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Summary 

Soil conservation measures, including forest plantations and land terracing, have been 

implemented worldwide to restore degraded soils and/or counter land degradation 

processes. However, these anthropogenic actions may have contrasting effects on soil 

quality and ecosystem functioning, depending on climate and biophysical characteristics. 

In Rwanda, afforestation and land terracing are the two major land-use forms commonly 

implemented, not only for restoring the country’s severely degraded soils,  but also as a 

means to provide for wood-derived goods and services and to enable the cultivation of its 

steep terrains. In this thesis, we assessed the responses of soil quality, through the 

measurement of physical, chemical and microbiological indicators, to commonly planted 

tree species and agricultural terracing in southern Rwanda.  

We investigated the long-term effects on soil quality of 3 eucalyptus, 3 agroforestry, 2 

native species and native species mixed in a self-regenerated plot in the Ruhande 

arboretum, Rwanda. Potential effects were measured in the upper soil layers at 0-5 cm 

and 5-10 cm depth. Our results indicate that significantly higher values and more 

pronounced effects of tree species on most soil properties and microbial processes were 

restrained in the upper 0–5 cm layer, highlighting the importance of this thin layer for soil 

quality and ecosystem functioning under these forest plantations. Planting native tree 

species (i.e., Entandrophragma excelsum and Polyscias fulva) improved soil quality via 

alleviation of soil acidity, increasing concentrations of exchangeable base cations, and 

promoting higher microbial biomass and activity. Eucalyptus species acidified the soil, but 

also significantly increased soil organic matter contents and did not adversely affect 

microbial biomass and activity. For example, results showed a significant increase in 

microbial biomass under Eucalyptus grandis and increased N mineralization under 

Eucalyptus maidenii, despite reports on detrimental effects of eucalyptus species on 

growth and activity of soil microorganisms, due to their soil acidifying effects and 

secretion of allelopathic compounds. This study therefore suggests that we cannot 

generalize the effects of planting Eucalyptus on soil quality in general and, in particular, 

on soil microbial biomass and activity.  

Labile fractions of soil organic matter, particularly those extracted with hot water, were 

the main drivers of differences in soil microbial activity between tree species, indicating 

that they would better indicate tree-induced changes in substrate availability and soil 
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quality than total soil organic matter. Further, results suggest that combining analysis of 

these labile C and N fractions with that soil microbial biomass and activity would give an 

early indication of management-induced changes in soil conditions.  

This study also evaluated the effects of planted tree species on the abundance of 

ammonia-oxidizing archaea (AOA) and bacteria (AOB), as well as their contribution to the 

rates of soil nitrification, which are important indicators of N cycling in terrestrial 

ecosystems. Abundance of the amoA gene (ammonia monooxygenase–subunit A) of AOA 

and AOB and their activity demonstrated the numerical and functional dominance of AOA 

over AOB in terms of amoA gene copies and potential soil nitrification rates across tree 

species. These results are consistent with reports indicating higher abundance and 

activity of AOA under low pH and limited substrate availability. Soil pH and labile nitrogen 

were found to influence the differences in abundance and activity of nitrifiers between 

tree species. Generally, Polyscias fulva, Eucalyptus grandis, Grevillea robusta, and Cedrela 

serrata showed highest potential nitrification rates both by AOA and AOB. 

The influence of land terracing was investigated in three paired terraced – unterraced 

agricultural plots. Land terracing did not affect most soil physico-chemical properties, 

which were mostly influenced by hillslope position both in terraced and unterraced fields. 

The results from this study contradict our hypothesis about the effects of land terracing 

on decline of total SOM and associated soil properties. The reduction of SOM was expected 

following the construction of terraces which disrupts soil structure through excavation, 

leading to vertical soil redistribution and thus oxidation of SOM once stored in deeper soil 

layers. The results, however, supported our hypothesis in which soil quality increases in 

lower hillslope position as a result of long-term erosional movement and sedimentation 

of fertile topsoil downwards. Despite the increase in labile C and N fractions as well as soil 

microbial parameters, especially downslope of terraced land, the overall results did not 

allow us to draw an explicit conclusion on soil quality restoration by land terracing in the 

studied sites. 

Keywords: soil quality, native tree species, Eucalyptus spp., land terracing, microbial 

processes, Rwanda.
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Résumé 

Des mesures de conservation des sols, comprenant des plantations forestières et 

l’aménagement de terrasses agricoles, ont été mises en œuvre dans le monde entier pour 

restaurer les sols dégradés et/ou contrer les processus de dégradation des terres arables. 

Cependant, ces actions anthropiques peuvent avoir des effets contrastés sur la qualité des 

sols et le fonctionnement des écosystèmes, en fonction du climat et des caractéristiques 

biophysiques des sols. Au Rwanda, l'afforestation et l’aménagement de terrasses 

agricoles sont les deux principales formes d'utilisation des terres couramment mises en 

œuvre, non seulement pour restaurer les sols gravement dégradés du pays, mais aussi 

pour fournir des biens et services dérivés du bois et permettre la culture des terrains en 

pente. Dans cette thèse, nous avons évalué les réponses sur la qualité des sols, par le biais 

de la mesure d'indicateurs physiques, chimiques et microbiologiques, aux espèces 

d'arbres couramment plantées et au terrassement agricole dans le sud du Rwanda. 

Nous avons étudié les effets à long terme sur la qualité des sols de 3 essences 

d'eucalyptus, 3 essences agroforestières, 2 essences d’arbre indigènes et une brousse 

naturellement régénérée comprenant un mélange d'espèces indigènes dans l'arboretum 

de Ruhande, au Rwanda. Les effets potentiels ont été mesurés dans les couches 

supérieures du sol, à 0-5 cm et à 5-10 cm de profondeur. Nos résultats indiquent que des 

valeurs significativement plus élevées et des effets plus prononcés des espèces d'arbres 

sur la plupart des propriétés du sol et des processus microbiologiques étaient observés 

dans la couche supérieure de 0 à 5 cm, soulignant l'importance de cette fine couche pour 

la qualité des sols et le fonctionnement des écosystèmes sous ces plantations forestières. 

La plantation d'espèces d'arbres natives (comme Entandrophragma excelsum et Polyscias 

fulva) améliorait la qualité des sols en atténuant l'acidité du sol, en augmentant les 

concentrations de cations basiques échangeables et en favorisant une biomasse et une 

activité microbienne plus élevée. Les espèces d'eucalyptus acidifiaient le sol, mais 

augmentaient également de manière significative les teneurs en matière organique du sol 

et n'affectaient pas négativement la biomasse et l'activité microbienne. Par exemple, les 

résultats ont montré une augmentation significative de la biomasse microbienne sous 

Eucalyptus grandis et une minéralisation accrue de l'azote sous Eucalyptus maidenii, 

malgré des rapports sur les effets néfastes des espèces d'eucalyptus sur la croissance et 

l'activité des micro-organismes du sol, en raison de leurs capacités à acidifier les sol et de 

la sécrétion de composés allélopathiques. Cette étude suggère donc que nous ne pouvons 
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pas généraliser les effets de la plantation d'eucalyptus sur la qualité des sols en général 

et, en particulier, sur la biomasse et l'activité microbienne du sol. 

Les fractions labiles de la matière organique du sol, notamment celles extraites à l'eau 

chaude, étaient les principaux facteurs expliquant les différences d'activité 

microbiologique du sol entre les espèces d'arbres, ce qui montrait qu'elles indiqueraient 

mieux les changements induits par les arbres dans la disponibilité des substrats et la 

qualité des sols que la mesure de la matière organique totale du sol. De plus, les résultats 

suggèrent que la combinaison de l'analyse de ces fractions labiles de carbone et d’azote 

avec celle de la biomasse et d'activité microbienne du sol donnerait une indication rapide 

des changements de la qualité du sol causés par les pratiques de gestion du sol. 

Cette étude a également évalué les effets des espèces d'arbres plantées sur l'abondance 

des archées oxydant l'ammoniac (AOA) et des bactéries oxydant l'ammoniac (AOB), ainsi 

que leur contribution aux taux de nitrification du sol, qui sont des indicateurs importants 

du cycle de l'azote dans les écosystèmes terrestres. Les résultats sur l'abondance des 

gènes amoA (ammonium monooxygenase) des AOA et des AOB, ainsi que l‘analyse de leur 

activité ont démontré la prédominance numérique et fonctionnelle des AOA par rapport 

aux AOB en termes de copies des gènes amoA et de taux potentiels de nitrification du sol 

entre les espèces d'arbres. Ces résultats sont cohérents avec d’autres études indiquant 

une plus grande abondance et activité des AOA dans des conditions acides et de 

disponibilité limitée de substrat. Le pH du sol et l'azote labile (fractions d’azote 

extractible à l’eau chaude) étaient fortement associées à des différences d'abondance et 

d'activité des nitrificateurs entre les espèces d'arbres. Généralement, Polyscias fulva, 

Eucalyptus grandis, Grevillea robusta et Cedrela serrata ont avaient les taux potentiels de 

nitrification les plus élevés à la fois pour les AOA et les AOB. 

L'influence du terrassement agricole a été étudiée dans trois sites agricoles. Les résultats 

montrent que le terrassement n'a pas changé significativement la plupart des propriétés 

physico-chimiques du sol, qui étaient principalement influencées par la position dans la 

pente à la fois dans les champs terrassés et non terrassés. Les résultats de cette étude 

contredisent notre hypothèse concernant les effets du terrassement sur la diminution de 

la matière organique totale (SOM) et des propriétés du sol associées. La diminution de la 

matière organique était attendue après la construction des terrasses qui perturbe la 

structure du sol par creusement, conduisant à la redistribution verticale des couches du 

sol et donc à l'oxydation accélérée de la matière organique lorsqu’elle est stockée dans 



 

vii 
 

les couches profondes du sol. Les résultats ont cependant confirmé notre hypothèse selon 

laquelle la qualité du sol augmente en position basse de la pente à cause du transport 

érosif des sols fertiles vers le bas et l’accumulation des sédiments sur le long terme. 

Malgré l'augmentation des fractions labiles de carbone et de l’azote ainsi que des 

paramètres microbiologiques du sol, en particulier à la position basse de la pente des 

terres terrassées, les résultats globaux ne nous ont pas permis de tirer une conclusion 

explicite sur l’amélioration de la qualité du sol par le terrassement dans les sites étudiés. 

Mots clés: qualité du sol, espèces d'arbres indigènes, Eucalyptus, terrassement du sol, 

processus microbiens, Rwanda.
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General Research Context 

Soils are vital for maintaining all forms of life on Earth through supporting, provisioning, 

and regulating ecosystem services and goods; yet anthropogenic pressures on soil 

resources are rising to critical limits (Poesen, 2018). Human activities, including changes 

in land use and inappropriate management practices, affect terrestrial ecosystem 

functioning and the soil’s potential for providing important ecosystem services and 

functions (Fentie et al., 2020) .  Soil quality has been defined as the  “capacity of a soil to 

function within ecosystem and land-use boundaries to sustain biological productivity, 

maintain environmental quality, and promote plant and animal health”, with animal 

health including human health,  (Doran & Parkin, 1994; Karlen et al., 2003). Soil functions 

(i.e., element cycling, soil structure maintenance) can be considered as an assembly of soil 

processes, linked to soil-based ecosystem services (Kibblewhite et al., 2008; Bünemann 

et al., 2018), such as biomass production, sustaining biological diversity and activity, 

regulating elements and energy flows, storing and transforming substances, providing 

raw materials, and being physical support for plants and human-made infrastructure. 

More recently, the concept of soil health has been developed from the soil quality concept. 

Although much controversy and discussions are available in the literature on the 

different terms and concepts used (soil quality, fertility, health, services, functions, 

processes) (Blum, 2005; Baveye et al., 2016), a recent review distinguishes soil health 

from soil quality as “extending beyond human health to broader sustainability goals that 

include planetary health” (Lehmann et al., 2020). Within this thesis we use the terms soil 

functions and quality, as its scope has been defined as focusing on ecosystem functions 

and services (Bouma, 2014). 

Changes in soil conditions often influence soil functions, which can be evaluated using 

indicators of its physical, chemical, and biological characteristics (Paz-Ferreiro & Fu, 

2016). The loss of soil resources and the associated adverse effects are a global issue, 

since soil formation or restoration processes are often too slow compared to the current 

rates of soil erosion and degradation (Pulleman et al., 2012). This issue can be solved by 

adopting a sustainable use of soils, which may promote soil quality, enhance ecosystem 

services, and ensure climate change mitigation (Roy et al., 2022). According to the recent 

World Soil Charter endorsed in 2015, sustainable use of soils involves maintaining or 



 

4 
 

enhancing the supporting, provisioning, regulating, and cultural services provided by soil 

without significantly impairing either the soil functions that enable those services or 

biodiversity (FAO & ITPS, 2015). 

Major threats to soil and ecosystem functioning include soil erosion, loss of soil organic 

carbon, nutrient depletion and imbalance, soil acidification, soil and water 

contamination, and loss of soil biodiversity (Sanaullah et al., 2020). Although several 

management practices are commonly proposed to deal with soil threats, some of them 

can adversely affect soils depending on climate, land use, biophysical, and initial soil 

conditions (Tarolli et al., 2014). In the context of maintaining and/or restoring soil 

quality, the ultimate goal is to adopt a holistic and integrated approach that will reduce 

soil losses, enhance soil C sequestration, promote nutrient cycling and availability, and 

sustain soil biodiversity (Lal, 2015). To achieve this goal, there is not a single strategy 

that can globally fit all conditions, because of differences in climate, degradation extent, 

land use, socio-economic, and biophysical factors that determine the effectiveness of the 

adopted strategy (Ghosh et al., 2021; Baradwal et al., 2022). In the context of restoration 

of degraded soils, the extent of soil degradation or recovery can be evaluated and 

interpreted as physical (e.g., structure, texture, aggregate stability, hydrology, and 

erosivity), chemical (e.g., pH, soil organic carbon, nutrient elements, salinity, toxicity), 

and biological (e.g., biodiversity, element cycling processes, abundance, activity, and 

biodiversity of soil organisms) indicators, involved in soil ecosystem functioning (Lal, 

2015). Microbial soil parameters give insights into the living component of the soil and 

are directly related to many soil processes and functions mediated by soil 

microorganisms (Pulleman et al., 2012).  Many biological soil properties are dynamic and 

can be more sensitive to changes in soil conditions than most physico-chemical soil 

properties (van Bruggen and Semenov, 2000). Despite their importance for soil 

functioning, the assessment of biological parameters is relatively recent and infrequent, 

especially very few data exist for tropical soils (Joergensen, 2010). Changes in land use 

and management practices can have negative, neutral, or positive effects on soil 

microorganisms and their activities (Paz-Ferreiro and Fu, 2016). Because soil 

degradation may often continue unnoticed by anticipating only positive outcomes 

from soil restoration actions (Maetens et al., 2012), the assessment of the responses of 

soil properties and processes to implemented soil conservation measures is essential to 

ensure timely intervention to maintain soil functioning (Paz González et al., 2014). 
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Rwandan soils are among the world's most degraded soils (Fenta et al., 2020; Wuepper 

et al., 2020), owing to an increasing population with limited financial resources (Bizoza, 

2014), land scarcity, and overexploitation of agricultural fields. The estimated mean soil 

loss rate of 250 t ha–1 year–1, due to water erosion (Fenta et al., 2020), is much higher than 

the average global rate of soil erosion, which is about 30 t ha–1 year–1 (Stanchi et al., 2015). 

Only 52% of the entire territory can be used for cultivation, forcing farmers to cultivate 

high-sloping terrains which may increase the risk of soil erosion (Karamage et al., 2017; 

Nsengiyumva et al., 2019). To reverse the increasing soil degradation, Rwanda set a goal 

of land degradation neutrality by 2030 and was the first African nation to pledge to repair 

2 million ha (76%) of its lands and forests under the Bonn Challenge in 2011 (REMA, 

2021). According to the UN Decade on Ecosystem Restoration Program (2021-2030), 

forests and landscapes need to be restored with the goal of restoring ecological functions, 

such as biodiversity and soil functions that improve human well-being (Lewis & 

Nyamulinda, 1996; Fagan et al., 2020; Winowiecki et al., 2021). 

Within this context, the Rwandan government undertook significant afforestation and 

terracing programs as strategies to conserve and/or restore degraded lands, (Kagabo et 

al., 2013), resulting in two common land use forms, forest plantations and farming 

terraces, characterizing the entire biophysical features of Rwanda. Forest trees can 

influence soil properties through various mechanisms, including litter quality, 

microclimate, and microbial activity linked with various  key soil processes (Prescott & 

Vesterdal, 2013), and recent studies have shown that tree species identity is an important 

factor driving changes in soil physical, chemical, and biological properties (Dawud et al., 

2017; Augusto & Boča, 2022). Although the establishment of forest plantations on 

degraded land has been considered as an ultimate strategy for the restoration of 

degraded soils (Binkley and Menyailo, 2004), the long-term effects of afforestation on soil 

properties and functions remains uncertain, especially on soil microbial functions in 

tropical regions (Wright et al., 2010). 

Land terracing can help prevent soil erosion, improve water infiltration, and provide a 

stable ground for agricultural activities on steep terrains (Rutebuka et al., 2021). 

However, terracing can also alter soil properties through disturbance or disruption of soil 

structure and accelerated loss of soil organic carbon, resulting in potential negative 

effects on nutrient availability, retention, and activity of microbial communities (Deng et 
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al., 2021). The outcome of a terracing action in a specific region depends not only on the 

local environmental factors, but also on the terracing method applied. Furthermore, there 

is a lack of understanding of the effects of terracing on soil quality in Rwanda, especially 

on soil microbial functioning. 

This thesis addresses the long-term effects of forest plantations and the influence of land 

terracing, the two dominant soil conservation and restoration approaches in Rwanda, on 

soil physico-chemical and microbial properties, with the aim to understand how these 

restorative approaches have changed soil quality. 
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Objectives and outline of the thesis 

The overall aim of this study was to assess the effects of forest tree species in planted 

monospecific forest stands and agricultural land terracing on soil physico-chemical 

properties and microbial processes in southern Rwanda. Accordingly, we evaluated the 

following general hypotheses: 

i) The plantation of exotic species, particularly Eucalyptus, negatively affect the soils 

while native trees improve soil properties and microbial processes. 

ii) Ammonia oxidizing archaea (AOA), rather than ammonia oxidizing bacteria (AOB), 

drive nitrification in these acidic tropical soils and their activity is influenced by soil 

conditions related to the effects of tree species. 

iii) Land terracing and hillslope position influence the aggregate stability and soil organic 

carbon contents which can indicate changes in soil quality.  

This thesis dissertation comprises six chapters. Chapter 1 introduces relevant 

information on the specific features of tropical soils, how changes in land use and 

management practices affect soil functioning and how these changes can be assessed 

through soil physico-chemical and microbial indicators. In this introduction, I also 

describe the state of land use changes in Rwanda and the potential implications of land 

terracing and forest plantation for soil functioning. Chemical soil properties including pH, 

exchangeable cations, and labile C and N fractions are essential for soil functioning, 

therefore their response to tree species identity was explored in Chapter 2. We 

hypothesized that the exotic eucalyptus species would reduce the chemical quality of the 

soils in comparison to native species and that labile C and N fractions would be more 

sensitive to a change in tree species than soil organic matter. Based on the observed 

effects of tree species on changes in chemical soil properties and considering that the 

biomass and activity of soil microorganisms often reflect soil conditions, Chapter 3 

focused on microbial properties and soil processes in response to tree species. We 

hypothesized that microbial processes would be most intense in the uppermost soil layer, 

lower under Eucalyptus species, and that differences in microbial activity between tree 

species would be explained by the availability of labile carbon substrate. Chapter 4 

explored the abundance and activity of AOA and AOB and their relationship with soil 

properties.  Considering the low pH in this soil, we hypothesized a dominance of AOA 

over AOB, measured through the abundance of amoA gene, that would also reflect the 
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rates of nitrification, with higher values of amoA gene abundance and potential 

nitrification rates under tree species which improved soil. In Chapter 5, the effect of land 

terracing on soil properties and microbial processes is evaluated through a comparative 

assessment of soils from terraced and non-terraced farms to provide insights into land 

terracing effectiveness in improving soil quality. Due to the disturbance of soil structure 

and a potential destruction of soil aggregates during the construction of terraces, we 

expected changes in soil properties and processes, particularly those linked to C and N 

transformations at different locations of the slope.  It was also hypothesized that soil 

microbial properties and processes would increase at the bottom hillslope position  due 

to the accumulation of organic matter due to potential erosion and fertile soil 

displacement. Finally, Chapter 6 discusses key findings of the thesis and provides overall 

conclusions. We briefly discuss the potential implications for the long-term effects of 

afforestation species and land terracing and highlight soil characteristics that could help 

in the evaluation of these conservation measures. At the end of this chapter, future 

perspectives and research directions are also briefly addressed.  
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Fig. 1. 1. Schematic Outline of the Thesis 
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Chapter 1 - General Introduction 

1.1. Specific features of tropical soils 

Tropical soils are widespread around the equatorial belt between the Tropic of Cancer 

and the Tropic of Capricorn (Labrière et al., 2015), and they are generally considered as 

old, deep, highly weathered, and chemically impoverished soils (Schulte and Ruhiyat, 

1998). Tropical soils are dominated by Ferralsols/Oxisols (Harter, 2007), characterized 

by intense weathering which results in high concentrations of iron and aluminum oxides 

(de Carvalho et al., 2015). The clay minerals of Ferralsols are predominantly composed 

of varying proportions of kaolinite, hematite, goethite, and gibbsite (Silva et al., 2021). 

However, some of these soils might originate from volcanic activities and hence exhibit 

different properties. Clay particles in reddish-colored tropical soils are mostly made of 

kaolinite and iron- and aluminum-oxide, and they have a  limited ability to become sticky 

or to expand and contract when wet and dry (Foth, 1990).  

The high microbial activity in tropical soils is facilitated by optimum temperature, 

moisture conditions throughout the year (Krishna and Mohan, 2017), and the continued 

supply of organic materials resulting from plant growth (Lynch, 1995; Bauhus & Khanna, 

1999). In the tropical forests, the rapid decomposition of aboveground litter, root 

exudates, and other detritus, ensure quick internal cycling of nutrients , mainly driven by 

microbial processes which are thus essential for ensuring nutrient supply to the trees. 

High microbial  activity and soil organic matter content are generally restrained to a thin 

upper soil layer (Bauters et al., 2017b). Most tropical agricultural soils are acidic and 

nutrient depleted, with high risks of Al toxicity (Kunito et al., 2016).  

Given the impoverishment of the tropical soils and the rapid decomposition of organic 

matter, resulting in a very thin upper fertile layer, these soils are particularly prone to 

degradation through inappropriate soil management actions  (Nyssen et al., 2009). 

1.2. Indicators of soil quality and functioning 

Assessing the responses of soil properties and microbial processes to environmental 

changes can be a valuable tool to understand the effects of land use changes and 

management practices on ecosystem functioning (R. D. Bardgett, 2011). Although the 

importance of soil quality for supporting life on Earth is widely acknowledged, there is 
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no consistency in how to analyse and interpret the term (Sposito and Zabel, 2003). The 

development of relevant soil quality indicators has been proven challenging, as soil 

quality is linked to holistic approaches of managing natural resources, which are hard to 

define objectively, because soils are naturally variable, and the definition of their quality 

depends on their intended use  (Blum, 2005). Soil quality and functioning have been 

assessed using soil parameters such as pH, aggregate stability, nutrient and organic 

matter contents, bulk density, microbial abundance, diversity, and activity (Smith et al., 

2021), although the consideration of microbial parameters is relatively recent (Schloter 

et al., 2018). According to Bünemann et al. (2018), it is important when choosing an 

indicator of change in soil quality to select a parameter with high sensitivity  to changes 

in soil conditions and consider its relationship to others soil variables. 

Interactions between soil chemical, physical and biological properties provide soils with 

the ability to perform multiple functions and services including pollutant and water 

filtration, biodiversity habitat, providing support, and cycling nutrients (Greiner et al., 

2017a). For example, C and N transformation processes are used to reflect soil functions 

related to organic matter decomposition and nutrient cycling (Lima et al., 2013), and are 

assessed through measurement of soil microbial biomass C and N, nitrogen 

mineralization, nitrification, respiration, and their interactions with other soil properties 

(Turco et al., 2015; Schloter et al., 2018). Other soil properties such as pH and 

exchangeable base cations can also be used as proxies of soil fertility (Koch et al., 2013). 

Therefore, the effects of environmental changes on soil quality and functioning may vary 

depending on the extent to which relevant soil quality indicators are altered in a 

particular soil type and land use (Vogel et al., 2019a).   

1.3. Effects of changes in land use and management on soil quality and 

functioning 

Changes in soil characteristics and processes can have major effects on ecosystem 

functions and services (Chen et al., 2021). These changes might result from changes in 

land use and agricultural practices. In many locations at high risk of land degradation due 

to soil erosion, terracing and reforestation have been recommended as the most 

potentially successful soil conservation and restoration practices (Deng et al., 2021; 

Rutebuka, 2021). To ensure the sustainable use of soil resources, it is imperative to 

quantify the long-term effects of these changes.  
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1.3.1. Effects of tree species identity on soil properties and processes 

Tree species influence soils through their specific traits, such as the quantity and quality 

of litter input and root exudates (Grayston et al., 1997; Augusto et al., 2002), nutrient 

requirements and acquisition mechanisms, canopy, and root architecture. These traits, 

influence soil structure and texture (Loranger et al., 2002), soil moisture and 

temperature, the presence of understory vegetation (Falkengren-Grerup et al., 2006), 

nutrient return to the soil by litter and throughfall (Carnol and Bazgir, 2013), soil biota 

(Aponte et al., 2013; Jozefowska et al., 2016), parameters which in turn influence soil 

properties and microbial processes.  

Afforestation/reforestation may contribute to the restoration or the degradation of soil 

via tree species-specific litter traits and chemical composition (Wardle et al., 2004; Tajik 

et al., 2019), resulting from various nutrient acquisition strategies of related to tree 

species identity (Lambers et al., 2008). For instance, a global meta-analysis assessing the 

long-term effects of eucalyptus species on soil properties and processes (Mallen-Cooper 

et al., 2022) demonstrated that eucalyptus species decrease soil nutrients contents 

(Zhang et al., 2015) and water resources (Christina et al., 2017). Particularly, this 

synthesis showed a significant decline in soil moisture, microbial abundance, nitrogen, 

and cation contents under eucalypts, an increase soil carbon, and inconsistent effects on 

soil pH (Mallen-Cooper et al., 2022).  

Eucalyptus tree species are commonly grown in the tropical regions such as in Rwanda 

(Figure 2), where they dominate forest plantations (89 %), to provide for the country's 

increasing need for firewood, charcoal, building materials, and other non-timber forest 

products. They also contribute significantly to environmental preservation by 

fighting  frequent landslides and reducing soils erosion in the steep lands (Mugunga, 

2016; IUCN, 2020). 
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Fig. 1. 2. Commonly planted Eucalyptus tree species included in this study 

Other species included in the present study (Figure 3), such as Calliandra calothyrsus, 

Grevillea robusta, and Cedrela serrata, are used in agroforestry (trees on farms) to 

improve soil fertility (Ndoli et al., 2021). Calliandra calothyrsus is commonly used as 

fodder for livestock (Kisaka et al., 2023). It is a N2-fixing tree, in association with 

rhizobium bacteria, and has been reported to promote soil nitrogen accumulation, 

improve soil physical properties and topsoil organic matter content (Koutika et al., 2005). 

Grevillea robusta and Cedrela serrata are mainly planted not only for their provision of 

wood products, but also to improve soils through nutrient cycling, stabilizing the soils, 

reducing nutrient leaching, and producing leaf mulch that improves soil moisture and 

organic matter contents (Ndoli et al., 2021; Musongora et al., 2023). For example, 

Grevillea robusta, with its proteoid root structure, can easily adapt to and improve soils 

with poor nutrient contents (Kalinganire, 1996; Watt and Evans, 1999). Proteoid root 

mats, characterizing plants in the Proteaceae family, were reported to be prominent in 

nutrient-poor soils and to exude chemical compounds that mobilize unavailable nutrients 

bound to metal cations (e.g., Fe2+ and Al3+) and enhance nutrient uptake (Dinkelaker et 

al., 1997).  
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Fig. 1. 3. Studied agroforestry tree species 

Among the native tree species used in this study, Entandrophragma excelsum and 

Polyscias fulva (known in Kinyarwanda as Umuyove and Umwungo, respectively) are 

common in Rwanda as well as in various natural forests of the tropical east and central 

African region (Figure 4). Being a late successional native species, Entandrophragma 

excelsum grows faster vertically at young age until it overtops other trees to successfully 

compete for light, then slowly increases in height and diameter of stem, buttress, and 

branches (Hemp et al., 2017; Mujawamariya et al., 2021). In the wood industry, 

Entandrophragma excelsum is categorized in “African Mahogany” species known as 

premium timber with high economic value on local and international market (Orwa et al., 

2009; Styles and White, 1991). Polyscias fulva is an evergreen early successional tree 

species commonly found in tropical montane forests (Mujawamariya et al., 2023). This 

tree species is traditionally very known in Rwanda for multiple uses; mainly for its 

potential medicinal value and making wooden royal instruments (e.g., drums, chairs, 

beehives, music instruments, utensils, etc.).  
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Fig. 1. 4. Native tree species included in this study 

Antimicrobial properties of Polyscias fulva have been reported in many studies (Plunkett 

et al., 2001; Winnie et al., 2019; Ashmawy et al., 2020). The structure of its thick foliage 

and wide-spread parasol canopy makes Polyscias fulva to be preferred in agroforestry 

systems where mulch and shade are needed (ICRAF, 2015). 

1.3.2. Effects of land terracing on soil properties and processes 

Land terracing is one of the oldest techniques for increasing the arable surface area on 

steep hillslopes through  conservation of water and soil (Cao et al., 2013; Arnáez et al., 

2015). The technique consists of creating flat surfaces, generally used for cultivation, 

separated by a ‘vertical riser’ protected by a wall of dry stones, soil, grass, or trees (Deng 

et al., 2021). Terrace farming systems include bench terracing, contour, and parallel 

terraces. Bench terraces comprise steps and flat areas arranged in regular intervals, and 

its construction is labor consuming and implies soil disturbance. Contour terracing 

follows the relief contour, requires less labor and causes less soil disturbance than bench 

terracing. Parallel terracing, resulting in parallel constructions, is achieved through heavy 

labor and costs and causes severe soil disruptions, as it may imply land-leveling 

operations (Stanchi et al., 2012).  

The conversion of steep farmlands into terraced fields can increase the arable surface by 

20%–40%, with an increase in crop yield of the same magnitude  (Hu et al., 2005; 

Posthumus and De Graaff, 2005). Although land terracing is practiced for protecting soils 

against degradation by erosion, it may disturb soil structure, leading to reduced stability 
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of soil aggregates  (Tobiašová et al., 2023), while accelerating SOM and nutrient loss via 

increased SOM degradation (Caravaca et al., 2002). As a result, soils with poor structure 

and unstable aggregates are prone to nutrient leaching, compaction, and high runoff with 

low infiltration (Deng et al., 2021). The mechanical the construction of terraces has a non-

negligible effect on soil properties and processes. First, excavation and changes in slope 

topography have a significant negative effect on soil structure. Also, the fertile topsoil 

may be removed, and subsoil may be upturned causing redistribution of soil layers and 

associated characteristics. As terraced fields vary in shapes and sizes, as well as in the 

intensity of the mechanical disruption (from manually created terraces to the use of 

heavy machinery), implications for soil quality and functioning may differ greatly 

between terraced sites. 

1.4. Land use changes and soil conservation in Rwanda 

Human-induced land degradation adversely affects 29% of global land, threatening the 

livelihood of more than 2.6 billion people with soil erosion by water being the major 

cause of land degradation in the world (Wuepper et al., 2020). The wellbeing of humans 

and all terrestrial life depends on soil resources, but these are globally subjected to 

degradation as a result of both natural events and anthropogenic activities (FAO & ITPS, 

2015). Land degradation was described as the reduction or loss in the quality and the 

amount of land resources, required to support ecosystem services and functions and 

enhance food security within specific temporal and spatial scales and ecosystems 

(Borrelli et al., 2020). Land use and agricultural practices are important factors that 

influence the characteristics of soils through the alterations of the soil physical, chemical, 

and biological properties (García-Orenes et al., 2010). The decline in soil fertility is a 

major concern in Sub-Saharan Africa, where approximately 67% of the total land is 

degraded to varying degrees of severity (Sileshi et al., 2019).  

Rwanda is one of the countries facing high risks of soil degradation due to its climate 

characterized by frequent heavy rains and the typical mountainous landscape, exposing 

soils to erosion (Rutebuka, 2021). Between 1990 and 2015 soil loss by erosion increased 

by about 54%, with an annual average soil loss of 62 tons per hectare (Karamage et al., 

2016; Nyesheja et al., 2019). Specifically, soil degradation is primarily attributable to the 

exploitation of soils, frequently on sloped farms, because of limited land resources and 

the increasing need to feed an ever-growing population.  
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Fig. 1. 5. Land use – land cover map for Rwanda, 2015. 
Source: (Banerjee et al., 2020). 

According to the Rwandan fifth Population and Housing Census (RPHC, 2022), the 

country’s population increased from 10.5 million in 2012 to counted 13.2 million in 

August 2022 and it is projected to hit 16.3 million by 2032 (NISR, 2023). With this rapid 

population growth in a small country (26,338 km2),  Rwanda continues to be one of the 

most densely populated nation in Africa, with a population density of 535 habitants per 

km2. With 72% of people living in rural areas and  69% of households daily engaged in 

agricultural activities, pressures on agricultural lands are high.  About 90% of agricultural 

activities are conducted on steep slopes, leading to country’s reliance on vulnerable 

terrains for agricultural productivity across the country (Rutebuka, 2021). 

Recognizing the threats of environmental degradation and their effects on the global and 

country’s economic development, the government of Rwanda, in its current vision 2050, 

places a strong emphasis on the necessity of environmental sustainability, resource 

management, and climate change adaptation (REMA, 2021). According to this vision, 

research should play an important role as a tool for tracking progress on socio-economic, 

environmental and natural resource indicators that  bring  together information  on  

resource  stocks  and  flows, uses, scarcities.  This vision states that the improvement of 
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sustainable economic growth results from the integration of this information into 

development plans (Bagstad et al., 2019). Based on specific local factors, associated with 

its topography, climate, and socio-economic conditions, Rwanda has been making 

significant efforts in restoring degraded land through establishing new forest plantations 

and terracing agricultural lands (Bucagu et al., 2013).  Further, with Rwanda’s long-term 

Vision 2050 and as a signatory of global commitments such as the Bonn Challenge 2030, 

Paris Agreement, SDGs, UN land degradation neutrality (LDN), and Africa Agenda 2063, 

there is need for assessing the responses of soils to restoration measures that have been 

implemented in past decades, including tree plantation and terracing lands. Both forests 

and agricultural activities are crucial in daily livelihood of the Rwandan population. 

Forests provide 86% of the primary energy source, mainly as domestic cooking energy 

(RFA, 2021). They hold the base for the country’s tourism opportunities, protect 

watersheds, downstream wetlands and rivers,  as well as support agriculture, which 

accounts for 36% of GDP (NISR, 2019).  

1.4.1. Agricultural land terracing in Rwanda 

Rwanda has used a variety of terracing techniques to specifically reduce the detrimental  

effects of intensive cultivation of steep slopes on soil quality and soil loss (Kagabo et al., 

2013). In Rwanda, it is estimated that 1,080,168 ha of land (45%) are at high risk of 

erosion across the country (IUCN, 2022). About 71 941 ha (7%) of this total risk area are 

at extremely high risk, while 190, 433 ha (18%) are at very high risk and 300,805 ha 

(28%) at moderately high risk of erosion respectively. Although efforts have been 

invested in controlling accelerated soil erosion, especially in agricultural systems, only 

282,352 ha (26%) of the total land at high risk of erosion are protected either by contour 

bank terraces, commonly known as progressive terraces, covering 28,870 ha (10%), and 

bench terraces, protecting 15% of hillslope lands at high risk of erosion. 

The land consolidation program, focusing on production of specified crops in different 

agroecological zones of Rwanda, has enabled extended farming terraces via financial 

support from the government and development NGOs (Byamukama et al., 2011; Bizoza, 

2014). Although the main goal of this program was to allow people to increase arable land 

surface, work together to produce more, and be more connected to markets, some 

farmers have been resisting this process, with the claims that terraced land were quickly 

degraded after just a few productive seasons. Consequently, it is very common in Rwanda 



Chapter 1 – General Introduction 

22 
 

to observe adjacent farms with terraced and unterraced agricultural plots owned by the 

same farmer (Figure 5).  

These claims are the main catalyst behind the need for understanding the response of soil 

characteristics to land terracing practices (Rushemuka et al., 2014). Land terracing is not 

a particular agricultural practice to Rwanda, as it existed for many years in other areas of 

the world. 

 

Fig. 1. 6. Common agricultural practice showing paired terraced – unterraced plots in Rwanda 

The benefits of terracing include increased arable land on sloping farms, soil conservation 

by minimizing soil loss by erosion, improved productivity, reduce sedimentation and 

pollution of water streams (Karamage et al., 2017). However, there are some 

disadvantages of terrace farming related to reduced productivity in terraced lands due to 

the mechanical disruption of soil structures, increased oxidation and loss of organic 

matter stocks and associated benefits, financial cost to maintain terraces and their 

fertility (Deng et al., 2021).  

1.4.2. Reforestation and afforestation in Rwanda 

One of the main targets in the Vision 2020 launched in 2000 was to reach 30% of forest 

cover by 2020 in Rwanda. According to the forest cover map of 2019,  the total forested 
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land area is 724,695 ha, representing 30.4% of the country land among which plantation 

forests occupy 387,425 ha (16.2%), natural mountain rainforests are 130,850 ha (5.5%), 

wooded savannah occupy 161,843 ha (6.8%) and shrubs occupy 43,963 ha representing 

1.8% of the total country land (Rwanda forest authority; RFA, 2021).  

 

Fig. 1. 7.  Arboretum of Ruhande (study site) serving as gene bank of forest germplasm and 
planting materials in Rwanda 

Although the target was reached, forests are unevenly distributed and not diversified. For 

example, the Eastern province is the least afforested, and it is the only rural area in 

Rwanda where deforestation surpasses afforestation (MoE, 2019a). The campaigns to 

plant more forests will continue, but it remains unclear how different tree species may 

affect soil processes and soil quality in Rwanda, especially in regard to introduced exotic 

species. 
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Abstract 

Understanding the long-term effects of tree species on soil properties is crucial for the 

development of forest restoration policies in relation to the choice of species that meet 

both environmental and local livelihood needs. This study was performed in the 

Arboretum of Ruhande, Southern Rwanda, where monocultures of 148 deciduous and 56 

conifer species have been established in 0.25 ha replicated plots from 1933 onwards. We 

investigated the effects of six exotic and two native tree species planted in monoculture 

plots and native species mixed within one self-regenerated plot on soil properties in two 

layers (0–5 cm and 5–10 cm depth). We measured general soil properties (pH, SOM, 

exchangeable base cations) and water-soluble C and N as a proxy for soil functioning. 

