacy is far from being the only property
of eventually dendric shift spaces, and eventual dendricity turned out to
be much more natural than originally thought. Indeed, it coincides with
many other “eventual” properties, showing that the diagram represented in
Figure 2.2 becomes much simpler when relaxing the restrictions on the small
words. We present here an overview of these equivalences.

The first known equivalence was proved by Dolce and Perrin [DP21]
between eventual dendricity and what seems to be, at first glance, a much
stronger property.

Proposition 2.21 (Dolce-Perrin [DP21]). Let L be a language. The follow-
ing are equivalent:

1. L is eventually dendric;

2. there exists N ≥ 0 such that, for all left special w ∈ L≥N there exists
exactly one a ∈ ERL (w) such that wa is left special;

3. there exists N ≥ 0 such that, for all right special w ∈ L≥N there exists
exactly one a ∈ ELL(w) such that aw is right special.

Note that, Damron and Fickensher [DF22] call a word w regular if there
exists exactly one a ∈ ERL (w) such that wa is left special and exactly one
b ∈ ELL(w) such that bw is right special.

We will in fact re-obtain the equivalences of Proposition 2.21 as a con-
sequence of other results of this section. To do so, we introduce an interme-
diary notion called right ordinary (resp., left ordinary) by analogy with the
notion of ordinary words.
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Definition 2.22. Let L be a language. A word w ∈ L is right ordinary
if there exists a ∈ ERL (w) such that ELL(wa) = ELL(w) and for all b ∈
ERL (w) \ {a}, wb is not left special. Similarly, w is left ordinary if there
exists a ∈ ELL(w) such that ERL (aw) = ERL (w) and for all b ∈ ELL(w) \ {a},
bw is not right special.

In some sense, we cannot distinguish a right ordinary (resp., left ordi-
nary) word from an ordinary word if we only look at the degrees of the right
(resp., left) vertices of the extension graph. More precisely, we have the
following observation. We can easily check that a word is both right and
left ordinary if and only if it is in fact ordinary.

Remark 2.23. A word is both left and right ordinary if and only if it is
in fact ordinary. In particular, if a word is not bispecial, then it is trivially
ordinary (resp., left ordinary; resp., right ordinary).

We also have the following direct link with dendricity.

Lemma 2.24. Let L be a language and w ∈ L. If w is right ordinary (resp.,
left ordinary), then it is dendric.

Proof. Assume that w is right ordinary and let a ∈ ERL (w) be such that
ELL(wa) = ELL(w) and for all b ∈ ERL (w) \ {a}, wb is not left special. Since
ELL(wa) = ELL(w), all the left vertices of EL(w) are connected but as EL(w)
has no isolated vertices, this implies that EL(w) is connected. On the other
hand, as wb is not left special for all b ∈ ERL (w)\{a}, the only possible right
vertex of degree at least two is a. Since EL(w) is bipartite, this implies that
it is acyclic. Therefore, w is dendric. The proof when w is left ordinary is
symmetric.

As explained earlier, we will look at “eventual” properties, formally de-
fined as follows by analogy with eventual dendricity and eventual neutrality.

Definition 2.25. Let L be a language and P be a property defined on words
inside a language. We say that L is eventually P if there exists N ≥ 0 such
that, for all w ∈ L≥N , w satisfies the property P . The smallest such N is
then called the threshold.

We now have a first set of equivalences [Ghe23]. The idea behind these
equivalences is that, if a word is not strong, then there are only two possible
cases: either it has a right extension with the same set of left extensions (and
it is the only right extensions giving a left special word), or it has several
right extensions giving left special words but each of them have strictly
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fewer left extensions than the original word. This second case can then only
happen a finite number of time.

Proposition 2.26. Let L be a language. The following are equivalent:

1. L is eventually right ordinary with threshold N ;

2. L is eventually dendric with threshold M ;

3. L is eventually acyclic with threshold L;

4. L is eventually neutral with threshold L′;

5. L is eventually weak or neutral with threshold K.

Moreover, K ≤ L ≤M ≤ N and K ≤ L′ ≤M ≤ N .

Proof. The implication 1 =⇒ 2 follows from Lemma 2.24. By Proposi-
tion 2.10, we have the implications 2 =⇒ 3 =⇒ 5, and 2 =⇒ 4 =⇒ 5.
Moreover, we also deduce the inequalities for the thresholds. Therefore, it
only remains to prove that, if L is eventually weak or neutral, then it is
eventually right ordinary.

Assume that L is eventually weak or neutral of threshold K but not
eventually right ordinary. Thus, there exist infinitely many weak or neutral
words which are not right ordinary. Let W ⊆ L denote the set of these
words and let u ∈ L≥K be a prefix of an infinite number of elements in W .
Assume also that #ELL(u) is minimal among such words.

Using the pigeonhole principle, there exists a right extension a of u such
that ua is a prefix of an infinite number of elements in W . By hypothesis on
u, #ELL(ua) ≥ #ELL(u) but as ELL(ua) ⊆ ELL(u), we must have the equality.
This implies that every left vertex of EL(u) is connected to the right vertex
a, and thus u is connected. Since |u| ≥ K, u is also weak or neutral. By
Proposition 2.10, it is dendric. In particular, a is the unique right extension
of u such that ua is left special otherwise we have a cycle in EL(u). This
shows that u is right ordinary, and in particular, u 6∈W .

As the elements of W are not right ordinary, they are bispecial by Re-
mark 2.23, thus left special. This shows that no element of W can begin
with ub, b 6= a. We deduce that

W ∩ uA∗ = W ∩ uaA∗

where A is the alphabet. By iterating the reasoning, we can find for each
n ≥ 1 a word v(n) of length n such that

W ∩ uA∗ = W ∩ uv(n)A∗.
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In particular, this implies that W ∩uA∗ does not contain any word of length
|u| + n − 1. As it is true for all n ≥ 1, this would mean that W ∩ uA∗ is
empty, and contradict the definition of u.

We can easily replace right ordinary by left ordinary in the previous
result. We then obtain the following corollary.

Corollary 2.27. Let L be a language. The following are equivalent:

1. L is eventually dendric;

2. L is eventually left ordinary;

3. L is eventually ordinary.

From Proposition 2.26, we can also deduce other equivalences with even-
tual properties that do not have a specific name. In particular, we re-obtain
the equivalences given by Dolce and Perrin (Proposition 2.21).

Proposition 2.28. Let L be a language. The following are equivalent:

1. L is eventually dendric;

2. there exists N such that, for all w ∈ L≥N , there exists at most one
a ∈ ERL (w) such that wa is left special;

3. there exists N such that, for all left special w ∈ L≥N there exists
exactly one a ∈ ERL (w) such that wa is left special;

4. there exists N such that, for all left special w ∈ L≥N , if there exists
a ∈ ERL (w) such that ELL(wa) = ELL(w), then for all b ∈ ERL (w), wb is
not left special.

Similarly, the following are also equivalent:

1. L is eventually dendric;

2. there exists N such that, for all w ∈ L≥N , there exists at most one
a ∈ ELL(w) such that aw is right special;

3. there exists N such that, for all right special w ∈ L≥N there exists
exactly one a ∈ ELL(w) such that aw is right special;

4. there exists N such that, for all right special w ∈ L≥N , if there exists
a ∈ ELL(w) such that ERL (aw) = ERL (w), then for all b ∈ ELL(w), bw is
not right special.
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Proof. We prove the first set of equivalences as the proof for the other one is
symmetric. The second and third assertions imply that L is eventual acyclic
and are implied by the fact that L is eventually right ordinary. Therefore
they are equivalent to eventual dendricity by Proposition 2.26. For the last
assertion, it is clearly true for an eventually right ordinary language. The
converse follows from a careful analysis of the proof of Proposition 2.26.
Indeed, we only use the hypothesis that u is weak or neutral to show that,
since a ∈ ERL (u) is such that ELL(ua) = ELL(u), then for all b ∈ ERL (u), ub is
not left special. Therefore, we can replace the weak or neutral condition by
the property of the last assertion.

Warning. We recommend that the reader keeps the equivalences presented
in this section, especially the ones in Proposition 2.26, in mind as, in the
rest of this work, we will indifferently refer to any of the families, depending
on the property which seems the most relevant in the proof or result.

Observe that the families of Proposition 2.26 have a linear factor com-
plexity by Corollary 1.44 on the factor complexity of eventually neutral
languages. This implies in particular that they do not also coincide with the
family of eventually connected languages, or of eventually strong or neutral
languages, as shown in the following example.

Example 2.29. Let A be an alphabet of size k ≥ 2 and let L = A∗. The
factor complexity of L is given by pL(n) = kn therefore L is not eventually
dendric. On the other hand, for all w ∈ A∗, its bi-extensions are given by
A × A. In particular, w is connected, and strong or neutral. In fact, w is
always strong.

Under additional restriction on the factor complexity of the languages
however, we recover an equivalence. This is the object of the following result.
Recall that the notation f ∈ O(g) means that there exist C and N such that
f(n) ≤ Cg(n) for all n ≥ N .

Proposition 2.30. Let L be a language. The following are equivalent:

1. L is eventually neutral;

2. there exists N ≥ 0 such that, for all w ∈ L≥N , there exists at least one
a ∈ ERL (w) such that ELL(wa) = ELL(w), and pL(n) ∈ O(n);

3. L is eventually connected and pL(n) ∈ O(n);

4. L is eventually strong or neutral and pL(n) ∈ O(n).
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Proof. As eventually neutral is equivalent to eventually right ordinary by
Proposition 2.26, we have 1 =⇒ 2 by Corollary 1.44 on the factor com-
plexity. We trivially have 2 =⇒ 3. Moreover, using Proposition 2.10, we
know that 3 =⇒ 4. It remains to show that, if L is eventually strong or
neutral and has a linear complexity, then it is eventually neutral.

Assume that L is eventually strong or neutral of threshold N . Therefore,
using Corollary 1.43, the sequence sL(n) is non-decreasing starting at index
N , and for all n ≥ N , sL(n) = sL(n + 1) if and only if all length-n words
are neutral. On the other hand, as pL is at most linear, sL is bounded by
a result of Cassaigne [Cas96]. Therefore, sL is eventually constant. This
shows that L is eventually neutral.

We end this section with one last equivalence.

Proposition 2.31. A language L is eventually right ordinary if and only
if there exists N ≥ 0 and right infinite words u(1), . . . , u(k) such that their
length-N prefixes are distinct and, for all n ≥ N , their length-n prefixes are
exactly the length-n left special words of L.

Similarly, a language L is eventually left ordinary if and only if there
exists N ≥ 0 and left infinite words u(1), . . . , u(k) such that their length-N
suffixes are distinct and, for all n ≥ N , their length-n suffixes are exactly
the length-n right special words of L.

Proof. We prove the first claim as the other one is symmetric. If L is even-
tually right ordinary of threshold N , then every left special word of length
n is prefix of exactly one length-(n + 1) left special word for all n ≥ N .
In other words, the left special words of length at least N form k families
according to their length-N prefix, each family containing exactly one word
of each length n ≥ N . We can then take the words u(1), . . . , u(k) as limits
for each of these families.

For the converse, observe that this condition on the right infinite words
implies that every left special word w of length n ≥ N has only one right
extension a such that wa is left special. By Proposition 2.28, this implies
that L is eventually right ordinary.

2.4 Dendricity and some other graphs of exten-
sions

In this section, we introduce a new family of graphs defined using extensions
of words in the language and that we first studied with J. Leroy in [GL22].
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By definition, these graphs are closely related to the usual extension graphs.
We explore this link in Subsection 2.4.1 and show that the graphs GLn(L) and
GRn (L) can be used to obtain an alternative definition of dendric languages.
Subsection 2.4.2 is more focused on graph theory results to study the shape
of these graphs. Finally, we look at the stabilization of the shapes of the
graphs when n tends to infinity and show the link with eventually dendric
languages in Subsection 2.4.3. Most of the results presented in this section
come from [GL22].

Let us first define these graphs. Contrary to the classical extension
graphs, we look at the left and right extensions separately. The idea is that,
instead of considering extensions for just one word, we look at all the words
of a given length.

Definition 2.32. Let L be a language over A and n ≥ 0. The graph GLn(L)
(resp., GRn (L)) is the multi-graph with labeled edges such that

• its vertices are the elements of A,

• for any w ∈ Ln and any distinct a, b ∈ ELL(w) (resp., a, b ∈ ERL (w))
there is an (undirected) edge labeled by w between the vertices a and
b.

Observe that the edges of GLn(L) (resp., GRn (L)) are only labeled by left
(resp., right) special words of length n. Moreover, for each special word w,
the edges that it labels form a complete subgraph, or clique, whose vertices
are the elements of ELL(w) (resp., ERL (w)). The graph GLn(L) (resp., GRn (L))
can therefore also be seen as a union of cliques, potentially with some isolated
vertices. This point of view will be central in Subsection 2.4.2.

We can also notice that the graphs GL0 (L) and GR0 (L) are always com-
plete graphs with edges labeled by ε. Therefore, they only depend on the
alphabet and not on the language L.

We describe below the graphs GLn(L) and GRn (L) for two famous lan-
guages already mentioned in this work: the Tribonacci language and the
Chacon language.

Example 2.33. In the Tribonacci language L (Example 1.25), there is
exactly one left (resp., right) special factor of each length and it can be
extended by all of the letters. Therefore, the graphs GLn(L) and GRn (L)
are complete graphs and they only differ by the label of their edges. This
observation is true for any Arnoux-Rauzy language. The first few graphs
for the Tribonacci language are represented in Figure 2.3.
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GL1 (L) = GR1 (L)
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Figure 2.3: Graphs GLn(L) and GRn (L), n ∈ {1, 2}, for the Tribonacci lan-
guage L.
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Figure 2.4: Graphs GL1 (L) and GR1 (L) for the Chacon language L.

Example 2.34. Using Example 1.13, the graphs GL1 (L) and GR1 (L) for the
Chacon language L are represented in Figure 2.4.

In particular, we observe that any left special word of length at least
1 will have 0 and 2 as its only left extensions. Moreover, as the Chacon
language has complexity 2n+1, there must be exactly two left special factors
of each length n ≥ 1. This shows that, for all n ≥ 1, the graph GLn(L) has
exactly two edges (with different labels), and they are between 0 and 2. We
can similarly show that GRn (L), n ≥ 1, has two edges between 0 and 1.

2.4.1 A characterization of dendric languages

Using Examples 2.2 and 2.34 with the Chacon language, we can see that
paths in EL(ε) are translated into edges in GL1 (L), as represented in Fig-
ure 2.5.

This link is more general, as stated in the following lemma. Recall that,
in a bipartite graph, aL denotes the left vertex labeled a and aR the right
vertex labeled a.

Lemma 2.35. Let L be a language and w ∈ Ln. The graph EL(w) contains
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EL(ε)
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GL1 (L)
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Figure 2.5: Example of a correspondence between the paths in EL(ε) and in
GLL(1).

the path (aL1 , b
R
1 , a

L
2 , . . . , b

R
k , a

L
k+1) if and only if GLn+1(L) contains the path

a1
wb1−−→ a2 · · ·

wbk−−→ ak+1.

Symmetrically, the graph EL(w) contains the path (aR1 , b
L
1 , a

R
2 , . . . , b

L
k , a

R
k+1)

if and only if GRn+1(L) contains the path

a1
b1w−−→ a2 · · ·

bkw−−→ ak+1.

Proof. Let us prove the result for k = 1, the general case follows by simple
induction. We have the path (aL1 , b

R
1 , a

L
2 ) in EL(w) if and only if a1 and a2

are two left extensions of wb1, which is exactly the definition of having an
edge labeled by wb1 between a1 and a2 in GLn+1(L). We similarly show that
we have the path (aR1 , b

L
1 , a

R
2 ) in EL(w) if and only if there is an edge labeled

by b1w between a1 and a2 in GRn+1(L).

Therefore, we have a link between the paths in the extension graphs
of the length-n words and the paths in GLn+1(L) and GRn+1(L). It is then
natural to wonder if there is also a link between the properties defined using
paths, and in particular acyclicity and connectedness.

However, we right away notice that, while all the extension graphs are
acyclic in the Tribonacci language, the graphs GLn(L) (and GRn (L)) contain
a cycle by Example 2.33. We need to look at a weaker form of acyclicity. As
we are using multi-graphs with labeled edges and no loops, a simple path is
a non-empty path that does not go twice through the same vertex, except
potentially for its beginning and its end that can coincide, and that does
not use the same (labeled) edge consecutively. A simple cycle is a closed
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simple path. If we know that a cycle uses at least two different edges, then
only the condition on the vertices is needed for it to be simple.

Definition 2.36. A multi-graph with labeled edges G is acyclic for the
labeling if any simple cycle in G only uses edges with the same label.

Example 2.37. The graphs GLn(L) and GRn (L) for the Tribonacci language
(Figure 2.3) are acyclic for the labeling while the corresponding graphs for
the Chacon language (Figure 2.4) are not (except for n = 0).

Proposition 2.38. Let L be a language and N ≥ 0. The following proper-
ties are equivalent.

1. Every word w ∈ L<N is acyclic.

2. The graph GLn(L) is acyclic for the labeling for all n ≤ N .

3. The graph GRn (L) is acyclic for the labeling for all n ≤ N .

Proof. Let us show the equivalence between the acyclicity of the words and
the acyclicity of the graphs GLn(L). The proof for the graphs GRn (L) is
similar. We proceed by contraposition and show that there exists w ∈ L<N
for which EL(w) is not acyclic if and only if there exists n ≤ N such that
the graph GLn(L) contains a simple cycle with different labels.

Assume that EL(w) is not acyclic for some w ∈ Ln, n < N . Therefore, it
contains a simple cycle going through (at least) two different right vertices.
By Lemma 2.35, GLn+1(L) contains a simple cycle whose edges do not all
have the same label.

For the converse, let n ≤ N be such that GLn(L) contains a simple cycle
with at least two distinct labels. Let us denote this cycle

a1
u(1)−−→ a2 · · ·

u(k)−−→ a1.

In particular, n ≥ 1. Let w be the longest common prefix to all of the
u(i), i ≤ k, and let bi be the letter such that wbi is a prefix of u(i), i ≤ k.
By definition of GLn(L) and GL|w|+1(L), we also have the cycle

a1
wb1−−→ a2 · · ·

wbk−−→ a1.

in GL|w|+1(L). It is a simple cycle as the ai’s are distinct and, by definition
of w, the cycle uses at least two different edges. We can in fact assume that
no two consecutive edge labels (including wbk and wb1) are equal. Indeed,



38 Chapter 2. Dendricity and co

if v labels an edge between a and b, and between b and c in GL|w|+1(L), then

it labels an edge between a and c by definition of GL|w|+1(L). Making that
replacement in the cycle does not impact the fact that it is a simple cycle
with at least two distinct labels.

By Lemma 2.35, the graph EL(w) contains the cycle (aL1 , b
R
1 , . . . , b

R
k , a

L
1 )

which is non-trivial as the ai’s are distinct and consecutive bi’s are also
distinct.

We obtain the following direct corollary.

Corollary 2.39. Let L be a language. The following are equivalent.

1. The language L is acyclic.

2. The graph GLn(L) is acyclic for the labeling for all n ≥ 0.

3. The graph GRn (L) is acyclic for the labeling for all n ≥ 0.

Proposition 2.38 is false if we only look at the properties locally and not
for all n ≤ N . Even though we can see in the proof that, if GLN (L) is acyclic,
then the elements of LN−1 are acyclic, the converse if false, as shown in the
following example.

Example 2.40. In the Chacon language (Example 1.13), we can see that
the words of length 1 and 2 are acyclic but, by Example 2.34, the graphs
GL2 (L), GL3 (L), GR2 (L) and GR3 (L) are not acyclic for the labeling. As ε is
not acyclic, this does not contradict Proposition 2.38 however.

We now turn to the connectedness properties. Unfortunately, we do not
have a result as in Proposition 2.38 without additional restrictions. This
can be seen in the following example.

Example 2.41. Let L be a language such that L3 = {001, 010, 011, 100, 110},
then the graph EL(0) is not connected. However, both GL1 (L) and GL2 (L) are
(and so are GR1 (L) and GR2 (L)). This situation is represented in Figure 2.6.

However, we see in this example that we had two paths in GL1 (L) and
only one in GL2 (L). This loss is in fact caused by the disconnection in
EL(0). More generally, if we want a link between disconnected words and a
disconnection in GLn(L), we need to ensure that there are no double paths in
GLn−1(L). In other words, we need acyclicity to have an equivalence between
connectedness of the words and of the graphs GLn(L).
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EL(0)

0

1

1

0

GL1 (L)
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Figure 2.6: Example showing that a disconnected word does not always
imply a disconnection in the graph GLn(L).

Proposition 2.42. Let L be a language and N ≥ 0. If the words w ∈ L<N
are acyclic, then the following properties are equivalent.

1. Every word w ∈ L<N is connected.

2. The graph GLn(L) is connected for all n ≤ N .

3. The graph GRn (L) is connected for all n ≤ N .

4. The graph GLN (L) is connected.

5. The graph GRN (L) is connected.

We first show the following stronger result which will be key in Sec-
tion 4.4.

Proposition 2.43. Let L be a language over A and N ≥ 0. If the words
w ∈ L<N are acyclic, then the following properties are equivalent for all
C ⊆ A.

1. For all w ∈ L<N and all a, b ∈ ELL(w) ∩C, the vertices aL and bL are
connected in EL(w) by a path avoiding vertices cL, c /∈ C.

2. The subgraph of GLn(L) generated by the vertices in C is connected for
all n ≤ N .

3. The subgraph of GLN (L) generated by the vertices in C is connected.

Similarly, the following are equivalent.

1. For all w ∈ L<N and all a, b ∈ ERL (w)∩C, the vertices aR and bR are
connected in EL(w) by a path avoiding vertices cR, c /∈ C.
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2. The subgraph of GRn (L) generated by the vertices in C is connected for
all n ≤ N .

3. The subgraph of GRN (L) generated by the vertices in C is connected.

Proof. We only show the first set of equivalences, the other one being sym-
metric. Let Hn denote the subgraph of GLn(L) generated by the vertices in
C.

Assume that the first property is satisfied and let us prove that Hn is
connected by induction on n ≤ N . For n = 0, as the graph GL0 (L) is a
complete graph, any of its subgraph, and H0 in particular, is connected.
Assume now that Hn is connected for n < N and let us prove that Hn+1 is
also connected. It suffices to show that any two vertices a, b ∈ C that were
connected by an edge in Hn are connected by a path in Hn+1. Let a, b ∈ C
be two such vertices and w be the label of an edge between them. As a and
b are left extensions of w and w ∈ L<N , aL and bL are connected in EL(w)
by a path avoiding vertices cL, c /∈ C. This path in EL(w) corresponds to
a path between a and b in Hn+1 by Lemma 2.35. Observe that the acyclic
hypothesis is not required for this implication.

Let us now prove the converse, i.e., if Hn is connected for all n ≤ N , then
the first claim is satisfied. We proceed by contradiction, so assume that, for
w ∈ Ln, n < N , there exist two letters a, b ∈ ELL(w) ∩ C such that the
vertices aL and bL are not connected in EL(w) by a path avoiding vertices
cL, c /∈ C. By definition, there is an edge labeled by w between a and b in
GLn(L). As this graph is acyclic for the labeling by Proposition 2.38, any
simple path between a and b in GLn(L) uses exclusively edges labeled by w.
By hypothesis, a and b are connected by a path P in Hn+1. This induces a
path in Hn (so in GLn) by taking the length-n prefixes of the edges’ labels.
This implies that the path P only uses edges labeled by words in wA. By
Lemma 2.35, P then induces a path in EL(w) between aL and bL avoiding
vertices cL, c /∈ C. This is a contradiction and ends the equivalence between
the first two claims.

We now show that it is sufficient to look at HN . Indeed, for all n ≤ N , a
path in GLN (L) induces a path in GLn(L) by taking the prefixes of the edges’
labels. Therefore, if HN is connected, then so is Hn for all n ≤ N .

Proof of Proposition 2.42. Recall that extension graphs do not have any iso-
lated vertices. Therefore, they are connected if and only if all of their left
vertices are connected, if and only if all of their right vertices are connected.
The conclusion then follows from Proposition 2.43 for C = A.
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Observe that the acyclicity is only needed to show that if the graphs
GLn(L) (resp., GRn (L)) are connected, then the words are connected. The
other implication is always true. We can however show that looking at
properties locally is not sufficient, just as in Example 2.40.

Similarly to what we did for acyclicity, we can deduce the following
corollary which gives an alternative definition of dendric languages.

Corollary 2.44. Let L be a language. The following are equivalent.

1. The language L is dendric.

2. The graph GLn(L) is acyclic for the labeling and connected for all n ≥ 0.

3. The graph GRn (L) is acyclic for the labeling and connected for all n ≥ 0.

2.4.2 Colors and cliques

We now take a slight step away from dendricity to study properties of the
graphs GLn(L) and GRn (L) to get a better idea of what they can look like. In
the rest of this work, we will be interested in whether two edges of GLn(L)
have the same label or not more than in the actual label of the edges. In
other words, we will consider graphs with colored edges instead of graphs
with labeled edges. Formally, we have the following definition.

Definition 2.45. Two multi-graphs G and G′ with edges labeled by ele-
ments of C and C ′ respectively are equivalent if they both have the same
set of vertices and if there exists a bijection ϕ : C → C ′ such that there are
k edges labeled by c ∈ C between a and b in G if and only if there are k
edges labeled by ϕ(c) between a and b in G′. A (multi-)graph with colored
edges is an equivalence class for this relation.

We will however right-away drop these considerations of equivalence
classes and identify the labeled graphs with their colored counterpart. In
particular, we write GLn(L) and GRn (L) to denote both the labeled and the
colored graphs, depending on the properties needed locally.

Example 2.46. Using Example 2.33, we see that, for the Tribonacci lan-
guage L, we have GLn(L) = GRm(L) for all m,n ≥ 0, and by Example 2.34,
GLn(L′) = GLm(L′), GRn (L′) = GRm(L′) for all m,n ≥ 1 for the Chacon lan-
guage L′. This is represented in Figure 2.7.

The notion of acyclic for the labeling can easily be translated into acyclic
for the coloring as follows.
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GLn(L) = GRn (L)
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Figure 2.7: Graphs GLn(L) and GRn (L), n ≥ 0, for the Tribonacci language
L (on the left) and graphs GLm(L′) and GRm(L′), m ≥ 1, for the Chacon
language L′ (on the right).

Definition 2.47. A multi-graph with colored edges G is acyclic for the
coloring if any simple cycle in G only uses edges with the same color.

It is clear that a labeled graph is acyclic for the labeling if and only if
its colored counterpart is acyclic for the coloring.

As explained after Definition 2.32, the graphs GLn(L) and GRn (L) can be
seen as unions of cliques, each with a different label (or color). Such a graph
will be called a multi-clique.

Definition 2.48. A multi-graph G with colored edges and with set of ver-
tices V is a multi-clique if there exist subsets C1, . . . , Ck of V such that the
set of edges of G is the union, for i ≤ k, of the sets of edges (Ci×Ci)\diag(Ci)
with the color ci, where c1, . . . , ck are distinct colors. The multi-clique G is
then denoted GV ({C1, . . . , Ck})1. When the context is clear or if we do not
worry about isolated vertices, we omit the subscript V .

Example 2.49. If V = {0, 1, 2, 3}, C1 = {0, 1}, C2 = {1, 2, 3}, C3 = {0, 3},
the multi-clique GV ({C1, C2, C3}) is represented in Figure 2.8. It is not
acyclic for the coloring because of the cycle (0, 1, 3, 0).

Remark 2.50. Given a language L overA, we have the following alternative
definition for the graphs GLn(L) and GRn (L):

GLn(L) = GA({ELL(w) : w ∈ Ln})

and

GRn (L) = GA({ERL (w) : w ∈ Ln}).
1The notation {C1, . . . , Ck} should be understood here as a multi-set, i.e., if Ci = Cj

with i 6= j and #Cj ≥ 2, then GV ({C1, . . . , Ck}) 6= GV ({C1, . . . , Ck} \ {Cj}).
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Figure 2.8: Multi-clique G({{0, 1}, {1, 2, 3}, {0, 3}}).

Observe that if #Ci ≤ 1, then G({C1, . . . , Ck}) = G({C1, . . . , Ck}\{Ci})
as Ci does not generate any edge. In particular, this shows once again that
it suffices to consider the left special words to build GLn(L) and the right
special words for GRn (L).

Since this work focuses on dendric languages, we will mostly be inter-
ested in multi-cliques that are acyclic for the coloring and connected by
Corollary 2.44. These multi-cliques can be obtained by an iterative process
starting from the complete graph and successively splitting cliques. This is
based on the following lemma.

Lemma 2.51. Let C1, . . . , Ck ⊆ V and let D,E be such that

D ∪ E = C1 and #(D ∩ E) = 1.

The multi-clique G = GV ({C1, . . . , Ck}) is acyclic for the coloring (resp.,
connected) if and only if the multi-clique G′ = GV ({D,E,C2, . . . , Ck}) is.

Proof. Let {c} = D ∩ E. We first show the equivalence for the acyclicity.
Assume that G is acyclic for the coloring and let us prove that G′ also
is. Any simple cycle of G′ corresponds to cycle of G thus only uses edges
corresponding to one of the Ci, i ≤ k, in G. The problem can therefore only
arise if the path uses edges from C1. However, c is the only vertex with
both ingoing edges corresponding to D and ingoing edges corresponding to
E. Since a simple path cannot go twice through the same vertex, this show
that a simple cycle in G′ cannot use both edges corresponding to D and
edges corresponding to E. This ends the proof that G′ is acyclic for the
coloring.

For the converse, if a simple cycle of G is in G′, then it clearly can
only use edges of the same color. Thus, assume that we have a cycle of G
that uses an edge from C1 which disappears when splitting the clique. We
can replace each such edge by a length-2 path (corresponding to C1) going
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through c. We then obtain one or several simple cycles going through c and
corresponding to cycles in G′. Moreover, each cycle uses at least one edge
from D (resp., E). Therefore, the cycles only use edges from D and E in G′.
This shows that this modified path is unicolor in G, and so is the original
path.

We now turn to connectedness. As G contains the edges of G′, if G′ is
connected then so is G. For the converse, each edge of G either corresponds
to an edge of G′ or can be replaced by a length-2 path going through c.
Therefore we do not lose connectedness when splitting the clique C1.

Remark 2.52. A multi-clique G({C1, . . . , Ck}) is acyclic for the coloring
and connected if and only if it can be obtained by applying a succession of
k − 1 splittings as in Lemma 2.51 to a complete unicolor graph. Indeed,
by Lemma 2.51, any graph built this way is acyclic for the coloring and
connected. Conversely, if G({C1, . . . , Ck}), k ≥ 2, is connected, then there
exist two cliques with a non empty intersection. Without loss of generality,
assume that it is C1 and C2. If moreover the graph is acyclic for the color-
ing then their intersection contains exactly one element. By Lemma 2.51,
G({C1 ∪ C2, C3, . . . , Ck}) is acyclic for the coloring and connected. We can
then proceed by induction to show that G({C1, . . . , Ck}) is obtained by ap-
plying k − 1 splittings.

In fact, one can show that if the words of Ln are dendric, then we can go
from GLn(L) to GLn+1(L) (resp., from GRn (L) to GRn+1(L)) with a succession
of splittings as in Lemma 2.51. In other words, the sequence of splittings
used to obtain GLN (L) and GRN (L) can be governed by the extensions of the
words of L<N .

Example 2.53. Let L′ be an Arnoux-Rauzy language over the alphabet
{0, 1, 2, 3} and let σ be the morphism

σ :


0 7→ 20

1 7→ 20221

2 7→ 202

3 7→ 20203

.

As we will show later, the image L := σ(L′) is dendric (see Example 4.80).
The right special words of length 1 are 0 with extensions {2, 3} and 2 with
extensions {0, 1, 2}. Therefore, GR1 (L) is obtained from GR0 (L) by splitting
{0, 1, 2, 3} into {0, 1, 2} and {2, 3}. Similarly, the right special words of
length 2 are 02 with extensions {0, 2}, 20 with extensions {2, 3} and 22 with
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Figure 2.9: Splittings to go from the graph GR0 (L) (on the left) to the graph
GR2 (L) (on the right) via the graph GR1 (L) (in the middle) for the language
L of Example 2.53.

extensions {0, 1}. Therefore, GR2 (L) is obtained from GR1 (L) by splitting
{0, 1, 2} into {0, 1} and {0, 2}. The situation is represented in Figure 2.9.

We end this subsection with some considerations on how to color a graph.
Observe that any multi-graph (with uncolored edges) G can be colored into
a multi-clique. Indeed, we can color each edge with a different color. On
the other hand, any multi-graph G can be colored into a graph which is
acyclic for the coloring. It suffices to color all the edges with the same color.
However, not every graph can be colored into a multi-clique which is acyclic
for the coloring. This is the object of the following definition.

Definition 2.54. A multi-graph G is acyclicly colorable if it can be colored
into an acyclic for the coloring multi-clique.

These graphs are also called block graphs [Har63]. By Corollary 2.44,
if L is dendric then, for all n ≥ 0, the uncolored version of GLn(L) (resp.,
GRn (L)) is acyclicly colorable. Moreover, the knowledge of this uncolored
version is sufficient to recover GLn(L) as stated in the following result.

Lemma 2.55. If G is acyclicly colorable, the coloring giving a multi-clique
which is acyclic for the coloring is unique.

Proof. It suffices to observe that each color corresponds to a maximal clique
in G. Indeed, each color of a multi-clique corresponds to a clique, and this
clique is maximal otherwise we have a simple cycle using edges of different
colors.

We now give an alternative method to check if a graph is acyclicly col-
orable.
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Proposition 2.56. A simple graph G is acyclicly colorable if and only if,
for any distinct vertices a and b, if there is a simple cycle passing through a
and b, then G contains the edge {a, b}.

Proof. Assume that G can be colored into G({C1, . . . , Ck}) which is acyclic
for the coloring. If there is a simple cycle passing through a and b, then that
cycle is unicolor and there exists i such that a, b ∈ Ci. This shows that G
contains the edge {a, b} since Ci is a clique.

Let us prove the existence of a coloring when, for any distinct vertices a
and b, if there is a simple cycle passing through a and b, then G contains the
edge {a, b}. If G is not connected, it is sufficient to prove the existence of
a coloring for each of its connected components. We therefore assume that
G is connected. As G can be written as a union of (uncolored) cliques, we
proceed by induction on the number of maximal cliques.

If G itself is a clique then we can simply color all the edges with the
same color. If G contains at least two maximal cliques, then there exist
two maximal cliques C1 and C2 with a non-empty intersection since G is
connected. Moreover, their intersection contains exactly one vertex. Indeed,
assume by contradiction that it contains two different vertices c and d. As
C1 is a maximal clique, there exists a ∈ C1 \ C2. For all b ∈ C2 \ {c, d}, we
have the simple cycle (a, c, b, d, a) passing through a and b. By hypothesis
on G, the pair {a, b} is an edge of G. This shows that a has an edge to each
vertex in C2 and contradicts the maximality of C2.

Let us consider the graph G′ which is a copy of G where we added all
the edges between vertices in C1 and C2. In other words, we merge C1 and
C2 to form a bigger maximal clique C1∪C2. The graph G′ has strictly fewer
maximal cliques than G therefore, by induction hypothesis it is acyclicly
colorable. Moreover, by Lemma 2.55, the edges of C1 ∪ C2 correspond to
one color, i.e., G′ can be colored into G({C1 ∪ C2, C3, . . . , Ck}) which is
acyclic for the coloring, for some C3, . . . , Ck. By Lemma 2.51, G can be
colored into G({C1, C2, . . . , Ck}) which is acyclic for the coloring.

2.4.3 Stabilization and eventually dendric languages

By definition, if there is no edge between a and b in GLN (L), then there
won’t be any edge between these two vertices in GLn(L) for all n ≥ N . This
seems to suggest that the graphs GLn(L) converge when n tends to infinity.
However, as they are multi-graphs, we could have a growing number of
edges between two given vertices. This behavior does not appear when L is
eventually dendric.
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Proposition 2.57. Let L be an eventually right ordinary (resp., left ordi-
nary) language of threshold N . For all n ≥ N ,

GLn(L) = GLN (L) (resp., GRn (L) = GRN (L)).

Proof. This is a direct consequence of Proposition 2.31.

We will then drop the subscript n for the stabilized graph, as detailed
below.

Definition 2.58. Let L be a language. If there exists N ≥ 0 such that,
for all n ≥ N , we have GLn(L) = GLN (L) (resp., GRn (L) = GRN (L)), then we
denote

GL(L) = GLN (L) (resp., GR(L) = GRN (L)).

If L is eventually dendric, we have no prior condition on the multi-
cliques GL(L) and GR(L). However, by Corollary 2.44, if L is dendric, then
GL(L) and GR(L) are multi-cliques which are acyclic for the coloring and
connected. This is unfortunately not an equivalence as shown in the example
below.

Example 2.59. Let L be the Fibonacci language (or any Sturmian language
containing 00) and let σ be the morphism defined by σ(0) = 0110 and
σ(1) = 011. We consider the image L′ of L under σ. We will prove in
Chapter 4 (Corollary 4.78) that L′ is eventually dendric of threshold at
most 5. In fact, we can check that the only non-dendric elements are ε and
1 (see Example 4.50) so L′ is eventually dendric of threshold 2. As we are on
an alphabet of size 2, any dendric word is right ordinary and left ordinary.
This implies that GL(L′) = GL2 (L′) and GR(L′) = GR2 (L′). We can then
easily check that 01 (resp., 10) is the only left special (resp., right special)
length-2 word. This shows that GL(L′) and GR(L′) are both acyclic for the
coloring and connected.

Proposition 2.57 is not an equivalence. Indeed, we saw in Example 2.34
that the graphs GLn(L) (resp., GRn (L)) are equal starting from n = 1 for
the Chacon language, but this language is not eventually dendric since we
showed in Example 1.45 that it is not eventually neutral. Observe however
that stabilization of the graphs GLn(L) and GRn (L) implies that the first
difference of complexity sL(n) is eventually constant.

If we want to distinguish the case of the Chacon language from the even-
tually dendric languages, we need to look at the edges labels. By Proposi-
tion 2.31, if L is eventually dendric, with each edge color in GL(L), we can
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associate a (right) infinite word x such that, for all large enough n, the label
corresponding to that color in GLn(L) is the length-n prefix of x. In some
sense, this word x can be seen as a left special infinite word if we generalize
the notion of extensions.

Definition 2.60. Let L be a language and let x be a right (resp., left)
infinite word. We extend the notion of left (resp., right) extensions by
defining

ELL(x) = {a : Fac(ax) ⊆ L}

(resp., ERL (x) = {a : Fac(xa) ⊆ L}).

We then have the following characterization of eventually dendric lan-
guages.

Proposition 2.61. Let L be a language over A. The following are equiva-
lent:

1. L is eventually dendric;

2. GL(L) is defined and GL(L) = G({ELL(x) : x ∈ AN});

3. GR(L) is defined and GR(L) = G({ERL (x) : x ∈ A−N}).

Proof. We only prove the equivalence between the first two claims. The
link with the third claim is symmetric. If L is eventually dendric then the
conclusion directly follows from Proposition 2.57 and Proposition 2.31 as
explained above.

For the converse, if GL(L) exists then it is finite as it corresponds to
GLN (L) for some N . Moreover, it implies that sn(L) = sN (L) for all n ≥ N ,
which in turn implies that the set of left special infinite words is finite (and
bounded by sN (L)). Indeed, otherwise we can find sN (L) + 1 different left
special infinite words. There exists n such that their length-n prefixes are
all distinct, showing that we have strictly more that sn(L) left special words
of length n, which is a contradiction. As the set of left special infinite words
is finite, we can find M ≥ N such that the length-M prefixes are distinct
and each infinite word has the same extensions as its length-M prefix. In
other words, G({ELL(x) : x ∈ AN}) can also be defined using the length-m
prefixes of the left special infinite words for all m ≥M . Since this graph is
also equal to GL(L) = GLm(L), this shows that the only left special words of
length m ≥M are the prefixes of the left special infinite words. We conclude
that L is eventually dendric by Proposition 2.31.
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This proof also shows that, if GL(L) (resp., GR(L)) is defined, then we
can see G({ELL(x) : x ∈ AN}) as a subgraph of GL(L) (resp., G({ERL (x) :
x ∈ A−N}) as a subgraph of GR(L)). For the Chacon language, we can show
that there is a left special infinite word given by

lim
n→∞

012ϕ(012) · · ·ϕn(012).

This follows from the study of extensions done in Example 1.45. As GL(L)
has edges of two colors and the Chacon language is not eventually dendric,
this must be the only left special infinite word.

We end this subsection with a comment on the link with asymptotic
pairs which are a well-known tool in symbolic dynamics.

Definition 2.62. Two bi-infinite words x, x′ are right asymptotic equivalent
if there exist a right infinite word y and two integers m,n ∈ Z such that

Sm(x) = z · y and Sn(x′) = z′ · y,

where z, z′ are left infinite words. If z 6= z′, we then say that {x, x′} is a
right asymptotic pair . We can similarly define left asymptotic equivalence.

While every right asymptotic pair in a shift space corresponds to a unique
pair of extensions of a (also unique) left special infinite word, the converse
is not necessarily true. For example, if we have the words x = za · y,
x′ = z′ab · y and x′′ = z′′bb · y, then {x, x′} and {x, x′′} are two asymptotic
pairs corresponding to the same extensions {a, b} of the same right infinite
word y.

2.5 Open questions

The first questions of this chapter concern the conjugacy classes of eventually
dendric languages. Indeed, by Proposition 2.16, if X is an eventually dendric
shift space of threshold M , then its higher block shift space X(N) is of
threshold M − N + 1 for all 1 ≤ N ≤ M . This implies that X has an
eventually dendric conjugate of threshold n for all 1 ≤ n ≤ M . In most
cases however, no higher block shift space of X is dendric. We therefore ask
the following question.

Question 2.1. Is every infinite eventually dendric shift space conjugate to
a dendric shift space?
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The infinity hypothesis is necessary here. Indeed, if X is a finite eventu-
ally dendric shift space, then its conjugates have the same cardinality. Since
the only finite dendric shift spaces contain exactly one element, we directly
conclude that a finite eventually dendric shift space containing at least two
elements has no dendric conjugate. Observe that, in the case of minimal
shift spaces, infinity is equivalent to aperiodicity (i.e., not containing any
periodic element).

One can also ask a weaker version of the previous question.

Question 2.2. Is every aperiodic eventually dendric shift space a factor of
a minimal dendric shift space?

Once again, the answer to this question is no if we remove the ape-
riodicity hypothesis. Indeed, minimal dendric shift spaces are known to
have no rational continuous eigenvalues [BDD+18]. Therefore, they have no
(non-trivial) periodic factor by a result of [DG19]. In other words, a finite
eventually dendric shift space containing at least two elements cannot be a
factor of a minimal dendric shift space.

Observe that the existence of a minimal dendric factor is however al-
ways guaranteed as a shift space on a unary alphabet is dendric. We could
therefore ask about the existence of a minimal aperiodic dendric factor. We
then clearly also have to restrict ourselves to infinite eventually dendric shift
spaces.

Question 2.3. Does every infinite eventually dendric shift space have a
minimal aperiodic dendric factor?

On the other hand, if X is an eventually dendric shift space of threshold
M , no higher block shift space of X will be eventually dendric of threshold
n > max{1,M} either. So the same questions can be asked, replacing
dendric shift spaces by eventually dendric shift spaces of some fixed threshold
n.

Question 2.4. Is every aperiodic eventually dendric shift space conjugate
to (resp., factor of) an eventually dendric shift space of threshold n for
all n ≥ 1? Does every aperiodic eventually dendric shift space have an
eventually dendric factor of threshold n for all n ≥ 1?

Observe that it in fact suffices to answer these questions for arbitrarily
large values of n since we can then reduce the threshold by looking at higher
block shift spaces.

The last question on the conjugacy classes concerns the uniqueness of
the dendric shift spaces.
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Question 2.5. Can two dendric shift spaces which are not image of one
another via a letter-to-letter morphism be conjugate?

We now turn to a question on Section 2.3. Indeed, we showed that
eventual dendricity was equivalent to many other eventual properties. In
particular, if we restrict ourselves to linear factor complexity, being eventu-
ally dendric is equivalent to being eventually connected or eventually strong
or neutral (see Proposition 2.30). However, as shown in Example 2.29 with
the language A∗, it is not true in general. This example is however both
(eventually) connected and (eventually) strong or neutral, leaving therefore
the possibility for these two properties to be equivalent without restriction
on the factor complexity.

