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Abstract

A patrolling strategy that defines fare inspection frequencies on a proof-
of-payment transportation system is operationally useful to the transit
authority when there is a mechanism for its practical implementation.
This study addresses the operational implementation of a fare inspection
patrolling strategy under an in-station selective inspection policy using
an unpredictable patrolling schedule, where the transit authority select a
patrolling schedule each day with some probability to induce uncertainty.
The challenge is to determine the set of patrolling schedules and their
respective probabilities of being selected whose systematic day-to-day
application matches the inspection frequencies that inhibit the action of
opportunistic passengers in the medium term. We use a Stackelberg game
approach to represent the hierarchical decision making process between
the transit authority and opportunistic passengers, whose decision on
whether to evade the fare depends on the inspection frequencies set by
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the transit authority. Numerical experiments show that a joint strategy-
schedule approach provides good-quality unpredictable patrolling sched-
ules with respect to the optimality gap for large-scale networks.

Keywords: Fare evasion; Patrolling strategy; Unpredictable patrolling
schedule; Selective inspection; Stackelberg games.

1 Introduction

Fare evasion in large-scale proof-of-payment transportation systems without
barriers (POPS) is an inevitable phenomenon due to the spatial and temporal
size of these networks, the variability in the number of system users during
the day, the diversity of passenger profiles with the tendency to evade, and
the fact that fare inspection resources are often limited. The consequences of
evasion in POPS systems are a well-studied issue and mainly involves loss of
revenue for system operators and reduces perceived levels of security (Barabino
and Salis (2022), Busco et al (2022), Currie and Delbosc (2017), Buneder and
Galilea (2017), Troncoso and de Grange (2017), Lee (2011), Dauby and Kovacs
(2007)).

To control and inhibit fare evasion in POPS systems the transit author-
ity employs a variety of methods (Sasaki (2014), Torres-Montoya (2014)). One
of the most practiced methods is the fare inspection and its effectiveness has
been recognized in recent research (Barabino and Salis (2019)). The design of
POPS fare inspections is defined by the deployment, location, and inspection
policies, which have been summarized in Figure 1. However, the main charac-
teristic of fare inspections must be their unpredictability from the perspective
of passengers since a predictable fare inspection may be exploited by potentials
fare evaders for their benefit.
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There are two types of deployment policies. The first one, denoted as
fare inspection patrolling, requires the deployment of fare inspection teams
controlling different locations during the day. The second one, denoted as
spot fare inspection, involves the simultaneous control of different locations
during a given time interval, e.g., at peak hours. Fare inspections can be oper-
ated according to 3 approaches (Wolfgram et al (2022)): on-board inspections,
where passengers are inspected on-board the vehicle, fare-paid area inspections,
where passengers are inspected in the fare payment area or when passengers
enter/exit the platform area, and offboarding inspections, where passengers are
inspected when they leave the vehicle. The last two fare enforcement locations
are also denoted as in-station inspections. Two types of inspection policies
are distinguished. The first one, denoted as mass inspection policy, consid-
ers that all passengers are inspected at the location controlled by the transit
authority without disrupting the service (Egu and Bonnel (2020)). The second
one, denoted as selective inspection policy, considers that inspectors randomly
choose passengers to be inspected at the location controlled by the transit
authority.

Passengers on a transportation system do not react in the same way to fare
inspections (Barabino et al (2020),Barabino and Salis (2019)). Regardless of
the inspection levels, honest passengers always pay the ticket, while other pas-
sengers never pay for economic or ideological reasons. Thus, fare inspections
have an effect on passengers who assess the risk of being inspected (oppor-
tunists). Indeed, according to the economic analysis of rational crime (Winter
(2019), Freeman (1999)), an opportunistic passenger’s decision to evade fare
payment depends on the risk of being inspected, where risk is commonly mea-
sured by the probability of inspection. Milioti et al (2020) present evidence
that low inspection probability is a very important reason for frequent evaders
to evade fare payment. Thus, determining the inspection probability distribu-
tion over the transportation network that inhibits the action of opportunistic
passengers is highly relevant issues for the transit authority.

The problem of determining inspection probability distributions in a pub-
lic transportation network, defined as the fare inspection strategy problem,
is mainly addressed in the literature as a Leader-Follower problem under
Stackelberg games (Barabino et al (2020)). We distinguish two types of fare
inspection strategies. The fare inspection patrolling strategy aims to determine
the temporal-spatial inspection probability distribution under a patrolling
deployment policy, and the spot fare inspection strategy considers the spatial
inspection probability distribution under a spot deployment policy.

A fare inspection strategy (patrolling or spot) is operationally useful to
the transit authority when an operational mechanism is implemented to
achieve the inspection probabilities defined by the fare inspection strategy in
a medium-term horizon. A fare inspection patrolling strategy can be opera-
tionally implemented through a set of patrolling schedules, where each schedule
is a collection of temporal-spatial patrol paths (one for each fare inspection
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team) with an associated probability of being selected, denoted as unpre-
dictable patrolling schedule. Similarly, a spot fare inspection strategy can be
operationally implemented through a set of inspection team allocations, where
each allocation is a collection of locations to be controlled (one for each fare
inspection team) with an associated probability of being selected, denoted
unpredictable inspection teams allocation. Thus, the transit authority can select
each day a patrolling schedule (inspection teams allocation) with a probability,
avoiding any regularity that could be exploited by opportunistic passengers.
The challenge is to determine the unpredictable patrolling schedule (unpre-
dictable inspection teams allocation) whose systematic day-to-day application
matches in the medium term the inspection probabilities defined by the fare
inspection patrolling strategy (spot fare inspection strategy).