Changes in soil properties were observed in the upper soil layer for all tree species. 

Planting Eucalyptus species caused soil acidification, whereas soil exchangeable cations 

and pH were higher under native species (Entandrophragma excelsum and Polyscias 

fulva) and mixed native species. The effects of tree species were more pronounced for hot 

water-extractable C and N than for other soil properties. Their analyses could be used for 

detecting changes in soil functioning linked to vegetation types. 

 

Keywords: soil quality; soil functions; Eucalyptus species; soil acidity; exchangeable 
cations; water-extractable C and N; Ruhande Arboretum; Rwanda
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2.1. Introduction 

Plants and soils are key components of terrestrial ecosystems, and changes in vegetation 

cover may lead to changes in soil properties, especially in the forest topsoil (Binkley and 

Menyailo, 2005; Carnol and Bazgir, 2013). Soils provide important ecosystem functions, 

such as nutrient cycling, carbon sequestration in soil organic matter (Bauters et al., 2015), 

and provision of fiber and food through the supply of water and nutrients to the 

vegetation (Lathwell and Grove, 2011). In turn, trees are an important soil-forming factor, 

and tree species can affect soils through various mechanisms, including nutrient uptake 

and return to the soil, soil organic matter dynamics, changes in soil acidity via root–soil 

exchange, and protection from erosion (Carnol and Bazgir, 2013; Hobbie et al., 2006; 

Prescott and Vesterdal, 2013). As a result, physical, chemical, and biological properties as 

well as the related processes may be affected by tree species (Veldkamp, 2000) and thus 

influence the nutrient supply capacity of the soils to the trees. In tropical forests, soil 

fertility relies heavily on the internal cycling of nutrients through the rapid 

decomposition of above- and belowground litter from vegetation, taking place in the thin 

upper soil horizon (Sayer & Banin, 2016; Schulte & Ruhiyat, 1998). Understanding the 

effect of tree species is particularly important in tropical forest ecosystems for the long-

term preservation of soil quality and for promoting soil functioning. 

Recently, there has been much interest and debate about the delimitation of the concepts 

of soil quality, health, fertility, and ecosystem services (Baveye et al., 2016b; Bünemann 

et al., 2018; Karlen et al., 1997; Salomé et al., 2016), with sometimes overlapping or 

contradicting views, leading to confusion across disciplines. Karlen et al. (Karlen et al., 

1997) defined soil quality as “the capacity of a specific kind of soil to function, within 

natural or managed ecosystem boundaries, to sustain plant and animal productivity, 

maintain or enhance water and air quality, and support human health and habitation’’. 

They also recommended that soil quality should be evaluated based on soil function 

without, however, providing a specific definition of soil functions. Greiner et al. (Greiner 

et al., 2017b) indicated that soil functions result from the interaction of soil properties 

and processes and that they are related to ecosystem services and human benefits, as 

illustrated in the “Cascading framework” (Haines-Young and Potschin, 2008). Soil 

functions can be measured through physical, chemical, and biological soil properties and 
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processes, which are used as the basic tools to evaluate soil quality under different land-

use systems (Turco et al., 2015; Vogel et al., 2019b). 

Among many soil properties, soil organic matter and/or carbon (SOM, SOC), pH, and base 

cations are frequently used as primary indicators of forest soil quality (Augusto et al., 

2002; Bünemann et al., 2018). Given the importance of soil organic matter for soil 

functioning (Franzluebbers, 2002), several studies investigated tree species-induced 

changes on total soil organic carbon (SOC) after afforestation(Wellock et al., 2011). The 

findings differed, with some studies showing no change (Degryze et al., 2004; Peri et al., 

2010), increased SOC (Del Galdo et al., 2003; Mao et al., 2010), and decreased SOC (Ross 

et al., 1999; Wellock et al., 2011). Numerous factors may govern these contradictory 

results, and, in a review of 43 afforestation studies, Paul et al. (Paul et al., 2002) identified, 

in order of importance, previous land use, climate, and forest tree species as key factors 

influencing forest soil organic matter dynamics. While SOM is recognized as an important 

global indicator of soil quality, its slow dynamics does not allow for early detection of 

changes (Nyberg et al., 2002). Further, most SOM might not be available for microbial 

breakdown; therefore, total SOM might not be a relevant indicator of soil functioning 

(Curtin et al., 2021). For example, in a grassland, 60% of SOM was shown to be a 

recalcitrant pool (Paul, 2016). SOM undergoes continuous changes that generate distinct 

chemical and physical organic matter fractions with different turnover rates, from readily 

available labile to recalcitrant carbon and nitrogen fractions (Choudhary et al., 2013; 

Haynes, 2005). Labile SOM fractions have recently gained interest as indicators of soil 

quality because they are more sensitive to changes in vegetation cover and land use than 

the total organic matter (Strosser, 2011; Zhang et al., 2011). Additionally, being the main 

substrate and energy source for soil microorganisms, labile carbon and nitrogen fractions 

such as water-extractable C and N are linked to soil nutrient cycling and thus to soil 

functioning (Curtin et al., 2021; Haynes, 2005; Wang et al., 2008). 

Rwanda experienced the loss of its natural forest cover from 30% in 1920 to 8% in 1998 

(Habiyaremye et al., 2011). This deforestation in a country whose topography is 

dominated by steep sloping hills with heavy precipitation has led to accelerated soil 

erosion and to the decline of soil fertility (Clay and Lewis, 1990). A tree plantation 

program was initiated in 2010 to promote “in situ soil conservation through agroforestry 

and forest landscape restoration” (MINILAF, 2018) and halt the decline of forest cover, 
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counter soil erosion, and land degradation as well as to meet increasing demands for 

wood. Within this program, the government of Rwanda has mobilized its entire 

population and non-governmental organizations to plant trees, mainly fast-growing 

exotic species, and to maintain remaining forests, whereby a target was set in 2010 to 

restore the country’s forest cover from 19.6% to 30% by 2030 (Warnest et al., 2012). This 

target was reached in 2020 with 724,695 ha (30.4%) forest cover in the country (RFA, 

2021). This forest cover is composed of the following: 387,425 ha (53.5%) forest 

plantations, wooded savannahs in the east cover 161,843 ha (22.3%), natural montane 

forests occupy 130,850 ha (18.1%), shrublands cover 43,963 ha (6.1%), and 613 ha are 

occupied by bamboo (MoE, 2019b). Of the forest plantations, eucalyptus species are 

dominant with 89%, followed by 6.5% pines, 3.1% mixed exotic forests, and 1.4% being 

plantations of native species (IUCN, 2020). While the effects of tree species on soils were 

extensively studied for temperate ecosystems, data on tropical soils are scarce (Bauters 

et al., 2017b). The results of most studies may therefore have limited relevance within 

the context of tropical soils (Bauters et al., 2017a). Additionally, numerous studies were 

performed in relatively short-term common garden experiments (Bauters et al., 2017b). 

We need an in-depth understanding of the effects of the planted species on soil quality in 

tropical ecosystems. Such expertise for local conditions is important for selecting suitable 

species promoting soil functioning in these tropical forest ecosystems. 

The general aim of this study was to assess the long-term effects of tree species planted 

in Rwanda on chemical soil quality, including water-soluble labile C and N fractions, as a 

proxy for soil functioning. Specific aims were to (i) determine the differences in soil 

chemical properties between tree species in two soil layers (0–5 cm and 5–10 cm depth); 

(ii) characterize hot and cold water-extractable mineral N and organic C and N in soils 

under different plantation species, and (iii) investigate the relationships between labile 

C and N fractions and other soil properties in response to tree species. We hypothesized 

that the exotic eucalyptus species would reduce the chemical quality of the soils in 

comparison to native species and that labile C and N fractions would be more sensitive to 

a change in tree species than SOM. 
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2.2. Materials and Methods 

2.2.1. Study site and soil sampling 

Soils were sampled in the Arboretum of Ruhande (Southern Rwanda, 2°36′S, 29°44′E, 

Figure 1) located at 1638–1737 m elevation on a flat plateau of the Ruhande hill 

(Nsabimana et al., 2008). This site is characterized by a mean annual rainfall of 1230 mm 

and a temperature between 17.5 °C and 19 °C. The rainfall has a bimodal regime with 

irregular short rains from September to December and a short dry season (January to 

February), followed by a heavy rainy season from March to May and a long dry season 

from June to August (Meteorwanda, 2021). The soil is classified as Ferralsol (also known 

as Oxisols in USDA soil taxonomy), a red-brown colored soil with a sandy loam texture 

and diffuse horizons (Nsabimana et al., 2009). It is developed from weathered 

Precambrian phyllite, and granitic batholith parental rocks coated with a mixture of 

quartzites and mica schists (Moeyersons, 2003; Steiner, 1998). 

The site was established in 1933 on cultivated land under the request of the colonial 

leaders of Rwanda-Urundi territory for forestry research, wood, and seed provision to 

the rest of the country (Kalinganire, 1995). The size of the arboretum was progressively 

increased to currently reach 200 ha with 143 hardwood tree species, including 126 

introduced exotic species of which 69 are eucalyptus species and 17 are native species. It 

also contains 57 deciduous tree species and 3 bamboo species, of which two are native to 

Rwanda (Nsabimana et al., 2008). Trees are planted in replicated monoculture stands of 

0.25 ha (50 m × 50 m), resulting in 504 numbered plots (with 454 plots of exotic species) 

separated by inter-plot paths 6–10 m wide (Figure 2). Thinning and removal of shrubs 

and other invading vegetation is performed annually on all plots, except on an 

undisturbed plot (4 ha) of self-regenerated mixed native species (Mns). Plots are 

managed to maintain a constant density of the main tree species by planting in 

replacement of dead plants. From the 24 selected plots (see below), six were completely 

re-established, but they were aged minimum 30 years at the time of this study (Table A1). 

Neighbouring local households are allowed to collect dry wood each Friday for cooking. 

Given that trees were planted on the same site with similar (agricultural) land-use history 

and climatic conditions, we expect current differences in soil characteristics to reflect the 

influence of the planted tree species. 
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The uniqueness of Arboretum of Ruhande in terms of design, landscape, tree species 

composition, and presence of other living organisms lies in its multiple roles as a global 

site for forestry conservation, research, educational activities, and a gene bank of forestry 

germplasm in addition to being the country’s main source of forest planting materials 

(Burren, 1995). This botanical garden was recently (May 2018) awarded international 

recognition through its enrolment into the “Queen’s Commonwealth Canopy” projects. 

This is a network of forest conservation initiatives within Commonwealth countries 

aiming at forest and biodiversity conservation for future generations (Commonwealth, 

2018). 
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Fig. 2. 1. Location and map of the Arboretum of Ruhande, Rwanda. Studied plots are indicated in 

colour. 

Tree species: Cc= Calliandra calothyrsus; Cs= Cedrela serrata; Gr= Grevillea robusta; Eg= 

Eucalyptus grandis; Em= Eucalyptus maidenii; Es= Eucalyptus saligna; Ee= Entandrophragma 

excelsum; Pf= Polyscias fulva; Mns= Mixed native species (self-regenerated).  
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2.2.2. Soil Sampling and Chemical Analyses 

Based on the records of forestry seed demands and species adaptability in different 

regions of the country (Iiyama et al., 2018; Ndayambaje, 2016), eight species were 

selected considering three plots per species (Fig. 2.1; Table 2.A1). These included three 

eucalyptus species (Eucalyptus grandis, Eucalyptus maidenii, and Eucalyptus saligna), 

three agroforestry species (Calliandra calothyrsus, Cedrela serrata, and Grevillea robusta), 

two native species (Entandrophragma excelsum and Polyscias fulva), and a self-

regenerated plot of native forest (mixed native species = Mns). 

Each plot was divided into two sub-plots (25 × 50 m), where soil samples were collected 

under the trees’ canopy at a distance of 1 to 1.5 m from the tree base (Bini et al., 2013). 

One composite sample was taken in each sub-plot by mixing five soil cores (X-shaped 

sampling) collected using a 30 × 30 cm frame and a shovel. Samples were taken at two 

soil depths—0–5 cm and 5–10 cm—the most active layers in tropical forest soils with a 

high rate of organic matter decomposition and nutrient cycling (Zalamea et al., 2016). 

Thus, we took two composite soil samples per plot at two soil depths. Soils were sieved 

fresh (4 mm) and stored at 4 °C until analyses. 

Gravimetric water content, soil organic matter (SOM), and pH were determined as 

described by Allen et al. (Allen, 1989). Briefly, moisture was calculated as the difference 

between fresh and oven-dried soil at 105 °C for 3 h; SOM was calculated as a weight loss 

from oven-dry soil after overnight ignition at 550 °C in a muffle furnace. Soil organic 

carbon (SOC) was estimated by dividing SOM by 1.724 (Van Bemmelen factor), assuming 

that organic matter contains 58% of organic carbon (Périé and Ouimet, 2008). The pHKCL 

was determined in a soil solution (1:2.5 v/v) with 1 M KCl and measured using a pH meter 

(HI2550 Multiparameter pH Benchtop meter, HANNA® Instruments-USA). Soil water 

holding capacity (WHC) was determined using Shaw’s method according to Jenkinson & 

Powlson, (1976) as the difference between the volume of water (50 mL) added to 25 g of 

fresh soil and the volume drained after 30 min of saturation in addition to the initial soil 

moisture content. 

Exchangeable cations (Al3+, Ca2+, Fe2+, K+, Mg2+, Mn2+, Na+, and Zn2+) were extracted from 

fresh soil with 0.1 M BaCl2 (1:5 w/v) by agitation for 30 min, followed by centrifugation 

at 180 rpm (Hendershot and Duquette, 1986). Chemical analysis of the filtered (Macherey 
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Nagel MN 6151/4. Ø 150 mm, Germany) and the acidified (1% HNO3 Suprapur) BaCl2 

extracts was performed using ICP-AESS (Varian, Australia). The sum of exchangeable 

cations (∑cations) was calculated as the sum of all measured cations, and exchangeable 

base cations (EBC) were calculated as the sum of Ca2+, K+, Mg2+, and Na+; expressed in c 

mol· kg−1. 

Water-extractable C and N were determined using the method of Ghani et al. (Ghani et al., 

2003). Fresh soil was extracted with distilled water (1:6, w/v), shaken (120 rpm, 30 min), 

centrifuged (4000 rpm, 10 min), and filtered (Whatman #42), representing water-soluble 

C and N (WSC, WSN) fractions. Hot water-extractable C and N (HWC, HWN) were 

subsequently extracted from the remaining wet soil, mixed with distilled water (30 mL), 

and placed in the oven for 16 h at 80 °C. Organic C in the cold (WSC) and the hot water 

(HWC) extracts was measured using a Total Organic Carbon analyzer (LabToc, Pollution 

and Process Monitoring, UK). Cold (“WS…”) and hot water-extractable (“HW…”) nitrogen 

forms (N-NH4: WSNH4, HWNH4; N-NO3: WSNO3, HWNO3) and total nitrogen (WSNtot, 

HWNtot) were measured colorimetrically using a continuous flow autoanalyzer 

equipped with a UV digestor (Autoanalyser3, BranLuebbe, Germany). Organic nitrogen 

in the extracts (WSNorg, HWNorg) was calculated as the difference between total nitrogen 

and mineral nitrogen. Given that most of the mineral N is extracted with cold water, and 

as ammonium N in hot water extracts comes from hydrolysis of organic N (Gregorich et 

al., 2003), we assumed that HWNtot was entirely deriving from organic N and thus 

included WSNorg, WSNtot, HWNorg, HWNtot, WSC:WSNorg, and HWC:HWNtot in our 

analyses. 

2.2.3. Statistical analyses 

We used linear mixed-effects models (LMM) to investigate the differences in soil chemical 

properties between tree species and soil layers, using lme4 package and lmer function 

(Bates et al., 2015) in R, version 3.5.1 (Venables and Ripley, 2012). The model used 

“Species” (9 levels: C. calothyrsus, C. serrata, G. robusta, E. grandis, E. maidenii, E. saligna, 

E. excelsum, P. fulva, and Mixnatives, with three replicates per species), “Layer” (with two 

levels: upper and lower soil layers), and the interaction between tree species and soil 

layer (species*layer), which were included in models as fixed effects. “Plot” was included 

as a random effect to account for the non-independence of the two samples collected 

within the same plot and the tree age differences between plots. Normality was tested 
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using the Shapiro–Wilk test and/or visual inspection of plotted residuals. 

Homoscedasticity of random errors was tested using Levene test function, part of the Car 

package in R. Where necessary, response variables were transformed to improve 

normality and homoscedasticity of errors. Significance of tree species and soil layer 

effects were analysed using the model’s estimated marginal means (EMMeans) function, 

part of the multcompView package in R, using Tukey–Kramer honestly significant 

difference range post-hoc test to compare all measured parameters across levels at a 

significant probability of α = 0.05. The prediction of response variables explained by the 

model was determined using a multi-model inference (MuMIn-v1.42.1) package and 

r.squaredGLMM function in R (Barton, 2018). 

Pearson’s coefficient of correlation was used to determine the correlation between 

measured variables. Principal component analysis (PCA: using FactoMineR and ggplot2 

packages) was used to describe the patterns of variation explained by soil parameters of 

interest (pH, SOM, EBC, WSC, WSNorg, WSNtot, WSC:WSNorg, HWC, HWNorg, HWNtot, and 

HWC:HWNtot) between tree species. All statistical analyses and tests were carried out 

using R software, version 3.5.1 (Venables and Ripley, 2012). 

2.3. Results 

2.3.1. Chemical soil properties in two topsoil layers 

Values for all soil parameters (Fig. 2.2; Table 2A.3) were significantly higher in the upper 

(0–5 cm) soil layer compared to the lower (5–10 cm) layer under all tree species (except 

for Al3+, Fe2+, and Na+). pH, SOM, and EBC were 14%, 57%, and 78% higher in the upper 

compared to the lower soil layer (4.9, 22%, and 36.3 cmolc kg−1 versus, 4.2, 9.6%, and 7.8 

cmolc kg−1, respectively). Base cations dominated the sum of exchangeable cations, 

representing 78% (Ca2+), 19.4% (Mg2+), and 2.3% (K+) in the upper soil layer and 65% 

(Ca2+), 16.5% (Mg2+), and 1.7% (K+) in the lower soil layer (Table 2A.2; 2A.3). In contrast 

to the other soil parameters, the contribution of Al3+, Fe2+, and Na+ to the sum of 

exchangeable cations was less in the upper soil layer (0.002% Fe2+, 0.2% Al3+, 0.4% Na+) 

compared to the lower soil layer (0.1% Fe2+, 13.5% Al3+, 2% Na+). 
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Fig. 2. 2. Predicted (LMM) soil properties under nine treatment (Tree species) and two soil layers 

(0–5 cm and 5–10 cm). 

Tree species: Cc= Calliandra calothyrsus; Cs= Cedrela serrata; Gr= Grevillea robusta; Eg= 

Eucalyptus grandis; Em= Eucalyptus maidenii; Es= Eucalyptus saligna; Ee= Entandrophragma 

excelsum; Pf= Polyscias fulva; Mns= Mixed native species. The horizontal black line in the box 

shows the estimated sample median, while the lower and the upper box boundaries show the first 

and the third percentiles, respectively. The dots outside the whisker boundaries show 

observations outside the 5th–95th percentile range. Different letters denote significant 

differences between tree species and soil layer (mixed linear models, Tukey’s HSD, 

p<0.05).Figure 5th–95th percentile range. Different letters denote significant differences 

between tree species and soil layer (mixed linear models, Tukey’s HSD, p < 0.05). 
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Labile (water-soluble and hot water-extractable) carbon and nitrogen also differed 

between soil layers (Fig. 2.2). The amounts of water-soluble C (WSC) and hot water-

extractable C (HWC) were about seven times higher in the upper than in the lower soil 

layer. Different components of water-extractable N also varied significantly with soil 

depth (Table 2.1). In the upper soil layer, across tree species, cold water extractable N 

comprised nitrate (WSNO3, 52%), ammonium (WSNH4, 13.4%), and organic nitrogen 

(WSNorg, 34.6%) (Table 2A.4). In the lower soil layer, these proportions accounted for 

58.4% nitrate (WSNO3), 6.7% ammonium (WSNH4), and 34.9% organic nitrogen 

(WSNorg). The proportions extracted by hot water also differed with soil depth where 

nitrate, ammonium, and organic nitrogen accounted for 3.5%, 18.7%, and 77.8%, 

respectively, in the upper soil layer against 3.4%, 12.6%, and 84%, respectively, in the 

lower soil layer (Table 2A.4). 
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Table 2. 1. Measured waters’ C and N under different tree species in the Arboretum of Ruhande (means ± SEM). Different letters within one parameter 
denote significant differences between tree species and soil depths (mixed linear models, Tukey’s HSD, p < 0.05. 

Labile C and N Fractions Soil Layer (cm) 
Calliandra  
calothyrsus 

Cedrela  
serrata 

Grevillea 
robusta 

Eucalyptus 
grandis 

Eucalyptus 
maidenii 

Eucalyptus 
saligna 

Entandrophragma 
excelsum 

Polyscias  
fulva 

Mixed  
natives 

Water-soluble C and N fractions 

WSC (mgkg−1) 
0–5  550 ± 49 f 210 ± 13 b 320 ± 30 cde 360 ± 12 cde 380 ± 29 de 430 ± 38 e 310 ± 15 bcd 250 ± 5 bc 260 ± 8.9 bc 

5–10 67 ± 2.5 a 56± 2.3 a 50 ± 3.4 a 52 ± 3.9 a 60 ± 3.4 a 50 ± 1.7 a 53 ± 2.6 a 50 ± 1.9 a 68± 3.3 a 

WSNtot (mgkg−1) 
0–5  120 ± 3.8 f 73 ± 2.2 c 180 ± 2.8 h 100 ± 3.4 de 100 ± 3.8 de 96 ± 2 d 120 ± 1.7 f 130 ± 3.5 g 110 ± 2.3 ef 

5–10 25 ± 0.81 ab 17 ± 0.73 ab 26 ± 0.36 b 16 ± 0.73 ab 22 ± 0.3 ab 16 ± 0.99 ab 15 ± 0.46 a 21 ± 1.4 ab 27 ± 0.69 b 

WSNorg (mgkg−1) 
0–5  51 ± 2 d 20 ± 1.6 b 32 ± 2.8 c 40 ± 2.2 c 33 ± 4.1 c 37 ± 1.9 c 34 ± 2.9 c 35 ± ±2.7 c 30 ± 1.3 c 

5–10 8.1 ± 0.44 a 7.1 ± 0.5 a 5.8 ± 0.12 a 5.9 ± 0.64 a 6.6 ± 0.37 a 5.9 ± 0.69 a 6.6 ± 1.2 a 7.2 ± 0.83 a 8.6 ± 0.49 a 

WSNH4 (mgkg−1) 
0–5  15 ± 0.66 d 13 ± 0.45 cd 15 ± 0.75 d 9.9 ± 0.92 b 13 ± 1.1 cd 15 ± 0.53 d 15 ± 1.2 d 8.7 ± 0.3 b 10 ± 0.24 bc 

5–10 1.8 ± 0.14 a 2 ± 0.27 a 0.52 ± 0.01 a 0.76 ± 0.06 a 0.9 ±0.07 a 1.2 ± 0.2 a 2.2 ± 0.2 a 0.82 ± 0.03 a 0.8 ± 0.05 a 

WSNO3 (mgkg−1) 
0–5  50 ± 2.1 ef 40 ± 2 d 130 ± 4.1 i 54 ± 1.8 f 54 ± 1.7 f 44 ± 1.2 de 70 ± 2.2 g 91 ± 2.6 h 70 ± 1.8 g 

5–10 15 ± 0.49 abc 7.6 ± 0.55 a 20 ± 0.39 c 9.3 ± 0.17 ab 14 ± 0.54 abc 8.7 ± 0.21 ab 6.1 ± 0.93 a 13 ± 0.89 abc 17 ± 0.53 bc 

WSC/WSNtot 
0–5  4.8 ± 0.5 f 2.9 ± 0.2 abcd 1.9 ± 0.2 a 3.5 ± 0.1 bcde 3.8 ± 0.3 def 4.5 ± 0.4 ef 2.9 ± 0.1 abc 1.9 ± 0.1 a 2.4 ± 0.0 ab 

5–10 2.7 ± 0.2 abcd 3.4 ± 0.1 bcde 1.9 ± 0.1 a 3.3 ± 0.3 bcde 2.8 ± 0.1 abc 3.2 ± 0.1 bcd 3.6 ± 0.2 cdef 2.5 ± 0.2 abc 2.6 ± 0.1 abc 

WSC/WSNorg 
0–5  11 ± 1 a 11 ± 0.9 a 11 ± 1.8 a 9.2 ± 0.5 a 12 ± 1.5 a 12 ± 1.3 a 9.3 ± 0.9 a 7.5 ± 0.6 a 8.7 ± 0.2 a 

5–10 8.6 ± 0.83 a 8 ± 0.34 a 8.8 ± 0.58 a 9.6 ± 1.5 a 9 ± 0.2 a 8.9 ± 0.79 a 9.6 ± 1.7 a 7.4 ± 0.81 a 8 ± 0.55 a 
Hot water-extractable C and N fractions 

HWC (mgkg−1) 
0–5  3200 ± 280 cd 2500 ± 110 b 2700 ± 97 bc 5200 ± 150 ef 5400 ± 120 f 5500 ± 140 f 4600 ± 210 e 3400 ± 51 d 3500 ± 230 d 

5–10 640 ±32 a 540 ± 25 a 590 ± 25 a 500 ± 29 a 580 ± 25 a 630 ± 51 a 500 ± 46 a 620 ± 31 a 830 ± 16 a 

HWNtot (mgkg−1) 
0–5  300 ± 4.5 cd 270 ± 9.4 c 330 ± 8 de 490 ± 13 h 420 ± 5.2 fg 440 ± 8 g 430 ± 17 g 370 ± 8.9 ef 430 ± 20 g 

5–10 80 ± 4.6 ab 61 ± 1.2 a 66 ± 4.4 ab 48± 3.1 a 52 ± 3.2 a 51 ± 1.7 a 55 ± 3.8 a 72 ± 1.5 ab 110± 1.3 b 

HWNorg (mgkg−1) 
0–5  240 ± 1.9 cd 220 ± 7.5 c 240 ± 5.5 cd 400 ± 11 g 330 ± 4.8 ef 360 ± 6.2 f 340 ± 13 ef 270 ± 6 d 320 ± 18 e 

5–10 65 ± 4.3 ab 50 ± 1.7 a 57 ± 3.8 ab 41 ± 2.9 a 44 ± 2.9 a 43 ± 1.6 a 45 ± 3.9 a 62 ± 1.7 ab 91 ± 1.2 b 

WSNH4 (mgkg−1) 
0–5  50 ± 2.4 b 43 ± 2.1 b 73 ± 3.1 cde 77 ± 2.8 de 63 ± 1.8 c 68 ± 2 cd 82 ± 3.7 e 94 ± 4.9 f 97 ± 2.1 f 

5–10 12 ± 0.35 a 9.1 ± 0.75 a 6.4 ± 0.42 a 5.2 ± 0.15 a 5.1 ± 0.35 a 5.9 ± 0.81 a 9.3 ± 0.59 a 8.2 ± 0.43 a 14 ± 0.42 a 

WSNO3 (mgkg−1) 
0–5  12 ± 0.98 cd 8 ± 0.19 bc 17 ± 0.7 de 17 ± 1.4 de 21 ± 0.97 e 14 ± 1.3 d 14 ± 1.2 d 12 ± 0.92 cd 12 ± 3.2 cd 

5–10 3 ± 0.35 ab 1.6 ± 0.11 a 2.8 ± 0.25 ab 2 ± 0.26 a 2.2 ± 0.29 a 1.9 ± 0.03 a 0.99 ± 0.03 a 2.4 ± 0.29 a 3.1 ± 0.21 ab 

HWC/HWNtot 
0–5  11 ± 0.9 bcd 9.4 ± 0.3 abc 8 ± 0.1 a 11 ± 0.1 bcd 13.9 ± 0.1 e 13 ± 0.2 de 11 ± 0.3 bcd 9.1 ± 0.2 ab 8 ± 0.1 a 

5–10 8 ± 0.1 a 8.9 ± 0.5 ab 9 ± 0.4 ab 10 ± 0.3 bcd 11 ± 0.8 cde 12 ± 0.6 de 9.1 ± 0.5 ab 8.5 ± 0.4 ab 7.7 ± 0.1 a 

HWC/HWNorg 
0–5  13 ± 1.2 defg 12 ± 0.4 abcdef 11 ± 0.2 abcde 13 ± 0.2 defg 16 ± 0.2 h 15 ± 0.3 gh 14 ± 0.4 efgh 13 ± 0.3 cdefg 11 ± 0.2 abcde 

5–10 9.8 ± 0.17 abc 11 ± 0.85 abcde 10 ± 0.54 abcd 12 ± 0.38 bcdefg 13 ± 0.95 defg 14 ± 0.77 fgh 11 ± 0.6 abcde 10 ±0.5 ab 9.1 ± 0.16 a 

Analyzed soil variables (WSC = water-soluble C; WSNtot = water-soluble total N;  WSNorg = water soluble organic N;  WSNH4 = water-soluble ammonium; WSNO3 = 

water-soluble nitrate; WSC/WSNtot = water soluble C/N ratio; WSC/WSNorg = water soluble organic C/N ratio; HWC = hot water-extractable C; HWNtot = hot water-

extractable total N; HWNorg = hot water-extractable organic N; HWC:HWNtot= hot water-extractable C/N ratio; and HWC/HWNorg= hot water-extractable organic 

C/N ratio). 
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2.3.2. Effects of tree species on water-extractable C and N and other soil properties 

Most differences in soil properties between tree species were found in the upper 0–5 cm 

soil layer (Table 2A.3). In this layer, pH was highest under Polyscias fulva (pHKCL = 5.8), 

followed by the two native species stands (Mns and Entandrophragma excelsum) and 

Grevillea robusta (Figure 2). Soils under Calliandra calothyrsus and Cedrela serrata had an 

intermediate pH (pHKCL = 4.9), while all eucalyptus species showed the lowest soil pH 

values (Eucalyptus saligna < Eucalyptus grandis < Eucalyptus maidenii). The SOM content 

was significantly higher under most eucalyptus species and Entandrophragma excelsum, 

while it was not different between the other species. 

Water-extractable labile C and N (Table 2.1, Fig. 2.2) also differed under tree species. 

Water-soluble organic carbon (WSC) was significantly higher under Calliandra 

calothyrsus, followed by some eucalyptus species. Hot water-extractable carbon (HWC) 

showed the highest values under eucalyptus species and Entandrophragma excelsum, 

while values were not significantly different under the other tree species. Water-soluble 

total nitrogen (WSNtot) was highest under Grevillea robusta followed by native species 

(Entandrophragma excelsum and Polyscias fulva) and Calliandra calothyrsus with 

intermediate values under eucalyptus species and lowest concentration under Cedrela 

serrata. 

Unlike WSNtot, hot water-extractable total nitrogen (HWNtot) showed similar 

differences between tree species as HWC, with the highest values under eucalyptus 

species and Entandrophragma excelsum and similar values under the other tree species. 

The highest percentage of water-soluble mineral nitrogen relative to total water-soluble 

nitrogen was measured under Grevillea robusta (WSNmin = 82%; WSNO3 = 73% + WSNH4 

= 9%), while the lowest percentage was measured under Entandrophragma excelsum 

(WSNmin = 39%; WSNO3 = 12% + WSNH4 = 27%). The proportion of water-soluble 

organic nitrogen (WSNorg) was highest under Entandrophragma excelsum (WSNorg = 61%) 

and lowest under Grevillea robusta (WSNorg = 18%). The proportions of WSNorg under the 

other tree species ranged between 26% and 44%. In the hot water N extracts, organic 

nitrogen dominated fractions for all species. The highest proportion of mineral nitrogen 

was measured under Polyscias fulva (HWNmin, 28%; HWNO3 = 3% + HWNH4 = 25%), 

while the lowest proportion was measured under Eucalyptus saligna (HWNmin, 18%; 

HWNO3 = 3% + HWNH4 = 15%). Consequently, WSNorg was higher under Eucalyptus 
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saligna (WSNorg = 82%) followed by Polyscias fulva (HWNorg = 72%). WSC/WSNorg ranged 

from 7.5 to 12, with no significant difference between tree species (Table 2.1). 

The sum of exchangeable base cations (EBC: Ca2+, Mg2+, K+, and Na+) was significantly 

higher under mixed native species, followed by eucalyptus species, Polyscias fulva, and 

Grevillea robusta compared to Calliandra calothyrsus, Cedrela serrata, and 

Entandrophragma excelsum. Soil base cations such as Ca2+, Mg2+, and K+ dominated with 

nearly 97% of the total exchangeable cations, and they generally showed the higher 

concentrations under native and Eucalyptus species. 

In the lower soil layer (5–10 cm), there were no significant differences between tree 

species for SOM, WSC, WSNorg, WSNH4, HWC, HWNH4, and HWNO3. Significant differences 

between species were observed for pH, EBC, ∑cations, and individual cations such as Ca2+, 

Mg2+, K+, and Al3+ (Table 2A.3). There was also a significant effect of tree species for 

WSNtot, WSNO3, WSC/WSN, HWNtot, HWNorg, and HWC/HWNtot (Table 2.1). The highest 

pH (pHKCL = 4.8) was measured under the Mns, followed by the plot of monospecific 

native species and agroforestry species (Polyscias fulva > Entandrophragma excelsum = 

Grevillea robusta > Calliandra calothyrsus = Cedrela serrata), while the lowest pH (pHKCL 

= 3.7) was measured under eucalyptus species. EBC ranged from 2.8 ± 0.02 cmolckg−1 

(Eucalyptus maidenii) to 17 ± 0.6 cmolckg−1 (Eucalyptus grandis); this trend was similar 

to ∑cations, which ranged from 5.4 ± 0.07 cmolckg−1 under Eucalyptus maidenii to 17 ± 

0.2 cmolckg−1 under Eucalyptus grandis. Exchangeable Ca2+ was significantly higher under 

Eucalyptus grandis, intermediate under Mns, Polyscias fulva, Grevillea robusta, and 

Calliandra calothyrsus, and lower values were measured under Cedrela serrata, 

Eucalyptus maidenii, Eucalyptus saligna, and Entandrophragma excelsum. Mg2+ was 

higher under Eucalyptus grandis, Polyscias fulva, and Mns, whereas the values of Mg2+ 

were lower under Eucalyptus maidenii, Eucalyptus saligna, and Entandrophragma 

excelsum, with intermediate values under agroforestry species (Calliandra calothyrsus, 

Cedrela serrata, and Grevillea robusta). Similar to Ca2+ and Mg2+, the concentration of K+ 

was also significantly higher under Eucalyptus grandis and Mns but not different for the 

remaining tree species. There was high variability in the exchangeable Al3+ concentration 

between tree species in the lower soil layer. The concentration of Al3+ in the soil classified 

tree species in the following order: Eucalyptus maidenii > Entandrophragma excelsum > 
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Eucalyptus saligna > Cedrela serrata > Grevillea robusta = Calliandra calothyrsus > Mns > 

Polyscias fulva > Eucalyptus grandis. 

The proportions of water-soluble nitrogen fractions in the lower soil layer (Table 2A.4) 

showed that the mineral nitrogen was dominant with the highest percentage under 

Grevillea robusta (WSNmin = 78%; WSNO3 = 76% + WSNH4 = 2%) and the lowest 

percentage under Entandrophragma excelsum (WSNmin = 56%; WSNO3 = 41% + WSNH4 

= 15%). The other species had WSNmin percentages ranging between 57% and 69%. The 

water-soluble organic nitrogen ranged between 22% (Grevillea robusta) and 44% 

(Entandrophragma excelsum). Hot water-extractable fractions contained mostly organic 

N ranging from 72% to 82% of the HWNtot and 81% to 86% in the 0–5 cm and the 5–10 

cm soil layers, respectively. The hot water-extractable mineral N forms were dominated 

by N-NH4+ (15% to 25%) in the 0–5 cm soil layer and 10% to 17% in the 5–10 cm soil 

layer. The less abundant hot water-extractable mineral N fraction was N-NO3- that ranged 

from 2% to 5% in both 0–5 cm and 5–10 cm soil layers. 

2.3.3. Relationships between water-extractable elements (C, N) and other soil 

properties 

The correlation between soil properties (pH, SOM, and EBC) and water-extractable C and 

N fractions (WSC, WSNorg, WSNmin, WSNO3, WSC/Norg, HWC, HWNtot, and 

HWC/HWNtot) showed significant correlations within each of the two soil layers (Fig. 

2.3). 

In the upper soil layer (0–5 cm), soil pH was negatively correlated with SOM, all water-

soluble and hot water-extractable C and N fractions, and HWC/HWNtot, except WSNmin 

and WSNO3, which were positively correlated with pH. There was a significant positive 

correlation between SOM and all the above-mentioned water-extractable C and N 

fractions, except WSNmin and WSNO3 (r = -0.2). The strongest positive correlation was 

found between SOM and HWC (r = 0.8), HWNtot (r = 0.7), and HWC/HWNtot (r = 0.5). 

EBC showed a weak positive correlation with HWNtot and a weak negative correlation 

with WSC, WSNorg, and HWC/HWN; no significant correlation was found with the other 

water-extractable C and N fractions. In the lower soil layer (5–10 cm), soil pH was 

positively correlated with HWC, HWNtot, WSNorg, WSNmin, and WSNO3, while it was 

negatively correlated with HWC/HWN. The relationship patterns between SOM and 

water-extractable C and N fractions showed a positive correlation with HWC, HWNtot, 
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and WSNorg, while it was negatively correlated with WSC/WSNorg. The strength of the 

correlation between SOM and water-extractable C and N fractions was comparatively 

lower compared to the upper soil layer, and there was no significant correlation between 

EBC and water-extractable C and N fractions (Fig. 2.3). 

 

Fig. 2. 3. Pearson correlation matrices showing the relationship between soil properties and 
water-extractable C and N fractions. 

Soil layers: A=upper (0–5 cm); B=lower (5–10 cm) Relationships between parameters are 

indicated by the values at the intersection of parameters and interpreted within color contrast 

as shown in the legends. 