Question 2.6. Is a language eventually connected if and only if it is even-
tually strong or neutral?

Clearly, if a language is eventually connected, then it eventually is strong
or neutral by Proposition 2.10. Therefore, a way to answer (by the nega-
tive) the previous question would be to find an eventually strong or neutral
language L containing infinitely many non-connected words. Observe that
this language L will not have a linear complexity and these strong or neutral
but not connected words must have at least three left and right extensions.





Chapter 3

Extensions’ impact on
complexity and return words

In Chapter 1 and Chapter 2, we presented general tools as well as started to
familiarize ourselves with the languages that will follow us throughout this
work. It is now time to introduce more specific concepts and start to go
deeper into the results. This chapter is centered around extensions of words
and how they can help us count other objects, namely the words’ extensions
in the language, the words in the image under a morphism and the return
words.

Recall that Proposition 1.18 shows the strong link between the words’
extensions and the language’s complexity. This result was the main motiva-
tion behind the study of neutral languages and, as explained in Chapter 1,
is the key to get a complete description of the factor complexities of the
languages that we study in this work.

We start this chapter with Section 3.1 in which we prove a generalization
of Proposition 1.18. More precisely, after recalling the classical notions of
prefix and suffix codes, we show that, if we consider words forming a maximal
prefix (or suffix) code, then we can similarly relate the number of left (or
right) extensions with the first difference of complexity. This result will be
particularly useful in Sections 3.2 and 3.3.

Section 3.2 then focuses on the evolution of the factor complexity when
applying a non-erasing morphism. It is well known that the complexity can
grow at most by a multiplicative constant [AS03, CN10]. Using the same
underlying tools but with a more careful analysis, we show here that, for
some languages, we can vastly improve this result and replace the multiplica-
tive constant by an additive constant (Corollary 3.14). This is the case for

53



54 Chapter 3. Extensions’ impact on complexity and return words

eventually strong or neutral languages but not only. We also use the tools
developed in this section to look at the factor complexity of the images of
the Thue-Morse language.

We then turn to the notion of return words in Section 3.3. This concept
was the main focus of the authors in the original paper on dendric lan-
guages [BDFD+15a] and is arguably the main reason for studying dendric
languages due to the particularly strong properties of their return words.
We determine the number of return words in an eventually neutral language
(Corollary 3.32). We also recall the famous Return Theorem and prove that
eventually dendric languages are stable under derivation.

3.1 Codes and extensions

A set S of words is a code if no word can be factorized in two different ways
over S. In other words, if we associate a letter with each element of S as a
sort of “antecedent”, then each word corresponds to at most one sequence
of such letters. This is the reason behind the terminology of code as any
word which can be decoded is uniquely decodable. This is also the idea
behind recognizability, a well-known concept in symbolic dynamics that we
will mention again later (in Section 4.5). For more results on codes, we
invite the reader to look in [BPR10].

A particular example of a code is given by the set of words of the same
length. It is then natural to wonder if a result using this sort of set can be
extended to other kinds of codes. In this section, we focus on Cassaigne’s
result on the link between complexity and number of extensions (Proposi-
tion 1.18). We show that it can be extended by summing over words who
form what is called an L-maximal prefix code (or suffix code).

Definition 3.1. Two words u and v are prefix comparable if u is a prefix
of v or v is a prefix of u. A prefix code is a set of words S such that for all
distinct u, v ∈ S, u and v are not prefix comparable. It is moreover said to
be L-maximal for a language L if S ⊆ L and any w ∈ L is prefix comparable
with an element of S.

We similarly define the notions of suffix comparable, suffix code and L-
maximal suffix code by replacing “prefix” with “suffix”.

Remark 3.2. Distinct words of the same length cannot be prefix compara-
ble. This implies that any set containing only words of a given length n 6= 0
is both a prefix and a suffix code (we then say that it is a bifix code). An-
other consequence is that the only candidate for an L-maximal prefix code
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included in Ln is Ln itself. As every element of L can either be extended on
the right in a element of Ln (L is biextendable) or has an element of Ln as
a prefix (L is factorial), this shows that Ln is indeed en L-maximal prefix
code. We similarly reach the same conclusion for suffix codes.

The trade-off when we replace words of the same length by words in
an L-maximal prefix code in Proposition 1.18 is that we have to take into
account the multiplicities of some words. This is detailed in the technical
lemma below.

Lemma 3.3. Let L be language and let S ⊆ L≥N ∩ L≤M be an L-maximal
prefix code. Then

sL(N)+
∑

w∈L≥N
w∈Pref∗(S)

mL(w) =
∑
w∈S

(#ELL(w)−1) = sL(M)−
∑

w∈L≤M−1

Pref(w)∩S 6=∅

mL(w).

Similarly, if S ⊆ L≥N ∩ L≤M is an L-maximal suffix code, then

sL(N)+
∑

w∈L≥N
w∈Suff∗(S)

mL(w) =
∑
w∈S

(#ERL (w)−1) = sL(M)−
∑

w∈L≤M−1

Suff(w)∩S 6=∅

mL(w).

Proof. We only prove the case where S is a prefix code. The case of a suffix
code is symmetric.

To prove the left equality, let us denote n = max{|w| : w ∈ S} and let
us proceed by induction on n ∈ [N,M ]. If n = N , then S is an L-maximal
prefix code included in LN which implies, as explained above, that S = LN .
Using Proposition 1.18, we directly conclude that

sL(N) =
∑
w∈S

(#ELL(w)− 1),

which is the desired equality as no word of L≥N can be a proper prefix of a
word in S.

Assume now that n > N and that the equality is true for any L-maximal
prefix code S′ ⊆ L≥N ∩ L≤M such that max{|w| : w ∈ S′} = n − 1. We
define the new set

S′ = (S ∩ L<n) ∪ {w ∈ Ln−1 : ∃a ∈ ERL (w) st. wa ∈ S}.

In other words, we truncate on the right the elements of length n in S. By
construction, max{|w| : w ∈ S′} = n − 1 and S′ ⊆ L≥N ∩ L≤M . Let us
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show that it is an L-maximal prefix code. As S is a prefix code, so is S′∩S,
and no element of S′ ∩ S can be a prefix of an element of S′ \ S. Since
S′ ∩ S ⊆ L≤n−1 and S′ \ S ⊆ Ln−1 this is sufficient to conclude that S′ is
a prefix code. It is L-maximal as every element of L either had a prefix in
S meaning that it also has a prefix in S′, or it was a proper prefix of an
element in S in which case it is a prefix of an element in S′.

We now look at the link between the sum over S and the sum over S′.
By definition of S′, we have

∑
w∈S

(#ELL(w)− 1)−
∑
w∈S′

(#ELL(w)− 1)

=
∑

w∈S∩Ln

(#ELL(w)− 1)−
∑

w∈S′\S

(#ELL(w)− 1).

Let w ∈ S′ \S, let a such that wa ∈ S and let b ∈ ERL (w). By L-maximality
of S, wb is prefix comparable with an element of S. However, |wb| = n and
no prefix of w is in S since wa ∈ S. By definition of n, this implies that wb
is in S. In other words,

S ∩ Ln = {wa : w ∈ S′ \ S, a ∈ ERL (w)}.

We then have

∑
w∈S

(#ELL(w)− 1)−
∑
w∈S′

(#ELL(w)− 1)

=
∑

w∈S′\S

 ∑
a∈ERL (w)

(#ELL(wa)− 1) −#ELL(w) + 1


=

∑
w∈S′\S

mL(w).

Observe also that the elements of S′ \ S are proper prefixes of elements of
S but are not proper prefixes of elements of S′, and these are the only such
words, i.e., S′ \ S = Pref∗(S) \ Pref∗(S′). Moreover, by definition of S′, we
have Pref∗(S′) ⊆ Pref∗(S). Therefore, with the induction hypothesis on S′,



3.1. Codes and extensions 57

we conclude that∑
w∈S

(#ELL(w)− 1)

=
∑
w∈S′

(#ELL(w)− 1) +
∑

w∈Pref∗(S)\Pref∗(S′)

mL(w)

= sL(N) +
∑

w∈Pref∗(S)

mL(w)

We now turn to the right equality. The idea of the proof is quite similar
to the one we just did so we will not give as much detail. The main difference
is that we do a decreasing induction on m = min{|w| : w ∈ S}. The case
m = M is a direct consequence of Proposition 1.18. For the induction step,
we define

S′ = (S ∩ L>m) ∪ {wa ∈ Lm+1 : w ∈ S, a ∈ ERL (w)}.

It is an L-maximal prefix code and by construction min{|w| : w ∈ S′} =
m+ 1. Moreover, we can show that∑

w∈S
(#ELL(w)− 1)−

∑
w∈S′

(#ELL(w)− 1) = −
∑

w∈S\S′
mL(w).

To conclude the induction step, it then suffices to observe that S \ S′ is
exactly the set of words having a prefix in S but no prefix in S′.

We make several remarks about this result.
First, if w is a proper prefix of an element of S, then w ∈ L≤M−1.

Similarly, if w has a prefix in S, then w ∈ L≥N . In particular, this shows
that when N = M , the sums of the multiplicities disappear and we obtain
exactly Proposition 1.18.

Second, as S is an L-maximal prefix code, every word of L≥N ∩ L≤M−1

is either a proper prefix of an element of S or has a prefix in S, and not
both. Therefore, each word of L≥N ∩ L≤M−1 contributes either to the sum
of multiplicities on the left or on the right. This is coherent with the fact
that sL(M) − sL(N) is the sum of the multiplicities of all the words in
L≥N ∩ L≤M−1.

Third, due to what we just observed, it was not necessary to prove the
right equality as soon as we knew the left equality to be true. We still gave a
sketch of proof to show that the same ideas could be used for both equalities.

If we are not interested in the actual value of the sum and if the multiplic-
ities have the same sign, we obtain the simpler statement proved in [Ghe23].
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Proposition 3.4. Let L be a language and let S ⊆ L≥N ∩ L≤M be an
L-maximal prefix code.

1. If the elements of L≥N ∩ L≤M−1 are weak or neutral, then

sL(N) ≥
∑
w∈S

(#ELL(w)− 1) ≥ sL(M).

2. If the elements of L≥N ∩ L≤M−1 are strong or neutral, then

sL(N) ≤
∑
w∈S

(#ELL(w)− 1) ≤ sL(M).

If S is an L-maximal suffix code, we have the same inequalities by consid-
ering the right extensions instead.

We will also need a version of Proposition 3.4 for a potentially infinite
prefix (or suffix) code. This is the object of the following result, which can
be found with a slightly different statement in [DP21].

Proposition 3.5. Let L be an eventually neutral language of threshold N .
If S ⊆ L≥N is a prefix code, then∑

w∈S
(#ELL(w)− 1) ≤ sL(N)

and we have the equality whenever S is L-maximal and finite. If S is a suffix
code, we have the same result by considering the right extensions instead.

Proof. We only prove the case of a prefix code. For all n ≥ N , let us consider
the set Sn = S ∩ L≤n. By construction, we have∑

w∈S
(#ELL(w)− 1) = lim

n→∞

∑
w∈Sn

(#ELL(w)− 1).

Moreover, for each n, Sn is a prefix code included in L≥N ∩ L≤n and it can
be completed into an L-maximal prefix code S′n by adding the elements of
Ln which have no prefix in Sn. Therefore, we can apply Proposition 3.4 to
obtain ∑

w∈Sn

(#ELL(w)− 1) ≤
∑
w∈S′n

(#ELL(w)− 1) = sL(N)

since sL(n) = sL(N) by Corollary 1.43. As it is true for all n ≥ N , this
implies that ∑

w∈S
(#ELL(w)− 1) ≤ sL(N).

If S is finite and L-maximal, there exists n such that S = Sn = S′n and the
equality follows.
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3.2 Factor complexity of morphic images

Factor complexity is one of the fundamental notions in combinatorics on
words and is usually one of the first questions we ask ourselves when pre-
sented with a new language. Among the most well-known results on this
topic, we can cite Pansiot’s work ([Pan84]) on the complexity of purely mor-
phic words. We will however be more interested in a folklore result (found
in [AS03] or in [CN10] for example) stating that, when applying a non-
erasing morphism, the factor complexity grows at most by a multiplicative
constant, which is in fact given by the width of the morphism.

Definition 3.6. Let σ : A∗ → B∗ be morphism. The width of σ is

‖σ‖ = max
a∈A
|σ(a)|.

Proposition 3.7. Let L ⊆ A∗ be a language and σ : A∗ → B∗ be a non-
erasing morphism. For all n ≥ 0, we have

pσ(L)(n) ≤ ‖σ‖ · pL(n).

In this section, we refine this result to prove that, for some starting
languages (including eventually dendric languages), the complexity grows at
most by an additive constant. The main ideas of the proofs and preliminary
versions of the results can be found in [Ghe23].

The common idea behind the proofs of Proposition 3.7 and what we do
in this section is that we do not directly look at the words in the image
but at something that we call here “covering” and which is only implicitly
mentioned in the proofs of the multiplicative result.

Definition 3.8. Let σ : A∗ → B∗ be a non-erasing morphism. A cover-
ing of a non empty word u ∈ B+ is a pair (w, k) ∈ A+ × N such that
u = σ(w)[k+1,k+|u|] and w is minimal, i.e., k + 1 ≤ |σ(w1)| and k + |u| >∣∣σ(w[1,|w|−1])

∣∣.
For a language L and for n ≥ 1, we denote CL,σ(n) the set of cover-

ings (w, k) of length-n words such that w ∈ L. We then denote cL,σ(n) =
#CL,σ(n). As we usually consider only one morphism at a time, we will
drop the subscript σ.

Example 3.9. Let σ be such that σ(a) = ab and σ(b) = abb. The coverings
of babb are given by (ab, 1) and (bb, 2) as babb can be seen in the image
of both words, skipping the first (resp., the first two) letter(s). If L is a
Sturmian language over the alphabet {a, b} containing the word aa (and
therefore, not the word bb), we have (ab, 1) ∈ CL(4) and (bb, 2) 6∈ CL(4).
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If (w, k) is a covering of a length-n word then, by minimality of w, we
directly conclude that |w| ≤ n since we only consider non-erasing morphisms.
In particular, we can precisely describe the coverings of the letters.

Remark 3.10. If (w, k) is a covering of a letter a, w is also a letter and k
can then vary between 0 and |σ(w)| − 1 thus

CL(1) = {(a, k) : a ∈ A, k ∈ {0, 1, . . . , |σ(a)| − 1}}

and
cL(1) =

∑
a∈A
|σ(a)|,

independently of the language L over A.

The reason why we look at coverings is the clear relation with words
of the image: a length-n word is in the image of L if and only if it has a
covering in CL(n). This gives a trivial link between the number of coverings
and the factor complexity of the image.

Lemma 3.11. Let L ⊆ A∗ be a language and σ : A∗ → B∗ be a non-erasing
morphism. For all n ≥ 1, we have

pσ(L)(n) ≤ cL(n).

Proof. The map

ϕ : CL(n)→ (σ(L))n, (w, k) 7→ σ(w)[k+1,k+n]

is well defined and surjective. This directly gives a inequality between the
cardinals of the two sets.

Remark 3.12. The previous result is only an inequality in general since
a word can have multiple coverings. For example, a letter has as many
coverings as the number of its occurrences in images of letters. However, if
we apply a morphism such that no letter appears twice in the image of a
letter or in the images of two different letters, then every word of the image
has exactly one covering. In that case, we have pσ(L)(n) = cL(n) for all
n ≥ 1 and for any language L. Such a morphism can be defined for any
given vector of lengths (|σ(a)|)a∈A.

Instead of directly bounding the complexity of the image, it suffices to
bound the number of coverings. A simple bound on the number of coverings
can be obtained by saying that if (w, k) ∈ CL(n), then w is a prefix of a
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length-n word and k < |σ(w1)| ≤ ‖σ‖ so there are at most pL(n) possibilities
for w, and at most ‖σ‖ choices for k for each w. This shows that

pσ(L)(n) ≤ cL(n) ≤ ‖σ‖ · pL(n),

which is exactly Proposition 3.7.

We can do a more careful analysis of the number of coverings, leading to
better bounds on the complexity. This is the object of the following result.

Theorem 3.13. Let L ⊆ A∗ be a language and σ : A∗ → B∗ be a non-erasing
morphism. For all n ≥ 1,

cL(n+ 1)− cL(n) = sL(n)−
∑

w∈L≤n−1

|σ(w)|≥n

mL(w).

Proof. Observe that the elements of CL(n) and of CL(n + 1) are linked.
Indeed, each (w, k) ∈ CL(n) is related to one or several elements of CL(n+1)
in exactly one of the following ways:

• if |σ(w)| = k + n, then (w, k) 6∈ CL(n + 1) but for all a ∈ ERL (w),
(wa, k) is an element of CL(n+ 1);

• otherwise, we have |σ(w)| ≥ k+n+1 thus (w, k) itself is in CL(n+1).

Moreover, with this technique, we obtain every element of CL(n + 1)
exactly once. Indeed, if (wa, k) ∈ CL(n + 1) where a is a letter, then we
have two cases:

• if |σ(w)| < k + n, then (wa, k) is an element of CL(n) as wa is still
minimal, i.e., the inequalities of Definition 3.8 are satisfied;

• if |σ(w)| ≥ k + n, then (w, k) is an element of CL(n) as we must have
|σ(w)| = k + n so (wa, k) is not minimal anymore but (w, k) is.

In other words, each (w, k) ∈ CL(n) corresponds to exactly one element
of CL(n + 1) if |σ(w)| ≥ k + n + 1 and to exactly #ERL (w) elements of
CL(n+ 1) if |σ(w)| = k + n.

This implies that, for all n ≥ 1,

cL(n+ 1)− cL(n) =
∑

(w,k)∈CL(n)
|σ(w)|=k+n

(#ERL (w)− 1).
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However, for a given word w, the value of k such that |σ(w)| = k + n is
unique. Moreover, if (w, k) is a covering in CL(n), we must have 0 ≤ k <
|σ(w1)| so such a k exists if and only if

|σ(w[2,|w|])| < n ≤ |σ(w)|.

Let Wn be the set of words satisfying this inequality, i.e.,

Wn = {w ∈ L : |σ(w[2,|w|])| < n ≤ |σ(w)|}.

We then have

cL(n+ 1)− cL(n) =
∑
w∈Wn

(#ERL (w)− 1)

for all n ≥ 1.
By definition and since σ is non-erasing, the set Wn is an L-maximal

suffix code included in L≤n ∩ L≥
⌈
n
‖σ‖

⌉. By Lemma 3.3 we deduce that

cL(n+ 1)− cL(n) = sL(n)−
∑

w∈L≤n−1

Suff(w)∩Wn 6=∅

mL(w).

The conclusion then follows from the observation that a word w has a suffix
in Wn if and only if |σ(w)| ≥ n.

By definition, the elements of CL(n) only depend on the initial language
and the lengths of the images of the letters. This is coherent with the pre-
vious result. This observation should be compared to Remark 3.12. Indeed,
we then see that the language and the lengths of the images determine the
number of coverings, and the content of the images then determine the link
with the factor complexity of the image.

We can use Theorem 3.13 to obtain bounds on the evolution of the
complexity for some particular languages.

Corollary 3.14. Let L ⊆ A∗ be a language and let σ : A∗ → B∗ be a non-
erasing morphism. If there exists N ≥ 0 such that, for all n ≥ N ,∑

w∈L≤n−1

|σ(w)|≥n

mL(w) ≥ 0,

then there exists C ∈ Z such that

pσ(L)(n) ≤ C + pL(n)

for all n ≥ 0.
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Proof. By Theorem 3.13, we have

cL(n+ 1)− cL(n) ≤ sL(n) = pL(n+ 1)− pL(n)

for all n ≥ N . Therefore,

cL(n) ≤ pL(n) + cL(N)− pL(N)

for all n ≥ N . The conclusion then follows from Lemma 3.11.

If we apply these results to some of the families introduced in Chapter 1,
we obtain the following result [Ghe23].

Proposition 3.15. Let L be a language over A and let σ : A∗ → B∗ be a
non-erasing morphism.

1. If L is eventually neutral with threshold N then there exists C ∈ Z
such that, for any n ≥ max{1, N‖σ‖},

cL(n) = C + pL(n).

In particular, if L is neutral, we have

cL(n) =
∑
a∈A
|σ(a)| + (#A− 1)(n− 1)

for all n ≥ 1.

2. If L is eventually strong or neutral then there exists C ∈ Z such that,
for any n ≥ 0,

pσ(L)(n) ≤ C + pL(n).

Proof. The number of coverings in the eventually neutral case is obtained
using Theorem 3.13. In the neutral case, since the growth rate of the factor
complexity is given by #A− 1, we obtain the exact number of coverings by
Remark 3.10.

For eventually strong or neutral languages, it is easy to check that they
satisfy the hypothesis of Corollary 3.14. We then obtain the same bound on
the factor complexity of the image.

We can also apply Corollary 3.14 for a slightly more general family of
languages which includes the Chacon language.
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Proposition 3.16. Let L be a language for which there exists N such that
there is a injective map ϕ from the weak words of L≥N to the strong words
of L≥N satisfying the following conditions for all weak w ∈ L≥N :

1. ϕ(w) is at least as strong as w is weak, i.e., mL(w) +mL(ϕ(w)) ≥ 0;

2. the words w and ϕ(w) have the same Parikh vector, i.e., for each letter
a, w and ϕ(w) contain the same number of occurrences of a.

For every non-erasing morphism σ, there exists C ∈ Z such that

pσ(L)(n) ≤ C + pL(n)

for all n ≥ 0.

Proof. For every weak w ∈ L≥N and for all n ≥ 0, we have

|σ(w)| ≥ n ⇐⇒ |σ(ϕ(w))| ≥ n

since w and ϕ(w) have the same Parikh vector. Moreover, w and ϕ(w)
also have the same length. By assumption on the multiplicities, the lan-
guage L then satisfies the hypothesis of Corollary 3.14 for every non-erasing
morphism, which ends the proof.

We would like to make a comment on the constant C of Corollary 3.14. In
Proposition 3.7, the multiplicative constant is given by ‖σ‖ and only depends
on the morphism and not on the language. Here however, the constant
C depends both on the language and on the morphism. One way to see
that it is unavoidable is to look at images of periodic languages (languages
with bounded complexity). Indeed, let L be a language with complexity
eventually equal to P and let σ be a k-uniform morphism such that no
letter appears twice in the image of a letter or appears in two images of
letters. We can easily see that σ(L) has a complexity eventually equal to
k · P . This is an example of a case where the multiplicative bound is tight,
which does not contradict the existence of a additive bound. Indeed, we can
see k · P as P + (k − 1) · P . In other words, the constant C is here equal to
(k − 1) · P which depends both on the language and on the morphism.

We end this section with an application of Theorem 3.13 to show that
Corollary 3.14 is not true for any language. We study here the case of the
Thue-Morse language.

Example 3.17. The Thue-Morse language is the language generated by
the morphism τ : {0, 1}∗ → {0, 1}∗ such that τ(0) = 01 and τ(1) = 10.
Equivalently, it is generated by the Thue-Morse sequence

lim
n→∞

τn(0) = 0110100110010110 · · · .
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Proposition 3.18. Let L be the Thue-Morse language and let k ≥ 1. If
σ : {0, 1}∗ → B∗ is a non-erasing morphism such that |σ(0)| + |σ(1)| = 2k,
then for all n ≥ 3‖σ‖+ 1

cL(n+1)−cL(n) = sL(n)+


2 if ∃` st. n ∈] max{3

2 , r}2
`,min{3

2r, 2}2
`]

−2 if ∃` st. n ∈] max{3
2r, 2}2

`,min{3
2 , r}2

`+1]

0 otherwise

where k = 2j · r with j ∈ N, r ∈ [1, 2[.

Proof. Let τ denote the morphism generating L (see Example 3.17). It is
well known that the strong words in L are ε, and τ i(0) and τ i(1) (of length
2i) for i ≥ 1. The weak words are τ i(010) and τ i(101) (of length 3 · 2i)
for i ≥ 0 (see [Cas97] for example). In particular, by definition of τ , all the
non-neutral words of length at least 4 contain as many 0’s as 1’s. This shows
that, if |w| ≥ 4 and mL(w) 6= 0, then |σ(w)| = k|w|. Observe also that, since
we are on an alphabet of size 2, mL(w) ∈ {−1, 0, 1} for all w ∈ L. Using
these observations and Theorem 3.13, we deduce that, for all n ≥ 3‖σ‖+ 1,
we have

cL(n+ 1)− cL(n) = sL(n)

−#{w ∈ L≤n−1 : |σ(w)| ≥ n and w is strong}
+ #{w ∈ L≤n−1 : |σ(w)| ≥ n and w is weak}

= sL(n)

− 2#{i ≥ 1 :
n

k
≤ 2i ≤ n− 1}

+ 2#{i ≥ 0 :
n

k
≤ 3 · 2i ≤ n− 1}.

Observe that, for all n ≥ 3‖σ‖+ 1,

#{i ≥ 1 :
n

k
≤ 2i ≤ n− 1} = #{i ≥ 1 : 2i < n ≤ 2i · k}

=

{
j + 1 if ∃` st. n ∈]2`, r · 2`]
j if ∃` st. n ∈]r · 2`, 2`+1]

and

#{i ≥ 0 :
n

k
≤ 3 · 2i ≤ n− 1} = #{i ≥ 0 : 3 · 2i < n ≤ 3 · 2i · k}

=

{
j + 1 if ∃` st. n ∈]3 · 2`, 3 · r · 2`]
j if ∃` st. n ∈]3 · r · 2`, 3 · 2`+1]

.
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Combining the two and using the fact that r ∈ [1, 2[, we obtain

cL(n+1)−cL(n) = sL(n)+


2 if ∃` st. n ∈] max{3

2 , r}2
`,min{3

2r, 2}2
`]

−2 if ∃` st. n ∈] max{3
2r, 2}2

`,min{3
2 , r}2

`+1]

0 otherwise

which ends the proof.

Corollary 3.19. Let L be the Thue-Morse language and let k ≥ 1. If k is
a power of 2, then for all non-erasing morphisms σ : {0, 1}∗ → B∗ such that
|σ(0)|+ |σ(1)| = 2k, there exists C ∈ Z such that

pσ(L)(n) ≤ C + pL(n)

for all n ≥ 0. If k is not a power of 2, then there exists a non-erasing
morphism σ : {0, 1}∗ → B∗ such that |σ(0)|+|σ(1)| = 2k and pσ(L)(n)−pL(n)
is unbounded.

Proof. Let us use the notations of Proposition 3.18. If k is a power of 2 then
r = 1. We then have cL(n + 1) − cL(n) = sL(n) for any large enough n so
the conclusion follows as in Corollary 3.14.

If k is not a power of 2, then let us denote c = min{3
2r, 2} −max{3

2 , r}
and d = min{3, 2r}−max{3

2r, 2}. Since r ∈]1, 2[, we can show that 2c > d by
considering the three cases r ≥ 3

2 , r ∈ [4
3 ,

3
2 [ and r < 4

3 . Using Remark 3.12,
there exists σ such that pσ(L)(n) = cL(n) for all n ≥ 0. The function

N 7→
N−1∑
n=0

(sσ(L)(n)− sL(n)) = pσ(L)(N)− pL(N)

is unbounded. Indeed, if we look at the non-zero values of the function
sσ(L)(n)−sL(n) for n large enough, by Proposition 3.18, we have c ·2` times

the value 2, then d · 2` times the value −2 , then 2 again c · 2`+1 times and
so on. Since 2c > d, the partial sums are unbounded.

3.3 Extensions and return words

Some of the first, and arguably most important, results on dendric languages
are related to return words. In fact, these results (that we recall in this
section) were the starting point of the work presented in Chapter 5.

Return words for a given factor can be summarized as what one will read
starting from that factor before seeing the same factor again. This idea of
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returning to the same factor is related to induction, an important operation
in dynamical systems.

For this work, we mostly use return words as the basic blocs needed to
derive a word or shift space. The idea is that, starting from a bi-infinite
word, one can cut it before (or after) each occurrence of a given factor. The
small blocs obtained are return words, and if we code each return word by
a different letter, we obtain an associated sequence called the derived word.

In this section, we essentially present already known results or slight
generalizations of them. We start by giving a more precise definition of
return words for a set or a word. In Subsection 3.3.1, we then look at the
number of return words in an (eventually) neutral language. Afterwards, in
Subsection 3.3.2, we turn to the concept of derivation of languages for which
both the families of dendric and of eventually dendric languages are stable.

While generally studied with respect to a single word, return words can
be defined for a set of words, as long as this set has the following property: no
element of the set is a factor of another element. Conceptually, the problem
when this condition is not satisfied arises when starting with the longer word
as we have in some sense already returned to the shorter one (and maybe
even more). We introduce the following terminology, by analogy with the
notions of prefix and suffix codes.

Definition 3.20. A set S is a factor code if no element of S is a factor of
another element of S.

We will moreover assume that S is not empty and S 6= {ε}, therefore
ε 6∈ S.

Example 3.21. The set {001, 010, 1100} is a factor code but {01, 1010} is
not as 01 is a factor of 1010.

Observe that the notion of factor code is strictly stronger than that of
bifix code (i.e., both a prefix and a suffix code) as shown by the previous
example with {01, 1010}. On the other hand, if S = {w} with w 6= ε, then
S is trivially a factor code.

Remark 3.22. If S ⊆ L is a factor code and L is uniformly recurrent, then
S is finite. Indeed, for w ∈ S, there exists n such that w is a factor of every
word of L≥n therefore S ⊆ L≤n.

Let us now properly define the central notion of this section: return
words.
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Definition 3.23. Let L be a language and S ⊆ L be a factor code. A
complete return word to S is a word of L which has a proper prefix in S,
a proper suffix in S and which contains no other occurrence of words of S.
We denote CRL(S) the set of such words, or CRL(w) when S = {w}.

In this work, when we say “return word” it will however mean “left
return word” (unless specified otherwise).

Definition 3.24. Let L be a language and S ⊆ L be a factor code. A
(left) return word to S is a word u for which there exists w ∈ S such that
uw ∈ CRL(S). We denote RL(S) the set of such words, or RL(w) when
S = {w}.

We could have just as well defined right return words by asking that
wu ∈ CRL(S). The results presented in this section can easily be adapted
to this alternative notion.

Example 3.25. In the Tribonacci language (Example 1.25), the words 0102,
01001, 0101, and 201 are complete return words for {01, 2}. As we will show
later (Corollary 3.32), these are the only ones. The (left) return words are
then given by 010, 01 and 2.

The two notions of return words are often indifferently considered in the
literature as authors restrict themselves to the case where S = {w} most of
the time. This is because of the trivial link explained below.

Remark 3.26. Let w ∈ L \ {ε}. There is bijection between RL(w) and
CRL(w) given by u 7→ uw. When S is a factor code containing two or more
words, we can similarly construct a map between the complete return words
and the (left) return words to S but it is not necessarily injective, as shown
in Example 3.25.

We now make the following simple observation.

Remark 3.27. Let w ∈ L \ {ε}. The set RL(w) is a suffix code. Indeed,
assume by contradiction that u, v ∈ RL(w) are such that u is a (proper)
suffix of v. Then uw is a proper suffix of vw, which implies that vw contains
3 occurrences of w and contradicts the definition of return word. We can
similarly show that the set CRL(w) is a bifix code.

Return words are also related to recurrence in a language. Indeed, we
have the following folklore result.
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Proposition 3.28. Let L be a recurrent language. The following are equiv-
alent.

1. The language L is uniformly recurrent.

2. For all w ∈ L \ {ε}, the set RL(w) is finite, or equivalently, CRL(w)
is finite.

3. There exists N ≥ 1 such that, for all w ∈ L≥N , the set RL(w) is finite,
or equivalently, CRL(w) is finite.

3.3.1 Number of return words

The multiplicity of words does not only give information on the number of
factors as seen in Corollary 1.44 but also on the number of return words.
This link has been studied by several authors. In [BPS08], the authors gave
a link between weak words, factor complexity and return words. In [DP17]
and [DP21], the authors study the number of return words in an eventu-
ally neutral language of threshold at most 1, and in an eventually dendric
language respectively.

The results and proofs presented in this subsection are merely a rewrit-
ting or slight generalization of the ideas and theorems of these papers.

The first part of the following lemma can be adapted from [BPS08], and
the second one from [DP17]. We only give here an idea of the proof.

Lemma 3.29. Let L be a recurrent language and let S ⊆ L be a factor
code. Let P = Pref∗(CRL(S)) \ Pref∗(S), i.e., P is the set of words which
are proper prefix of an element of CRL(S) and have an element of S as a
prefix. Then

1. we have
# CRL(S) = #S +

∑
w∈P

(#ERL (w)− 1);

2. P is an L-maximal suffix code.

Proof. Let us prove the first claim. For each w ∈ S, we define a rooted
tree with root w and we iteratively build the other vertices as follows: if a
vertex v is a complete return word for S, then it is a leaf, otherwise va is
a child of v for all a ∈ ERL (v). We then consider the union of these trees
for all w ∈ S. Observe that the vertices all have different labels and as L is
recurrent, the internal vertices are exactly the elements of P . Moreover, for
each v ∈ P , there are exactly #ERL (v) edges leaving the vertex (i.e., between
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v and one of its children). The equality of the first claim then follows from
graph theory as # CRL(S) is the number of leaves and #S the number of
roots.

We now turn to the second claim. The proof that P is a suffix code is the
same as the one used to show that RL(w) is a suffix code (Remark 3.27).
The L-maximality follows from the fact that L is recurrent. Indeed, by
recurrence, any element of L is a suffix of a word v ∈ L containing (at least)
one element of S, and there exists u such that vuw ∈ L with w ∈ S. The
word v then has a suffix in P by definition of P .

Remark 3.30. For the previous result, only the recurrence with respect to
the elements of S is needed. In other words, we reach the same conclusion
for any language L and any factor code S ⊆ L such that, for all u ∈ L, there
exist v, v′ ∈ S and w,w′ ∈ L such that vwuw′v′ ∈ L. In fact, in most of
the results from this subsection and from the following one, we can replace
recurrence by this weaker hypothesis.

Notice that the sets CRL(S) and P need not to be finite in the previous
result. Therefore, to exploit the first claim of Lemma 3.29, we will need
the infinite version of Proposition 3.4 given in Proposition 3.5. Putting it
together with Proposition 3.28, we obtain the following result. The first
part and most of the second part were proved in [DP21].

Proposition 3.31. Let L be an eventually neutral language of threshold N .
If L is recurrent, then

1. L is uniformly recurrent;

2. for every factor code S ⊆ L≥N , we have

# CRL(S) = #S + sL(N).

Proof. Let us prove the first claim and let w ∈ L≥N . By Lemma 3.29, we
have

# CRL(w) = 1 +
∑
w∈P

(#ERL (w)− 1)

where P = Pref∗(CRL(w)) \ Pref∗(w) and P is a suffix code. Moreover,
by definition, w is a prefix of all the elements of P so P ⊆ L≥N . By
Proposition 3.5, we deduce that

# CRL(w) ≤ 1 + sL(N).
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This is true for all w ∈ L≥N thus L is uniformly recurrent by Proposi-
tion 3.28.

We now turn to the second claim. Let S ⊆ L≥N be a factor code. Using
Lemma 3.29 and Proposition 3.5 once again, we have

# CRL(S) = #S +
∑
w∈P

(#ERL (S)− 1) ≤ #S + sL(N)

where P = Pref∗(CRL(S)) \ Pref∗(S). Observe that S is finite by Re-
mark 3.22 and the first claim. Consequently, CRL(S) is finite, which im-
plies that P is also finite by definition. We then deduce the equality from
Proposition 3.5.

The first claim of the previous result allows us to make no distinction
between recurrence and uniform recurrence in this work as we almost exclu-
sively work with eventually neutral (or dendric) languages.

We now turn to the number of (left) return words and deduce the fol-
lowing corollary using Remark 3.26 on the link between return words and
complete return words.

Corollary 3.32. Let L be a recurrent eventually neutral language of thresh-
old N and let S ⊆ L≥N be a factor code. Then

# RL(S) ≤ # CRL(S) = #S + sL(N).

In particular, if L is neutral then

# RL(S) ≤ # CRL(S) = #S + #A− 1

where A is the alphabet of L, i.e., A = L1.
If S = {w}, the inequalities above become equalities.

When L is dendric, not only are there as many return words for a word
as letters but the return words generate the free group over the alphabet.
This result is often called Return Theorem and was proved in [BDFD+15a].
For more information on free groups, the reader can consult [LS01].

Theorem 3.33 (Return Theorem). Let L be a recurrent dendric language
over A. For all non-empty w ∈ L, the set RL(w) is a basis of the free group
over A.

In the case of a return morphism for a set, we can deduce the following
result.
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0 1 2

2 1 0

Figure 3.1: Representation of an RIET for the orders
(

0<1<2
2≺1≺0

)
whose lan-

guage L is such that # RL({0, 2}) = 4.

Corollary 3.34. Let L be a recurrent dendric language over A and let
S ⊆ L be a factor code.

1. The set RL(S) generates the free group over A.

2. The set RL(S) is free if and only if # RL(S) = #A. In that case, it
is then a basis of the free group over A.

Proof. Let w ∈ S. Any return word for w is a concatenation of return words
for S. Therefore, any element of the free group over A generated by RL(w)
is generated by RL(S). By Theorem 3.33, we conclude that RL(S) generates
the free group over A.

Since a set is free if and only if it is a basis of the free subgroup it
generates, and a set generating the free group over A is a basis if and only
if it contains #A elements, the second item follows from the first one.

In particular, it is impossible to have strictly fewer return words than
the number of letters but it is entirely possible to have more return words.

Example 3.35. Let L be the language of the RIET for the orders
(

0<1<2
2≺1≺0

)
represented in Figure 3.1. The complete return words for {0, 2} are 02, 20,
212 and 2112. We then see that RL({0, 2}) = {0, 2, 21, 211}.

3.3.2 Stability under derivation

In [BDFD+15d], the authors prove that the family of recurrent dendric
languages is stable under derivation. This result is fundamental to obtain
particular S-adic representations of recurrent dendric languages, which in
turn can be used to obtain a characterization of recurrent dendric languages
as we will see in Chapter 5.

With the same techniques as first used by the authors of [BDFD+15d],
we prove here a more general result stating that the family of recurrent
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eventually dendric languages is stable under derivation. This result was
first stated in [GL22].

Let us first define the notion of derived language.

Definition 3.36. Let L ⊆ A∗ be a uniformly recurrent language and let
w ∈ L \ {ε}. A derived language of L with respect to w is a language

Df (L) = {u ∈ B∗ : f(u)w ∈ L}

for a morphism f : B∗ → A∗ where f|B is a bijection between B and RL(w).

While a derived language not only depends on L and w but also on
f , we will often talk about the derived language of L with respect to w
and denote it Dw(L). Indeed, modifying the morphism f does not impact
the structure of the language and only renames the letters (by applying a
bijective letter-to-letter morphism).

Example 3.37. Let us consider the Tribonacci language L (Example 1.25)
and derive it with respect to 010. We can quickly check that 01, 010 and 0102
are return words for 010, and these are the only ones by Corollary 3.32. We
consider the morphism f such that f(0) = 0102, f(1) = 010 and f(2) = 01.
For example, since 0102010010 is an element of L, we have 01 ∈ D010(L).
On the other hand, 0101010 6∈ L so 22 6∈ D010(L). We similarly see that
(D010(L))2 = {00, 01, 02, 10, 20} = L2. In fact, we can show that D010(L) =
L in this particular case since f is a power of the morphism generating L.

As we assume L uniformly recurrent, the derived language is indeed a
language in the sense that it is factorial and biextendable. Moreover, it is
also uniformly recurrent. Let us now look at the dendricity of this language.

Remark 3.38. Using the notations of the previous definition, for all u ∈ B∗
and a, b ∈ B, we have

aub ∈ Dw(L) ⇐⇒ f(a)f(u)f(b)w ∈ L
⇐⇒ f(a) · f(u)w · g(b) ∈ L

where g : B∗ → A∗ is such that wg(c) = f(c)w for all letters c. This is well
defined as f(c) is a (left) return word for w by definition. Observe that g(c)
is then a right return word for w, i.e., wg(c) ∈ CRL(w).

Using the previous remark, to understand the bi-extensions in the de-
rived language, we need to look at extensions in the original language but
these extensions might be of length greater than 1. This motivates the
following definition.
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EL,U,V (ε)

2

20

0

12

EL,U,V (0)

2

20

0

12

EL,U,V (1)

2

20

20

21

Figure 3.2: The generalized extension graphs of ε (on the left), 0 (in the
center) and 1 (on the right) in the Chacon language L, for U = {2, 20} and
V = {0, 12, 20, 20}.

Definition 3.39. Let L be a language, let U be a suffix code and V be a
prefix code. We denote

EL,U,V (w) = {(u, v) ∈ U × V : uwv ∈ L}.

We then define the generalized extension graph of w (with respect to U and
V ) as the bipartite graph EL,U,V (w) whose edges are given by EL,U,V (w).

When U = A = V , we recover the classical extension graphs.

Example 3.40. Let L be the Chacon language (Definition 1.12). We con-
sider the suffix code U = {2, 20} and the prefix code V = {0, 12, 20, 21}.
Observe that, by Example 1.13, V is L-maximal but U is not. The cor-
responding generalized extension graphs for ε, 0, 1 can be obtained using
Example 1.13 and are represented in Figure 3.2. Observe that since neither
22 nor 202 are in L, the word 2 cannot be extended on the left by elements
of U therefore its generalized extension graph is empty.

While these graphs are more general than the usual extension graphs,
they remain trees when the language is (eventually) dendric and U and V
are maximal.

Proposition 3.41 (Dolce–Perrin [DP21]). Let L be an eventually dendric
language of threshold N , let U be an L-maximal suffix code and V be an
L-maximal prefix code. Then for all w ∈ L≥N , the graph EL,U,V (w) is a
tree.

Coming back to Remark 3.38, we can now use the previous result to show
the stability of the family of eventually dendric languages under derivation.
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Theorem 3.42. Let L be a recurrent eventually dendric language of thresh-
old N and let w ∈ L\{ε}. The derived language Dw(L) is eventually dendric
of threshold at most max{0, N − |w|}.

Proof. Let us denote R′L(w) the set of right return words for w, i.e.,

R′L(w) = {u : wu ∈ CRL(w)}.

A similar proof as the one in Remark 3.27 shows that R′L(w) is a prefix code.
Using the notations of Remark 3.38, since f|B and g|B are bijections

between B and RL(w) (resp., R′L(w)), we have that, for all u ∈ Dw(L), the
extension graphs EDw(L)(u) and EL,RL(w),R′L(w)(f(u)w) are isomorphic.

However, to apply Proposition 3.41, we need L-maximal prefix and suffix
codes. This can be solved as follows. Let us denote

n = max{|u| : u ∈ RL(w)} = max{|u| : u ∈ R′L(w)}.

We consider

U = RL(w) ∪ {u ∈ Ln : Suff(u) ∩ RL(w) = ∅}.

By construction and by Remark 3.27, it is an L-maximal suffix code. More-
over, for each word u, if uw ∈ L, then u is suffix comparable with an element
of RL(w) as L is recurrent. This implies that such a word u cannot be in
U \ RL(w). We similarly define

V = R′L(w) ∪ {u ∈ Ln : Pref(u) ∩ R′L(w) = ∅}

which is an L-maximal prefix code such that, if wv ∈ L, then v 6∈ V \R′L(w).
In the end, we have

EL,U,V (x) = EL,RL(w),R′L(w)(x)

for all x ∈ wA∗∩A∗w. Observe that, for all u ∈ Dw(L), f(u)w ∈ wA∗∩A∗w
so EL,U,V (f(u)w) is isomorphic to EDw(L)(u). Therefore, using Proposi-
tion 3.41, the extension graph EDw(L)(u) is a tree if |f(u)w| ≥ N . As
f is non-erasing, this shows in particular that any u ∈ Dw(L) such that
|u| ≥ N − |w| is dendric.

Remark 3.43. In the previous proof, we show something slightly stronger:
every word u ∈ Dw(L) such that |f(u)w| ≥ N is dendric in Dw(L). This
implies that the bound given in the theorem is not optimal. In fact, if we
denote M = min{|v| : v ∈ RL(w)}, then we can directly deduce that Dw(L)

is in fact eventually dendric of threshold at most max{0, N−|w|M }.
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We easily recover in particular the original result about dendric lan-
guages.

Corollary 3.44 (Berthé et al. [BDFD+15d]). Let L be a recurrent dendric
language and let w ∈ L \ {ε}. The derived language Dw(L) is dendric.