This paper addresses the fare inspection patrolling strategy and the unpre-
dictable patrolling schedule problems to inhibit fare evasion in POPS systems
when the transit authority commits to an in-station selective inspection pol-
icy. The fare inspection patrolling strategy problem is addressed using a
Stackelberg game approach where the transit authority set a temporal-spatial
inspection probability distribution at the transportation network stations, and
opportunistic passengers respond by deciding whether or not to evade the fare
payment based on their knowledge of the risk of being controlled when leav-
ing their destination station. The fare inspection patrolling strategy problem
is formulated as a single-level linear optimization problem. We show how to
reformulate the fare inspection patrolling strategy problem as an equivalent
unpredictable patrolling scheduling problem. The main contributions are pre-
sented as: 1) A joint strategy-schedule approach is proposed to address the
operational implementation of a fare inspection patrolling strategy in a large-
scale public transportation network when the transit authority is committed
to a in-station fare inspection policy. This joint strategy-schedule approach
ensures that for each fare inspection patrolling strategy there is a correspond-
ing unpredictable patrolling schedule. 2) We show how to take advantage
of the optimal fare inspection patrolling strategy to obtain an unpredictable
patrolling schedule with quality guarantee in terms of its optimality gap.
To the best of our knowledge, we are the first to provide a good-quality
unpredictable patrolling schedule, in terms of optimality gap, in large-scale
temporal-spatial transportation networks. 3) An estimate of the implementa-
tion time of an unpredictable patrolling schedule. We simulate the systematic
day-to-day application of the unpredictable patrolling schedule to determine
whether or not the unpredictable patrolling schedule can be implemented in
the medium term.

The remainder of this paper is structured as follows. A review of related
work is discussed in Section 2. Section 3 presents the fare inspection patrolling
strategy formulation under a Stackelberg game approach. Section 4 presents
the unpredictable patrolling schedule formulation. Computational results are
reported in Section 5. Finally, conclusions and suggested future extensions are
described in Section 6.
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2 Literature Review

The literature review focuses on papers related to fare inspection patrolling
strategies and schedules. In Table 1, we classify these works according to: (i) the
problem addressed (patrolling strategy or unpredictable patrolling schedule),
(ii) transit network topology (single-line or network), (iii) location policy (on-
board or in-station), and (iv) inspection policy (mass or selective).

Problem addressed Network topology Location policy Inspection policy

Author Strategy Schedule Single line Network On-board In-station Mass Selective
Jiang et al (2012) X X X X X
Yin et al (2012) X X X X X
Jiang et al (2013) X X X X X
Krogvig (2014) X X X X
Delfau et al (2018) X X X X
Brotcorne et al (2021) X X X X X X
This paper X X X X X

Table 1 Studies on fare inspection patrolling strategies and schedules

Jiang et al (2012) study the design of a fare inspection patrolling strategy
under a Stackelberg game approach in a single-line urban train represented by
a temporal-spatial graph. Fare inspections are performed in-station and on-
board. Using an upper bound on inspection probabilities, they formulate the
patrolling strategy as a linear optimization problem relaxation (LP relaxation).
In contrast, we use an exact formulation for the inspection probabilities. They
assume a selective inspection policy because the probability of inspecting an
opportunistic passenger depends on the fare enforcement team inspection rate.

Yin et al (2012) extend the model defined in Jiang et al (2012), to include
temporal constraints for inspection teams embedded in an extended temporal-
spatial graph. They derive a LP relaxation of the fare inspection patrolling
strategy under a Stackelberg game approach by using an upper bound on
the inspection probabilities. They propose a heuristic to compute an unpre-
dictable patrolling schedule without guaranteeing its convergence in steady
state with the inspection probabilities defined by the patrolling strategy. Jiang
et al (2013) generalize the work of Yin et al (2012) by including uncertainty in
the fare inspection patrolling strategy using Markov Decision Processes. Con-
sidering an upper bound on the inspection probabilities, they formulate the
fare inspection patrolling strategy as a LP and propose a simulation-based
heuristic to compute an unpredictable patrolling schedule. The experiments
conducted by Yin et al (2012) and Jiang et al (2013) were done independently
on each line of Los Angeles Metro, which is equivalent to defining a fare inspec-
tion patrolling strategy for each line. In contrast, we carried out experiments
on a large-scale transportation network by defining a fare inspection patrolling
strategy for the whole network.

Krogvig (2014) addresses the design of an unpredictable patrolling sched-
ule using a Stackelberg game approach. He considers a train network in which
passengers can transfer between lines according to a timetable. Inspections
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are performed exclusively on-board. Krogvig (2014) assumes a mass inspec-
tion policy because the travel time between stations is long enough to control
the entire train. Using a column generation approach to formulate the unpre-
dictable patrolling schedule, Krogvig (2014) derives a LP relaxation for the
pricing problem using an upper bound on the inspection probabilities. Small-
scale experiments are considered, where the temporal-spatial network has 236
edges. In contrast, in this paper we considered a large-scale temporal-spatial
network with 33 048 edges.

Delfau et al (2018) develop a four-step algorithm to generate randomized
fare inspection patrolling schedules under an in-station mass inspection policy.
In the first step, the stations to be controlled are determined using a modified
version of the non-stochastic multi-armed bandit algorithm (Auer et al (2002)).
In the second step, the travel times between the stations are computed. In the
third step, the inspection teams path are determined using the vehicle routing
problem. In the fourth step, the inspection teams path are refined by including
the bus schedule and temporary labor constraints. The algorithm is tested on
a bus network in Paris, France, considering 612 stopping stations.