Principal component analysis (PCA) of soil properties (pH, SOM, and EBC) and water-

extractable C and N fractions (WSC, WSNorg, WSNtot, WSC:WSNorg, HWC, HWNorg, HWNtot, 

and HWC/HWNtot) for the upper and the lower soil layers showed differences in the 

patterns of the tree species clustering based on these soil properties (Fig. 2.4). In the 

upper soil layer (0–5 cm), the total variance explained by the first two principal 

components was 62%. SOM, HWC, HWNorg, HWNtot, and C/N ratio of hot water extracts 

(HWC/HWNtot) had the highest positive loadings on PC1 (43%), while pH and WSNtot 

showed the highest loading to the negative side of PC1 (Figure 2.4-A).  
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Fig. 2. 4. PCA biplot of soil chemical properties and tree species for the upper (A) and the lower 
(B) soil layers. 
The first two principal components explained 62.5% of the combined variation in soil parameters 

at 0–5 cm soil depth and 54.9% at 5–10 cm soil depth between tree species. Statistical ellipses at 

95% confidence level group tree species (represented by different symbols and colours) based 

soil variables depicted by vectors (pH; SOM = soil organic matter; EBC = exchangeable basic 

cations; WSC = water-soluble C, WSNorg = water soluble organic N; WSNtot = water-soluble total 

N, WSC:WSNorg = water soluble organic C/N ratio; HWC = hot water-extractable C, HWNorg = hot 

water-extractable organic N, HWNtot = hot water-extractable total N, and HWC:HWNtot= hot 

water-extractable C/N ratio). 
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Eucalyptus species and Entandrophragma excelsum clustered separately along with the 

positive side of PC1, while species such as Polyscias fulva and Grevillea robusta clustered 

along its negative side. EBC positively loaded highest on the second PC (19%), while WSC, 

WSNorg C/N ratio of water-soluble C, and organic N (WSC/WSNorg) had their negative 

loading to PC2. Mns plot clustered separately from the other plots along the positive side 

of the second axis, and Calliandra calothyrsus, Cedrela serrata, and Grevillea robusta 

overlapped on its negative side (Table 2.2, Fig. 2.4-A). 

In the lower soil layer (5–10 cm), the first two principal components explained 59% of 

the combined variation in PCA input variables between tree species (Table 2.2, Fig. 2.4-

B,). The positive loadings on PC1 (46%) were observed for pH, WSNorg, WSNtot, HWNorg, 

HWC, HWNtot, and EBC, while the HWC/HWNtot was highly loaded on its negative side. 

On the PC2 (13%), WSC/WSNorg showed a positive loading, while SOM showed a negative 

loading. In this soil layer, most of the tree species clustered around the center of biplot 

quadrants with a tendency for the plots of Mns, Polyscias fulva, Grevillea robusta, and 

Calliandra calothyrsus to overlap on the positive side of the PC1. Eucalyptus species 

overlapped with both the negative side of the PC1 and the positive side of the PC2. The 

clustering patterns of species such as Entandrophragma excelsum and Cedrela serrata 

showed a stretching of statistical ellipses across the intersection of PCA axes towards 

both sides of PC2. 
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Table 2. 2. Results of principal component analysis (PCA) for 11 selected soil chemical properties 
measured in 108 samples under nine treatments (tree species) at two soil layers. 

 Upper Soil Layer (0–5 cm) Lower Soil Layer (5–10 cm) 
Principal 

Components 
PC1 PC2 PC3 PC4 PC5 PC1 PC2 PC3 PC4 PC5 

Eigenvalues 4.69 2.03 1.57 1.03 0.71 5.02 1.472 1.19 1.02 0.89 
% variance 42.66 18.52 14.27 9.43 6.48 45.64 13.38 10.85 9.34 8.16 

Cumulative % of 
the total 
variance 

42.66 61.19 75.46 84.89 91.38 45.64 59.03 69.88 79.22 87.39 

   Loadings (weight) of variables on PCs (%)   

pHKCL −0.77 0.24 0.22 0.25 −0.15 0.73 0.33 −0.21 −0.22 −0.09 
SOM 0.81 0.19 0.07 0.17 −0.25 0.40 −0.41 0.04 0.50 0.38 
WSC 0.45 −0.70 0.24 0.34 0.29 0.51 0.16 0.50 −0.01 0.59 

WSNorg 0.22 -0.45 0.80 −0.20 0.21 0.70 −0.58 −0.04 −0.19 0.18 
WSNtot −0.40 0.017 0.63 0.48 −0.23 0.74 0.01 0.08 −0.07 −0.20 

WSC:WSNorg 0.33 −0.35 −0.55 0.66 0.06 -0.46 0.76 0.35 0.19 0.13 
HWC 0.96 0.10 0.05 −0.05 −0.08 0.73 −0.07 0.41 0.30 −0.39 

HWNorg 0.86 0.41 0.14 0.04 −0.05 0.94 0.20 0.04 0.08 −0.14 
HWNtot 0.77 0.53 0.23 0.14 −0.05 0.95 0.19 0.04 0.05 −0.09 

HWC:HWNtot 0.77 −0.35 −0.11 −0.24 −0.03 −0.64 −0.35 0.46 0.29 −0.32 
EBC −0.01 0.71 0.02 0.14 0.64 0.12 0.18 −0.59 0.67 0.04 

   Contribution of variables to PCs (%)   

pHKCL 12.96 2.98 3.34 6.25 3.21 10.82 7.78 3.90 4.79 0.94 
SOM 14.30 1.85 0.35 3.09 9.37 3.20 11.63 0.18 24.70 16.20 
WSC 4.43 24.50 3.79 11.33 12.24 5.33 1.81 21.35 0.03 38.75 

WSNorg 1.03 10.07 40.84 4.15 6.21 9.79 22.89 0.15 3.78 3.92 
WSNtot 3.54 0.01 26.03 22.46 7.58 11.08 0.01 0.55 0.50 4.67 

WSC:WSNorg 2.35 6.33 19.55 42.61 0.58 4.25 39.38 10.45 3.68 1.98 
HWC 19.85 0.49 0.19 0.24 0.89 10.72 0.34 14.47 9.28 17.71 

HWNorg 15.96 8.55 1.34 0.22 0.42 17.77 2.88 0.15 0.64 2.44 
HWNtot 12.76 13.79 3.63 2.01 0.37 18.31 2.62 0.16 0.32 1.06 

HWC:HWNtot 12.77 6.21 0.84 5.56 0.19 8.36 8.37 18.14 8.36 12.02 
EBC 0.01 25.16 0.05 2.02 58.90 0.30 2.23 30.45 43.87 0.25 

Variable loadings higher than 0.6 are in bold, expressing a significant weight of variables on PC, and 

the first five principal components explaining 87%–91% of the cumulative total variance are presented. 

The sign on variable loadings indicates the direction of the variable on PC axes. Analyzed soil variables 

(pH; SOM = soil organic matter; EBC = exchangeable basic cations; WSC = water-soluble C, WSNorg = 

water soluble organic N; WSNtot = water-soluble total N, WSC:WSNorg = water soluble organic C/N 

ratio; HWC = hot water-extractable C, HWNorg = hot water-extractable organic N, HWNtot = hot water-

extractable total N, and HWC:HWNtot= hot water-extractable C/N ratio).



Chapter 2 – Tree species effects on chemical soil properties 

48 
 

2.4. Discussion 

Given that trees species were planted on the same site with similar land-use history and 

climatic conditions, the Arboretum of Ruhande provided a unique set-up for investigating 

the effects of tree species used for forest plantations in Rwanda on soil chemical 

properties. We thus base the interpretation of the results on the assumption that the 

current differences in soil characteristics reflect the influence of the planted trees. 

2.4.1. Importance of the thin upper soil layer (0–5 cm Depth) 

The present study showed higher values for all analysed soil properties in 0–5 than 5–10 

cm soil layers (except for Al3+ and Fe2+), regardless of tree species, although the two soil 

layers were visibly indistinguishable under most species. SOM, EBC, water-soluble, and 

hot-water-extractable C and N were two to nine-fold higher compared to the 5–10 cm 

layer. This vertical distribution was particularly marked for parameters related to soil 

organic matter content and water-extractable C and N. The water-soluble fractions 

represent the amount of the readily mineralizable C and N in soil (Gelsomino and 

Azzellino, 2011) and have been linked to soil functions which provide nutrients for the 

trees. Physical protection and the preservation of soil properties and processes of this 

layer are therefore of utmost importance (FAO, 1998). 

In a previous study conducted at the same site, Nsabimana et al. (2008) showed that 

planting trees increased the levels of soil carbon, nitrogen, base saturation, and 

exchangeable cation pools in the upper 10 cm of the soil compared to agricultural lands 

in the same agroecological zone. In the present study, we observed that planted trees 

influenced soil fertility only in the uppermost soil layer (0–5 cm), with higher values of 

SOM and exchangeable base cations than the values reported by Nsabimana et al. 

(Nsabimana et al., 2008) a decade before at this site and compared to those reported for 

other tropical forest soils (Adugna and Abegaz, 2015; Bauters et al., 2017b). 

In contrast to high Al saturation and low amounts of exchangeable cations generally 

characterizing highly weathered and acidic tropical soils dominated by kaolinitic clays 

(Cleveland et al., 2003), we observed that the sum of exchangeable cations was relatively 

high and dominated by calcium (75%), whereas aluminum represented only 3% of the 

sum of exchangeable cations. Similarly, high base saturation (87%) with a dominance of 

Ca2+ was reported at this site (Nsabimana et al., 2008) and for other sites in the same 
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agroecological zone with base saturations between 45% and 85% (Mbonigaba et al., 

2009; Yamoah et al., 1990). The high proportion of Ca2+ could be related to plant litter Ca 

content, soil pH, and the nature of clay minerals at this site. In tropical nutrient-poor soils, 

organic acidity is promoted by plants (and soil microorganisms) through the production 

and the release of organic acids into the soil solution as a “nutrient acquisition strategy” 

(Fujii, 2014). This may lead to an exchange acidity dominated by protons, allowing for 

high base saturation events at certain pH values (Duchaufour, 1994). Further, the 

presence of interstratified kaolinite-smectite, as reported for soils from some subtropical 

and tropical climates (Dudek et al., 2006; Ryan and Huertas, 2013), may explain the 

relatively high exchange capacity measured in this study. 

2.4.2. Effects of tree species on chemical soil properties 

Tree species effects were mostly observed in the upper soil layer (except for Al and Fe). 

This may indicate that the changes in aboveground litter quality and quantity, rather than 

mineral weathering and root exudation, most likely influenced soil chemical properties. 

In contrast to Bauters et al. (Bauters et al., 2017b), who found a significant effect of tree 

species on soil pH and carbon content until about 30 cm deep in tropical forest 

plantations, our results highlighted the importance of this thin uppermost 0–5 cm layer 

in these highly weathered tropical forest soils. 

Planting trees is one of the key strategies for restoring degraded forests and soils, 

especially in tropical soils with inherently poor chemical properties (Celentano et al., 

2011). In our study, the pH under eucalyptus species was 0.6 pH units lower than under 

exotic agroforestry species (Calliandra calothyrsus, Cedrela serrata, and Grevillea robusta) 

and 1.7 pH units lower than under native species (Entandrophragma excelsum, Polyscias 

fulva, and self-regenerated mixed natives) in the upper layer. Soil acidification under 

eucalyptus species was reported in previous studies conducted at this site (Nsabimana et 

al., 2008), in forest plantations near this site (Mugunga et al., 2015), and in other tropical 

(Behera & Sahani, 2003; Laclau et al., 2010) and non-tropical regions (Rhoades and 

Binkley, 1996). The relatively higher concentrations of exchangeable Al3+ and Fe2+ 

measured in soils under Eucalyptus saligna and Eucalyptus grandis compared to other 

species in this study could be related to the acidifying effect of these species, leading to 

Al3+ and Fe2+ release (Bauters et al., 2017b) with potential toxic effects for plant roots 

(Fujii, 2014). Two main mechanisms were suggested for the effects of tree species on soil 
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pH: (1) input of organic acids from litter decomposition and root exudates, (2) increased 

proton release in the soil to compensate for the high plant uptake and storage of base 

cations (Augusto et al., 2002; Jobbágy and Jackson, 2003). We measured higher pH and 

exchangeable base cations under mixed native species (Mns) plots compared to other 

plots. The Mns plots were characterized by high tree density and vegetation diversity 

dominated by mature native trees accompanied by shrubs and grasses. All species 

together might have contributed to high quality and quantity of litter as a natural 

regeneration setup (de Medeiros et al., 2017) compared to other adjacent monoculture 

plots. Therefore, we suggest that soil pH, SOM content, water-extractable C and N, and 

exchangeable cations were likely influenced by the species-specific litter chemical 

quality. 

In the upper soil layer, the clear grouping by tree species and high loadings of variables 

such as SOM, pH, and hot water-extractable C and N fractions (HWC, HWNorg, HWNtot, 

and HWC:HWNtot) on the first principal component (PC1 = 43%) may indicate that these 

properties were the most influential set of variables in explaining the variation between 

species. A previous study (Nsabimana et al., 2008) associated eucalyptus plantations with 

soil organic matter accumulation and decreased pH. This is in line with our PCA results, 

where the first PC representing soil organic matter-related properties and pH were 

associated with a cluster of eucalyptus species (E. grandis, E. maidenii, and E. saligna). The 

high loadings of pH and WSNtot associated with Grevillea robusta, Polyscias fulva, and 

mixed native species indicate increased soil pH and N availability under these species. 

The second set of influential variables included EBC, WSC, and WSNorg loading high on the 

second principal component (PC2, 18.5%). It was described that these variables 

represent the quality and the bioavailability of mineralizable organic matter and related 

nutrient cycling processes (Wang et al., 2020). The high positive loading of EBC 

associated with Mns plots may be due to the capacity of this undisturbed self-regenerated 

native forest containing highly dense and diverse vegetation (trees, shrubs, and grasses) 

for improving soil chemical quality in terms of nutrients cycling. The observed 

relationship of water-soluble C and organic N (WSC and WSNorg) with Calliandra 

calothyrsus may be due to the characteristics of this plant used in agroforestry as an N-

fixing tree (Koutika et al., 2014). 
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In the 5–10 cm soil layer, the two axes of the PCA explained 59% of the variation between 

tree species. Calliandra calothyrsus and Mns plots grouping was explained by pH, WSNorg, 

WSNtot, HWC, HWNorg, HWNtot, and HWC:HWNtot (PC1, 46%). The remaining species 

overlapped around the center of the biplot, indicating the lack of species influence on 

selected soil variables. The multivariate analysis of covariation between chemical 

properties and tree species in this study suggests that the influence of tree species is 

mainly limited to the upper soil layer (0–5 cm). This first principal component could be 

interpreted as a measurement of soil acidity and bioavailability of hot water-extractable 

C and N fractions, reflecting the quality of SOM and its mineralization process in this soil 

layer. The results from the present study allowed us to consider this upper layer as a 

highly sensitive layer to vegetation changes in this tropical forest ecosystem. 

2.4.3. Differences in water-extractable c and n between tree species 

Soil organic matter has been used for many years as one of the major indicators of soil 

quality, given its important role in controlling soil chemistry as well as physical and 

biological processes (Wang et al., 2011). However, it may take many decades to detect a 

change in the total soil organic C pool, given its slow rate of change (Bankó et al., 2021). 

Water-soluble and hot water-extractable C and N analysed in this study are labile 

components of soil organic matter that could reflect early changes in soil–plant 

interactions (Gregorich et al., 1994). Water-soluble fractions contain dissolved organic 

components almost similar to those measured directly in the soil solution using 

lysimeters and suction devices (Ostrowska et al., 2010). Hot water-extractable fractions 

consist of an easily decomposable pool of SOM, including microbial biomass, that serves 

as the source of energy and substrate to soil microorganisms, and its decomposition 

provides nutrients to plants (Bankó et al., 2021; Ghani et al., 2003). This implies that labile 

fractions of SOM, especially those extracted with hot water, might be used as a proxy for 

soil microbial biomass and activity (Curtin et al., 2021; Ghani et al., 2003). The influence 

of tree species on soil function, as represented by water-soluble and hot water-

extractable C and N, was observable through the discrimination of tree species and also 

through the correlation of these fractions with other soil properties. These fractions are 

closely related to the decomposability of the plant’s detritus, which is influenced by the 

litter chemistry (Russell et al., 2007) and might thus be used as a proxy for soil 

functioning (Curtin et al., 2021). Labile C and N fractions were significantly correlated to 
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SOM, EBC, and pH in both upper and lower soil layers, and correlation between HWC and 

soil organic matter was greater than that for WSC, as also observed by Ghani et al. (Ghani 

et al., 2003). While the mineralizable organic N decreased with soil depth, nitrates 

increased with soil depth. This is likely due to water solubility and leaching of nitrates 

towards the lower soil horizons (Landgraf et al., 2006) and the fact that water-soluble 

and hot water-extractable C and N fractions originate mainly from above-ground litter 

rather than root exudates (Binkley and Menyailo, 2004). The dominance of organic N 

compared to other nitrogen forms may be explained by the fact that most of the mineral 

N was already extracted by the previous cold-water extraction. Hot water (80 °C) extracts 

the organic matter not only from decomposing plant litter but also from soil 

microorganisms (Ćirić et al., 2016). 

2.5. Conclusions 

The present study was conducted to evaluate the effects of forest tree species on chemical 

soil quality in Rwanda. The most important changes in soil pH, SOM, water-extractable 

labile C and N fractions, and base cations were observed in the thin upper soil layer (0–5 

cm) across tree species, which made it possible to recognize the importance of this thin 

upper soil layer for soil fertility. Eucalyptus species led to soil acidification while soil pH 

and nutrients increased under native species (Entandrophragma excelsum and Polyscias 

fulva) and Mns plots. Hot water-extractable C and N fractions strongly correlated with 

most of the analysed soil parameters and were more sensitive in discriminating tree 

species effects than other soil properties analysed. This reflects the suitability of this 

methodological approach for detecting subtle changes that might be linked to forest trees 

and its potential to be used as a proxy to SOM analysis. In selecting forest trees, priority 

should be given to the species which do not negatively alter chemical soil quality. 
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Abstract 

Although afforestation tree species may have a pronounced effect on soils, the long-term 

consequences of planted trees on soil microbial properties remain unclear, especially in 

tropical acidic soils. We investigated the long-term effects (>30 years) of tree species on 

soil microbial properties and processes in the Ruhande Arboretum in Rwanda. Two soil 

layers (0–5  cm and 5–10 cm) were analysed under eight tree species planted in 

replicated monoculture plots (3 eucalyptus sp., 3 agroforestry sp., and 2 native sp.) and 

under a stand of mixed self-regenerated native species. We measured soil microbial 

biomass carbon and nitrogen, soil respiration potential, net N mineralization, metabolic 

quotient, and microbial quotient. We also assessed how differences in soil properties 

related to changes in soil microbial biomass and processes under the different tree 

species. Our results showed that soil microbial parameters differed significantly between 

soil layers, with 2–12 times higher values in the upper 0–5 cm layer. Soil microbial 

biomass generally increased in soil under Eucalyptus species and decreased under 

agroforestry species: values were highest under Eucalyptus grandis (2010 mg C kg–1), and 

lowest under Grevillea robusta (1120 mg C kg–1). In the 0–5 cm soil layer, the major 

driving factor of soil microbial properties and processes under different tree species was 

hot water-extractable carbon, while the sum of exchangeable base cations was the major 

driving factor of soil microbial properties and processes in the 5–10 cm soil layer. Overall, 

tree species significantly affected soil microbial biomass and activity, and species effects 

were more pronounced at 0–5 cm than 5–10 cm soil depth. Furthermore, the observed 

sensitivity of soil microbial parameters to changes in tree species suggests that they could 

be used in monitoring programs, in addition to other soil quality indicators, and guide the 

selection of tree species for afforestation/reforestation. 

Keywords: Soil quality; microbial processes; tropical soils; Eucalyptus species; Ruhande 
Arboretum; Rwanda.
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3.1. Introduction 

The interactions between trees, soils, and soil microorganisms play an essential role in 

controlling biogeochemical cycling and nutrient supply to plants (Aponte et al., 2013; 

Lathwell and Grove, 2011). These relations are of particular importance in the highly 

weathered, often nutrient-poor and acid, tropical forests, which have adapted through 

species-specific nutrient conservation mechanisms and associations with bacteria and 

fungi, as well as efficient nutrient cycling processes (Vitoussek & Sanford, 1986; 

Veldkamp et al., 2020).  While deforestation in Africa showed an increasing deforestation 

rate for the last three decades with a net loss estimated at 3.9 million hectares (FAO, 

2020), reforestation and afforestation initiatives aim to rehabilitate degraded soils to 

improve soil quality and support the sustainable use of forest soils (Berthrong et al., 

2009; Smal et al., 2019). The selection of tree species for such reforestation/afforestation 

programs is crucial for determining the long-term effects on ecosystem functioning. 

Programs frequently focus on economic and social aspects, such as productivity and 

benefits for local communities, but little attention has been paid to the long term-

implications for soil nutrient cycling processes. Such an understanding of the responses 

of soil microbial processes to different tree species is essential for the assessment of long-

term consequences and supporting sustainable reforestation/afforestation practices. 

While tree species’ effects on soils have been extensively studied in temperate systems 

(Augusto et al., 2002), and soil chemical parameters in response to deforestation and 

reforestation studied and reviewed for tropical soils (Nsabimana et al., 2008; Townsend 

et al., 2008; Veldkamp et al., 2020), few studies have addressed the effects of tree species 

in reforestation/afforestation management on soil microbial parameters in tropical areas 

(Xu et al., 2007). 

In tropical forests, plant productivity and the nutritional properties of the highly 

weathered and inherently nutrient-poor soils are mainly driven by the rapid 

decomposition of aboveground and belowground litter, root exudates, and other detritus, 

ensuring quick internal cycling of nutrients (Laclau et al., 2010; Sayer et al., 2020; 

Doetterl et al., 2021). Through tree species-specific characteristics of litter quantity and 

chemical composition  (Tajik et al., 2020), resulting from differing nutrient acquisition 

strategies (Lambers et al., 2008), tree species identity influences the fertility of tropical 
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forest soils through the role of microbial processes of re-mineralizing nutrients during 

litter decomposition (Schulte and Ruhiyat, 1998; Sayer and Tanner, 2010). Tree species 

also influence, directly or indirectly, soil properties, such as pH, moisture, and organic 

matter, which in turn are key drivers of changes in soil microbial parameters in forest 

ecosystems. The exchange of nutrients between soils and plants might be 

mainly concentrated in the topsoil layer due to the substantial quantities of 

litter continuously produced and rapidly decomposing on the soil surface (Sayer et al., 

2006), and supplying a significant proportion of plants' nutrient requirements. Although 

most of the tree species included in this study are locally preferred for their high biomass 

production, the differences in litter quality in terms of leaf contents of macro- and 

micronutrients, lignin, tannin, leaf C/N ratio, and other organic compounds determine the 

decomposition rates (Ge et al., 2013). For example,  recent global meta-analyses 

confirmed reduced moisture, nutrients, microbial abundance, nitrogen and increased 

carbon under Eucalyptus species, and reported inconsistent effects on soil pH  (Zhang et 

al., 2015; Christina et al., 2017; Mallen-Cooper et al., 2022). Calliandra calothyrsus, 

Grevillea robusta, and Cedrela serrata are commonly used in agroforestry (trees on farms) 

to improve soil fertility. Calliandra calothyrsus is a N2-fixing tree reported to improve soil 

fertility (Kisaka et al., 2023). Grevillea robusta is mainly planted for soil stabilization and 

fertility improvement by its proteoid root structure that can easily intercept leaching 

nutrients (Kalinganire, 1996; Watt and Evans, 1999), mobilize unavailable nutrients 

bound to metal ions (e.g., Al and Fe) and enhance nutrient uptake (Dinkelaker et al., 

1997). Entandrophragma excelsum, a late successional evergreen, and Polyscias fulva, an 

early successional evergreen, are known in Kinyarwanda as Umuyove and Umwungo, 

respectively and they are planted for their valuable timber and their multiple uses in 

traditional medicine (Mujawamariya et al., 2021; Ndoli et al., 2021). Litter traits of some 

of studied afforestation tree species can be found in Table 3.2. 

Microbial biomass is the soil’s living constituent, making up 1 to 5 % of the total SOM, and 

responding relatively rapidly to changes in soil conditions (Carter et al., 1997). 

Understanding the biomass and activity of microorganisms in forest soils is crucial 

because they are significant drivers of soil processes (Bardgett, 2005), which are in turn 

essential in maintaining ecosystem functions and environmental change (FAO & UNEP, 

2020; Babur et al., 2021). High levels of soil microbial biomass are often seen as 

favourable, whereas a reduction in microbial biomass may be considered to be 
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deleterious to soils, particularly when it adversely affects their functioning (Gonzalez-

Quiñones et al., 2011). However, the size of the microbial biomass does not necessarily 

reflect the activity of microbial community. Microbial activity can be assessed by soil 

processes, i.e., soil respiration and N mineralisation (Temesgen et al., 2019; Babur et al., 

2021). Further, eco-physiological indices, such as the ratio of soil respiration to microbial 

biomass carbon (qCO2; metabolic quotient), may be used to evaluate the efficiency of the 

soil microbial community to utilize organic carbon substrates (Tang et al., 2020; Babur et 

al., 2021a). 

A primary goal of assessing the effects of forest tree species on soil functions is to ensure 

the sustainable use and management of forest soils (Bolte et al., 2019), by predicting the 

consequences for maintaining or improving the soil’s capacity to (i) sustain plant 

productivity (ii) maintain in balance the cycling of water, carbon, and other nutrients, 

and (iii) preserve ecological forest functions (Burger et al., 1998). The choice of soil 

parameters to be analysed should consider management goals and the fact that some 

properties better reflect changes in the soil ecosystem than others (Schloter et al., 2003; 

Muscolo et al., 2015). Soil microbial parameters are increasingly considered to be good 

indicators for shifts in soil functioning because major biogeochemical processes are 

driven by soil microorganisms (Ratcliffe et al., 2018; Schloter et al., 2018). Although many 

recent studies have demonstrated the effects of forest tree species on soil microbial 

properties and processes (Ribbons et al., 2018a; Zhang et al., 2020; Zheng et al., 2022), 

the mechanisms and extent to which species affect soils vary with climate and soil 

specificities which does not allow findings to be largely generalized. A meta-analysis by 

Zhang et al. (2017) showed that local climate and soil factors play a major role in 

determining the differences in soil characteristics attributed to tree species. In addition, 

the integration of soil microbial parameters as sustainability indicators for management 

of forest plantation is hindered by the scarcity of soil microbial data, especially in tropical 

African regions (Vitoussek and Sanford, 1986; Sloan and Sayer, 2015).  

In Rwanda, factors such as hilly topography, inherently nutrient-poor and highly 

weathered soils, and heavy rains intensifying soil erosion, lead to land degradation and 

declining soil fertility (Clay and Lewis, 1990). Over recent decades, the country has 

recognized the importance of forest plantations, not only as an effective land restorative 

strategy but also for improving population livelihood that highly depends on wood 
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products (Habiyaremye et al., 2011). Through the synergy of government institutions, 

non-governmental organizations, and individual citizens, the target to increase the forest 

cover from 19.6% in 2010 to 30% by 2030 has been reached in 2020, with 724,695 ha 

(30.4%) forest cover (RFA, 2021). Forest plantations, mainly with introduced exotic tree 

species, occupy now 53.5% of the country’s forests. The main species of these plantations 

are Eucalyptus (89%), pine (6.5%),  mixed stands of exotic species (3.1%), and 

plantations of native species (1.4%)  (IUCN, 2020). Although the effects of different tree 

species on soil properties and processes are well established in temperate and boreal 

ecosystems, to our knowledge, there are limited studies examining how tree species 

affect soil microbial properties and processes in tropical forest plantations. A few studies 

have investigated the responses of soil physical and chemical properties to introduced 

tree species in tropical soils (Nsabimana et al., 2009; Rwibasira et al., 2021). 

Understanding the effects of these species on microbial properties and processes related 

to soil functioning is crucial to inform forest managers on the selection of suitable species 

that meet both ecological and local livelihood needs. 

In this study, we investigated soil microbial properties and processes in the upper soil 

layers (0-5 and 5-10 cm) under replicated planted monoculture plots of eight tree species 

and in a self-regenerated mixed species plot, within the arboretum of Ruhande in 

Rwanda. Tree species Eucalyptus grandis, Eucalyptus maidenii, Eucalyptus saligna, 

Calliandra calothyrsus, Cedrela serrata, and Grevillea robusta, Entandrophragma excelsum 

and Polyscias fulva were selected, according to their use and adaptability to the different 

regions of the country. The main aim of this study was to assess the effects of tree species 

commonly used in afforestation/reforestation programs in Rwanda on soil functioning, 

assessed through microbial parameters related to C and N cycling, as well as to determine 

key soil chemical properties influencing the response of microbial parameters to tree 

species. We hypothesized that microbial processes would be most intense in the upper 

soil layer, lower under Eucalyptus species, and that differences in microbial activity 

between tree species would be explained by the availability of labile carbon substrate. 
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3.2. Materials and Methods 

3.2.1. Study site 

The study was conducted at the Arboretum of Ruhande (2°36ʹ S, 29°44ʹ E), located in the 

Huye District, Southern Province of Rwanda (Fig. 1.5). The site has a humid tropical 

climate characterized by a mean annual air temperature between 17.5 °C and 19 °C, and 

approximately 1230 mm rainfall with a bimodal distribution pattern of two rainy seasons 

(heavy rains: March-May; and irregular rains: September–December) and two dry 

seasons (short: January–February; and long: June–August) (Meteorwanda, 2021). The 

soil is characterized by a brown-red colour with a sandy loam texture and diffuse 

horizons, classified as Ferralsols or Oxisols according to FAO and USDA Soil Taxonomy, 

respectively (Verdoodt et al., 2006). Detailed soil characteristics of the studied plots can 

be found in Rwibasira et al. (2021).  

The site was established in 1933 on the flat plateau of Ruhande hill (1737 m asl), 

previously cultivated through a typical traditional organic cropping system. Its area has 

progressively increased to reach the present size of 200 ha (Nsabimana et al., 2008). The 

site currently contains 204 tree species, with 144 deciduous, 57 conifers, and 3 bamboo 

species planted on 477 plots (50 m x 50 m) of replicated monoculture stands (Fig. 2.1). 

Among all species, exotic trees represent 84% (172 species, of which 69 are eucalyptus 

species), while native species represent 13% (32 species) (RFA, 2021). All plots are 

regularly managed by the removal of invading vegetation and planting young trees in 

replacement of dead plants, to maintain a constant density of the initial tree species in 

the plots, except on an undisturbed plot (4 ha) of self-regenerated mixed native species, 

dominated by Polyscias fulva trees (Mugunga et al., 2022). No fertilization, weed control 

treatments, clear-cut, or fire events have occurred since the establishment of the site.



Chapter 3 – The choice of tree species and implications for soil microbial processes 

64 
 

Table 3. 1. Tree species ranking (in decreasing order) based on soil chemical properties in the 
0–5 cm soil layer 

Rank Soil pH(KCl) SOM (%) HWC (mg kg–1) HWNtot (mg kg–

1) 
EBC (cmolc kg–1 ) 

1 Pf 5.8 
±.01 

i Em 27.6 
±.09 

d Es 5500 
±140 

f Eg 490 
±13 

h Mns 63 
±1.4 

j 

2 Ee 5.5 
±.02 

h Mns 27.5 
±2.2 

d Em 5400 
±120 

f Es 440 
±8 

g Em 38 
±0.7   

i 

3 Gr 5.5 
±.02 

h Ee 25.8 
±2.2 

d Eg 5200 
±150 

ef Ee 430 
±17 

g Pf 36 
±0.3 

hi 

4 Mns 5.4 
±.04 

h Es 25.0 
±1.3 

d Ee 4600 
±210 

e Mns 430 
±20 

g Es 36 
±1.6 

hi 

5 Cc 4.9 
±.01 

fg Eg 21.6 
±0.6 

bcd Mns 3500 
±230 

d Em 420 
±5.2 

fg Gr 34 
±0.3 

h 

6 Cs 4.9 
±.01 

fg Gr 19.2 
±0.2 

bc Pf 3400 
±51 

d Pf 370 
±8.9 

ef Eg 33 
±0.4 

gh 

7 Em 4.2 
±.01 

c Cc 19.1 
±0.5 

bc Cc 3200 
±280 

cd Gr 330 
±8 

de Cs 30 
±1.2 

fg 

8 Eg 4.0 
±.01 

b Pf 18.5 b Gr 2700 
±97 

bc Cc 300 
±4.5 

cd Ee 29 
±1.0 

f 

9 Es 3.7 
±.01 

a Cs 18.1 
±0.8 

b Cs 2500 
±110 

b Cs 270 
±9.4 

c Cc  26 
±0.9 

f 

The Different letters within the column indicate significant differences (p<0.005) based on 

Tukey’s HSD test. Tree species: Cc= Calliandra calothyrsus; Cs= Cedrela serrata; Gr= Grevillea 

robusta; Eg= Eucalyptus grandis; Em= Eucalyptus maidenii; Es= Eucalyptus saligna; Ee= 

Entandrophragma excelsum; Pf= Polyscias fulva; Mns= Mixed native species.  EBC: sum of 

exchangeable base cations (Ca2+, Mg2+, K+, and Na+); HWC: Hot water-extractable carbon; HWNtot: 

total hot water-extractable nitrogen. Source: (Rwibasira et al., 2021). 
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Table 3. 2. Traits of different tree species included in the study 

Tree species Family Height 

(m) 

DBH  

(m) 

Wood 

density  

(g cm–3 ) 

Litter C 

(%) 

 

Litter N 

(%) 

 

Lignin 
(g kg–1) 

Litter 
C/N 

Growth rate,  
crown, and roots 
system 

Other functional traits References 

Calliandra 
calothyrsus  

Fabaceae 6–9    0.2–0.3  0.51–

0.78  

45–49  2.7–4.6 85–145 12–18  Fast growth; 

Tap & lateral roots 

N fixing; litter proteins (22%), 

condensed tannins (13%) 

[1]; [2]; [3]; 

[4] 

Cedrela serrata  Meliaceae 25–30  2.0–3.0  0.26–

0.52  

47–49  1.2–1.6 198–
285  

32–36  Medium growth; 
Deep rooting 
system; 
Valuable timber 

High phenolics and flavonoids 

with antimicrobial activity 

and insect repellent smell 

[1]; [5]; [6]; 

[7] 

Grevillea robusta  Proteaceae 

 

30–40  2.0–3.0 0.54–

0.72   

37–43  5.6–7.5 35–40  52–78  Medium growth; 
Deep and proteoid  
root mat, thick leaf 
mulch 

Leaves rich in Aluminum; 

Cyanogenic, and tannins (2.6 

%); good fuelwood 

[8] 

Eucalyptus 
grandis  

Myrtaceae 45–55 2.0–3.5 0.60–

0.75   

49–50  0.5–1.0 190–
243  

29–33  Fast growth; deep 
roots up to 5-6 m 
and lateral fine 
roots; thin crown 

Cellulose (40–50%), 

Hemicellulose (25%); good 

fuelwood 

[9] 

Eucalyptus 
maidenii  

Myrtaceae 40–55  1.5–2.0 0.65–

0.80   

49–55 0.7–1.3 133–
189  

43–68 Fast growth; deep 
roots and lateral 
fine roots 

Antimicrobial, Essential oil 

(1% of DM), Cineole  content 

(62%  of DM), good fuelwood 

[10]; [11]  

Eucalyptus 
saligna  

Myrtaceae 30–50 2.0–2.5 0.85–

1.07   

47–53 1.0–2.0  147–
186 

26–49 Fast growth; Deep, 
wide-spreading, 
and dense root 
system 

Aromatic smell, alpha-pinene 

(71–84%), Essential oil (0.3-

0.5% of DM); good fuelwood 

[10]; [12] 

Entandrophragma 
excelsum 

Meliaceae 50–60  3.0–4.0  0.70–

0.85  

22–30 1.1–1.4 291–
373 

12–16 Slow growing; 
Surface buttress 
and deep roots; 
dense crown 

Triterpenoid; Antimicrobials 

properties; toxic limonoids; 

Valuable timber 

[2]; [13]; 

[14] 

Polyscias fulva  Araliaceae 25–30  1.0–1.5 0.33–

0.45  

- - - - Slow growing; Tap 
& lateral roots; 
parasol crown; leaf 
fall forms good 
mulch 

Antimicrobial saponins;  

triterpene glycosides; soil 

fertility improver; poor 

fuelwood quality; 

[15]; [16]; 

[17];  

 [1]: (D. Nsabimana et al., 2009); [2]: (Orwa et al., 2009); [3]: (Kisaka et al., 2023); [4]: (Cobo et al., 2002); [5]: (Scherer-Lorenzen et al., 2007); [6]: (Russell et al., 2004); [7]: 

(Almubayedh and Ahmad, 2020); [8]: (Musongora et al., 2023b); [9]: (Bini et al., 2013); [10]: (Demessie et al., 2012); [11]: (Cizungu et al., 2014); [12]: (Sausen et al., 2014); [13]: 

(Loranger et al., 2002); [14]: (Rachmawati et al., 2019); [15]: (Ashmawy et al., 2020); [16]: (Plunkett et al., 2001); [17]: (Winnie et al., 2019). 
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3.2.2. Soil sampling and analyses 

Based on the use and species’ adaptability in the different regions of the country (Iiyama 

et al., 2018), eight species were selected (Fig. 2.1). These included three Eucalyptus 

species (Eucalyptus grandis, Eucalyptus maidenii, and Eucalyptus saligna), three 

agroforestry species (Calliandra calothyrsus, Cedrela serrata, and Grevillea robusta), two 

native species (Entandrophragma excelsum and Polyscias fulva), and a self-regenerated 

plot of native forest (Mixed native species = Mns). Three plots per species were selected 

and each plot was divided into two sub-plots (25 × 50 m). One composite soil sample was 

taken in each sub-plot for two soil layers (0-5 cm and 5-10 cm) by mixing five soil samples 

(X-shaped sampling) collected by using a 30x30 cm frame and a shovel under the tree’s 

canopy at 1–1.5 m from the tree base (Bini et al., 2013). Soils were sieved fresh (4 mm) 

and stored at 4 °C until analyses.  

Microbial biomass (MBC, MBN) 

Soil microbial biomass carbon (MBC) and nitrogen (MBN) were determined with the 

chloroform fumigation extraction method (Brookes et al., 1985; Vance et al., 1987). 

Fumigation of 10 g soil was carried out for 3 days in a vacuum desiccator with alcohol-

free chloroform. Fumigated and non-fumigated samples were extracted with 50 ml 0.5 M 

K2SO4  (1 h shaking at 180 rpm and filtration through Whatman filter #42). Organic 

carbon in the extracts was measured with a Total Organic Carbon analyser (Lab Toc, 

Pollution, and Process Monitoring, UK), and total nitrogen were analysed colorimetrically 

using a continuous flow analyser equipped with a UV digestor (AutoAnalyzer 3, 

BranLuebbe, Germany). Soil microbial biomass C and N were calculated as the difference 

between fumigated and non-fumigated samples with a conversion factor of 0.45 for 

biomass C (Joergensen and Mueller, 1996), and 0.54 for biomass N (Brookes et al., 1985).  