This also shows that any recurrent eventually dendric language has a
derived language which is dendric since it suffices to derive with respect to
a long enough word.

We can also deduce some additional information on derived languages
using the number of return words.

Corollary 3.45. Let L be a recurrent eventually dendric language of thresh-
old N . If w ∈ L\{ε} is of length at least N , then the derived language Dw(L)
is over an alphabet of size sL(N) + 1.

More generally, for any w ∈ L\{ε}, we have sDw(L)(n) = sL(N) for any
large enough n.

Proof. By Corollary 3.32, if |w| ≥ N , then # RL(w) = sL(N) + 1, which
directly implies that Dw(L) is over an alphabet of size sL(N) + 1.

Assume now that we take any w ∈ L \ {ε}. Using the first part of the
claim, there exist infinitely many words for which the corresponding derived
language of L is on a size-k alphabet if and only if k = sL(N) + 1. Since
Dw(L) is eventually dendric of threshold M by Theorem 3.42, there exist in-
finitely many words for which the corresponding derived language of Dw(L)
is on an alphabet of size sDw(L)(M)+1. As any derived language of Dw(L) is
a derived language of L, we conclude that sDw(L)(n) = sDw(L)(M) = sL(N)
for all n ≥M .

3.4 Open questions

In Section 3.2, and in most of this work, we restrict ourselves to the case of
non-erasing morphisms. A natural first question is therefore the following
one.

Question 3.1. Let σ be a (potentially erasing) morphism, what are the
restrictions on pσ(L)(n) if L is (eventually) neutral?

The other questions presented here are centered around Section 3.3 and
return words. The Return Theorem (Theorem 3.33) is one of the most
important result for the study of dendric languages, and could gain even
more importance depending on the answer to the following open question.
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Question 3.2. Is the Return Theorem a characterization of recurrent den-
dric languages? In other words, if, for all w ∈ L \ {ε}, the set RL(w) is a
basis of the free group over L1, does it imply that L is dendric?

The proof of the Return Theorem can in fact be decomposed into two
steps. Indeed the authors first proved in [BDFD+15a] that, if L is a recurrent
connected language over A, then RL(w) generates the free group FA over
A for all w ∈ L \ {ε}. In this case, RL(w) is a basis of FA if and only
if #RL(w) = #A. Since a connected language has no weak element by
Proposition 2.10, this equality is true for all w ∈ L \ {ε} if and only if
pL(n) = (#A− 1)n+ 1 by [BPS08, Theorem 4.5]. Using Corollary 1.43 and
Proposition 2.10, this occurs exactly when L is dendric.

In other words, among the recurrent connected languages, the only ones
such that RL(w) is a basis of the free group over the alphabet for all w ∈
L \ {ε} are the dendric languages.

In [GO22], Goulet-Ouellet introduced the notion of suffix-connected lan-
guages and showed that, if L is a uniformly recurrent suffix-connected lan-
guage over A such that ε is connected, then RL(w) generates FA for all
w ∈ L\{ε}. Therefore, a negative anwser to Question 3.2 would follow from
a positive answer to the question below.

Question 3.3. Does there exist a uniformly recurrent suffix-connected lan-
guage L over A such that ε is connected and, for all w ∈ L\{ε}, # RL(w) =
#A but L is not dendric?

Clearly, sets of return words in high factor complexity languages are
likely to contain more words and therefore generate the free group. However,
they are less likely to be free. We will therefore focus on low-complexity
languages, and it is then natural to ask if suffix-connectedness captures all
such languages for which the sets of return words generate the free group
on the alphabet. More generally, we have the following question.

Question 3.4. What are the uniformly recurrent languages L over A with
factor complexity in O(n) such that, for all w ∈ L \ {ε}, the set RL(w)
generates FA?

We end with some questions on the stability of (eventual) dendricity
under derivation with respect to a set of words. Indeed, we saw in Theo-
rem 3.42 and Corollary 3.44 that these properties were stable when deriving
with respect to a word. There are two approaches to define the derived
language of L with respect to a set S of words.
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The first method is similar to the derivation with respect to a word:
we fix a morphism f : B∗ → A∗ such that f|B is a bijection between B and
RL(S) and consider the language

DS(L) = {u ∈ B∗ : ∃w ∈ S st. f(u)w ∈ L}.

Unfortunately, one can find non-dendric languages whose image under an el-
ementary morphism (see Definition 4.43) is dendric. Since these morphisms
define a bijection between the initial alphabet and the return words for a
set of letters in the image, dendricity is not stable under derivation with re-
spect to a set of words for this definition. Still, the preservation of eventual
dendricity is open.

Question 3.5. If L is a recurrent eventually dendric language and S ⊆ L
is a factor code, is DS(L) eventually dendric?

The second approach was chosen in [Dur13b] and consists in considering
complete return words instead. More precisely, we define

BS = {(u,w) ∈ RL(S)× S : uw ∈ CRL(S)},

fix a bijective map f : B → BS and consider the language

D′S(L) = {u ∈ B∗ : f(ui) = (vi, wi), v1v2 · · · vnwn ∈ L,
wi ∈ Pref(vi+1 · · · vnwn) ∀ i < n}.

Observe that, if S contains a unique element, these two approaches are
equivalent. However, in the case of a general factor code S, we ask the
following question.

Question 3.6. If L is a recurrent (eventually) dendric language and S ⊆ L
is a factor code, is D′S(L) (eventually) dendric?
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Preserving dendricity

This chapter is dedicated to the preservation of (eventual) dendricity when
applying a morphism. It revolves around the following open question:

Given a dendric language L and a morphism σ can we
determine whether σ(L) is dendric or not?

More generally, given a family F of languages and a language L in
this family, it is natural to wonder which morphisms satisfy σ(L) ∈ F .
The answer to this question is well known for the family of Sturmian lan-
guages [Lot02], and more generally for Arnoux-Rauzy sequences [JP02]. In-
deed, the morphisms who preserve these families for one language or, equiv-
alently in this case, for all languages over a given alphabet are the elements
of a finitely generated monoid. The precise statement of this result will be
recalled in Subsection 4.2.1.

On the other hand, there are families preserved under any (non-erasing)
morphism. Indeed, by Proposition 3.7 on the evolution of the factor com-
plexity when applying a non-erasing morphism, sub-linear complexity is
preserved, i.e. if L is such that pL(n) ∈ O(n), then pσ(L) ∈ O(n) as soon
as σ is non-erasing. It is also well known that if the image of a morphic
sequence is infinite, then it is also a morphic sequence [AS03].

In general, preservation of a property for one language is not equivalent
to preservation for all languages. We also mention some results on the second
type of preserving morphism for lesser-known families which are related to
the ones studied in this work. Partial answers have been given for example
for interval exchanges associated with the orders

(
1<2<3
3≺2≺1

)
[AP07] or for rich

sequences, i.e. sequences whose length-n prefix contains n + 1 palindroms
for all n [GJWZ09].

79
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In this chapter, we once again restrict ourselves to non-erasing mor-
phisms. Using results of Chapter 3, we start by studying in Section 4.1
the possible relations between the sizes of the alphabets A and B if L is a
neutral language over A and σ(L) is a neutral language over B. This gives
us some first easy conditions to know that a morphism will never preserve
dendricity.

In Section 4.2, we turn to the question of the morphisms preserving den-
dricity for all languages. We show that these morphisms are exactly the
elements of the monoid generated by Arnoux-Rauzy morphisms and permu-
tations. In particular, this shows that preserving dendricity is equivalent to
preserving Arnoux-Rauzy languages. The intermediary steps to reach this
result are in fact quite similar to the study of Sturmian morphisms done
in [Lot02, Section 2.3.1].

When trying to determine if a morphism preserves dendricity for a
specific dendric language, we essentially need to understand the extension
graphs in the image, based on the morphism and the initial language. Un-
derstanding the extensions in the image can however become particularly
tricky if there is no clear description of the possible coverings of a word. To
avoid this situation, we restrict ourselves to morphisms having some form
of recognizability property.

Defining some well-behaved morphisms is precisely the object of Sec-
tion 4.3 in which we introduce the so-called return morphisms. These mor-
phisms are related to return words and derivation and are therefore the
building blocks of the S-adic representations considered in Chapter 5. This
is in fact the main motivation behind the study of the link between dendric-
ity and return morphisms started in [GLL22].

We then show in Section 4.4 that, for return morphisms, we can precisely
describe the extensions of words in the image and therefore characterize
when the image of a dendric language is dendric.

We then turn to the question of preserving eventual dendricity for which
only partial answers are known. We present these results in Section 4.5.

4.1 Restrictions on the alphabets

One simple technique to right-away be able to tell that the image under
some morphism σ : A∗ → B∗ of a neutral language L over A is not neutral
is to look at the alphabet sizes. Indeed, we show in this section that, for
many pairs (#A,#B), no morphism σ : A∗ → B∗ will preserve neutrality,
even for one language.
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In neutral languages, the size of the alphabet is closely related to the
factor complexity. It is therefore quite natural that the results of this section
are mostly obtained as consequences of the study of coverings and factor
complexity done in Section 3.2.

The first observation we make follows from Proposition 3.15.

Proposition 4.1. Let σ : A∗ → B∗ be a non-erasing morphism with #B ≥
#A and let L be a neutral language over A. If σ(L) is a strong or neutral
language over B, then #B = #A and σ(L) is neutral. In particular, if σ(L)
is connected, then σ(L) is dendric.

Proof. By Corollary 1.43 on the link between neutrality and the first differ-
ence of complexity, we have sL(n) = #A− 1 for all n ≥ 0, and the sequence
(sσ(L)(n))n≥0 is non-decreasing and such that sσ(L)(0) = #B − 1. However,
by Proposition 3.15, there exists C such that, for all n ≥ 0,

pσ(L)(n) ≤ C + pL(n) = C + (#A− 1)n+ 1 ≤ C + (#B − 1)n+ 1

since #B ≥ #A. Using the observation above, the only possibility is to have
sσ(L)(n) = #B−1 for all n ≥ 0 and #A = #B. This then implies that σ(L)
is neutral by Corollary 1.43.

If σ(L) is connected, then it is strong or neutral, which in turn implies
that it is neutral as shown above. We conclude that it is dendric by Propo-
sition 2.10.

Corollary 4.2. Let σ : A∗ → B∗ be a non-erasing morphism. If there exists
a neutral language L over A such that σ(L) is a neutral language over B,
then #B ≤ #A.

We cannot however give a lower bound on #B. Indeed, if σ maps all the
letters of A to powers of some letter b, then σ(L) = {b}∗ for any language
L. The language {b}∗ is neutral as it does not contain any bispecial word.
This shows that, if σ : A∗ → {b}∗ is non-erasing, for all (neutral) language
L over A, σ(L) is a neutral language over {b}.

In fact, we have the following stronger result showing that, for all choices
of the alphabets A and B with #B ≤ #A, we can find a morphism preserv-
ing neutrality (and even dendricity) for infinitely many languages. This
shows that, without additional restriction on the morphism, the inequality
of Corollary 4.2 is optimal.

Proposition 4.3. Let A, B be two alphabets such that #A ≥ 2 and #B ≤
#A. There exists a morphism σ : A∗ → B∗ such that, for infinitely many
dendric languages L over A, σ(L) is a dendric language over B.
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1 3 2 0 4

4 0 1 3 2

σ

0 1 2

2 1 0

Figure 4.1: Example of the construction of Proposition 4.3 for
σ : {0, 1, 2, 3, 4}∗ → {0, 1, 2}∗ such that σ(0) = 1, σ(1) = σ(2) = σ(3) = 0,
σ(4) = 2.

Proof. Let σ : A∗ → B∗ be a letter-to-letter morphism such that there exists
b ∈ B for which #σ−1(b) = #A −#B + 1, and for all c 6= b, #σ−1(c) = 1.
Let T be a regular interval exchange transformation over A associated with
a pair of orders

(≤
�
)

such that the elements of σ−1(b) are the smallest (resp.,
largest) for ≤ (resp., �) and are in the same order for both ≤ and �.
Observe that any pair of such orders is irreducible so any set of rationally
independent lengths will give an RIET. In other words, there are infinitely
many choices for T since #A ≥ 2.

Let L be the language of T . Then σ(L) is the language of the interval
exchange transformation T ′ over B where the intervals corresponding to ele-
ments of σ−1(b) have been merged and the intervals are renamed according
to σ. We illustrate this construction on an example in Figure 4.1. This is
still an RIET, in fact, the dynamical systems corresponding to T and T ′ are
equal. This shows that both L and σ(L) are dendric, and they are over the
alphabets A and B respectively.

More precisely, the previous result shows that for any alphabets A and
B such that #B ≤ #A, we can find infinitely many languages of RIET over
A having as image the language of an RIET over B. On the other hand,
Justin and Pirillo showed that, if L and σ(L) are recurrent Arnoux-Rauzy
languages over A and B respectively and if #B ≥ 2, then #A = #B [JP02].
In particular, a recurrent Arnoux-Rauzy over an alphabet of size at least 3
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will not have any dendric image over a binary alphabet. In other words, the
sizes #B ≤ #A for which there exists a dendric image σ(L) over B depend
on the dendric language L over A.

As shown above, without additional restriction on the morphism σ : A∗ →
B∗, the only information we have on #A and #B if σ preserves neutrality
for a language is that #B ≤ #A. We show below that, if σ is injective, we
have more restrictions on A and B. Observe that an injective morphism is,
in particular, non-erasing and the image alphabet cannot be of size 1.

The study of injective morphisms allows to avoid the construction of
Proposition 4.3 and is inspired by the following result from [CN10]. While
the second part of the claim was not explicitly stated, it can easily be de-
duced from the authors’ proof.

Proposition 4.4. Let L ⊆ A∗ be a language and σ : A∗ → B∗ be an injective
morphism. For all n ≥ 0, we have

pL(n) ≤ ‖σ‖ · pσ(L)(‖σ‖n).

Moreover, if σ is ‖σ‖-uniform, i.e. |σ(a)| = ‖σ‖ for all a ∈ A, then

pL(n) ≤ pσ(L)(‖σ‖n).

In the case of a morphism which preserves neutrality for at least one
language, we obtain the following corollary.

Corollary 4.5. Let σ : A∗ → B∗ be an injective morphism. If there exists
a neutral language L over A such that σ(L) is a neutral language over B,
then

#A− 1

#B − 1
≤ ‖σ‖2.

Moreover, if σ is ‖σ‖-uniform, then

#A− 1

#B − 1
≤ ‖σ‖.

Proof. Assume that we have such a language L. Then for all n ≥ 0

(#A− 1)n+ 1 ≤ ‖σ‖ · ((#B − 1)‖σ‖n+ 1).

As it is true for all n, we must have

#A− 1 ≤ ‖σ‖2(#B − 1)

which ends the proof of the general case. If σ is uniform, then we similarly
conclude.



84 Chapter 4. Preserving dendricity

We will now show that this bound is reached for infinitely many examples
in the uniform case.

Proposition 4.6. For all k ∈ N \ {0} and for all alphabets A, B such that

#A− 1

#B − 1
= k

there exist an injective k-uniform morphism σ : A∗ → B∗ and infinitely many
dendric languages L over A such that σ(L) is a dendric language over B.

Proof. Let A and B be two such alphabets. Let L′ be a recurrent dendric
language over B. By Corollary 1.44, we have pL′(k) = (#B− 1)k+ 1 = #A.
Let σ : A∗ → B∗ be such that σ|A is a bijection between A and L′k. By
definition, σ is k-uniform. Let also

L = {w ∈ A∗ : σ(w) ∈ L′}.

In other words, L is a decoding of L′ with respect to the L′-maximal bifix
code L′k. Since the family of recurrent dendric languages is closed under
maximal bifix decoding [BDFD+15d], L is dendric and such that σ(L) = L′
is dendric.

This construction can be done starting from any recurrent dendric lan-
guage L′ over B (and there are infinitely many of such languages). On the
other hand, there are only finitely many possibilities for the morphism σ.
The conclusion follows by the pigeonhole principle.

The previous construction shows that we can build infinitely many exam-
ples when #A−1

#B−1 is an integer. We show below that it is however impossible

to find examples when #A−1
#B−1 ∈ (1, 2) and σ is injective.

Proposition 4.7. Let σ : A∗ → B∗ be a non-erasing morphism. If there
exists a neutral language L over A such that σ(L) is a neutral language over
B and σ is injective over L≥N for some N ≥ 0, then either #B = #A or
2(#B − 1) ≤ #A− 1.

Proof. Let us show that, if #B 6= #A, then all the long enough words in
σ(L) have at least two coverings. By contradiction, assume that #B 6=
#A and u ∈ (σ(L))≥‖σ‖N has a unique covering (w, k). Observe that, by
Corollary 4.2, since L and σ(L) are neutral, we have in fact #B < #A.

Let us look at the return words for u in σ(L). Since the only way of
seeing u in σ(L) is in the image of w after k letters, we have

Rσ(L)(u) = {σ(v)[k+1,|σ(v)|]σ(w1)[1,k] : v ∈ RL(w)}.
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In particular, #Rσ(L)(u) ≤ #RL(w). Since L and σ(L) are neutral, by
Corollary 3.32, we have #Rσ(L)(u) = #B < #A = #RL(w). Therefore,
there exists v, v′ ∈ RL(w) such that

σ(v)[k+1,|σ(v)|]σ(w1)[1,k] = σ(v′)[k+1,|σ(v′)|]σ(w1)[1,k],

or equivalently, σ(v) = σ(v′) since v and v′ begin with w1. As σ is non-
erasing, v and v′ cannot be prefix comparable. However, as return words v
and v′, are prefix comparable with w. This shows that w is a prefix of both
v and v′. As (w, k) is a covering of a word of length ‖σ‖N , we have |w| ≥ N .
By injectivity of σ on the long words, it is therefore impossible to find such
v and v′.

We have therefore shown that, if #B < #A, all the words of (σ(L))≥‖σ‖N
have at least two coverings. By Proposition 3.15, there exists C ∈ Z such
that

C + (#A− 1)n = cL(n) ≥ 2pσ(L)(n) = 2(#B − 1)n+ 2

for all n ≥ ‖σ‖N . The conclusion follows by looking at the linear coefficients.

Observe that this does not contradict the construction of Proposition 4.3.
Indeed, a morphism identifying letters coding consecutive intervals is not
eventually injective.

4.2 Dendric preserving morphisms

In Section 4.1, we gave examples of morphisms which preserve dendricity
for infinitely many dendric languages (Proposition 4.3 and Proposition 4.6).
However these morphisms do not preserve dendricity for all dendric lan-
guages, which is what we are interested in for this section.

Definition 4.8. A morphism σ : A∗ → B∗ is dendric preserving if, for any
dendric language L over A, the language σ(L) is dendric.

Warning. Throughout this section, we always implicitly assume that the
image alphabet B is minimal, i.e. for all b ∈ B, there exists a ∈ A such that
b is in σ(a). In other words, the image of a language over A is a language
over B.

When the initial alphabet or the image alphabet is unary, the descrip-
tion of dendric preserving morphisms becomes trivial as explained in the
following remark.
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Remark 4.9. Let us consider the dendric preserving morphisms σ : A∗ →
B∗. If B = {b}, then any such morphism is dendric preserving as the image
of any language is {b}∗ which is dendric. On the other hand, if A = {a},
then σ is dendric preserving if and only if σ({a}∗) is dendric. However,
the image σ({a}∗) is periodic (i.e. of bounded complexity). Therefore, σ is
dendric preserving if and only if B is also unary.

In what follows, we will therefore only consider morphisms where both
the initial and the image alphabets are of size at least 2. Moreover, as often
in this work, we restrict ourselves to the case of non-erasing morphisms.

Together with J. Leroy, we began the study of these morphisms in [GLL22]
where we characterized the dendric preserving morphisms inside a particular
sub-family of morphisms. Generalizing some of the ideas, a complete char-
acterization of non-erasing dendric preserving morphisms was then given
in [Ghe23]. We present the results leading to this characterization in this
section.

We first recall the well-known result for Sturmian and, more generally,
for Arnoux-Rauzy languages in Subsection 4.2.1. We also give the definition
and first properties of the famous Arnoux-Rauzy morphisms which, as we
will show later, generate the dendric preserving morphisms.

In Subsection 4.2.2, we prove the central result of this section which is
the complete description of the dendric preserving morphisms.

We then do a more careful analysis of the proofs and obtain in Sub-
section 4.2.3 as a direct consequence that the only morphisms preserving
languages of RIET are trivial (except on a binary alphabet).

4.2.1 Arnoux-Rauzy morphisms

On a two letters alphabet, the dendric languages are exactly the Sturmian
languages. In this case, the dendric preserving morphisms are called Stur-
mian morphisms and it is well known that they are exactly the morphisms
generated by

L0 :

{
0 7→ 0

1 7→ 01
L1 :

{
0 7→ 10

1 7→ 1
R0 :

{
0 7→ 0

1 7→ 10
R1 :

{
0 7→ 01

1 7→ 1
.

More precisely, we have the following well-known result (see [Lot02] for
example).

Proposition 4.10. Let σ : {0, 1}∗ → {0, 1}∗ be a morphism. The following
are equivalent:
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1. σ is a composition of L0, L1, R0, R1 and the morphism E such that
E(0) = 1 and E(1) = 0;

2. there exists a recurrent Sturmian1 language L over {0, 1} such that
σ(L) is Sturmian;

3. for all Sturmian languages L over {0, 1}, σ(L) is Sturmian.

The four morphisms L0, L1, R0, R1 can be generalized to larger alpha-
bets. They are then called Arnoux-Rauzy morphisms.

Definition 4.11. The Arnoux-Rauzy morphisms over A are defined by

L` :

{
` 7→ `

a 7→ `a ∀a ∈ A \ {`}
R` :

{
` 7→ `

a 7→ a` ∀a ∈ A \ {`}

for any given letter ` ∈ A.

Justin and Pirillo proved the following result [JP02].

Proposition 4.12. Let σ : A∗ → B∗ be a morphism with #B ≥ 2. The
following are equivalent:

1. σ = γ ◦ τ where γ : A∗ → B∗ is a bijective letter-to-letter morphism
and τ is a composition of morphisms L`, R`, ` ∈ A;

2. there exists a recurrent Arnoux-Rauzy language L over A such that
σ(L) is an Arnoux-Rauzy language over B;

3. for all Arnoux-Rauzy languages L over A, σ(L) is an Arnoux-Rauzy
language over B.

The Arnoux-Rauzy morphisms have a particular behavior regarding ex-
tensions. Indeed, they preserve the extensions of the bispecial words, as
described below.

Lemma 4.13. Let L be a language over A. For all ` ∈ A, we have

1. L`(L) = R`(L);

1Recall that, in this work, a Sturmian language is simply a language of complexity n+1
and is therefore not necessarily recurrent. This is also true for Arnoux-Rauzy languages.
However, the recurrent hypothesis is needed here to avoid morphisms of the form 0 7→ 0k,
1 7→ 1, k ≥ 2 which preserve the language L = {0n : n ≥ 0} ∪ {0n10m : n,m ≥ 0} for
example.
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2. EL`(L)(ε) = (A× {`}) ∪ ({`} × A);

3. if w ∈ L`(L) is bispecial, then w = ε or there exists u ∈ L such that
w = L`(u)` = `R`(u);

4. for all u ∈ L, we have EL`(L)(L`(u)`) = EL(u).

Proof. The first claim follows from the observation that L`(u)` = `R`(u)
for all u ∈ A∗. Indeed, we can easily verify it for the empty word and for
letters. The conclusion then follows by induction.

We now turn to the second claim. By definition of L`, ` can be followed
by any letter in L`(L) and any letter other than ` is always preceded by `.
Similarly, by definition of R`, ` can be preceded by any letter in R`(L) and
any letter other than ` is always followed by `. The complete description of
EL`(L)(ε) then follows from the first claim.

For the third claim, since ` is the only left (resp., right) special letter
by the second claim, any bispecial word is either empty or it begins and
ends with `. In the second case, due to the shape of the morphism L`, there
exists u ∈ L such that the only coverings of w for the morphism L` are of
the form (ub, 0), b ∈ ERL (u). In particular, w = L`(u)`.

Since the only coverings of L`(u)` are (ub, 0), b ∈ ERL (u), and since L`(a)
ends with a for all a and L`(b)` begins with `b for all b, we have

(a, b) ∈ EL(u) ⇐⇒ (a, b) ∈ EL`(L)(L`(u)`).

This proves the last claim.

This preservation of the extensions of words directly implies that the
Arnoux-Rauzy morphisms are dendric preserving. We have in fact the fol-
lowing stronger result.

Proposition 4.14. For any language L over A and any letter ` ∈ A, L is
dendric if and only if L`(L) = R`(L) is.

In particular, a morphism τ is dendric preserving if and only if L` ◦ τ
(resp., R` ◦ τ) is.

Proof. This is a direct consequence of Lemma 4.13 and of the fact that
ordinary words and non-bispecial words are always dendric.

It is clear that bijective letter-to-letter morphisms also satisfy this kind
of equivalences. We then have the following corollary.
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Corollary 4.15. Let σ : A∗ → B∗ be a morphism. If σ = γ◦τ with γ : A∗ →
B∗ a bijective letter-to-letter morphism and τ a composition of Arnoux-Rauzy
morphisms over A, then σ is dendric preserving.

Observe that, instead of considering Arnoux-Rauzy morphisms for any
letter ` ∈ A, we could have limited ourselves to Arnoux-Rauzy morphisms
for a fixed letter ` and allow composition with permutations of A to obtain
the other Arnoux-Rauzy morphisms. Indeed, for any permutation π of A,
if σπ denotes the morphism a 7→ π(a), we have Lπ(`) = σπL`σπ−1 and
Rπ(`) = σπR`σπ−1 . Since we are composing with a bijective letter-to-letter
morphism at the end, allowing permutations does not generate a larger
family of morphisms.

4.2.2 Characterization of dendric preserving morphisms

The purpose of this section is to prove the converse of Corollary 4.15, i.e.
the only dendric preserving morphisms are compositions of Arnoux-Rauzy
morphisms and bijective letter-to-letter morphisms.

Right away, we see that for the morphisms of Corollary 4.15, the initial
alphabet and the image alphabet have the same size. We can in fact make
the following stronger observation.

Remark 4.16. Let us look at the images of the letters under the morphism
R`. We see that, for all a ∈ A, R`(a) begins with a so the images all
start with a different letter. Moreover, the images all end with `, and if we
consider `σ(a) (which makes sense since σ(a) can only be preceded by the
image of another letter in σ(L)), then the letters preceding this common
suffix ` are all different.

Similarly, for L`, the letters following the common prefix pL` = ` in
σ(a)pL` , a ∈ A, are all different and the letters preceding the common suffix
sL` = ε in sL`σ(a), a ∈ A, are also all different. This property is stable
when applying a bijective letter-to-letter morphism and we can also show
that it is preserved when composing with an Arnoux-Rauzy morphism.

We will prove that this observation is in fact satisfied by any dendric
preserving morphism. We first need to properly define these common prefix
pσ and common suffix sσ. This is the object of the following definition.

Definition 4.17. Let σ : A∗ → B∗ be a non-erasing morphism. We denote
pσ (resp., sσ) the longest common prefix (resp., suffix) to all the σ(a)ω =
σ(a)σ(a) · · · (resp., ωσ(a) = · · ·σ(a)σ(a)), a ∈ A.
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Observe that, pσ and sσ can be empty or infinite. However, in the
case of an aperiodic morphism, i.e. if there exists a language whose image
has unbounded complexity, pσ and sσ are always finite as stated by the
following lemma. Note that it is in particular the case for dendric preserving
morphisms with non-unary image alphabet.

Lemma 4.18. Let σ : A∗ → B∗ be a non-erasing morphism. If pσ (resp., sσ)
is infinite, then there exists a word v ∈ B+ such that σ(L) = ∪n∈N Fac(vn)
for all languages L ⊆ A∗.

Proof. Assume that pσ is infinite, the proof for sσ is similar. Thus σ(a)ω =
pσ for all a ∈ A. By Fine and Wilf’s theorem, this implies that there exists
a word v such that σ(a) is a power of v for all a ∈ A. This proves that
σ(u) ∈ {v}∗ for all u ∈ A∗ so the image of any language only contains
factors of powers of v.

The choice of using σ(a)ω to define pσ makes the previous lemma almost
trivial but will not be the most useful in the following results. The next
lemma provides different equivalent ways of defining pσ as the longest word
satisfying some property. We also have a similar result for sσ using suffixes.

Lemma 4.19. Let σ : A∗ → B∗ be a non-erasing morphism. For any word
p ∈ B∗ and any letter a ∈ A, the following are equivalent:

1. p is a prefix of σ(a)ω;

2. p is a proper prefix of σ(a)p.

Moreover, the following are also equivalent:

1. p satisfies one of the (equivalent) properties above for every letter a ∈
A;

2. p is a prefix of σ(w)p for any w ∈ A∗;

3. there exists N ≥ 0 such that p is a prefix of σ(w) for any w ∈ A∗ such
that |w| ≥ N .

Proof. Let us prove the first equivalence. If p is a prefix of σ(a)ω, then it
is a prefix of σ(a) · σ(a)ω so it directly follows that it is a prefix of σ(a)p.
For the converse, if p is a proper prefix of σ(a)p, then p is prefix comparable
with σ(a). Thus σ(a)p is prefix comparable with σ(a)2, and in particular,
p is prefix comparable with σ(a)2. We can iterate to show that p is prefix
comparable with σ(a)k for any k ≥ 1. In particular, since the morphism σ



4.2. Dendric preserving morphisms 91

is non-erasing, there exists k such that k|σ(a)| ≥ |p| so p is a prefix of σ(a)k.
This shows that p is a prefix of σ(a)ω.

We now turn to the second set of equivalences. Assume that p satisfies
the previous properties for all the letters. We proceed by induction on the
length of w to show that p is a prefix of σ(w)p. If w = ε, it is trivial. Assume
that it is satisfied for w′ and that w = w′a, a ∈ A. By hypothesis, p is a
prefix of σ(a)p thus σ(w′)p is a prefix of σ(w)p. The conclusion follows by
induction hypothesis.

Since the morphism σ is non-erasing, for any word w such that |w| ≥ |p|,
we have |σ(w)| ≥ |p| thus, for any such word w, p being a prefix of σ(w)p
directly implies that p is a prefix of σ(w).

Finally, if p is a prefix of σ(w) for any long enough w, then p is a prefix
of σ(ak) for any large enough k thus p is a prefix of σ(a)ω for any letter
a ∈ A.

We now show that the observation made in Remark 4.16 is true for any
dendric preserving morphism.

Proposition 4.20. Let σ : A∗ → B∗ be a non-erasing dendric preserving
morphism. For each letter b ∈ B, there exists at most one letter a ∈ A such
that pσb is a prefix of σ(a)pσ and at most one letter a′ ∈ A such that bsσ is
a suffix of sσσ(a′).

Proof. Assume by contradiction that there exist two letters a, a′ ∈ A such
that pσb is a prefix of both σ(a)pσ and σ(a′)pσ. By maximality of pσ, there
also exists a letter a′′ ∈ A and a letter b′ 6= b such that pσb

′ is a prefix
of σ(a′′)pσ. Similarly, by maximality of sσ, there exist two distinct letters
d, d′ ∈ B and two letters c, c′ ∈ A such that dsσ is a suffix of sσσ(c) and d′sσ
is a suffix of sσσ(c′).

Up to exchanging c and c′, we can assume that c 6= a. We claim that
there exists a dendric language L over A such that ca, ca′′, c′a′′, c′a′ ∈ L2.
We can build it as follows. Let ≤ be an order over A whose three smallest
elements are a ≤ a′′ ≤ a′. Let c′′ be the largest letter for ≤.

• If c′′ 6∈ {c, c′}, then let � be an order over A whose three smallest ele-
ments are c′′ � c � c′. By construction, the pair (≤,�) is irreducible,
i.e. for all 1 ≤ k ≤ #A− 1, the k smallest elements for both orders do
not coincide. We then consider the interval exchange transformation
T associated with

(≤
�
)

and some rationally independent lengths such
that

λc′′ < λa < λc′′ + λc < λa + λa′′ < λc′′ + λc + λc′ .

This is possible since c′′ 6∈ {a, a′′}.
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• If c′′ ∈ {c, c′}, then let � be an order over A whose two smallest
elements are c � c′. By construction and since c 6= a, the pair (≤,�)
is irreducible. We then consider the interval exchange transformation
T associated with

(≤
�
)

and some rationally independent lengths such
that

λa < λc < λa + λa′′ < λc + λc′ .

This is possible as c 6= a and {c, c′} 6= {a, a′′} since c′′ ∈ {c, c′}\{a, a′′}.

By construction, T is in fact an RIET and its language L (which is
dendric) contains the words ca, ca′′, c′a′′ and c′a′. In σ(L), the extension
graph of sσpσ then contains the cycle (bR, dL, b′R, d′L, bR), which contradicts
the fact that σ is dendric preserving.

Observe that the previous result is direct when #A = 2 by definition
of pσ. Moreover, the same conclusion can be reached with much simpler
hypotheses by doing a careful analysis of the proof. We detail this in the
next subsection.

Using Corollary 4.2, we obtain as a direct corollary that, if a morphism
is dendric preserving then the initial alphabet and the image alphabet have
the same number of letters.

Corollary 4.21. Let σ : A∗ → B∗ be a non-erasing morphism. If σ is
dendric preserving, then #A = #B.

We now use Proposition 4.20 to show that the only dendric preserving
morphisms are generated by Arnoux-Rauzy morphisms. To do so, we pro-
ceed by induction on |sσpσ|. The base case is given by the following lemma.

Lemma 4.22. Let σ : A∗ → B∗ be a non-erasing dendric preserving mor-
phism. If sσpσ = ε, then σ is a bijective letter-to-letter morphism.

Proof. It suffices to prove that all the images of letters have length one as
the images of the letters will then all be different by Proposition 4.20. First,
observe that in the case of two letters alphabets, it directly follows from
the study of Sturmian morphisms, or more precisely, from [Lot02, Lemma
2.3.8].

For larger alphabets, assume by contradiction that there exist a ∈ A,
b, c ∈ B such that bc is a factor of σ(a). Let b′ denote the letter such that
σ(b′) ends with b and c′ be the letter such that σ(c′) begins with c. Such
letters exist by Proposition 4.20 and Corollary 4.21.

Since we are on an alphabet of size at least 3, we can find a dendric
language L over A such that b′c′ is not in its language. For example, we can



4.2. Dendric preserving morphisms 93

take an Arnoux-Rauzy language where the bispecial letter is not in {b′, c′}.
Observe that this would not be true on a binary alphabet if b′ 6= c′, hence
why we considered the case of binary alphabets separately.

Since L is dendric, the vertices b′L and c′R are connected by a unique
path in EL(ε). Moreover, this path is not reduced to the edge (b′, c′) as this
edge does not exist by definition of L. By Proposition 4.20, any simple path
in EL(ε) corresponds to a simple path of the same length in Eσ(L)(sσpσ) =
Eσ(L)(ε) by simply renaming the left vertices according to the last letter
of their image and the right vertices according to the first letter. This
implies that b and c are connected by a path in Eσ(L)(ε) and this path is
not reduced to the edge (b, c). However, bc is a factor of σ(a) thus (b, c) is
an edge of Eσ(L)(ε) and we have a cycle, a contradiction since σ is dendric
preserving.

The induction step will require the following lemma.

Lemma 4.23. Let σ : A∗ → B∗ be a non-erasing dendric preserving mor-
phism. If |sσpσ| = n > 0, then

1. (sσpσ)1 = (sσpσ)n =: ` and it is such that Eσ(L)(ε) = ({`}×B)∪ (B×
{`}) for any dendric language L over A;

2. there exists a dendric preserving morphism τ : A∗ → B∗ such that
σ ∈ {L` ◦ τ,R` ◦ τ}. Moreover, |sτpτ | < |sσpσ|.

Proof. Let us prove the first claim. Let L be a dendric language over A.
By Proposition 4.20, (sσpσ)n can be extended on the right by at least #A
different letters in σ(L) so, by Corollary 4.21, ERσ(L)((sσpσ)n) = B. Sim-

ilarly, we show that ELσ(L)((sσpσ)1) = B. This implies that Eσ(L)(ε) ⊇
({(sσpσ)n} × B)∪ (B × {(sσpσ)1}), but as ε is dendric in σ(L), this must be
an equality.

Let us now show that (sσpσ)1 = (sσpσ)n. Assume that it is not the case.
Given the extensions of ε that we have just found, (sσpσ)1 can then only be
followed by itself in σ(L). This contradicts the fact that (sσpσ)n appears in
every word of length ‖σ‖ in σ(L).

We now turn to the second claim. Assume first that pσ 6= ε and that
(pσ)1 = `. In other words, for each letter a ∈ A, σ(a) begins with `. By the
first claim, any letter other than ` can only be followed by ` in σ(a) thus we
can find u such that σ(a) = L`(u). We then define τ such that σ = L` ◦ τ .
Note that, by maximality of sσ and pσ, we have sσpσ = L`(sτpτ )`.

If pσ = ε or (pσ)1 6= `, then we first show that, for each letter a ∈ A,
σ(a) ends with `. Let a ∈ A. Using the first claim, for any dendric language
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L, the letter ` appears in every length-2 element of σ(L). Therefore, if we
can find a dendric language L over A such that ab ∈ L where σ(b) does
not begin with `, this will imply that σ(a) ends with `. Let us find such
a dendric language. If pσ = ε, then by Proposition 4.20, there is exactly
one letter a0 ∈ A such that σ(a0) begins with ` so any b 6= a0 will do. If
(pσ)1 6= `, then the image of the letters never begin with ` so any b ∈ A will
do. We can therefore simply take L such that a is right special to conclude
that σ(a) ends with `. Similarly to what we did in the first case, we can
now define τ such that σ = R` ◦ τ . Note that sσpσ = `R`(sτpτ ).

In both cases, τ is dendric preserving by Proposition 4.14, and |sτpτ | <
|sσpσ|.

We can now prove the main result of this section.

Theorem 4.24. A non-erasing morphism σ : A∗ → B∗, #B ≥ 2, is dendric
preserving if and only if it is, up to a bijective letter-to-letter morphism, a
composition of Arnoux-Rauzy morphisms over A.

Proof. The fact that such a morphism is dendric preserving was proved in
Corollary 4.15. Assume now that σ : A∗ → B∗ is dendric preserving. Using
Lemma 4.22 and Lemma 4.23, we can effectively obtain, by induction on
|sσpσ|, a composition τ of Arnoux-Rauzy morphisms over B and a bijective
letter-to-letter morphism γ such that σ = τ ◦ γ. We can always modify the
Arnoux-Rauzy morphisms so that the bijective letter-to-letter morphism is
applied after the Arnoux-Rauzy morphisms.

4.2.3 Stronger version and RIET

For most of the results of the previous subsection, the hypotheses can be
largely weakened by looking closely at the proofs. We detail these changes
below. In some sense, this stronger version shows that when looking at
dendric preserving morphisms, what really matters is the connectedness of
the empty word in the initial languages and the acyclicity of the small factors
in the image languages.

Theorem 4.25. Let A and B be such that #B ≤ #A and let σ : A∗ → B∗
be a non-erasing aperiodic morphism. If there exists a family F of languages
over A such that

(H1) for all distinct a, a′ ∈ A and all distinct b, b′, b′′ ∈ A, there exists
L ∈ F such that ab, ab′, a′b′, a′b′′ are in L, or a′b, a′b′, ab′, ab′′ are in
L;
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(H2) for all distinct a, a′, a′′ ∈ A and all distinct b, b′ ∈ A, there exists
L ∈ F such that ab, a′b, a′b′, a′′b′ are in L, or ab′, a′b′, a′b, a′′b are in
L;

(H3) for all a, b ∈ A (non necessarily distinct), there exists L ∈ F such
that ab is not in L but aL and bR are connected in EL(ε);

(H4) the factors of sσpσ are acyclic in σ(L) for all L ∈ F ,

then σ is, up to a bijective letter-to-letter morphism, a composition of Arnoux-
Rauzy morphisms over A.

Proof. As explained in Lemma 4.18, the finiteness of pσ and sσ is guaranteed
as soon as σ is aperiodic, i.e. there exists a language L such that σ(L) is
not periodic.

In Proposition 4.20, we build a particular language which is then used
to obtain a contradiction. Hypothesis (H1) on F guarantees the existence
of such a language. The contradiction then comes from the fact that sσpσ is
acyclic in σ(L), which is implied by Hypothesis (H4). To do the symmetric
proof where we look at the letters preceding sσ, we use Hypothesis (H2)
instead of Hypothesis (H1).

To deduce Corollary 4.21, we used Corollary 4.2 which we replace here
by the hypothesis #B ≤ #A.

For Lemma 4.22, we once again need to build a counter-example whose
existence is guaranteed here by Hypothesis (H3). The contradiction then
follows by acyclicity of ε = sσpσ which is implied by Hypothesis (H4).

Lemma 4.23 is slightly more tricky. For the first claim, we only need
the acyclicity of ε which is once again a consequence of Hypothesis (H4).
However, we need to slightly adapt the second claim. Indeed, we now want
to show that σ ∈ {L`◦τ,R`◦τ} where τ is aperiodic and satisfies Hypothesis
(H4) (which are the only hypotheses involving σ in this theorem). For the
existence of τ , we only need to know that, for all a, b ∈ A, there exists L ∈ F
such that b is not a right extension of a. This is a consequence of Hypothesis
(H3). Since σ is aperiodic, τ also is. Let us now show that τ satisfies
Hypothesis (H4). We prove it when σ = L` ◦ τ , the other case is symmetric.
We then have sσpσ = L`(sτpτ )`. Let L ∈ F and let u ∈ Fac(sτpτ ). By
Lemma 4.13, we have Eτ(L)(u) = Eσ(L)(L`(u)`) but as u ∈ Fac(sτpτ ), L`(u)`
is a factor of sσpσ so it is acyclic in σ(L) by Hypothesis (H4) on σ. This
shows that τ also satisfies Hypothesis (H4).

The conclusion then follows as in Theorem 4.24.
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Observe that Hypothesis (H3) is not needed to conclude that #A = #B
and that Hypotheses (H1) and (H2) are trivially satisfied if #A = 2.

Theorem 4.25 also shows that, to reach the same conclusion as in Theo-
rem 4.24, it suffices to preserve dendricity for a small well-chosen family of
dendric languages. For example, in the case of the languages of RIET, we
obtain the following result.

Corollary 4.26. Let A and B be such that #A ≥ max{3,#B}, and let
σ : A∗ → B∗ be a non-erasing aperiodic morphism. If, for all languges L of
RIET over A, the factors of sσpσ are acyclic in σ(L), then σ is, up to a bi-
jective letter-to-letter morphism, a composition of Arnoux-Rauzy morphisms
over A.

Proof. It suffices to show that the family of languages of RIET over A
satisfies Hypotheses (H1), (H2) and (H3) of Theorem 4.25. We have in
fact already shown in the proof of Proposition 4.20 that it satisfies (H1) and
(H2). For (H3), we will use the assumption that #A ≥ 3. We can then
find an irreducible pair of orders

(≤
�
)

such that a is the minimum for � and
b the maximum for ≤. The interval exchange transformation T associated
with this pair of orders and with rationally independent lengths such that
λa + λb ≤ 1 is an RIET such that ab is not in its language L (but aL and
bR are connected in EL(ε) since L is dendric).

Observe however that the family of Arnoux-Rauzy languages over A does
not satisfy Hypotheses (H1) and (H2). In fact, we will show in Section 4.4
that there are morphisms which are not generated by Arnoux-Rauzy mor-
phisms but such that the image of any Arnoux-Rauzy language over A is
dendric.

We end this subsection (and section) with a note on morphisms preserv-
ing RIET, i.e. the morphisms such that the image of a language of an RIET
over A is the language of an RIET. For conciseness, we call such morphisms
RIET preserving . As a consequence of the study done in this section, we
can describe RIET preserving morphisms. We first need the following direct
lemma.

Lemma 4.27. Let L be a language. If L`(L) (resp., R`(L)) is the language
of an RIET associated with the orders

(≤
�
)
, then L is the language of an

RIET for the same orders.

Proof. By Lemma 4.13, if L`(L) satisfies the conditions of the combinatorial
characterization of languages of RIET (Theorem 1.37), then so does L for
the same orders.
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Theorem 4.28. A non-erasing morphism σ : A∗ → B∗, #B ≥ 2, is RIET
preserving if and only if we are in one of the following cases:

1. #A = 2 and σ is a Sturmian morphism;

2. #A ≥ 3 and σ is a bijective letter-to-letter morphism.