Brotcorne et al (2021) studied the design of a fare inspection patrolling
strategy and unpredictable patrolling schedule under a Stackelberg game
approach. They assume that the transit authority adopts a selective inspection
policy in-stations and on-board vehicles. Using an exact formulation for the
inspection probabilities, they formulate the fare inspection patrolling strategy
as a nonlinear optimization problem (NLP) and propose a relaxation-based
heuristic. On the other hand, assuming that the transit authority knows all the
patrolling schedules, they formulate the unpredictable patrolling schedule as a
LP and propose a column generation solution approach. The pricing problem
being a mixed integer nonlinear problem (MINLP) difficult to solve. They pro-
pose a relaxation-based heuristic to obtain a feasible unpredictable patrolling
schedule. The experiments are conducted on a Los Angeles Metro single-line.
The formulation of the patrolling strategy and unpredictable patrolling sched-
ule are independent. In contrast, in this paper we address jointly the patrolling
strategy and the unpredictable patrolling schedule.

In summary, no previous work has addressed jointly the design of a fare
inspection patrolling strategy and unpredictable patrolling schedule ensur-
ing that for any patrolling strategy there is a corresponding unpredictable
patrolling schedule in large-scale transportation networks considering an
in-station selective inspection policy.
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3 Fare inspection patrolling strategy
formulation

Let us consider a public transportation network where the arrival and depar-
ture of vehicles (bus, tram, subway) from stations are defined by a timetable.
Therefore, passengers and fare inspection teams move temporally and spatially
in the transportation network according to they timetable. Fare inspection
teams may remain temporarily at a station.

The transportation network is represented by a temporal-spatial graph
G(V,E), where V and E are the sets of nodes and edges, respectively. A node
v = (S(v), T (v)) ∈ V is defined as a pair of station and time representing
the arrival/departure of vehicles from station S(v) = s at time T (v) = τ . An
edge e ∈ E, denoted as e = (v, v′), represents a connection between pair of
station and time according to the timetable. Furthermore, we define an in-
station edge as ξ(v) = (v, v′) to model the temporary stay of a fare inspection
team at station v ∈ V , where S(v) = S(v′), and there is no node v′′ ∈ V such
that S(v) = S(v′′) and T (v) < T (v′′) < T (v′). The fare inspection path in the
temporal-spatial transportation network is thus represented by a sequence of
nodes and edges in G. We add to G a source node v+ with artificial edges to
all possible nodes where a fare inspection team can start the control and a sink
node v− with artificial edges from all possible nodes where a fare inspection
team end the working day.

The transit authority implements a selective inspection policy at the exit
of the transportation network stations. Let dv ≥ 0 be the number of passen-
gers leaving v ∈ V . Two passengers profiles are considered: honest passengers
always paying the fees, and opportunistic passengers deciding to buy a ticket
or not on the basis of the expected cost of their trip. This one depends on
the probability of being inspected when leaving the transportation network.
Let Uo

v be the expected value of the amount paid by an opportunistic passen-
ger who leaves the transit system at v ∈ V . As for Brotcorne et al (2021), we
define Uo

v as the minimum between the ticket value and the expected value of
the fine, i.e., Uo

v = min{B,FPo
v}, where B is the ticket price, F is fine, and Po

v

is the probability that a specific opportunistic passenger is inspected leaving
v ∈ V . We assume that the number of opportunistic passengers leaving v ∈ V ,
denoted dov, is a random variable that follows a discrete uniform distribution,

i.e., dov ∼ U{0, . . . , d̂ov}, with d̂ov ≤ dv, for any v ∈ V .
Fare inspection teams are subject to temporal labor constraints. As for Yin

et al (2012), we embed the temporary labor constraints in an extended graph
denoted as G(V, E) defined as follows. Let J be the set of time windows, where
each of them limits the maximum time that a fare inspection team can remain
on the network. Next, we partition G into | J | subgraphs such that subgraph
j contains all nodes and edges in the interval [τ j , τ j ], including all edges in
the set {(v+, u) ∈ E : T (u) ∈ [τ j , τ j ]}

⋃
{(u, v−) ∈ E : T (u) ∈ [τ j , τ j ]}, where

τ j and τ j are the start and end time of the jth time window. An exhaustive
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explanation of the procedure for constructing the extended network can be
found in Brotcorne et al (2021).

Let χe be a discrete random variable that defines the number of fare inspec-
tion teams at e ∈ E and Xe = E(χe) be the expected number of inspection
teams at e ∈ E. Furthermore, we define Ye as the expected number of inspec-
tion teams at e ∈ E . Thus, the temporary constraints ensuring that a fare
inspection team length path is smaller or equal to the labor working day
duration are defined by:∑

e∈δ+(v)

Ye −
∑

e∈δ−(v)

Ye = 0 ∀v ∈ ν : v ̸= v+, v− (1)

∑
e∈δ+(v+)

Ye = n (2)

∑
e∈δ−(v−)

Ye = n (3)

Xe =
∑

e′∈Ee

Ye′ ∀e ∈ E (4)

0 ≤ Xe ≤ n ∀e ∈ E (5)

0 ≤ Ye ≤ n ∀e ∈ E , (6)

where n is the number of fare inspection teams, δ+(v) is the set of edges
that leave node v ∈ V, and δ−(v) is the set of edges that enter node v ∈ V.
Constraints (1), (2), and (3) are flow conservation constraints in G. Constraint
(4) represents the relationship between G and G in terms of edges from the
indexed set Ee = {e′ = (u′, v′) ∈ E : T (u′) = T (u),S(u′) = S(u), T (v′) =
T (v),S(v′) = S(v)} for all e = (u, v) ∈ E.