Soil respiration potential 

The soil respiration potential (RP) was measured at 20 °C as CO2–C  accumulation in the 

headspace (125 ml) of an amber bottle (Supelco, USA) from 20 g of fresh soil adjusted to 

60% water holding capacity (see below), after an overnight pre-incubation at 20 °C in the 

dark (Robertson et al., 1999). Gas samples (4 ml) were taken at 0, 120, 150, 180, and 210 

minutes with an airtight syringe (Hamilton Model 1005) and analysed with an infrared 
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absorption gas analyser (EGM-4, Ppsystem, UK). The respiration potential was estimated 

by linear regression of CO2–C against time (μg CO2–C g−1 h−1).  

Microbial and metabolic quotient 

The microbial quotient (qmic) is an indicator of the availability of soil C for 

microorganisms (Anderson and Domsch, 1990). It was calculated by dividing soil 

microbial biomass carbon by the total soil organic carbon content, estimated as 58% of 

soil organic matter  (Allen, 1989). The metabolic quotient (qCO2) was calculated by 

dividing the respiration potential by the microbial biomass carbon (Anderson, 2003). It 

is an indicator of microbial maintenance energy requirement (Dilly and Munch, 1998).  

Nitrogen transformation rates 

Net nitrogen mineralization (Nmin) was determined from 15 g of fresh soil adjusted to 

60% water holding capacity and incubated at 20 °C for 28 days (Hart et al., 1994). 

Extraction of inorganic nitrogen (NH4⁺–N and NO3‾–N) was performed on sub-samples at 

the beginning and the end of the incubation period using 1 M KCl (1:5; w:v), after 1 h 

agitation at 180 rpm and centrifugation at 4000 rpm (Allen, 1989). The water loss during 

incubation was monitored gravimetrically and compensated by adding distilled water as 

necessary. Extracts were analysed colorimetrically using a continuous flow analyser 

equipped with a UV digestor (AutoAnalyser3, BranLuebbe, Germany). Net nitrogen 

mineralization (Nmin) and relative nitrification (Nitrel) rates were calculated as the ratio 

between the net increase in inorganic nitrogen (NH4⁺–N and NO3‾–N), and the number of 

incubation days, and as the percentage of nitrate produced (NO3‾– N), respectively. 

Soil physico-chemical properties 

Soil organic matter (SOM) content was calculated as weight loss from oven-dry soil after 

overnight ignition at 550 °C in a muffle furnace, and soil pH was determined in a soil 

solution (1:2.5 w/v) with 1 M KCl using a pH meter (HI2550, HANNA® Instruments, USA) 

as described by Allen (1989). Soil water holding capacity (WHC) was determined 

volumetrically by using the Haines-funnel system (Jenkinson and Powlson, 1976). Briefly, 

water (50 ml) was added to 25 g of fresh soil and kept for 1 hour to saturate the soil before 

draining and measuring the volume of water retained by the soil. Exchangeable base 

cations (EBC: Ca2+, K+, Mg2+, and Na+)  were extracted from fresh soil using the barium 

chloride and expressed as their sum in cmolc kg–1 (0.1 M BaCl2: 1:5 w/v) method 
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(Hendershot and Duquette, 1986), and the chemical analysis of the extracts was 

performed using ICP-AESS (Varian, Australia). Water-extractable C and N forms were 

sequentially extracted, first at room temperature and then at 80 oC, following the method 

of Ghani et al. (2003). Details on methods and tree species' effects on soil chemical 

properties can be found in Rwibasira et al. (2021). 

3.2.3. Statistical analyses 

All statistical analyses and data visualizations were carried out using the R software, 

version 4.1.3 (R Core Team, 2022). We used linear mixed-effects models (REML, package 

“lme4”: Bates et al. (2015)) to test for differences between tree species (“Species”=9 

levels), soil layers (“Layer”=2 levels), and their interaction (Species*Layer), included as 

fixed effects (formula: response ~ -1 + Species + Layer + Species * Layer). The plot (“Plot”) 

was included as a random effect (formula: ~1 | Plot) to account for the non-independence 

of the two soil samples collected within the same plot. The coefficients of determination 

for generalized mixed-effect models were obtained by using a multi-model inference 

package (MuMIn: Barton, (2020)) which calculates the total variance explained by the 

model (Conditional R_GLMM²=R2c) and the variance explained by the fixed effects alone 

(Marginal R_GLMM²=R2m). Standardized parameters were obtained by fitting the model 

on a standardized version of the dataset, where parameters were scaled and centred to a 

mean of zero and standard deviation of one by using the basic built-in scale() function in 

R. As the interaction terms were significant for all analysed parameters, multiple 

comparisons between tree species were analysed separately for each soil layer. 

Confidence Intervals (CI at 95%) and p-values were computed using the estimated 

marginal means package (Emmeans: Lenth et al. (2018)) with Tukey–Kramer Honestly 

Significant Difference (Tukey’s HSD). The assumptions of normality and 

homoscedasticity of the residuals were assessed by visual inspection of the Q–Q plots and 

plots of the normalized residuals against the fitted values.   

Relationships between soil chemical properties and microbial parameters were tested 

for each layer separately using the correlation-based network analysis (“Corrr” package, 

Kuhn et al. (2020)), computing pairwise correlation coefficients (Pearson) between any 

two pairs of analysed variables, and generating a correlation matrix according to the 

strength of correlation. Additionally, we performed a Principal Component Analysis 

(PCA) (packages “FactoMineR”, Husson et al. (2020) and package “ggplot2”, Wickham et 
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al. (2022)) to explore relationships between soil chemical properties and microbial 

parameters in each layer separately. 

3.3. Results 

3.3.1. Soil microbial properties in 0–5 cm and 5–10 cm topsoil layers 

Soil microbial parameters were significantly affected by tree species at soil layer  with 

higher values in the upper 0–5 cm compared to the 5–10 cm layer (Table 3.3; Fig. 3.1). 

Mean MBC and MBN values were  5 and 6 times higher in the 0–5 cm than in the 5–10 cm 

soil layer.  RP was 12  times higher, and Nmin was 8.5 times higher in the 0–5 cm than in 

the 5–10 cm soil layer. Both qmic and qCO2 were 2  times higher in the 0–5 cm than in the 

5–10 cm soil layer. Relative nitrification rates (Nitrel) showed no differences between 

layers, while MBC:MBN was lower in the 0–5 cm than in the 5–10 cm soil layer.  

Table 3. 3. Variance analysis  linear mixed-effects model predicting the effects of tree species and 
soil layer on soil microbial properties and processes. 

Variables Tree species (S) Soil layer (L) 
Interaction of Species 

and Layer (S*L) 
R squared 

 F-value P-value F-value P-value F-value P-value R2m R2c 

MBC (mg C kg–1) 1260.7 <0.0001 *** 7338.9 <0.0001 *** 40.3 <0.0001 *** 0.98 0.98 

MBN (mg N kg–1) 3222.9 <0.0001 *** 11894.2 <0.0001 *** 246.7 <0.0001 *** 0.99 0.99 

RP (µg CO2-C g–1  h–1) 13538.2 <0.0001 *** 127549.3 <0.0001 *** 1548.7 <0.0001 *** 0.99 0.99  

Nmin (mg N kg–1 d–1) 672.7 <0.0001 *** 4348.5 <0.0001 *** 67.4 <0.0001 *** 0.97 0.98 

Nitrel (%) 148960.0 <0.001 ** 13.2 0.0005 *** 9.9 <0.001 ** 0.57 0.61 

MBC:MBN 213.5 <0.0001 *** 39.9 <0.0001 *** 48.5 <0.0001 *** 0.83 0.88 

qCO2 (µg CO2-C mg–1 MBC h–1) 661.2 <0.0001 *** 1926.4 <0.0001 *** 112.7 <0.0001 *** 0.96 0.97 

qmic (mg MBC g–1 Ctot) 404.0 <0.0001 *** 902.4 <0.0001 *** 12.5 <0.0001 *** 0.89 0.92 

MBC: microbial biomass carbon; MBC: microbial biomass carbon; RP=respiration potential; 
Nmin=net N mineralization; Nitrel=relative nitrification; MBC:MBN=microbial biomass C/N ratio; 
qCO2=metabolic quotient; qmic=microbial quotient. 

3.3.2. Tree species effects on soil microbial biomass and soil microbial C:N ratios 

Tree species significantly affected soil microbial biomass and microbial C:N ratio (Fig. 

3.1) Most differences in MBC and MBN between tree species were pronounced in the 

upper 0–5 cm soil layer. In this layer, MBC was highest under Eucalyptus grandis (Eg: 

2010 mg C kg–1), Eucalyptus maidenii (Em: 1860 mg C kg–1), and mixed native species 

(Mns: 1800 mg C kg–1), while the lowest values were measured under the agroforestry 

species, Calliandra calothyrsus (Cc: 1220 mg C kg–1) and Grevillea robusta (Gr: 1120 mg C 

kg–1).   
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Fig. 3. 1. Predicted values (Linear Mixed-Effects Models) of soil microbial biomass across eight 
tree species in two soil layers.  
The model was: response-variable ∼ Species + Layer + Species*Layer + (1|Plot), where Plot is 

replicate PlotID and Layer (0–5 cm and 5–10 cm soil layers). As the interaction terms was 

significant for all analysed parameters, multiple comparisons between tree species were analysed 

separately for each layer. Red and blue boxes are model estimates in 0–5  cm and 5–10 cm soil 

layers, respectively. The horizontal black line in the box shows the estimated sample median, 

while the lower and the upper box boundaries show the first and the third percentiles, 

respectively. The dots outside the whisker boundaries show observations outside the 5th–95th 

percentile range. Different small letters (5–10 cm layer) and capital letters (0–5 cm layer) above 

the bars indicate statistically significant differences (LMM, Tukey’s HSD, p < 0.05) between tree 

species in response variables. Tree species: Cc= Calliandra calothyrsus; Cs= Cedrela serrata; Gr= 

Grevillea robusta; Eg= Eucalyptus grandis; Em= Eucalyptus maidenii; Es= Eucalyptus saligna; Ee= 

Entandrophragma excelsum; Pf= Polyscias fulva; and Mns= mixed native species. 

Highest MBN values were measured under Eucalyptus grandis (346 mg N kg–1) and 

Polyscias fulva (339 mg N kg–1), and the lowest values were measured under Calliandra 

calothyrsus (81.9 mg N kg–1). Highest soil MBC:MBN values were measured under 
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Calliandra calothyrsus (15), while the lowest values were measured under Grevillea 

robusta (4.4) and Polyscias fulva (4.8).  

In the 5–10 cm soil layer, MBC (585 mg C kg–1) and MBN (57.5 mg N kg–1) were 

significantly higher under Eucalyptus grandis. MBC:MBN ratio (13) was also high under 

Eucalyptus grandis, while the lowest values were also measured under Polyscias fulva 

(6.7) (Fig. 3.1).  

3.3.3. Tree species effects on soil microbial activities and ecophysiological indices 

In the 0–5  cm soil layer, RP was highest under Calliandra calothyrsus (11.9 µg CO2–C g–1 

h–1), followed by Eucalyptus grandis (10.1 µg CO2–C g–1 h–1), while the lowest values were 

measured under Eucalyptus saligna (10.1 µg CO2–C g–1 h–1) (Figure 3.2). In this soil layer, 

the highest values of Nmin were measured under Eucalyptus maidenii (5.7 mg N kg–1d–1) 

followed by Entandrophragma excelsum (4 mg N kg–1 d–1) and Calliandra calothyrsus. In 

the 5–10  cm soil layer, there were no differences between tree species in soil RP and 

(Nmin).  Relative nitrification was high (> 98%) under all species, and did not differ 

between soil layers, except for Polyscias fulva under which, the percentage of nitrates was 

significantly higher in the 0–5  cm than in the 5–10  cm soil layer (Figure 3.2).  

In the 0-5 cm soil layer, metabolic quotient (qCO2) values were higher under agroforestry 

and native species and lower under Eucalyptus species. The highest values were 

measured in soil under Calliandra calothyrsus (9.8 µg CO2–C mg–1 MBC h–1), Grevillea 

robusta (7.2 µg CO2–C mg–1 MBC h–1), and Polyscias fulva (6.2 µg CO2–C mg–1 MBC h–1), 

while Eucalyptus maidenii and Eucalyptus saligna showed the lowest values (3.0 and 2.8 

µg CO2–C mg–1MBC h–1, respectively).  

In the 5–10 cm layer, soils under Eucalyptus species had the lowest values of the 

metabolic quotient (1.1 µg CO2–C mg–1MBC h–1) while values were highest under Polyscias 

fulva and Cedrela serrata (4.7 and 3.5 µg CO2–C mg–1MBC h–1, respectively) (Fig. 3.3). The 

microbial quotient (qmic) was highest under Eucalyptus grandis both in 0–5  cm and 5–

10  cm soil layers (16.0 and 9.8 mg MBC g–1 Ctot, respectively). The lowest values of qmic 

at 0-5 cm were found under Grevillea robusta and Entandrophragma excelsum (10.0 mg 

MBC g–1 Ctot), and at 5–10 cm, Polyscias fulva showed the lowest qmic values (2.9 mg MBC 

g–1 Ctot). 
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Fig. 3. 2. Predicted values (Linear Mixed-Effects Models) of soil microbial respiration, net 
nitrogen mineralization, and relative nitrification across eight tree species in two soil layers. 
The model was: response-variable ∼ Species + Layer + Species:Layer + (1|Plot), where Plot is 

replicate PlotID and Layer (0–5 cm and 5–10 cm soil layers). Whenever the interaction of main 

effects was statistically significant, the multiple comparisons of tree species were separately 

analysed by soil layer. Red and blue boxes are model estimates in 0–5  cm and 5–10 cm soil layers, 

respectively. The horizontal black line in the box shows the estimated sample median, while the 

lower and the upper box boundaries show the first and the third percentiles, respectively. The 

dots outside the whisker boundaries show observations outside the 5th–95th percentile range. 

Different small letters (5–10 cm layer) and capital letters (0–5 cm layer) above the bars indicate 

statistically significant differences (LMM, Tukey’s HSD, p < 0.05) between tree species in response 

variables. Tree species: Cc= Calliandra calothyrsus; Cs= Cedrela serrata; Gr= Grevillea robusta; Eg= 

Eucalyptus grandis; Em= Eucalyptus maidenii; Es= Eucalyptus saligna; Ee= Entandrophragma 

excelsum; Pf= Polyscias fulva; and Mns= mixed native species. 
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Fig. 3. 3. Figure 12. Predicted (Linear Mixed-Effects Models) values of soil microbial quotient and 
metabolic quotient across eight tree species in two soil layers. 
The model was: response-variable ∼ Species + Layer + Species:Layer + (1|Plot), where Plot is 

replicate PlotID and Layer (0–5 cm and 5–10 cm soil layers). Whenever the interaction of main 

effects was statistically significant, the multiple comparisons of tree species were separately 

analysed by soil layer. Red and blue boxes are model estimates in 0–5  cm and 5–10 cm soil layers, 

respectively. The horizontal black line in the box shows the estimated sample median, while the 

lower and the upper box boundaries show the first and the third percentiles, respectively. The 

dots outside the whisker boundaries show observations outside the 5th–95th percentile range. 

Different small letters (5–10 cm layer) and capital letters (0–5 cm layer) above the bars indicate 

statistically significant differences (LMM, Tukey’s HSD, p < 0.05) between tree species in response 

variables. Tree species: Cc= Calliandra calothyrsus; Cs= Cedrela serrata; Gr= Grevillea robusta; Eg= 

Eucalyptus grandis; Em= Eucalyptus maidenii; Es= Eucalyptus saligna; Ee= Entandrophragma 

excelsum; Pf= Polyscias fulva; and Mns= mixed native species. 

3.3.4. Relationships between soil microbial parameters and soil chemical properties 

Relationships between soil microbial parameters and soil chemical properties 

Pearson’s correlation-based network analysis between soil properties (pH, SOM, HWC, 

and EBC) and microbial parameters (MBC, MBC:MBN, RP, and Nmin) showed different 

patterns of association within each of the two soil layers (Figure 3.4). Generally, the 

strength of association in the 0–5 cm soil layer was higher than in the layer beneath (5–

10 cm soil layer). 

In the 0–5 cm soil layer, MBC showed a significant positive correlation with HWC (r=  0.65, 

p<0.001), SOM (r= 0.49, p<0.001), EBC (r=  0.42,  p=0.002), and Nmin (r=0.30, p=0.02), 

while it showed a significant negative correlation with pH (r= -0.38, p=0.005). Soil 

respiration potential (RP) was positively correlated with MBC:MBN ratio (r=0.38, 

p=0.005) and negatively correlated with HWC (r=-0.31, p=0.01). Net N mineralization 
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had a positive correlation with HWC and SOM (r=0.38, p=0.005 and r=0.28, p=0.03, 

respectively). 

In the 5-10 cm soil layer, MBC was positively correlated with EBC and RP (r=  0.76,  p<001 

and r=0.37, p=0.005, respectively), and negatively correlated with HWC ( r=-0.25, 

p=0.05). RP had a positive correlation with EBC, pH, and Nmin (r=0.68, p<0.001, r=0.45, 

p<0.001, and r=0.43, p=0.001, respectively), and a negative correlation with MBC:MBN 

(r=-0.28, p=0.03). Net N mineralization was positively correlated with HWC and EBC 

(r=0.46, p<0.001 and r=0.29, p<0.02, respectively). 

 

Fig. 3. 4. Pearson’s correlation-based network shows the relationship between soil properties 

and microbial parameters in the upper (A: 0–5 cm) and lower (B: 5–10 cm) soil layers. 

Correlation coefficients between parameters are indicated by the values on the path line 

connecting the variables and the strength of association is indicated by the thickness of the line. 

Lines’ colour indicates the positive (Blue colour) and negative (Red colour) correlations between 

connected variables. The significance of relationships between variables are indicated by 

asterisks (***: p < 0.001; **: p <0.01; *: p < 0.05). 

Tree species influence on relationships between microbial and chemical soil properties 

To explore the relationships between soil microbial biomass and activity (MBC, 

MBC:MBN, RP, and Nmin) and soil chemical properties (pH, SOM, HWC, and EBC) as a 

response to tree species in the two soil layers, a principal component analysis (PCA) was 

performed. The first two principal components explained more than 55.4% of the total 

variation in the PCA input variables for each soil layer (Fig. 3.5 and Fig. 3.6 ). 
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Fig. 3. 5. PCA biplot of soil microbial parameters and chemical properties across tree species for 

the upper (0–5 cm) soil layer. 

The first two principal components explained 55.4% of the combined variation in analysed soil 

variables. Statistical ellipses at 95% confidence level group tree species (represented by different 

symbols and colours) based soil variables depicted by vectors (pH; SOM = soil organic matter; 

EBC = exchangeable basic cations; HWC = hot water–extractable C, MBC = microbial biomass 

carbon; RP = respiration potential, MBC:MBN = microbial C/N ratio; Nmin = net nitrogen 

mineralization. 

In the 0–5  cm soil layer, the first two principal components explained 55.4% of the total 

variance (Fig. 3.5). PC1 (37.4%)  had strong positive loading with HWC (31%), SOM 

(23%), MBC (19%), Nmin (8%) with clustering of  Eucalyptus species and 

Entandrophragma excelsum, and negative loading with pH (16%) with clustering of 

species such as Grevillea robusta, Cedrela serrata, and Polyscias fulva. PC2 (PC2=18%) had 

a strong positive loading with MBC:MBN (46%), RP (30%) and EBC (16%) with a cluster 

of Calliandra calothyrsus and the mixed native species. 

In the 5–10 cm soil layer, the total variance explained by the first two PC axes was 57.1% 

for which the PC1 and PC2 accounted 31.7% and 25.4, respectively. The significant 

positive contributions of variables to the first PC (Fig. 3.6) were observed for RP (32%), 
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EBC (21%), and Nmin (15%). MBC (34%) and EBC (19%) loaded positively on PC2, while 

HWC (21.5%) and pH (12.5%) loaded negatively. 

 

Fig. 3. 6. PCA biplot of soil microbial parameters and chemical properties across tree species for 

the upper (5–10 cm) soil layer. 

The first two principal components explained 57.1% of the combined variation in analysed soil 

variables. Statistical ellipses at 95% confidence level group tree species (represented by different 

symbols and colours) based soil variables depicted by vectors (pH; SOM = soil organic matter; 

EBC = exchangeable basic cations; HWC = hot water–extractable C, MBC = microbial biomass 

carbon; RP = respiration potential, MBC:MBN = microbial C/N ratio; Nmin = net nitrogen 

mineralization. 

In this soil layer, there were three main tree species clusters across the center origin of 

the biplot in association with PCA input variables. The first cluster in the right part of the 

biplot grouped Calliandra calothyrsus, Polyscias fulva and the mixed native species and 

these were associated with SOM, pH, HWC, and Nmin. The second cluster associated with 

MBC discriminated Eucalyptus grandis in the upper right quadrant of the biplot, and the 

remaining species were grouped in the left part of the biplot in association with 

MBC:MBN. 
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3.4. Discussion 

Understanding the effects of tree species on soil functioning is essential for the selection 

of suitable tree species in afforestation/reforestation programs (Gere et al., 2022). 

Microbial parameters may provide an early estimation of changes in biogeochemical 

processes and an indication of potential changes in soil functioning and nutrient 

availability for trees  (Schloter et al., 2003). In this study, we assessed the effects of 8 tree 

species, planted minimum of 30 years ago in an arboretum,  on microbial processes in 

two topsoil layers of a tropical soil and their relationships with soil chemical properties. 

Since the investigated tree species were planted on the same site with similar land use 

history and climatic conditions, we interpret the observed changes in soil microbial 

parameters as a result of change in tree species. 

3.4.1. The thin upper soil layer dominates microbial properties and soil functions 

Highest values of microbial parameters, more significant differences between tree 

species, and strong relationships between microbial parameters and soil properties were 

found in the 0–5 cm compared to 5–10 cm soil layer. In the present study, the values of 

microbial parameters generally fell within the ranges reported in previous studies for 

tropical forest soils, although we observed relatively greater values in the upper 0–5 cm 

soil layer compared to previous studies that sampled a thicker (0–10 cm) soil layer. Our 

findings showed that, on average,  microbial biomass C and N in the 0–5 cm layer (1558 

mg C kg–1 and 218 mg N kg–1, respectively) were in the same order of magnitude, but 

slightly higher than those measured in tropical forest plantations in the 0–10 cm layer 

ranging from 836–1135 mg C kg–1 and 50–148 mg N kg–1, respectively (Barbhuiya et al., 

2004; Temesgen et al., 2019). Values of soil microbial activity parameters of our study, 

including soil respiration and net N mineralization, as well as eco-physiological indices, 

were relatively low compared to values in the above-mentioned studies conducted in 

tropical plantation forests of India and highlands of Ethiopia. Such differences may be due 

to management practices; our site is less disturbed (no harvest) compared to those 

forests often harvested for commercial purposes (Groffman et al., 2001). Our findings 

highlight the importance of this thin (0–5 cm) topsoil layer in nutrient cycling and fertility 

of tropical soils, where fertility depends heavily on the efficient internal nutrient cycling 

resulting from the optimal conditions for microbial decomposition of plant litter (Pabst 

et al.2013; Sayer & Banin, 2016). 
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3.4.2. Tropical tree species identity effects on soil microbial processes 

For sustainable forest management, it is important to predict whether planted trees will 

improve or adversely affect soil functioning (Bukoski et al., 2022). Our results 

demonstrated that tree species identity was related to changes in microbial biomass and 

activity. Given the low values and limited tree species effects in the 5 – 10 cm layer, the 

following discussion focuses on the upper 0– 5 cm soil layer.  

Soil under Calliandra calothyrsus, an exotic N2–fixing  agroforestry species showed 

highest microbial activity, confirming that this species globally improves soil quality 

(Kisaka et al., 2023). However, it also caused lower MBC compared to other species and 

higher metabolic quotient, indicating high requirement of microbial maintenance energy 

as a result of physiological stress (Anderson and Domsch, 2010). The litter of this species 

might be recalcitrant due to the high content of condensed tannins in the leaves 

(Temesgen et al., 2019). 

Our data suggest that we cannot generalize the effects of Eucalyptus species on soil 

microbial properties. While plantations of all three Eucalyptus species induced high soil 

MBC, Eucalyptus grandis plantation also resulted in higher MBN, RP, and qmic. Previous 

results showed high amounts of soil labile C and N, and low pH under this species 

(Rwibasira et al., 2021). The results from this study showed a significant positive 

relationship HWC and Nmin but HWC negatively related to RP, which partially contradict 

the previous studies which reported that soil microbial activity, particularly RP was 

driven by substrate C availability (Luo & Zhou, 2006; Pietri et al., 2008). Planting 

Eucalyptus maidenii increased Nmin but reduced RP and subsequently the qCO2. In 

addition to lowest RP and qCO2, planting Eucalyptus saligna also significantly reduced 

Nmin. The difference in effects of eucalyptus species may be attributed to their differing 

litter traits (Table 3.2). Eucalyptus grandis has leaf litter with high lignin content (Bini et 

al., 2013), while Eucalyptus maidenii was expected to reduce C and N mineralization rates 

given its high litter C/N ratios (Demessie et al., 2012; Cizungu et al., 2014). 

The plantation of native tree species such as Entandrophragma excelsum and Polyscias 

fulva significantly increased soil microbial biomass, particularly MBN. The previous study 

on same samples showed that these species significantly increased soil pH, while 

Polyscias fulva particularly increased soil exchangeable base cations (Rwibasira et al., 

2021). The low RP and qCO2 with high values in qmic and Nmin also under these native 
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species are in the same range with the values measured under mixed native species 

(Mns), indicating high litter quality (Xu et al., 2007), which might reflect an improved soil 

quality under these species (Bauhus et al., 1998; Chen et al., 2018).  We observed no 

differences between tree species in the rates of relative nitrification (Nitrel), where 

nitrifying capacity was high (>98%) in soils under all tree species. This may be due to the 

tropical optimal temperature and moisture that favours the permanently high activity of 

microbial nitrifiers, implying potential N losses through the leaching of soluble nitrates 

and soil acidification of these tropical Ferralsols (Binkley and Menyailo, 2005).  

In contrast to our hypothesis, we did not observe a reduced soil microbial biomass under 

Eucalyptus. It was reported in the previous studies that these species often produce 

allelopathic chemical compounds that are detrimental to soil microorganisms (Naidoo et 

al., 2014; Zhang et al., 2016). This is likely due to the fact that most of these allelopathic 

experiments used short-term laboratory germination or early plant growth in pots, which 

may differ from long-term field conditions (Damptey et al., 2020). 

3.4.3. Relating changes in microbial processes to soil properties under tree species 

Our results from multivariate and correlation analyses revealed that soil chemical 

properties were the main driving factors of soil microbial biomass and activity under 

different tree species. The PCA components and correlation matrix differed between the 

two upper layers, most likely due to the sharp vertical gradient in tropical soil properties 

influenced by the availability and quick mineralization of substrate (Cleveland et al., 

2003; Gelsomino and Azzellino, 2011).  

In the 0–5 cm soil layer, the correlation between hot water-extractable carbon (HWC) 

and MBC, Nmin, and RP was stronger than the correlation between SOM and the same 

microbial variables. Our results are consistent with previous studies (Ghani et al., 2003; 

Ćirić et al., 2016) indicating the higher importance of labile organic carbon  compared to 

total SOM in driving soil biochemical processes (Coca-Salazar et al., 2021a). MBC was 

negatively related to pH and EBC, suggesting that the microorganisms’ biomass may 

decline when soils acidify (Kunito et al., 2016). However, the results from the present 

study indicated significantly high MBC under eucalyptus species, despite the known 

effects of these species for soil acidification. We attribute this increased microbial 

biomass to (a) a higher amount of available carbon under Eucalyptus species (Rwibasira 
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et al., 2021) and (b) long-term forest management at this site (>80 years, no periodic 

harvest or rotation) that may be long enough to allow adaptive responses of soil 

microorganisms to soil conditions under these tree species (Degens et al., 2000). 

PCA clustering also reflected the importance of soil variables such as labile organic pools, 

SOM concentration, and soil pH in influencing microbial biomass and organic matter 

mineralization. These results could suggest that the nutrient-rich substrate under species 

such as Calliandra calothyrsus and mixed native species plots could promote high 

microbial activity. These plots were also characterised by the presence of shrubs and 

understorey grasses (field observation) which could contribute to the diversity of 

nutrient inputs (Sayer and Banin, 2016), and previous studies have associated the high 

MBC:MBN ratios with fungal dominance and/or increased C mineralization under diverse 

substrate in undisturbed forest soils (Crowther et al., 2019).  

In the 5–10  cm soil layer, exchangeable base cations, rather than HWC and/or SOM 

positively correlated with soil  MBC and  RP. This contrasts with our hypothesis, as we 

expected that soil microbial biomass and activity would be mainly related to labile soil 

carbon. The observed negative correlation between HWC and MBC and a positive 

correlation between HWC and Nmin may reflect the decreased availability of 

mineralizable substrate with increasing soil depth (Crowther et al., 2019). In this soil 

layer, RP was the only microbial parameter significantly correlated to pH. In the previous 

study on tropical forest soils, Doetterl et al. (2015), reported increasing carbon 

stabilization with decreasing soil pH in lower soil profiles through reduced respiratory C 

losses. Although this soil layer (5-10 cm) in the present study cannot be considered as a 

lower soil profile, it had more acidic soil compared to the 0–5  cm soil layer (Rwibasira et 

al., 2021). The PCA analysis in this soil layer revealed that species such as Calliandra 

calothyrsus, Polyscias fulva and self-regeneration of mixed native species increased EBC, 

SOM, pH, HWC, which positively loaded on PC1 associated with RP and Nmin. Specifically, 

the second PCA axis showed a distinctly positive effect of Eucalyptus grandis on microbial 

biomass, again contrasting with our hypothesis regarding the negative effects of planting 

Eucalyptus species on soil microbial properties. This demonstrated that we cannot 

generalize the effects of planting Eucalyptus species.   
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3.5. Conclusion 

Understanding the effects of tree species on soil microbial properties and processes can 

provide important information not only on soil ecological functions but also can guide 

forest management decisions related to the choice of plantation species. Our results 

demonstrate that tree species significantly influenced soil microbial biomass, soil 

respiration and nitrogen transformations. Highest values and pronounced tree species 

effects in the 0–5  cm compared to 5–10  cm soil layer confirm the importance of this thin 

upper layer as an active layer and a hotspot of nutrient cycling and fertility of tropical 

forest soils. The present study also showed that Eucalyptus species were not adversely 

affecting microbial properties and processes. We suggest planting native species (i.e., 

Entandrophragma excelsum, and Polyscias fulva) as they showed potential to improve soil 

quality compared to eucalyptus and agroforestry species. Considering a relatively high 

variability of site characteristics in tropical soils, the results from the present study 

propose that (1) we cannot generalize the effects of Eucalyptus tree species on soils, (2) 

the differences in microbial activity between tree species would be explained by the 

availability of labile carbon substrate, and (3) combining analysis of soils microbial and 

physico-chemical indicators would better guide the policy related to the selection 

afforestation tree species for sustainable management of forest ecosystems. 
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Abstract 

Ammonia-oxidizing archaea (AOA) and bacteria (AOB) naturally coexist in terrestrial 

ecosystems and play a major role in the global nitrogen cycle. Their abundance and 

relative contribution to soil nitrification and the influence of tree species remain 

less understood, especially in acidic tropical soils. We sampled two topsoil layers (0–5 cm 

and 5–10 cm) to investigate the long-term effects (>30 years) of eight tree species on the 

abundance of AOA and AOB and their contribution to soil nitrification, using quantitative 

PCR targeting the amoA gene and measuring potential nitrification rates (PNR).  

Significantly higher PNR and copy numbers of AOB amoA genes, as well as greater 

variation between species were observed in the upper compared to lower soil layer, 

confirming higher microbial activity and the importance of this thin layer for the fertility 

of tropical forest soils. We found a dominance of AOA over AOB in terms of abundance 

and contribution to nitrification activity across tree species, suggesting that soil acidity 

and low ammonia concentrations might have given a competitive advantage to AOA. Gene 

copy numbers of amoA showed a significant positive correlation with AOA activity and a 

negative relation with AOB activity in the 0–5 cm soil layer. Planting Polyscias fulva, 

Eucalyptus grandis, Grevillea robusta, and Cedrela serrata significantly increased the rate 

of both AOA and AOB nitrification. Tree species significantly influenced abundance of 

AOA and AOB and their nitrification rates via changes in soil pH and supply of N 

substrates.  

Keywords: Nitrification; ammonia-oxidizing archaea (AOA) and bacteria (AOB); amoA 

gene; Tropical soils, tree species; Ruhande arboretum; Rwanda.
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4.1. Introduction 

Ammonia oxidation is the first, rate-limiting, step of the nitrification process which 

significantly contribute to the global biogeochemical cycle of nitrogen (Kowalchuk & 

Stephen, 2001; Stein, 2019). Nitrification by ammonia-oxidizing archaea (AOA) and 

ammonia-oxidizing bacteria (AOB) is performed through two microbially driven 

processes consisting of ammonia (NH3) oxidation to nitrate (NO3–) via nitrite (NO2–), 

though the recently discovered comammox bacteria can complete ammonia oxidation 

within a single organism (Dimitri Kits et al., 2017; Jung et al., 2022). Nitrogen is a vital 

component of all forms of life, and it is often the major growth–limiting  macronutrient in 

terrestrial ecosystems (Maathuis & Diatloff, 2013; Kuypers et al., 2018). The availability 

of plant-available nitrogen forms (e.g., NO3–and NH4+) is limited (Gruber and Galloway, 

2008), and (AOB) and archaea (AOA) play an important role in the biogeochemical cycle 

of nitrogen, controlling the form of available N, as well as N losses through their nitrifying 

activity (Laffite et al., 2020; Jung et al., 2022).  

Many studies have used ammonia monooxygenase subunit A (amoA) as a functional and 

phylogenetic marker gene which is shared by AOA and AOB (Prosser and Nicol, 2008), 

and the assessment of amoA gene abundance was suggested as an important measure to 

characterize and quantify these ammonia-oxidizers in terrestrial ecosystems (Rotthauwe 

et al., 1997; Zeglin et al., 2011). While AOA and AOB naturally coexist in the environment, 

they differ in their ecological niches (Hink et al., 2018). Quantifications of the  amoA gene 

indicate that AOA genes often numerically predominate over AOB in soil  (Leininger et al., 

2006; Chen et al., 2008), that they exhibit a greater tolerance to soil acidity and require 

lower amounts of ammonia, thus suggesting a greater contribution to nitrification 

compared to AOB in acid and N poor ecosystems (Nicol et al., 2008; He et al., 2012; Trivedi 

et al., 2019). It was reported that the abundance of ammonia oxidizers, rather than their 

species diversity, could explain changes in nitrification rates (Hou et al., 2013). However, 

other studies showed that, despite the dominance of archaeal amoA gene abundance, AOB 

were more important than AOA in driving soil nitrification (Sterngren et al., 2015). This 

shows that the abundance of ammonia-oxidizing microorganisms may not always reflect 

the high rates of soil nitrification process. Thus, it is critical to explore not only the 

relationship between gross nitrification rates and amoA, but also the distinctive role of 

AOA and AOB in nitrification rates as related to their abundance.  
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Vegetation types may differently affect many physico-chemical and microbial soil 

properties and processes (Mueller et al., 2012; Zhao et al., 2022). For example, the 

decomposition of plant litter can alter the concentration of soil nutrients, toxic elements, 

as well as cause a change of soil pH, which in turn may influence the composition and 

activity of soil microorganisms (Pajares and Bohannan, 2016). While N mineralization 

controls nitrogen substrates availability for plants and microorganisms in terrestrial 

ecosystems (Rütting et al., 2021; Fan et al., 2022)  (Rütting et al., 2021), labile N fractions 

especially those extracted with hot water were also reported to be more closely linked to 

N cycling compared to the total organic N pools (Curtin et al., 2021; Haynes, 2005; Wang 

et al., 2008). Thus, both nitrogen mineralization (Nmin) and total hot water-extractable 

nitrogen (HWNtot) could be considered as proxies for N substrate availability for 

microorganisms involved in N cycling processes. 

Tree species may influence soil nitrification directly through altering input of elements 

that in turn can affect availability of substrate for soil microorganisms (Ribbons et al., 

2018b) or releasing substances that may inhibit growth and/or activity of nitrifiers  

(Lehtovirta-Morley et al., 2013; Laffite et al., 2020). Further, some native tree species 

might also recruit diverse types of microorganisms which are specific to certain 

environmental conditions and can simultaneously perform multiple ecological processes 

including N cycling (Shu and Huang, 2022). Despite that many studies have reported that 

the choice of planted tree species may strongly influence soil processes, knowledge on 

how tree species and environmental conditions influence the composition and activity of 

soil microorganisms carrying out nitrogen cycling processes remains scarce (Nelson et 

al., 2016). Particularly, it is still unclear how tree species affect the abundance and activity 

of AOA and AOB, especially in acidic tropical soils. 

In Rwanda, about 724,695 ha (30.4%) of the land is forested; planted forests occupy 

387,425 ha (16.2%) and are dominated by eucalyptus species, accounting for 89% of the 

forest plantations (IUCN, 2020). Although the target to reach 30% of  the country’s land 

covered by forests was reached in 2019 (MoE, 2019a), the campaigns to plant more 

forests are continuing because forests are not diversified and/or unevenly distributed 

across the country. Furthermore, harvested forests should be replaced to maintain the 

desired of forest cover (Rwanda forest authority; RFA, 2021). However, it remains 
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unclear how different tree species may affect soil processes and soil quality in Rwanda, 

especially in regard to introduced exotic species. 

The general objective of this study was to assess the contribution of AOA and AOB to the 

nitrification process in acidic tropical forest soils. Specifically, we addressed the effects of 

tree species on the activity of  AOB and AOA through the measurement of potential 

nitrification rates, as well as on their abundance through the measurement of bacterial 

and archaeal amoA gene. Given the role of soil pH in influencing abundance and activity 

of AOA and AOB, we hypothesized that (1) AOA would be more abundant and contribute 

most to the nitrification rates under acidifying Eucalyptus species, (2) AOB abundance 

and activity would be relatively more important in less acid soils under monospecific 

native tree species and self-regenerated native species. 