Proof. If #A = 2, then σ satisfies all hypotheses of Theorem 4.25 except
(H3) so we can still conclude that #B = 2. In other words, σ preserves in
fact the recurrent Sturmian languages so it is a Sturmian morphism.

When #A ≥ 3, by Corollary 4.26, it only remains to prove that the com-
positions of Arnoux-Rauzy morphisms are not RIET preserving. Moreover,
using Lemma 4.27, it suffices to prove that the Arnoux-Rauzy morphisms
themselves are not RIET preserving.

Let ` ∈ A and let L be the language of an RIET over A associated
with the orders

(≤
�
)

such that ` is neither the maximum nor the minimum
for ≤. This is possible as we are on an alphabet of size at least 3. By
Proposition 1.40, the pair of orders

(≤
�
)

is then the only one (up to reversal)
satisfying the hypotheses of Theorem 1.37. By Lemma 4.13, these are also
the only orders satisfying the hypotheses of Theorem 1.37 for all non-empty
w ∈ L`(L) = R`(L). However, the empty word is not planar for these
orders. Indeed, EL`(L)(ε) = ({`} × A) ∪ (A × {`}) by Lemma 4.13 and `
is neither the minimum nor the maximum for ≤. This shows that no pair
of orders satisfies Theorem 1.37 for L`(L) = R`(L), therefore it is not the
language of an RIET. This ends the proof that neither L` nor R` are RIET
preserving.

There are so few RIET preserving morphisms due to the fact that we
want the morphism to preserve languages of RIET starting from RIET as-
sociated with any pair of irreducible orders. If we fix the orders, we obtain
vastly different results. Indeed, in [AP07], the authors proved that, for the
family of RIET associated with the orders

(
1<2<3
3≺2≺1

)
, the monoid of preserving

morphisms is infinitely generated.

4.3 Return morphisms

Our original motivation with J. Leroy and M. Lejeune to look at preser-
vation of dendricity when applying a morphism is the search of an S-adic
characterization (see Chapter 5). In this context, we were working with very
specific morphisms which essentially coded the return words for some given
word w.
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In this section, we introduce these so-called return morphisms. We first
define them in Subsection 4.3.1 with respect to some word. As done for
return words, we can in fact study return morphisms with respect to a
factor code S. This is what we do in Subsection 4.3.2. If the image of
a language under a return morphism for a word is dendric, then we can
deduce properties of the morphism based on properties of return words in
dendric languages. In particular, the return morphism is tame in the sense
that it is generated by some extremely simple morphisms. We say a word
on tame morphisms and their link with return morphism for a word in
Subsection 4.3.3.

4.3.1 Return morphism for a word

We define here return morphisms for a word w as studied in [GLL22] (in the
case where w is a letter) then in [GL22] (in the general case).

Definition 4.29. A return morphism for a word w ∈ B+ is a morphism
σ : A∗ → B∗ injective on the letters and such that, for all a ∈ A, σ(a)w
contains exactly two occurrences of w: one as a proper prefix and one as a
proper suffix.

As in Section 3.3 on return words, we chose to consider left return mor-
phisms but we could have just as well defined right return morphisms by
considering the occurrences of w in wσ(a). All the properties can easily be
adapted.

Observe that a return morphism σ is non-erasing. Moreover, the set
σ(A) is a suffix code. Indeed, if σ(a) was a proper suffix of σ(b), then
σ(b)w would contain three occurrences of w. This implies in particular that
injectivity on the letters is equivalent to injectivity on the words.

Example 4.30. The morphism σ such that σ(0) = 01, σ(1) = 010 and
σ(2) = 0102 is a return morphism for 01. Note that it is also a return
morphism for 010.

Before showing that return morphisms are indeed related to return words,
we need the following lemma, which will also imply that return morphisms
are well-behaved in terms of coverings in Section 4.4.

Lemma 4.31. Let σ : A∗ → B∗ be a return morphism for w ∈ B+. For any
language L ⊆ A∗ and for all u = u1 · · ·un ∈ L, n ≥ 0, we have the following
properties:
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1. w is a prefix of σ(u)w, and there exists N ≥ 0 such that, if n ≥ N , w
is a prefix of σ(u);

2. if σ(u) contains an occurrence of w, then there exists i such that this
occurrence is a prefix of σ(ui · · ·un);

3. if w is a prefix of σ(ui · · ·un), then for all 1 ≤ j ≤ i, w is a prefix of
σ(uj · · ·un).

Proof. We prove the first claim by induction on |u|. If u = ε, this is trivially
true and if u ∈ A, it follows by definition of a return morphism. Assume
now that u = va, a ∈ A, and that w is a prefix of σ(v)w. As w is a prefix of
σ(a)w, this shows that w is a prefix of σ(v)σ(a)w = σ(u)w. The existence
of N follows from the fact that σ is non-erasing.

For the second claim, assume that an occurrence of w starts in σ(ui).
By the first claim, w is a prefix of σ(ui+1 · · ·un)w and, up to extending u on
the right, we can even assume that w is a prefix of σ(ui+1 · · ·un). Therefore,
σ(ui)w is a prefix of σ(ui · · ·un) and it has an occurrence of w starting in
σ(ui). By definition of σ, this implies that this occurrence is a prefix.

We directly deduce the third claim by decreasing induction on j ≤ i.
Indeed, σ(uj)w is then a prefix of σ(uj · · ·un) so it has w as a prefix by the
first claim.

We can now motivate the “return morphism” terminology.

Proposition 4.32. Let σ : A∗ → B∗ be a morphism and w ∈ B+. If σ is
injective on the letters, then the following are equivalent:

1. σ is a return morphism for w;

2. for any language L over A, σ(A) = Rσ(L)(w);

3. there exists a language L′ ⊆ B∗ such that σ(A) = RL′(w).

Proof. Assume that σ is a return morphism for w. By the first claim of
Lemma 4.31, σ(a)w ∈ σ(L) for any language L over A. Therefore, by
definition of a return morphism, the elements of σ(A) are return words for w
in σ(L). Using the second and third claims of Lemma 4.31, two consecutive
occurrences of w in σ(u) occur as prefixes of σ(ui · · ·un) and σ(ui+1 · · ·un)
for some i. This shows that the only return words for w are the elements of
σ(A).

The implication from the second to the third assertion is direct as it
suffices to take L′ = σ(L) for any language L over A.
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Assume now that σ(A) = RL(w) for some language L ⊆ B∗. Then σ(a)
is a return word for w in L so σ(a)w contains exactly two occurrences of w,
one as a prefix and one as a suffix. Since σ is injective on the letters, this
implies that σ is a return morphism.

As we saw in the Example 4.30, the word w for which σ is a return
morphism is not always unique. However, if σ is a return morphism for
several words, these words are related as described in the following result.

Proposition 4.33. Let σ : A∗ → B∗ be a return morphism for two distinct
words w and w′. If |w| ≤ |w′|, then

1. w is a proper prefix of w′;

2. σ is a return morphism for all prefixes of w′ of length at least |w|;

3. for any language L ⊆ A∗, w is not right special in σ(L);

4. if w′ is of maximal length, it is right special in σ(L) for all language
L ⊆ A∗, and w′ = pσ.

Proof. Let us prove the four claims separately.

1. Using the first claim of Lemma 4.31 for the language A∗, there exists
u ∈ A∗ such that w and w′ are prefixes of σ(u). Therefore, w and w′

are prefix comparable. Since |w| ≤ |w′| and w 6= w′, we conclude that
w is a proper prefix of w′.

2. Let wu be a prefix of w′. Since σ is a return morphism for w′, wu is
a prefix and a suffix of σ(a)wu for all a ∈ A. Moreover, since w only
has two occurrences in σ(a)w, wu only has two occurrences in σ(a)wu
thus σ is a return morphism for wu.

3. Since σ is a return morphism for w, w only occurs in σ(L) as a proper
prefix of some σ(a)w, a ∈ A, by Lemma 4.31. However, for all a ∈ A,
w′ is a prefix of σ(a)w′ thus ww′|w|+1 is a prefix of σ(a)w. The only

right extension of w is then w′|w|+1.

4. Assume that w′ only has one right extension b. Thus w′b is a prefix
(and a suffix) of each σ(a)w′b, a ∈ A. As w′ only has two occurrences in
σ(a)w′, the word w′b only has two occurrences in σ(a)w′b, which proves
that σ is a return morphism for w′b, and contradicts the maximality of
w′. This shows that w′ is right special. By Lemma 4.31, w′ is then the
longest word satisfying the conditions of Lemma 4.19 so it corresponds
to pσ.
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4.3.2 Return morphism for a set of words

As we saw in Section 3.3, return words can also be defined with respect to
a factor code. We similarly generalize the notion of return morphism for a
word to return morphism for a set of words.

Definition 4.34. Let S ⊆ B∗ be a finite factor code. A non-erasing mor-
phism σ : A∗ → B∗ is a return morphism for S if it is injective over the
letters and, for all a ∈ A and w ∈ S, the word σ(a)w has a proper prefix
and a proper suffix in S but contains no other occurrence of words of S.

Factor codes are always implicitly assumed to be finite in this section
or more generally, when we talk about a return morphism. Recall that it
is always the case if the factor code is included in a uniformly recurrent
language (Remark 3.22).

Of course, any return morphism for a word w is a return morphism for
the set {w}. There are also return morphisms for sets of larger size, as
shown in the example below.

Example 4.35. The morphism σ such that σ(0) = 0, σ(1) = 0102 and
σ(2) = 012 is a return morphism for {00, 01}. Indeed, we can check that,
000, 001, 010200, 010201, 01200 and 01201 all have exactly two occurrences
of words in {00, 01}, one as a prefix and one as a suffix. Observe however
that it is not a return morphism for a word.

Return morphisms for a set share some properties with their “for a word”
counterparts. For example, they are also injective on the words since the
images of the letters form a suffix code. This is however not an equivalence
as shown below.

Example 4.36. Let σ be the morphism such that σ(0) = 0 and σ(1) = 101
and assume that σ is a return morphism for S. Then S clearly contains a
word w beginning with 0 but not 0 itself since it is a non-prefix factor of σ(1).
Since σ(1)w = 101w has a prefix in S and no internal occurrence of a word
of S, this shows that S contains the word 101w(1) for some proper prefix w(1)

of w. Similarly, σ(0)101w(1) = 0101w(1) has a prefix in S so, if |w(1)| ≥ 2,
then 0 is a proper prefix of w(1) and S contains 0101w(2) for some proper
prefix w(2) of w(1). We then consider σ(1)0101w(2) = 1010101w(2), showing
that S contains 1010101w(3) if |w(2)| ≥ 2. We can iterate the process until
|w(i)| ≤ 1, i.e., w(i) ∈ {ε, 0}.
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If i is even, then S contains (01)iw(i) so we consider σ(1)(01)iw(i) which
is equal to 1(01)i+1w(i). We see that (01)iw(i) is an internal factor, which
contradicts the fact that σ is a return morphism for S.

If i is odd, then S contains (10)i1w(i) so we consider σ(0)(10)i1w(i) which
is equal to (01)i+1w(i). This shows that S contains (01)iv for v ∈ {ε, 0, 01}
(depending on |w(i)|). The conclusion follows as in the previous case by
showing that (01)iv is an internal factor of σ(1)(01)iv. Therefore, it is
impossible to find such S.

Lemma 4.31 giving properties of return morphisms for a word can also
be adapted as follows.

Lemma 4.37. Let σ : A∗ → B∗ be a return morphism for a factor code
S ⊆ B∗. For any language L ⊆ A∗ and all u = u1 · · ·un ∈ L, we have the
following properties:

1. for all w ∈ S, σ(u)w has a prefix in S, and there exists N ≥ 0 such
that, if n ≥ N , σ(u) has a prefix in S;

2. if σ(u) contains an occurrence of a word in S, then there exists i such
that this occurrence is a prefix of σ(ui · · ·un);

3. if σ(ui · · ·un) has a prefix in S, then for all 1 ≤ j ≤ i, σ(uj · · ·un) has
a prefix in S.

Proof. The proof is very similar to the one of Lemma 4.31, only the first
claim slightly differs. We give below the main ideas for this claim.

We proceed by induction on |u|. Indeed, the first claim is satisfied for ε
and for the letters. For u = va, we have σ(u)w = σ(v)σ(a)w so it has the
prefix σ(v)w′ for some w′ ∈ S therefore, by induction hypothesis, it has a
prefix in S. The existence of N follows from the fact that σ is non-erasing
and S is finite.

Using the previous lemma, we can sometimes remove some elements of
S and keep a return morphism for S.

Remark 4.38. If σ is a return morphism for S, then it is a return morphism
for S′ = S ∩ σ(A∗). Indeed, S′ is clearly a factor code and, for all a ∈ A,
w ∈ S ∩ σ(A∗), σ(a)w contains exactly two occurrences of elements of S,
one as a prefix and one as a suffix. The previous lemma shows that, since
w ∈ σ(A∗), there exists u ∈ A∗ such that w is a prefix of σ(u). Therefore,
σ(a)w ∈ Pref(σ(au)) ⊆ σ(A∗). This shows that the factors of σ(a)w in S are
in fact in S′. Observe that we also have S ∩ σ(A∗) = S ∩ ∪u∈A∗ Pref(σ(u)).
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Using Lemma 4.37, we deduce the following result which motivates the
terminology, as in the case of a return morphism for a word.

Proposition 4.39. Let σ : A∗ → B∗ be a morphism and let S ⊆ σ(A∗) be
a factor code. If σ is injective on the letters and σ(A) is a suffix code, then
the following are equivalent:

1. σ is a return morphism for S;

2. for any language L over A, σ(A) = Rσ(L)(S ∩ σ(L));

3. σ(A) = Rσ(A∗)(S).

Proof. Once again, the proof is very similar to the proof of Proposition 4.32.
The only modification needed is to show that if σ(A) = Rσ(A∗)(S) then σ is
return morphism for S. Let a ∈ A and w ∈ S. Since S ⊆ σ(A∗), there exists
u ∈ A∗ such that w ∈ Pref(σ(u)) by Lemma 4.37. Therefore σ(a)w ∈ σ(A∗)
and, as σ(A∗) is recurrent, σ(a)w is suffix comparable with a complete return
word for S in σ(A∗). Since σ(A) is a suffix code, this shows that σ(a)w is
a complete return word for S, i.e., it contains exactly two occurrences of
elements of S, one as a prefix and one as a suffix. As it is true for any a ∈ A
and w ∈ S, we conclude that σ is a return morphism for S.

Observe the difference with Proposition 4.32 in the third assertion. In-
deed, the existence of a language L′ ⊆ B∗ such that σ(A) = RL′(S) is not
sufficient anymore for σ to be a return morphism for S. This can be seen
in the proof as we would need that σ(a)w ∈ L′ for all a ∈ A, w ∈ S. This
is confirmed by the following example.

Example 4.40. Let σ be the morphism such that σ(0) = 0, σ(1) = 010
and σ(2) = 2. As σ(A) is not a suffix code, σ is not a return morphism
for a factor set. However, let L be a language over {0, 1, 2} such that L2 =
{00, 01, 12, 20, 22}. Then σ(A) = Rσ(L)({00, 01, 2}). Indeed, it is clear that
01 (resp., 2) occurs only (and exactly) as the prefix of σ(1) (resp., σ(2)) in
σ(L). Moreover, by definition of L, 00 occurs only and exactly as the prefix
of σ(0a), a ∈ ERL (0). This shows that the image of any length-2 element of
L has a prefix in S = {00, 01, 2} and the elements of S occur only as prefixes
of the image of some word. We conclude that σ(A) = Rσ(L)({00, 01, 2}).

Just as for return morphisms for a word, the factor code for which σ is a
return morphism is not always unique. While the link between such factor
codes is not as simple as in Proposition 4.33, we still have the following
result.
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Proposition 4.41. Let σ : A∗ → B∗ be a return morphism for two factor
codes S, S′ ⊆ σ(A∗). Then,

1. for all w ∈ S, either it has a (unique) prefix in S′, or it is a proper
prefix of one or more elements of S′ (and not both);

2. σ is a return morphism for

S′′ = (S ∩ Pref(S′)) ∪ (Pref(S) ∩ S′);

3. #S′′ ≤ min{#S,#S′} and

∑
w∈S′′

|w| ≤ min

{∑
w∈S
|w|,

∑
w∈S′

|w|

}
.

Proof. Let w ∈ S. By Lemma 4.37 for S, there exists u ∈ A∗ such that w is
a prefix of σ(u). By Lemma 4.37 for S′ now, σ(u) is prefix comparable with
w′ ∈ S′. This shows that w is prefix comparable with w′. The first claim
then follows since S′ is a factor code so, in particular, a prefix code.

Let

S′′ = (S ∩ Pref(S′)) ∪ (Pref(S) ∩ S′).

We first show that it is a factor code. It is clear that S ∩ Pref(S′) and
Pref(S)∩S′ are both factor codes. Let w ∈ S∩Pref(S′) and w′ ∈ Pref(S)∩S′.
As w ∈ S and w′ ∈ Pref(S), w cannot be a proper factor of w′ since S is a
factor code. Similarly, w′ cannot be a proper factor of w. This shows that
S′′ is a factor code.

Let us now prove that σ is a return morphism for S′′. In other words,
we need to show that, for all a ∈ A and all w ∈ S′′, σ(a)w contains exactly
two words in S′′, one as a prefix and one as a suffix. Assume that w ∈ S ∩
Pref(S′), the other case is symmetric. Let w′ ∈ S′ be such that w ∈ Pref(w′).
Since σ(a)w is a prefix of σ(a)w′ and σ is a return morphism for S and S′,
σ(a)w has no internal factor in S nor in S′ so it has no internal factor in
S′′. Let us show that it has a prefix in S′′. As σ is a return morphism for
S, σ(a)w has a prefix w′′ in S. If w′′ 6∈ S′′, then w′′ has a prefix in S′ by the
first claim so σ(a)w has a prefix in Pref(S) ∩ S′ ⊆ S′′. This ends the proof
that σ is a return morphism for S′′.

Observe that S′′ ⊆ Pref(S) and, as S′′ is a factor code (and in particular
a prefix code), it contains at most one prefix of each w ∈ S. This shows that
#S′′ ≤ #S and

∑
w∈S′′ |w| ≤

∑
w∈S |w|. The proof for S′ is similar.
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This proposition allows to single out a particular factor code associated
with a return morphism. Indeed, if we define the partial order � on subsets
of B∗ as follows:

S � S′ ⇐⇒ S ⊆ Pref(S′),

then the previous result tells us that the set

{S ⊆ B∗ : S is a factor code and σ is a return morphism for S}

admits a global minimum S for this order. This factor code S also minimizes
#S and

∑
w∈S |w|. In particular, #S = 1 if and only if σ is a return

morphism for a word.

4.3.3 Tame morphisms

As seen before, a return morphism is such that the images of the letters
correspond to return words in the image. Using results on the number of
return words obtained in Chapter 3 (Corollary 3.32), we obtain restrictions
on the return morphisms whose images can be dendric.

Corollary 4.42. Let σ : A∗ → B∗ be a return morphism for S. If there
exists a language L over A such that σ(L) is a recurrent neutral language,
then

#A ≤ #S + #B − 1.

In particular, if S = {w}, then #A = #B.

If we restrict ourselves to return morphism for a word, then we can
obtain even more conditions. Indeed, as recalled in Chapter 3, if σ is a
return morphism for a word and there exists L such that σ(L) is recurrent
dendric, then σ(A) forms a basis of the free group over B. It is furthermore
a tame basis as proved in [BDFD+15d].

Definition 4.43. Let a, b ∈ A distinct. We define the two following mor-
phisms

La,b :

{
a 7→ ba

c 7→ c ∀c ∈ A \ {a}
Ra,b :

{
a 7→ ab

c 7→ c ∀c ∈ A \ {a}
.

The elementary (auto)morphism on A are the permutations and the mor-
phisms defined above for all distinct a, b ∈ A. A morphism is tame if it is a
composition of elementary morphisms, and a base S of the free group over
A is tame if there exists a tame morphism such that S = σ(A).
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The definition of the morphisms above should not be confused with the
definition of Arnoux-Rauzy morphisms. They are however related as follows:

L` = La1,` ◦ La2,` · · · ◦ Lak,`, R` = Ra1,` ◦Ra2,` · · · ◦Rak,`

if A = {`, a1, a2, . . . , ak}.
As announced, we have the following result.

Proposition 4.44. Let σ : A∗ → B∗ be a return morphism for a word. If
there exists a language L such that σ(L) is a recurrent dendric language,
then σ is tame.

Observe that La,b is a return morphism for the set A \ {a}, and Ra,b
can be seen as a right return morphism for the same set if we adapt all the
definitions. This suggests that elementary morphisms are somehow linked
to return morphisms for sets of letters. Indeed, we have the following result.

Proposition 4.45. Let σ : A∗ → B∗ be a morphism where B is minimal
(i.e., all the letters of B appear in at least one image). If σ = γ ◦ τ where γ
is an elementary morphism, then σ is a return morphism for C ⊆ B if and
only if we are in one of the following cases:

1. γ is a permutation on B and τ is a return morphism for γ−1(C);

2. γ = La,b for a ∈ B \ C, b ∈ C and τ is a return morphism for C ∪ {a};

3. γ = La,b for distinct a, b ∈ B \ C and τ is a return morphism for C;

4. γ = Ra,b for distinct a ∈ B, b ∈ B \ C and τ is a return morphism for
C.

Proof. It is clear that τ is injective on the letters if and only if σ is. Moreover,
as we are looking at sets of letters, σ is a return morphism for C if and only
if σ(a) ∈ C(B \ C)∗ for all a ∈ A (and the same for τ with the corresponding
set of letters). Let us consider the three cases for γ: permutation, La,b and
Ra,b and characterize, for each case, when σ(a) ∈ C(B \ C)∗ for all a ∈ A.

1. Assume that γ is a permutation over B. It is clear that, for all a ∈ A,
σ(a) ∈ C(B \ C)∗ if and only if τ(a) ∈ γ−1(C)(B \ γ−1(C))∗ so the
conclusion is direct.

2. Assume that γ = La,b for distinct a, b ∈ B. Observe that, if σ is a
return morphism for C then, since the images under σ do not begin
with a and B is minimal, a appears as a non-prefix factor in some
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image so a 6∈ C. In what follows we therefore restrict ourselves to the
case where a 6∈ C.
If b 6∈ C then, for all c ∈ A, we directly have σ(c) ∈ C(B \ C)∗ if
and only if τ(c) ∈ C(B \ C)∗. We now consider the case where b ∈ C.
Observe that σ(c) contains a non-prefix occurrence of b if and only
if τ(c) contains a non-prefix occurrence of a or b. Therefore, for all
c ∈ A, σ(c) ∈ C(B\C)∗ if and only if τ(c) ∈ C′(B\C′)∗ for C′ = C∪{a}.

3. Assume now that γ = Ra,b for distinct a, b ∈ B. If σ is a return
morphism for C, then b 6∈ C since B is minimal. Assuming that b 6∈ C,
we directly have σ(c) ∈ C(B \ C)∗ if and only if τ(c) ∈ C(B \ C)∗.

The previous result can for example be used to define an automaton
which will accept the elementary decompositions of tame return morphisms
for some given set of letters.

Corollary 4.46. Let A be an alphabet, B ⊆ A be non-empty and let A be
the automaton defined as follows:

• the states are the non-empty subsets of A;

• the initial state is A;

• the final state is B;

• for any state C, the transitions leaving it are

– (C, γ, γ(C)) for any permutation γ of A;

– (C, La,b, C \ {a}) for any distinct a, b ∈ C;

– (C, La,b, C) for any distinct a, b ∈ A \ C;

– (C, Ra,b, C) for any distinct a ∈ A, b ∈ A \ C.

Then A accepts exactly the elementary decompositions of the tame return
morphisms for B, i.e., A accepts

{σ1 · · ·σk : σi elementary ∀ i and σk ◦ . . . ◦ σ1 return morphism for B}.
Observe that the number of elements in a state cannot increase when

following a transition. In particular, this shows that we can remove all the
states C such that #C < #B without changing the language.

If we do not worry about permutations and only allow them as the last
morphism, then we can get an even simpler automaton where the non-final
states are of the form {a1, . . . , ai}, 1 ≤ i ≤ n, if A = {a1, . . . , an}. This
automaton is represented in Figure 4.2 for A = {0, 1, 2} and for B = {1}.
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{0, 1, 2} {0, 1} {0}

{1}

L2,0, L2,1

R0,2, R1,2

L1,0
L1,2, L2,1,
R0,1, R2,1,
R0,2, R1,2

π1··

Figure 4.2: Automaton accepting the sequences (σ1, . . . , σn, π) of elementary
morphisms on {0, 1, 2} where only π is a permutation and such that π ◦σn ◦
. . . ◦ σ1 is a return morphism for {1}, if πi0i1i2 is the morphism such that
πi0i1i2(j) = ij and the dots are place-holders that can represent any value
in {0, 1, 2} giving a permutation.

4.4 Dendric images under return morphisms

Due to the properties of return morphisms proved in the previous section,
we can easily describe the extensions of any word in the image of a language
under a return morphism. This allows us to characterize when the image of
a dendric language under a return morphism is also dendric.

This characterization was first stated for return morphisms for a letter
in [GLL22] then was generalized in [GL22] to return morphisms for a word.
In this second paper, we also showed a simplified characterization using the
graphs GL(L) and GR(L). We extend here some of these results to return
morphisms for a factor code.

When looking at dendricity of the image under a return morphism, we
distinguish two types of words: those who do not have a factor in S and
those who do. The first ones are called initial factors and are the object of
Subsection 4.4.1 while the second ones are called extended images for reasons
that will become clear later on. We study the behavior of extensions of
extended images in Subsection 4.4.2. We then present the global results and
characterization in Subsection 4.4.3. When looking at return morphisms for
a word, some of the statements can be simplified. We state these results in
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Subsection 4.4.4 and also show a similar simplification for return morphisms
for a set of letters in Subsection 4.4.5.

4.4.1 Initial factors

Given a language L and a return morphism σ, our goal is now to understand
the extensions of the elements of σ(L). As often, we begin our study with
what can be considered, in some sense, as the small words.

Definition 4.47. Let σ : A∗ → B∗ be a return morphism for S and let L be
a language over A. A word u ∈ σ(L) is an initial factor if Fac(u) ∩ S = ∅.

Observe that, since σ is a return morphism for S, any word of length at
least ‖σ‖+maxw∈S |w| in σ(L) has a factor in S. In particular, there are only
finitely many initial factors in σ(L). Hence why initial factors can be seen
as small words. This also implies that their extensions can be understood
by looking only in small images. This is described more precisely in the
following result.

Proposition 4.48. Let σ : A∗ → B∗ be a return morphism for S and let
L be a language over A. If u ∈ σ(L) is such that Fac(u) ∩ S = ∅ then
aub ∈ σ(L), a, b ∈ B, if and only if there exist c ∈ A and w ∈ S such that
σ(c)w ∈ σ(L) and aub ∈ Fac(σ(c)w).

Proof. It is clear that if aub is a factor of σ(c)w ∈ σ(L), then aub ∈ σ(L).
Let us show the converse and assume that aub ∈ σ(L). Let v = v1 · · · vn ∈ L
be such that aub ∈ Fac(σ(v)) and aub starts in σ(v1). Up to extending v on
the right, we can assume that σ(v2 · · · vn) has a prefix w ∈ S by Lemma 4.37.
Since w is not a factor of u by assumption on u, this implies that aub is a
factor of σ(v1)w ∈ σ(L), which ends the proof.

Example 4.49. Let σ be the morphism such that σ(0) = 0, σ(1) = 0102 and
σ(2) = 012. It is a return morphism for S = {00, 01} (see Example 4.35).
Let L be the Tribonacci language. Since 1 and 2 are always followed by 0
in L, the elements of σ({0, 1, 2})S ∩ σ(L) are then 000, 001, 010200, 01200.
Therefore, the initial factors are ε, 0, 1, 2, 02, 10, 12, 20, 020, 102, 120
and 1020. We easily check that 1 is not left special and 2, 20 are not right
special in σ(L). Therefore, the only bispecial initial factors are ε and 0.
Their extension graphs are represented in Figure 4.3. This shows that σ(L)
is not dendric.

In the particular case where σ is a return morphism for a word w, then
for any language L over A and for all c ∈ A, we have σ(c)w ∈ σ(L). This
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Eσ(L)(ε)

0

1

2

0

1

2

Eσ(L)(0)

0

1

2

0

1

2

Figure 4.3: The extension graphs of ε (on the left) and 0 (on the right)
in the image σ(L) of the Tribonacci language under the morphism σ of
Example 4.49.

Eσ(L)(ε)

0

1

0

1

Eσ(L)(0)

0

1

0

1

Eσ(L)(1)

0

1

0

1

Figure 4.4: The extension graphs of ε (on the left), 0 (in the center) and
1 (on the right) in the image of any language L under the morphism σ of
Example 4.50.

implies by Proposition 4.48 that the initial factors and their extensions only
depend on σ and not on the language L. This observation will be used in
Subsection 4.4.4.

Example 4.50. Let σ be the morphism such that σ(0) = 0110 and σ(1) =
011. It is a return morphism for 01 so, no matter the language L over {0, 1},
the initial factors are the internal factors of 011001 and of 01101. Since 01 is
the only left special word of length 2, the only bispecial initial words are ε,
0 and 1. Their extension graphs are represented in Figure 4.4. In particular,
ε and 1 are the only non dendric initial factors.

4.4.2 Extended images

We now turn to the extensions of the other words, i.e., those having a
factor in S. We also obtain a description of their extensions in the following
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proposition. This result relies heavily on the fact that σ is a return morphism
and of the properties shown in Section 4.3.

Proposition 4.51. Let σ : A∗ → B∗ be a return morphism for S and let L
be a language over A. If u ∈ σ(L) has a factor in S, then there exists a
unique triplet (s, v, p) ∈ Suff∗(σ(A))× L× (SB∗ ∩ Pref∗(σ(A)S)) such that
u = sσ(v)p. Moreover, for all a, b ∈ B, we have aub ∈ σ(L) if and only if
there exist c, d ∈ A and w ∈ S such that σ(cvd)w ∈ σ(L), as ∈ Suff(σ(c))
and pb ∈ Pref(σ(d)w).

Proof. Let us prove the existence and uniqueness of the triplet (s, v, p) at
the same time. If p ∈ SB∗ ∩ Pref∗(σ(A)S), then p has a prefix in S but no
other factor in S. Therefore, if p is a suffix of u, it is precisely the shortest
suffix of u having a prefix in S. It exists since u has a factor in S. Then,
for any v ∈ A∗, σ(v)p has a prefix in S. In particular, if s ∈ Suff∗(σ(A)),
then no occurrence of a word in S can start in s in sσ(v)p since σ is a
return morphism. This shows that if (s, v, p) is a triplet for u, then σ(v)p
must be the longest suffix of u having a prefix in S. By injectivity of σ, we
conclude that, if it exists, the triplet is unique. Moreover, since u ∈ σ(L),
by Lemma 4.37, there exists v ∈ L such that σ(v)p is the longest suffix of u
having a prefix in S. This shows that the triplet (s, v, p) exists and is unique
for u ∈ σ(L).

We now look at the extensions of u. If aub ∈ σ(L), then there exists
a covering (v′, k) of aub (see Definition 3.8 of coverings). By Lemma 4.37,
there exists a non-empty suffix t of v′ such that the occurrence of pb in σ(v′)
is a prefix of σ(t). By injectivity of σ, vt is then a suffix of v′. Let x be
such that v′ = xvt. Then as is a suffix of σ(x) so, by definition of s and by
definition of a covering, x = c ∈ A. As t is not empty, let us denote d its
first letter and t′ such that t = dt′. By Lemma 4.37, we can extend t′ on the
right so that cvdt′ is still in L and σ(t′) has a prefix w ∈ S. By definition
of p, pb contains no internal occurrences of elements of S so pb is in fact a
prefix of σ(d)w. By construction, we also have σ(cvd)w ∈ σ(L) which shows
that c, d, w satisfy the statement for a, b.

Conversely, assume that there exist c, d ∈ A and w ∈ S such that
σ(cvd)w ∈ σ(L), as ∈ Suff(σ(c)) and pb ∈ Pref(σ(d)w). Then, we directly
conclude that aub = asσ(v)pb ∈ σ(L).

Example 4.52. Let σ be the return morphism for S = {00, 01} defined in
Example 4.49 by σ(0) = 0, σ(1) = 0102 and σ(2) = 012 and let L be the
Tribonacci language. Since 2010 ∈ L, the word u = 2001020 is in σ(L).
The triplet (s, v, p) associated with u can be obtained as follows: p is the
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shortest suffix of u having a prefix in S so p = 01020, σ(v)p is the longest
suffix of u having a prefix in S so σ(v)p = 001020 and v = 0, s is such that
u = sσ(v)p so s = 2.

Based on this result, we introduce the following terminology.

Definition 4.53. Let σ : A∗ → B∗ be a return morphism for S and let L be
a language over A. A word u ∈ σ(L) is an extended image of v ∈ L if there
exist s ∈ B∗, p ∈ SB∗ such that (s, v, p) is the triplet of Proposition 4.51 for
u.

Proposition 4.51 essentially states that, if u is an extended image of v,
we can obtain the extensions of u by doing some operations on well-chosen
generalized extensions of v. In the rest of this subsection, we introduce
some notations to precisely describe the extensions of v of interest and the
operations on them.

The first step is to notice that if c, d ∈ A and w ∈ S are such that
σ(cvd)w ∈ σ(L), then c itself is a left extension of v (since σ is a return
morphism). However, we need to associate a particular (generalized) right
extension of v to d and w. This is the purpose of the following notation.

Recall that if (v, k) ∈ A+ × N is a covering of a word w, then an occur-
rence of w starts in σ(v1) after k letters. Therefore, by Lemma 4.37, if σ is
a return morphism for S and w ∈ S, then for any covering (v, k) of w, we
have k = 0. In this case, we will abusively say that v itself is a covering of
w and denote CL(w) the set of such words v that are in L. We also denote

CL(S) =
⋃
w∈S
CL(w).

Example 4.54. Let σ be the return morphism for S = {00, 01} of Ex-
amples 4.49 and 4.52 (i.e., σ(0) = 0, σ(1) = 0102 and σ(2) = 012).
We have CL(01) = {1, 2} independently of the language L over {0, 1, 2},
and CL(00) = {00, 01, 02} ∩ L. So, if L is the Tribonacci language, then
CL(S) = {00, 01, 02, 1, 2}.

The following result is a direct consequence of Lemma 4.37 on the prop-
erties of return morphisms and of the fact that S is a prefix code.

Lemma 4.55. Let σ : A∗ → B∗ be a return morphism for S and let L be a
language over A. Then

1. CL(w) ∩ CL(w′) = ∅ for all distinct w,w′ ∈ S;
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2. CL(S) is an L-maximal prefix code and therefore, ACL(S) also is;

3. for any non-empty u ∈ L, σ(u)w ∈ σ(L) if and only if there exists
v ∈ CL(w) such that uv ∈ L;

4. for all c, d ∈ A, v ∈ L and p′ ∈ Pref(σ(A)S), there exists w ∈ S such
that σ(cvd)w ∈ σ(L) and p′ ∈ Pref(σ(d)w) if and only if there exists
t ∈ CL(S) such that cvdt ∈ L and p′ ∈ Pref(σ(dt)).

In other words, using Proposition 4.51 and the last claim of Lemma 4.55,
if u is an extended image of v, then the extensions of u can be obtained from
the generalized extensions in A × ACL(S) of v. To go from EL,A,ACL(S)(v)
to Eσ(L)(u), we can then use the following maps.

Definition 4.56. Let σ : A∗ → B∗ be a morphism. For all s ∈ B∗, we define
the partial map

ϕLσ,s : A∗ → B, v 7→ a if as ∈ Suff(σ(v)).

It is therefore only defined on dom(ϕLσ,s) = {v ∈ A∗ : s ∈ Suff∗(σ(v))}.
Similarly, for all p ∈ B∗, we define

ϕRσ,p : A∗ → B, v 7→ b if pb ∈ Pref(σ(v))

which is defined on dom(ϕRσ,p) = {v ∈ A∗ : p ∈ Pref∗(σ(v))}. If the context
is clear, we will drop the subscript σ.

Using these notations, Proposition 4.51 can be restated as follows.

Proposition 4.57. Let σ : A∗ → B∗ be a return morphism for S, L be a
language over A and u ∈ σ(L) have a factor in S. If (s, v, p) is the triplet
of Proposition 4.51, then

Eσ(L)(u) = (ϕLs × ϕRp )EL,A,ACL(S)(v). (4.1)

Proof. Indeed, Proposition 4.51 and Lemma 4.55 imply that aub ∈ σ(L) if
and only if there exists (c, dt) ∈ EL,A,ACL(S)(v) such that as ∈ Suff(σ(c))

and pb ∈ Pref(σ(dt)). We conclude by definition of ϕLs and ϕRp .

Example 4.58. Let σ be the return morphism for S = {00, 01} defined by
σ(0) = 0, σ(1) = 0102 and σ(2) = 012 and let L be the Tribonacci language.
By Example 4.54, we know that CL(S) = {00, 01, 02, 1, 2}. Let us describe



114 Chapter 4. Preserving dendricity

the extensions of u = 2001020. By Example 4.52, the associated triplet
(s, v, p) is (2, 0, 01020) so the extensions of u depend on

EL,A,ACL(S)(0) = {(0, 102), (1, 01), (1, 102), (1, 201),

(2, 100), (2, 101), (2, 102)}.

Since dom(ϕL2 ) = A∗{1, 2} and dom(ϕR01020) = 1A+, we obtain that

Eσ(L)(2001020) = {(0, 0), (1, 0)}.

We now take the viewpoint of extension graphs. Indeed, Equation (4.1)
states that Eσ(L)(u) can be obtained from EL,A,ACL(S)(v) by doing some
manipulations. We decompose these using two intermediary graphs.

Observe that if t, t′ ∈ CL(w) for some w ∈ S and if p ∈ Pref∗(σ(A)S),
then for all d ∈ A, ϕRp (dt) and ϕRp (dt′) are either not defined or they both

exist and are equal. Indeed, if ϕRp (dt) = b, then pb ∈ Pref(σ(A)w) so pb

is also a prefix of σ(dt′) and ϕRp (dt′) = b. This motivates the following
notation.

Definition 4.59. Let σ : A∗ → B∗ be a return morphism for S, L be a
language over A and v ∈ L. The set EL,σ(v) denotes the bi-extensions of v
in A on the left and ACL(S) on the right where we identify the elements of
aCL(w) on the right for all a ∈ A, w ∈ S. More precisely, if we define the
equivalence relation ≡ on ACL(S) by

t ≡ t′ ⇐⇒ t1 = t′1 and ∃w ∈ S st. t2 · · · t|t|, t′2 · · · t′|t′| ∈ CL(w),

then
EL,σ(v) = {(a, [t]≡) : (a, t) ∈ EL,A,ACL(S)(v)}.

We then denote EL,σ(v) the bipartite graph generated by the edges in EL,σ(v).

In other words, EL,σ(v) is the image of EL,A,ACL(S)(v) under the graph
morphism induced by the quotient map q≡ : t 7→ [t]≡ acting on the right
vertices.

As explained above, if p ∈ Pref∗(σ(A)S), we can extend ϕRp by defining,

for all t ∈ ACL(S), ϕRp ([t]≡) = ϕRp (t) since this does not depend on the
choice of t ∈ [t]≡. Equation (4.1) then implies that

Eσ(L)(u) = (ϕLs × ϕRp )EL,σ(v).

Therefore, EL,σ(v) is the first intermediary graph. To simplify notations,
we will often abusively assimilate [t]≡ with any of its elements since we are
mostly interested in images under ϕRp .
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EL,A,ACL(S)(0)

0

1

2

01

100

101

102

201

EL,σ(0)

0

1

2

01

100 ≡ 101 ≡ 102

201

Figure 4.5: The graph EL,A,ACS(L)(0) (on the left) corresponding to Exam-
ple 4.60, and its image EL,σ(0) (on the right) under the graph morphism
identifying equivalent vertices in ACS(L).

Example 4.60. Let σ be the return morphism defined by σ(0) = 0, σ(1) =
0102 and σ(2) = 012 and let L be the Tribonacci language. Using Ex-
ample 4.58, we obtain the graphs EL,A,ACL(S)(0) and EL,σ(0) represented in
Figure 4.5.

If σ is a return morphism for a word, the graph EL,σ(v) is not really new
as explained below.

Remark 4.61. If S = {w}, then CL(S) = CL(w) so, for all t, t′ ∈ ACL(S),
they are equivalent if and only if they begin with the same letter. Therefore,
in this case, we have EL,σ(v) ∼= EL(v) and EL,σ(v) ∼= EL(v).

Since ϕLs and ϕRp are partial maps, when computing (ϕLs × ϕRp )EL,σ(v),
we first need to remove the elements of EL,σ(v) which are not in the domain
of ϕLs × ϕRp . To make this step clearer, we use the following notations.

Definition 4.62. Let G be a bipartite graph, E be its set of edges and U
and V be two sets. We denote2

EU,V = {(u, v) ∈ E : u ∈ U, v ∈ V }

and GU,V the subgraph of G generated by the edges in EU,V .

2We assume here that, if (u, v) ∈ E, then u is a left vertex and v is a right vertex.
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Edom(ϕL2 ),dom(ϕR01020)
L,σ (0)

1

2

100 ≡ 101 ≡ 102

Eσ(L)(2001020)

0

1

0

Figure 4.6: The graph Edom(ϕL2 ),dom(ϕR01020)
L,σ (0) (on the left) corresponding to

Example 4.60, and its image Eσ(L)(2001020) (on the right) under the graph

morphism induced by ϕL2 acting on the left vertices and ϕR01020 acting on the
right vertices.

We will combine this with other notations to write EU,VL,σ (v) instead of

(EL,σ(v))U,V and EU,VL,σ (v) instead of (EL,σ(v))U,V , for example.

It is clear that, for all E ⊆ A∗ ×A∗, we have

(ϕLs × ϕRp )E = (ϕLs × ϕRp )Edom(ϕLs ),dom(ϕRp )

so Equation 4.1 now becomes

Eσ(L)(u) = (ϕLs × ϕRp )E
dom(ϕLs ),dom(ϕRp )

L,σ (v).

Therefore, the second intermediary graph between EL,A,ACL(S)(v) and Eσ(L)(u)

is Edom(ϕLs ),dom(ϕRp )

L,σ (v). We now have the following final statement for the
extension graph of u.

Proposition 4.63. Let σ : A∗ → B∗ be a return morphism for S, L be a lan-
guage over A and u ∈ σ(L) have a factor in S. If (s, v, p) is the correspond-

ing triplet of Proposition 4.51, then Eσ(L)(u) is the image of Edom(ϕLs ),dom(ϕRp )

L,σ (v)

under the graph morphism induced by ϕLs acting on the left vertices and ϕRp
acting on the right vertices.

Example 4.64. Let us continue Example 4.60. Starting from the graph

EL,σ(0) represented in Figure 4.5, we can obtain Edom(ϕL2 ),dom(ϕR01020)
L,σ (0) by

removing the left vertices ending with 0 and the right vertices that do not

start with 1. The graphs Edom(ϕL2 ),dom(ϕR01020)
L,σ (0) and Eσ(L)(2001020) are rep-

resented in Figure 4.6. In particular, we indeed obtain the same extensions
for 2001020 as in Example 4.58
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4.4.3 Dendric images

Using the results obtained in the previous subsections, we now look at the
dendricity of the image. For the initial factors, by Proposition 4.48, their
dendricity only depends on the words σ(c)w for the pairs (c, w) ∈ A × S
for which there exists t ∈ CL(w) such that ct ∈ L. This can then easily be
checked.

We therefore focus on dendricity of the extended images in the remainder
of this subsection. Instead of looking at one extended image at a time, we
consider the set of extended images of a given word. We first give the
following natural description of all the extended images of v.

Lemma 4.65. Let σ : A∗ → B∗ be a return morphism for S, L be a language
over A and v ∈ L. A word u ∈ σ(L) is an extended image of v if and only if
there exist s ∈ Suff∗(σ(A)) and p ∈ SB∗∩Pref∗(σ(A)S) such that u = sσ(v)p

and E
dom(ϕLs ),dom(ϕRp )

L,σ (v) 6= ∅.

Proof. If u is an extended image, the existence of s and p directly follows

from Propositions 4.51 and 4.63. For the converse, if E
dom(ϕLs ),dom(ϕRp )

L,σ (v) 6=
∅, then u := sσ(v)p is in σ(L). Moreover, by hypothesis on s and p, (s, v, p)
is the triplet given by Proposition 4.51 so u is an extended image of v.