Under an in-station selective inspection policy fare inspection teams at
edge ξ(v) control passengers leaving node v ∈ V . Let Hi

ξ(v) = P(χξ(v) = i) be

the probability that i fare inspection teams are controlling the edge ξ(v) for
any v ∈ V . Then:

n∑
i=0

Hi
ξ(v) = 1 ∀v ∈ V : dv > 0 (7)

Xξ(v) =

n∑
i=0

iHi
ξ(v) ∀v ∈ V : dv > 0 (8)

Hi
ξ(v) ≥ 0 ∀v ∈ V : dv > 0, i = 0, ..., n. (9)

Constraint (7) ensures with a probability equal to 1 that edge ξ(v) is
inspected by no more than n fare inspection teams, i.e., P(χξ(v) ≤ n) = 1.
Constraint (8) is the definition of expected value, where Xξ(v) is the expected
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number of fare inspection teams controlling ξ(v) under an in-station selective
inspection policy.

By definition, an in-station selective inspection policy considers that fare
inspection teams randomly select passengers leaving the station for checking.
Let the random variable ωo

v | χξ(v), d
o
v be the number of opportunistic pas-

sengers inspected on ξ(v) ∈ E given that this edge is controlled by χξ(v)

inspection teams and the number of opportunistic passengers is dov. Let hξ(v)

be the number of passengers that a fare inspection team can inspect per time
unit under a selective inspection policy at ξ(v), and κ be the average time
it takes for passengers to leave the station platform with κ < T (v′) − T (v)
for any ξ(v) ∈ E. We consider that ωo

v | χξ(v), d
o
v follows a hypergeometric

distribution because χξ(v) fare inspection teams control ⌊hξ(v)κ⌋χξ(v) pas-
sengers at ξ(v) (without replacement), out of a total of dv passengers, i.e.,
ωo
v | χξ(v), d

o
v ∼ Hypergeometric(dv, d

o
v, ⌊hξ(v)κ⌋χξ(v)). Therefore, the condi-

tional probability of inspecting at least one opportunistic passenger leaving v,
given that i fare inspection teams are controlling ξ(v) and j passengers are
opportunistic is defined as follows:

fo
ξ(v)|i,j = 1− P(ωo

ξ(v) = 0 | χξ(v) = i, dov = j).

The probability that a specific opportunistic passenger be inspected leaving
v ∈ V is equal to the probability that the transit authority controls at least
one opportunistic passenger in v ∈ V and the specific opportunistic passenger
is controlled. Assuming independence, we have:

Po
v =

1

(d̂ov + 1)2

n∑
i=0

d̂o
v∑

j=0

fo
ξ(v)|i,jH

i
ξ(v) ∀v ∈ V

Po
v ≥ 0 ∀v ∈ V. (10)

We consider that the objective function of the transit authority is to maxi-
mize the expected revenue from ticket sales and fines collected from passengers.
Thus, the leader’s problem is defined as the LP:

MGLP : max
U,X,Y,H

∑
v∈V :dv>0

E(dov)Uo
v (11)

s.t: Uo
v ≤ B ∀v ∈ V : dv > 0

(12)

Uo
v ≤ F

1

(d̂ov + 1)2

n∑
i=0

d̂o
v∑

j=0

fo
ξ(v)|i,jH

i
ξ(v) ∀v ∈ V : dv > 0

(13)

Uo
v ≥ 0 ∀v ∈ V (14)

(1), (2), (3), (4), (5), (6), (7), (8), (9), (10),
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where E(dov) = 0.5d̂ov. Constraints (12) and (13) are the optimal reaction
of the opportunistic passenger to the transit authority’s decisions because
Uo
v = min{B,FPo

v} for any v ∈ V and MGLP is a maximization optimiza-
tion problem. The expected revenue of honest passengers is omitted from the
objective function since it is a constant.

The probability that the transit authority controls ξ(v) is equal to the
probability that the number of fare inspection teams at ξ(v) is strictly greater
than zero, i.e., P(χξ(v) > 0) = 1 − P(χξ(v) = 0) = 1 − H0

ξ(v) for any v ∈ V .
Thus, the optimal fare inspection patrolling strategy of the transit authority
is defined by {1 − H0

ξ(v)}v∈V , where H0
ξ(v) is the optimal variable of MGLP

for any v ∈ V . The optimal solution of the MGLP model offers more insights
and allows to enrich the fare inspection patrolling strategy definition in several
ways. For example, the optimal fare inspection patrolling strategy can refer to
the probability with which the station v ∈ V is controlled by i fare inspection
teams, i.e., {Hi

ξ(v)}v∈V with i = 0, ..., n.

4 An equivalent unpredictable patrolling
schedule formulation

The MGLP model is a formulation for defining a fare inspection patrolling
strategy under an in-station selective inspection policy. The fare inspection
patrolling strategy resulting from MGLP is useful for the transit authority if
it can be operationally implemented by an unpredictable patrolling schedule.
More precisely, a set of fare inspection patrolling schedules and their respec-
tive probabilities of being selected, whose systematic day-to-day application
matches in the medium term with the inspection probabilities defined by the
patrolling strategy resulting from MGLP.

Let S be the set of all fare inspection patrolling schedules. Each patrolling
schedule defines the patrolling path for each fare inspection team. The
unpredictable patrolling schedule requires to determine the set of patrolling
schedules and their respective probabilities of being selected. Let πs ∈ [0, 1] be
the probability of selecting the patrolling schedule s ∈ S, with

∑
s∈S πs = 1.

In a practical setting, πs is the frequency at which the transit authority
implements the patrolling schedule s.