4.2. Materials and Methods 

4.2.1. Study site 

The study was conducted at the Arboretum of Ruhande (2°36ʹ S, 29°44ʹ E), located in the 

Huye District, Southern Province of Rwanda (Fig. 1.5). The site has a humid tropical 

climate characterized by a mean annual air temperature between 17.5 °C and 19 °C, and 

approximately 1230 mm rainfall with a bimodal distribution pattern of two rainy seasons 

(heavy rains: March-May; and irregular rains: September–December) and two dry 

seasons (short: January–February; and long: June–August) (Meteorwanda, 2021). The 

soil is characterized by a brown-red colour with a sandy loam texture and diffuse 

horizons, classified as Ferralsols or Oxisols according to FAO and USDA Soil Taxonomy, 

respectively (Verdoodt et al., 2006). The site was established in 1933 on the cultivated 

flat plateau of Ruhande hill (1638–1737 m asl), where a typical traditional organic 

cropping system had been used. Its area has progressively increased to reach the current 

size of 200 ha (Nsabimana et al., 2008). The site currently contains 204 tree species, with 

144 deciduous, 57 conifer, and 3 bamboo species planted on 477 plots (50m x 50m) of 

replicated monoculture stands. Among all species, exotic trees represent 84% (172 

species of which 69 are eucalyptus species), while native species represent 13% (32 

species) (RFA, 2021). All plots are regularly managed by the removal of invading 

vegetation and planting young trees in replacement of dead plants to maintain a constant 

density of the initial tree species in the plots, except on an undisturbed plot (4 ha) of self-
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regenerated mixed native species (Mns). No fertilization, weed control treatments, clear-

cut, or fire events have occurred since the establishment of the site. 

4.2.2. Soil sampling and analyses 

Based on the use and species adaptability in different regions of the country (Iiyama et 

al., 2018), eight species were selected (Figure 2.1). These included three Eucalyptus 

species (Eucalyptus grandis, Eucalyptus maidenii, and Eucalyptus saligna), three 

agroforestry species (Calliandra calothyrsus, Cedrela serrata, and Grevillea robusta), two 

native species (Entandrophragma excelsum and Polyscias fulva), and a self-regenerated 

plot of native forest (Mixed native species = Mns). Three plots per species were selected 

and each plot was divided into two sub-plots (25 × 50 m). One composite soil sample was 

taken in each sub-plot for two soil layers (0-5 cm and 5-10 cm) by mixing five soil samples 

(X-shaped sampling) collected by using a 30x30 cm frame and a shovel under the tree’s 

canopy at 1–1.5 m from the tree base (Bini et al., 2013). Soils were sieved fresh on 

sterilized sieves (4 mm) and stored at 4 °C until analysis. A sub-sample was freeze-dried 

and stored at -20°C for molecular analyses. Detailed soil characteristics of the studied 

plots can be found in Rwibasira et al. (2021). For molecular analyses, soil of one subplot 

only was analysed. 

Potential nitrification rates   

Potential nitrification rates (PNR) were determined using the shaken soil slurry method 

(Hart et al., 1994), with and without addition of 80 μM of allylthiourea (ATU), which 

selectively inhibits the AOB nitrification (Taylor et al., 2010). PNR from soil slurry 

without ATU reflects the total PNR while ATU-added slurry serves to determine archaeal 

PNR (AOA–PNR). The bacterial nitrification rate was calculated as the difference between 

the total and archaeal nitrification rates. The soil slurry,10 g soil added to 100 ml of a 

buffered solution (1 mM PO43–, 1.5 mM NH4+, and pH 7.2), was shaken (180 rpm) at 20 oC 

in the dark. Samples (15 ml) of homogeneous soil slurries were taken after 2, 5, 23, and 

26 hours of shaking, filtered (Whatmann 5951/2 filter paper) and kept at –20 °C until 

analysis. The concentration of extracted nitrate was determined colorimetrically using a 

flow autoanalyzer (BranLuebbe, SPX Process Equipment, Germany) and PNR was 

calculated by linear regression of NO3–N concentrations over time. 
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Abundance of bacterial and archaeal amoA genes 

DNA extraction was performed from 0.25 g freeze-dried soil, using the DNeasy PowerSoil 

Pro kit (QIAGEN) in accordance with the manufacturer's protocols, and the DNA extract 

was stored at −20°C until use. The concentration and purity of extracted DNA were 

measured using a Qubit™ fluorometer (Invitrogen). To determine the abundance of 

nitrifying bacteria and archaea, we used quantitative PCR targeting amoA gene, a 

functional gene encoding for ammonia monooxygenase subunit A. Primer pairs amoA_1F 

(5ʹ -GGGGTTTCTACTGGTGGT -3ʹ) and amoA_2R (5ʹ- CCCCTCKGSAAAGCCTTCTTC -3ʹ) 

(Rotthauwe et al., 1997) were used for bacterial amoA, while primer pairs CrenamoA23f 

(5ʹ- ATGGTCTGGCTWAGACG -3ʹ) and CrenamoA616r (5ʹ- GCCATCCATCTGTATGTCCA -

3ʹ) (Tourna et al., 2008) were used for archaeal amoA.  The final reaction mixture (20 μl) 

contained: 0.5 μM of amoA_1F and 0.5 μM of amoA_2R for AOB or 0.75 μM of 

CrenamoA616r and 1 μM of CrenamoA23f for AOA, 2% bovine serum albumin (BSA), 1X 

of QuantiTect SybrGreen PCR Master Mix (Qiagen, Courtaboeuf, France) and 10 ng of soil-

extracted DNA. Upon confirmation by melting curve analysis for efficient amplification of 

AOB-amoA and AOA-amoA, all samples were run in duplicate on a Lightcycler 480 (Roche 

Diagnostics, Meylan, France). The thermal cycling conditions for bacterial amoA were: 15 

min at 95 °C, followed by 45 cycles (denaturation at 95 °C for 30 s, annealing at 54 °C for 

45 s, extension at 72 °C for 45 s and 80 °C for 15 s) and 30 s at 40 °C. For archaeal amoA, 

the amplification was run for 15 min at 95 °C, followed by 50 amplification cycles 

(denaturation at 94 °C for 45 s, annealing at 55 °C for 45 s, and extension at 72 °C for 45 

s) and 10 s at 40 °C. 

Soil pH, labile N fractions, and net N mineralization 

Soil pH was determined in a soil solution with 1 M KCl (1:2.5 w/v), using a pH meter 

(HI2550, HANNA® Instruments, USA) as described by Allen (1989). Water-extractable N 

fractions were determined using the method of Ghani et al. (2003). Fresh soil was 

extracted with distilled water (1:6, w/v), shaken (120 rpm, 30 min), centrifuged (4000 

rpm, 10 min), and filtered (Whatman #42), representing water-soluble N (WSN) fractions 

(data not presented). Hot water-extractable N (HWN) were subsequently extracted from 

the remaining wet soil, mixed with distilled water (30 ml), and placed in the oven for 16 

h at 80 °C. Total nitrogen in extracts was measured colorimetrically using a continuous 
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flow autoanalyzer equipped with a UV digestor (Autoanalyser3, BranLuebbe, Germany). 

Net nitrogen mineralization (Nmin) was determined according to Hart et al. (1994), from 

15 g of fresh soil adjusted to 60% water holding capacity and incubated at 20 °C for 28 

days. Extraction of inorganic nitrogen (NH4⁺–N and NO3‾–N) was performed on sub-

samples at the beginning and the end of the incubation period using 1 M KCl (1:5; w:v), 

after 1 h agitation at 180 rpm and centrifugation at 4000 rpm (Allen, 1989). The water 

loss during incubation was monitored gravimetrically and compensated by adding 

distilled water as necessary. Extracts were analysed colorimetrically using a continuous 

flow analyser equipped with a UV digestor (AutoAnalyser3, BranLuebbe, Germany). Net 

nitrogen mineralization rate (Nmin) was calculated as the ratio between the net increase 

in inorganic nitrogen and the number of incubation days. 

4.2.3. Statistical analyses 

Effects of Species (9 levels) and soil layer (two levels: 0–5  cm and 5–10 cm) as well as 

their interactions on measured soil variables were analysed using mixed effects models 

using the R Statistical language (version 4.3.1; R Core Team, 2023). Species, Layer, and 

their interactions were included as fixed effects, while the Plot (27 plots) were included 

as random effects to account for the non-independence of the two soil samples collected 

within the same plot. We fitted a linear mixed model with lmerTest (version 3.1.3; 

Kuznetsova et al., 2017), estimated using REML and nloptwrap optimizer, with random 

intercept: 

response ~ 1 + Species + Layer + Species*Layer + (1|Plot)  

The assumptions of normality and homoscedasticity of the residuals were assessed by 

visual inspection of the q-q plots and plots of the normalized residuals against the fitted 

values (Zuur et al., 2010). Conditional (R2c; total variance explained by the model), and 

marginal (R2m; variance explained by the fixed effects) coefficients of determination 

were calculated using MuMIn (version 1.47.5; Barton, 2020). F-test analysis of variance 

for fixed-effect terms used Satterthwaite and Kenward-Roger methods (Kuznetsova et al., 

2017). Estimated means were calculated and pairwise comparisons were performed 

emmeans (version 1.8.7; Lenth et al., 2018), according to recommendations for non-

interacting or interacting factors. Plots were performed according to Jeffrey (2018).  The 

data of amoA gene copy numbers, amoA–AOA:amoA–AOB, and specific nitrification (i.e., 

PNR/amoA) were log–transformed to meet normality and homoscedasticity 
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assumptions. We performed correlational analysis (Pearson) using Corrr package, 

version 0.4.4 (Kuhn et al. 2020) to determine the relationships between soil variables 

(i.e., pH, Nmin, and HWNtot) considered to as key drivers of AOA’s and AOB’s PNR and 

amoA. We also performed PCA using FactoMineR, version 2.8 (Husson et al. 2020) and 

ggplot2, version 3.4.2 (Wickham et al. 2022) packages to explore and visualize 

relationships between selected soil variables (i.e., pH, HWNtot, and Nmin) and tree 

species in both soil layers separately. 

4.3. Results 

4.3.1. Effects of tree species on abundance and activity of AOA and AOB 

Abundance and activity of AOA and AOB were significantly influenced by tree species and 

soil layers (Table 4.1). Bacterial amoA gene abundance was significantly higher in the 

upper (0–5 cm) compared to the lower (5–10 cm) soil layer under all tree species, ranging 

from 2.51 × 104 to 6.5 × 106 and 3.08 × 103 to 6.9 × 105 gene copies g–1, respectively (Fig. 

4.1, Table 4A.1).  

Table 4.  1. Results of linear mixed-effects modelling to predict the effects of tree species and soil 
layer on AOA and AOB nitrification activity and abundance of amoA genes. 

Variables Tree species (S) Soil layer (L) 
Interaction of Species 

and Layer (S * L) 
R squared 

 
F-

statistics 
P-value 

F-

statistics 
P-value 

F-

statistics 
P-value R2m R2c 

AOA–PNR (mg N–NO3 kg-1 d-1)  
119.174 5.38e-14 

*** 

4933.468 < 2.2e-16 

*** 

68.113 < 2.2e-

16 *** 

0.983 0.983 

AOB–PNR (mg N–NO3 kg-1 d-1)  
52.538 < 2.2e-

16 *** 

134.971 < 2.2e-16 

*** 

15.913 2.16e-14 

*** 

0.786 0.803 

PNRtot (mg N–NO3 kg-1 d-1)  
143.113 < 2.2e-

16 *** 

1829.469 < 2.2e-16 

*** 

30.321 < 2.2e-

16 *** 

0.957 0.960 

AOA–amoA (amoA gene copies 

g-1)  

1.965 0.111 31.493 3.505e-

07 *** 

3.541 0.00165 

** 

0.384 0.812 

AOB–amoA (amoA gene copies g-

1)  

5.562 0.0012 

** 

970.818 < 2.2e-16 

*** 

13.367 1.203e-

11 *** 

0.825 0.939 

AOA–PNR:AOB–PNR  
37.144 < 2.2e-

16 *** 

152.242 < 2.2e-16 

*** 

22.216 < 2.2e-

16 *** 

0.854 0.854 

AOA–amoA:AOB–amoA 
3.554 0.012* 493.805 < 2.2e-16 

*** 

9.277 1.086e-

08 *** 

0.744 0.895 

AOA–PNR:amoA-AOA (specific 
AOA-PNR)  

1.92 0.119 162.84 < 2.2e-16 

*** 

6.71 1.551e-

06 *** 

0.514 0.851 

AOB–PNR: amoA-AOB (specific 

AOB-PNR)  

10.48 2.192e-

05 *** 

285.16 < 2.2e-16 

*** 

8.253 7.313e-

08 *** 

0.780 0.90 

AOA: ammonia-oxidizing archaea; AOB: ammonia-oxidizing bacteria; AOA–PNR: AOA’s potential 

nitrification rates; AOB–PNR: AOB’s potential nitrification rates; PNRtot: total potential 

nitrification rates;  amoA: ammonia monooxygenase gene (subunit A);  AOA–amoA: AOA’s gene 

abundance; AOB–amoA: AOB’s gene abundance. 
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In the upper (0–5 cm)  soil layer, we observed significantly higher values of AOB–amoA 

under agroforestry tree species, such as Grevillea robusta,  Calliandra calothyrsus and 

Cedrela serrata, while values were lowest under Eucalyptus saligna. In the lower (5–10 

cm) soil layer, the number of AOB–amoA genes copies was significantly higher under 

mixed native species and agroforestry species, compared to  eucalyptus species (Fig. 4.1). 

 

Fig. 4. 1. Predicted effects of tree species and soil layer on amoA gene abundance for AOA and 

AOB. 

Figure 2. Predicted effects of tree species and soil layer on amoA gene abundance for AOA and 

AOB. The model was: response ~ 1 + Species + Layer + Species*Layer + (1|Plot), where Plot is the 

Plot ID. Red circles indicate mean values of samples in the 0–5 cm soil layer and blue circles 

indicate samples in the 5–10 cm layer. Capital letters indicate significant differences (p-value < 

0.05, Tukey tests) between tree species in the 0–5 cm layer and small letters indicate significant 

differences for the 5–10 cm layer. AOA-amoA: amoA gene copies for AOA; AOB-amoA: amoA gene 

copies for AOB; Tree species: Cc= Calliandra calothyrsus; Cs= Cedrela serrata; Gr= Grevillea robusta; 

Eg= Eucalyptus grandis; Em= Eucalyptus maidenii; Es= Eucalyptus saligna; Ee= Entandrophragma 

excelsum; Pf= Polyscias fulva; and Mns= mixed native species. 

Real time qPCR amplification  yielded 5.35 × 107 to 1.24 × 109 and 2.86 × 106 to 1.08 × 109 

of AOA–amoA gene copies g−1 in the 0–5 cm and 5–10 cm soil layers, respectively (Table 

A4). There were no significant differences of AOA–amoA gene copies between tree 

species in the upper soil layer. In the 5–10 cm soil layer, highest values of AOA–amoA 

were observed under mixed native species (Mns) and lowest AOA–amoA values were 

observed under Eucalyptus (Fig. 4.1).  

Potential nitrification rates of AOB (AOB–PNR) ranged from 0.1 to 1.3 and 0.01 to 0.6 mg 

N–NO3 kg–1 d–1 in the 0–5 cm and 5–10 cm soil layers, respectively (Table 4A.1). In 0–5 

cm soil layer AOB–PNR was significantly higher under Polyscias fulva,  Eucalyptus grandis, 
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and Eucalyptus saligna, and lower under Calliandra calothyrsus,  Eucalyptus maidenii and 

Entandrophragma excelsum (Fig. 4.2). In the 5–10 cm soil layer, the highest AOB–PNR 

values were found under Calliandra calothyrsus, Polyscias fulva, and Eucalyptus saligna; 

while species including Grevillea robusta, Eucalyptus maidenii, and Entandrophragma 

excelsum showed lowest AOB–PNR (Fig. 4.2). 

Archaeal potential nitrification rate (AOA–PNR) ranged from 0.4 to 2.5 and 0.1 to 0.4 mg 

N–NO3 kg–1 d–1 in 0–5 cm and 5–10 cm soil layers, respectively (Table 4A.1, Fig. 4.2). In 

0–5 cm soil layer, AOA–PNR was significantly higher under species such as Polyscias fulva, 

Eucalyptus grandis, Grevillea robusta and mixed native species, and significantly lower 

under  eucalyptus species AOA–PNR (Fig. 4.2-A). In the 5–10 cm soil layer, AOA–PNR was 

significantly higher under Eucalyptus grandis followed by Calliandra calothyrsus and 

Grevillea robusta, and lowest under mixed native species and Cedrela serrata (Fig. 4.2-B).  

 

Fig. 4. 2. Predicted effects of tree species and soil layer on AOA and AOB potential nitrification 

rates. 

The model is: response ~ 1 + Species + Layer + Species*Layer + (1|Plot), where Plot is the Plot ID. 

Red circles indicate mean values of samples at 0–5 cm soil layer and blue circles indicate samples 

at 5–10 cm. Capital and small letters indicate significant differences (p-value < 0.05, Tukey tests) 

between tree species at 0–5 cm and 5–10 cm, respectively. AOA: ammonia-oxidizing archaea; 

AOB: ammonia-oxidizing bacteria; AOA–PNR: AOA’s potential nitrification rates; AOB–PNR: 

AOB’s potential nitrification rates; Tree species: Cc= Calliandra calothyrsus; Cs= Cedrela serrata; 

Gr= Grevillea robusta; Eg= Eucalyptus grandis; Em= Eucalyptus maidenii; Es= Eucalyptus saligna; 

Ee= Entandrophragma excelsum; Pf= Polyscias fulva; Mns= Mixed native species. 



Chapter 4 – Abundance and activity of ammonia-oxidizers 
 

96 
 

Table 4.  2. Potential nitrification rates (Means±SEM, n=6) and contribution of AOA and AOB (%) 
to total potential nitrification rates under different tree species. 

Tree species Potential nitrification rates  
(PNR; mg N–NO3 kg–1 d–1) 

Contribution to total PNR 
 (%) 

AOA–PNR AOB–PNR Total PNR AOA  AOB  

Potential nitrification rates in 0 – 5 cm soil layer 

Calliandra calothyrsus 0.742±0.01 0.269±0.06 1.01±0.07 73.4 26.6 

Cedrela serrata 0.82±0.07 0.488±0.08 1.31±0.12 62.7 37.3 

Grevillea robusta 1.11±0.09 0.358±0.04 1.47±0.06 75.6 24.4 

Eucalyptus grandis 1.45±0.10 1±0.09 2.45±0.15 59.2 40.8 

Eucalyptus maidenii 0.463±0.02 0.15±0.04 0.613±0.04 75.5 24.5 

Eucalyptus saligna 0.498±0.03 0.539±0.05 1.037±0.06 48.0 52.0 

Entandrophragma excelsum 0.505±0.02 0.187±0.04 0.692±0.03 73.0 27.0 

Polyscias fulva 2.22±0.08 0.64±0.10 2.86±0.07 77.6 22.4 

Mixed native species 0.979±0.02 0.387±0.07 1.366±0.06 71.7 28.3 

Potential nitrification rates in 5 – 10 cm soil layer 

Calliandra calothyrsus 0.229±0.01 0.429±0.03 0.658±0.03 34.8 65.2 

Cedrela serrata 0.068±0.00 0.158±0.01 0.226±0.01 30.1 69.9 

Grevillea robusta 0.227±0.00 0.031±0.00 0.259±0.00 88.0 12.0 

Eucalyptus grandis 0.332±0.01 0.279±0.00 0.61±0.01 54.3 45.7 

Eucalyptus maidenii 0.168±0.01 0.043±0.00 0.211±0.02 79.6 20.4 

Eucalyptus saligna 0.096±0.00 0.39±0.02 0.486±0.02 19.8 80.2 

Entandrophragma excelsum 
0.081±0.00 0.051±0.01 0.132±0.01 61.4 38.6 

Polyscias fulva 0.125±0.00 0.612±0.01 0.737±0.01 17.0 83.0 

Mixed native species 0.072±0.00 0.148±0.01 0.221±0.00 32.7 67.3 

AOA: ammonia-oxidizing archaea; AOB: ammonia-oxidizing bacteria; AOA–PNR: AOA’s potential 

nitrification rates; AOB–PNR: AOB’s potential nitrification rates; PNRtot: total potential 

nitrification rates. 
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The total PNR ranged from 0.5 to 3. 1 and 0.1 to 0.8 mg N−NO3− kg−1 d−1 in the 0–5 cm and 

5–10 cm soil layers, respectively. Total PNR was significantly higher under species 

including Polyscias fulva and Eucalyptus grandis, and lower under species such as 

Eucalyptus maidenii and Entandrophragma excelsum, both 0–5 cm and soil 5–10 cm layers 

(Fig. 4.3). The contribution of AOA and AOB to the total potential nitrification rates only 

differed between tree species in the 0–5 cm soil layer. On average, AOA and AOB 

contributed about 71% and  29% of the total potential nitrification rates, respectively 

(Table 4.2).  

 
Fig. 4. 3. Predicted effects of tree species and soil layer on total potential nitrification rates. 

The model is: response ~ 1 + Species + Layer + Species*Layer + (1|Plot), where Plot is the Plot ID. 

Red circles indicate mean values of samples at 0–5 cm soil layer and blue circles indicate samples 

at 5–10 cm. Capital and small letters indicate significant differences (p-value < 0.05, Tukey tests) 

between tree species at 0–5 cm and 5–10 cm, respectively. Total PNR: total potential nitrification 

rates; Tree species: Cc= Calliandra calothyrsus; Cs= Cedrela serrata; Gr= Grevillea robusta; Eg= 

Eucalyptus grandis; Em= Eucalyptus maidenii; Es= Eucalyptus saligna; Ee= Entandrophragma 

excelsum; Pf= Polyscias fulva; Mns= Mixed native species. 
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4.3.2. Relationship between amoA gene abundance and potential nitrification rates 

Soil potential nitrification rates were significantly correlated to amoA gene abundance of 

AOA and AOB in the 0–5 cm soil layer only (Fig. 4.4 and 4.5). A strong positive correlation 

was found for archaea (Fig. 4.4–A), while a negative correlation was found for bacteria 

(Fig. 4.4–B). 

 

Fig. 4. 4. Relationships between soil potential nitrification rates and AOB and AOA abundance in 
0–5 cm and 5–10 cm layers. 
AOA: ammonia-oxidizing archaea; AOB: ammonia-oxidizing bacteria; AOA–PNR: AOA’s potential 

nitrification rates; AOB–PNR: AOB’s potential nitrification rates; amoA: ammonia 

monooxygenase gene (subunit A);  AOA–amoA: amoA gene abundance for AOA; AOB–amoA: 

amoA gene abundance for AOB. 
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Specific nitrification rates (potential nitrification rates per unit amoA gene copies) were 

significantly influenced by tree species and soil layers (Fig. 4.5). AOA specific nitrification 

rates were significantly higher in the upper 0–5 cm compared to the 5–10 cm soil layer, and 

highest under Calliandra calothyrsus and Eucalyptus grandis in both soil layers. In the upper 

layer archaeal specific nitrification rates were lowest under Eucalyptus maidenii, while  in the 

lower layer, they were lowest under mixed native species (Fig. 4.5-A). In contrast, AOB 

specific nitrification rates were lower in  upper compared to the lower soil layer. On both layers, 

they were highest under Eucalyptus grandis, Eucalyptus saligna, and Polyscias fulva, and 

lowest  under Grevillea robusta, Entandrophragma excelsum, and Eucalyptus maideni (Fig. 

4.5-B). 

 

Fig. 4. 5. Differences of AOA and AOB specific potential nitrification rates (PNR per unit of amoA 

gene copies). 

The model is: response ~ 1 + Species + Layer + Species*Layer + (1|Plot), where Plot is the Plot ID. 

Red circles indicate mean values of samples at 0–5 cm soil layer and blue circles indicate samples 

at 5–10 cm. Capital and small letters indicate significant differences (p-value < 0.05, Tukey tests) 

between tree species at 0–5 cm and 5–10 cm, respectively. Tree species: Cc= Calliandra 

calothyrsus; Cs= Cedrela serrata; Gr= Grevillea robusta; Eg= Eucalyptus grandis; Em= Eucalyptus 

maidenii; Es= Eucalyptus saligna; Ee= Entandrophragma excelsum; Pf= Polyscias fulva; Mns= 

Mixed native species. 
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4.3.3. Relationship between AOA and AOB  abundance and activity and soil properties 

The relationships between abundance and activity of AOA and AOB and soil pH, hot 

water-extractable total nitrogen (HWNtot) and net N mineralization (Nmin) were 

different in both soil layers (Fig. 4.6). In the 0–5 cm soil layer, soil pH was positively 

related to the number of amoA gene copies for both AOA and AOB, and to AOA–PNR.  Nmin 

was negatively related to AOA–PNR, AOB–PNR, as well as total potential nitrification 

rates, while no significant relationship was observed between Nmin and the number of 

amoA gene copies for both AOA and AOB. In this upper layer, HWNtot was significantly 

negatively related to AOB abundance, and positively to AOB (Fig. 4.6–A). 

In the 5–10 cm soil layer, soil pH was also positively related to the number of amoA gene 

copies for both AOA and AOB. pH was negatively related to AOA–PNR and showed no 

significant correlation with AOB–PNR. As in the upper soil layer, there was no significant 

relationship between Nmin and the number of amoA gene copies for both AOA and AOB 

in 5–10 cm soil layer. In contrast, Nmin was positively related to total PNR and AOB–PNR 

but not with AOA–PNR. Unlike the upper soil layer, HWNtot was positively related to both 

amoA–AOA and amoA–AOB but was negatively related to AOA–PNR and had no 

significant relationship with AOA–PNR (Fig. 4.6–B). 

 

Fig. 4. 6. Relationships between AOA and AOB  abundance and activity and soil properties. 

Correlation coefficients (r) with crosses indicate insignificant relationships. 
AOA-PNR: archaeal potential nitrification rates; AOB-PNR: bacterial potential nitrification rates; Total PNR: 

total potential nitrification rates; AOA-amoA: archaeal amoA gene copies; AOB-amoA: bacterial amoA gene 

copies; Nmin: net nitrogen mineralization; HWNtot: hot water-extractable total nitrogen.   



Chapter 4 – Abundance and activity of ammonia-oxidizers 
 

101 
 

4.3.4. Multivariate relationships between PNR, amoA, tree species and soil parameters  

Relationships between tree species, the activity and abundance of ammonia oxidizers and 

selected soil variables varied in the two soil layers (Fig. 4.7).  

In the 0–5 cm soil layer, the two principal components (PC1 and PC2) represented 64.3% 

of the total variance (Table 4.3, Fig. 4.7–A). The first component (PC1 =36.1%) had high 

positive loadings for AOA–PNR, AOB–PNR, Tot–PNR, amoA–AOA, and a negative loading 

for Nmin. Polyscias fulva clustered along the positive side of PC1, while Eucalyptus 

maidenii, Calliandra calothyrsus, and Entandrophragma excelsum clustered along the 

negative side. The second component (PC2 = 28.2%) was positively associated with high 

loadings for AOB–PNR and HWNtot and clustering of Eucalyptus grandis and Eucalyptus 

saligna, while AOB–amoA, AOA–amoA, and pH showed negative loadings on PC2, with 

clustering of Grevillea robusta and mixed native species.  

In the 5–10 cm soil layer, the first two principal components accounted for 67.2% of the 

total variance (Table 4.3, Fig. 7–B). AOA–amoA, AOB–amoA, pH, and HWNtot had 

significantly high loadings on PC1 (38.1%), with clustering of Calliandra calothyrsus, and 

Entandrophragma excelsum, while PC2 (29.1%) was associated with high loadings for 

AOA–PNR, AOB–PNR, Tot–PNR, and Nmin with clustering of Calliandra calothyrsus and 

Polyscias fulva. Eucalyptus maidenii, Entandrophragma excelsum and Cedrela serrata 

were clustered in the first quadrant of the biplot and negatively associated with all of the 

analyzed variables. 
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Table 4.  3. Multivariate PCA results for 8 soil variables assessed in nine treatments (tree species) 

at two soil layers. 

Analysis PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

Variable loadings in 0 – 5 cm soil layer 

Eigen value 2.88 2.25 1.15 0.61 0.59 0.27 0.20 0.01 

Variance % 36.1 28.2 14.3 7.69 7.40 3.49 2.55 0.16 

AOB–PNR 0.382424 0.412801 -0.19775 0.140541 0.233096 -0.14031 0.69017 -0.27228 

AOA–PNR 0.548618 -0.031 0.129816 -0.24122 0.174841 0.165716 -0.45924 -0.59505 

Total PNR 0.559941 0.122542 0.041759 -0.11791 0.252367 0.087169 -0.11704 0.755525 

amoA–AOB -0.00268 -0.47839 -0.20983 0.60356 0.588349 -0.05574 -0.1143 -0.02243 

AamoA–AOA 0.260618 -0.3937 0.464429 0.281986 -0.32374 0.486554 0.374604 -0.00093 

pH 0.250996 -0.51133 0.120098 -0.25096 -0.15335 -0.74123 0.158252 0.012369 

Nmin -0.32814 -0.03023 0.565433 -0.37454 0.610205 0.052248 0.236893 -0.01476 

HWNtot 0.025107 0.409136 0.590288 0.510981 -0.06768 -0.39148 -0.25399 -0.00942 

Variable loadings in 5 – 10 cm soil layer 
Eigen value 3.04 2.32 1.16 0.60 0.39 0.28 0.18 0.001 

Variance % 38.1 29.1 14.5 7.5 4.9 3.5 2.2 0.02 

AOB–PNR -0.03429 -0.57389 0.378958 0.268701 0.188489 0.126753 0.036217 -0.63305 

AOA–PNR 0.163006 -0.3247 -0.68866 0.042452 -0.5492 -0.0497 -0.07594 -0.28651 

Total PNR 0.027715 -0.64038 0.057677 0.240193 -0.05385 0.088114 0.028751 0.718771 

AOB–amoA -0.42765 0.042516 -0.46325 0.108952 0.373598 0.669937 0.021217 0.000144 

AOA–amoA -0.46642 -0.01197 -0.25144 0.401671 0.280398 -0.6919 -0.01993 -0.0001 

pH -0.466 0.137453 0.285228 0.21967 -0.49703 0.151596 -0.60346 0.012455 

Nmin -0.30445 -0.36501 -0.03474 -0.78318 0.169892 -0.15219 -0.3278 -0.00447 

HWNtot -0.51108 -0.03233 0.135775 -0.18295 -0.40725 0.00373 0.720855 -0.01866 

AOA-PNR: archaeal potential nitrification rates; AOB-PNR: bacterial potential nitrification rates; 

Total PNR: total potential nitrification rates; AOA-amoA: archaeal amoA gene copies; AOB-amoA: 

bacterial amoA gene copies; Nmin: net nitrogen mineralization; HWNtot: hot water-extractable 

total nitrogen.   
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Fig. 4. 7. Principal component analyses performed on activity and abundance of AOA and AOB 

with selected soil properties and processes as influenced by tree species in upper (A) and lower 

(B) soil layers. 

For each tree species, the 95% confidence ellipses are presented in distinct colours. HWNtot: hot 

water-extractable total nitrogen; Nmin: net nitrogen mineralization; BPNR: bacterial potential 

nitrification rates; APNR: archaeal potential nitrification rates; TPNR: total potential nitrification 

rates; BamoA: bacterial amoA gene copies; AamoA: archaeal amoA gene copies; Tree species: Cc= 

Calliandra calothyrsus; Cs= Cedrela serrata; Gr= Grevillea robusta; Eg= Eucalyptus grandis; Em= 

Eucalyptus maidenii; Es= Eucalyptus saligna; Ee= Entandrophragma excelsum; Pf= Polyscias fulva; 

Mns= Mixed native species. 



Chapter 4 – Abundance and activity of ammonia-oxidizers 
 

104 
 

4.4. Discussion 

The effects of tree species on ammonia-oxidizers and their nitrifying activity may have 

ecological relevance and environmental implications in the global nitrogen cycle (Laffite 

et al., 2020; Florio et al., 2021), but they have rarely been assessed especially in acidic 

tropical forest soils (Singh & Kashyap, 2007; Nelson et al., 2016). This is the first study to 

evaluate the effects of planted tree species on the abundance of AOA and AOB and their 

contribution to nitrification in a tropical acidic forest soil in Southern Rwanda. In this 

study, we reported the significant effects of tree species on AOA and AOB abundance, with 

significant numerical and functional dominance of AOA over AOB across the tree species 

studied. We interpreted our findings based on the assumption that present changes in the 

activity and abundance of ammonia-oxidizers mainly reflected the influence of tree 

species planted on the same site with similar previous land use, climate, and soil 

conditions.  

4.4.1. Effects of tree species and soil layers on nitrification rates of AOA and AOB 

Our study showed that the effects of tree species on potential nitrification rates (PNR) 

were most pronounced in the thin upper soil layer, and about 5 (AOA) and 2  (AOB) times 

higher compared to the lower soil layer. High rates of nitrification were expected in the 

upper soil layer because of continuous litterfall and mineralization that supply 

ammonium substrate to nitrifiers (Xiao et al., 2017). In accordance with most research, 

the AOA predominated over the AOB in abundance and activity 

Our findings corroborated with previous studies which reported that AOA contributed 

more than AOB to the nitrification in acidic soils (Li et al., 2018; Liang et al., 2020). In 

average, AOA contributed about 71% to the total PNR, while there was an equal 

contribution to the nitrification activity of the two domains in the 5–10 cm. Generally, the 

rates of AOA and AOB nitrification were within the ranges reported in other studies on 

forest soils (Nugroho et al., 2007; Coca-Salazar et al., 2021). The response of AOA and 

AOB potential nitrification rates to tree species partially contradict our hypothesis stating 

that AOA would dominate over AOB in terms of nitrification  rates under soil acidifying 

tree species (i.e., Eucalyptus species) while we expected to see AOB having higher rates 

of nitrification compared to AOA under native species with less acidic soils. have  
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We generally found that species including Polyscias fulva (native species), Eucalyptus 

grandis, and Calliandra calothyrsus (nitrogen-fixing agroforestry species) had highest 

AOA and AOB nitrification rates compared to species such as Eucalyptus maidenii, 

Eucalyptus saligna and Entandrophragma excelsum (native species) that showed the 

lowest rates of AOA and AOB nitrification. This indicates that we cannot generalize of the 

effects of Eucalyptus species or native species, as they may differently influence factors 

such as soil pH and substrate availability that mainly drive soil nitrification process (Ste-

Marie and Paré, 1999; Xiao et al., 2017). In the previous study on the same soils 

(Rwibasira et al., 2021), soil pH was highest under Polyscias fulva, while the highest 

concentrations of HWNtot (used here as a proxy for substrate availability for nitrifiers) 

were measured under Eucalyptus grandis, which could explain the increased potential 

nitrification rates under these species. The higher nitrification rates under Calliandra 

calothyrsus could be explained by increased substrate availability in nitrogen-fixing trees  

(Koutika et al., 2005), as observed in the previous study where the highest concentrations 

of water-soluble organic nitrogen (WSNorg) were measured under this species 

(Rwibasira et al., 2021).  The decrease in nitrification under Eucalyptus maidenii and 

Eucalyptus saligna might be explained by the presence of nitrification inhibitory 

compounds (e.g., terpenoids) released by Eucalyptus species (White, 1986; Sauder et al., 

2016).  

4.4.2. The contribution of AOA and AOB to potential nitrification rates  

For over a century, AOB were thought to be solely responsible for ammonia-oxidation, 

but the relatively recent discovery of AOA has revolutionized our understanding of the 

nitrification process (Treusch et al., 2005). Although AOA and AOB coexist in terrestrial 

environments (Hou et al., 2013), their relative contributions to soil nitrification vary 

widely and may depend on soil conditions (Taylor et al., 2012). 

Based on the assumption of 2 amoA gene copies per AOB genome against 1 copy per AOA 

genome (Norton et al., 2002; Chain et al., 2003), our results of real-time PCR 

quantification of amoA genes indicates that AOA were 15–150 times more abundant than 

AOB in our soil samples. The results of real-time PCR targeting amoA gene showed that 

AOA were more abundant than AOB, with AOA yielding 5 and 50 times higher amoA gene 

copies in 0–5 cm and 5–10 cm soil layer, respectively.  
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Considering that AOA:AOB ratios in lower soil layer (5–10 cm) showed a much wider 

range than in upper soil layer (0–5 cm) for PNR (0.2 to 18.2 versus 0.6 to 8.8 mg N–NO3 

kg–1 h–1) and amoA gene copies (14.4 to 114 versus 0.5 to 24.1), it is likely that AOB were 

strongly controlled by tree species-induced changes in soil conditions which vary with 

soil depth (Watanabe et al., 2023), while AOA had a wider ecological and functional range 

than AOB under acidic and nutrient-poor soil conditions (Erguder et al., 2009). The values 

of nitrification rates and amoA gene abundance were within the ranges reported by other 

studies for forest topsoils (Kreitinger et al., 1985; Isobe et al., 2011;  Watanabe et al., 

2023). 

Although the abundance of microbial communities may often reflect activity (Baldrian, 

2017; Hicks et al., 2018), there is no direct relationship between the abundance of amoA 

genes of AOA and AOB and their nitrifying capacity (Prosser and Nicol, 2008). 

Furthermore, it was recently reported that amoA functional genes might not be fully 

transcribed or that their resulting enzymes might be inactivated under various soil 

conditions (Gwak et al., 2020). This difference between species in the number of amoA 

gene copies and nitrification rates in relation to soil layers could be due to the difference 

in substrate availability and the community of active nitrifiers dominating in different soil 

layers (Hanan et al., 2016; Trivedi et al., 2019).  

In this study, relationship between the number of amoA gene copies and potential 

nitrification was only significant at 0–5 cm soil layer. The observed  positive correlation 

between AOA–amoA gene copies and AOA–PNR and the negative correlation between 

AOB–amoA gene copies and AOB–PNR indicate that AOA was the main contributor to soil 

nitrification in these tropical acidic soils. The negative correlation between bacterial 

amoA gene copies and the corresponding AOB–PNR might indicate that AOB mainly relied 

on produced nitrates to support their growth, while the positive relationship between 

AOA and AOA–amoA might be explained by high affinity of AOA for ammonium substrate 

and  very low rates of AOB nitrification(Hink et al., 2018). It was reported by Walker et 

al. (2010) that AOA, but not AOB, can have a mixotrophic lifestyle allowing them to thrive 

under substrate scarcity and growth-limiting conditions. 

High abundance of amoA genes may not always reflect the high rates of nitrification 

(Leininger et al., 2006), thus assessing the potential nitrification rate per amoA gene 
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(specific PNR) can reflect the specific contribution of AOA and AOB to nitrification 

(Prosser & Nicol, 2012). The results of specific PNR showed that AOA had higher specific 

activity in the upper soil layer, while AOB specific PNR was lower in the upper soil layer  

across tree species. Highest specific AOB-PNR under Eucalyptus grandis and Eucalyptus 

saligna, might suggest acidic conditions under these soil acidifying species (Rwibasira et 

al., 2021) might have caused reduction of AOB microorganisms. The difference in AOA 

and AOB specific PNR between two soil layers may reflect the niche differentiation 

related to ammonium substate and oxygen availability (Ginestet et al., 1998; Trivedi et 

al., 2019).  