We now look at the connectedness of the extended images.

Lemma 4.66. Let σ : A∗ → B∗ be a return morphism for S, L be a language
over A and v ∈ L. The extended images of v in σ(L) are connected if

and only if Edom(ϕLs ),dom(ϕRp )

L,σ (v) is connected for all s ∈ Suff∗(σ(A)), p ∈
SB∗ ∩ Pref∗(σ(A)S).

Proof. Let u = sσ(v)p be an extended image of v. By Proposition 4.63,

Eσ(L)(u) is the image of Edom(ϕLs ),dom(ϕRp )

L,σ (v) under the graph morphism in-

duced by ϕLs acting on the left vertices and ϕRp acting on the right vertices.

Therefore, if Edom(ϕLs ),dom(ϕRp )

L,σ (v) is connected, u is connected in σ(L).
Let us prove the converse by contraposition so assume that there ex-

ist s ∈ Suff∗(σ(A)) and p ∈ SB∗ ∩ Pref∗(σ(A)S) such that the graph

Edom(ϕLs ),dom(ϕRp )

L,σ (v) is not connected. Moreover, assume that among all such
pairs (s, p), we have chosen one such that p is of maximal length and s is of
maximal length for this p.

As Edom(ϕLs ),dom(ϕRp )

L,σ (v) is a bipartite graph with no isolated vertices since
it is generated by its edges, this means that we can find a partition {A1, A2}
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(resp., {B1, B2}) of the left (resp., right) vertices of Edom(ϕLs ),dom(ϕRp )

L,σ (v) into
non-empty subsets such that the edges are all included in (A1×B1)∪ (A2×
B2).

By Lemma 4.65, (s, v, p) is the triplet corresponding to the extended

image u = sσ(v)p so Eσ(L)(u) is the image of Edom(ϕLs ),dom(ϕRp )

L,σ (v) under the

graph morphism induced by ϕLs acting on the left vertices and ϕRp acting
on the right vertices by Proposition 4.63. Therefore, the edges of Eσ(L)(u)

are included in (ϕLs (A1) × ϕRp (B1)) ∪ (ϕLs (A2) × ϕRp (B2)), both products
containing at least one edge.

However, ϕRp (B1) ∩ ϕRp (B2) = ∅. Indeed, assume by contradiction that

there exist t ∈ B1, t′ ∈ B2 such that ϕRp (t) = ϕRp (t′) = b, meaning by
definition that pb ∈ Pref(σ(t)) ∩ Pref(σ(t′)). As p ∈ Pref∗(σ(A)S) and
pb is prefix of some image, we have pb ∈ Pref(σ(A)S). We cannot have
pb ∈ σ(A)S since, by definition of EL,σ(v), there is at most one right vertex

of Edom(ϕLs ),dom(ϕRp )

L,σ (v) whose image begins with σ(a)w for all a ∈ A, w ∈ S.
Therefore, pb ∈ Pref∗(σ(A)S), and pb ∈ Pref∗(σ(t))∩Pref∗(σ(t′)). However,

t and t′ are then two right vertices of the graph E
dom(ϕLs ),dom(ϕRpb)

L,σ (v) which

is a subgraph of Edom(ϕLs ),dom(ϕRp )

L,σ (v). This shows that E
dom(ϕLs ),dom(ϕRpb)

L,σ (v)
is not connected and contradicts the maximality of p.

We can similarly show that ϕLs (A1) ∩ ϕLs (A2) = ∅. Indeed, if ϕLs (c) =
ϕLs (c′) = a, c ∈ A1, c′ ∈ A2, then as cannot be in σ(A) since σ(A) is
a suffix code and σ is injective. Thus as ∈ Suff∗(σ(A)) and the graph

Edom(ϕLas),dom(ϕRp )

L,σ (v) is not connected which contradicts the maximality of s.

This shows that {ϕLs (A1), ϕLs (A2)} (resp., {ϕRp (B1), ϕRp (B2)}) is a par-
tition of the left (resp., right) vertices of Eσ(L)(u) and therefore, u is not
connected in σ(L). We conclude that the extended images of v are not all
connected, which ends the contraposition.

Using the same techniques we can also obtain one implication for the
acyclicity of the extended images. We however also need an hypothesis on
connectedness.

Lemma 4.67. Let σ : A∗ → B∗ be a return morphism for S, L be a language

over A and v ∈ L. If Edom(ϕLs ),dom(ϕRp )

L,σ (v) is a tree for all s ∈ Suff∗(σ(A)),
p ∈ SB∗ ∩Pref∗(σ(A)S), then the extended images of v are acyclic in σ(L).

Proof. Let u = sσ(v)p be an extended image of v. By Proposition 4.63,
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Eσ(L)(u) is the image of Edom(ϕLs ),dom(ϕRp )

L,σ (v) under the graph morphism in-

duced by ϕLs acting on the left vertices and ϕRp acting on the right vertices.

Let us show that, if ϕRp (t) = ϕRp (t′) = b for two right vertices t, t′ of

Edom(ϕLs ),dom(ϕRp )

L,σ (v), then any path connecting them only uses right vertices

t′′ such that ϕRp (t′′) = b. As Edom(ϕLs ),dom(ϕRp )

L,σ (v) is a tree, there is a unique
path connecting t and t′. Assume that this path uses a right vertex t′′ such
that ϕRp (t′′) 6= b. As in the proof of Lemma 4.66, we have pb ∈ Pref∗(σ(A)S)

so t and t′ are right vertices of E
dom(ϕLs ),dom(ϕRpb)

L,σ (v) but they are not con-

nected since t′′ is not a right vertex of E
dom(ϕLs ),dom(ϕRpb)

L,σ (v). This contradicts

the fact that E
dom(ϕLs ),dom(ϕRpb)

L,σ (v) is connected.

Similarly, if ϕLs (c) = ϕLs (c′) = a for two left vertices c, c′ of the graph

Edom(ϕLs ),dom(ϕRp )

L,σ (v), then the only path connecting them exclusively uses left

vertices c′′ such that ϕLs (c′′) = a. This shows that, if Edom(ϕLs ),dom(ϕRp )

L,σ (v) is
acyclic, then so is its image Eσ(L)(u) under the graph morphism induced by

ϕLs acting on the left vertices and ϕRp acting on the right vertices.

By combining these results, we obtain a first characterization of dendric-
ity.

Proposition 4.68. Let σ : A∗ → B∗ be a return morphism for S, L be

a language over A and v ∈ L. If EA,dom(ϕRw)
L,σ (v) is acyclic for all w ∈ S,

then the extended images of v are dendric in σ(L) if and only if the graph

Edom(ϕLs ),dom(ϕRp )

L,σ (v) is connected for all s ∈ Suff∗(σ(A)) and all p ∈ SB∗ ∩
Pref∗(σ(A)S).

Proof. If the extended images of v are dendric, then they are connected

so, by Lemma 4.66, the graph Edom(ϕLs ),dom(ϕRp )

L,σ (v) is connected for all s ∈
Suff∗(σ(A)) and all p ∈ SB∗ ∩ Pref∗(σ(A)S). This shows one of the impli-
cations.

Assume now that, for all s ∈ Suff∗(σ(A)) and all p ∈ SB∗∩Pref∗(σ(A)S),

the graph Edom(ϕLs ),dom(ϕRp )

L,σ (v) is connected. If w is the prefix of p in S,

then Edom(ϕLs ),dom(ϕRp )

L,σ (v) is a subgraph of EA,dom(ϕRw)
L,σ (v), which is acyclic

by hypothesis. Therefore, the graph Edom(ϕLs ),dom(ϕRp )

L,σ (v) is a tree for all
s ∈ Suff∗(σ(A)) and all p ∈ SB∗ ∩ Pref∗(σ(A)S). Using Lemmas 4.66
and 4.67, we conclude that the extended images of v are dendric.
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For this characterization however, we have an acyclicity hypothesis on

EA,dom(ϕRw)
L,σ (v) for all w ∈ S. It is implied by the acyclicity of EL,σ(v) which

we will now consider. So far, we do not have any specific hypothesis on
the language L over A. However, keep in mind that the original goal of
this section is to characterize when the image of a dendric language is again
dendric.

Observe that dendricity does not directly imply that the graph EL,σ(v)
is acyclic, unless S = {w}. Indeed, EL,σ(v) is the image of the graph
EL,A,ACL(S)(v) under a graph morphism identifying some right vertices. Den-
dricity implies that EL,A,ACL(S)(v) is acyclic (see Proposition 3.41) but the
graph morphism could create cycles. We will therefore use the following
lemma.

Lemma 4.69. Let σ : A∗ → B∗ be a return morphism for S, L be a language
over A and v ∈ L. If EL,A,ACL(S)(v) is a tree and, for all x ∈ Pref∗(ACL(S))

and all w ∈ S, the graph EA,dom(ϕRw)
L,σ (vx) is connected, then EL,σ(v) is acyclic.

Proof. Recall that q≡ is the quotient map which identifies ct, c′t′ ∈ ACL(S) if
c = c′ and there exists w ∈ S such that t, t′ ∈ CL(w) (see Definition 4.59). By
definition, EL,σ(v) is the image of EL,A,ACL(S)(v) under the graph morphism
induced by q≡ acting on the right vertices.

Assume that there exist two right vertices t, t′ of EL,A,ACL(S)(v) such that
q≡(t) = q≡(t′) and that the (unique) path connecting them in EL,A,ACL(S)(v)
uses one right vertex t′′ such that q≡(t′′) 6= q≡(t). We show that this leads
to a contradiction.

The graph EL,A,ACL(S)(v) where we remove the right vertex t′′ has at
least two connected components, one containing t and another containing
t′. Let us denote B1 the right vertices connected to t in this graph, and B′1
the other right vertices. Let us also denote b1 = t1 = t′1 and w(1) ∈ S such
that t2 · · · t|t|, t′2 · · · t′|t′| ∈ CL(w(1)).

In the graph E
A,dom(ϕR

w(1)
)

L,A,ACL(S) (vb1), there is a partition {B2, B
′
2} of the right

vertices such that u ∈ B2 (resp., u ∈ B′2) if and only if b1u has a prefix in B1

(resp., B′1). By definition of w(1), B2 (resp., B′2) is not empty as it contains
a vertex starting with t2 · · · t|t| (resp., t′2 · · · t′|t′|). Moreover, no vertex of

B2 is connected to a vertex of B′2 otherwise we have a corresponding path
between vertices of B1 and of B′1 in EL,A,ACL(S)(v) and this path does not
use t′′. This would contradict the acyclicity of EL,A,ACL(S)(v).

However, the graph E
A,dom(ϕR

w(1)
)

L,σ (vb1) is connected by hypothesis, and
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it is the image of E
A,dom(ϕR

w(1)
)

L,A,ACL(S) (vb1) under the graph morphism induced by

q≡ on the right vertices. This implies that there exist r ∈ B2, r′ ∈ B′2
such that q≡(r) = q≡(r′). Let us denote b2 = r1 = r′1 and w(2) ∈ S such
that r2 · · · r|r|, r′2 · · · r′|r′| ∈ CL(w(2)). Then b1b2 is prefix comparable with an

element of B1 and an element of B′1. As B1, B
′
1 ⊆ ACL(S) and ACL(S) is

a prefix code, this shows that b1b2 is a prefix of an element of B1 and an
element of B′1. In particular, b1b2 ∈ Pref∗(ACL(S)).

We iterate the process by looking at the graph E
A,dom(ϕR

w(i)
)

L,A,ACL(S) (vb1 · · · bi).
We can define Bi+1 (resp., B′i+1) as the right vertices s such that bis has
a prefix in Bi (resp., B′i). These sets are not empty and no vertex of Bi+1

is connected to a vertex of B′i+1. As E
A,dom(ϕR

w(i)
)

L,σ (vb1 · · · bi) is connected,
q≡ identifies an element of Bi+1 with an element of B′i+1. We then define

bi+1 and w(i+1) ∈ S corresponding to these elements. Since b1 · · · bi+1 ∈
Pref∗(ACL(S)), we can keep iterating.

However, Pref∗(ACL(S)) is finite so this process should stop, which leads
to a contradiction. This shows that, if q≡ identifies two right vertices t, t′

of EL,A,ACL(S)(v), then the path connecting them only uses vertices t′′ such
that q≡(t′′) = q≡(t). Therefore, since EL,A,ACL(S)(v) is acyclic, its image
EL,σ(v) under the graph morphism induced by q≡ on the right vertices also
is.

We can then replace the hypothesis on the acyclicity of the graphs

EA,dom(ϕRw)
L,σ (v) in Proposition 4.68 by dendricity of the language L. The

price to pay however is that we need to look at the extended images of all
the words v ∈ L at the same time.

Before stating this result, we give one last lemma showing that, instead

of looking at the connectedness of Edom(ϕLs ),dom(ϕRp )

L,σ (v) for all pairs (s, p), we
can look at the pairs where s = ε or p ∈ S. This allows us to somehow split
the connectedness condition in two: a condition on the left vertices and one
on the right vertices. This will be fundamental in Chapter 5.

Lemma 4.70. Let G be an acyclic bipartite graph, V L (resp., V R) be its
set of left (resp., right) vertices and E be its set of edges. For all sets U,W ,

if the graphs GU,V
R

and GV
L,W are connected, then so is the graph GU,W .

Proof. Let x, y be two vertices of GU,W . Since GU,W is a subgraph of the
connected graph GU,V

R
(resp., GV

L,W ), there exists a path P (resp., P ′)

connecting x and y in GU,V
R

(resp., GV
L,W ). The paths P and P ′ are then

also paths of G which is acyclic. Therefore, P = P ′. As P is a path in
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GU,V
R

, it only uses left vertices in U . Similarly, as P ′ is a path in GV
L,W , it

only uses right vertices in W . This implies that the path P = P ′ is a path
of GU,W . We conclude that any two vertices of GU,W are connected.

We can now prove the main result of this section.

Theorem 4.71. Let σ : A∗ → B∗ be a return morphism for S and let L be
a dendric language over A. The extended images of all v ∈ L are dendric
in σ(L) if and only if the following conditions are satisfied for all v ∈ L:

• the graph Edom(ϕLs ),dom(ϕRw)
L,σ (v) is connected for all s ∈ Suff∗(σ(A)),

w ∈ S;

• the graph EA,dom(ϕRp )

L,σ (v) is connected for all p ∈ SB∗ ∩ Pref∗(σ(A)S).

The image σ(L) is then dendric if and only if, moreover, the initial factors
are dendric.

Proof. For all v ∈ L, if the extended images of v are dendric, then the

graph Edom(ϕLs ),dom(ϕRp )

L,σ (v) is connected for all s ∈ Suff∗(σ(A)), p ∈ SB∗ ∩
Pref∗(σ(A)S) by Lemma 4.66. This is in particular the case if p ∈ S, or if
s = ε so this concludes the first implication.

Assume now that, for all v ∈ L, the graph Edom(ϕLs ),dom(ϕRw)
L,σ (v) is con-

nected for all s ∈ Suff∗(σ(A)), w ∈ S, and the graph EA,dom(ϕRp )

L,σ (v) is
connected for all p ∈ SB∗ ∩ Pref∗(σ(A)S). We show that the conditions of
Proposition 4.68 are satisfied.

Since L is dendric and ACL(S) is an L-maximal prefix code, the graph
EL,A,ACL(S)(v) is a tree for all v ∈ L by Proposition 3.41. Moreover, since

EA,dom(ϕRp )

L,σ (v) is connected for all p ∈ S and all v ∈ L, we can apply
Lemma 4.69 to deduce that EL,σ(v) is acyclic for all v ∈ L.

This directly implies that EA,dom(ϕRw)
L,σ (v) is acyclic for all v ∈ L and w ∈ S.

It also implies, by Lemma 4.70, that Edom(ϕLs ),dom(ϕRp )

L,σ (v) is connected for all
v ∈ L, all s ∈ Suff∗(σ(A)) and all p ∈ SB∗ ∩ Pref∗(σ(A)S). This shows
that, by Proposition 4.68, the extended images of v are dendric in σ(L) for
all v ∈ L.

Finally, by definition, σ(L) is dendric if and only if both the initial factors
and the extended images are dendric.
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Remark 4.72. Observe that, if ϕLs (A) = {a} and Edom(ϕLs ),dom(ϕRw)
L,σ (v) has

more than one left vertex, then Edom(ϕLs ),dom(ϕRw)
L,σ (v) = Edom(ϕLas),dom(ϕRw)

L,σ (v).
In other words, it is not necessary to check the connectedness of the graph

Edom(ϕLs ),dom(ϕRw)
L,σ (v) for all s ∈ Suff∗(σ(A)) but only for those such that

#ϕLs (A) ≥ 2. Similarly, it is sufficient to look at the connectedness of

the graph EA,dom(ϕRp )

L,σ (v) for the words p ∈ SB∗ ∩ Pref∗(σ(A)S) such that

#ϕRp (ACL(S)) ≥ 2.

Remark 4.73. If σ : A∗ → B∗ with B minimal and #B ≥ #A and if
L is dendric, then by Proposition 4.1, σ(L) is dendric if and only if it is
connected. In that case, we can therefore replace dendricity of the initial
factors by connectedness of the initial factors in Theorem 4.71. Moreover,
since we are then only interested in the connectedness of the extended im-
ages, Lemma 4.67 and Proposition 4.68 are not needed anymore. However,
the acyclicity of EL,σ(v) (Lemma 4.69) is still needed to apply Lemma 4.70.

The previous result should be understood as follows: given a return
morphism σ for the factor code S, there is a computable finite prefix code
P , a property I of finite sets and two properties EL, ER on bipartite graphs
such that if L is a dendric language, then σ(L) is dendric if and only if P ∩L
satisfies I and, for all v ∈ L, the graph EL,A,P (v) satisfies EL and ER.

Indeed, we can take P = ACA∗(S). Since P ⊆ A≤maxw∈S |w|+1, it is
computable. The condition I represents the dendricity of the initial factors.
By Proposition 4.48, it only depends on σ(P ∩L) so it suffices to say that a
set Q ⊆ P satisfies I if all u ∈ Fac(σ(Q)) having no factor in S are dendric
in Fac(σ(Q)) (where we define the extension graph of a word in a finite
factorial set as the bipartite graph generated by the biextensions).

The conditions EL and ER ensure that the extended images are den-
dric. For all s ∈ Suff∗(σ(A)) and w ∈ S, the construction to go from

EL,A,ACL(S)(v) to Edom(ϕLs ),dom(ϕRw)
L,σ (v) only depends on σ. Therefore we can

define it starting from any bipartite graph G with left vertices in A and right
vertices in P . We then say that G satisfies EL if, for all s ∈ Suff∗(σ(A)) and
w ∈ S (note that the values of s and w also only depend on σ), the graph
obtained with this construction is connected. We similarly define ER using

the graphs EA,dom(ϕRp )

L,σ (v), p ∈ SB∗ ∩ Pref∗(σ(A)S), instead.

Example 4.74. Let A = {0, 1, 2} and σ be such that σ(0) = 0, σ(1) = 01
and σ(2) = 0102. It is a return morphism for S = {00, 01}. We can easily
see that CA∗(S) = {00, 01, 02, 1, 2} so we define P = A{00, 01, 02, 1, 2}.
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Let us define the property I. We need to look at the dendricity of the
initial factors in σ(Q) for Q ⊆ P . Observe that, in σ(P ), 1 and 2 are
always preceded and followed by 0. This shows that the only potential
bispecial initial factors in σ(Q) are ε and 0. Assuming that Q contains at
least one word beginning with 0 and one beginning with 2 (which is the
case if Q = P ∩ L for a language L over A), then ε is ordinary so it is
always dendric. The extensions of 0 however depend on L. Indeed, (1, 2) is
always an extension but 0 has the extension (a, 0) if and only if Q contains
a word beginning with a0, and (a, 1) if and only if Q contains a1 or a2. If
Q = P ∩ L for a dendric language, then one cannot have a0, b0, a1, b1 ∈ L
or a0, b0, a2, b2 ∈ L for distinct a and b. The condition I is then defined as
follows: Q satisfies I if, for all distinct a, b ∈ A,

(a0, b0 ∈ Pref(Q) and a1 ∈ Q) =⇒ b2 6∈ Q.

We now turn to the condition EL. Since ϕLε = id, EL only depends
on the connectedness for s = ε and w ∈ S. By definition of σ, for any

language L and word v ∈ L, to go from EL,A,ACL(S)(v) to EA,dom(ϕR00)
L,σ (v)

(resp., EA,dom(ϕR01)
L,σ (v)), we first merge, for all a ∈ A, the right vertices in

a0A, and a1 with a2, then we remove the right vertices starting with 1 or
2 (resp., with 0). Starting from a bipartite graph G with left vertices in A
and right vertices in AP , we reproduce these constructions and say that G
satisfies EL if both obtained graphs are connected. An example is done in
Figure 4.7.

For the condition ER, we similarly only need to check the connectedness
when p ∈ {00, 010, 01020}. Observe that the cases p = 00 and p = 010 are
already considered in condition EL through the cases w = 00 and w = 01
respectively (since ϕR01(ACL(S)) = {0}).

4.4.4 The case of return morphisms for a word

As announced in the previous subsections, some of the results can be sim-
plified when we consider a return morphism for a single word. One of the
first observation made is that the extensions of the initial factors in σ(L)
only depends on the morphism σ and not on the language L.

Another simplification is that EL,σ(v) ∼= EL(v) (see Remark 4.61). More
precisely, these graphs share the same left vertices and any right vertex
[t]≡ of EL,σ(v) corresponds to the right vertex t1 of EL(v). Recall that we
are interested in the images of the right vertices under the map ϕRp for all

p ∈ wB∗ ∩ Pref∗(σ(A)w) and, for such p, we have ϕRp ([t]≡) = b if and only
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21 ≡ 22

Figure 4.7: Graph G (on the left) and the corresponding graphs for s = ε,
and w = 00 (in the center) or w = 01 (on the right). Since the graph
on the right is not connected, G does not satisfy EL for the morphism of
Example 4.74.

if pb ∈ Pref(σ(t1)w). We therefore define a new map depending only on t1
as follows.

Definition 4.75. Let σ : A∗ → B∗ be a return morphism for w. For all
p ∈ B∗, we define

φRσ,p : A∗ → B∗ v 7→ b if pb ∈ Pref(σ(v)w)

on the set dom(φRσ,p) = {v ∈ A∗ : p ∈ Pref∗(σ(v)w)}. We will drop the
subscript σ most of the time.

While the map φRσ,p technically also depends on w, this will not actually
impact the following results. Indeed, by Remark 4.72, we are only interested
in this map when p is right special so, by Proposition 4.33, we can for
example assume that we take w of minimal length.

For p ∈ wB∗ ∩ Pref∗(σ(A)w), we have [t]≡ ∈ dom(ϕRp ) if and only if

t1 ∈ dom(φRp ), and in this case, ϕRp ([t]≡) = φRp (t1). We then obtain the
following simpler statements of Proposition 4.63 and Proposition 4.68 as
written in [GLL22, GL22].

Proposition 4.76. Let σ : A∗ → B∗ be a return morphism for w, L be a
language over A and u ∈ σ(L) be an extended image of v ∈ L. If u = sσ(v)p,

then Eσ(L)(u) is the image of Edom(ϕLs ),dom(φRp )

L (v) under the graph morphism

induced by ϕLs acting on the left vertices and φRp acting on the right vertices.
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Proposition 4.77. Let σ : A∗ → B∗ be a return morphism for w, L be
a language over A and v ∈ L. If v is acyclic in L, then the extended

images of v are dendric in σ(L) if and only if the graph Edom(ϕLs ),dom(φRp )

L (v)
is connected for all s ∈ Suff∗(σ(A)) and all p ∈ wB∗ ∩ Pref∗(σ(A)w).

We directly obtain the following corollary.

Corollary 4.78. Let σ : A∗ → B∗ be a return morphism for w, L be a
language over A and v ∈ L. If v is ordinary in L, then the extended images
of v are dendric in σ(L).

Proof. Indeed, if v is ordinary, any subgraph of EL(v) with no isolated ver-
tices is connected.

As a consequence, if the elements of L are ordinary, all of the extended
images are dendric. In other words, if L is an Arnoux-Rauzy language and
the initial factors are dendric, then σ(L) is dendric. We have in fact the
following stronger result.

Proposition 4.79. Let σ : A∗ → B∗ be a return morphism for a word w.
The following assertions are equivalent:

1. for all (resp., for one) language L over A, the initial factors are den-
dric in σ(L);

2. for all (resp., for one) Arnoux-Rauzy language L over A, the image
σ(L) is dendric;

3. there exists a language L over A such that σ(L) is dendric;

4. there exists a recurrent dendric language L such that σ(A) = RL(w);

5. #A = #B (assuming that B is minimal) and, for all (resp., for one)
language L over A, the initial factors are connected in σ(L).

Proof. Using Corollary 4.78 and the characterization of Arnoux-Rauzy lan-
guages with ordinary words (Proposition 1.27), we conclude that, for any
Arnoux-Rauzy language L over A, the image σ(L) is dendric if and only
if the initial factors are dendric. Since the initial factors and their exten-
sions do not depend on L, this shows the equivalence between the first two
assertions (both in their universal and existential versions).

Let us show the equivalence with the third assertion. If dendricity is pre-
served for all Arnoux-Rauzy languages, then there clearly exists a language
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whose image is dendric. Conversely, if the image of a language is dendric,
then the initial factors for this language are dendric.

We now turn to the fourth assertion. Let L be a recurrent Arnoux-
Rauzy language over A. If σ(L) is dendric, then by Proposition 4.32 on the
terminology of return morphisms, σ(A) = Rσ(L)(w) and σ(L) is a recurrent
dendric language. Conversely, if σ(A) = RL(w) for some recurrent dendric
language L, then let L′ be its derived language with respect to w (and σ).
Since σ(L′) = L is dendric, then the initial factors are dendric.

Finally, we turn to the last assertion. If σ satisfies the fourth assertion,
then σ defines a bijection between A and the return words for w in a recur-
rent dendric language over B so, by Corollary 3.32 on the number of return
words, #A = #B. By the first assertion, the initial factors are dendric so
connected. For the converse, if the initial factors are connected, then the
image of any Arnoux-Rauzy language is connected. Since #A = #B, this
image is in fact dendric by Proposition 4.1.

We then say that a return morphism for a word is dendric if it satisfies
any of the equivalent assertions of Proposition 4.79.

Example 4.80. Let σ be the morphism such that σ(0) = 20, σ(1) = 20221,
σ(2) = 202 and σ(3) = 20203. It is a return morphism for 202. Let us
show that it is dendric. The only left special initial factors are ε, 2 and
20. Their extension graphs in Fac(σ({0, 1, 2, 3})202) are represented in Fig-
ure 4.8. These words are dendric so σ is a dendric morphism and the image
of any Arnoux-Rauzy language over {0, 1, 2, 3} is dendric. Observe however
that ε and 2 are not ordinary therefore σ is not generated by Arnoux-Rauzy
morphisms so, by Theorem 4.24, there exists a language L such that σ(L)
is not dendric.

Let us now turn to the main theorem of the previous subsection (The-
orem 4.71). It also admits an alternative statement in the case of a return
morphism for a word, this is the original result from [GLL22] and [GL22].

Proposition 4.81. Let σ : A∗ → B∗ be a return morphism for w and L be
a dendric language over A. The extended images of all v ∈ L are dendric
in σ(L) if and only if the following conditions are satisfied for all v ∈ L:

• the graph Edom(ϕLs ),A
L (v) is connected for all s ∈ Suff∗(σ(A));

• the graph EA,dom(φRp )

L (v) is connected for all p ∈ wB∗ ∩ Pref∗(σ(A)w).

The image σ(L) is then dendric if and only if, moreover, σ is a dendric
return morphism for a word.
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Figure 4.8: The extension graphs of ε (on the left), 2 (in the center) and 20
(on the right) in Fac(σ({0, 1, 2, 3})202) for the morphism σ of Example 4.80.

At first glance, the previous result might seem unpractical as we still
need to check some condition for all v ∈ L. However, when taking a closer
look, we can see that only finitely many words can fail this condition. In
fact, it is not the first time in this work that we look at extension graphs in
which we remove some of the vertices. This was already implicitly done in
Proposition 2.43 where we relate it to connectedness of the graphs GLn(L)
and GRn (L). This gives us the following alternative characterization [GL22].

Proposition 4.82. Let σ : A∗ → B∗ be a return morphism for w and L be
a dendric language over A. The extended images of all v ∈ L are dendric
in σ(L) if and only if the following conditions are satisfied:

• for all s ∈ Suff∗(σ(A)), the subgraph of GL(L) generated by the vertices
in dom(ϕLs ) is connected;

• for all p ∈ wB∗ ∩ Pref∗(σ(A)w), the subgraph of GR(L) generated by
the vertices in dom(φRp ) is connected.

The image σ(L) is then dendric if and only if, moreover, σ is a dendric
return morphism for a word.

Proof. By Proposition 2.57, there existsN such that, for all n ≥ N , GLn(L) =
GL(L). Let C ⊆ A. Then, by Proposition 2.43, the subgraph of GL(L)
generated by the vertices in C is connected if and only if, for all v ∈ L,
in the graph EL(v) where we removed the left vertices not in C, the left
vertices are connected, or equivalently, the graph EC,AL (v) is connected. We
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similarly show that, for all C ⊆ A, the subgraph of GR(L) generated by the
vertices in C is connected if and only if, for all v ∈ L, the graph EA,CL (v) is
connected. The conclusion then follows by Proposition 4.81.

Example 4.83. Let σ be the morphism such that σ(0) = 20, σ(1) = 20221,
σ(2) = 202 and σ(3) = 20203. By Example 4.80, σ is a dendric return
morphism for 202.

Since the images of the letters all end with different letters, dom(ϕLs )∩A
is either A, ∅ or one letter depending on s. In other words, the subgraph
of GL(L) generated by the vertices in dom(ϕLs ) is always connected if L
is dendric by Corollary 2.44. On the other hand, dom(φRp ) can take other

values if p = 2020 or p = 2022. We then have dom(φR2020) = {0, 3} and
dom(φR2022) = {1, 2}.

Therefore, by Proposition 4.82, the image σ(L) of a dendric language
L is dendric if and only if GR(L) contains an edge between 0 and 3, and
between 1 and 2. In other words, if and only if 0 and 3 (resp., 1 and 2) are
right extensions of a right special infinite word in L by Proposition 2.61.

4.4.5 The case of return morphisms for a set of letters

We now consider another particular case of return morphisms for a set and
look at return morphisms for a set of letters. We show below that we can
obtain a simpler characterization, as in the case of return morphisms for a
word.

In the previous subsection, we were able to obtain simpler results because
we had EL,σ(v) ∼= EL(v). While we do not have this isomorphism anymore
when σ is a return morphism for a set of letters, we will show that we can
still use EL(v) instead of EL,σ(v) to obtain the characterizations.

To do this we introduce some notations.

Definition 4.84. Let σ : A∗ → B∗ be a return morphism for S ⊆ B. For
all p ∈ Pref(σ(A)), we define

dp = {a ∈ A : p ∈ Pref(σ(a))}.

Observe that, if σ : A∗ → B∗ is a return morphism for S ⊆ B, then

SB∗ ∩ Pref∗(σ(A)S) = B+ ∩ Pref(σ(A)).

Moreover, any p ∈ B+ ∩ Pref(σ(A)) has exactly one letter in S (its first
letter), so

p ∈ Pref(σ(t)) ⇐⇒ p ∈ Pref(σ(t1)).
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This shows that CL(S) = A and, for all t ∈ A2 = ACL(S),

t ∈ dom(ϕRp ) ⇐⇒ t1 ∈ dp.

Therefore, for any set U , the graph EU,dom(ϕRp )

L,σ (v) is closely related to EU,dpL (v).

Using this observation, we obtain the following characterization.

Proposition 4.85. Let σ : A∗ → B∗ be a return morphism for S ⊆ B and
L be a dendric language over A. The image σ(L) is dendric if and only
if the initial factors are dendric in σ(L) and, for all v ∈ L, the following
conditions are satisfied:

• the graph EA,dpL (v) is connected for all p ∈ B+ ∩ Pref(σ(A));

• the graph Edom(ϕLs ),A
L (v) is connected for all s ∈ Suff∗(σ(A)).

Proof. Assume that σ(L) is dendric. Clearly, the initial factors are dendric
thus let us look at the conditions on v ∈ L.

The first condition is direct. More generally, for all s ∈ Suff∗(σ(A)) and

p ∈ B+∩Pref(σ(A)), the graph Edom(ϕLs ),dp
L (v) is the image of Edom(ϕLs ),dom(ϕRp )

L,σ (v)
under the graph morphism identifying right vertices beginning with the

same letter. By Lemma 4.66, Edom(ϕLs ),dom(ϕRp )

L,σ (v) is connected thus so is

Edom(ϕLs ),dp
L (v). This is in particular the case if s = ε.

Assume now by contradiction that there exists s ∈ Suff∗(σ(A)) of mini-

mal length such that Edom(ϕLs ),A
L (v) is not connected. Since L is dendric,

s 6= ε so let c ∈ B and s′ ∈ B∗ be such that s = cs′. By minimal-

ity of s, Edom(ϕL
s′ ),A

L (v) is connected. Let a1 and a2 be two left vertices

of Edom(ϕLs ),A
L (v) that are not connected in Edom(ϕLs ),A

L (v) and such that the

path P connecting them in Edom(ϕL
s′ ),A

L (v) is of minimal length. In particular,

no intermediary left vertex of P is a vertex of Edom(ϕLs ),A
L (v). Let b1, b2 be the

two right vertices of Edom(ϕLs ),A
L (v) such that {a1, b1} (resp., {a2, b2}) is the

first (resp., last) edge of P . Then σ(b1) and σ(b2) cannot begin with the same

letter. Indeed, otherwise the graph Edom(ϕLs ),σ(b1)1
L (v) is not connected, which

contradicts what we have already proved since σ(b1)1 ∈ B+ ∩ Pref(σ(A)).

For every edge {a, b} in P (where a is the left vertex), s′σ(v) has a
corresponding extension (a′, b′) in σ(L) where a′s′ ∈ Suff(σ(a)), b′ = σ(b)1.
Therefore, P induces a cycle P ′ in Eσ(L)(s

′σ(v)) and this cycle reduces to a
non trivial simple cycle since, by definition of a1 and a2, the only left vertices
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of P mapped to c are a1 and a2, and the vertices following and preceding
c in P ′ are σ(b1)1 and σ(b2)1 which are different. This contradicts the fact
that σ(L) is dendric.

Let us now prove the converse. More specifically, we show that under the
conditions of the statement for all v ∈ L, the extended images are dendric.

By Theorem 4.71, it suffices to show that the graph Edom(ϕLs ),dom(ϕRp )

L,σ (v) is

connected for all v ∈ L, s ∈ Suff∗(σ(A)), p ∈ B+ ∩ Pref(σ(A)).

Since Edom(ϕLs ),dom(ϕRp )

L,σ (v) is the image of the graph Edom(ϕLs ),dom(ϕRp )

L,A,A2 (v)
under the graph morphism induced by q≡ acting on the right vertices, it

suffices to show that Edom(ϕLs ),dom(ϕRp )

L,A,A2 (v) is connected. Moreover, as this
graph has no isolated vertex, it suffices to prove that any two right vertices
are connected.

Let a1a2 and b1b2 be two distinct right vertices of Edom(ϕLs ),dom(ϕRp )

L,A,A2 (v). If

a1 = b1, then a2, b2 are two distinct right vertices of Edom(ϕLs ),A
L (va1) which is

connected by hypothesis. Moreover, since p ∈ Pref(σ(A)) ∩ Pref∗(σ(a1a2)),

p is a prefix of σ(a1) so the path connecting a2, b2 in Edom(ϕLs ),A
L (va1) induces

a path between a1a2 and b1b2 in Edom(ϕLs ),dom(ϕRp )

L,A,A2 (v). In other words, any

two right vertices of Edom(ϕLs ),dom(ϕRp )

L,A,A2 (v) beginning with the same letter are
connected.

Assume now that a1 6= b1. Then a1 and b1 are two right vertices of

Edom(ϕLs ),dp
L (v) which is connected by hypothesis and by Lemma 4.70. Let
P be a path connecting them. For any edge {a, b} of P (where a is the

left vertex), there is a corresponding edge {a, bb′} in Edom(ϕLs ),dom(ϕRp )

L,A,A2 (v).

Since right vertices of Edom(ϕLs ),dom(ϕRp )

L,A,A2 (v) beginning with the same letter
are connected, this shows that P induces a path between a1a2 and b1b2 in

Edom(ϕLs ),dom(ϕRp )

L,A,A2 (v).

This ends the proof that Edom(ϕLs ),dom(ϕRp )

L,A,A2 (v) is connected for all v ∈ L,

s ∈ Suff∗(σ(A)), p ∈ B+ ∩ Pref(σ(A)) and therefore concludes the proof of
the second implication.

As in Remark 4.73, if #A = #B, then we can replace dendricity of the
initial factors by connectedness. In the case of return morphisms for a set
of letters, we also have the following stronger result.

Proposition 4.86. Let σ : A∗ → A∗ (assuming that A is the smallest image
alphabet) be a return morphism for S ⊆ A and L be a dendric language over
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A. The image σ(L) is dendric if and only if, for some c 6∈ A \ S, the initial
factors are connected in σ(A)c and, for all v ∈ L, the following conditions
are satisfied:

• the graph EA,dpL (v) is connected for all p ∈ B+ ∩ Pref(σ(A));

• the graph Edom(ϕLs ),A
L (v) is connected for all s ∈ Suff∗(σ(A)).

Proof. Let us show that, in Proposition 4.85, we can replace the condition
“the initial factors are dendric in σ(L)” by “the initial factors are connected
in σ(A)c” with c 6∈ A \ S.

Let u be an initial factor. If σ(L) is dendric, then u is connected in
σ(L). Moreover, its extension graph in σ(A)c is obtained by identifying in
Eσ(L)(u) the right vertices in S to c 6∈ A\S. In particular, this graph is also
connected.

Conversely, assume that the conditions on EL(v) are satisfied for all
v ∈ L and that the initial factors are connected in σ(A)c. As in the proof
of Proposition 4.85, this implies that the extended images are dendric. To
conclude that σ(L) is dendric, it then suffices to show that the initial factors
are connected in σ(L) by Proposition 4.1.

Let u be an initial factor. Observe that u has a right extension in S if
and only if u ∈ Suff∗(σ(A)). Clearly, if u 6∈ Suff∗(σ(A)), then its extensions
in σ(L) and its extensions in σ(A)c coincide so u is connected in σ(L) by
hypothesis. Assume now that u ∈ Suff∗(σ(A)). Observe that EA,Sσ(L)(u) is

the image of Edom(ϕLu ),A
L (ε) under the graph morphism induced by ϕLu acting

on the left vertices and ϕRε acting on the right vertices. Since Edom(ϕLu ),A
L (ε)

is connected by hypothesis, this shows that any two right vertices in S
in Eσ(L)(u) are connected. Recall that the graph Eσ(A)c(u) is obtained by
identifying in Eσ(L)(u) the right vertices in S to c. We then conclude that if
two vertices are connected in Eσ(A)c(u), then they are connected in Eσ(L)(u).
This ends the proof that u is connected in σ(L).

In the previous result, we are considering the extension graph of an
initial factor w in a finite factorial set Q. Recall that it is understood as
the bipartite graph generated by the extensions of w in Q, i.e., the pairs
(a, b) such that awb ∈ Q. In particular, this graph has no isolated vertices
meaning that its left (resp., right) vertices are not necessarily the left (resp.,
right) extensions of w in Q.

The idea of looking at the extensions of the initial factors in σ(A)c comes
from the study of Arnoux-Rauzy languages. Indeed, we have the following
equivalences.
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Proposition 4.87. Let σ : A∗ → B∗ be a return morphism for S ⊆ B, let L
be an Arnoux-Rauzy language over A and let c 6∈ B \ S. The initial factors
are dendric (resp., connected) in σ(L) if and only if they are dendric (resp.,
connected) in σ(A)c.

Proof. Let u be an initial factor. If u 6∈ Suff∗(σ(A)), then its extensions
in σ(L) and σ(A)c coincide so the conclusion is direct. Assume now that
u ∈ Suff∗(σ(A)), i.e., u has at least one right extension in S.

Recall that EA,Sσ(L)(u) is the image of Edom(ϕLu ),A
L (ε) under the graph mor-

phism induced by ϕLu on the left and ϕRε on the right. Since L is an Arnoux-

Rauzy language, in Edom(ϕLu ),A
L (ε), there exists at most one right vertex hav-

ing multiple left neighbors and all the right vertices have a common left
neighbor `. Therefore, the same can be said for the graph EA,Sσ(L)(u), replac-

ing ` by ϕLu (`). This shows that, in Eσ(L)(u), at most one right vertex in S is
not of degree 1 and all the right vertices in S have a common neighbor. We
conclude that Eσ(L)(u) is acyclic (resp., connected) if and only if its image
Eσ(A)c(u) under the graph morphism identifying the right vertices in S is
acyclic (resp., connected).

Corollary 4.88. Let σ : A∗ → A∗ (assuming that A is the smallest image
alphabet) be a return morphism for S ⊆ A. The following assertions are
equivalent:

1. for all (resp., for one) Arnoux-Rauzy language L over A, the image
σ(L) is dendric;

2. there exists a dendric language L over A such that σ(L) is dendric;

3. for any (resp., for one) c 6∈ A \ S, the initial factors are connected in
σ(A)c;

4. for any (resp., for one) c 6∈ A \ S, the initial factors are dendric in
σ(A)c.

Proof. The first assertion directly implies the second one, which implies
the third one by Proposition 4.86. Since the elements of an Arnoux-Rauzy
language are ordinary, the third assertion implies the first one by Proposi-
tion 4.86 once again. Finally, the equivalence with the last assertion follows
from Proposition 4.87.

Example 4.89. Let σ be the morphism defined by σ(0) = 01, σ(1) = 011
and σ(2) = 2. It is a return morphism for {0, 2} and the initial factors are
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Figure 4.9: The extension graphs of ε, 1 and 11 in σ(A)0 for the morphism
σ of Example 4.89 and A = {0, 1, 2}.

ε, 1 and 11. Let us take c = 0 and look at the extension graphs of the initial
factors in σ({0, 1, 2})0. Their extension graphs are represented in Figure 4.9.
We then see that σ satisfies the equivalent conditions of Corollary 4.88.

Using Proposition 4.82, or more specifically, its proof, we can restate the
characterizations of Propositions 4.85 and 4.86 using the graphs GL(L) and
GR(L) as follows.

Corollary 4.90. Let σ : A∗ → B∗ be a return morphism for S ⊆ B and L
be a dendric language over A. The image σ(L) is dendric if and only if the
initial factors are dendric in σ(L) and the following conditions are satisfied:

• for all s ∈ Suff∗(σ(A)), the subgraph of GL(L) generated by the vertices
in dom(ϕLs ) is connected;

• for all p ∈ B+ ∩ Pref(σ(A)), the subgraph of GR(L) generated by the
vertices in dp is connected.

Corollary 4.91. Let σ : A∗ → A∗ (assuming that A is the smallest image
alphabet) be a return morphism for S ⊆ A and L be a dendric language over
A. The image σ(L) is dendric if and only if the initial factors are connected
in σ(A)c for c 6∈ A \ S and the following conditions are satisfied:

• for all s ∈ Suff∗(σ(A)), the subgraph of GL(L) generated by the vertices
in dom(ϕLs ) is connected;

• for all p ∈ A+ ∩ Pref(σ(A)), the subgraph of GR(L) generated by the
vertices in dp is connected.
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This final result shows that, if σ stays on the same alphabet (or more
generally, an alphabet of the same size) the preservation of dendricity only
depends on the morphism σ and on the graphs GL(L) and GR(L), as in
the case of a return morphism for a word. Without this condition on the
alphabet sizes, we moreover need to know L2 = ACL(S) ∩ L to determine
the dendricity of the initial factors.

Example 4.92. Let us continue Example 4.89 with the morphism σ such
that σ(0) = 01, σ(1) = 011 and σ(2) = 2. We easily check that the only non
trivial value of dom(ϕLs ) is when s = 1 and dom(ϕL1 ) = {0, 1}. Similarly,
the only non trivial dp is when p ∈ {0, 01} and we then have dp = {0, 1}.
By Example 4.89, σ satisfies the conditions of Corollary 4.88 so, by Corol-
lary 4.91, we conclude that, if L is a dendric language over {0, 1, 2}, then
σ(L) is dendric if and only if both GL(L) and GR(L) contain the edge {0, 1}.