The expected number of fare inspection teams at e ∈ E (e ∈ E), and
the probability that i fare inspection teams are controlling ξ(v) ∈ E can be
expressed as a convex combination of patrolling schedules if the set of all
patrolling schedules is known. That is,Xe =

∑
s∈S πsXe|s

(
Ye =

∑
s∈S πsYe|s

)
,

and Hi
ξ(v) =

∑
s∈S πsH

i
ξ(v)|s, with

∑
s∈S πs = 1, where Xe|s (Ye|s) is the

number of fare inspection teams at e ∈ E (e ∈ E) on the patrolling schedule s,
and Hi

ξ(v)|s is equal to 1 if ξ(v) ∈ E is controlled by i fare inspection teams on
the patrolling schedule s, but 0 otherwise. In particular, Xξ(v)|s is the number
of fare inspection teams controlling edge ξ(v) on the patrolling schedule s. By
implementing the change of variables in MGLP, we obtain the following LP:
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MXLP : max
U,π

∑
v∈V :dv>0

E(dov)Uo
v (15)

s.t: Uo
v ≤ B ∀v ∈ V : dv > 0

(12)

Uo
v ≤ F

1

(d̂ov + 1)2

n∑
i=0

d̂o
v∑

j=0

fo
ξ(v)|i,j

∑
s∈S

πsH
i
ξ(v)|s ∀v ∈ V : dv > 0

(16)

Uo
v ≥ 0 ∀v ∈ V (14)∑

s∈S

πs = 1 (17)

πs ≥ 0 ∀s ∈ S, (18)

where each patrolling schedule satisfies:∑
e∈δ+(v)

Ye|s −
∑

e∈δ−(v)

Ye|s = 0 ∀v ∈ V : v ̸= v+, v− (19)

∑
e∈δ+(v+)

Ye|s = n (20)

∑
e∈δ−(v−)

Ye|s = n (21)

Xe|s =
∑

e′∈Ee

Ye′|s ∀e ∈ E (22)

Xξ(v)|s =

n∑
i=0

iHi
ξ(v)|s ∀v ∈ V : dv > 0 (23)

n∑
i=0

Hi
ξ(v)|s = 1 ∀v ∈ V : dv > 0 (24)

Xe|s ∈ {0, . . . , n} ∀e ∈ E (25)

Ye|s ∈ {0, . . . , n} ∀e ∈ E (26)

Hi
ξ(v)|s ∈ {0, 1} ∀v ∈ V, i = 0, . . . , n. (27)

For a realistic temporal-spatial public transportation network, it is impossi-
ble to evaluate each patrolling schedule since the size of S grows exponentially
with the size of G. Following Brotcorne et al (2021), we propose to rely on a
column generation (GC) approach to solve MXLP.

The CG consist in solving MXLP with only a subset of fare inspection
patrolling schedules Sr(⊂ S). Then iteratively, fare inspection patrolling sched-
ules that have the potential to improve the objective function are added to the
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model. This problem is named the restricted master problem RMP. Let Z∗
RMP

be the optimal objective function of RMP, and β∗
v ≥ 0 and θ∗ are the dual

variable values corresponding to constraints (16) and (17), respectively. Then,
Z∗
RMP is an optimal objective function of MXLP if all of the reduced costs are

non-positive, i.e., c̄s = F
∑

v∈V β∗
v

1
(d̂o

v+1)2

∑n
i=0

∑d̂o
v

j=0 f
o
ξ(v)|i,jH

i
ξ(v)|s − θ∗ ≤ 0.

To generate further patrolling schedules or check the optimality of the
current solution we need to solve the following pricing problem:

SP : max
X,Y,H

c̄s = F
∑
v∈V

β∗
v

1

(d̂ov + 1)2

n∑
i=0

d̂o
v∑

j=0

fo
ξ(v)|i,jH

i
ξ(v)|s − θ∗ (28)

s.t: (19), (20), (21), (22), (24), (25), (26), (27).

If the optimal objective function value of SP is positive, then the fare
inspection patrolling schedule with the maximum reduced cost c̄s is added
to RMP as a new entering patrolling schedule, and the updated RMP is
solved again. Otherwise, Z∗

RMP is an optimal solution to MXLP, i.e., Z∗
RMP =

Z∗
MXLP , where Z

∗
MXLP is the optimal objective function of the MXLP model.

MGLP and MXLP are two equivalent optimization problems since MXLP
is a reformulation of MGLP. Thus, Z∗

MXLP = Z∗
MGLP , where Z∗

MGLP is the
optimal objective function of MGLP.

The SP model being an integer multi-commodity network flow problem is
NP-complete. We next suggest to reduce the complexity and computational
time of the SP model by exploiting the optimal variables resulting from MGLP.
More precisely, let E0 = {e ∈ E : Xe = 0} (E0 = {e ∈ E : Ye = 0}) be the set of
edges not used by fare inspection teams where Xe (Ye) is the optimal variable
of MGLP. Consequently, for any e ∈ E0 (e ∈ E0), we have πs = 0 or Xe|s = 0
(Ye|s = 0) for any s ∈ S becauseXe =

∑
s∈S πsXe|s (Ye =

∑
s∈S πsYe|s). Thus,

an equivalent pricing problem can be defined by including Xe|s = 0 (Ye|s = 0)
for any e ∈ E0 (e ∈ E0) in the SP model, denoted as RSP.