4.4.3. Relationships between nitrification potential, amoA gene abundance and soil 

properties 

In the present study, the total and AOA nitrification rates correlated positively and 

negatively with soil pH in the upper and lower soil layers, respectively. These results 

suggest that soil pH might have an important influence on the availability of N substrate 

for nitrifiers in these acidic soils, as evidenced with significant relationships between soil 

pH and HWNtot. In general,  potential nitrification rates were negatively correlated with 

Nmin in the 0–5 cm soil layer and positively correlated with Nmin the 5–10 cm layer. 

These results may indicate the competitive advantage of AOA over AOB for substrate 

availability which favours AOA under low ammonia availability (Prosser and Nicol, 2012; 

Trivedi et al., 2019). Also, abundance of amoA genes of AOA and AOB were positively 

correlated with soil pH in both soil layers. Considering the acidity levels and narrow pH 

range of studied soils (pH 3.7–4.9), this positive correlation in abundance of both AOA 

and AOB with soil pH might indicate not only the importance of soil pH as key factor for 

nitrifying microbial community, but also the adaptation of nitrifiers to acidic conditions 

in these tropical soils (Gieseke et al., 2006; Watanabe et al., 2023). 

Tree species may influence soil nitrification and ammonia-oxidizing communities 

directly or indirectly via supply of nitrogen substrates or production of activity and 

growth inhibiting compounds (Lehtovirta-Morley et al., 2016; Thion et al., 2016). Our 

results of multivariate analysis (PCA) showed evidence of tree species effects and soil 

layer on ammonia-oxidizers and nitrification activity in relation to soil pH and nitrogen 

transformation proxies (i.e., Nmin and HWNtot). In the 0–5 cm soil layer, AOB-PNR was 

associated with Eucalyptus species while increased AOA-PNR and AOA amoA gene 
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abundance were associated with  Polyscias fulva (native species). These results 

contradicted our hypothesis about AOA dominance under Eucalyptus species (lower pH) 

and AOB functional dominance under native species (higher pH). Grevillea robusta were 

associated with an increase in bacterial amoA gene abundance while Eucalyptus saligna 

and Eucalyptus grandis led to higher rates of AOB nitrification. These results highlights 

the importance of both soil pH and its consequences for substrate availability for 

influencing the abundance and nitrification activity (Sun et al., 2019). In the 5–10 cm soil 

layer, tree species including Grevillea robusta, and mixed native had high soil pH and 

HWNtot which were positively related the abundance of both archaeal and bacterial 

amoA genes. In this layer, potential nitrification rates in both AOA and AOB were 

positively associated with Calliandra calothyrsus (N2–fixing) and Polyscias fulva (native) 

which showed higher rates of N mineralization. The negative relationships of PNR and 

amoA gene copies with Eucalyptus species in this layer might be related to possible 

inhibitors of microbial processes produced by these species (Sauder et al., 2016). This 

may explain their observed negative relationship with Nmin, likely leading to the 

decrease in ammonia substrate under Eucalyptus species.  

4.5. Conclusion 

To evaluate the abundance and contribution of AOA and AOB to the nitrifying activity 

under different tree species in tropical acidic and nutrient-poor forest soils, this study 

investigated the potential nitrification rates and abundance of functional amoA genes 

under planted monospecific stands (eight species) and a self-regenerated mixed native 

species in Southern Rwanda. This study demonstrated that tree species significantly 

influenced the abundance and activity of AOA and AOB both in 0–5 cm and 5–10 cm soil 

layer, with far high number of amoA gene copies and rates of nitrification in the upper 

layer (0–5 cm). We demonstrated the numerical and functional dominance of AOA over 

AOB in terms of amoA gene copies and potential soil nitrification rates across tree species. 

The results showed that planting species such as Polyscias fulva, mixed natives, 

Eucalyptus grandis, Grevillea robusta, and Cedrela serrata significantly increased potential 

nitrification rates both by AOA and AOB. These results are consistent with other studies 

indicating higher abundance and activity of AOA under low pH and limited substrate 

availability. Further, soil pH and labile nitrogen were found to influence the differences 

in abundance and activity of nitrifiers between tree species. 
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Abstract 

The understanding of the effects of land terracing, a widespread technique to limit 

erosion and improve agricultural productivity in mountainous regions, is essential for the 

sustainable use of soils and to preserve soil quality. This study evaluated the effects of 

land terracing on selected soil physical, chemical, and microbial properties and processes 

in the Central Plateau, agroecological zone, of Southern Rwanda. Soil samples were 

collected from three sites at upper, middle, and lower positions in over ten-year-old 

terraced and unterraced adjacent fields. Most soil physico-chemical and microbial 

properties differed between terraced and unterraced fields and between hillslope 

positions. Terracing slightly increased sand particle proportions and decreased clay 

content, though the overall textural class (i.e., sandy clay loam) remained unchanged. Soil 

organic matter slightly decreased in terraced fields, but water-extractable labile soil 

carbon and nitrogen fractions increased  at lower and middle hillslope positions in 

terraced soils. The total exchangeable acidity was slightly higher in terraced than 

unterraced fields. Soil microbial parameters including microbial biomass (MBC, MBN, 

MBP), respiration potential, net N mineralization were higher in terraced than 

unterraced fields. Hillslope position rather than terracing affected soil aggregate stability, 

where more stable soil aggregates were found at lower than middle and upper hillslope 

positions. Total exchangeable acidity decreased, while soil microbial parameters 

increased from upper to lower hillslope positions, respectively. Overall, we cannot 

explicitly conclude that land terracing improvement soil quality compared to unterraced 

land, despite having higher values in soil microbial parameters and labile C and N pools 

in terraced than unterraced land. Although the effect of hillslope positions on most soil 

variables was less pronounced in terraced than in unterraced land, the persistently 

higher values in lower positions could either indicate a legacy of sediment accumulation 

in lower hillslope before terracing or the continuous soil erosion in both agricultural 

practices.  

Keywords:  agricultural terraces; soil quality indicators; tropical ferralsols; microbial 

properties; central plateau, Rwanda.  
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5.1. Introduction 

Land terracing has been practiced since the beginning of agriculture in many parts of the 

world to reduce soil loss by water erosion and to sustain agricultural activities in 

mountainous regions (Tarolli et al., 2014). This practice provides several benefits, 

including increased surface of cultivable land, higher productivity, reduced surface 

runoff, improved soil moisture content through increased infiltration (Chen et al., 2020), 

reduced soil loss and sedimentation by water erosion, and formation of cultural 

aesthetic landscapes (Liu et al., 2011). The effects of terracing on soils, depend strongly 

on the terracing technique used (e.g., bench terraces, parallel terraces, broad-base 

terraces, and level ditches), in addition to local climate, topography, and soil 

characteristics (Wei et al., 2016). For example, it was reported that high levels of soil loss 

and risk of landslides are frequent when terraces are constructed on very steep slope 

with heavy and prolonged rainfalls (Deng et al., 2021). 

Compared to unterraced slopes, agricultural terraces may reduce runoff and soil loss by 

more than 42% and 52%, respectively (Deng et al., 2021). However, a decline of as much 

as 45% and 50% in water-holding capacity and organic matter content, respectively, have 

been reported for terraced systems (Ramos et al., 2007). These effects may be linked to 

the construction works of terraces that significantly disrupt soil structure and the 

distribution of carbon stocks and fluxes (Liu et al., 2011), which may further change the 

dynamics of soil properties and processes linked to soil organic matter. Furthermore, the 

effects of terracing on soil properties and processes may depend on environmental 

characteristics such as climate, topography, land use, and initial soil types, which may 

result in either improvement or degradation of soil quality (Arnáez et al., 2015). 

Soil is considered to be degraded when it loses its intrinsic physical, chemical, or 

biological qualities, which may lead to either a decline or a complete loss of essential 

ecosystem functions (Nunes et al., 2020). These functions include soil fertility and 

productivity, storage and supply of mineral elements, filtration and cycling of pollutants, 

biodiversity habitat, biogeochemical cycling, climate regulation, and supporting living 

organisms and infrastructure (Blum, 2005; Vogel et al., 2019). The capacity of a particular 

soil to perform these functions within a specific ecosystem is referred to as “soil quality” 

and is usually determined by assessing the physical (e.g., texture, structure, porosity, 
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temperature, aggregate stability, etc.), chemical (e.g., pH, SOM and nutrient content, CEC, 

salinity, etc.), and biological (e.g., macro-, and microbial community, microbial biomass, 

respiration, N mineralization, nitrification, enzyme activity, etc.)  properties of the soil 

(Karlen et al., 2003; Bai et al., 2018; Juhos et al., 2019). Changes in these soil properties 

and processes are often used to assess the extent of degradation and/or restoration of 

soils as a response to natural events or anthropogenic activities (Muscolo et al., 2015). 

Soil microorganisms and their activity drive important processes in agricultural systems 

which are closely associated with soil structural integrity. Management practices such as 

land terracing significantly disturb soil structure, which may decrease SOM content and 

its associated benefits (Liu et al., 2011). Soil organic matter is certainly the most critical 

component of soils, as it influences nearly all soil parameters (Wander, 2004). Soil with 

higher organic matter content stores more nutrients and moisture, facilitating plant 

rooting and soil workability, thus contributing to greater crop production. SOM also 

enhances the strength of soil particle aggregation, which limits soil loss by water erosion, 

and creates a better soil structure allowing air and water to circulate through the soil 

(Krull et al., 2009). Furthermore, SOM serves as a substrate for heterotroph soil 

microorganisms, which play an important part in the stabilization of soil aggregates by 

cementing mineral particles with organic and inorganic microbial metabolites (Dexter, 

2004). When soil structure is disrupted, large and stable soil aggregates are broken down 

into small and structurally unstable aggregates that can be easily transported by rainfall 

or winds, resulting in substantial soil losses (Mehra et al., 2018). In their comprehensive 

review including studies of varying climates and soil types, Deng et al. (2021) 

demonstrated how land terracing may both positively and negatively affect soil quality 

and ecological functions. These authors highlighted that significant terracing-induced 

changes are most reflected in microbially-mediated soil properties and processes, such 

as C and N cycling, soil respiration, N mineralization, and enzyme activities, which can be 

accelerated by environmental and climate conditions like those found in tropical regions 

(Barantal, 2011; Kidinda et al., 2020). 

In tropical regions with predominately hilly topography, like Rwanda, the risk of soil 

degradation with cultivating sloped farmlands is high, primarily due to rainfall-induced 

soil erosion (Karamage et al., 2016). Factors including mountainous landscapes, heavy 

and frequent rainfall, high population density, decreasing size of cultivable lands, and 
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overexploitation of nutrient-poor soils exacerbate the risk of soil degradation in 

Rwandan agricultural systems (Rutebuka, 2021). Since the 1970s, land terracing has 

been adopted in Rwanda as the main soil conservation approach to mitigate land 

degradation by water erosion (Kagabo et al., 2013; Karamage et al., 2016). The recent 

evaluation of the Rwandan Fourth Strategic Plan for Agriculture Transformation (Plan 

Stratégique pour la Transformation de l’Agriculture; PSTA4) reported an increased area 

of bench terraces by 28.4% between 2018-2021 (MINAGRI, 2022), and the practice is 

expected to continue with the establishment new terraces and the renewal of the old 

ones. Through the national land consolidation and crop intensification programs, land 

terracing is being implemented in Rwanda's steep agricultural terrains to minimize soil 

erosion, reverse soil degradation, and improve crop production (Del Prete et al., 2019). 

Although some basic soil analyses are undertaken before implementing these 

agricultural practices, they are mostly performed on soils from non-terraced lands, 

which may differ from terraced lands in terms of soil characteristics (Fashaho et al., 

2020). Previous studies on the effects of terraces in Rwanda have mainly focused on 

hydrological and runoff analyses (Bugenimana et al., 2019; Rutebuka et al., 2021), 

technical and socio-economic aspects (Bizoza, 2014), and a few attempted to analyze soil 

physico-chemical properties in terraced systems (Fashaho et al., 2020). Given that 

alteration of soil's physical and chemical conditions also has significant effects on the 

structure, activity, and biomass of soil microorganisms (Graham et al., 2021), there is a 

need to assess the implications of land terracing for selected microbial soil properties 

and processes that reflect important ecosystem functions. Understanding the long-term 

dynamics of soil characteristics and functioning in terraced systems under local 

environmental conditions is essential for ensuring the sustainable management of soils 

in hillside farmlands.  

The aim of this study was to assess the effects of land terracing on selected physico-

chemical and microbial properties at upper, middle, and lower hillslope positions in 

terraced and unterraced sloping farmlands in Southern Rwanda. We tested the 

hypotheses suggesting that (1) soil physico-chemical and microbial properties differ 

between terraced and unterraced land as a result of terracing-induced disturbance of soil 

structure, (2) soil quality increases with slope gradient from upper to lower position due 

to sediment transportation and accumulation of fertile topsoil downhill by water erosion, 
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(3) labile C and N concentrations, as well as microbial properties and processes are more 

sensitive to changes in management practices and hillslope positions than commonly 

analyzed soil physico-chemical properties.  

5.2. Materials and Methods 

5.2.1. Study site 

The study was conducted at three sites (Karubanda, Tonga, and Save) in the Southern 

Province of Rwanda (Fig. 1.5). Sites were located at 1–2.5 km from the center of Huye city 

(2o34′15.0″S; 29o45′47.8″E; 1700m asl) and characterized by a typical traditional organic 

cropping system with beans (Phaseolus vulgaris), maize (Zea mays), and casava (Manihot 

esculenta). Each site comprised both terraced and adjacent unterraced fields of minimum 

100 m x 100 m size. Bench terraces had been established at least 10 years prior to 

sampling on the hills with slopes ranging between 25%– 45%  (Fashaho et al., 2020). The 

region has a humid tropical climate characterized by a mean annual temperature of 20 

°C, and approximately 1230 mm rainfall per year, with a bimodal distribution pattern of 

two rainy seasons (heavy rains: March-May; and irregular rains: September–December) 

and two dry seasons (short: January–February; and long: June–August) (Meteorwanda, 

2021). The soils are former Haplic Ferralsols which changed to Anthropic Ferralsols due 

to deep bench terracing (Mukangango et al., 2020). They are characterized by a brown-

red colour with a sandy loam texture and diffuse horizons, classified as Ferralsols or 

Oxisols according to FAO and USDA Soil Taxonomy, respectively (Verdoodt et al., 2006).  

5.2.2. Soil sampling and analyses 

Soil samples were collected from both terraced (on the bench surface approximately 4m 

wide) and adjacent unterraced fields. Samples were taken at three slope positions (upper, 

middle, and lower), separated by approximately 30 m. At each slope position, five plots 

(10 m x 10 m each) horizontally distant by 10 m were established, and a composite 

sample was collected in each plot.  The composite sample consisted of five sub-samples 

taken with an auger at 20 cm depth by following the X-shaped method (4 corners and 1 

middle point). Soil samples were sieved fresh (4 mm mesh) and stored at 4 oC before 

laboratory analyses.  
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5.2.2.1. Soil physico-chemical properties 

Soil texture  

The Bouyoucos-hydrometer method was used to determine soil texture (Okalebo et al., 

2002a). Fifty grams of air-dried and sieved (<2mm) soil were dispersed in 150 ml 

distilled water, and aliquots of hydrogen peroxide (30% H2O2) were added (~5 ml) to 

oxidize organic matter until effervescent bubbles disappeared. The solution was heated 

for two hours in a water bath at 90 oC and allowed to cool before adding 50 ml of sodium 

hexametaphosphate [(10% NaPO3)6] as a soil particle (sand, silt, clay) dispersing agent 

(Mwendwa, 2022). The solution was thoroughly mixed using a high-speed stirrer, 

transferred to a sedimentation glass cylinder, and mixed after the total volume was 

brought to 1 L with distilled water. After covering the cylinder with a tight-fitting rubber 

stopper, the solution was gently mixed by inverting ten times, placed on a flat surface and 

two drops of amyl alcohol (C5H11OH) were quickly added to remove the froth. The 

hydrometer and thermometer were directly introduced in the cylinder and the first 

hydrometer and temperature readings were performed after 40 seconds (H40s and 

T40s). The soil suspension was again mixed by gently inverting the cylinder ten times and 

allowed to stand undisturbed before the second reading after three hours (H3h and T3h). 

Temperature readings served to adjust the hydrometer records (Table A1) because the 

hydrometer had been calibrated at 20 °C (Okalebo et al., 2002). The soil particle 

distribution was calculated as follows: 

% 𝑆𝑎𝑛𝑑 =
(𝑊 − (𝐻1 + ℎ𝑐)

𝑊
× 100 

% 𝐶𝑙𝑎𝑦 =
(𝐻2 + ℎ𝑐)

𝑊
× 100 

% 𝑆𝑖𝑙𝑡 = 100 − (% 𝑆𝑎𝑛𝑑 + % 𝐶𝑙𝑎𝑦) 

Where: H1= the first hydrometer reading (i.e., clay + silt); H2= the second hydrometer 

reading (i.e., clay); hc= the hydrometer reading correction factor; and W= the weight of 

soil sample (i.e., 50 g). 
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Wet aggregate stability 

Wet aggregate stability (WAS) was determined by a wet sieving method (Okalebo et al., 

2002). Four grams of air-dried soil were placed in the wet sieving apparatus (Eijkelkamp 

model 08.13, NL), which constantly moves the soil-containing cans in and out of water 

for three minutes to break up soil aggregates. After wet sieving, the soil was dried to 

constant weight in an oven at 110 oC. Another sieving was performed using sodium 

hexametaphosphate [(NaPO3)6], a soil aggregate dispersion solution agent used for acid 

soils, with the sieving period extended to 8 minutes. Soil wet aggregate stability (%) was 

calculated as follows:  

𝑊𝐴𝑆 =
(𝑃𝑠 − 0.2)

(𝑃𝑠 − 0.2) + 𝑃𝑤
 

Where: Ps= weight (g) of stable aggregates (i.e., sieving with dispersing solutions); Pw= 

weight (g) of unstable/weak aggregates (i.e., sieving with water); 0.2= weight (g) of the 

dispersing solute (i.e., (NaPO3)6).  

Soil pH and total exchangeable acidity (TEA) 

Soil pH was determined in distilled water (pHH2O) and 0.1M KCl (pHKCL) (1:2.5 w:v) using 

a combined glass electrode pH meter. Exchangeable acidity and exchangeable Al3+ were 

measured through titration (Okalebo et al., 2002a). Briefly, five grams of air-dried and 

ground (2mm) soil were drained through the filter using ten series of 10 ml 1N KCl with 

an interval of 15 minutes between drainages, and the filtrate (work solution) was brought 

to 100 ml with 1N KCl. To determine the exchangeable acidity, five drops of 

phenolphthalein indicator were added to the aliquot (25 ml) from the work solution and 

titrated with NaOH (0.01N) until the appearance of a persistent pink colour. 

Exchangeable acidity (EA; expressed as cmolc kg–1 of soil) was then calculated as follows: 

𝐸𝐴 =
(𝑇 − 𝐵𝑙) × 𝑁 × 𝑉 × 100)

(𝑊 × 𝑣)
 

 

Where: T = volume of NaOH (ml) used for sample titration; Bl = volume of NaOH (ml) used 

for blank titration; N = Normality of NaOH (i.e., 0.01); V = total end volume of solution 

(ml); W = weight of soil sample; v = volume of aliquot analysed. 
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Exchangeable Al3+ was also determined in 25 ml from the same work solution by adding 

10 ml of sodium fluoride (4% NaF) which turns the solution to pink. The solution was 

then titrated with 0.01N HCl until total discoloration to the colourless state of the 

solution. The exchangeable Al3+ (cmolc kg–1 of soil) was then calculated as follow: 

𝐴𝑙3+ =
(𝑇 − 𝐵𝑙) × 𝑁 × 𝑉 × 100)

(𝑊 × 𝑣)
 

Where: T = volume of HCl (ml) used for sample titration; Bl = volume of NaOH (ml) used 

for blank titration; N = Normality of HCl (i.e., 0.01); V = total end volume of solution (ml); 

W = weight of soil sample; v = volume of aliquot analysed. The total exchangeable acidity 

was computed as a sum of exchangeable acidity and exchangeable Al3+ (TEA= H+ + Al3+). 

Soil organic carbon (SOC)  

Soil organic carbon was determined using the Walkley and Black chromic acid wet 

oxidation method (Okalebo et al., 2002b). Briefly, 0.5 g of air-dried and ground (0.5mm) 

soil were dispersed in 10 ml potassium dichromate solution (1N K2Cr2O7), digested with 

20 ml concentrated sulphuric acid (98% H2SO4) for 30 min at 125 oC. Distilled water (100 

ml) and 10ml phosphoric acid (85% H3PO4) were added after the solution had cooled to 

eliminate potential interferences from the ferric (Fe3+) ions that may be present in the 

sample. Two ml barium diphenylamine sulphonate (0.16% C24H20BaN2O6S2) were added 

to serve as a carbon indicator. Ferrous ammonium sulphate (1M (NH4)2Fe(SO4)2) was 

used to back-titrate unreduced dichromate, while mixing with a magnetic stirrer until the 

initial brown colour changes sharply to the end point green. The amount of Cr2O72- 

reduced during the reaction is proportional to the quantity of oxidizable organic carbon 

in the soil, while the blank analysis determines the extract strength of FeSO4 solution. Soil 

organic carbon was calculated as follows: 

NFeSO4 =
(VK2Cr2O7 × NK2Cr2O7)

(VFeSO4.7H2O)
 

% 𝑆𝑂𝐶 =
(VBlank − VSample) × NFeSO4 × 0.003 × 1.3 × 100

𝑊
 

Where: NFeSO4 = normality of FeSO4; VBlank = volume of titrant in blank (ml); VSample = 

volume of titrant in sample (ml); NFeSO4 = concentration of FeSO4.7H2O used in titration 
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(normality); 1.3 = correction factor to account for unrecovered organic carbon; W 

=weight of soil sample (g); 0.003 = correction factor for oxidized carbon according to 

titration reaction. 

Total soil nitrogen (TN)  

Total soil nitrogen was assessed using the micro-Kjeldahl digestion method in the 

presence of a catalyst and colorimetric determination with ultraviolet light (Okalebo et 

al., 2002). Five grams of air-dried and ground (0.5 mm) soil were mixed with 1.5 g of 

digestion catalyst mixture (100g K2SO4 + 5g FeSO4 + 10g CuSO4 +1g Se) and digested with 

10 ml of concentrated sulfuric acid (98% H2SO4). The solution was brought to 50 ml with 

distilled water and allowed to settle for 2h before diluting the digest (1:9) with distilled 

water. An aliquot (0.2 ml) of digest was mixed with 5 ml of each of the two prepared work 

solutions: N1(34g sodium salicylate + 25 g sodium citrate + 25g sodium tartrate + 0.12 g 

sodium nitroprusside in 1 litre of distilled water) and N2 (30g sodium hydroxide + 10 ml 

sodium hypochlorite solution in 1litre of distilled water), and the mixture was allowed to 

settle for 2h before measuring the absorbance at 650 nm. The concentration of nitrogen 

(% N) in soil sample was calculated as follow: 

% 𝑁 =
(NSample − NBlank) × V × 𝐷 × 100

𝑊 × 𝑣 × 𝑁1 × 𝑁2
 

Where: NSample = concentration of N in the sample; NBlank = concentration of N in blank; V= 

total volume at the end of analysis procedure (i.e., 0.2 ml of digest + 5 ml of N1 + 5 ml of 

N2); D= final volume of digest (i.e., 50 ml); W= weight of the dried soil sample (i.e., 5 g); 

v= volume of analysed aliquot (i.e., 0.2 ml); N1= final volume of N1 solution (i.e., 1000 

ml); N2= final volume of N2 solution (i.e., 1000 ml). The percentage of nitrogen could also 

be converted in g kg–1 by multiplying the % TN with ten. 

Soil organic matter and water-extractable C and N fractions 

Soil organic matter (SOM) content was calculated as weight loss from oven-dry soil after 

overnight ignition at 550 °C in a muffle furnace as described by Allen (1989). Water-

extractable C and N were determined using the method of Ghani et al. (2003). Fresh soil 

was extracted with distilled water (1:6, w/v), shaken (120 rpm, 30 min), centrifuged 

(4000 rpm, 10 min), and filtered (Whatman #42), representing water-soluble C and N 
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(WSC, WSN) fractions. Hot water-extractable C and N (HWC, HWN) were subsequently 

extracted from the remaining wet soil, mixed with distilled water (30 mL), and placed in 

the oven for 16 h at 80 oC. Organic C in the cold (WSC) and the hot water (HWC) extracts 

was measured using a Total Organic Carbon analyzer (LabToc, Pollution and Process 

Monitoring, UK). Water soluble and hot water-extractable nitrogen forms were measured 

colorimetrically using a continuous flow autoanalyzer equipped with a UV digestor 

(Autoanalyser3, BranLuebbe, Germany). Organic nitrogen in the extracts (WSNorg, HWN 

org) was calculated as the difference between total nitrogen and mineral nitrogen. 

Available phosphorus (AvP)  

Available phosphorus in soil was determined using the Bray II method which is best 

suited to acid soils (Okalebo et al., 2002d; FAO, 2021). Available phosphorus is extracted 

using the combination of hydrochloric acid to recover easily acid-soluble forms of P and 

ammonium fluoride which dissolves Ca, Al, and Fe phosphates by its complex formation 

with these metal ions in acid solution. Briefly, 2.50 g of air-dried and ground (2 mm) soil 

were mixed with 50 ml of the Bray II P-extracting solution (mixture of 0.1N HCl and 0.03N 

NH4F), shaken for 5 minutes, and filtered (Whatman # 42). An aliquot (10 ml) from the 

extract was mixed with 20 ml distilled water, 5 ml of boric acid (0.8M H3BO3; to eliminate 

any fluoride interference from the extractant), and 10 ml of reducing agent solution (i.e., 

1.054 g ascorbic acid in 200 ml of ammonium molybdate/antimony potassium tartrate 

solution) were added before the solution was brough to the final volume of 50 ml with 

distilled water. The mixture was shaken for 1h and the measure of intensity of 

molybdenum blue complex was performed at 880 nm using a spectrophotometer. 

Available phosphorus (mg kg–1) estimation was calculated as follow: 

𝑃 =
(PSample − PBlank) × 𝑣 × 𝑓 × 1000

𝑊 × 1000
 

Where: PSample= concentration of P (mg L–1) in soil extract; PBlank= concentration of P (mg 

L–1) in blank; v= extract volume; f= dilution factor for standard series; W= weight of soil 

sample. 
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5.2.2.2. Soil microbial properties 

Soil microbial biomass  

Soil microbial biomass carbon (MBC) and nitrogen (MBN) were determined with the 

chloroform fumigation extraction method (Brookes et al., 1985; Vance et al., 1987). 

Fumigation of 10 g fresh soil was carried out for 3 days in a vacuum desiccator with 

alcohol-free chloroform. Fumigated and non-fumigated samples were extracted with 50 

ml 0.5 M K2SO4  (1 h shaking at 180 rpm and filtration through Whatman filter #42). 

Organic carbon in the extracts was measured with a Total Organic Carbon analyser (Lab 

Toc, Pollution, and Process Monitoring, UK), and total nitrogen were analysed 

colorimetrically using a continuous flow analyser equipped with a UV digestor 

(AutoAnalyzer 3, BranLuebbe, Germany). Soil microbial biomass C and N were calculated 

as the difference between fumigated and non-fumigated samples with a conversion factor 

of 0.45 for biomass C (Joergensen and Mueller, 1996), and 0.54 for biomass N (Brookes 

et al., 1985). Soluble phosphorus was measured using ICP-AES in fumigated (3 days with 

chloroform without ethanol) and unfumigated soil samples (10 g) extracted using a 0.5 

M NaHCO3 solution at pH 8.5. A conversion factor of 0.4 (Brookes et al., 1982) was applied 

to the difference between the fumigated and unfumigated P extractable content to 

convert into microbial biomass P (MBP). 

Soil respiration potential 

The soil respiration potential (RP) was measured at 20 °C as CO2–C accumulation in the 

headspace (125 ml) of an amber bottle (Supelco, USA) from 20 g of fresh soil adjusted to 

60% water holding capacity (see below), after an overnight pre-incubation at 20 °C in the 

dark (Robertson et al., 1999). Gas samples (4 ml) were taken at 0, 120, 150, 180, and 210 

minutes with an airtight syringe (Hamilton Model 1005) and analysed with an infrared 

absorption gas analyser (EGM-4, Ppsystem, UK). The respiration potential was estimated 

by linear regression of CO2–C against time (μg CO2–C g−1 h−1).  

Microbial and Metabolic quotients 

The microbial quotient (qmic) is an indicator of the availability of soil C for 

microorganisms (Anderson and Domsch, 1990). It was calculated by dividing soil 

microbial biomass carbon by the total soil organic carbon content, estimated as 58% of 

soil organic matter (Allen, 1989). The metabolic quotient (qCO2) was calculated by 
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dividing the respiration potential by the microbial biomass carbon (Anderson, 2003). It 

is an indicator of microbial maintenance energy requirement (Dilly and Munch, 1998). 

Nitrogen transformation rates 

Net nitrogen mineralization (Nmin) was determined from 15 g of fresh soil adjusted to 

60% water holding capacity and incubated at 20 °C for 28 days (Hart et al., 1994). 

Extraction of inorganic nitrogen (NH4⁺–N  and NO3‾–N) was performed on sub-samples 

at the beginning and the end of the incubation period using 1 M KCl (1:5; w:v), after 1 h 

agitation at 180 rpm and centrifugation at 4000 rpm (Allen, 1989). The water loss during 

incubation was monitored gravimetrically and compensated by adding distilled water as 

necessary. Extracts were analysed colorimetrically using a continuous flow analyser 

equipped with a UV digestor (AutoAnalyser3, BranLuebbe, Germany). Net nitrogen 

mineralization (Nmin) and relative nitrification (Nitrel) rates were calculated as the ratio 

between the net increase in inorganic nitrogen (NH4⁺–N and NO3‾–N), and the number of 

incubation days, and as the percentage of nitrate produced (NO3‾– N ) of the total N 

produced, respectively. 

5.2.3. Statistical analyses 

Effects of management practices (Management: Terraced, Unterraced) and hillslope 

position (Position: Lower, Middle, Upper), as well as their interactions were analysed 

using mixed effects models using the R Statistical language (version 4.3.1; R Core Team, 

2023). Management, Position and their interactions were included  as fixed effects, while 

the sites (Site: Karubanda, Tonga, Save) were included as random effects. We fitted a 

linear mixed model with lmerTest (version 3.1.3; Kuznetsova et al., 2017), estimated 

using REML and nloptwrap optimizer with random intercept: 

response ~ 1 + Management + Position + Management*Position + (1|Site)  

or random intercept and slope: 

response ~ 1 + Management + Position + Management*Position + (1+Management|Site).  

The model with lowest AIC was selected. The assumptions of normality and 

homoscedasticity of the residuals were assessed by visual inspection of the q-q plots and 

plots of the normalized residuals against the fitted values (Zuur et al., 2010). Conditional 

(R_GLMM²=R2c, variance explained by the entire model,) and marginal (R_GLMM²=R2m; 

variance explained by the fixed effects) coefficients of determination were calculated 
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using MuMIn (version 1.47.5; Barton, 2020). F-tests analysis of variance for fixed-effect 

terms used Satterthwaite and Kenward-Roger methods (Kuznetsova et al., 2017). 

Estimated means were calculated and pairwise comparisons were performed using 

emmeans (version 1.8.7; Lenth et al., 2018), according to recommendations for non-

interacting or interacting factors. Plots were performed according to Jeffrey (2018). 

Correlations among variables were examined using the correlation-based network 

analysis (“Corrr”, version 0.4.4 (Kuhn et al. 2020)), computing pairwise correlation 

coefficients (Pearson) between any two pairs of analysed variables, and generating a 

correlation matrix according to the strength of correlation. Additionally, a Principal 

Component Analysis (PCA) was performed using packages “FactoMineR”, version 2.8 

(Husson et al. 2020) and “ggplot2”, version 3.4.2 (Wickham et al. 2022) to explore 

relationships between selected soil variables as a response to management practice and 

hillslope positions.  

 

5.3. Results 

5.3.1. Effects of terracing and hillslope position on physico-chemical soil properties 

Most soil physico-chemical properties differed in two management practices with 

relatively higher values in terraced than unterraced lands, except SOM, C/N, and Clay 

(Table 5.1). According to the results of mixed effects models, data variance in most soil 

physico-chemical properties were significantly explained by the model (conditional R2 

>50%), except SOM, WSC, HWC, and Silt for which the model’s total explanatory power 

was between 40% and 49%. Overall model fit was relatively good, explaining between  

40 and 94% of total variance. Management and hillslope position explained between 10% 

and 58% of data variance, but explanatory power was low for soil C/N (2%), Silt (6%), 

SOC (7%), and pHKCL (8%).  
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Table 5. 1. Summary statistics of the linear mixed effect model for the effects of management 

(Management) and hillslope position (Position) on soil physico-chemical properties. 

Parameter Model 
Goodness of fit Pr(>F) statistics analysis of variance 

R2m R2c Management (M) Position (P) M*P 

SOM (g kg–1) B 0.21 0.47 0.3359   0.0026 0.0634 

SOC (g kg–1) B 0.07 0.76 0.5809   0.8953    0.0002 

TN (g kg–1) B 0.10 0.53 0.3491 0.3233 0.6743 

HWC (mg C kg–1) A 0.39 0.40 < 0.0001 0.0003 0.0031 

HWNtot (mg N kg–1) A 0.58 0.63 < 0.0001 < 0.0001 0.1368 

C/N B 0.02 0.76 0.7620 0.6246 0.3342 

pHKCL B 0.08 0.93 0.6808     < 0.0001 0.0035 

pHH2O B 0.20 0.90 0.2468 < 0.0001 0.0692 

AvP (mg P kg–1) B 0.32 0.94 0.1854 < 0.0001 0.0061 

TEA (cmolc kg–1)  B 0.47 0.74 0.1616 < 0.0001 0.8434 

Sand (%) B 0.12 0.56 0.4181 0.0686 0.0049 

Silt (%) A 0.06 0.49 0.0020 0.8555 0.7354 

Clay (%) B 0.11 0.64 0.2663  0.1972 0.0076 

WAS (%) B 0.30 0.54 0.7051 < 0.0001 0.9648 

We fitted a linear mixed model (estimated using REML and nloptwrap optimizer) with random 

intercept (Model A:  response ~ 1 + Management + Position + Management*Position+(1|Site) or 

random intercept and slope (Model B: response ~ 1 + Management + Position + 

Management*Position+ (1+Management|Site)). The model with the lowest AIC was selected. R2c: 

conditional R2 (model's total explanatory power); R2m: marginal R2 (explanatory power of fixed 

effects). Pr(>F) statistics analysis of variance indicates the decomposition of fixed-effects 

contributions (Bates et al., 2015). Model A was used for WSC, HWC, HWNtot, and Silt, as model B 

resulted in a singular model (some dimensions of the variance-covariance matrix have been 

estimated as exactly zero). Values in bold indicate statistically significant effects of model terms 

on soil parameters. (SOM: soil organic matter, SOC: soil organic carbon, TN: total nitrogen, WSC: 

water soluble carbon, HWC: hot water-extractable carbon, WSNtot: water soluble total nitrogen, 

HWNtot: hot water-extractable total nitrogen, C/N: soil carbon to nitrogen ratio, AvP: soil 

available phosphorus, TEA: total exchangeable acidity, WAS: wet aggregate stability). 
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Fig. 5. 1. Effects of land terracing on soil organic matter (SOM), total soil nitrogen (Total N), and 

hot water-extractable C and N content (HWC, HWNtot). 

Effect of management (TER: terraced, UT: unterraced) and hillslope position (Low: lower, Mid: 

middle, Up: upper) on soil parameters. Top: effects plot of 2 X 2 simple effects (difference in 

means). Bars are 95% confidence intervals of the effects. Unadjusted p-values from the mixed 

linear model are given. Bottom: response plot of the estimated means (large circles), modelled 

95% confidence interval of each mean (bars) and model-adjusted individual response values 

(small, coloured dots). 

Terracing did not significantly influence SOM (Table 5.1, Fig. 5.1), but SOM was 

significantly higher in the middle and lower positions in the unterraced fields. Labile 

carbon (HWC) was significantly higher in the middle position of the terraced fields 

compared to the unterraced fields. Within the terraced fields, HWC was higher in the mid 

and low position, while it was significantly higher in the low position of the unterraced 
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field (Fig. 5.1). Total soil nitrogen was not influenced by management and hillslope 

position, HWNtot was significantly lower in the unterraced soils and increased 

significantly downhill both in terraced and unterraced sites.  

 

Fig. 5. 2. Effects of land terracing on soil available phosphorus, wet aggregate stability, and soil 
acidity.  
Effect of management (TER: terraced, UT: unterraced) and hillslope position (Low: lower, Mid: 

middle, Up: upper) on soil parameters. Top: effects plot of 2 X 2 simple effects (difference in 

means). Bars are 95% confidence intervals of the effects. Unadjusted p-values from the mixed 

linear model are given. Bottom: response plot of the estimated means (large circles), modelled 

95% confidence interval of each mean (bars) and model-adjusted individual response values 

(small coloured dots). 

Soil properties including available phosphorus (AvP), wet aggregate stability (WAS), pH, 

and total exchangeable acidity (TEA)  were significantly influenced by hillslope positions 

rather than land terracing (Table 5.1, Fig. 5.2). AvP and WAS increased significantly 
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downslope both in terraced and unterraced fields with higher WAS values in terraced 

compared to soil unterraced fields. Soil pH showed a relatively greater range in terraced 

than unterraced land with higher pH in lower than middle and upper hillslope positions 

both in terraced and unterraced fields. TEA was significantly lower in unterraced fields 

and significantly increased downhill both in terraced and unterraced soils. The 

proportion of sand particles was significantly higher in the upper position of terraced 

compared to unterraced fields, while the proportion of clay particles was significantly 

higher in the upper position of unterraced fields compared to terraced fields (Fig. 5.3).  

 

Fig. 5. 3. Effects of land terracing on oil sand and clay particle size distribution. 
Effect of management (TER: terraced, UT: unterraced) and hillslope position (Low: lower, Mid: 

middle, Up: upper) on soil parameters. Top: effects plot of 2 X 2 simple effects (difference in 

means). Bars are 95% confidence intervals of the effects. Unadjusted p-values from the mixed 

linear model are given. Bottom: response plot of the estimated means (large circles), modelled 

95% confidence interval of each mean (bars) and model-adjusted individual response values 

(small colored dots). 