4.5 What about eventual dendricity?

We now turn to the question of preserving eventual dendricity, for one or
for all eventually dendric languages. Based on the previous section, we
can directly deduce that return morphisms for a word preserve eventual
dendricity.

Proposition 4.93. Let σ : A∗ → B∗ be a return morphism for w. If L is an
eventually ordinary language of threshold N over A, then σ(L) is eventually
dendric of threshold at most ‖σ‖(N + 1) + |w| − 1.

Proof. Observe that the initial factors are of length at most ‖σ‖+ |w| − 2.
Therefore, if u ∈ σ(L) is such that |u| ≥ ‖σ‖(N + 1) + |w| − 1, then u is
an extended image of some v ∈ L. By definition, u is an internal factor of
σ(avb)w for some a, b ∈ A so |v| ≥ N . By Corollary 4.78, u is dendric.

Using Theorem 3.42 on the stability of eventual dendricity under deriva-
tion, we deduce the following equivalence.

Corollary 4.94. Let σ : A∗ → B∗ be a return morphism for w and L be
a language over A. The language L is recurrent eventually dendric if and
only if σ(L) is.

In particular, this shows that, contrary to the results presented in Sec-
tion 4.1 for dendricity, there is no constraint on the alphabet sizes to preserve
eventual dendricity, even with the injectivity hypothesis.
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Return morphisms for a word, and more generally, return morphisms for
a set are particular examples of recognizable morphisms. Recognizability of
a morphism can be understood as the fact that we can uniquely determine
the pre-image of any bi-infinite word, sometimes restricting ourselves to
pre-images in a given shift space. An important result on recognizability is
Mossé’s Theorem (see [BPR23] for the most general statement so far in the
substitutive case, and [BPRS23] for the S-adic case).

Definition 4.95. Let X ⊆ AZ be a shift space. A morphism σ : A∗ → B∗ is
recognizable on X if, for all y ∈ σ(X), there exists exactly one pair (x, k) ∈
X × N such that 0 ≤ k < |σ(x0)| and y = Sk(σ(x)).

Observe that if Y ⊆ X and if σ is recognizable on X, then σ is recogniz-
able on Y . In particular, if σ is recognizable on AZ, then it is recognizable
on any shift space. We then say that σ is recognizable.

In this section, we therefore sometimes talk about shift spaces instead
of languages. Recall that any language corresponds to a shift space and
conversely. We will prove that non-erasing recognizable morphisms preserve
eventual dendricity. More generally, we show that preservation of eventual
dendricity can be reduced to preservation of eventual dendricity under a
letter-to-letter morphism, and in the case of recognizable morphisms, this
morphism induces a topological conjugacy. The results presented here were
done in collaboration with J. Leroy and P. Stas.

Any non-erasing morphism can be written as the composition of a partic-
ular morphism and a letter-to-letter morphism. Indeed, if σ : {a1, . . . , ak}∗ →
B∗, then σ = γ ◦ τ if we define

τ(ai) = ai,1 · · · ai,|σ(ai)|

and
γ(ai,j) = σ(ai)j

where ai,j 6= ai′,j′ if i 6= i′ or j 6= j′. Such a morphism τ preserves eventual
dendricity as shown in the following lemma inspired by discussions with B.
Espinoza.

Lemma 4.96. Let A = {a1, . . . , ak} and (`i)1≤i≤k be a vector of lengths
such that `i ≥ 1 for all i. Let τ be a morphism such that, for all i,
τ(ai) = ai,1 · · · ai,`i where ai,j 6= ai′,j′ if i 6= i′ or j 6= j′. Then L ⊆ A∗
is an eventually dendric language if and only if τ(L) is eventually dendric.
Moreover, if N and M are the threshold of L and τ(L) respectively, then
M ≤ max{1, ‖τ‖(N − 1) + 1}.
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Proof. Let L ⊆ A∗ be a language and let u ∈ τ(L) \ {ε}. If u1 = ai,j with
j 6= 1, then u is always preceded by ai,j−1 in τ(L). Similarly, if u|u| = ai,j
with j 6= `i, then u is always followed by ai,j+1. In other words, if u is
bispecial, there exists v ∈ L such that u = τ(v) and u can only be preceded
(resp., followed) by letters of the form ai,`i (resp.,ai,1). Moreover,

(ai,`i , aj,1) ∈ Eτ(L)(u) ⇐⇒ (ai, aj) ∈ EL(v)

so u is dendric if and only v is. This shows that L is eventually dendric if
and only if τ(L) is. Moreover, if L is eventually dendric of threshold N and
|u| ≥ ‖τ‖(N − 1) + 1, then u is not bispecial or u = τ(v) with |v| ≥ N so u
is dendric.

The key of preserving dendricity resides then in the letter-to-letter mor-
phism γ. Any letter-to-letter morphism induces a factor map between any
shift space X and its image. However, when σ is recognizable on X, then the
corresponding morphism γ induces a topological conjugacy between τ(X)
and σ(X). This implies that X is eventually dendric if and only if σ(X) is.
This is detailed in the following result.

Proposition 4.97. Let X ⊆ AZ be a shift space and σ : A∗ → B∗ be a
non-erasing recognizable morphism on X. Then X is eventually dendric if
and only if σ(X) is.

Proof. Assume that A = {a1, . . . , ak} and let us define the morphisms τ and
γ as follows:

τ(ai) = ai,1 · · · ai,|σ(ai)|

and

γ(ai,j) = σ(ai)j

where ai,j 6= ai′,j′ if i 6= i′ or j 6= j′. Then σ = γ ◦ τ . Let us show that
γ induces a topological conjugacy between τ(X) and σ(X). We denote
C = ∪i{ai,j : j ≤ |σ(ai)|} and ϕ : CZ → BZ such that for all x ∈ CZ and
n ∈ Z

ϕ(x)n = γ(xn).

By definition, for any x ∈ CZ, we have ϕ(x) = γ(x) so ϕ(τ(X)) = σ(X).
Therefore, by the Curtis-Hedlund-Lyndon theorem (Theorem 2.13), ϕ|τ(X)

is a factor map between τ(X) and σ(X). Let us show that it is a conjugacy.
Let y, y′ ∈ τ(X) with y 6= y′. By definition of τ , there exist unique x ∈ X,
k < |τ(x0)| such that y = Sk(τ(x0)) and unique x′ ∈ X, k′ < |τ(x′0)| such
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that y′ = Sk
′
(τ(x′0)). Moreover, x 6= x′ or k 6= k′. Since ϕ commutes with

the dynamics, we then have

ϕ(y) = ϕ(y′) ⇐⇒ ϕ(Sk(τ(x))) = ϕ(Sk
′
(τ(x′)))

⇐⇒ Sk(ϕ(τ(x))) = Sk
′
(ϕ(τ(x′)))

⇐⇒ Sk(σ(x)) = Sk
′
(σ(x′)).

This shows that ϕ is injective if and only if σ is recognizable on X. In this
case, we then conclude that σ(X) is eventually dendric if and only if τ(X)
is by stability under topological conjugacy (Theorem 2.20), if and only if X
is by Lemma 4.96.

For non-recognizable morphisms on the other hand, σ(X) can be even-
tually dendric even if X is not. Indeed, if there exists v such that σ(a) is a
power of v for all a, then σ(X) is eventually dendric, independently of the
shift space X.

It is not known however if the converse is true, i.e., if X can be even-
tually dendric but not σ(X). This question is equivalent to stability under
topological factorization as stated below.

Proposition 4.98. The following assertions are equivalent.

1. Eventual dendricity is stable under topological factorization.

2. Eventual dendricity is stable under image by any non-erasing mor-
phism.

3. Eventual dendricity is stable under image by any letter-to-letter mor-
phism identifying two letters.

Proof. Using the notations of the proof of Proposition 4.97, σ(X) is a factor
of τ(X). Therefore, if eventual dendricity is stable under topological fac-
torization, then it is preserved when taking the image under a non-erasing
morphism by Lemma 4.96.

If it is stable for any non-erasing morphism, it is clearly stable for any
letter-to-letter morphism.

Conversely, if eventual dendricity is preserved by letter-to-letter mor-
phisms identifying two letters, then it is preserved by any letter-to-letter
morphism since they can be obtained as compositions of morphisms identi-
fying two letters and permutations. Moreover, if Y is a factor of X, then
Y is the image of the higher block shift space X(N), N ≥ 1, under some
letter-to-letter morphism. This implies that, if X is eventually dendric, so is
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X(N) (Theorem 2.20) and Y by hypothesis. Therefore, eventual dendricity
is stable under topological factorization.

While we do not know if the assertions of the previous proposition are
(all) true or false, we end this section with a partial result obtained with J.
Leroy and P. Stas.

Proposition 4.99. Let L ⊆ AZ be an eventually dendric language and
γ : A∗ → B∗ be a letter-to-letter morphism.

1. The language γ(L) is eventually dendric if and only if it is eventually
connected.

2. There exists M ≥ 0 such that if v ∈ (γ(L))≥M is not connected, then
γ−1(v) contains no left special nor right special word in L.

Proof. Since L is eventually dendric, it has eventually affine factor complex-
ity so the factor complexity of γ(L) is at most linear (Proposition 3.7). By
Proposition 2.30, this shows that γ(L) is eventually dendric if and only if it
is eventually connected.

We now turn to the second claim. Since L is eventually right ordinary
by Proposition 2.26, there exists N ≥ 0 and u(1), . . . , u(k) ∈ AN such that
for all n ≥ N , their length-n prefixes are the k length-n left special words
of L.

Let i ≤ k and let us consider the left extensions of the images of the

prefixes of u(i). Since ELγ(L)(γ(u
(i)
[0,n+1))) ⊆ ELγ(L)(γ(u

(i)
[0,n))) for all n ∈ N,

there exists Ni ≥ N such that, for all n ≥ Ni, we have ELγ(L)(γ(u
(i)
[0,n))) =

ELγ(L)(γ(u
(i)
[0,Ni)

)). In particular, γ(u
(i)
[0,n)) is then connected since its left

extensions can all be extended on the right by γ(u
(i)
n ).

If we set ML = max{Ni : i ≤ k}, then for all v ∈ (γ(L))≥ML , if γ−1(v)

contains a left special word, then there exists i ≤ k such that v = γ(u
(i)
[0,|v|))

so v is connected by definition of ML.
We can symmetrically define MR such that, for all v ∈ (σ(L))≥MR , if

γ−1(v) contains a right special word, then v is connected. We conclude by
taking M = max{ML,MR}.

4.6 Open questions

This chapter is centered around one broad open question stated in the in-
troduction and that we naturally recall here.
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Question 4.1. Given a dendric language L, can we characterize the mor-
phisms σ such that σ(L) is dendric? Alternatively, given a morphism σ, can
we characterize the dendric languages L such that σ(L) is dendric?

While the techniques presented in Section 4.4 are quite specific to re-
turn morphisms, one could hope to use a similar approach for families of
morphisms having nice properties with respect to recognizability.

We will however focus here on questions which seem simpler to tackle.
The first questions are based on the study of possible alphabet sizes done
in Section 4.1. As we already mentioned, if L is a recurrent Arnoux-Rauzy
language on an alphabet of size at least 3 and σ is a non-erasing morphism
such that σ(L) is dendric, then σ(L) cannot be on a binary alphabet [JP02].
We therefore ask the question below.

Question 4.2. Let L be a recurrent Arnoux-Rauzy language on an alphabet
of size k and let σ be a non-erasing morphism. If σ(L) is dendric, can L be
over an alphabet of size ` 6∈ {1, k}?

On the other hand, we showed in Proposition 4.3 that, if we consider
languages of RIET for some specific orders in the previous question, any
size ` ∈ [1, k] can be obtained. This leads to our next question.

Question 4.3. Given a dendric language L over an alphabet of size k,
can we determine the sizes ` ∈ [1, k] for which there exists a non-erasing
morphism σ such that σ(L) is a dendric language over an alphabet of size
`?

Languages of RIET and Arnoux-Rauzy languages often present exam-
ples of antagonist extreme behaviors among dendric languages. In partic-
ular, they have completely different graphs GL(L) and GR(L). Indeed, for
Arnoux-Rauzy languages, they are complete graphs (of minimal diameter)
while, for languages of RIET, they are line graphs (of maximal diameter).
Therefore, the answer to the previous question could be related to the graphs
GL(L) and GR(L).

We now restrict ourselves to injective morphisms. Indeed, we proved in
Proposition 4.6 that, for any alphabetsA and B such that #A−1

#B−1 is an integer,
we could find an injective morphism σ and a dendric language L over A such
that σ(L) is a dendric language over B. However, if 1 < #A−1

#B−1 < 2, this is
impossible by Proposition 4.7 (we can even slightly reduce the conditions).
This raises the following question.
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Question 4.4. Let σ be an injective morphism for which there exists a
dendric language L over A such that σ(L) is a dendric language over B. Do
we have #A−1

#B−1 ∈ N?

We now turn to some questions on Section 4.2. Indeed, we fully charac-
terized the non-erasing morphisms which preserved dendricity for all den-
dric languages. The erasing case however has not been considered at all.
Clearly, if a morphism is periodic (i.e., the image of any language is either
not a language or it is a periodic language), then we can easily determine
if it is dendric preserving. The question is therefore more interesting in the
aperiodic case.

Question 4.5. Can an aperiodic erasing morphism be dendric preserving?
More precisely, can we find an erasing morphism σ : A∗ → B∗, #B ≥ 2, such
that the image of any dendric language over A is either not a language or
it is a dendric language over B, and there exists a dendric language over A
whose image is an aperiodic language?

In fact, even the following simpler version of this question is still open
(at least, to our knowledge).

Question 4.6. Can an aperiodic erasing morphism preserve dendricity for
one language? More precisely, can we find an erasing morphism σ : A∗ → B∗
and a dendric language over A whose image is an aperiodic dendric language
over B?

In Section 4.2, we also recalled that if σ is a dendric return morphism
for a letter, then it is tame and therefore admits a decomposition into ele-
mentary morphisms. Moreover, by Proposition 4.45, all of the intermediary
morphisms of this decomposition are return morphisms for a set of letters. It
is likely that a similar result exists for dendric return morphisms for a word
however the precise statement of the general version of Proposition 4.45 is
unclear.

Question 4.7. Let γ be an elementary morphism and let τ be a tame
morphism such that σ = γ ◦ τ is a return morphism for the set S. Is τ a
return morphism for a set S′ and can we determine S′ based on γ and S?

A positive answer would lead to the description of an automaton accept-
ing the elementary decompositions of the tame return morphism for a given
set S, as in Corollary 4.46.

We end with a question that we have already mentioned and discussed
in Section 4.5. It was first asked by Dolce and Perrin in [DP21].
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Question 4.8. Is the family of eventually dendric shift spaces stable un-
der topological factorization? Equivalently, is eventual dendricity preserved
when applying a letter-to-letter morphism?



Chapter 5

S-adic characterizations

The morphisms L0 and L1 presented in Subsection 4.2.1 do not only generate
Sturmian morphisms (with their “R” counterparts) but they also generate
the Sturmian languages. Indeed, we have the following well-known result
(see [Fog02] for example).

Proposition 5.1. A language L ⊆ {0, 1}∗ is recurrent Sturmian if and
only if there exists a non-eventually constant sequence (an)n≥0 ∈ {0, 1}N
such that

L =
⋃
n≥0

Fac(La0 · · ·Lan({0, 1}))

where

L0 :

{
0 7→ 0

1 7→ 01
and L1 :

{
0 7→ 10

1 7→ 1
.

The sequence (Lan)n≥0 is then called an S-adic representation of L.
More generally, an S-adic representation of a language L ⊆ A∗0 is a sequence
of morphisms σn : A∗n+1 → A∗n, n ≥ 0, such that

L =
⋃
n≥0

Fac(σ0 · · ·σn(An+1)).

If we moreover want to emphasize the fact that the morphisms σn, n ≥ 0,
all belong in some family S, we talk about S-adic representations.

While S-adic representations are mostly studied from the symbolic dy-
namics viewpoint due to their historical link with Bratelli-Vershik diagrams,
we chose to speak here in terms of languages to be coherent with the rest of
this work.

143
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If all the morphisms of an S-adic representation are equal, we natu-
rally recover the classical notion of a morphism generating a language. Ob-
serve that, in the definition of a language generated by a morphism (Defini-
tion 1.11), we chose to restrict ourselves to languages generated by primitive
morphisms. Similarly, if (σn)n≥0 is an S-adic representation of a language
L, we have some natural conditions on the growth of letters under the mor-
phisms (σ0 · · ·σn)n≥0 since L is infinite. We do not detail these restrictions
here since, as we mostly consider uniformly recurrent languages in this chap-
ter, we will often restrict ourselves to primitive S-adic representations. This
is detailed in Section 5.1.

In this chapter, not only are we interested in S-adic representations,
we more specifically want to obtain results similar to Proposition 5.1 for
dendric related languages. Indeed, Proposition 5.1 shows how S-adic rep-
resentations can be used to characterize a family of languages, namely the
recurrent Sturmian languages. Such a result is naturally called an S-adic
characterization.

The Sturmian languages are not the only ones to admit a known S-adic
characterization. We present some of these results in Section 5.1.

The main goal of this chapter is however to characterize (recurrent)
dendric and eventually dendric languages. Therefore, in Section 5.2, we
give a constructive characterization of the S-adic representations generating
(eventually) dendric languages, for any set S of return morphims for a word.
These results were first stated for ternary alphabets in [GLL22] and for
general alphabets in [GL22].

We then use the characterization obtained in Section 5.2 to give S-adic
characterizations of some dendric related families in Section 5.3. Finally,
we show how this can be used to decide dendricity of uniformly recurrent
morphic languages in Section 5.4.

5.1 Quick overview of known S-adic characteriza-
tions

We present here several S-adic characterizations of known families of lan-
guages. The goal is to show the variety of results both in terms of families
of languages and of conditions on the S-adic representations. This does not
however claim to be an exhaustive list.

Like Sturmian languages, Arnoux-Rauzy languages admit a well-known
characterization which naturally generalizes Proposition 5.1.



5.1. Quick overview of known S-adic characterizations 145

Proposition 5.2 (Arnoux–Rauzy [AR91], Justin–Pirillo [JP02]). A lan-
guage L ⊆ A∗ is recurrent Arnoux-Rauzy if and only if it has an S-adic
representation (Lan)n≥0 where (an)n≥0 ∈ AN is a sequence in which each
letter of A appears infinitely many times.

We see here that the S-adic representations only use a finite set of mor-
phisms: the Arnoux-Rauzy morphisms presented in Section 4.2. Moreover,
there is a global condition (each Arnoux-Rauzy morphism appears infinitely
many times in the S-adic representation) which essentially ensures primitiv-
ity.

Definition 5.3. A sequence (σn : A∗n+1 → A∗n)n≥0 of morphisms is primitive
if, for all n ≥ 0, there exists K ≥ 1 such that all the letters of An appear in
σn · · ·σn+K−1(a) for all a ∈ An+K .

Since we mostly consider uniformly recurrent languages, the S-adic rep-
resentations presented in this section and in the following ones are primitive.
In fact, it is well-known that if a language admits a primitive S-adic rep-
resentation, then it is uniformly recurrent. The converse is also true as we
will recall in Proposition 5.7.

Another classical S-adic characterization was given by Durand in [Dur00,
Dur03]. It concerns the family of linearly recurrent languages, i.e., the lan-
guages L for which there exists a constant K such that each u ∈ L is a
factor of all v ∈ LK|u|. It is a stronger version of uniform recurrence. We
first state this characterization.

Proposition 5.4. A language L is linearly recurrent if and only if it has
a strongly primitive S-adic representation where S is a finite set of proper
morphisms.

For clarity, we give a brief definition of the new concepts appearing in
the previous statement.

• A sequence (σn : A∗n+1 → A∗n)n≥0 of morphisms is strongly primitive
if there exists a constant K such that, for all n, all the letters of An
appear in σn · · ·σn+K−1(a) for all a ∈ An+K . Note the difference with
the classical notion of primitivity.

• A morphism σ : A∗ → B∗ is proper if there exist b, c ∈ B such that
σ(a) ∈ bB∗ ∩ B∗c for all a ∈ A.

There is also an S-adic characterization of uniformly recurrent and ape-
riodic languages such that sn(L) ≤ 2 given by Leroy in [Ler12]. While tech-
nical, the main idea behind this result is the study of the evolution of Rauzy
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graphs encoded into a “graph of graphs” in which we can read the S-adic
representations. We will in fact do a similar construction in Section 5.2.

From a more dynamical viewpoint, we mention also the following S-adic
characterization.

Proposition 5.5 (Donoso–Durand–Maass–Petite [DDMP21]). A shift space
X is conjugate to an expensive finite topological rank minimal Cantor system
if and only if it has a primitive S-adic representation (σn : A∗n+1 → A∗n)n≥0

such that #An is bounded and, for all N ≥ 0, σN is recognizable on the shift
space generated by (σn)n>N .

The most recent result on S-adic representations is the answer to a fa-
mous conjecture in the field called the S-adic conjecture. This conjecture is
attributed to Host and claims the existence of an S-adic characterization of
languages of complexity in O(n). Espinoza recently proved it in [Esp23] in
the case of uniformly recurrent languages.

Proposition 5.6. A uniformly recurrent language L satisfies pL(n) ∈ O(n)
if and only if it has an S-adic representation (σn : A∗n+1 → A∗n)n≥0 satisfying
the following conditions:

• there exists c1 such that ‖σn‖ ≤ c1 for all n ≥ 0,

• there exists c2 such that ‖σ0 · · ·σn‖ ≤ c2 ·mina∈An+1 |σ0 · · ·σn(a)| for
all n ≥ 0,

• there exists c3 such that, for all n ≥ 0, there exist a set Cn ⊆ A∗0 of c3

words such that σ0 · · ·σn(An+1) ⊆
⋃
w∈Cn{w}

∗.

An S-adic characterization also sometimes naturally follows from the
definition of the languages as is the case for families related to continued
fraction algorithms. We for example mention the uniformly recurrent Cas-
saigne languages (or sequences) which are known to be dendric [CLL22].

5.2 The case of (eventually) dendric languages

We now turn to the search of an S-adic characterization of dendric and
eventually dendric languages. A classical method to obtain S-adic represen-
tations of a language is the iterated use of derivation. It was first implic-
itly mentioned by Durand for the study of substitutive sequences [Dur98].
Namely we have the following now folklore result.
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Proposition 5.7. Let L be a uniformly recurrent language. If the sequence
(L(n))n≥0 of languages and the sequence (σn)n≥0 of morphisms are such
that L(0) = L and for all n ≥ 0, there exists w(n) ∈ L(n) \ {ε} such that
L(n+1) = Dw(n)(L(n)) and σn is the morphism such that L(n) = σn(L(n+1)),
then (σn)n≥N is a primitive S-adic representation of L(N) for all N ≥ 0.

In fact, the construction of Proposition 5.7 corresponds to the S-adic
representations used in the S-adic characterization of recurrent Sturmian
languages (Proposition 5.1) and recurrent Arnoux-Rauzy languages (Propo-
sition 5.2) for well-chosen words w(n) (more precisely, when w(n) is the unique
bispecial letter of L(n)).

In the case where the language L is eventually dendric of threshold N ,
the intermediary languages L(n) of Proposition 5.7 are eventually dendric
as well by Theorem 3.42, and L(n) is even dendric for all n ≥ N . Because
of the number of return words given in Corollary 3.32, we can also assume
that all L(n), n ≥ N , are on the same alphabet.

In particular, this implies that every recurrent dendric language has an
S-adic representation using exclusively dendric return morphisms for a word
(recall that a return morphism for a word is dendric if the initial factors are
dendric). However, not every sequence of dendric return morphisms for a
word generates a dendric language. The goal of this section is to characterize
the sequences that do.

The main idea is based on the following observation: if L is dendric and
(σn)n≥0 is an S-adic representation built as in Proposition 5.7, then for all n,
σn is a return morphism for a word and both L(n+1) and σn(L(n+1)) = L(n)

are dendric. Therefore, σn satisfies some conditions related to GL(L(n+1))
and GR(L(n+1)) given by Proposition 4.82.

In Subsection 5.2.1, we therefore take a closer look at the graphs GL(L)
and GR(L) and their evolution when applying a return morphism. Using
this, we then build a graph in Subsection 5.2.2 and show that it can be
used to characterize the sequences of return morphisms generating recurrent
(eventually) dendric languages. This graph can be simplified and this is what
we do in Subsection 5.2.3.

In this section, we will often say “return morphism” instead of “return
morphism for a word” as we exclusively work with these morphisms.

5.2.1 Back to the graphs GL and GR

Let us recall the statement of Proposition 4.82.
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Proposition 4.82. Let σ : A∗ → B∗ be a return morphism for w and L be
a dendric language over A. The extended images of all v ∈ L are dendric
in σ(L) if and only if the following conditions are satisfied:

• for all s ∈ Suff∗(σ(A)), the subgraph of GL(L) generated by the vertices
in dom(ϕLs ) is connected;

• for all p ∈ wB∗ ∩ Pref∗(σ(A)w), the subgraph of GR(L) generated by
the vertices in dom(φRp ) is connected.

The image σ(L) is then dendric if and only if, moreover, σ is a dendric
return morphism for a word.

While we can easily check if the conditions of this result are satisfied
by a given return morphism σ and some given graphs GL(L) and GR(L)
for some language L, the more complicated part is finding these two graphs
corresponding to a given language L.

Luckily, the graphs GL(L) and GR(L) have two major properties re-
garding return morphisms. The first one, as we saw in Proposition 4.82,
is that they can be used to characterize dendric languages whose images
under a given return morphism are dendric. The second one, as we will
now show, is that their evolution when applying a return morphism is well
understood. In other words, there exists a constructive method to obtain
GL(σ(L)) from GL(L) and GR(σ(L)) from GR(L). This is described in the
following definition.

Definition 5.8. Let G be the multi-clique GA({C1, . . . , Ck}) (see Defini-
tion 2.48) and σ : A∗ → B∗ be a return morphism for a word w. The left
image of G under σ is the multi-clique

σL(G) = GB({ϕLs (Ci) : i ≤ k, s ∈ Suff∗(σ(A))})

and the right image of G under σ is the multi-clique

σR(G) = GB({φRp (Ci) : i ≤ k, p ∈ wB∗ ∩ Pref∗(σ(A)w)}).

Recall that ϕLs (a) = b if bs ∈ Suff(σ(a)) and φRp (a) = b if pb ∈ Pref(σ(a)w).

Note that the left and right images do not depend on the choice of the
word w for which σ is a return morphism by Proposition 4.33.

Example 5.9. Let A = {0, 1, 2, 3} and σ be the morphism of Example 4.83,
i.e., σ(0) = 20, σ(1) = 20221, σ(2) = 202 and σ(3) = 20203. It is a dendric
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0 1

23

0 1

23

Figure 5.1: The graphs G = G({{0, 3}, {1, 2, 3}}) (on the left) and σR(G)
(on the right) for the morphism σ of Example 5.9.

return morphism for 202. Since the only word s ∈ Suff∗(σ(A)) such that
#ϕLs (A) ≥ 2 is ε and ϕLε is the identity on A, we have σL(G) = G for any
multi-clique G since the cliques of size 1 do not impact the resulting graph.

Let us turn to the right images. Using Example 4.83, the only words
p ∈ 202A∗ such that #φRp (A) ≥ 2 are 202, 2020 and 2022 and the associated
partial maps on A are given by

φR202 :

{
0, 3 7→ 0

1, 2 7→ 2
, φR2020 :

{
0 7→ 2

3 7→ 3
and φR2022 :

{
1 7→ 1

2 7→ 0
.

Observe that if Ci contains at most one element in the domain of φRp , then

φRp (Ci) contains at most one element and does not impact the right image
of a graph. Therefore, if G = GA({{0, 3}, {1, 2, 3}}), then we have

σR(G) = GA
({
φR202({0, 3}), φR2020({0, 3}), φR202({1, 2, 3}), φR2022({1, 2, 3})

})
= GA({{2, 3}, {0, 2}, {0, 1}}).

These graphs are represented in Figure 5.1.

We now prove that this construction is indeed what allows us to obtain
GL(σ(L)) based on GL(L) (resp., GR(σ(L)) based on GR(L)).

Proposition 5.10. Let L be an eventually dendric language over A and
σ : A∗ → B∗ a return morphism for a word. If L′ = σ(L), then GL(L′) =
σL(GL(L)) and GR(L′) = σR(GR(L)).

Proof. Let N be such that L is eventually ordinary of threshold N and let
w be such that σ is a return morphism for w. By Proposition 4.93, L′ is
eventually dendric of threshold at most M ′ := ‖σ‖(N + 1) + |w| − 1. Let
M ≥M ′ be such that L′ is eventually ordinary of threshold at most M−‖σ‖.
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Let us prove the link between GL(L) and GL(L′), the proof for GR(L′) is
symmetric. By Proposition 2.61, GL(L) (resp., GL(L′)) is constructed with
the left special elements in LN (resp., L′M ). Let

D = {(s, v) ∈ B∗ × LN : #ϕLs (ELL(v)) ≥ 2}.

By definition, we then have

σL(GL(L)) = σL
(
GA({ELL(v) : v ∈ LN left special})

)
= GB({ϕLs (ELL(v)) : (s, v) ∈ D}).

On the other hand, we have

GL(L′) = GB({ELL′(u) : u ∈ L′M left special}).

To conclude that σL(GL(L)) = GL(L′), it then suffices to find a bijection f
between the length-M left special words of L′ and the elements of D such
that, if f(u) = (s, v), then

ELL′(u) = ϕLs (ELL(v)).

We claim that the application f defined as follows satisfies these prop-
erties: for any left special u ∈ L′M , f(u) is the pair (su, v) ∈ B∗ ×LN where
(su, vu, pu) is the triplet associated with u by Proposition 4.51 (i.e., u is an
extended image of vu and u = suσ(vu)pu) and v is the length-N prefix of
vu. Observe that u is indeed an extended image of a word of length at least
N since M ≥M ′ = ‖σ‖(N + 1) + |w| − 1.

Note first that, if f(u) = (s, v), then sσ(v)w is a prefix of u by definition.
Therefore, by Proposition 4.76 on the extensions of extended images,

ELL′(u) ⊆ ELL′(sσ(v)w) = ϕLs (ELL(v))

thus (s, v) is in D since u is left special.

Let us show that the application f is injective. If f(u) = f(u′) = (s, v),
then su = s = su′ and v is a prefix of both vu and vu′ . However, as u
and u′ are left special, vu and vu′ must be left special. As they have a
common length-N prefix and L is eventually ordinary of threshold N , the
only possibility is that one is prefix of the other. Let us assume without loss
of generality that vu is a prefix of vu′ . Then sσ(vu)w is a prefix of both u
and u′. Since u = sσ(vu)pu is of length M , sσ(vu)w is a left special factor
of length at least M − ‖σ‖. Since L′ is eventually ordinary of threshold at



5.2. The case of (eventually) dendric languages 151

most M −‖σ‖, sσ(vu)w is prefix of a unique left special factor of length M .
We then conclude that u = u′ and that f is injective.

We now prove the surjectivity. For any (s, v) ∈ D, v is in particular left
special so, by definition of N , there exists v′ ∈ vA∗ left special such that
|sσ(v′)w| ≥M and ELL(v′) = ELL(v). If u is the length-M prefix of sσ(v′)w,
then su = s and vu is a prefix of v′ of length at least N . Thus sσ(v)w is a
prefix of u. In addition, by Proposition 4.76, we have

ELL′(u) ⊇ ELL′(sσ(v′)w) = ϕLs (ELL(v′)) = ϕLs (ELL(v)).

In particular, u is left special by definition of D, so f(u) is well-defined and
f(u) = (s, v). This proves that f is surjective. Moreover, we now have
shown both inclusions thus ELL′(u) = ϕLs (ELL(v)) if f(u) = (s, v).

This result will play a major role in the next subsection but we first turn
to another application of Proposition 5.10. Indeed, it can be used to prove
the characterization of all possible graphs GL(L) and GR(L) for dendric
languages L. We showed in Section 2.4 that, if L is dendric, then GL(L)
and GR(L) are two acyclic for the coloring and connected multi-cliques.
We now show that these are the only restrictions on the graphs GL(L) and
GR(L), i.e., any pair of acyclic for the coloring and connected multi-cliques
corresponds to a dendric language. We first need the following lemma.

Lemma 5.11. Let C1, . . . , Ck ⊆ A and let D,E of cardinality at least 2 be
such that

D ∪ E = C1 and #(D ∩ E) = 1.

There exists a return morphism σ for a letter such that, for any eventu-
ally dendric language L, if GL(L) = GA({C1, . . . , Ck}), then GL(σ(L)) =
GA({D,E,C2, . . . , Ck}) and GR(σ(L)) = GR(L), and if moreover L is den-
dric, then σ(L) is dendric.

Similarly, there exists a return morphism σ for a letter such that, for
any eventually dendric language L, if GR(L) = GA({C1, . . . , Ck}), then
GL(σ(L)) = GL(L) and GR(σ(L)) = GA({D,E,C2, . . . , Ck}), and if more-
over L is dendric, then σ(L) is dendric.

Proof. Let us denote {c} = D ∩E. We first introduce a classification of the
cliques Ci, i ≥ 2. The cliques of type 1 are recursively defined as follows:

• if Ci ∩D 6= ∅, i ≥ 2, then Ci is of type 1,

• if there exists Cj , j ≥ 2, of type 1 such that Ci ∩ Cj 6= ∅, i ≥ 2, then
Ci is of type 1.
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We then say that Ci, i ≥ 2, is of type 2 if it is not of type 1. This defines a
partition of A into four parts: {c},

V :=

D ∪ ⋃
Ci of type 1

Ci

 \ {c}, V ′ :=

E ∪ ⋃
Ci of type 2

Ci

 \ {c}
and the set V ′′ of the remaining (necessarily isolated) vertices. We then
define the morphism σ as follows: let b ∈ D \ {c}, then

σ :


c 7→ c

a 7→ ca if a ∈ V ∪ V ′′

a 7→ cab if a ∈ V ′
.

It is a return morphism for c. Moreover, we directly see that the only right
special letter in σ(A)c is c which implies that σ is a dendric return morphism.

Assume now that we have an eventually dendric language L such that
GL(L) = GA({C1, . . . , Ck}). We first show that GR(σ(L)) = GR(L). We
easily see that the only word p ∈ cA∗ such that #φRp (A) ≥ 2 is c. Since

we then have φRc = id over A, we conclude that GR(σ(L)) = GR(L) by
Proposition 5.10.

We now turn toGL(σ(L)). The only words s ∈ A∗ such that #ϕLs (A) ≥ 2
are ε and b. Therefore, by Proposition 5.10, we know that

GL(σ(L)) = GA({ϕLε (Ci) : i ≤ k} ∪ {ϕLb (Ci) : i ≤ k}).

If Ci is of type 1 then Ci ⊆ {c} ∪ V so #ϕLb (Ci) ≤ 1 and ϕLε (Ci) = Ci. If Ci
is of type 2 then Ci ⊆ V ′ so #ϕLε (Ci) = 1 and ϕLb (Ci) = Ci. We now look
at C1. By definition, we have

ϕLε (C1) = D and ϕLb (C1) = E

which shows that GL(σ(L)) = GA({D,E,C2, . . . , Ck}).
Assume now that, moreover, L is dendric and let us show that σ(L) is

dendric. We already know that σ is a dendric morphism so let us turn to the
other conditions of the characterization of dendric images (Proposition 4.82).
We first look at the condition on GR(L). For all p ∈ cA∗, the set dp = {a ∈
A : p ∈ Pref∗(σ(a)c)} is either A (if p = c) or contains at most one element.
This shows that the second condition of Proposition 4.82 is directly satisfied.

We now turn to the condition on GL(L). It suffices to prove that the
subgraph of GL(L) generated by the vertices in dom(ϕLb ) = {a ∈ A : b ∈
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Suff∗(σ(a))} = V ′ ∪ {b} is connected. Let e ∈ E \ {c}, observe that e ∈ V ′.
We show that any d ∈ V ′ ∪ {b} is connected to e by a path entirely in
V ′ ∪ {b}. Clearly, if d ∈ E or d = b, then d ∈ C1 so {d, e} is an edge of
GL(L). We now turn to the other vertices. Since L is dendric, the graph
GL(L) is acyclic for the coloring and connected by Corollary 2.44. This
shows that d is connected to e. Moreover, since d ∈ Ci of type 2, we can
choose the path between d and e so that it does not use any vertex of D
or of any clique of type 1. We then conclude that the subgraph of GL(L)
generated by V ′∪{b} is connected, so the conditions of Proposition 4.82 are
satisfied and σ(L) is dendric.

For the case where GR(L) = GA({C1, . . . , Ck}), the proof is symmetric
but we consider the return morphism

σ :


c 7→ c

a 7→ ca if a ∈ V ∪ V ′′

a 7→ cba if a ∈ V ′

instead.

Proposition 5.12. Let G,G′ be two graphs whose vertices are the elements
of A. There exists a dendric language L over A such that GL(L) = G and
GR(L) = G′ if and only if the graphs G and G′ are acyclic for the coloring
and connected multi-cliques.

Proof. If there exists such a dendric language, then G and G′ are acyclic for
the coloring and connected multi-cliques by Corollary 2.44.

Assume now that G is an acyclic for the coloring and connected multi-
clique. By Remark 2.52, G can be obtained by applying a succession of split-
tings as in Lemma 2.51 (or Lemma 5.11) to the complete unicolor graph. Let
L be an Arnoux-Rauzy language over A. By definition, GL(L) and GR(L)
are complete unicolor graphs over A. We can then iterate Lemma 5.11 to
obtain a (return) morphism σ such that σ(L) is dendric, GL(σ(L)) = G and
GR(σ(L)) is the complete unicolor graph.

Using the same reasoning for G′, we can find a (return) morphism τ such
that τ(σ(L)) is dendric, GL(τ(σ(L))) = G and GR(τ(σ(L))) = G′, which
ends the proof.

Example 5.13. Let us build a dendric language L such that GL(L) =
G({{0, 1, 2, 3}}) andGR(L) = G({{0, 1}, {0, 2}, {2, 3}}). Let L′ be an Arnoux-
Rauzy language over {0, 1, 2, 3}. We first build a dendric language L′′ such
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that GL(L′′) = G({{0, 1, 2, 3}}) and GR(L′′) = G({{0, 1}, {0, 2, 3}}). To do
so, we can define the morphism

σ :


0 7→ 0

1 7→ 021

2 7→ 02

3 7→ 03

.

Using the notations of the proof of Lemma 5.11, it would correspond to
taking D = {0, 2, 3}, E = {0, 1} and b = 2. We then take L′′ = σ(L′) which
satisfies the desired properties. We now define

τ :


0 7→ 20

1 7→ 21

2 7→ 2

3 7→ 203

.

This time, it corresponds to D = {0, 2}, E = {2, 3} and b = 0. Finally, we
take L = τ(L′′) = τ ◦ σ(L′). It is a dendric language such that GL(L) =
G({{0, 1, 2, 3}}) and GR(L) = G({{0, 1}, {0, 2}, {2, 3}}). Observe that

τ ◦ σ :


0 7→ 20

1 7→ 20221

2 7→ 202

3 7→ 20203

is the morphism of Example 2.53. However, the sequence of splitting of
cliques to obtain GR(L) is different.

5.2.2 A graph of graphs

Based on Subsection 5.2.1, not only do we want σn to satisfy the conditions
related to GL(L(n+1)) and GR(L(n+1)) so that L(n) = σn(L(n+1)) is dendric,
but it must also give the correct graphs GL(L(n)) and GR(L(n)). This is
formalized below using the notion of left (resp., right) valid triplets.

Definition 5.14. Let σ : A∗ → B∗ be a return morphism for a word w.
The triplet (G′, σ,G) is left (resp., right) valid if the following conditions
are satisfied

1. σ is a dendric return morphism;
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2. G is an acyclic for the coloring and connected multi-clique;

3. for all x ∈ B∗, the subgraph of G generated by the vertices in dom(ϕLx )
(resp., dom(φRx )) is connected;

4. G′ = σL(G) (resp., G′ = σR(G)) is an acyclic for the coloring and
connected multi-clique.

We would like to stress the fact that the first element of the triplet is
the left (resp., right) image of the third one and not the converse. While it
may seem unnatural at first, it will soon make perfect sense.

Example 5.15. Let σ be the morphism such that σ(0) = 20, σ(1) = 20221,
σ(2) = 202 and σ(3) = 20203. By Examples 4.83 and 5.9, the triplet
(G, σ,G) is left valid for any acyclic for the coloring and connected multi-
cliqueG, and (G({{0, 1}, {0, 2}, {2, 3}}), σ,G({{0, 3}, {1, 2, 3}})) is right valid.

By definition, we directly have the following result which essentially im-
plies that valid triplets do what is asked of them.

Proposition 5.16. Let σ : A∗ → B∗ be a return morphism for a word, let
L be a dendric language over A and L′ = σ(L). Then L′ is dendric if and
only if (GL(L′), σ,GL(L)) is left valid and (GR(L′), σ,GR(L)) is right valid.

Proof. Since L is dendric, then GL(L) and GR(L) are acyclic for the coloring
and connected multi-cliques by Corollary 2.44. Moreover, since σ is a return
morphism, we have GL(L′) = σL(GL(L)) and GR(L′) = σR(GR(L)) by
Proposition 5.10.

By Proposition 4.82, σ(L) is dendric if and only if σ is dendric and GL(L)
(resp., GR(L)) satisfies the third item of Definition 5.14 for left (resp., right)
valid triplets. The fourth items are then satisfied by Corollary 2.44.

In the context of S-adic representations, we will mostly be interested in
the following corollary.

Corollary 5.17. Let L be a dendric language and (σn)n≥0 be an S-adic
representation of L where each σn is a return morphism. For all N ≥ 0,
let also L(N) be the language generated by (σn)n≥N . Then for all n ≥ 0,
(GL(L(n)), σn, G

L(L(n+1))) is left valid and (GR(L(n)), σn, G
R(L(n+1))) is

right valid.

The previous result can be interpreted using graphs. Indeed, the fact
that (GL(L(n)), σn, G

L(L(n+1))) is left valid for all n means that the sequence
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(σn)n≥0 labels a path going through the sequence of vertices (GL(L(n)))n≥0

in a particular graph. The same can be said using the graphs GR(L(n)). We
define below these two graphs of graphs.

Definition 5.18. Let S be a set of return morphisms from A∗ to A∗. The
graph GL(S) (resp., GR(S)) is the graph whose vertices are the acyclic for
the coloring and connected multi-cliques on A and such that there is an edge
from G′ to G labeled by σ ∈ S if and only if (G′, σ,G) is a left (resp., right)
valid triplet.

If #A = 2, then GL(S) contains the unique vertex G({A}) and a loop
over this vertex labeled by each dendric return morphism in S. In this
particular case, we also have GR(S) = GL(S).

Remark 5.19. For any given return morphism, the set of corresponding
left (resp., right) valid triplets is finite and computable. Therefore, if S is
finite, then the graphs GL(S) and GR(S) are finite and computable.

Indeed, we can easily determine if σ is dendric or not. If it is not, then
there are no corresponding left (resp., right) valid triplets. If σ : A∗ →
B∗ is dendric, then we can easily generate the acyclic for the coloring and
connected acyclic multi-cliques on A since they correspond to particular
simple graphs by Lemma 2.55 and Proposition 2.56. In particular, there are
only finitely many of them. For each such multi-clique G, we can then check
the third item of Definition 5.14 for left valid triplets and, if it is satisfied,
compute σL(G), which gives us the left valid triplet (σL(G), σ,G).

Observe also that, once we know whether σ is dendric or not, this
construction of all left valid triplets only depends on the set {ϕLs : s ∈
A∗,#ϕLs (A) ≥ 2} of maps and not on the morphism σ. We stress the fact
that only the maps matter, and not the corresponding words s.

We can similarly generate all the right valid triplets corresponding to σ
using only the set {φRp : p ∈ A∗,#φRp (A) ≥ 2}.

We now show that, not only do the S-adic representations of dendric
languages label infinite paths in these graphs, but these are the only S-adic
representations to do so, and we therefore have an S-adic characterization.
This is the main result of this section.

Theorem 5.20. Let S be a set of return morphisms for a word from A∗ to
A∗. A language L having an S-adic representation σ = (σn)n≥0 is recurrent
dendric if and only if σ is primitive and labels infinite paths in the graphs
GL(S) and GR(S).
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Proof. Assume that L is recurrent dendric. The morphisms of S being
return morphisms, the sequence σ is defined as in Proposition 5.7 and thus
is primitive. By Corollary 5.17 and by definition of the graphs GL(S) and
GR(S), we directly conclude that σ labels infinite paths in the graphs GL(S)
and GR(S).