The optimal solution of MXLP is an unpredictable patrolling schedule,
i.e., a set of fare inspection patrolling schedules with a positive probability
of being selected. Let {(s, πs) : πs > 0)}s∈Sr

be the optimal unpredictable
patrolling schedule resulting from MXLP, and Ŝr = {s ∈ Sr : πs > 0} be the
set of useful fare inspection patrolling schedules. The pseudo-code of the CG
procedure using RMP-RSP, denoted by CG-MX, is described in Algorithm 1.
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Algorithm 1 CG-MX

1: E0 = {e ∈ E : Xe = 0}, E0 = {e ∈ E : Ye = 0} ← solve MGLP
2: Set s = 0
3: Set H(0) = 0
4: β(0),θ(0) ← solve RMP

5: c̄
(1)
s ,X(1),Y(1),H(1) ← solve RSP

6: while c̄
(s)
s > 0 do

7: Set s = s+ 1
8: c̄

(s)
s ,X(s),Y(s),H(s) ← solve RSP

9: β(s),θ(s) ← solve RMP
10: end while
11: Return unpredictable patrolling schedule : {(s, πs) : πs > 0)}s∈Sr

5 Computational study

In this section, we first present numerical results to evaluate the performance
of the MGLP model and CG-MX Algorithm in terms of CPU time and opti-
mality gap. Then we discuss managerial insights for the transit authority
management.

Computational experiments are performed on the Los Angeles metro (LA
metro), with 6 lines, 77 stations, and a total track length of 169 kilometers.
The LA metro operates 23 hours a day (1380 minutes) and is used by 359 016
daily passengers. We generated a graph G with | V |= 16 776 and | E |= 33 048
on the basis of the LA metro timetable. Furthermore, considering three time
windows (| J |= 3) deployed symmetrically during a day, we generated G with
| V |= 17 007 and | E |= 33 070.

Twenty randomized test problems (test set) were generated, where each
of them considers n ∈ {5, 15, 25, 35, 45, 55, 65, 75} leading to a total of 160
instances with the next common parameters. The number of passengers leav-
ing a station is uniformly distributed according to dv = U{0, ..., 45} for
any v ∈ V . Opportunistic passengers are uniformly distributed according to
dov = U{0, ..., d̂ov} with d̂ov = ⌊0.4dv⌋ for any v ∈ V . The time for passengers to
leave a station platform is κ = U [1, 1.5] minutes for any v ∈ V . The inspection
rate (passengers per minute) of a fare inspection team is hE(v) = U{2, .., 5} for
any v ∈ V . The ticket price is B = 1.5, and the fine is F = 75, so the ratio
between the ticket price and the fine is equal to 2%.

Graphs G and G were simultaneously constructed in Python 3.7. The
MGLP, RMP, and RSP models are solved using CPLEX 20.1. The CG-MX

Algorithm stopping criterion is c̄
(s)
s ≤ 0 or 36 000 seconds of CPU time. All

tests were done on a PC with an Intel Core i7 2.3 GHz processor and 16 GB
RAM.
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5.1 Performance of MGLP model and CG-MX Algorithm

Figure 2 states the CPU times to solve the MGLP model for all instances and
fare inspection teams as well as the average CPU time. Moreover, Figure 2 is
a box plot showing for each number of inspection teams the median, quartiles,
and outliers.
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Fig. 2 CPU time to solve the MGLP model

The MGLP model is solved to optimality for all instances with mean and
maximum CPU times of 28 s and 69 s, respectively. From Figure 2, we observe
that the CPU time to solve MGLP increases with the inspection teams number,
even if the highest CPU time is reached when 65 inspection teams are deployed
(n = 65).

On the other hand, no instance can be solved by the CG-MX Algorithm
within the time limit. Consequently, we have that ZRMP < Z∗

MXLP = Z∗
MGLP

where ZRMP is the RMP model objective function value when the CG-MX
Algorithm reaches the time limit.

The quality of the unpredictable patrolling schedule resulting from the CG-
MX Algorithm can be measured by the optimality gap between the optimal
MGLP objective function and the RMP objective function for the instances
that can not be solved to optimality within the time limit, i.e.,

Gap(%) = 100× Z∗
MGLP − ZRMP

Z∗
MGLP

,

because Z∗
MGLP = Z∗

MXLP . Figure 3 shows the optimality gap with respect
the fare inspection teams.

From Figure 3, we observe that the optimality gap is increasing in the
number of inspection teams up to n = 45 and then decreases reaching the
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Fig. 3 Optimality gap of the unpredictable patrolling schedule resulting from the CG-MX
Algorithm

minimum for n = 65. The maximum optimality gap is reached for the instances
with the maximum number of passengers leaving a station. To confirm this
statement, we have generated several additional test problems with a maximum
number of passengers leaving a station equal to {35, 55, 65} leading to the same
conclusion.

For all instances, we compute the CG-MX Algorithm efficiency defined as
the ratio between the number of useful patrolling schedules and the number
of patrolling schedules generated by the column generation procedure using
RMP-RSP, i.e., η(%) = 100× | Ŝr | / | Sr |.
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Fig. 4 Efficiency of CG-MX Algorithm
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As shown in Figure 4, the CG-MX Algorithm efficiency is increasing with
the number of inspection teams. For n = 5 an average of 1382 patrolling
schedules were generated (| Sr |= 1382) but only 422 were useful (| Ŝr |= 422).
Thus, the Algorithm efficiency when 5 inspection teams are deployed is equal
to 30%. On the contrary, for n = 75 an average of 95 patrolling schedules were
generated (| Sr |= 95) and 94 were useful (| Ŝr |= 94). Thus, the Algorithm
efficiency associated with a deployment of 75 inspection teams reached 99%.
It should be noted that the number of patrolling schedules generated by the
CG-MX Algorithm is decreasing with the number of inspection teams because
the pricing problem is more difficult to solve.

5.2 Managerial insights for the transit authority

In this section, we derive management insights for the transit authority related
to the evasion rate, inspection rate, and the systematic day-to-day application
of the unpredictable patrolling schedule.