5.3.2. Effects of terracing and slope position on microbial soil properties and processes 

Land terracing and hillslope positions significantly affected soil microbial biomass and 

activity (Table 5.2; Fig. 5.4). The model’s explanatory power (conditional R2) was 

substantial, above 60% for most parameters, except MBP, and qCO2 for which it was 

around 40%. Fixed factors, management, and hillslope position explained between 15% 

and 58% of data variance (except for qCO2: 7%). For the parameters without a significant 

management*position interaction effect, RP showed no management effect and increased 

significantly downhill both in terraced and unterraced sites (Fig. 4), while qCO2 was 
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significantly altered by management practices (Fig. 6). For MBP and Nmin, there was both 

a significant management and hillslope position effect (Table 3). MBP significantly 

decreased in the unterraced soil for the lower hillslope position and increased 

significantly downhill (Fig 4). Nmin was significantly lower in the unterraced soils and 

was highest at the mid position in the terraced soils, and lowest in the Up position for the 

unterraced soils (Fig. 5.4). qmic was significantly lower in the unterraced soils at the 

lower hillslope position, and lower at the upper hillslope position for the terraced and 

unterraced soils, with a smaller effect size for the unterraced soils (Fig. 5.5) . 

Table 5. 2. Summary statistics of the linear mixed effect model for the effects of management 
(Management) and hillslope position (Position) on soil microbial properties and processes 

Parameter 
Mode
l 

Goodness of fit Pr(>F) statistics analysis of variance 

R2m R2c Management 
(M) 

Position 
(P) 

M*P 

RP (mg CO2–C kg–1  h–1) B 0.32 0.63 0.4113 < 0.0001 0.5666 

MBC (mg C kg–1) B 0.56 0.78 0.1138    < 0.0001 < 0.0001 

MBN (mg N kg–1) A 0.42 0.62 0.0002 < 0.0001 0.0008 

MBP (mg P kg–1) A 0.22 0.38 0.0576 < 0.0001 0.1056 

Nmin (mg N kg–1 d–1) A 0.14 0.62 < 0.0001 0.0078 0.6377 

Nitrel (%) B 0.49 0.81 0.2407 < 0.0001 < 0.0001 

qCO2 (µg CO2–C mg–1 MBC h–1) B 0.07 0.44 0.5403 0.0679 0.5059 

qmic (mg MBC g–1 Ctot) B 0.51 0.78 0.1385 < 0.0001 < 0.0001 

We fitted a linear mixed model (estimated using REML and nloptwrap optimizer) to with random 

intercept (Model A:  response ~ 1 + Management + Position + Management*Position + (1|Site)) 

or random intercept and slope (Model B: response ~ 1 + Management + Position + 

Management*Position + (1+Management|Site)). The model with the lowest AIC was selected. R2c: 

conditional R2 (model's total explanatory power); R2m: marginal R2 (explanatory power of fixed 

effects). Pr(>F) statistics analysis of variance indicates the decomposition of fixed-effects 

contributions (Bates et al., 2015). Data for RP, Nmin, and qCO2 were log-transformed; model A 

was used for MBN, MBP and Nmin, as model B resulted in a singular model (some dimensions of 

the variance-covariance matrix have been estimated as exactly zero). Values in bold indicate 

statistically significant effects of model terms on soil parameters. (RP: soil respiration potential, 

MBC: microbial biomass carbon, MBN: soil microbial biomass nitrogen, MBP: microbial biomass 

phosphorus, Nmin: net nitrogen mineralization, Nitrel: relative nitrification, qCO2: metabolic 

quotient, qmic: microbial quotient). 
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Fig. 5. 4. Effects of land terracing on soil respiration and microbial biomass carbon, nitrogen, and 
phosphorus. 
Effect of management (TER: terraced, UT: unterraced) and hillslope position (Low: lower, Mid: 

middle, Up: upper) on soil parameters. Top: effects plot of 2 X 2 simple effects (difference in 

means). Bars are 95% confidence intervals of the effects. Unadjusted p-values from the mixed 

linear model are given. Bottom: response plot of the estimated means (large circles), modelled 

95% confidence interval of each mean (bars) and model-adjusted individual response values 

(small, coloured dots). 
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The interaction effect management*Position was significant for MBC, MBN, Nitrel, and 

qmic (Table 5.2). MBC and MBN were significantly lower in the unterraced soils at the 

lower hillslope position and showed a clear significant increase from the upper to lower 

hillslope position, although the size of the effect was less marked in the unterraced soils 

(Fig. 5.4). Nitrel was near 100% for the terraced soils but showed high variability in the 

unterraced soils with significantly higher values in the lower hillslope position (Fig. 5.5). 

 

Fig. 5. 5. Effects of land terracing on Nmin, relative nitrification, and microbial ecophysiological 
indices. 
Effect of management (TER: terraced, UT: unterraced) and hillslope position (Low: lower, Mid: 

middle, Up: upper) on soil parameters. Top: effects plot of 2 X 2 simple effects (difference in 
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means). Bars are 95% confidence intervals of the effects. Unadjusted p-values from the mixed 

linear model are given. Bottom: response plot of the estimated means (large circles), modelled 

95% confidence interval of each mean (bars) and model-adjusted individual response values 

(small colored dots). 

 

5.3.3. Relations between soil physico-chemical and microbial properties and processes 

In terraced fields (Fig. 5.6-A), WAS had significant positive correlations with microbial 

properties including RP (r=0.63), Nitnet (r=0.45), Nmin (r=0.38), and MBC (r=0.31). HWC 

was positively correlated with RP (r=0.70) and MBC (0.43). TEA was positively correlated 

to RP and MBC (r=0.54 and r=0.74, respectively), while MBC was positively correlated to 

AvP and Sand (r=0.59 and r= 0.34, respectively). A significant negative correlation was 

only found between clay content and MBC (r= −0.38)  

In unterraced fields (Fig. 5.6-B), the proportion of clay positively correlated to Nitnet 

(r=0.31). SOM correlated positively with Nmin, Nitnet and MBC (r=0.71, r=0.72, and 

r=0.36, respectively). WAS correlated positively to MBC (r=0.42), while HWC had a 

positive correlation only with RP (r=0.80). TEA also had significant positive correlations 

with RP and MBC (r=0.44 and r=0.42, respectively). The significant negative correlation 

between soil physico-chemical and microbial parameters was only found between HWC 

and Nmin (r= −0.36). 

 

Fig. 5. 6. Pearson’s correlation between physico-chemical and microbial soil properties in 

terraced (A) and unterraced (B) agricultural practices. 
Coefficients of correlation between parameters are indicated by the values at the 

intersection of parameters as interpreted by the contrast in circle size and colour 

gradient in the legends. 
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5.3.4. Relations between soil variables, land management, and hillslope positions 

Land terracing altered the distribution of soil variables across hillslope positions. The 

first two principal components accounted for 58.7% and 60% of variance in terraced and 

unterraced lands, respectively (Fig. 5.7). Furthermore, the statistical ellipses grouping 

observations (at 95% confidence level) in response to hillslope positions showed 

different patterns between terraced and unterraced land. 

In the terraced land, there was no discrimination of soil parameters according to hillslope 

position. Only Clay and SOM were positively related to the first axis, explaining 34.3 % of 

the total variation. Although the clusters of soil parameters overlapped in the PCA of 

terraced land, they showed different loadings onto the first two PC axes (Table 4). All 

parameters contributed between 28% and 42% on the first two PC axes. 

 

Fig. 5. 7. Relationships between soil variables for two management practices (Terraced, 

Unterraced) at different hillslope positions Lower, Middle, Upper). 

Statistical ellipses at 95% confidence level group hillslope positions (represented by different 

symbols and colours) based on soil variables depicted by vectors (SOM = soil organic matter; TEA 

= total exchangeable acidity; Sand = proportion of sand particles, Clay = proportion of clay 

particles; HWC = hot water-extractable carbon; WAS = wet aggregate stability; MBC = microbial 

biomass carbon; RP = soil respiration potential; Nmin = net nitrogen mineralization; and Nitnet = 

net nitrification). 
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Soil parameters from unterraced land showed distinct clustering of the lower hillslope 

position compared to the overlapping upper and middle hillslope positions (Fig. 5.7). 

Significant positive loadings of variables onto the PCs in unterraced land involved Clay, 

Nmin, Nitnet. Most of the variables were clustered on the left quadrants of the first PC 

(31.7%, variance) with high loadings of MBC, WAS, AvP, HWC, and RP (Table 5.3). Soil 

variables showed between 32% and 49% contribution to the first two components, 

except WAS which contributed 18% and 14% to PC1 and PC2, respectively. The clustering 

of soil parameters according to hillslope positions showed an obvious discrimination. The 

lower hillslope position was related with increased scores of HWC, AvP, RP, MBC, and 

WAS, while the middle hillslope position was characterized by high scores of Nmin, 

Nitnet, Sand, and the upper hillslope showed increased Clay contents. 

Table 5. 3. Principal component analysis (PCA) of 11 selected soil variables measured in 90 

samples under two treatments (terraced and unterraced) at three hillslope positions. 

PCA analyses 
Terraced Unterraced 

PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4 

Eigenvalues 3.78 2.69 1.79 1.04 3.49 3.11 1.81 1.03 

% variance 34.33 24.42 16.24 9.49 31.70 28.28 16.47 9.36 

Cumulative % of total variance 34.33 58.75 74.99 84.48 31.70 59.97 76.44 85.80 

Soil variables Loadings (relationship) of soil variables on PCs  

SOM (g kg–1) 0.276 -0.223 -0.275 -0.107 0.123 -0.494 0.088 0.078 

HWC (mg C kg–1) -0.314 -0.209 -0.102 0.550 -0.383 -0.149 -0.331 -0.231 

AvP (mg P kg–1) -0.279 0.360 -0.153 -0.467 -0.436 -0.196 0.127 -0.160 

TEA (cmolc kg–1) -0.389 0.095 -0.309 -0.335 -0.084 -0.418 -0.059 -0.039 

WAS (%) -0.214 -0.417 -0.186 0.043 -0.186 -0.145 -0.218 0.792 

Sand (%) -0.313 0.214 0.401 0.325 -0.280 0.116 0.584 0.097 

Clay (%) 0.266 -0.363 -0.367 -0.062 0.317 -0.165 -0.540 0.004 

MBC (mg C kg–1) -0.405 0.118 -0.302 -0.029 -0.260 -0.337 0.117 0.326 

RP (mg CO2–C kg–1  h–1) -0.377 -0.256 -0.250 0.183 -0.392 -0.243 -0.175 -0.387 

Nmin (mg N kg–1 d–1) -0.190 -0.398 0.417 -0.322 0.329 -0.364 0.287 -0.099 

Nitnet (mg NO3–N kg–1d–1)   -0.198 -0.423 0.372 -0.328 0.313 -0.391 0.237 -0.104 

The first four principal components explaining about 85% of the cumulative total variance are 

presented. Variable loadings express the strength of relationship (loading weight) between soil 

variables and PCs, while the sign on variable loadings indicates the direction of the variable on PC 

axes. 
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5.4. Discussion 

Terraces are commonly constructed in mountainous regions for many functions, 

including slowing runoff velocity, reducing the risks of soil erosion, promoting water 

infiltration, facilitating the cultivation of hillsides, and increasing crop productivity (Liu 

et al., 2011). However, soil properties may be altered by terracing operations that disrupt 

the inherent soil structure and affect soil quality (Deng et al., 2021). Commonly reported 

soil characteristics altered by terracing include soil texture, bulk density, porosity, water 

and nutrients retention ability, organic and inorganic C pools, pH, and biological activity 

(Ramos et al., 2007; Rutebuka et al., 2021). The physico-chemical soil properties 

measured in our study were in ranges with previous studies conducted around the same 

region (Van der Zaag et al., 1984; Mbonigaba et al., 2009; Fashaho et al., 2020). 

5.4.1. Effects of land terracing and hillslope positions on physico-chemical soil quality 

Although the proportions of soil particle size (i.e., Sand and Clay) were slightly altered 

from upper to lower hillslope positions, the overall textural class was unchanged. 

According to FAO classification, soils in both terraced and unterraced fields were sandy 

clay loam. It was also previously suggested by Mesfin et al. (2018), who also reported no 

significant differences in proportions of soil particle size between terraced and 

unterraced in hilly croplands of Ethiopia, that changes in textural composition of soils are 

mainly driven by the soil’s parental material. However, the significant effects of hillslope 

position on assessed soil parameters, especially in unterraced land, may suggest that 

terracing practice has reduced the downhill movement of easily erodible fine textured 

soil particles. The soil in studied sites were acid, likely due to intrinsic characteristics of 

the soil’s parental material in combination with intense and frequent rainfall that might 

have leached base cations on these steep terrains (Mbonigaba et al., 2009). While land 

terracing did not significantly affect soil pH, soil at lower hillslope had higher pH values 

than in the middle and upper slopes, which was likely due to accumulation of base cations 

at lower hillslope level. The soil total nitrogen of both terraced and unterraced lands was 

very low as it is the characteristic of these highly weathered tropical agricultural soils 

(Ferralsols/Oxisols) with very limited N supply from the soil’s parental material (Weil 

and Brady, 2017).  
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The lack of hillslope positions effects on soil organic matter in terraced land is likely due 

to homogenization of soil layers by deep excavation (>100 cm depth) during terrace 

construction (Kagabo et al., 2013; Rutebuka et al., 2021) and reduced soil erosion 

downward (Blanco-Canqui & Ruis, 2018). The highest values of SOM and associated soil 

properties at the lower hillslope may be caused by long-term deposition of sediments by 

water erosion (Van Dijk and Bruijnzeel, 2003). Liu et al. (2006) highlighted the 

interconnections and negative effects of agricultural practices on soil quality in different 

climates and soil types mainly due to disturbance of soil structure that has a significant 

effect on the distribution of C and N, as well as the rates of organic matter decomposition 

and N mineralization. 

The results in this study contradicted our hypothesis which predicted a significant 

decline of soil organic matter content in terraced compared to non-terraced, due to 

accelerated microbial decomposition of SOM exposed from deeper soil layers during 

construction of terraces  (Zhao et al., 2021). We observed, significant effects of 

management and position on hot water-extractable carbon and nitrogen in both terraced 

and unterraced practices, suggesting that these labile C and N fractions are better 

indicator to changes in soil conditions compared to total SOM and total nitrogen. Our 

results showing no effect of terracing on SOM, which contradict some recent studies 

(Chen et al., 2020; Deng et al., 2021) which reported significant decline of SOM contents 

in terraced compared to adjacent unterraced lands. This lack of terracing effects is likely 

due to very low levels of SOM contents studied sites, characterizing the highly weathered 

acidic tropical ferralsols (Nyssen et al., 2009; Tenywa et al., 2015). As expected, the 

highest values and more stable soil aggregates were measured lower hillslope position 

which is likely associated with accumulation of stabilizing organic matter and clay 

content (Kumar et al., 2014; Yao et al., 2022). The soil in terraced land also had more 

stable aggregates compared to soil unterraced land, which may indicate soil stabilization 

and reduced risk of erodibility in bench terraces as previously reported by Kagabo et al. 

(2013). An increase in available phosphorus at middle and lower hillslope position was 

also reported by (Fashaho et al., 2020) in terraces of eastern plateau of Rwanda. 

5.4.2. Effects of land terracing and hillslope positions on microbial soil quality 

Although we generally found relatively greater values for most soil microbial parameters 

in terraced than unterraced fields, the significant differences were mostly observed at 
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lower hillslope position, which might be a result of downward soil redistribution during 

the construction of terraces (Rutebuka et al., 2021). For example, the significant increase 

of soil microbial biomass in the lower hillslope position of terraced compared to 

unterraced soils was not sufficient evidence to support our hypothesis of improved soil 

quality by terracing. It was proposed that higher soil microbial biomass may indicate the 

increased soil’s capacity to cycle and store more nutrients (Ghani et al., 2003; Joergensen, 

2010). In this study, higher N mineralization in terraced soils might indicate higher 

microbial activity. High qCO2 at upper hillslope position in both terraced and unterraced 

might indicate a microbial metabolic stress linked to low SOM contents and low soil pH 

associated with a legacy of downhill transportation of fertile topsoil by erosion. Previous 

studies conducted in the same agroecological zone (Kagabo et al., 2013; Karamage et al., 

2016; Fashaho et al., 2020) have reported the positive effect of land terracing in 

improving soil quality through minimizing soil erosion. For most analysed parameters in 

this study, the relatively pronounced effect size and reduced differences between 

hillslope positions in terraced compared to unterraced soils may indicate, at some extent, 

soil redistribution and stabilization rather than a direct improvement of soil quality by 

terracing. 

5.4.3. Relationships between physico-chemical and microbial soil properties 

The correlation and multivariate analyses showed that physical chemical properties such 

as wet aggregate stability, percentage of clay particles, hot water-extractable carbon, and 

were significantly related to soil microbial parameters. For example, the positive 

relationship between soil microbial soil variables (i.e., MBC, RP and Nmin) and WAS and 

HWC in terraced land may indicate a stable soil ecosystem with labile C that serves as 

microbial substrate for activity. It was reported that soil aggregation is stabilized by 

microbial binding agents and organic matter (Blanco-Canqui & Ruis, 2018). In PCA 

analysis, the lack of distinct hillslope clusters in terraced compared to unterraced land 

may indicate that soil has been stabilized to limit the continuous water erosion and 

downhill deposition or more likely that the soil was so much disturbed that differences 

were eliminated. In addition, the effects of terracing and hillslope positions that were 

undetectable with physico-chemical properties such as total N, SOM, texture, pH, WAS, 

and C/N were sensitively detected by using labile C and N fractions and microbial soil 

properties. Thus, as previously suggested by many studies, microbial biomass and 
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activity may be a valuable indicator of soil quality a soil component that is sensitive to 

management approaches (Dexter, 2004; Singh et al., 2013). Soil microbial biomass and 

labile C and N fractions often have a very high turnover rate and can respond quickly to 

changes in management practices (Ghani et al., 2003; Gregorich et al., 1998). 

5.5. Conclusion 

In this study, we evaluated the effects of land terracing and hillslope position on soil 

properties and processes which differed between terraced and unterraced lands and 

varied with hillslope positions. Results suggest the effect of hillslope position rather than 

land terracing on physico-chemical soil properties such as SOM, total nitrogen, soil pH, 

available phosphorus, aggregate stability, total exchangeable acidity, and soil textural 

class. Most of these soil properties increased significantly downslope both in terraced and 

unterraced fields, where the values of SOM contents,  soil pH, proportion of clay particles, 

available phosphorus, aggregate stability, and total exchangeable acidity were 

significantly higher in the lower hillslope position of terraced compared to unterraced 

fields. In contrast, terracing significantly increased the labile C and N fractions (i.e., HWC 

and HWNtot) and soil microbial parameters (i.e., MBC, MBN, MBP, qmic, and Nmin), 

which increased downhill with significantly higher values in lower hillslope position than 

middle and upper hillslope positions both in terraced and unterraced soils. In assessing 

the influence of management practice and hillslope positions on relationships between 

soil variables, we found that HWC, MBC, RP, Nmin, and Nitnet were highly sensitive to 

changes in soil conditions. Overall, the results from this study contradict our hypothesis 

about the effects of land terracing on physico-chemical soil properties, except for labile C 

and N contents. The results however agreed with our hypothesis suggesting the soil 

quality increases with slope gradient as result of the long-term erosional transportation 

and accumulation of fertile topsoil downhill. Further, the results supported our 

hypothesis about the labile C and N fractions and microbial parameters being more 

sensitive than physico-chemical properties in detecting changes in soil conditions caused 

by management practice and hillslope position. Although some soil variables significantly 

increased in terraced compared to unterraced fields, the overall findings from this study 

were not sufficient to explicitly conclude on soil quality improvement by land terracing 

in the studied sites.  
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Chapter 6 - General Discussion and Conclusions 

The ability of the soil to provide crucial ecosystem services and functions can 

be adversely affect by human actions, associated with changes in land use and 

inappropriate management practices (Fentie et al., 2020).  Changes in land use and 

management practices can have contrasting effects on soil quality depending on the 

climate and soil conditions of the site (Paz-Ferreiro and Fu, 2016). This thesis 

investigated the long-term effects of tree species and land terracing on soil properties 

and microbiological processes, with the aim to understand how these land restoration 

practices have affected soil quality. We expected (i) an improvement of soil quality under 

native and agroforestry tree species compared to Eucalyptus species, due to soil 

acidification and litter recalcitrance under eucalyptus species; and (ii) differences in 

aggregate stability and soil quality along hillslope positions between terraced than 

unterraced lands, due to the disturbance of soil structure by terracing and downslope soil 

losses by water erosion. To test these hypotheses, soil variables (e.g., soil pH, 

exchangeable cations, SOM contents, microbial properties and processes) were assessed 

in two topsoil layers (i.e., 0–5 cm and 5–10 cm depth) under replicated planted 

monoculture plots of eight tree species and in a self-regenerated mixed species plot, 

within the arboretum of Ruhande in southern Rwanda. The effects terracing on selected 

physico-chemical and microbial properties were assessed at three hillslope positions in 

three paired terraced-unterraced fields. Main results show the soil acidification and high 

SOM accumulation under eucalyptus species, whereas native species alleviate soil acidity 

and improve the concentrations of base cations. In assessing the effectiveness of land 

terracing for improving soil quality, the results show that hillslope position rather than 

terracing practice influenced most physico-chemical properties, while most microbial 

soil parameters are influenced by both land terracing and hillslope positions. The high 

sensitivity of soil microbial properties and labile fractions of C and N to changes in tree 

species and terracing practice suggests the use of these parameters as indicators to 

monitors management-induced changes in soil quality.  
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6.1. Long-term effects of planted tree species on soil quality 

Because various biotic and abiotic characteristics often co-vary when assessing changes 

in soil quality at different sites (van Leeuwen et al., 2019), we studied the long-term 

effects of forest tree species planted on one site, the arboretum of Ruhande, Rwanda, to 

exclude the effects of confounding factors. Overall, our findings of tree species effects on 

soil properties and processes showed higher values, more significant differences 

between tree species, and stronger relationships between soil variables in the upper (0–

5 cm) compared to the lower (5–10 cm) soil layer. These results highlight the importance 

of the thin (0–5 cm) topsoil layer in nutrient cycling and the quality of tropical soils. It 

was previously reported that the fertility of tropical forest soil mainly depends on the 

efficient internal nutrient cycling resulting from the optimal conditions for microbial 

decomposition of plant litter that mainly takes place in the thin upper soil layer (Pabst et 

al.2013; Sayer & Banin, 2016). Therefore, unless otherwise specified, the discussion 

about tree species effects on soil variables mainly focussed on the 0–5 cm soil layer. 

Globally, the effects of tree species on soil quality as assessed by soil chemistry and 

microbial processes indicated that native tree species improved soils through increasing 

both chemical and microbial indicators of soil quality. On the other hand, eucalyptus 

significantly caused soil acidification, but increased SOM contents and did not adversely 

affect microbial biomass and activity as expected. However, that the natural acidity of 

soils in the study site and many parts of the country, the issues of soil fertility and Al 

toxicity to plants under acidic conditions should be cautiously taken into consideration 

before planting eucalyptus species.  

6.1.1. Effects of tree species on chemical soil quality 

In tropical soils with inherently poor chemical properties (Celentano et al., 2011), 

planting trees is one of the key strategies for improving degraded soils. Overall, 

significant changes in soil chemical properties (e.g., pH, SOM, labile C and N fractions, and 

exchangeable base cations) were mostly pronounced in the thin upper soil layer (0–5 cm) 

across tree species, and the labile C and N fractions were more sensitive to changes in 

tree species than total soil organic matter (Chapter 2). The fertility of tropical forest soil 

is highly dependent on the continuous supply of organic materials produced by growing 

plants (Lynch, 1995; Bauhus & Khanna, 1999) and the rapid decomposition of the litter 

facilitated by optimum temperature, moisture conditions throughout the year (Krishna 
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and Mohan, 2017). The above conditions may lead to a rapid internal cycling of nutrients 

by high microbial activity, generally constrained to a thin upper soil layer (Bauters et al., 

2017b). Eucalyptus species led to soil acidification and accumulation of soil organic 

matter while native species increased soil pH and nutrient concentrations. Consistent 

with our hypothesis, Eucalyptus species significantly acidified the soil by a decrease in 

0.6 pH unit compared to exotic agroforestry species (Calliandra calothyrsus, Cedrela 

serrata, and Grevillea robusta) and 1.7 pH unit compared to native species 

(Entandrophragma excelsum, Polyscias fulva, and self-regenerated mixed natives).  

The soil acidifying effects of eucalyptus species were reported in previous studies 

conducted at this site and nearby forest plantations (Nsabimana et al., 2008; Mugunga et 

al., 2015), in other tropical (Behera and Sahani, 2003; J.-P. Laclau et al., 2010) as well as 

non-tropical regions (Rhoades and Binkley, 1996). Previous studies also reported high 

sensitivity labile C and N fractions compared to the total SOM for detecting changes in soil 

conditions, and thus suggested the use of water soluble and hot water-extractable C and 

N fractions as proxies for soil microbial biomass and activity (Curtin et al., 2021; Ghani et 

al., 2003). High accumulation of soil organic matter under Eucalyptus species might be 

explained by reduced activity of soil microorganisms under acidic conditions. As 

expected, we found high concentrations of exchangeable Al3+ and Fe2+ under eucalyptus 

species compared to other species. As fast-growing species, eucalyptus exhibit high 

uptake and storage of base cations, and release of protons by roots to maintain ionic 

balance of soil (Augusto et al., 2002; Bauters et al., 2017b). Furthermore, acidic conditions 

(pH<5.0) increase the solubility of reactive Al3+ which can interfere with microbial 

processes and lead to toxic effects on soil microorganisms and plants (Fujii, 2014; Singh 

et al., 2017). Considering that eucalyptus species now account for around 89% of forest 

plantations in Rwanda (RFA, 2021), planting more of these species poses a high risk for 

further soil acidification of these inherently acid and low fertile tropical soils, which may 

profoundly affect soil quality and plant productivity. We demonstrated in this study the 

benefits of planting native species including Entandrophragma excelsum and Polyscias 

fulva for improving chemical soil quality through increased soil pH and concentration of 

base cations, in addition to their long-known valuable timber and many uses in local 

traditional medicine (Ndoli et al., 2021). Although farmers prefer eucalyptus due to their 

economic benefits within a relatively short period of time (approximately six years from 
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planting to potential harvest), afforestation programs should provide planting materials 

and advocate for planting native species to improve soil quality and diversify plantations 

for the sustainability of forest resources.  

6.1.2. Effects of tree species on soil microbial properties and processes 

Soil microbial parameters are often more responsive to changes in land use than 

physicochemical properties (Temesgen et al., 2019), thus evaluating microbial properties 

and processes can help in timely detection of the changes in soil quality. We assessed soil 

microbial parameters including microbial biomass, respiration, N mineralization, 

nitrification, and ecophysiological indices, which were generally influenced by tree 

species both in the 0 – 5 cm and 0 – 5 cm soil layers (Chapter 3).  

The long-term effects of tree species on soil microorganisms and their activity have rarely 

been studied in experimental forest plantations, particularly with introduced tree species 

in the tropics (Veldkamp et al., 2020). Soil microorganisms play a determinant role in 

biogeochemical cycling of elements and availability of nutrients to plants (Aponte et al., 

2013; Lathwell and Grove, 2011). Thus, assessing the response of soil microbial 

properties and processes is essential for understanding the long-term effects of 

afforestation tree species on soil quality and functioning.  

The findings of this study were partially consistent with our hypothesis (Chapter 3), 

suggesting highest values (i.e., 2–12 times higher) and pronounced tree species effects on 

soil microbial properties and processes (e. g., microbial biomass, soil respiration, and N 

mineralization) in the 0–5 cm compared to the 5–10  cm soil layer. In contrast to our 

expectations, we found higher microbial biomass under Eucalyptus species compared to 

most of other species. These results were unexpected because of relatively higher acidity 

found under these eucalyptus species (Nsabimana et al., 2009; Rwibasira et al., 2021), 

and considering the reported significant decrease in soil microbial biomass due to 

increased soil acidity under eucalyptus plantations (Temesgen et al., 2016). Although 

high levels of soil microbial biomass are often considered as an indicator for good soil 

quality (Babur et al., 2021a; Bardgett, 2005), the higher soil microbial biomass under 

Eucalyptus measured this study, might not necessarily reflect improved soil quality. It is 

likely that the extent of soil acidification by eucalyptus species was not deleterious to the 

growth of microorganisms, which might be adapted to acidic soils in this tropical region 
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(Nelson and Su, 2010). Furthermore, the observed high accumulation of SOM under 

eucalyptus could serve as the main source for energy and C substrate for activity, and 

thus promoting the growth and maintenance of soil microorganisms in these nutrient-

poor soils (Malý et al., 2014; Taylor et al., 2021). This is supported by a significant positive 

relation between SOM and labile carbon with microbial biomass. The observed 

differences between eucalyptus species in terms of soil respiration and nitrogen 

mineralization indicate that we cannot generalize the effects of Eucalyptus species on soil 

microbial properties. In this study, Eucalyptus grandis significantly increased soil 

respiration, while Eucalyptus maidenii increased Nmin but reduced RP and Eucalyptus 

saligna significantly reduced Nmin. The reported high lignin content in Eucalyptus 

grandis (Bini et al., 2013) as  well as the high litter C/N ratios in Eucalyptus maidenii ratios 

(Demessie et al., 2012; Cizungu et al., 2014) might have influenced the differences 

between these species in soil organic matter mineralization (Luo & Zhou, 2006; Pietri et 

al., 2008).  

The highest levels of microbial activity observed in the soil under Calliandra calothyrsus 

(an exotic nitrogen-fixing species) may indicate enhanced soil quality, which support the 

use of this species in agroforestry systems (Kisaka et al., 2023). However, this species had 

significantly lower MBC and high specific respiration (qCO2), which may indicate a 

physiological stress of soil microorganisms (Anderson and Domsch, 2010), possibly 

caused by litter recalcitrance resulting from high concentrations of condensed tannins in 

the leaves of this species (Temesgen et al., 2019). Although greater MBC are often related 

with enhanced soil respiration (Babur et al., 2021a), negative relation between MBC and 

RP, as shown for Calliandra calothyrsus, were also reported in a previous 

study  conducted in a tropical forest plantation (Temesgen et al., 2019).  

Effects of planting native tree species (Entandrophragma excelsum and Polyscias fulva) 

showed significantly improved soil quality as indicated by high microbial biomass, Nmin, 

qmic, and low qCO2. The results from these monospecific stands of native species were 

approximately similar to the values measured in self-regenerated native forest, which is 

mainly dominated by mature Polyscias fulva trees (Mugunga et al., 2022). Compared to 

monoculture plots of exotic species, there was more understorey vegetation under both 

monospecific and self-regenerated native species,  which in part may indicate the 
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availability of quality substrate (Xu et al., 2007), reflecting the ecological importance and 

soil quality improvement by native species (Bauhus et al., 1998; Chen et al., 2018).   

6.1.3. The contribution of ammonia-oxidising archaea (AOA) and bacteria (AOB) to soil 

nitrification under different tree species 

Nitrification is a critical process in nitrogen cycling, which may contribute to substantial 

losses of nitrogen from terrestrial ecosystems via nitrate leaching and losses of nitrogen 

in gaseous forms due to denitrification (Gineyts and Niboyet, 2023). Ammonia-oxidation, 

the rate-limiting step of nitrification is driven by ammonia-oxidizing bacteria (AOB) and 

archaea (AOA) (Tao et al., 2021). The use of a selective inhibitor of AOB nitrification 

(ATU) allowed us to quantify the relative contributions of AOA and AOB to soil 

nitrification (Taylor et al., 2010), while the quantitative analysis of amoA gene reflected 

the abundance of these nitrifiers (Prosser and Nicol, 2008). To the best of our knowledge, 

this is the first study to evaluate the effects of planted tree species on the abundance of 

AOA and AOB and their nitrification activity in a forest plantation in Rwanda. 

In agreement with our hypothesis (Chapter 4), AOA were the main nitrifiers under the 

different tree species, with AOA and AOB contributing approximately 71% and 29%, 

respectively, to the total potential nitrification rates. We demonstrated  the significant 

effects of tree species on the abundance and activity of nitrifiers, with significant 

functional dominance of AOA over AOB across the tree species studied. As expected, we 

found more pronounced effects of tree species on potential nitrate production (PNR) in 

the thin upper (0–5 cm) than in the lower (5–10 cm) soil layer. About 5- and 2-times 

higher nitrification rates of AOA and AOB, respectively, were measured in (0–5 cm) 

compared to (5–10 cm) soil layer soil layer, possibly due to continuous litterfall and 

mineralization supplying ammonia substrate to nitrifiers (Xiao et al., 2017). 

The relationship between the abundance of ammonia-oxidizers, nitrification rates, and 

their main controlling factors (i.e., pH, Nmin, and HWNtot) depended on soil layers, 

suggesting that soil conditions are very important in determining the presence and 

contribution of  AOA and AOB to nitrification in acidic tropical soils (Ste-Marie and Paré, 

1999; Watanabe et al., 2023). Low soil pH measured under most species (pH <4.9) might 

have reduced the availability of substrate, giving a competitive advantage to AOA as the 

dominant ammonia oxidizer while increasing maintenance and physiological stress for 
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AOB (Trivedi et al., 2019). Tree species that had highest soil nitrification rates for both 

AOA and AOB include Polyscias fulva (native species), Calliandra calothyrsus (nitrogen-

fixing agroforestry species), and Eucalyptus grandis, and were associated with either less 

acid soil or high concentration of N substrate. For example,  Polyscias fulva significantly 

increased both soil pH and concentration of labile nitrogen (HWNtot), while Calliandra 

calothyrsus and Eucalyptus grandis were associated with high concentration of HWNtot 

soils (Rwibasira et al., 2021). In contrast to our expectations, Entandrophragma excelsum 

(native species) significantly increased both soil pH and HWNtot but showed the lowest 

rates of AOA and AOB nitrification at similar levels of soil acidifying eucalyptus spp. (i.e., 

Eucalyptus maidenii and Eucalyptus saligna). We suspected the presence of chemical 

compounds (e.g., terpenoids) released from these species which could inhibit nitrification 

(White, 1986; Sauder et al., 2016). 

The quantitative PCR analyses targeting  amoA marker gene showed that tree species and 

soil layer significantly influenced the abundance of AOA and AOB. We observed the 

numerical dominance of AOA over AOB with a wider range in 5 – 10 cm (50 times higher) 

compared to (5 times higher) in 0–5 cm soil layer. While AOA have been reported to be 

adapted to greater ecological and functional ranges compared to AOB under acidic and 

nutrient-poor soil conditions (Erguder et al., 2009), it is likely that AOB were 

substantially influenced by tree species-induced changes in soil pH and N substrate 

availability, often varying between soil layers (Watanabe et al., 2023).  

The observed negative correlation between AOB abundance and their corresponding 

PNR might be explained by very low rates of AOB nitrification, while the positive 

relationship between AOA–PNR and AOA–amoA might be explained by their high affinity 

for ammonium substrate (Hink et al., 2018). Given that the abundance of nitrifiers may 

not always reflect their nitrification activity (Leininger et al., 2006), assessing the specific 

nitrification rate (PNR per amoA gene copy) can give indication about the nitrification 

efficiency (Prosser & Nicol, 2012). Furthermore, difference in AOA and AOB specific PNR 

between two soil layers may reflect the niche differentiation related to ammonium 

substate and oxygen availability (Ginestet et al., 1998; Trivedi et al., 2019).  

Our results of correlations and multivariate analysis demonstrated the tree species 

effects and soil layer on ammonia-oxidizers and nitrification activity through changes in 
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soil pH and nitrogen transformation proxies (i.e., Nmin and HWNtot). Overall, the 

observed opposite relationships between PNR and Nmin in two soil layers might explain 

the importance of Nmin in providing substrate for nitrification, as well as the niche 

differentiation giving a competitive advantage to AOA due to their high substrate affinity 

(Prosser and Nicol, 2012; Trivedi et al., 2019). The PCA analysis distinctively associated 

tree species that had less soil acidifying effects and high N substrate concentrations (i.e., 

Polyscias fulva, Grevillea robusta, and Calliandra calothyrsus) with high loadings of AOA 

and AOB abundance and activity.  

6.2. Effects of land terracing on soil properties and processes 

Although terracing practices are applied for the protection of soils against water erosion 

and for increasing arable land surfaces in mountainous landscapes (Karamage et al., 

2017), the mechanical disruption of soil structure, decline of organic matter stocks and 

associated consequences on soil quality may be some disadvantages of terraced lands 

(Deng et al., 2021). The evaluation of terracing effects on soil properties and processes 

from three agricultural sites in southern Rwanda revealed that not only terracing, but 

also hillslope position (upper, middle, and lower) influenced soil quality. 

The observed differences in proportions of soil particle size between terraced and 

unterraced fields might be explained by the reduced downhill movement of easily 

erodible fine textured soil particles in terraced land (Chapter 5). This was evidenced by 

significant differences between upper and lower hillslope positions in proportions of 

sand and clay particles. The higher values of pH and SOM contents at lower hillslope 

position both in terraced and unterraced soils were likely due to the legacy of erosional 

downward transportation of sediments and accumulation of SOM and the leaching of 

base cations downhill (J. Mbonigaba et al., 2009). Although there was no hillslope 

positions effect on SOM in terraced soils, the significant effects of management and 

position on hot water-extractable carbon and nitrogen in both terraced and unterraced 

practices might indicate that these labile C and N fractions are better indicators to 

changes in soil conditions compared to total SOM and total nitrogen. Consistent with our 

hypothesis, higher values and more stable soil aggregates in terraced land may indicate 

soil stabilization and reduced risk of erodibility in bench terraces as previously reported 

by Kagabo et al. (2013). Our results of increased available phosphorus downhill was also 

reported by (Fashaho et al., 2020) in terraces of eastern plateau of Rwanda. 
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Overall, this study demonstrated that hillslope position rather than management practice 

influenced differences in soil quality indicators between terraced and unterraced soils. 

The observed greater effect size and reduced differences between hillslope positions in 

terraced compared to unterraced land could be explained by soil redistribution and 

reduced soil loss downhill (Li and Lindstrom, 2001; Ni and Zhang, 2007). Our analyses of 

results from this  study did not corroborate the previous studies (Kagabo et al., 2013; 

Karamage et al., 2016; Fashaho et al., 2020), which reported effectiveness of land 

terracing in restoring soil quality of Rwandan steeped croplands.  

6.3. Future perspectives 

The effectiveness of soil restorative measures (e.g., afforestation and land terracing) 

should be experimentally explored and confirmed through research before 

implementation, in order to avoid worsening the land degradation processes (Ghosh et 

al., 2021; Baradwal et al., 2022). Yet, soil conservation measures are often applied 

without in-depth knowledge of potential consequences, especially in developing 

countries (Melaku et al., 2018). Given that soil restoration processes generally tend to be 

too slow, in comparison to current global rates of soil degradation (Baradwal et al., 

2022), it is essential to carefully  choose appropriate land management practices for 

sustainably improving soil quality (Sileshi et al., 2019).  