Assume now that σ is primitive and labels a path (GLn)n≥0 in GL(S) and
a path (GRn )n≥0 in GR(S). Since σ is primitive, the language L is uniformly
recurrent. We now show that it is dendric.

For all N ≥ 0, let us denote L(N) the language generated by (σn)n≥N .
Recall that, by definition of an S-adic representation, L(n) = σn(L(n+1)) for
all n ≥ 0.

Let u ∈ L. Since L = σ0(L(1)), either u is an initial factor (for σ0) or it
is an extended image of some u(1) ∈ L(1) and the extensions of u are entirely
determined by the extensions of u(1) and σ0 by Proposition 4.76. Moreover,
|u(1)| < |u| so, by iterating this reasoning, there exist k ≥ 0 and u(k) ∈ L(k)

such that u(k) is an initial factor for σk. By Proposition 4.76, the extensions
of u in L are then entirely determined by the extensions of u(k) in L(k) and
by the morphism σ0 · · ·σk−1.

Since the extensions of u only depend on the morphism σ0 · · ·σk−1 and
the extensions of u(k), and the extensions of u(k) only depend on σk, to show
that u is dendric in L it suffices to prove that there exists a language L′ over
A such that σ0 · · ·σk(L′) is dendric.

By definition of the vertices of the graphs GL(S) and GR(S) and by
Proposition 5.12, there exists a dendric language L′ such that GL(L′) =
GLk+1 and GR(L′) = GRk+1. Since (σn)0≤n≤k labels a path in GL(S) (resp.,

GR(S)) ending in GLk+1 (resp., GRk+1), we deduce that σ0 · · ·σk(L′) is dendric

by Proposition 5.16 and by definition of the edges of GL(S) and GR(S).

We can then conclude that u is dendric for all u ∈ L, which ends the
proof that if L has a primitive S-adic representation labeling infinite paths
in GL(S) and GR(S), then L is recurrent dendric.

Remark 5.21. We have the exact same characterization if S contains (both
or either) left and right return morphisms. It suffices to naturally define the
edges labeled by right return morphisms: a right return morphism σ ∈ S
labels an edge from G to G′ in GL(S) (resp., GR(S)) if and only if the
corresponding left return morphism τ labels an edge from G to G′ in GL({τ})
(resp., GR({τ})). Indeed, for any word u, we have wσ(u) = τ(u)w if w is
such that σ is a right return morphism for w. Therefore, for any language
L, σ(L) = τ(L).
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Observe that the path labeled by σ in GL(S) and GR(S) is not neces-
sarily unique. Indeed, for example, a sequence of Arnoux-Rauzy morphisms
in S labels a path starting in any vertex of GL(S) (resp., GR(S)).

Let us now turn to the case of eventually dendric languages. As explained
in the introduction of this section, if σ (which only uses return morphisms)
is an S-adic representation of a recurrent eventually dendric language, then
there exists a suffix of σ which is an S-adic representation of a recurrent
dendric language by Theorem 3.42. Moreover, this is a characterization by
Corollary 4.94 so we directly obtain the following result.

Corollary 5.22. For all k ≥ 1, let Ak be an alphabet of size k and let S be
a set of return morphisms for a word such that, for all σ ∈ S, there exists
i, j ≥ 1 such that σ : A∗i → A∗j , Aj being minimal. For each k ≥ 1, let us
denote Sk the morphisms of S going from A∗k to A∗k.

A language L having an S-adic representation σ is eventually dendric
recurrent if and only if there exists a suffix σ′ of σ which is primitive and
labels infinite paths in GL(Sk) and GR(Sk) for some k.

Not only do we know that if L has an S-adic representation labeling
infinite paths in the graphs GL(S) and GR(S), then L is dendric, we can
also explicitly give its graphs GL(L) and GR(L). This is the object of the
following result.

Proposition 5.23. Let S be a set of return morphism for a word from A∗
to A∗, let L be a recurrent dendric language having an S-adic representation
σ = (σn)n≥0.

1. The sequence σ labels a path in GL(S) (resp., GR(S)) starting in
GL(L) (resp., GR(L)).

2. If σ labels a path in GL(S) (resp., GR(S)) starting in G, then G is a
subgraph of GL(L) (resp., GR(L)).

Proof. The first claim is a direct consequence of Corollary 5.17. For the
second claim, assume that σ labels the path (Gn)n≥0 in GL(S) and let us
show that G0 is a subgraph of GL(L).

By Proposition 2.57, there exists N such that GL(L) = GLN (L). As in the
proof of Theorem 5.20, if u is a length-N element of L, then its extensions
are entirely determined by σ0 · · ·σk for some k ≤ N . As it is true for all
u ∈ LN , this implies that, for any language L′, GLN (L) = GLN (σ0 · · ·σN (L′)).

Let L′ be a dendric language such that GL(L′) = GN+1. This exists
by Proposition 5.12. By construction of the graph GL(S) and by Proposi-
tion 5.10, we have GL(σ0 · · ·σN (L′)) = G0. Moreover, GL(σ0 · · ·σN (L′)) is
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a subgraph of GLN (σ0 · · ·σN (L′)) so we conclude that G0 is a subgraph of
GLN (L) = GL(L).

We similarly show that, if σ labels a path in GR(S) starting in G, then
G is a subgraph of GR(L).

The previous result therefore states that, out of all the possible starting
vertices for paths labeled by σ in GL(S), the graph GL(L) is the largest.
Alternatively, GL(L) is the union of all possible starting vertices in the sense
that its set of edges is the union of the sets of edges of the starting vertices.
This second viewpoint will reappear in the following subsection. Of course,
we have a similar interpretation for GR(L).

5.2.3 From graphs to trees

In the previous subsection, we defined the graphs GL(S) and GR(S) whose
vertices are the acyclic for the coloring and connected multi-cliques. By
Lemma 2.55, we have a bijection between these multi-cliques and the acyclicly
colorable and connected graphs. Recall that, by Proposition 2.56, a graph is
acyclicly colorable if and only if it is simple and for any two vertices a and b,
if there is a cycle going through them, then (a, b) is an edge. In other words,
we could have just as well said that the vertices of GL(S) and GR(S) are the
acyclicly colorable and connected graphs. We will then abusively identify
an acyclic for the coloring and connected multi-clique with its uncolored
version and vice-versa.

In particular, among the acyclicly colorable and connected graphs, we
have the trees. The purpose of this subsection is to show that these are
the only important vertices of GL(S) and GR(S) in the sense that the cor-
responding subgraphs of GL(S) and GR(S) are sufficient to obtain Theo-
rem 5.20.

Let us formally define these subgraphs.

Definition 5.24. Let S be a set of return morphisms from A∗ to A∗. The
graph T L(S) (resp., T R(S)) is the graph whose vertices are the trees on A
and such that there is an edge from T ′ to T labeled by σ ∈ S if and only if
(T ′, σ, T ) is a left (resp., right) valid triplet.

We first need the following lemma. Observe that an acyclic for the
coloring and connected multi-clique G({C1, · · · , Ck}) is a tree if and only if
#Ci ≤ 2 for all i ≤ k.
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Lemma 5.25. Let (G′, σ,G) be a left (resp., right) valid triplet. For any
covering tree T ′ of G′, there exists a covering tree T of G such that (T ′, σ, T )
is left (resp., right) valid.

Proof. We prove the result for a left valid triplet, the case of a right valid
triplet is symmetric. Since G is a multi-clique, we set C1, . . . , Ck such that
G = G({C1, . . . , Ck}). Then, as (G′, σ,G) is left valid, one has

G′ = σL(G) = G({ϕLs (Ci) : i ≤ k, s ∈ B∗})

where B is the image alphabet of σ.

If G and G′ are trees, then T ′ = G′ and it suffices to take T = G. Assume
thus that either G or G′ is not a tree. We show that we can define a new
left valid triplet (H ′, σ,H), where

• H is a connected strict subgraph of G (with the same vertices);

• T ′ is a covering tree of H ′.

We can therefore iterate this construction as long as H or H ′ is not a tree.
Since G is finite, this process must stop and this will therefore prove the
existence of a covering tree T (given by the last graph H) of G such that
(T ′, σ, T ) is left valid.

We start by highlighting a word s0 ∈ B∗, some clique Ci, i ≤ k, and two
distinct vertices a, b ∈ ϕLs0(Ci) as follows.

• If G′ is not a tree, there exist i ≤ k and s0 ∈ B∗ such that C = ϕLs0(Ci)
contains at least 3 elements. The subgraph T ′′ of T ′ generated by the
vertices of C is acyclic. Moreover, for any two vertices in C, any path
connecting them in G′ uses edges corresponding to C as G′ is acyclic
for the coloring. Thus the path connecting them in T ′ is in T ′′ and
T ′′ is connected. This shows that T ′′ is a tree and thus, there exists a
vertex a ∈ C of degree 1 in T ′′. Let b ∈ C be its (unique) neighbor in
T ′′.

• If G′ is a tree but G is not, there exists i ≤ k such that Ci contains at
least 3 elements. Let s0 ∈ B∗ be the longest common suffix to all σ(d),
d ∈ Ci. By definition of s0, the set C = ϕLs0(Ci) contains at least two
elements, but since G′ is a tree, ϕLs0(Ci) contains at most 2 elements.
Therefore, let us write C = {a, b} with b such that

#({d ∈ Ci : ϕLs0(d) = b}) ≥ 2.
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In both cases, let c ∈ Ci be such that ϕLs0(c) = b and let us denote

D = {c} ∪ {d ∈ Ci : ϕLs0(d) = a}

and
E = (Ci \D) ∪ {c}.

We then define C = {D,E,C1, . . . , Ck} \ {Ci}, H = G(C) and H ′ = σL(H).
Let us prove that (H ′, σ,H) is left valid by checking the items of Defini-

tion 5.14.

1. As (G′, σ,G) is left valid, σ is a dendric return morphism.

2. Since G is an acyclic for the coloring and connected multi-clique and
D∪E = Ci and D∩E = {c}, by Lemma 2.51, H is also an acyclic for
the coloring and connected multi-clique.

3. We now show that for all s ∈ B∗, the subgraph of H generated by the
vertices in dom(ϕLs ) = {a ∈ A : σ(a) ∈ B+s} is connected. Let us
denote Hs this graph and Gs the same graph defined starting from G.
Since H is the subgraph of G obtained by removing the edges between
D \ {c} and E \ {c}, the same can be said about the link between
Hs and Gs. Since (G′, σ,G) is valid, the graph Gs is connected. Let
us show that it is also the case of Hs by showing that, for any edge
(d, e) in Gs but not in Hs, we have the path (d, c, e) in Hs. Indeed,
by definition of D and E, if s is a proper suffix of both σ(d) and σ(e),
then s is a suffix of s0 so it is also a proper suffix of σ(c). By definition
of H, the edges (d, c) and (c, e) are then in Hs.

4. Finally, we show that H ′ is an acyclic for the coloring and connected
multi-clique. Recall that by Proposition 5.10,

H ′ = G({ϕLs (F ) : F ∈ C, s ∈ B∗}.

We focus on ϕLs (D) and ϕLs (E), s ∈ B∗. Observe that, by definition of
D, if #ϕLs (D) ≥ 2, then s = s0 or as0 is a suffix of s. In the first case,
ϕLs0(D) = {a, b} and in the second case, D contains all the elements of
Ci whose images end with s so ϕLs (D) = ϕLs (Ci). On the other hand,
ϕLs (E) = ϕLs (Ci) unless s = s0 or as0 is a suffix of s. In the first case,
ϕLs0(E) = ϕLs0(Ci) \ {a} and in the second case, ϕLs0(E) is empty.

This shows that, if C′ = {ϕLs (Cj) : j ≤ k, s ∈ B∗}, then

H ′ = G
((
C′ \ {ϕLs0(Ci)}

)
∪ {{a, b}, ϕLs0(Ci) \ {a}}

)
.
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By Lemma 2.51, the fact that G′ is an acyclic for the coloring and
connected multi-clique implies that H ′ also is.

We now show that the triplet (H ′, σ,H) satisfies the two desired con-
ditions. Clearly, H is a subgraph of G with the same vertices, and it is
connected since H = Hε. Moreover, since a ∈ ϕLs0(Ci), the set D contains
at least two elements. The same can be said for E by definition of a and b.
Indeed, if G′ is not a tree, ϕLs0(Ci) contains at least three elements, and if
G′ is a tree but G is not, there exists more than one element d ∈ Ci such
that ϕLs0(d) = b. This implies that H has strictly fewer edges than G.

We finally show that T ′ is still a subtree of H ′. If G′ is a tree, since H ′

is a connected subgraph of G′, we directly have T ′ = G′ = H ′. If G′ is not a
tree, then a and b were chosen such that no edge of {a} × (ϕLs0(Ci) \ {a, b})
is in T ′. As these are the only edges lost when going from G′ to H ′, this
implies that T ′ is a subgraph of H ′.

We now show a result similar to Theorem 5.20.

Theorem 5.26. Let S be a set of return morphisms for a word from A∗ to
A∗. A language L having an S-adic representation σ is recurrent dendric
if and only if σ is primitive and labels infinite paths in the graphs T L(S)
and T R(S).

Proof. By Theorem 5.20, it suffices to prove that GL(S) and T L(S) (resp.,
GR(S) and T R(S)) contain the same infinite paths. Clearly, T L(S) is a
subgraph of GL(S) so any path of T L(S) is a path of GL(S). Conversely,
by Lemma 5.25, if σ labels a path in GL(S) starting in G, then σ labels
a path in T L(S) starting in T for any covering tree T of G (such a tree
exists since G is connected). We similarly prove the link between GR(S)
and T R(S).

We naturally also have a characterization of eventual dendricity.

Corollary 5.27. For all k ≥ 1, let Ak be an alphabet of size k and let S be
a set of return morphisms for a word such that, for all σ ∈ S, there exists
i, j ≥ 1 such that σ : A∗i → A∗j , Aj being minimal. For each k ≥ 1, let us
denote Sk the morphisms of S going from A∗k to A∗k.

A language L having an S-adic representation σ is eventually dendric
recurrent if and only if there exists a suffix σ′ of σ which is primitive and
labels infinite paths in T L(Sk) and T R(Sk) for some k.

We can also deduce GL(L) and GR(L) from the paths labeled by σ.
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Proposition 5.28. Let S be a set of return morphisms for a word from A∗
to A∗, let L be a recurrent dendric language having an S-adic representation
σ.

1. For any covering tree T of GL(L) (resp., GR(L)), σ labels a path in
T L(S) (resp., T R(S)) starting in T .

2. If σ labels a path in T L(S) (resp., T R(S)) starting in T , then T is a
covering tree of GL(L) (resp., GR(L)).

In particular, GL(L) (resp., GR(L)) is the union of the starting vertices
of all the paths labeled by σ in T L(S) (resp., T R(S)), where the union of
graphs is understood here as the graph obtained by taking the union of the
sets of edges.

Proof. We prove the claims for T L(S), the proof is the same for T R(S).
By Proposition 5.23, σ labels a path in GL(S) starting in GL(L) so, by
Lemma 5.25, it labels a path in T L(S) starting in any covering tree of
GL(L).

If σ labels a path in T L(S) starting in T , then this path is also in GL(S)
so, by Proposition 5.23, T is a subgraph of GL(L). By definition of T L(S),
T is then a covering tree of GL(L).

Since a connected graph is the union of its covering trees, the conclusion
follows.

Note that the vertices of GL(S), GR(S), T L(S) and T R(S) only depend
on the size of the alphabet A so we can study the sizes of these graphs for
given values of #A.

The vertices of GL(S) and GR(S) are the (labeled) connected acyclicly
colorable graphs (also known as block-graphs [Har63]) so the size of GL(S)
and GR(S) as a function of n = #A is given by the sequence A030019 on
OEIS.

For the vertices of T L(S) and T R(S) (i.e., the labeled trees with n
vertices), there is a simple formula: nn−2 (see sequence A000272 on OEIS).

Since we want σ to label infinite paths in both GL(S) and GL(S) and
GR(S) (resp., T L(S) and T R(S)), it is equivalent to ask that it labels an
infinite path in the product GL(S)×GR(S) (resp., T L(S)×T R(S)) of these
graphs.

Clearly, even for the smaller graph built using trees, the number of ver-
tices grows so fast that, starting from alphabets of size 4, the graph becomes
unpractical (see Table 5.1).

https://oeis.org/A030019
https://oeis.org/A030019
https://oeis.org/A000272
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However, it is possible to reduce the number of vertices with a clever
use of permutations. Indeed, the vertices of T L(S) × T R(S) are pairs of
labeled trees and some of these pairs are equivalent, in the sense that they
are equal up to a permutation of the letters. The idea is then to only keep
one vertex per equivalence class. To keep equivalent infinite paths, we must
however increase the set of edge labels by composing the morphisms of S
with permutations.

Definition 5.29. Let S be a set of return morphisms from A∗ to A∗. The
graph Tp(S) is a graph whose set of vertices contains one pair of labeled trees
on A per equivalence class and such that there is an edge from (T ′L, T ′R)
to (TL, TR) labeled by πσψ, σ ∈ S, π, ψ permutations on A, if and only if
(T ′L, πσψ, TL) is left valid and (T ′R, πσψ, TR) is right valid.

Proposition 5.30. Let S be a set of return morphisms for a word from
A∗ to A∗ and let L be a language. If L has an S-adic representation σ,
then L is recurrent dendric if and only if σ is primitive and there exists a
sequence (πn)n≥0 of permutations on A such that (πnσnπ

−1
n+1)n≥0 labels a

path in Tp(S).

This graph is particularly useful when the set S is stable under compo-
sition by permutations since we then have the following characterization.

Proposition 5.31. Let S be a set of return morphisms for a word from A∗
to A∗ such that ΣASΣA = S where ΣA is the set of permutations over A.
A language L having an S-adic representation is recurrent dendric if and
only if there exists a permutation π such that π(L) has a primitive S-adic
representation σ labeling an infinite path in Tp(S).

To give an idea of the improvement, in the case of a ternary alphabet, this
allows to replace a 9-vertex graph by a graph with 2 vertices, as first done
in [GLL22]. More generally, we give the graphs sizes for small alphabets in
Table 5.1.

5.3 Some examples

In the previous section, we gave a method to characterize the recurrent
dendric languages having an S-adic representation for any given set S of
return morphisms. We now use this result to characterize particular families
of dendric languages by finding a suitable set S of morphisms.

We first look at the original question on this topic which is the charac-
terization of all dendric languages on a given alphabet in Subsection 5.3.1.
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n 1 2 3 4 5

GL(S)× GR(S) 1 1 16 841 96721

T L(S)× T R(S) 1 1 9 256 15625

Tp(S) 1 1 2 14 141

Table 5.1: Number of vertices in the graphs GL(S)×GR(S), T L(S)×T R(S)
and Tp(S) for an alphabet of size n.

Due to the explosion in the number of morphisms, we focus on the case of
a ternary alphabet which was first proved in [GLL22].

We show however in Subsection 5.3.2 that, if we restrict ourselves to
the recurrent dendric languages having a unique right special word of each
length, then we can easily build a graph giving an S-adic characterization
on any given alphabet. This was first given as an example in [GL22].

Finally, we turn to languages of RIET in Subsection 5.3.3 and show
how we can deduce an S-adic characterization for them from the techniques
developed in this work.

5.3.1 Dendric languages on a given alphabet

Since any recurrent dendric language has an S-adic representation using
only return morphisms, Theorem 5.26 implies the following S-adic charac-
terization.

Proposition 5.32. Let A be an alphabet. A language L over A is recurrent
dendric if and only if it has a primitive S-adic representation labeling infinite
paths in the graphs T L(S) and T R(S) where S is the set of all return
morphisms for a word from A∗ to A∗.

This characterization is however not practical as this set S contains
many non-dendric morphisms and each dendric language then has infinitely
many S-adic representations. In this section, we therefore look for a smaller
and more practical set of morphisms.

To have the existence of an S-adic representation, it suffices that for
any dendric language L over A, there exists a word w ∈ L and a morphism
σ ∈ S coding the return words for w in L. In other words, we can build the
set S by choosing, for each dendric language L, a word w ∈ L and add the
corresponding return morphism to S. Since we can choose the word w, we
will naturally pick the word giving us the simplest morphism in some sense.
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Γ0(L)

ε

0, 1, 2

Γ1(L)

0

1 2

0

0

1

2
2

Γ2(L)

00

01

12 21

20

0

0 1

1

2
2

2

Figure 5.2: Rauzy graphs of order 0, 1 and 2 (from left to right) for the
Chacon language L.

This construction of the set S relies heavily on the use of Rauzy graphs
as they are strongly related to return words. We recall their definition below.

Definition 5.33. Let L be a language over A. The Rauzy graph of order
n, n ≥ 0, of L is the graph Γn(L) whose vertices are the elements of Ln and
there is an edge from u to v labeled by a ∈ A if and only if there exists a
letter b such that ub = av ∈ Ln+1.

Example 5.34. Let L be the Chacon language, i.e., the language generated
by the morphism σ such that σ(0) = 0012, σ(1) = 12 and σ(2) = 012. Using
the first elements of L (Example 1.13), the Rauzy graphs of small orders of
L are represented in Figure 5.2.

Since the Rauzy graph of order n is defined using Ln and Ln+1, it is
entirely determined by the extension graphs of the length-(n− 1) words. In
particular Γ1(L) depends only on EL(ε), a fact that we will use later.

By definition of a Rauzy graph, if uw ∈ L with |w| = n, then u labels
a path in Γn(L) going from (uw)1 · · · (uw)n to w. The converse is not true
however, if u labels a path in Γn(L) ending in w, then uw is not necessarily
in L. This can easily be seen by looking at Γ0(L) in which all the words
label a path.

In terms of return words, this means that the return words for w in L
are among the labels of the paths of Γ|w|(L) starting in w, ending in w and
for which w is not an intermediary vertex. We will call such a path a return
path to w. This is why Rauzy graphs are useful when building the set S.
Indeed, infinitely many dendric languages have the same graph Γn(L), and
this graph gives a regular language containing the return words for w ∈ Ln.



5.3. Some examples 167

Recall that given a dendric language, we can choose the non-empty word
w of which we want to know the return words. The simplest Rauzy graph
(other than Γ0(L)) is Γ1(L) so we will look at return words for a letter.
Moreover, we can choose which letter. As a rule of thumb, the fewer cycles
not using this letter in Γ1(L), the simpler the return paths. Therefore,
we will always choose a bispecial letter. This can be done because of the
following result.

Proposition 5.35. Let L be a language over an alphabet of size at least 2.
If the order 1 Rauzy graph of L is strongly connected (meaning that, for any
two vertices, there is a cycle passing through them) and if ε is connected in
L, then L has a bispecial letter.

Proof. Let us first notice that, if a graph is strongly connected, then the
only sets of vertices stable when taking successors (i.e., if (u, v) is an edge
and u is in the set, so is v) are the empty set and the set of all vertices. In
the case of the order 1 Rauzy graph, it means that any non-empty set of
letters containing the right extensions of its elements is the whole alphabet.

Let us also observe that, as we are on an alphabet of size at least 2
and EL(ε) is connected, there is at least one right special letter and one left
special letter. Moreover, if (a, b) ∈ EL(ε) and a is not right special, then b
has to be left special.

Assume now that there is no bispecial letter and let us consider the set of
left special letters. Due to the observation above, any left special letter is not
right special so its unique right extension is left special. This implies that
the set of left special letters contains the right extensions of its elements. As
it is not empty, it then corresponds to the whole alphabet, which contradicts
the fact that there exists a right special letter.

Observe that, if a language is recurrent, then its Rauzy graphs are
strongly connected so in particular, we have the following consequence.

Corollary 5.36. Any recurrent dendric language on an alphabet of size at
least 2 has a bispecial letter.

If S then contains one return morphism per choice of #A return paths
for ` in Γ1(L) (i.e., per choice of #A potential return words), then S contains
a morphism coding the return words for ` in L. Doing this for any possible
Rauzy graph of order 1 already gives a much smaller and manageable set S
of return morphisms.

However, this set is still infinite if #A ≥ 3. In fact, it is the case of
any set S of return morphisms such that any dendric over A has an S-adic
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representation. Therefore, it will be more practical to group the morphisms
of S based on the edges they label in T L(S) and T R(S). Recall that,
by Remark 5.19, given a return morphism σ, the edges it labels in T L(S)
(resp., T R(S)) are entirely determined by whether σ is dendric or not and
by the corresponding set {ϕLs : s ∈ A∗,#ϕLs (A) ≥ 2} (resp., {φRp : p ∈
A∗,#φRp (A) ≥ 2}).

Given a Rauzy graph and one of its vertices w, since we can describe
using regular expressions the size #A sets of return paths, the idea is to
use these regular expressions to obtain a description of all size #A sets of
return paths whose corresponding morphisms have the same sets {ϕLs : s ∈
A∗,#ϕLs (A) ≥ 2} and {φRp : p ∈ A∗,#φRp (A) ≥ 2}. Then, in each obtained
family of morphisms, characterize the dendric return morphisms.

We use this technique to give the effective construction of a graph char-
acterizing recurrent dendric languages on the ternary alphabet {0, 1, 2}. It
is the simplest non trivial alphabet since the case of a binary alphabet
corresponds to recurrent Sturmian languages and is well known (see Propo-
sition 5.1).

We first need to find all possible Rauzy graphs of order 1. Since they
are determined by the extension graphs of the empty word, we first list the
bipartite trees whose left and right vertices are {0, 1, 2}. Moreover, since we
restrict ourselves to recurrent languages, the corresponding Rauzy graphs
must be strongly connected which can be seen as follows in EL(ε): for any
non-empty set B ( {0, 1, 2}, there exists an edge in B× ({0, 1, 2}\B) and an
edge in ({0, 1, 2} \ B)× B. We then obtain, up to permutation on {0, 1, 2},
the six possibilities described in Table 5.2.

For each of the obtained Rauzy graphs, we now choose a vertex with the
simplest return paths. In the case of a ternary alphabet, any bispecial letter
will do so, in what follows, we consider the return words (or paths) for 0
(which is bispecial in all 6 cases represented in Table 5.2). We now need
to describe the return paths to 0. In cases (A), (B), (C) and (F), there are
exactly three return paths to 0 meaning that the labels of these paths are
exactly the return words. Let us consider the other two cases separately.

In the case (D) of Table 5.2, the labels of the return paths to 0 are 0 and
the elements of 012∗2. Since every edge must be used by at least one return
path, the possible sets of return words are of the form {0, 012k2, 012`2} for
0 ≤ k < `. The corresponding morphism is then given by

σk,` :


0 7→ 0

1 7→ 012k2

2 7→ 012`2

.
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EL(ε) Γ1(L)

(A)

0

1

2

0

1

2

0

1 2

0

0

1 0

2

(B)

0

1

2

0

1

2

0

1 2

0

0

1
0

2

(C)

0

1

2

0

1

2

0

1 2

0

0

1
1

2

(D)

0

1

2

0

1

2

0

1 2

0

0

1

2 2

(E)

0

1

2

0

1

2

0

1 2

0 1
0

2
2

(F)

0

1

2

0

1

2

0

1 2

0 1 0

2

1

Table 5.2: Up to permutations, all the possible extension graphs of ε in
a recurrent dendric language over {0, 1, 2} and the corresponding Rauzy
graphs of order 1.
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Note that we can choose which letter is sent to which word since we only
need one morphism per set of return words.

No matter the parameters k < `, we have

{ϕLσk,`,s : s ∈ A∗,#ϕLσk,`,s({0, 1, 2}) ≥ 2} =

{{
0 7→ 0

1, 2 7→ 2
,

{
1 7→ 1

2 7→ 2

}

and

{φRσk,`,p : p ∈ A∗,#φRσk,`,p({0, 1, 2}) ≥ 2} =

{{
0 7→ 0

1, 2 7→ 1
,

{
1 7→ 0

2 7→ 2

}
.

Therefore, the dendric morphisms of the form σk,` all label the same edges
in T L(S) and T R(S). Let us now characterize the parameters k and ` for
which σk,` is dendric.

Since 1 is neither left nor right special, the only bispecial initial factors
are ε and 2i for 1 ≤ i ≤ `. Since ` ≥ 1, we easily check that ε is dendric. If
` > k+1, then the extensions of 2` are (1, 2) and (2, 0) so 2` is not connected.
Therefore, if σk,` is dendric, then ` = k + 1. In that case, we then see that
the extensions of 2` are (1, 0), (1, 2) and (2, 0), and the extensions of 2i are
(1, 2),(2, 2) and (2, 0) for all 1 ≤ i < `. This shows that σk,k+1 is indeed
dendric for all k ≥ 0. We will then denote σk,k+1 = δk since it corresponds
to case (D).

Similarly, for case (E), we can show that the dendric return morphisms
form an infinite family depending on a unique parameter and they all label
the same edges in T L(S) and T R(S).

The complete description of the morphisms for all cases and the corre-
sponding maps ϕLs and φRp are given in Table 5.3.

Let us denote S3 = {α, β, γ, η}∪{δk : k ≥ 0}∪{ζk : k ≥ 0}. Let also Σ3

be the set of permutations on {0, 1, 2}. By construction, any recurrent den-
dric language over {0, 1, 2} has an Σ3S3-adic representation so in particular,
it has an Σ3S3Σ3-adic representation. We can then use the symmetries to
replace T L(Σ3S3Σ3) and T R(Σ3S3Σ3) by a unique graph with two vertices
as in Proposition 5.31. Indeed, the only tree on three vertices is the line tree
so, when we look at pairs of trees, there are only two cases up to permuta-
tion: either the middle vertices are equal or they are different. To obtain
an even simpler characterization, we will allow some of the morphisms in
the S-adic characterization to be simple permutations instead of having to
duplicate many edges. We finally obtain the following characterization.
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σ {ϕLσ,s : #ϕLσ,s(A) ≥ 2} {φRσ,p : #φRσ,p(A) ≥ 2}

(A) α :


0 7→ 0
1 7→ 01
2 7→ 02

id id

(B) β :


0 7→ 0
1 7→ 01
2 7→ 021

{
0 7→ 0

1, 2 7→ 1

{
1 7→ 0

2 7→ 2
id

(C) γ :


0 7→ 0
1 7→ 01
2 7→ 012

id

{
0 7→ 0

1, 2 7→ 1

{
1 7→ 0

2 7→ 2

(D) δk :


0 7→ 0
1 7→ 012k2
2 7→ 012k+12

{
0 7→ 0

1, 2 7→ 2

{
1 7→ 1

2 7→ 2

{
0 7→ 0

1, 2 7→ 1

{
1 7→ 0

2 7→ 2

(E) ζk :


0 7→ 02k2
1 7→ 01
2 7→ 02k+12

{
0, 2 7→ 2

1 7→ 1

{
0 7→ 0

2 7→ 2

{
0, 2 7→ 2

1 7→ 1

{
0 7→ 0

2 7→ 2

(F) η :


0 7→ 02
1 7→ 01
2 7→ 012

{
0, 2 7→ 2

1 7→ 1

{
0 7→ 0

2 7→ 1

{
0 7→ 2

1, 2 7→ 1

{
1 7→ 0

2 7→ 2

Table 5.3: For each case of Table 5.2, the corresponding dendric return
morphism(s) and the maps determining the edges they label in T L(S) and
T R(S).
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(T2, T1)

(T2, T2)

α, π102απ102, π210απ210,
π210β, π201βπ021,
π102γ, π120γπ021,

π102δkπ0··
π021η, π021ηπ··0

π102,
α, π210απ210,
ζk, ζkπ210

π201β, π210βπ021,
π102γ, π120γπ021,

π102δkπ0··
π021η

π210βπ·0·,
π210γπ··0,
ζkπ1··

Figure 5.3: A language over {0, 1, 2} is dendric recurrent if and only if it
has a primitive S-adic representation labeling an infinite path in this graph
where Ti is the tree with vertices 0,1,2 where i is the degree-2 vertex, πi0i1i2
is the morphism such that πi0i1i2(j) = ij and the dots are place-holders that
can represent any value in {0, 1, 2} giving a permutation.

Theorem 5.37. A language L over {0, 1, 2} is dendric recurrent if and only
if, up to permutation, it has a primitive S-adic representation labeling an
infinite path in the graph represented in Figure 5.3.

The set Σ3S3Σ3 is infinite due to the morphisms δk and ζk. It is how-
ever possible to obtain a similar characterization using only finitely many
morphisms. Indeed, the elements of Σ3S3Σ3 are dendric return morphisms,
therefore, by Proposition 4.44, they are tame. This means that we can re-
place each edge of Tp(Σ3S3Σ3) by a path corresponding to a factorization of
the morphisms into elementary morphisms. More precisely, as a consequence
of Proposition 4.45, we have the following result.

Corollary 5.38. Let σ be a dendric return morphism for a letter and let
σ = τ1 ◦ · · · ◦ τn be an elementary decomposition of σ. Then, for all i ≤ n,
τi ◦ · · · ◦ τn is a return morphism for a set of letters.

Since moreover, τ (i) := τi ◦ · · · ◦ τn is tame, the initial alphabet and
the image alphabet are equal so, for any dendric language L, the fact that
τ (i)(L) is dendric only depends on an easily checked property of τ (i) and on
the graphs GL(L) and GR(L) by Corollary 4.91 that we recall here.
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Corollary 4.91. Let σ : A∗ → A∗ (assuming that A is the smallest image
alphabet) be a return morphism for S ⊆ A and L be a dendric language over
A. The image σ(L) is dendric if and only if the initial factors are connected
in σ(A)c for c 6∈ A \ S and the following conditions are satisfied:

• for all s ∈ Suff∗(σ(A)), the subgraph of GL(L) generated by the vertices
in dom(ϕLs ) is connected;

• for all p ∈ A+ ∩ Pref(σ(A)), the subgraph of GR(L) generated by the
vertices in dp is connected.

The idea is then to replace an edge labeled by σ and ending in (TL, TR)
in the graph of Figure 5.3 by a path labeled by τ1, . . . , τn such that τ1◦· · ·◦τn
is an elementary decomposition of σ and, for all i ≤ n, the initial factors
(for τ (i)) are connected in τ (i)({0, 1, 2})3 (recall that we ignore isolated ver-
tices here) and the connectedness conditions of Corollary 4.91 are satisfied
for TL and TR. The choice of such a path for each edge is described in
Tables 5.4, 5.5, 5.6 and 5.7. Note that we wrote Lab instead of La,b and
Rab instead of Ra,b to simplify the notations. We let the reader convince
themselves that they indeed satisfy the conditions.

We make some remarks on these decompositions. First, to our knowl-
edge, there is no prior guarantee that, for each edge, we can find an ele-
mentary decomposition satisfying the conditions for each intermediary mor-
phism. This has simply been checked by hand. Second, even though we
only give one decomposition per edge, there were many other possibilities,
especially due to permutations. The choices made here are sometimes arbi-
trary. Third, observe that, for some morphisms labeling multiple edges, we
used different decompositions. It is for example the case of the morphism α
which labels a loop on (T2, T1) and on (T2, T2). In fact, one can easily check
that it is impossible to find a unique decomposition of α that will satisfy
the conditions for both loops.

We then have the following S-adic characterization.

Theorem 5.39. Let Se denote the set of elementary morphisms over {0, 1, 2}.
A language L over {0, 1, 2} is dendric recurrent if and only if, up to permu-
tation, it has a primitive Se-adic representation labeling an infinite path in
the graph represented in Figure 5.4.

Proof. By construction and by Theorem 5.37, a language L over {0, 1, 2} is
dendric recurrent if and only if, up to permutation, it has a primitive Se-
adic representation labeling an infinite path starting in (T2, T1) or (T2, T2)
in the graph of Figure 5.4.
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morphism decomposition intermediary morphisms

α L20L10


0 7→ 0

1 7→ 01

2 7→ 2

π102απ102 L21L01


0 7→ 10

1 7→ 1

2 7→ 2

π210απ210 L02L12


0 7→ 0

1 7→ 21

2 7→ 2

π210β π210R21L20L10


0 7→ 0

1 7→ 01

2 7→ 2


0 7→ 0

1 7→ 01

2 7→ 02


0 7→ 0

1 7→ 01

2 7→ 021

π201βπ021 π210R12L20L10


0 7→ 0

1 7→ 01

2 7→ 2


0 7→ 0

1 7→ 01

2 7→ 02


0 7→ 0

1 7→ 012

2 7→ 02

π102γ π102L10L21


0 7→ 0

1 7→ 1

2 7→ 12


0 7→ 0

1 7→ 01

2 7→ 012

π120γπ021 π102L20L12


0 7→ 0

1 7→ 21

2 7→ 2


0 7→ 0

1 7→ 021

2 7→ 02

π102δk π102L10R
k
12R12L21


0 7→ 0

1 7→ 1

2 7→ 12


0 7→ 0

1 7→ 12i

2 7→ 12i+1


0 7→ 0

1 7→ 012k+1

2 7→ 012k+2

π102δkπ021 π120L20R
k
21R21L12


0 7→ 0

1 7→ 21

2 7→ 2


0 7→ 0

1 7→ 21i+1

2 7→ 21i


0 7→ 0

1 7→ 021k+2

2 7→ 021k+1

π021η π021L10R02L21


0 7→ 0

1 7→ 1

2 7→ 12


0 7→ 02

1 7→ 1

2 7→ 12


0 7→ 02

1 7→ 01

2 7→ 012

π021ηπ120 L20R01L12π210


0 7→ 2

1 7→ 21

2 7→ 0


0 7→ 2

1 7→ 21

2 7→ 01

π021ηπ210 L20R01L12π120


0 7→ 21

1 7→ 2

2 7→ 0


0 7→ 21

1 7→ 2

2 7→ 01

Table 5.4: For each edge from (T2, T1) to (T2, T1) in the graph of Figure 5.3,
we give a decomposition into elementary morphisms and the corresponding
intermediary morphisms.
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morphism decomposition intermediary morphisms

π201β π201R21L10L20


0 7→ 0

1 7→ 1

2 7→ 02


0 7→ 0

1 7→ 01

2 7→ 02


0 7→ 0

1 7→ 01

2 7→ 021

π210βπ021 π201R12L10L20


0 7→ 0

1 7→ 1

2 7→ 02


0 7→ 0

1 7→ 01

2 7→ 02


0 7→ 0

1 7→ 012

2 7→ 02

π102γ π102L10L21


0 7→ 0

1 7→ 1

2 7→ 12


0 7→ 0

1 7→ 01

2 7→ 012

π120γπ021 π102L20L12


0 7→ 0

1 7→ 21

2 7→ 2


0 7→ 0

1 7→ 021

2 7→ 02

π102δk π102L10R
k
12R12L21


0 7→ 0

1 7→ 1

2 7→ 12


0 7→ 0

1 7→ 12i

2 7→ 12i+1


0 7→ 0

1 7→ 012k+1

2 7→ 012k+2

π102δkπ021 π120L20R
k
21R21L12


0 7→ 0

1 7→ 21

2 7→ 2


0 7→ 0

1 7→ 21i+1

2 7→ 21i


0 7→ 0

1 7→ 021k+2

2 7→ 021k+1

π021η π021L10R02L21


0 7→ 0

1 7→ 1

2 7→ 12


0 7→ 02

1 7→ 1

2 7→ 12


0 7→ 02

1 7→ 01

2 7→ 012

Table 5.5: For each edge from (T2, T1) to (T2, T2) in the graph of Figure 5.3,
we give a decomposition into elementary morphisms and the corresponding
intermediary morphisms.
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morphism decomposition intermediary morphisms

π210βπ102 π210R21L20L10π102


0 7→ 01

1 7→ 0

2 7→ 2


0 7→ 01

1 7→ 0

2 7→ 02


0 7→ 01

1 7→ 0

2 7→ 021

π210βπ201 π210R21L20L10π201


0 7→ 2

1 7→ 0

2 7→ 01


0 7→ 02

1 7→ 0

2 7→ 01


0 7→ 021

1 7→ 0

2 7→ 01

π210γπ120 π210L10L21π120


0 7→ 1

1 7→ 12

2 7→ 0


0 7→ 01

1 7→ 012

2 7→ 0

π210γπ210 π210L10L21π210


0 7→ 12

1 7→ 1

2 7→ 0


0 7→ 012

1 7→ 01

2 7→ 0

ζkπ102 L10R
k
02R02L20π102


0 7→ 1

1 7→ 0

2 7→ 02


0 7→ 1

1 7→ 02i

2 7→ 02i+1

ζkπ120 L10R
k
02R02L20π120


0 7→ 1

1 7→ 02

2 7→ 0


0 7→ 1

1 7→ 02i+1

2 7→ 02i

Table 5.6: For each edge from (T2, T2) to (T2, T1) in the graph of Figure 5.3,
we give a decomposition into elementary morphisms and the corresponding
intermediary morphisms.
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morphism decomposition intermediary morphisms

π102 π102 none

α L10L20


0 7→ 0

1 7→ 1

2 7→ 02

π210απ210 L12L02


0 7→ 20

1 7→ 1

2 7→ 2

ζk L10R
k
02R02L20


0 7→ 0

1 7→ 1

2 7→ 02


0 7→ 02i

1 7→ 1

2 7→ 02i+1


0 7→ 012k+1

1 7→ 01

2 7→ 012k+2

ζkπ210 π210L12R
k
20R20L02


0 7→ 20

1 7→ 1

2 7→ 2


0 7→ 20i+1

1 7→ 1

2 7→ 20i


0 7→ 20k+2

1 7→ 21

2 7→ 20k+1

Table 5.7: For each edge from (T2, T2) to (T2, T2) in the graph of Figure 5.3,
we give a decomposition into elementary morphisms and the corresponding
intermediary morphisms.
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(T2, T1)

(T2, T2) π102

L10

L20 R02

L02
L12

R20
R20

L12

π210

R21

L20

L10

π102,
π201

L10

L21

π120,
π210

L10

R02

R02

L20

π102,
π120

L21

R12

L10

π102

L12

L20

π102

R21

R21

L20

π120

L21

R02

L10

π021

L20

L10

R21,
R12

π201

L21

L12

L21

L20

R01

L12

L10

π210

R12,
R21L20

L21

L01

L02

L12

Figure 5.4: A language over {0, 1, 2} is dendric recurrent if and only if it has
a primitive Se-adic representation labeling an infinite path in this graph,
where Se is the set of elementary morphisms over {0, 1, 2} and πi0i1i2 is the
morphism such that πi0i1i2(j) = ij .
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Let us show that if a primitive sequence σ = (σn)n≥0 labels a path start-
ing in one of the other vertices, then it also is an Se-adic representation of
a recurrent dendric language. By construction, there exists N ≥ 0 such
that σ′ = (σn)n≥N labels a path starting in (T2, T1) (resp., (T2, T2)), and
σ0 · · ·σN−1 is a suffix of a well-chosen elementary decomposition of a mor-
phism σ labeling an edge ending in (T2, T1) (resp., (T2, T2)) in the graph of
Figure 5.3.

By Theorem 5.37, σ′ is an S-adic representation of a recurrent dendric
language L and, by Proposition 5.23, T2 is a subgraph of GL(L) and T1

(resp., T2) is a subgraph ofGR(L). By construction of the graph of Figure 5.4
and by Corollary 4.91, this implies that σ0 · · ·σN−1(L) is recurrent dendric.

5.3.2 One sided Arnoux-Rauzy languages

The construction of the previous subsection can also be used to obtain a
constructive S-adic characterization of other families of dendric languages.
Indeed, we will now characterize the dendric languages having exactly one
right special word of each length. Of course, we can similarly study dendric
languages having exactly one left special word of each length. Let us first
observe that this family is stable under derivation.

Proposition 5.40. Let L be a recurrent dendric language over A having
exactly one right special word of each length and let w ∈ L \ {ε}. Then
Dw(L) is a recurrent dendric language having exactly one right special word
of each length.

Proof. Note that a recurrent dendric language over A has exactly one right
special word of each length if and only if GR(L) is the complete unicolor
graph over A. Let us denote L′ = Dw(L). Since the family of recurrent
dendric languages is stable under derivation (Theorem 3.42), L′ is recurrent
dendric. Moreover, it is on an alphabet B such that #B = #A by Corol-
lary 3.32 on the number of return words. Let σ denote the return morphism
for w such that σ(L′) = L. By Proposition 4.93, σR(GR(L′)) = GR(L) and
it is the complete unicolor graph on A by hypothesis on L. By definition of
σR of a graph, this implies that GR(L′) contains a clique of size at least #A.
Since #B = #A and GR(L′) is acyclic for the coloring, we conclude that
GR(L′) is the complete unicolor graph on B, showing that L′ has exactly
one right special word of each length.