For each instance, we compute the evasion rate induced by the fare inspec-
tion patrolling strategy and unpredictable patrolling schedule resulting from
the solution of MGLP model and CG-MX algorithm, respectively. The evasion
rate is measured by the ratio of the expected number of evaders to the total
number of the transportation network users, i.e.,

ER(%) = 100×
∑

v∈V :Uo
v<B E(dov)∑

v∈V dv
,

where Uo
v is the optimal variable for MGLP model and the feasible variable

for CG-MX Algorithm, respectively. The average evasion rate for all instances
and fare inspection teams is shown in Figure 5.
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Fig. 5 Average evasion rate induced by the MGLP model solution and CG-MX Algorithm
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The gap observed in Figure 5 between the evasion rate induced by the
fare inspection patrolling strategy and the unpredictable patrolling schedule
is due to the feasibility (with respect to the optimum) of the unpredictable
patrolling schedule resulting from solving the CG-MX Algorithm (with respect
to MGLP).

As expected, evasion rate is decreasing with the number of fare inspection
teams. We observed the smallest number of fare inspection teams inducing
an evasion rate of less than or equal to 1%, which represents opportunistic
passengers who do not pay the fine or who do not react to the fare inspection as
a mechanism to inhibit evasion. Under the optimal patrolling strategy (Figure
5) the smallest number of inspection teams inducing an evasion rate less than
or equal to 1% is achieved with 65 deployed fare inspection teams. Even if
the unpredictable patrolling schedule generates an average evasion rate equal
to 2.2%. This value represents the transit authority’s loss of considering a
near-optimal solution for MXLP.

In the following we discuss managerial insights considering the deployment
of 65 inspection teams. The minimum, maximum, and average optimality gap
of the unpredictable patrolling schedule associated with the deployment of
65 inspection teams are respectively 1.55%, 1.70%, and 1.63%. The inspec-
tion rate, defined as the ratio between checked passengers and all passengers
(Barabino et al (2014)), is computed as:

IR(%) = 100×
∑

v∈V min
{
dv, ⌊hξ(v)κ⌋Xξ(v)

}∑
v∈V dv

,

where Xξ(v) is the optimal variable of the MGLP model, and Xξ(v) =∑
s∈Ŝr

πsXξ(v)|s for CG-MX Algorithm. The average optimality gap, aver-
age evasion rate, average inspection rate, and average number of checked
passengers (♯IP ) induced by the fare inspection patrolling strategy and the
unpredictable patrolling schedule, respectively, are defined in Table 2.

Gap (%) ER(%) IR(%) ♯ IP
Patroling Strategy 0 0.98 9.1 35 494
Unpredictable Schedule 1.63 2.20 8.4 32 948

Table 2 Optimality gap, evasion rate, inspection rate, and checked passengers when n = 65

The joint strategy-schedule approach to address the operational imple-
mentation of a fare inspection patrolling strategy provides a mechanism for
determining the quality of the unpredictable patrolling schedule that results
from the CG-MX Algorithm. Thus, by considering an unpredictable patrolling
schedule that is on average no more than 1.63% of optimal, we observe
from Table 2 that the evasion rate increases by 1.22% and the inspection
rate decreases by 0.7% (equivalent to checking 2546 fewer passengers) with
respect to the optimum. In other words, a non-optimal unpredictable patrolling
schedule generates more evasion and a lower inspection rate. Using the joint
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strategy-schedule approach proposed in this paper it is possible to quantify
the impact of considering a near-optimal unpredictable patrolling schedule on
the evasion and inspection rates.

Theoretically, the systematic day-to-day application of the unpredictable
patrolling schedule resulting from the CG-MX Algorithm should generate a
steady-state average evasion rate equal to 2.2%. However, a steady-state solu-
tion is not operationally useful to the transit authority. Sure they are interested
in knowing if a 2.2% evasion rate will be achieved in the medium term. We
use Monte Carlo simulation to reproduce the transit authority’s daily choice
of a patrolling schedule s ∈ Ŝr with probability πs and compute the evasion
rate as a function of time. Let gs,τ be the frequency with which the patrolling

schedule s ∈ Ŝr is selected after τ days. Thus, the evasion rate after τ days is:

ERτ (%) = 100×

∑
v∈V :Uo

v,τ<B E(dov)∑
v∈V dv

,

where Uo
v,τ = min

{
F 1

(d̂o
v+1)2

∑n
i=0

∑d̂o
v

j=0 f
o
ξ(v)|i,j

∑
s∈S gs,τH

i
ξ(v)|s, B

}
is the

amount paid by an opportunistic passenger after τ days. Figure 6 shows the
daily simulation of the unpredictable patrolling schedule over a 500-day horizon
when 65 inspection teams are deployed.
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Fig. 6 Unpredictable patrolling schedule simulation when n = 65

The daily evasion rate decreases as the unpredictable patrolling schedule
is systematically applied day after day. From Figure 6, we observe that after
120 days an average evasion rate of 2.2% is reached. Although for n = 65,
the unpredictable patrolling schedule resulting from the CG-MX Algorithm is
not optimal after 36 000 s, it generates a good-quality solution providing a
set of patrolling schedules whose systematic day-to-day application induce an
average evasion rate of 2.2% after 120 days.
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The Monte Carlo simulation chooses a daily patrolling schedule based on
the selection probability πs with s ∈ Ŝr. We compute the empirical proba-
bility distribution function of the patrolling schedule selection, i.e.,

∑
s∈Ŝr

πs,
resulting from the CG-MX Algorithm. In particular, the average number of
useful patrolling schedules is | Ŝr |= 178 for the test set.
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Fig. 7 Probability distribution function of the patrolling schedule selection when n = 65

From Figure 7, we observe that 20% of the useful patrolling schedules (38
patrolling schedules) accumulate 88% of the selection probability. Thus, we
infer that few patrol schedules accumulate a high probability of selection. Con-
sequently, these 20% of patrolling schedules are the ones that are implemented
the most over time.