In Rwanda, like in most African countries, the lack of baseline values and soil data from 

long-term monitoring in relation to the effectiveness of restorative measures 

implemented over past decades can be the challenge for planning and implementing 

future land use policy. We were confronted with the scarcity of baseline data to evaluate 

the changes in soil characteristics since the establishment of studied forest stands or 

agricultural terraces, especially for soil microbial parameters. To the best of our 

knowledge, this is the first study to integrate a relatively substantial number of physico-

chemical and microbial indicators of soil quality to evaluate the effectiveness of the two 

common practices in Rwanda (agricultural terraces and forest plantation) for restoration 

of degraded soils. The findings of this study can have broad applications for assessing the 

effects of the choice of land management practices in the context of highly degraded soils 

and increasing demand for agricultural land and forest resources. 
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The results from tree species comparison raised novel insights for not only their varied 

effects on different soil quality indicators, but also for the thin upper (0 – 5 cm) soil layer 

at which  significant differences between tree species were mostly observed compared to 

the lower (5 – 10 cm) layer. For example, the significant differences between species in 

some chemical soil properties found in this study were not found in previous studies 

under the same stands (Nsabimana et al., 2008; Nsengumuremyi et al., 2022), likely 

because they sampled relatively thicker (0 – 10 cm) soil layer which might have diluted 

the effects of tree species. Further, we demonstrated that the studied three eucalyptus 

species differed in their effects on most soil quality indicators. Except for their common 

effects on soil acidification (Chapter2; Rwibasira et al., 2021), their lack of detrimental 

effects on soil microbial parameters contradicted the hypothesis of this study (Chapter 

3). The current environmental policy in Rwanda prohibits planting eucalyptus species in 

agricultural fields and in proximity to water bodies as they are believed to excessively 

reduce soil fertility, water resources and soil biodiversity (Mugunga, 2016; Ndoli et al., 

2021). However, the results from this study suggested that we should not generalize over 

the adverse effects of eucalyptus species, which opens new research perspectives to 

explore the effects of more eucalyptus species on soil quality. The study site (Arboretum 

of Ruhande) contains 69 species of eucalyptus, among which only about 10 species are 

commonly planted countrywide.  Therefore, this study could trigger curiosity to explore 

more eucalyptus species that remained hidden in this site and provide research-based 

data on their effects on soil quality and ecosystem functioning. 

Improvement of soil quality in steep cropland were recently reported in Rwanda (Kagabo 

et al., 2013; Karamage et al., 2016; Fashaho et al., 2020). In contrast, our results that 

simultaneously evaluated both the effects of management practice and hillslope position 

on soil properties and microbial processes revealed that hillslope position rather than 

land terracing significantly influenced changes in soil quality (Chapter 5). Long-term 

monitoring of newly terraced fields based on baseline values before terracing,  by 

considering different elevation gradients and agro-ecological zones. 
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6.4. General conclusions 

Afforestation and land terracing are the major land conservation strategies widely 

adopted in Rwanda to address environmental and socio-economic consequences 

associated with land degradation and decline of soil quality. We investigate the effects of 

planted tree species (i.e., eight monospecific stands and a plot of self-regenerated mixed 

native species) and land terracing (three sites) on soil properties and processes which 

may reflect changes in soil quality in the Central Plateau agro-ecological zone, Southern 

Rwanda.  

Our results demonstrated that the effects of tree species on soil parameters were 

generally pronounced in the 0–5 cm soil layer which had significantly higher values than 

5–10 cm soil layer for most analysed soil properties and processes. We reported soil 

acidifying and SOM accumulation effects of eucalyptus species, while native species were 

found to alleviate soil acidity and increase the concentrations of base cations. Labile 

fractions of C and N, particularly those extracted with hot water were better indicators of 

tree species-induced changes in soil conditions compared to the total SOM. The analyses 

of tree species effects on soil microbial properties and processes revealed that microbial 

biomass and activity were not adversely affected by soil acidifying eucalyptus species, 

likely because of high concentrations of  labile C and N in soils under these species, 

fractions found to be the main drivers of the measured soil processes. Soil quality was 

high under studied native trees (i.e., Entandrophragma excelsum, Polyscias fulva, and 

mixed native species), possibly due to availability of quality substrate under these species 

as evidenced by high microbial biomass, nitrogen mineralization, microbial quotient, and 

low metabolic quotient. Further, results from tree species effects on abundance and 

activity of ammonia-oxidizing archaea (AOA) and bacteria (AOB) indicate the dominance 

of AOA over AOB in terms of abundance and rates of nitrification across tree species 

planted on acidic and nutrient-poor soil. This study showed that planting native species 

(e.g., Polyscias fulva), Eucalyptus grandis, and agroforestry species (e.g., Grevillea robusta 

and Cedrela serrata) significantly increased both AOA and AOB nitrification rates. Tree 

species influenced the abundance and activity of nitrifiers via changes in soil pH and N 

substrate availability. The assessment of land terracing effects on soil properties and 

processes indicated that hillslope position rather than terracing practice influenced most 

physico-chemical properties, while most microbial soil parameters were influenced by 

both land terracing and hillslope positions. Generally, we observed highest values in 
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lower hillslope position for most soil quality indicators assessed, which likely imply the 

long-term erosional transportation and accumulation of sediments downhill. In contrast 

to our expectation, land terracing did not significantly reduce soil organic matter 

contents, possibly due to very low levels of SOM contents naturally characterizing the 

studied sites.
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Appendices 

Table 2.A 1. Selected study plots in the Arboretum of Ruhande, Rwanda. 

Plot ID Species 
Native/ 

Exotic 
Latitude Longitude Elevation  Age in 2016 (Years) 

Plot273  Calliandra calothyrsus  Exotic 02°36’69’’ S  29°45’30’’ E  1722 m 31 

Plot265 Calliandra calothyrsus  Exotic 02°36’71’’ S  29°45’18’’ E  1713 m 31 

Plot267  Calliandra calothyrsus  Exotic 02°36’72’’ S  29°45’21’’ E  1714 m 31 

Plot56  Cedrela serrata  Exotic 02°36’94’’ S  29°44’79’’ E  1713 m 70 

Plot111  Cedrela serrata  Exotic 02°36’75’’ S  29°45’60’’ E  1709 m 79 

Plot36  Cedrela serrata  Exotic 02°36’83’’ S  29°45’30’’ E  1730 m 73 

Plot150  Grevillea robusta  Exotic 02°36’97’’ S  29°44’96’’ E  1713 m 75 

Plot322  Grevillea robusta  Exotic 02°36’94’’ S  29°45’19’’ E  1709 m 69 

Plot104  Grevillea robusta  Exotic 02º36’84’’ S  29º45’51’’ E  1720 m 35 

Plot218  Eucalyptus grandis  Exotic 02°37’03’’ S  29°44’83’’ E  1707 m 70 

Plot220  Eucalyptus grandis  Exotic 02°37’05’’ S  29°44’86’’ E  1706 m 65 

Plot181  Eucalyptus grandis  Exotic 02°36’65’’ S  29°45’64’’ E  1680 m 65 

Plot179  Eucalyptus maidenii  Exotic 02°36’66’’ S  29°45’61’’ E  1685 m 70 

Plot377  Eucalyptus maidenii  Exotic 02°36’59’’ S  29°45’32’’ E  1695 m 82 

Plot1  Eucalyptus maidenii  Exotic 02°36’89’’ S  29°44’78’’ E  1732 m 67 

Plot472  Eucalyptus saligna  Exotic 02°37’01’’ S  29°45’12’’ E  1710 m 82 

Plot259  Eucalyptus saligna  Exotic 02°36’93’’ S  29°45’38’’ E  1709 m 36 

Plot20  Eucalyptus saligna  Exotic 02°36’89’’ S  29°45’06’’ E  1729 m 59 

Plot78  Entandrophragma excelsum  Native 02°36’90’’ S  29°45’12’’ E  1727 m 67 

Plot44  Entandrophragma excelsum  Native 02°36’81’’ S  29°45’42’’ E  1727 m 64 

Plot54  Entandrophragma excelsum  Native 02°36’78’’ S  29°45’57’’ E  1718 m 45 

Plot240  Polyscias fulva  Native 02°36’96’’ S  29°45’15’’ E  1714 m 80 

Plot262  Polyscias fulva  Native 02°36’91’’ S  29°45’46’’ E  1695 m 80 

Plot268  Polyscias fulva  Native 02°36’88’’ S  29°45’54’’ E  1693 m 80 

MNS1 Mix native species  Native 02°36’65’’ S  29°44’65’’ E  1700 m 83 

MNS1 Mix native species  Native 02°36’68’’ S  29°45’51’’ E  1692 m 83 

MNS3 Mix native species  Native 02°36’59’’ S  29°45’63’’ E  1680 m 83 
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Table 2.A 2. Summary description of measured soil properties for two soil layers (0–5 cm and 5–
10 cm) across all samples: two samples per plot, eight tree species, one mixed natives plot. 

Soil Parameters Layer  N Mean SD Median Min Max Skew Kurtosis SE 
pHKCL 0–5 cm  54 4.89 0.71 4.96 3.71 5.89 −0.33 −1.38 0.1 

 5–10 cm  54 4.21 0.36 4.24 3.71 4.83 0.04 −1.25 0.05 
SOM (%) 0–5 cm  54 22.49 4.71 20.55 15.53 31.32 0.63 −1.03 0.64 

 5–10 cm  54 9.6 1.4 9.87 5.93 11.56 −0.95 0.21 0.19 
SOC (gkg−1) 0–5 cm  54 130.4 27.31 119.2 90.1 181.66 0.63 −1.04 3.72 

 5–10 cm  54 55.67 8.13 57.22 34.41 67.06 −0.94 0.2 1.11 
WSC (mgkg−1) 0–5 cm  54 340.8 115.1 323 175.2 683.5 1.1 1.05 15.6 

 5–10 cm  54 56.31 9.41 55.9 39.77 78.74 0.36 −0.61 1.28 
WSNO3 (mgkg−1) 0–5 cm  54 67.7 28.82 58.13 32.77 145.64 1.34 0.93 3.92 

 5–10 cm  54 12.31 4.68 12.3 3.93 20.82 0.18 −1.07 0.64 
WSNH4 (mgkg−1) 0–5 cm  54 12.85 2.97 12.97 7.62 18.34 −0.12 −1.28 0.4 

 5–10 cm  54 1.23 0.67 0.95 0.47 2.9 0.96 −0.22 0.09 
WSNorg (mgkg−1) 0–5 cm  54 34.73 9.74 34.41 15.84 57.02 0.22 −0.51 1.32 

 5–10 cm  54 6.85 1.74 6.56 2.99 10.42 0.03 −0.48 0.24 
WSNmin (mgkg−1) 0–5 cm  54 80.54 29.07 70.65 45.01 162.93 1.47 1.38 3.96 

 5–10 cm  54 13.54 4.34 13.4 5.53 21.33 0.22 −1.2 0.59 
WSNtot (mgkg−1) 0–5 cm  54 115.2 29.68 111.2 65.1 190.1 0.97 0.63 4.04 

 5–10 cm  54 20.39 4.86 20.38 12.86 28.78 0.1 −1.48 0.66 
WSC/WSNorg 0–5 cm  54 10.07 2.86 9.28 5.89 18.79 1.13 1.33 0.39 

 5–10 cm  54 8.66 2.21 8.43 4.61 15.5 0.96 1.55 0.3 
WSC/WSNtot 0–5 cm  54 3.11 1.2 2.71 1.34 6.39 0.86 0.19 0.16 

 5–10 cm  54 2.88 0.66 2.87 1.5 4.43 0.02 −0.63 0.09 
HWC (mgkg−1) 0–5 cm  54 3994.6 1201.2 3904.7 2203.4 5893.4 0.11 −1.51 163.4 

 5–10 cm  54 603.43 119.8 601.8 382.16 888.07 0.48 −0.33 16.31 
HWNO3 (mgkg−1) 0–5 cm  54 14.13 4.86 14.11 4.57 23.36 -0.03 −0.79 0.66 

 5–10 cm  54 2.22 0.85 2.01 0.83 3.92 0.32 −0.94 0.12 
HWNH4 (mgkg−1) 0–5 cm  54 71.7 18.6 71.05 37.07 104.15 -0.01 −0.95 2.53 

 5–10 cm  54 8.35 3.15 7.97 4.18 14.97 0.5 −0.91 0.43 
HWNorg (mgkg−1) 0–5 cm  54 301.64 62.12 294.93 194.96 440.04 0.18 −1.2 8.45 

 5–10 cm  54 55.44 16.45 53.03 31.94 95.43 0.9 −0.04 2.24 
HWNtot (mgkg−1) 0–5 cm  54 387.47 73.9 388.71 242.65 536.49 −0.1 −1 10.06 

 5–10 cm  54 66.01 19.36 61.47 40.02 111.71 0.9 −0.01 2.63 
HWC/HWNorg 0–5 cm  54 13.08 2.12 12.64 10.08 17.6 0.37 −1.14 0.29 

 5–10 cm  54 11.3 2.15 10.93 8.52 17.22 0.86 0.03 0.29 
HWC/HWNtot 0–5 cm  54 10.2 1.91 9.85 7.45 13.77 0.34 −1.26 0.26 

 5–10 cm  54 9.48 1.84 9.16 7.01 14.21 0.89 0.09 0.25 
Al3+ (cmolc kg−1) 0–5 cm  54 0.06 0.05 0.04 0.00 0.16 0.93 −0.31 0.01 

 5–10 cm  54 1.22 0.9 0.94 0.01 2.82 0.38 −1.37 0.12 
Ca2+ (cmolc kg−1) 0–5 cm  54 28.5 7.89 27.27 17.39 52.9 1.42 1.74 1.07 

 5–10 cm  54 5.97 3.55 5.97 1.54 16.6 1.02 0.81 0.48 
Fe2+ (cmolc kg−1) 0–5 cm  54 0.00 0.00 0.00 0.00 0.01 1.22 0.89 0.00 

 5–10 cm  54 0.01 0.03 0.00 0.00 0.25 6.93 46.94 0.00 
K+ (cmolc kg−1) 0–5 cm  54 0.61 0.17 0.57 0.31 0.96 0.29 −0.94 0.02 

 5–10 cm  54 0.21 0.14 0.15 0.08 0.56 1.47 0.81 0.02 
Mg2+ (cmolc kg−1) 0–5 cm  54 6.9 2.87 5.67 4.45 15.17 1.74 1.94 0.39 

 5–10 cm  54 1.51 0.55 1.49 0.67 2.34 0.05 −1.42 0.07 
Mn2+ (cmolc kg−1) 0–5 cm  54 0.09 0.07 0.06 0.02 0.29 1.22 0.68 0.01 

 5–10 cm  54 0.01 0.01 0.01 0.00 0.03 0.35 −0.88 0.00 
Na+ (cmolc kg−1) 0–5 cm  54 0.15 0.06 0.14 0.07 0.28 0.32 −1.16 0.01 

 5–10 cm  54 0.18 0.03 0.19 0.09 0.24 -0.74 0.86 0.00 
Zn2+ (cmolc kg−1) 0–5 cm  54 0.00 0.00 0.00 0.00 0.00 1.08 0.57 0.00 

 5–10 cm  54 0.00 0.00 0.00 0.00 0.00 0.96 −0.28 0.00 
EBC (cmolc kg−1) 0–5 cm  54 36.16 10.46 33.96 23.98 69.18 1.75 2.39 1.42 

 5–10 cm  54 7.87 4.1 7.75 2.71 19.27 0.88 0.39 0.56 
∑cations (cmolc kg−1) 0–5 cm  54 36.31 10.41 34.07 24.32 69.24 1.77 2.42 1.42 

 5–10 cm  54 9.11 3.31 8.62 5.08 19.31 1.29 1.33 0.45 
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Table 2.A 3. Analyses of soil chemical soil properties under different tree species in the Arboretum of Ruhande (means ± SEM, n=6). 

Soil Parameters 
Layer 
(cm) 

Calliandra  
calothyrsus 

Cedrela  
serrata 

Grevillea robusta Eucalyptus grandis 
Eucalyptus 

maidenii 
Eucalyptus saligna 

Entandrophragma 
excelsum 

Polyscias  
fulva 

Mixed  
Native species 

pHKCl  
0–5 4.9 ± 0.01 fg 4.9 ± 0.01 fg 5.5 ± 0.02 h 4.0 ± 0.01 b 4.2 ± 0.01 c 3.7 ± 0.01 a 5.5 ± 0.02 h 5.8 ± 0.01 i 5.4 ± 0.04 h 

5–10 4.2 ± 0.0 c 4.2 ± 0.0 c 4.4 ± 0.0 d 3.8 ± 0.0 a 3.8 ± 0.0 a 3.7 ± 0.0 a 4.4 ± 0.0 d 4.6 ± 0.0 e 4.8 ± 0.0 f 

SOM (%) 
0–5 19.1 ± 0.52 bc 18.1 ± 0.81 b 19.2 ± 0.26 bc 21.6 ± 0.59 bcd 27.6 ± 0.92 d 25 ± 1.33 cd 25.8 ± 2.24 d 18.5 ± 0.46 b 27.5 ± 2.2 d 

5–10 10.2 ± 0.1 a 9.19 ± 1.0 a 8.93 0.7 a 10.3 ± 0.5 a 9.58 ± 0.08 a 9.27 ± 0.4 a 9.5 ± 0.5 a 10.3 ± 0.2 a 9.06 ± 0.7 a 

SOC (g kg−1) 
0–5 110 ± 3 bc 100 ± 4.7 b 110 ± 1.6 bc 160 ± 5.4 d 140 ± 7.7 cd 150 ± 13 d 160 ± 13 d 110 ± 2.7 b 130 ± 3.4 bcd 

5–10 59 ± 0.57 a 53 ± 6 a 52 ± 4.3 a 56 ± 0.52 a 54 ± 2.8 a 55 ± 3.2 a 53 ± 4.1 a 60 ± 1.3 a 60 ± 3 a 
Al3+  

(cmolc kg−1) 
0–5 0.079 ± 0.00 a 0.085 ± 0.01 a 0.026 ± 0.00 a 0.006 ± 0.00 a 0.067 ± 0.01 a 0.04 ± 0.00 a 0.15 ± 0.00 a 0.01 ± 0.00 a 0.03 ± 0.00 a 

5–10 0.93 ± 0.035 d 1.2 ± 0.036 e 0.77 ± 0.04 d 0.027 ± 0.00 a 2.6 ± 0.083 h 2.2 ± 0.05 f 2.4 ± 0.059 g 0.34 ± 0.01 b 0.53 ± 0.01 c 

Ca2+ (cmolckg−1) 
0–5 19 ± 0.77 e 24 ± 1.3 fg 28 ± 0.33 hi 27 ± 0.45 gh 29 ± 0.59 hi 31 ± 1.6 i 23 ± 0.85 f 28 ± 0.25 hi 48 ± 1.2 j 

5–10 6 ± 0.06 bc 4.8 ± 0.067 abc 7 ± 0.47 bc 14 ± 0.64 d 1.6 ± 0.026 a 3.8 ± 0.097 ab 2.2 ± 0.081 a 7.8 ± 0.15 c 6.7 ± 0.18 bc 

Fe2+ (cmolckg−1) 
0–5 0.004 ± 0.00 ef 0.001 ± 0.00 ab 0.001 ± 0.00 a 0.0008 ± 0.00 a 0.002 ± 0.00 abcd 0.002 ± 0.00 abc 0.002 ± 0.00 abcd 0.001 ± 0.00 ab 0.001 ± 0.00 a 

5–10 0.003 ± 0.0 bcdef 0.003 ± 0.00 abcdef 0.004 ± 0.00 def 0.0028 ± 0.00 abcdef 0.005 ± 0.00 f 0.045 ± 0.04 cdef 0.004 ± 0.00 def 0.003 ± 0.00 abcde 0.003 ± 0.00 abcde 
K+  

(cmolckg−1) 
0–5 0.63 ± 0.023 efg 0.52 ± 0.016 cde 0.7 ± 0.045 gh 0.81 ± 0.018 hi 0.41 ± 0.014 bc 0.47 ± 0.012 cd 0.43 ± 0.042 bcd 0.64 ± 0.01 fg 0.85 ± 0.04 i 

5–10 0.12 ± 0.01 a 0.12 ± 0.0091 a 0.13 ± 0.018 a 0.53 ± 0.009 def 0.14 ± 0.0044 a 0.15 ± 0.0083 a 0.17 ± 0.016 a 0.17 ± 0.00 a 0.35 ± 0.01 b 

Mg2+ (cmolckg−1) 
0–5 6.3 ± 0.14 h 4.9 ± 0.08 ef 5.6 ± 0.036 g 5.1 ± 0.047 fg 8.2 ± 0.18 i 4.6 ± 0.053 e 5.5 ± 0.099 g 7.7 ± 0.09 i 14 ± 0.22 j 

5–10 1.5 ± 0.042 c 1.5 ± 0.035 c 1.4 ± 0.089 bc 2.2 ± 0.054 d 0.82 ± 0.015 a 0.91 ± 0.098 a 0.92 ± 0.048 ab 2.1 ± 0.04 d 2.2 ± 0.03 d 

Mn2+ (cmolckg−1) 
0–5 0.26 ± 0.01 g 0.061 ± 0.00 d 0.056 ± 0.00 cd 0.019 ± 0.00 ab 0.1 ± 0.00 e 0.13 ± 0.00 f 0.12 ± 0.01 ef 0.02 ± 0.00 ab 0.033 ± 0.00 bc 

5–10 0.024 ± 0.00 ab 0.02 ± 0.00 ab 0.009 ± 0.00 ab 0.004 ± 0.00 a 0.017 ± 0.00 ab 0.013 ± 0.00 ab 0.022 ± 0.00 ab 0.006 ± 0.00 a 0.013 ± 0.00 ab 

Na+ (cmolckg−1)  
0–5 0.091 ± 0.01 a 0.1 ± 0.00 a 0.11 ± 0.00 a 0.12 ± 0.017 ab 0.19 ± 0.01 cde 0.21 ± 0.0045 e 0.21 ± 0.01 e 0.13 ± 0.02 abc 0.18 ± 0.02 bcde 

5–10 0.19 ± 0.01 cde 0.18 ± 0.00 bcde 0.2 ± 0.00 de 0.17 ± 0.0077 bcde 0.2 ± 0.00 de 0.18 ± 0.015 bcde 0.19 ± 0.00 cde 0.17 ± 0.01 bcde 0.14 ± 0.013 abcd 

Zn2+ (cmolckg−1) 
0–5 0.002 ± 0.00 e 0.001 ± 0.00 abc 0.001 ± 0.00 bc 0.0009 ± 0.00 abc 0.0007 ± 0.00 abc 0.0008 ± 0.00 abc 0.0012 ± 0.00 cd 0.0006 ± 0.00 abc 0.0017 ± 0.00 de 

5–10 0.001 ± 0.00 bcd 0.0006 ± 0.00 abc 0.0005 ± 0.00 a 0.0007 ± 0.00 abc 0.0006 ± 0.00 abc 0.0006 ± 0.00 abc 0.0006 ± 0.00 ab 0.0006 ± 0.00 abc 0.0011 ± 0.00 bc 

EBC (cmolckg−1) 
0–5 26 ± 0.89 f 30 ± 1.2 fg 34 ± 0.36 h 33 ± 0.48 gh 38 ± 0.75 i 36 ± 1.6 hi 29 ± 0.9 f 36 ± 0.31 hi 63 ± 1.4 j 

5–10 7.9 ± 0.05 cd 6.6 ±0.08 bcd 8.7 ± 0.57 d 17 ± 0.6 e 2.8 ± 0.02 a 5 ± ±0.12 abc 3.4 ± 0.1 ab 10 ± 0.19 d 9.3 ± 0.2 d 
Cations 

(cmolckg−1) 
0–5 27 ± 0.9 e 30 ± 1.2 ef 34 ± 0.36 g 33 ± 0.47 fg 38 ± 0.74 h 36 ± 1.6 gh 29 ± 0.91 e 36 ± 0.31 gh 63 ± 1.4 i 

5–10 8.8 ± 0.06 abc 7.8 ± 0.11 abc 9.5 ± 0.55 bc 17 ± 0.6 d 5.4 ± 0.07 a 7.2 ± 0.09 abc 5.9 ± 0.07 ab 11 ± 0.19 c 9.9 ± 0.2 c 

Different letters within one parameter denote significant differences between tree species and soil depths (linear mixed-effects models, Tukey’s HSD, p < 

0.05) . 
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Table 2.A 4. Proportions of water-soluble and hot water-extractable nitrogen forms under different tree species at two soil layers (0–5 cm and 5–10 cm) 

Soil layer Labile 

Fractions 

Calliandra 

Calothyrsus 

Cedrela 

Serrata  

Grevillea 

Robusta  

Eucalyptus 

Grandis  

Eucalyptus 

Maidenii  

Eucalyptus 

Saligna  

Entandrophragma 

Excelsum 

Polyscias 

Fulva  

Mixed 

native 

species 

Water-soluble N fractions 

0 – 5 cm WSNO3 (%) 43 55 73 52 54 46 12 68 64 

WSNH4 (%) 13 18 9 10 13 16 27 6 9 

WSNorg (%) 44 27 18 38 33 38 61 26 27 

5 – 10 cm WSNO3 (%) 60 45 76 58 65 55 41 62 64 

WSNH4 (%) 7 12 2 5 4 8 15 4 3 

WSNorg (%) 33 43 22 37 31 37 44 34 33 

Hot water-extractable N fractions 

0 – 5 cm WSNO3 (%) 4 3 5 3 5 3 3 3 3 

WSNH4 (%) 17 16 22 16 15 15 19 25 23 

WSNorg (%) 79 81 73 81 80 82 78 72 74 

5 – 10 cm WSNO3 (%) 4 3 4 4 4 4 2 3 3 

WSNH4 (%) 15 15 10 11 10 11 17 11 13 

WSNorg (%) 81 82 86 85 86 85 81 86 84 
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Table 3.A 1. Analyses of soil microbial soil properties under different tree species in the Arboretum of Ruhande (means ± SEM, n=6). 

Soil properties 
Calliandra  
calothyrsus 

Cedrela  
serrata 

Grevillea 
robusta 

Eucalyptus 
grandis 

Eucalyptus 
maidenii 

Eucalyptus 
saligna 

Entandrophragma 
excelsum 

Polyscias  
fulva 

Mixed  
Native species 

 Upper soil layer (0 – 5 cm) 
MBC (mg C kg–1) 1200±33c 1300±56cd 1100±20c 2000±50h 1900±75gh 1600±26ef 1500±71de 1600±35efg 1800±46fgh 

MBN (mg N kg–1) 82±3.1e 160±5.7f 250±4.9h 350±6.2i 230±5gh 170±7.3f 230±4g 340±4.3i 150±4.3f 

RP (µg C–CO2 kg–1 h–1) 12±0.15k 6±0.03g 8.1±0.07i 10±0.05j 5.6±0.03f 4.4±0.03e 5.6±0.08f 7±0.04h 8.4±0.06i 

qCO2 (RP MBC–1) 0.009±0.0h 0.004±0.0ef 0.007±0.0g 0.005±0.0f 0.003±0.0c 0.002±0.0c 0.003±0.0cde 0.004±0.0def 0.004±0.0ef 

qmic (MBC SOC–1) 0.011±0.0d 0.013±0.0de 0.010±0.0d 0.016±0.0e 0.012±0.0d 0.011±0.0d 0.010±0.0cd 0.015±0.0e 0.012±0.0d 

Nmin (mg N–NO3 kg–1 h–1) 3.7±0.09de 2.7±0.17bc 2.6±0.14bc 3.1±0.091cd 5.7±0.17f 2.3±0.085b 4.1±0.16e 3±0.23bcd 3.1±0.13cd 

 Lower soil layer (5 – 10 cm) 
MBC (mg C kg–1) 280±24a 220±12a 370±14ab 590±8.2b 260±11a 230±13a 360±21ab 310±15a 140±10a 

MBN (mg N kg–1) 32±0.77abc 23±0.99ab 36±0.95abc 57±0.76d 40±1.6bcd 18±0.57a 30±1.5abc 46±1.5cd 35±1.6d 

RP (µg C–CO2 kg–1 h–1) 0.73±0.0bcd 0.76±0.0cd 0.4±0.0ab 0.91±0.0d 0.28±0.0a 0.26±0.0a 0.48±0.0abc 0.82±0.01cd 0.88±0.0d 

qCO2 (RP MBC–1) 0.002±0.0bc 0.003±0.0cd 0.001±0.0a 0.001±0.0ab 0.001±0.0a 0.001±0.0a 0.001±0.0a 0.003±0.0bc 0.006±0.0g 

qmic (MBC SOC–1) 0.004±0.0ab 0.004±0.0ab 0.007±0.0bc 0.01±0.0cd 0.004±0.0ab 0.004±0.0ab 0.006±0.0b 0.005±0.0ab 0.003±0.0a 

Nmin (mg N–NO3 kg–1 h–1) 0.62±0.0a 0.32±0.1a 0.3±0.0a 0.38±0.01a 0.14±±0.0a 0.41±0.0a 0.17±0.1a 0.34±0.0a 0.57±0.0a 

Different letters within one parameter denote significant differences between tree species and soil depths (linear mixed-effects models, Tukey’s HSD, p < 0.05) . 
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Table 4.A 1.  Analyses of potential nitrification rates(PNR) and abundance of amoA genes under different tree species in the 0-5 cm and 5-10 cm soil layers (Means 

± SEM, n=6 and 3 for PNR and amoA analyses, respectively). 

Soil parameters 
Layers 
(cm) 

Calliandra  
calothyrsus 

Cedrela  
serrata 

Grevillea 
robusta 

Eucalyptus 
grandis 

Eucalyptus 
maidenii 

Eucalyptus 
saligna 

Entandrophragma 
excelsum 

Polyscias  
fulva 

Mixed  
Native 
species 

Potential nitrification rates and N mineralization 

AOB–PNR (mg N–NO3 kg-1 d-1) 
0-5 0.269±0.06 0.488±0.08 0.358±0.04 1±0.09 0.15±0.04 0.539±0.05 0.187±0.04 0.64±0.10 0.387±0.07 

5-10 0.429±0.03 0.158±0.01 0.031±0.00 0.279±0.00 0.043±0.00 0.39±0.02 0.051±0.01 0.612±0.01 0.148±0.01 

AOA–PNR (mg N–NO3 kg-1 d-1) 
0-5 0.742±0.01 0.82±0.07 1.11±0.09 1.45±0.10 0.463±0.02 0.498±0.03 0.505±0.02 2.22±0.08 0.979±0.02 

5-10 0.229±0.01 0.068±0.00 0.227±0.00 0.332±0.01 0.168±0.01 0.096±0.00 0.081±0.00 0.125±0.00 0.072±0.00 

Total PNR (mg N–NO3 kg-1 d-1) 
0-5 1.01±0.07 1.21±0.12 1.47±0.06 2.45±0.15 0.577±0.04 0.936±0.06 0.639±0.03 2.86±0.07 1.35±0.06 

5-10 0.658±0.03 0.226±0.01 0.259±0.00 0.61±0.01 0.201±0.02 0.487±0.02 0.109±0.01 0.736±0.01 0.221±0.00 

AOA–PNR: AOB–PNR  
0-5 3.63 ± 0.8 2.06 ± 0.5 3.73 ± 1.0 1.52 ± 0.1 4.27 ± 0.8 0.997 ± 0.1 3.39 ± 0.7 4.17 ± 0.8 3.19 ± 0.7 

5-10 0.55 ± 0.0 0.44 ± 0.03 8.58 ± 1.9 1.2 ± 0.05 3.88 ± 0.26 0.25 ± 0.01 1.88 ± 0.33 0.20 ± 0.01 0.50 ±0.05 

Nmin (mg N kg–1 d–1) 
0-5 3.7±0.09 2.7±0.17 2.6±0.14 3.1±0.09 5.7±0.17 2.3±0.08 4.1±0.16 3±0.23 3.1±0.13 

5-10 0.62±0.02 0.32±0.09 0.3±0.02 0.38±0.01 0.14±0.01 0.41±0.03 0.17±0.11 0.34±0.01 0.57±0.01 

Archaeal and bacterial amoA gene abundance 

AOB–amoA (amoA copies kg-

1) 

0-5 
1.39e+06 

±2.1e+05 

1.84e+06 

±1.2e+05 

3.9e+06 

±9.0e+05 

6.3e+05    

±1.5e+05 

1.24e+06 

±1.4e+05 

2.4e+05 

±7.0e+04 

1.67e+06 

±5.8e+05 

8.8e+05  

±2.1e+05 

1.3e+06 

±1.5e+05 

5-10 
2.7e+05 

±1.3e+05 

4.6e+04 

±1.4e+04 

2.9e+05  

±9.6e+04 

6.7e+03  

±6.9e+02 

2.4e+04  

±1.12e+04 

1.7e+04  

±4.1e+03 

5.5e+04  

±8.5e+03 

6.9e+04   

±1.9e+04 

3.3e+05  

±6.3e+04 

AOA–amoA (amoA copies kg-

1) 

0-5 
2.41e+08 

±6.6e+07 

1.8e+08 

±2.7e+07 

6.37e+08 

±1.02e+08 

2.23e+08 

±7.4e+07 

2.47e+08 

±9.8e+07 

2.32e+08 

±1.8e+07 

7e+08  

±2.18e+08 

9.95e+08 

±1.03e+08 

7.56e+08 

±1.85e+08 

5-10 
2.73e+08 

±5.7e+07 

1.02e+08 

±1.2e+07 

4.27e+08 

±1.15e+08 

1.68e+08 

±8.8 e+07 

1.23e+08 

±3.8 e+07 

1.48e+08 

±1.7e+07 

1.36e+08 

±2.7e+07 

3.88e+08 

±1.37e+08 

7.09e+08 

±1.65e+08 

AOA–amoA: AOB–amoA 
0-5 162 ± 28.6 101 ± 16.5 240 ± 86.1 507 ± 145 258 ± 124 3260±1620 394 ± 83.9 1760±622 539 ± 123 

5-10 2240 ± 859 3930 ±1140 1870 ± 417 25600±1570 6650±2890 11100±2540 2330±173 9520±4520 2000±188 
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Fig. 4. A 1. Relationship between ammonia-oxidizers’ potential nitrification rates and soil pH 
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Fig. 4. A 2. Relationship between ammonia-oxidizers’ potential nitrification rates and nitrogen 

mineralization rates 
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Table 5.A 1. Summary description of measured soil properties in terraced and unterraced lands 

across sites and hillslope positions 

Soil parameters Management 
practice 

N Mean SEM SD Minimum Maximum 

Physico-chemical properties 

SOM (g kg–1) Terraced 45 80.780 1.626 10.909 55.278 113.893 

Unterraced  45 89.335 1.968 13.203 61.455 114.460 
SOC (g kg–1) Terraced 45 26.088 1.755 11.770 8.801 50.667 

Unterraced  45 22.457 1.183 7.933 5.281 39.900 
Total N (g kg–1) Terraced 45 2.192 0.133 0.889 0.973 3.828 

Unterraced  45 1.638 0.111 0.742 0.941 3.828 
pHKCL  Terraced 45 3.912 0.036 0.240 3.570 4.390 

Unterraced  45 3.863 0.018 0.123 3.530 4.000 
pHH2O Terraced 45 4.562 0.077 0.515 3.620 5.460 

Unterraced  45 4.358 0.060 0.399 3.620 5.380 
C/N Terraced 45 14.438 1.406 9.435 3.219 36.973 

Unterraced  45 16.250 1.097 7.362 1.686 29.820 
AvP (mg kg–1) Terraced 45 2.752 0.196 1.318 0.639 5.234 

Unterraced  45 1.521 0.072 0.482 0.810 2.605 
TEA (%) Terraced 45 5.785 0.191 1.282 3.680 8.800 

Unterraced  45 4.327 0.159 1.070 1.520 6.640 
Sand (%) Terraced 45 76.440 0.466 3.128 70.000 82.000 

Unterraced  45 74.498 0.858 5.758 58.000 83.000 
Clay (%) Terraced 45 15.742 0.683 4.580 8.000 26.000 

Unterraced  45 19.098 1.053 7.062 10.000 36.000 
Silt (%) Terraced 45 7.818 0.410 2.751 4.000 15.600 

Unterraced  45 6.404 0.371 2.488 2.000 12.000 
WAS (%) Terraced 45 56.516 1.121 7.519 49.091 85.714 

Unterraced  45 55.264 1.048 7.030 46.667 76.923 
WSC (mg kg–1) Terraced 45 53.933 5.344 35.852 9.521 154.959 

Unterraced  45 28.617 2.560 17.174 5.680 71.858 
HWC (mg kg–1) Terraced 45 626.871 54.434 365.155 327.259 1642.819 

Unterraced  45 385.892 19.732 132.366 220.350 751.374 
WSNH4 (mg kg–1) Terraced 45 7.672 1.847 12.390 1.032 45.065 

Unterraced  45 3.259 0.363 2.437 0.766 9.826 
WSNO3 (mg kg–1) Terraced 45 17.679 1.830 12.276 1.085 46.399 

Unterraced  45 10.391 1.547 10.376 0.000 35.841 
HWNtot (mg kg–1) Terraced 45 28.227 1.758 11.791 9.678 54.874 

Unterraced  45 21.079 1.851 12.418 6.730 46.539 
Microbial properties and processes 
RP (µg CO2–C g–1 h–1) Terraced 45 10.065 0.930 6.236 3.428 24.585 

Unterraced  45 6.431 0.370 2.481 2.157 11.947 
MBC (mg C kg–1) Terraced 45 4.959 0.742 4.976 0.407 19.355 

Unterraced  45 2.929 0.660 4.431 0.000 15.784 
MBN (mg N kg–1) Terraced 45 51.332 2.757 18.494 25.871 85.369 

Unterraced  45 37.540 1.544 10.360 22.527 61.168 
MBP (mg P kg–1) Terraced 45 0.552 0.057 0.379 0.198 1.861 

Unterraced  45 0.370 0.054 0.361 0.070 1.504 
qCO2 (µgCO2–C mg–

1MBC h–1) 
Terraced 45 305.159 33.514 224.819 25.056 777.145 
Unterraced  45 141.863 16.854 113.058 7.818 390.888 

qmic (mg MBC g–1 
Ctot) 

Terraced 45 24.764 3.436 23.052 0.270 81.681 
Unterraced  45 14.907 1.879 12.603 0.444 60.849 

Nmin (mg N kg–1d–1) Terraced 45 5.043 0.602 4.039 0.376 15.819 
Unterraced  45 3.783 0.511 3.425 0.009 12.780 

Nitnet (mg NO3–N Terraced 45 2.462 0.223 1.496 0.400 7.880 
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kg–1d–1)   Unterraced  45 6.609 1.556 10.436 0.520 63.870 
Nitnet (mg NO3–N 
kg–1d–1)   

Terraced 45 67.620 7.789 52.251 4.810 184.680 

Unterraced  45 28.432 3.633 24.372 1.340 79.080 
Nitrel (%) Terraced 45 1.335 0.151 1.014 0.155 4.415 

Unterraced  45 0.869 0.146 0.976 0.117 3.479 

Samples  from  three sites, three hillslope positions (upper, middle, and lower) in each 

management practice, and five samples per hillslope position. SEM: standard error of the mean; 

SD: standard deviation
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