Therefore, to build a sufficient set S of return morphism for the S-adic
characterization, we only need to consider the Rauzy graphs corresponding
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to the recurrent dendric languages having exactly one right special word of
each length.

However, if a recurrent dendric language L over A has a unique right
special letter `, then there are exactly #A return paths to `. Indeed, ` has
#A right extensions, meaning that there are #A ways of starting a return
path, and since there are no other right special letters and Γ1(L) is strongly
connected, each start gives exactly one return path.

This leads to the following S-adic characterization.

Proposition 5.41. Let A be an alphabet. There exists a finite computable
set S of morphisms such that a language L is recurrent dendric and has
exactly one right special word of each length if and only if it has a primitive
S-adic representation labeling an infinite path in T L(S).

Proof. As explained in Subsection 5.3.1, we can list all the order 1 Rauzy
graphs of recurrent dendric languages having exactly one right special word
of each length by first listing the corresponding extension graphs of ε. For
each obtained Rauzy graph, the observation above implies that there is a
unique possible set of return words for the bispecial letter. Moreover, any
morphism corresponding to these return words is dendric since the only
bispecial initial factor is ε. Thus, we can add these morphisms to S.

By construction of S and by Proposition 5.40, any recurrent dendric
language over A having exactly one right special word of each length has an
S-adic representation. This representation is primitive and labels an infinite
path in T L(S) (and T R(S)) by Theorem 5.26.

Let us prove the converse now. Observe that, by construction, for any
morphism σ ∈ S, we have φR` (A) = A if σ is a return morphism for `.
This implies that (KA, σ,KA) is a right valid triplet, where KA denotes the
complete unicolor graph on A. In other words, any sequence of morphisms
in S labels an infinite path in GR(S) which stays in KA. In particular, if
L has a primitive S-adic representation labeling an infinite path in T L(S),
then L is recurrent dendric by Theorem 5.20. Moreover, by Proposition 5.23,
we have GR(L) = KA, or in other words, L has exactly one right special
word of each length.

We illustrate this result by building the set S and the corresponding
S-adic characterization for A = {0, 1, 2, 3}.

Example 5.42. We first list the possible extension graphs of ε in a recurrent
dendric language over {0, 1, 2, 3} having exactly one right special letter. We
will work up to permutation and assume that the right special letter is
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0

1

2 3

1 0 2 3

Figure 5.5: Graphs T1 on the left and T2 on the right.

0. These graphs EL(ε), the corresponding Rauzy graphs Γ1(L) and the
associated return morphisms for 0 are given in Table 5.8.

Let us denote S4 = {α, β, γ, δ} and Σ4 the set of permutations on
{0, 1, 2, 3}. Since we are only interested in the paths in the graph T L(Σ4S4),
we can use symmetries and only consider one labeled tree per shape, i.e., the
two vertices of our graph will be given by the graphs T1 and T2 of Figure 5.5.

To simplify the graph, we also allow the S-adic representation to contain
permutations. This gives us the final graph represented in Figure 5.6.

5.3.3 Languages of RIET

The last example that we consider in this work is the family of languages
of regular interval exchange transformations on a given alphabet A. In-
deed, these are particular recurrent dendric languages by Proposition 2.8.
As in the dendric case, we will present a theoretical S-adic characteriza-
tion from [GL22] then obtain the explicit graph in the case of the ternary
alphabet {0, 1, 2} which was first given in [GLL22].

The family of languages of RIET is stable under derivation. Therefore,
by Proposition 5.7, any languages of an RIET on A admits an S-adic repre-
sentation (σn)n≥0 where the intermediary languages (generated by (σn)n≥N )
are also languages of RIETs on A.

Not every acyclic for the coloring and connected multi-clique can be the
graph GL(L) or GR(L) of a language L of an RIET. This follows from the
study of extensions of long enough words done in Proposition 1.39. We
therefore give an alternative statement of this result below.

Definition 5.43. A line graph on A is a graph G such that, if A =
{a1, . . . , an}, the edges are exactly the pairs (ai, ai+1), i < n. This graph is
associated with the orders

a1 < a2 < · · · < an and an <
∗ an−1 <

∗ · · · <∗ a1.

We then define G(≤) and G(≤∗) as the graph G.
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EL(ε) Γ1(L) σ

0

1

2

3

0

1

2

3

0

1

2 3

0
01

0

2 0

3
α :


0 7→ 0

1 7→ 01

2 7→ 02

3 7→ 03

0

1

2

3

0

1

2

3

0

1

2 3

0
01

0
2

0

3

β :


0 7→ 0

1 7→ 01

2 7→ 02

3 7→ 032

0

1

2

3

0

1

2

3

0

1

2 3

0

01

0

2

0

3 γ :


0 7→ 0

1 7→ 01

2 7→ 021

3 7→ 031

0

1

2

3

0

1

2

3

0

1

2 3

0

01

0

2

0

3

δ :


0 7→ 0

1 7→ 01

2 7→ 021

3 7→ 0321

Table 5.8: Up to permutations, all the possible extension graphs of ε in
a recurrent dendric language over {0, 1, 2, 3} with a unique right special
letter, the corresponding Rauzy graphs of order 1 and the associated return
morphism.
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T1

T2

π0···,
α, π1023απ1023, π2103απ2103, π3120απ3120,

γπ1023,
δπ·10·

π2301,
α, π1023απ1023, π2103απ2103, π3120απ3120,

π2013βπ10··, π2103βπ·1·0,
γπ·02·, π0132γπ·03·

βπ01··,
γπ·01·,

δπ10··, δπ·1·0

π2103βπ·10·,
γπ2103, π0132γπ3120

Figure 5.6: A language L over {0, 1, 2, 3} is dendric recurrent and has ex-
actly one right special word of each length if and only if it there exists a
permutation π such that π(L) has a primitive S-adic representation labeling
an infinite path in this graph where the morphisms α, β, γ, δ are defined
in Table 5.8, πi0i1i2i3 is the morphism such that πi0i1i2i3(j) = ij and the
dots are place-holders that can represent any value in {0, 1, 2, 3} giving a
permutation.
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Corollary 5.44. If L is the language of an RIET for the orders
(≤
�
)
, then

GL(L) = G(�) and GR(L) = G(≤).

However, the converse is false. The fact that GL(L) and GR(L) are line
graphs does not even imply that L is dendric, as seen in Example 2.59.

All of this leads to the following observation.

Remark 5.45. Let S be a set of return morphisms for a word from A∗ to
A∗. If σ is an S-adic representation of the language of an RIET on A, then
σ labels an infinite path in the subgraph of T L(S) (resp., T R(S)) generated
by the vertices that are line graphs.

The converse is not necessarily true however, if σ is primitive and labels
infinite paths in these subgraphs, then it does not always generate the lan-
guage of an RIET. Indeed, if S contains the Arnoux-Rauzy morphisms, then
each of these morphisms labels a loop on every vertex of T L(S) and T R(S).
However, the languages they generate are the Arnoux-Rauzy languages by
Proposition 5.2, which are not languages of RIET if the alphabet size is at
least 3.

The goal of this section is then to characterize the paths corresponding
to languages of RIET in the subgraph of T L(S) (resp., T R(S)) generated
by the line graph vertices.

To do so, we will heavily use the characterization of the languages of
RIET as the recurrent planar dendric languages (Proposition 2.8). Recall
that a word w ∈ L is planar for the orders � and ≤ if for all (a1, b1), (a2, b2) ∈
EL(w) such that a1 ≺ a2, we have b1 ≤ b2. A language is planar for the
orders � and ≤ if all of its elements are.

Therefore, the morphisms σn of the S-adic representations have to pre-
serve dendricity and planarity for some orders. This is the object of the
following definitions. Recall that if ≤ is an order, then ≤∗ denotes the
inverse order, i.e., a < b if and only if b <∗ a.

Definition 5.46. Let � and ≤ be two total orders on A.

• A partial map ϕ : A → A is order preserving from � to ≤ if, for all
x, y ∈ dom(ϕ), we have

x ≺ y ⇒ ϕ(x) ≤ ϕ(y).

• A return morphism σ : A∗ → A∗ for w is left order preserving from
� to ≤ if, for all s ∈ Suff∗(σ(A)), ϕLσ,s is order preserving from �
to ≤. Similarly, σ is right order preserving from � to ≤ if, for all
p ∈ Pref∗(σ(A)w), φRσ,p is order preserving from � to ≤.
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• A return morphism σ : A∗ → A∗ is planar preserving from (�L,�R)
to (≤L,≤R) if it is left order preserving from �L to ≤L and right order
preserving from �R to ≤R, or if it is left order preserving from �L to
(≤L)∗ and right order preserving from �R to (≤R)∗.

Observe that, given a return morphism σ and some pairs of orders, we
can easily determine if σ is planar preserving for these pairs of orders.

Example 5.47. Let us consider the morphism η of Subsection 5.3.1 given
by η(0) = 02, η(1) = 01 and η(2) = 012. The corresponding left maps are

ϕLε :

{
0, 2 7→ 2

1 7→ 1
and ϕL2 :

{
0 7→ 0

2 7→ 1

(see Table 5.3). Let us consider the order 0 ≺ 2 ≺ 1 and describe the orders
≤ such that η is left order preserving from � to ≤. Since 0, 2 ≺ 1, we
must have 2 < 1, and since 0 ≺ 2, we also have 0 < 1. The two orders
0 < 2 < 1 and 2 < 0 < 1 satisfying these conditions are such that η is left
order preserving from � to ≤.

Let us now show that the terminology planar preserving is indeed ap-
propriate.

Proposition 5.48. Let σ : A∗ → A∗ be a return morphism which is planar
preserving from (�L,�R) to (≤L,≤R) and let L ⊆ A∗ be a language. A
word v ∈ L is planar for �L and �R if and only if every extended image of
v under σ is planar for ≤L and ≤R.

Proof. We prove that v has two bi-extensions breaking the planarity for
(�L,�R) if and only if there exists an extended image u of v having two bi-
extensions breaking the planarity for (≤L,≤R). Observe that being planar
for (≤L,≤R) or for ((≤L)∗, (≤R)∗) is equivalent. Therefore, it suffices to
consider the case where σ is left order preserving from �L to ≤L and right
order preserving from �R to ≤R.

Let (x1, y1), (x2, y2) ∈ EL(v) be such that x1 6= x2 and y1 6= y2. We
define s as the longest common suffix between σ(x1) and σ(x2) and p as
the longest common prefix between σ(y1)w and σ(y2)w (where σ is a return
morphism for w). We then denote

x′1 = ϕLs (x1), x′2 = ϕLs (x2), y′1 = φRp (y1) and y′2 = φRp (y2).

Using Proposition 4.76, (x′1, y
′
1) and (x′2, y

′
2) are two bi-extensions of the ex-

tended image u := sσ(v)p and are such that x′1 6= x′2 and y′1 6= y′2. Moreover,
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for any such pair of bi-extensions of an extended image u′ of v, it is possible
to find a corresponding pair of bi-extensions of v.

Let us show that (x1, y1) and (x2, y2) are crossing edges in EL(v) if and
only if (x′1, y

′
1) and (x′2, y

′
2) are crossing edges in Eσ(L)(u). Without loss of

generality, assume that x1 ≺L x2. As σ is planar preserving, ϕLs is order
preserving from �L to ≤L so we have x′1 <

L x′2.
Since φRp is order preserving from �R to ≤R, we conclude that

y1 ≺R y2 ⇐⇒ y′1 <
R y′2.

This ends the proof by definition of planarity.

The previous result therefore shows that being planar preserving handles
the extended images. For the initial factors, we introduce a new notion.

Definition 5.49. A return morphism σ is (≤L,≤R)-planar if all of its initial
factor are planar for (≤L,≤R).

Example 5.50. Let us describe the pairs of orders for which the morphism
η of Subsection 5.3.1 (or Example 5.47) is planar. The only bispecial initial
factor is ε and its extension graph is given by case (F) of Table 5.2. One
then easily checks that it is only planar for the pairs of orders (0 <L 1 <L

2, 1 <R 2 <R 0) and (2 <L 1 <L 0, 0 <R 2 <R 1) which are inverse of one
another.

We then have the following direct consequence.

Corollary 5.51. Let σ be a return morphism for a word and let L be a
language. If σ is (≤L,≤R)-planar and planar preserving from (�L,�R) to
(≤L,≤R), then L is planar for (�L,�R) if and only if σ(L) is planar for
(≤L,≤R).

We can then define a subgraph of T L(S) × T R(S) using these addi-
tional properties. This does not directly give an S-adic characterization of
languages of RIET however. Indeed, any pair of line graphs corresponds to
four pairs of orders: (≤,�), (≤,�∗), (≤∗,�) and (≤∗,�∗). Clearly, revers-
ing both orders does not impact planarity, reversing only one of the orders
does however. Therefore, the information contained in the line graphs is not
sufficient and we should split each pair of line graphs into two pairs of orders
in which we assume for example that we always have a < b for the left (or
first) order for some fixed letters a, b. This would give us too many pairs
of orders however. Indeed, if a pair of order corresponds to the language
of an RIET, then it is irreducible meaning that we only need to consider
irreducible pairs of orders. This leads to the following definition.



5.3. Some examples 187

Definition 5.52. Let S be a set of return morphism for a word from A∗ to
A∗ and let a, b ∈ A such that a 6= b. The graph TIET (S) is the graph whose
vertices are the irreducible pairs of total orders (≤L,≤R) on A such that
a <L b, and there is an edge from (≤L,≤R) to (�L,�R) labeled by σ ∈ S if

• σ labels an edge from G(≤L) to G(�L) in T L(S) and an edge from
G(≤R) to G(�R) in T R(S),

• σ is (≤L,≤R)-planar,

• σ is planar preserving from (�L,�R) to (≤L,≤R).

Before proving that this graph indeed gives an S-adic characterization
of languages of RIET, we give one last result stating that, if σ is planar
preserving from (�L,�R) to (≤L,≤R) and we know that a ≺L b, then
(�L,�R) is entirely determined by (≤L,≤R) and σ.

Lemma 5.53. For every return morphism σ : A∗ → A∗ and every total
order ≤ on A, there exists a unique total order � on A such that σ is left
(resp., right) order preserving from � to ≤.

Proof. We prove the result for a left order preserving morphism σ. Let us
begin with the existence of such an order �. For all s ∈ Suff(σ(A)), we
will build an order �s on Bs = {a ∈ A : s ∈ Suff(σ(a))}1 such that, for all
s′ ∈ A∗s, the map ϕLs′ is order preserving from �s to ≤. The conclusion will
follow with s = ε.

We iteratively build this order �s, starting with s maximal, i.e., such
that for all a ∈ A, Bas is empty. Then, since σ is a return morphism,
s ∈ σ(A) and Bs contains a unique element thus �s is a trivial order.

Assume now that s is not maximal and that we have the orders �as for
all a ∈ ϕLs (A). Since σ(A) is a suffix code, the sets Bas form a partition of
Bs thus, we can define the order �s on Bs by x ≺s y if

1. x, y ∈ Bas and x ≺as y, or

2. x ∈ Bas, y ∈ Bbs and a < b.

For all s′ ∈ A∗as, ϕLs′ is order preserving from �as to ≤ thus it is order
preserving from �s to ≤. Let us show that ϕLs is also order preserving from
�s to ≤. If x, y ∈ Bs are as in case 1, then

ϕLs (x) = a = ϕLs (y)

1Notice the difference with dom(ϕLs ) = {a ∈ A : s ∈ Suff∗(σ(a))}.
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and if they are as in case 2, then

ϕLs (x) = a < b = ϕLs (y).

Thus, if x ≺s y, we have ϕLs (x) ≤ ϕLs (y).
We now prove the uniqueness. Assume that σ is left order preserving

from � to ≤ and from �′ to ≤ and let x, y ∈ A be such that x ≺ y and
y ≺′ x. If s is the longest common suffix between σ(x) and σ(y), then
ϕLs (x) 6= ϕLs (y). Since σ is left order preserving from � to ≤, this implies
that ϕLs (x) < ϕLs (y). Since σ is also left order preserving from �′ to ≤, we
have the converse inequality, which is a contradiction.

Example 5.54. Since the morphism η of Example 5.47 is (0 <L 1 <L 2,
1 <R 2 <R 0)-planar by Example 5.50, let us find the pair (�L,�R) of
orders such that η is planar preserving from (�L,�R) to (≤L,≤R) and
0 ≺L 1. Given the left maps recalled in Example 5.47, we first define �L2 by
saying that 0 ≺L2 2 since 0 <L 1. Then �Lε is given by 1 ≺Lε 0 ≺Lε 2 since
1 <L 2. As we want to have 0 ≺L 1, we will reverse �Lε to obtain �L. This
means that we will also need to reverse �Rε to obtain �R.

The right maps are

φR0 :

{
0 7→ 2

1, 2 7→ 1
and φR01 :

{
1 7→ 0

2 7→ 2

by Table 5.3. Therefore, we have 2 ≺R01 1 since 2 <R 0, and 2 ≺R0 1 ≺R0 0
since 1 <R 2. Since �Rε =�R0 , we deduce that 0 ≺R 1 ≺R 2.

Lemma 5.53 has two consequences. The first one is that we can use it
to reprove the fact that languages of RIET are stable under derivation as
explained below.

Remark 5.55. Let L be the language of an RIET for the orders
(≤R
≤L
)
, let

w ∈ L\ {ε} and let σ be the return morphism such that L = σ(Dw(L)). By
definition, σ is (≤L,≤R)-planar and, by Lemma 5.53, there exists unique
orders (up to reversal) such that σ is planar preserving from (�L,�R) to
(≤L,≤R). Then, by Corollary 5.51, we deduce that Dw(L) is planar for (�L
,�R). Since, by Theorem 3.42, Dw(L) is also a recurrent dendric language,

we conclude that it is the language of an RIET for the orders
(�R
�L
)

by
Proposition 2.8.

The second consequence of Lemma 5.53 is that the graph TIET (S) is
deterministic in the sense that, for each vertex and each morphism, there is
at most one edge labeled by the morphism leaving that vertex.
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We can now prove a result similar to Theorem 5.20 but in the case of
RIET.

Theorem 5.56. Let S be a set of return morphism for a word from A∗ to
A∗. A language L having an S-adic representation σ is the language of an
RIET if and only if σ is primitive and labels an infinite path in the graph
TIET (S). Moreover, if this path starts in (≤L,≤R), then L is the language

of an RIET for the orders
(≤R
≤L
)
.

Proof. Assume first that L is the language of an RIET. By Theorem 5.26, σ
is primitive and labels an infinite path in T L(S) and T R(S). Moreover, if
L(i) denotes the languages generated by (σn)n≥i then by Remark 5.55, L(i)

is the language of an RIET for some orders
(≤Ri
≤Li

)
such that a <Li b, where a

and b are the letters used to define TIET (S). By uniqueness of these orders
(Proposition 1.40) and by Remark 5.55 once again, σi is (≤Li ,≤Ri )-planar
and planar preserving from (≤Li+1,≤Ri+1) to (≤Li ,≤Ri ). This shows that σ
labels an infinite path in TIET (S) starting in (≤L0 ,≤R0 ).

Assume now that σ is primitive and labels a path ((≤Ln ,≤Rn ))n≥0 in
TIET (S). Since any path in TIET (S) is a path in T L(S) and T R(S), L is
recurrent dendric by Theorem 5.26. Let us show that L is planar for the
pair of orders (≤L0 ,≤R0 ). The proof is in fact similar to the dendric case
(Theorem 5.20).

Let u ∈ L. Iterating Proposition 4.51, there exists k ≥ 0 such that the
extensions of u in L are entirely determined by the fact that L is the image
of some language under the morphism σ0 · · ·σk. Therefore, it suffices to
prove that there exists a language L′ such that σ0 · · ·σk(L′) is planar for
(≤L0 ,≤R0 ). By definition of TIET (S), the pair (≤Lk+1,≤Rk+1) is irreducible

thus there exists a language L′ of an RIET for the orders
(≤Rk+1

≤Lk+1

)
. Since

σ0 · · ·σk labels a path from (≤L0 ,≤R0 ) to (≤Lk+1,≤Rk+1), by Corollary 5.51
and by definition of TIET (S), this implies that σ0 · · ·σk(L′) is planar for
(≤L0 ,≤R0 ). We can then conclude that any u ∈ L is planar for (≤L0 ,≤R0 ).

As in the dendric case, we can moreover use permutations to reduce the
number of vertices. For example, we can completely fix the left order.

Let us now give an example of a use of Theorem 5.56 by giving an S-adic
characterization of languages of RIET on the alphabet {0, 1, 2}.

The first thing to notice is that, on an alphabet of size 3, any pair of
line graphs corresponds to exactly one irreducible pair of orders (≤L,≤R)
such that a <L b for some fixed a and b. This implies that TIET (S) can in
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σ
(≤L
≤R
) (�L

�R
)

α
(

0<a<b
a′<b′<0

) (
0≺a≺b
a′≺b′≺0

)
β

(
2<0<1
1<2<0

) (
0≺2≺1
1≺2≺0

)
γ

(
0<2<1
1<0<2

) (
0≺2≺1
1≺2≺0

)
δk

(
0<2<1
1<0<2

) (
0≺2≺1
1≺2≺0

)
ζk

(
0<2<1
1<2<0

) (
0≺2≺1
1≺2≺0

)
η

(
0<1<2
1<2<0

) (
2≺0≺1
0≺1≺2

)
Table 5.9: For each morphism σ of Table 5.3,

(≤L
≤R
)

are the pairs of orders for

which σ is (≤L,≤R)-planar (for the morphism α, we assume that {a, b} =

{1, 2} = {a′, b′}) such that 0 <L 1, and
(�L
�R
)

are the corresponding pairs

of orders such that 0 ≺L 1 and σ is planar preserving from (�L,�R) to
(≤L,≤R).

fact be seen as a subgraph of T L(S) × T R(S). The same can be said for
the reduced graph after the use of permutations. In other words, to obtain
an S-adic characterization of languages of RIET on the alphabet {0, 1, 2},
it suffices to start from the graph represented in Figure 5.3 and remove the
edges that do not respect the planarity condition of Definition 5.52.

We summarize the information regarding planarity of the six families
of morphisms of Subsection 5.3.1 in Table 5.9. This can be obtained as
in Examples 5.50 and 5.54 where we handled the case of the morphism η.
Using this information, we can select the appropriate edges of the graph of
Figure 5.3 to obtain Figure 5.7. Recall that, at any point, we can reverse
both orders in a pair since it does not impact planarity (or languages of
RIET).
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(
0<2<1
2<1<0

) (
0<2<1
1<2<0

)
α, π021ηπ210 π102, α, ζk

π201β,
π102γ, π102δk

Figure 5.7: A language over {0, 1, 2} is the language of an RIET if and only
if, up to permutation, it has a primitive S-adic representation labeling an
infinite path in this graph where where πi0i1i2 is the morphism such that
πi0i1i2(j) = ij and the other morphisms are defined in Table 5.3.

5.4 Decidability of dendric substitutive languages

Some of the most studied languages are the morphic (or substitutive) lan-
guages, which are characterized by having an eventually periodic S-adic
representation. More precisely, we have the following definition.

Definition 5.57. A language L is morphic for (τ, σ) if σ : B∗ → B∗ and
τ : B∗ → A∗ are such that

L =
⋃
n≥0

Fac(τ(σn(B)).

If there exists such a pair (τ, σ), then L is said to be morphic, and if moreover
we can choose τ as the identity, then L is said to be purely morphic.

In this section, we show that, for uniformly recurrent morphic lan-
guages, we can decide (eventual) dendricity. This was first stated and proved
in [GL22]. Since the results presented here rely heavily on the work of Du-
rand on morphic sequences in [Dur98, Dur13b], we will take the viewpoint
of morphic one-sided infinite word.

Definition 5.58. A right infinite word x ∈ AN is morphic if there exist
σ : B∗ → B∗ prolongable on a and τ : B∗ → A∗ such that

x = τ( lim
n→∞

σn(a)) = τ(σω(a)).

In the context of uniformly recurrent languages, looking at sequences
instead is not a restriction as shown below.

Lemma 5.59. If L is a uniformly recurrent morphic language for (τ, σ),
then it is the language of a uniformly recurrent morphic sequence x and one
can compute morphisms σ′ and τ ′ such that x = τ ′(σ′ω(b)).
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Proof. Let Bg, Bb be the subalphabets of growing and bounded letters, i.e.,

Bg = {a ∈ B : lim
n→+∞

|σn(a)| = +∞}

Bb = {a ∈ B : (|σn(a)|)n≥0 is bounded}.

Since L is infinite, there exists a growing letter a ∈ Bg. Since a is growing,
for all n ≥ 0, σn(a) contains a growing letter so let us define un ∈ B∗b and
an ∈ Bg such that unan is a prefix of σn(a).

By the pigeonhole principle, we can find k < ` such that ak = a` = b. If
we define ϕ = σ`−k, then ϕ(uk)ϕ(b) is a prefix of ϕ(σk(a)) = σ`(a) and is
therefore prefix comparable with u`b. Since the images of bounded letters
only contain bounded letters, we have ϕ(uk) ∈ B∗b , and since b is growing,
ϕ(b) contains a growing letter. This shows that ϕ(b) has a prefix ub with
u ∈ B∗b .

In particular, ϕn(u) · · ·ϕ(u)ub is a prefix of ϕn+1(b) for all n ≥ 0.
However, since u ∈ B∗b , the set {ϕn(u) : n ≥ 0} is finite so, by the pi-
geonhole principle, there exists k′ < `′ such that ϕk

′
(u) = ϕ`

′
(u). Let

v = ϕ`
′
(u)ϕ`

′−1(u) · · ·ϕk′+1(u). Then, for all n ≥ 0, vn is a prefix of
ϕn(`′−k′)+k′+1(b) which implies that τ(v)n ∈ L for all n ≥ 0.

Since σ and τ are non-erasing, u is empty if and only if τ(v) is.

If u 6= ε, then by uniform recurrence of L, for all m ≥ 0, there exists n
such that Lm ⊆ Fac(τ(v)n). This shows that L = Fac(τ(v)ω) and τ(v)ω =
τ(σ′ω(v1)) where σ′(c) = v2 for all c ∈ B.

If u = ε, then ϕ is prolongable on b. Since b is growing and σ is non-
erasing, limn→∞ ϕ

n(b) is an infinite word x such that L(τ(x)) ⊆ L. Since L
is uniformly recurrent, we then have L = L(τ(ϕω(b)).

For non-recurrent languages however, the previous result is not neces-
sarily true, as shown in the example below.

Example 5.60. Let L = {0n : n ≥ 0} ∪ {0n10m : n,m ≥ 0}. This language
is purely morphic and generated by the morphism σ such that σ(0) = 0
and σ(1) = 010. It is however not the language of a right infinite word (see
Example 1.22).

Some decidability properties are already well-known for morphic words.

Proposition 5.61. Let x = τ(σω(a)) be a morphic word in AN.

1. There exists an algorithm to obtain a non-erasing morphism σ′ and a
letter-to-letter morphism τ ′ such that x = τ ′(σ′ω(a)).
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2. We can decide if x is eventually periodic;

3. We can decide if σ is growing, i.e., limn→∞ |σn(a)| = +∞ for all
a ∈ B;

4. If x is aperiodic uniformly recurrent, there is an algorithm to obtain a
growing morphism σ′ and a morphism τ ′ such that x = τ ′(σ′ω(a)).

Proof. The first claim is a famous result by Cobham, an algorithmic con-
struction was for example given in [Hon09]. The second claim is proved
in [Dur13a] while the third claim is a consequence of [Dur13b, Proposition
5]. Finally, the last claim follows from a result by Pansiot [Pan84].

By definition of a morphic language, we know one of its S-adic represen-
tations. However, the results presented in Section 5.2 require S-adic repre-
sentations using return morphisms exclusively. While we know the existence
of such a representation if L is uniformly recurrent by Proposition 5.7, we
need to be more precise in the construction to obtain decidability.

The idea is to iteratively derive with respect to a prefix of the morphic
word corresponding to L. For this, we introduce some notations.

Definition 5.62. Let x = τ(σω(a)) ∈ AN be a uniformly recurrent mor-
phic word and let u be a non-empty prefix of x. We denote R(u) =
{0, . . . ,#(RL(u))−1} and define θu : R(u)∗ → A∗ so that θu(i) is the (i+1)-
th return word for u appearing in x. In other words, for all i ∈ R(u), if
the first occurrence of θu(i)u in x starts at index k, then x[0,k) belongs to
θu({0, . . . , i− 1})∗.

In the rest of this section, we assume that, if u is a prefix of x, then Du(x)
is the derived sequence corresponding to the morphism θu. We then have
the following theorem which is a combination of results by Durand [Dur13b].

Theorem 5.63. Let x = τ(σω(a)) be an aperiodic uniformly recurrent mor-
phic word in AN.

1. For every non-empty prefix u of x, the morphism θu is computable and
there exist some computable morphisms σu : B∗ → B∗ and τu : B∗ →
R(u)∗ such that Du(x) = τu(σωu (0)).

2. There is a computable constant D such that the set of pairs (σu, τu) has
cardinality at most D. In particular, the number of derived sequences
of x (on its non-empty prefixes) is at most D.
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Proof. By Proposition 5.61, we can algorithmically modify τ and σ so that σ
is growing. Then, the existence of σu and τu is given by [Dur13b, Proposition
28] and the fact that θu, σu and τu are computable is explained in [Dur13b,
Section 4]. The bound on the number of possible pairs (σu, τu) is in [Dur13b,
Theorem 29].

Using this result, we can then build an alternative S-adic representation
of L(τ(σω(a))) using only return morphisms.

Theorem 5.64. Let x = τ(σω(a)) ∈ AN be an aperiodic uniformly recurrent
morphic word. One can algorithmically compute (from (σ, τ, a)) two return
morphisms for a word θ : B∗ → B∗ and λ : B∗ → A∗ such that θ is primitive
and (λ, θ, θ, . . . ) is an S-adic representation of L(x).

Proof. We can iteratively derive x with respect to the first letter. More
precisely, we define x(0) = x and x(n+1) = D

x
(n)
0

(x(n)) for all n ≥ 0. By

Theorem 5.63, x(n) is also an aperiodic uniformly recurrent morphic word
and we can compute the morphism θn such that x(n) = θn(x(n+1)). Note
that (θn)n≥0 is a primitive S-adic representation of L(x) using only return
morphisms.

Observe also that x(n) is then the derived sequence of x with respect
to some prefix u(n). Therefore, by Theorem 5.63 again, we can compute
some morphisms τn, σn such that x(n) = τn(σωn (0)). Moreover, there exists
k < ` < D, where D is a computable constant, such that (σk, τk) = (σ`, τ`).

This implies that x(k) = x(`) and, the construction of (x(n))n≥0 being
deterministic, that, for all n ≥ k, x(n) = x(n−k+`), so that θn = θn−k+`. We
can then define λ = θ0 ◦ · · · ◦ θk−1 and θ = θk ◦ · · · ◦ θ`−1. By construction,
λ and θ are return morphisms and (λ, θ, θ, . . . ) is an S-adic representation
of L(x) such that θ is primitive.

Let us build this S-adic representation for the Thue-Morse language.

Example 5.65. Let x = σω(0) be the Thue-Morse word, i.e., σ satisfies
σ(0) = 01 and σ(1) = 10. Note that, since x is purely morphic, we have
τn = id for all n. To start the construction, let us find the return words for
0 (in order of appearance).

We first iterate σ on 0 to obtain two occurrences of 0. Since σ2(0) = 0110,
the first return word is 011. Moreover, since σ is prolongable on 0, σ(011)
is a concatenation of return words. Since σ(011) = 011010, the second and
third return words are 01 and 0 respectively. Once again, σ(01) = 0110 and
σ(0) = 01 are concatenations of return words, but there is no new return



5.4. Decidability of dendric substitutive languages 195

word this time. This shows that x can be written as a concatenation of 011,
01 and 0, i.e., we have found all return words. We then define θ0(0) = 011,
θ0(1) = 01 and θ0(2) = 0.

Since σ(θ0(0)) = θ0(0)θ0(1)θ0(2), σ(θ0(1)) = θ0(0)θ0(2) and σ(θ0(2)) =
θ0(1), we have D0(x) = σω1 (0) where σ1(0) = 012, σ1(1) = 02 and σ1(2) = 1.

We now repeat this construction for the sequence x(1) = σω1 (0). We skip
the details here and obtain

θ1 :


0 7→ 012

1 7→ 021

2 7→ 0121

3 7→ 02

and σ2 :


0 7→ 01

1 7→ 23

2 7→ 013

3 7→ 2

.

As σ2 6∈ {σ, σ1}, we keep iterating on x(2) = σω2 (0) to obtain

θ2 :


0 7→ 0123

1 7→ 0132

2 7→ 01232

3 7→ 013

and σ3 :


0 7→ 01

1 7→ 23

2 7→ 013

3 7→ 2

.

We see here that σ3 = σ2, showing that (θ0 ◦ θ1, θ2, θ2, . . . ) is a primitive
S-adic representation of the Thue-Morse language, using only return mor-
phisms.

We finally deduce the decidability of (eventual) dendricity using the S-
adic characterizations that we obtained in Section 5.2.

Theorem 5.66. Let x = τ(σω(a)) be an aperiodic uniformly recurrent mor-
phic word and let λ, θ be the computable morphisms given by Theorem 5.64.

1. The word x is eventually dendric if and only if the sequence (θ, θ, . . . )
labels an infinite path in T L({θ}) and in T R({θ}).

2. The word x is dendric if and only if the sequence (λ, θ, θ, . . . ) labels an
infinite path in T L({λ, θ}) and in T R({λ, θ}).

In particular, if L is a uniformly recurrent morphic language for (τ, σ), one
can decide (based on τ and σ) if L is dendric and/or eventually dendric.
Moreover, if L is eventually dendric, the graphs GL(L) and GR(L) are then
computable, as well as the dendricity threshold.
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Proof. Since λ and θ are return morphisms for a word, θ is primitive and
(λ, θ, θ, . . . ) is an S-adic characterization of L(x), the characterization of the
(eventual) dendricity of x follows from Theorem 5.26 and Corollary 5.27.

If L is a uniformly recurrent morphic language, then we can construct
morphisms τ ′ and σ′ such that L = L(x) with x = τ ′(σ′ω(a))) by Lemma 5.59.
By Proposition 5.61, we can decide if x is eventually periodic, in which case
it is always eventually dendric, and it is dendric if and only if it is on a unary
alphabet. Assuming therefore that x is aperiodic, the corresponding mor-
phisms λ and θ are computable by Theorem 5.64. The above conditions for
(eventual) dendricity are then decidable since the graphs T L({θ}), T R({θ}),
T L({λ, θ}) and T R({λ, θ}) are computable by Remark 5.19.

In the case where x is eventually periodic, the graphs GL(L) and GR(L)
have no edge, and the computability of the dendricity threshold follows from
the fact that we can in fact compute the words u and v such that x = uvω.

Assume that L is eventually dendric but x is not eventually periodic, and
let L′ be the language generated by θ. It is dendric so, by Proposition 5.28,
its graph GL(L′) (resp., GR(L′)) is entirely determined by the possible start-
ing vertices of an infinite path in T L({θ}) (resp., T R({θ})). As this graph
is finite, this shows that both GL(L′) and GR(L′) are computable, and so
are GL(L) and GR(L) by Proposition 5.10.

Let us show that the dendricity threshold is computable as well. As L′
is dendric, if GLN (L′) = GL(L′) and GRN (L′) = GR(L′) for some N , then
all words of L′≥N are ordinary. By Proposition 4.93, L is then eventually
dendric of threshold at most ‖λ‖(N+1)+|w|−1 if λ is a return morphism for
w. As x is not eventually periodic, we can moreover show that |w| ≤ 2‖λ‖.
Indeed, otherwise for every return word u for w in x, |u| is a period of w

smaller than |w|2 so, by Fine and Wilf’s Theorem, all return words for w are
power of a common word and x is eventually periodic. In the end, this proves
that L is eventually dendric of threshold at most ‖λ‖(N + 3)− 1, where N
is computable. The exact threshold can then be found by considering the
extension graphs of all small words.

Example 5.67. Let us continue Example 5.65 on the Thue-Morse language.
We can easily see that θ2 is not dendric since ε is neither acyclic nor con-
nected. This directly shows that θ = θ2 will not label any edge in the graphs
of Theorem 5.66 and that L(x) is neither dendric nor eventually dendric.
Observe that this fact is not new and was already mentioned in Section 3.2
since L(x) contains infinitely many strong and weak words.
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T L({θ})

T0 T1

T2

θ

θ

T R({θ})

T0 T1

T2

θ θ

θ

Figure 5.8: Graphs T L({θ}) and T R({θ}) for the morphism θ of Exam-
ple 5.68, where Ti is the tree with vertices 0, 1, 2 where i is the degree-2
vertex.

Example 5.68. Let us consider another example where L is morphic for
(τ, σ) such that

τ :


0 7→ 0

1 7→ 0

2 7→ 1

and σ :


0 7→ 202

1 7→ 2102102102

2 7→ 2102102

.

Using a simple computation, we obtain the alternative S-adic representation
(λ, θ, θ, ...) where

λ :


0 7→ 100

1 7→ 1001

2 7→ 1001101

and θ :


0 7→ 01002

1 7→ 0100201

2 7→ 01002010201

are return morphisms for 100 and for 0100 respectively. Clearly, the mor-
phism λ is not dendric as ε is not acyclic so, by Theorem 5.66, L is not
dendric. However, the graphs T L({θ}) and T R({θ}) represented in Fig-
ure 5.8 contain infinite paths. This implies that L is eventually dendric.

From Figure 5.8, we also deduce that, if L′ is the dendric language
generated by θ, then GL(L′) = T1 and GR(L′) = K3 where T1 is the tree with
degree-2 vertex 1 and K3 is the complete graph. This in turn implies that
GL(L) and GR(L) both have two edges between 0 and 1 by Proposition 5.10
and, as L′ is eventually ordinary of threshold 2, that L is eventually dendric
of threshold at most ‖λ‖(2 + 1) + |0100| − 1 = 24 by Proposition 4.93. One
then easily checks that L is in fact eventually dendric of threshold 1.
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5.5 Open questions

The questions presented here are mostly centered around the construction
of an effective graph giving an S-adic characterization of dendric languages
on a given alphabet, as done in Subsection 5.3.1 for the alphabet {0, 1, 2}.

The approach used in Subsection 5.3.1, while theoretically applicable to
any alphabet, can soon become tedious. Indeed, the number of different
Rauzy graphs grows with the alphabet size. For example, there are, up to
permutations, 66 different Rauzy graphs of order 1 for recurrent dendric
languages on an alphabet of size 4, and 1182 on an alphabet of size 5. More-
over, larger Rauzy graphs also mean potentially more complicated return
paths.

To our knowledge, there is however no simple or automatic method to
obtain a description of the dendric return morphisms corresponding to a
given Rauzy graph and labeling the same edges in T L(S) and T R(S) so this
must be done by hand for each Rauzy graph. Therefore, such a technique
can only realistically be used on larger alphabets if the following question
admits a positive answer.

Question 5.1. Given a graph G with set of vertices A, can we give an
effective description of the sets S of return words for which there exists a
recurrent dendric language L over A such that G = Γ1(L) and S = RL(`)
for some ` ∈ A?

An alternative approach would be to directly obtain an Se-adic charac-
terization where Se is the set of elementary morphisms, as in the graph of
Figure 5.4. However, the main advantage of return morphisms is that they
behaved well with respect to the graphs GL(L) and GR(L). Indeed, we can
decide the dendricity of the image and the graphs GL(σ(L)) and GR(σ(L))
if σ is a return morphism.

For elementary morphisms, we can still determine if the image is dendric
based on GL(L) and GR(L) by Proposition 4.86 since elementary morphisms
are left or right return morphisms for a set of letters (staying on the same
alphabet). However, the information contained in GL(L) and GR(L) is not
sufficient to determine the graphs GL(σ(L)) and GR(σ(L)) if σ ∈ Se (unless
σ is a permutation). This leads to the following voluntarily vague question.

Question 5.2. Can we associate with each (eventually) dendric language L
a finite object o(L) similar to (GL(L), GR(L)) such that, if σ ∈ Se, o(σ(L))
only depends on σ and o(L)?
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A method to define such an object would be to study the elementary
graph obtained in the case of a ternary alphabet (Figure 5.4). More precisely,
an answer to the following question could help.

Question 5.3. Let G be the graph of Figure 5.4. For each vertex, can we
characterize the dendric languages having an Se-adic representation labeling
an infinite path starting in this vertex?

Another advantage of return morphisms was that, if (σn)n≥0 is an S-
adic representation of a dendric language, then (σn)n≥N is also the S-adic
representation of a dendric language for all N ≥ 0. This is false if the
morphisms σn are elementary. In other words, if we desubstitute a dendric
language with respect to an elementary morphism, we might not get a den-
dric language. However, since the dendric return morphisms are tame, every
recurrent dendric language has an Se-adic representation (σn)n≥0 such that,
for infinitely many N ≥ 0, (σn)n≥N is an Se-adic representation of a dendric
language. This still leaves the following open question.

Question 5.4. Does every recurrent dendric language admit an Se-adic
representation (σn)n≥0 such that, for all N ≥ 0, (σn)n≥N is an Se-adic
representation of a dendric language?

In the case of a dendric language over a ternary alphabet, the answer
is yes as shown by Theorem 5.39. It followed from the fact that we could
find appropriate decompositions of the return morphisms. The following
question asks whether this is possible in general. A positive answer to this
question would lead to a positive answer to the previous question.

Question 5.5. Let σ be a dendric return morphism and L be a dendric
language such that σ(L) is dendric. Does there exist an elementary decom-
position τ1 ◦ · · · ◦ τn of σ such that τi ◦ · · · ◦ τn(L) is dendric for all i ≤ n?

In the case of a return morphism for a letter, we have the following
alternative equivalent statement.

Question 5.6. Let σ be a dendric return morphism for a letter and let
(GL, GR) be a pair of graphs such that the conditions of Proposition 4.82
are satisfied for σ. Does there exist an elementary decomposition τ1 ◦ · · · ◦τn
of σ such that τi ◦ · · · ◦ τn satisfies the conditions of Corollary 4.91 for the
graphs GL and GR for all i ≤ n?

Finally, the existence of a finite graph giving an Se-adic characterization
of recurrent dendric languages is related to the following question.
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Question 5.7. Given an alphabet A, does there exist a regular language L
over Se containing at least one elementary decomposition of each dendric
return morphism for a (bispecial) letter on A and such that the composition
of any element of L gives a dendric return morphism for a (bispecial) letter?

Observe that the key here is to be able to identify dendric return mor-
phisms among tame return morphisms. Indeed, a regular language of ele-
mentary decompositions of tame return morphisms for a letter was given in
Corollary 4.46. Moreover, note that we only ask L to contain at least one
decomposition per morphism and not all decompositions. Indeed, one can
show that, on an alphabet of size at least 4, the language of all elementary
decompositions of dendric return morphisms for a (bispecial) letter is not
regular.

We end with some questions on Section 5.4. The following is quite nat-
ural.

Question 5.8. Is the (eventual) dendricity of a (potentially non uniformly
recurrent) morphic language decidable?

Indeed, the construction of S-adic representation presented in this chap-
ter relies on the possibility of iteratively deriving infinitely many times.
While this can be done with a slightly weaker hypothesis than uniform
recurrence, it seems particularly tricky to fully adapt Section 5.4 in the
non-recurrent case, leading to the question above.

We also give another question related to decidability and recurrence.

Question 5.9. Is uniform recurrence decidable for morphic languages?

Uniform recurrence is decidable for morphic words [Dur13b] and for
purely morphic languages [BPR21]. However, a morphic language is not
necessarily the language of a morphic word (see Example 5.60) therefore it
is not known, at least to our knowledge, if uniform recurrence is decidable
for morphic languages. A positive answer to this question would lead to
the following slightly different statement of Theorem 5.66: if L is a morphic
language, one can decide if L is recurrent (eventually) dendric.
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[BDD+18] Valérie Berthé, Francesco Dolce, Fabien Durand, Julien Leroy,
and Dominique Perrin. Rigidity and substitutive dendric
words. Internat. J. Found. Comput. Sci., 29(5):705–720, 2018.
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Math. Soc., 4(1):67–88, 1997. Journées Montoises (Mons,
1994).

[CLL22] Julien Cassaigne, Sébastien Labbé, and Julien Leroy. Almost
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