6 Conclusions

In this paper, we study the operational implementation of a fare inspection
patrolling strategy in a POPS system using an unpredictable patrolling sched-
ule when the transit authority is committed to an in-station selective inspection
policy.

Using a Stackelberg game approach, we formulate the fare inspection
patrolling strategy, which refers to temporal-spatial inspection probabilities
on the transportation network stations, as a single-level LP solved directly
using a standard optimization solver. Defining the inspection probabilities
as a convex combination over the set of all fare inspection patrolling sched-
ules, we obtain an equivalent LP which is solved using a column generation
approach. The pricing problem generates patrolling schedules, and the master
problem defines the probability with which these patrolling schedules should
be selected. Thus, the resulting set of patrolling schedules, where each sched-
ule has an associated probability of being selected, defines an unpredictable
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patrolling schedule for the transit authority. Since the patrolling strategy and
unpredictable patrolling schedule formulations are two equivalent optimization
problems, we ensure that for each patrolling strategy there is a corresponding
unpredictable patrolling schedule.

Although the column generation approach, which provides an unpre-
dictable patrolling schedule for the transit authority, does not guarantee an
optimal solution in large-scale temporal-spatial transportation network after
36 000 s, we observe that it can provide good-quality solutions. Indeed, the low-
est number of inspection teams that induce an evasion rate less than or equal
to 1% leads to the maximum optimality gap of 1.7% under the optimal fare
inspection patrolling strategy. This good-quality solution provides a patrolling
schedule set and their respective probabilities of being selected that define a
feasible unpredictable patrolling schedule for the transit authority and that
it induces in steady state an average evasion rate of 2.2%. We simulated the
daily application of this unpredictable patrolling schedule using Monte Carlo
simulation and observed that the evasion rate of 2.2% is achieved after 120
days. Thus, we conclude that the unpredictable patrolling schedule leads to a
solution that can be implemented in the medium term.

We next suggest future research prospects. The first one is to address the
design of a fare inspection patrolling strategy and the unpredictable patrolling
schedule when the transit authority implements an in-station mass inspec-
tion policy. Thus, the inspection policy (mass or selective) performing best
in reducing evasion can be determined. The second is to relax the assump-
tion that passengers follow a fixed temporal-spatial path, i.e., to consider
that opportunistic passengers can evade fare payment by the most convenient
temporal-spatial path based on their knowledge of inspection probabilities
and travel times. This would lead to a new follower’s problem in a temporal-
spatial transportation network and to a new optimization problem and solution
approach for the leader’s problem.
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Busco C, González F, Jaqueih Y, et al (2022) Understanding transantiago
users’ motivations for paying or evading payment of bus fares. Journal of
Public Transportation 24:100,016

Currie G, Delbosc A (2017) An empirical model for the psychology of deliberate
and unintentional fare evasion. Transport Policy 54:21–29

Dauby L, Kovacs Z (2007) Fare evasion in light rail systems. Transportation
Research Circular (E-C112)

Delfau JB, Pertsekos D, Chouiten M (2018) Optimization of control agents
shifts in public transportation: tackling fare evasion with machine-learning.
In: 2018 IEEE 30th International Conference on Tools with Artificial
Intelligence (ICTAI), IEEE, pp 409–413

Egu O, Bonnel P (2020) Can we estimate accurately fare evasion without a
survey? results from a data comparison approach in lyon using fare collection
data, fare inspection data and counting data. Public Transport 12(1):1–26

Freeman RB (1999) The economics of crime. Handbook of labor economics
3:3529–3571



22 Fare inspection patrolling under in-station selective inspection policy

Jiang AX, Yin Z, Johnson MP, et al (2012) Towards optimal patrol strategies
for fare inspection in transit systems. In: 2012 AAAI Spring Symposium
Series

Jiang AX, Yin Z, Zhang C, et al (2013) Game-theoretic randomization for
security patrolling with dynamic execution uncertainty. In: AAMAS, pp
207–214

Krogvig LB (2014) Fare inspection optimization in train networks. Master’s
thesis, Institutt for matematiske fag

Lee J (2011) Uncovering San Francisco, California, muni’s proof-of-payment
patterns to help reduce fare evasion. Transportation Research Record
2216(1):75–84

Milioti C, Panoutsopoulos A, Kepaptsoglou K, et al (2020) Key drivers of fare
evasion in a metro system: Evidence from Athens, Greece. Case Studies on
Transport Policy 8(3):778–783

Sasaki Y (2014) Optimal choices of fare collection systems for public trans-
portations: Barrier versus barrier-free. Transportation Research Part B:
Methodological 60:107–114

Torres-Montoya M (2014) Tackling fare evasion in Transantiago: an integrated
approach. Tech. rep.

Troncoso R, de Grange L (2017) Fare evasion in public transport: A time series
approach. Transportation Research Part A: Policy and Practice 100:311–318

Winter H (2019) The economics of crime: an introduction to rational crime
analysis. Routledge

Wolfgram L, Pollan C, Hostetter K, et al (2022) Measuring and managing fare
evasion. Tech. rep.

Yin Z, Jiang AX, Tambe M, et al (2012) Trusts: Scheduling randomized
patrols for fare inspection in transit systems using game theory. AI magazine
33(4):59–59


	Introduction
	Literature Review
	Fare inspection patrolling strategy formulation
	An equivalent unpredictable patrolling schedule formulation
	Computational study
	Performance of MGLP model and CG-MX Algorithm 
	Managerial insights for the transit authority

	Conclusions

