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Context and PhD objectives

Solutions for emission reduction:

Low pressure

Front fan W compressor

&

Short-nacelle turbofan

Motivations of the project: Lack of information on

>1.0

o Representative geometries for LPC

o Engine-like distortions

Objectives of the project: Characterise a distorted LPC

Boundary layer Ingestion engines
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Assess performance and stability reduction

Identify phenomena

inked with performance and stability loss

Characterise critical f

ow features and their evolution

[dentify flow mechanisms leading to stall

Understand the role of geometrical features

Improve design guidelines

[1] https:/ /aerospaceamerica.aiaa.org/ features/high-gear/

[2] Peters A. et al. “Ultrashort Nacelles for Low Fan Pressure Ratio Propulsors” Journal of Turbomachinery 2014
[3] Leiffson L.T. “Multidisciplinary Design Optimization of Low-Noise Transport Aircraft” PhD thesis, Virginia P&S University, 2005

[4] Gunn et al.
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“Aerodynamics of Boundary Layer Ingesting Fans” ASME Turbo Expo 2014


https://aerospaceamerica.aiaa.org/features/high-gear/

Research project overview

o Distortion characterisation

Bibliographic

o Distortion effects in transonic compressors

research , . .
o Literature survey to continue all over the PhD project

In this presentation

o Characterisation of the clean machine
Numerical oC

haracterisation of the distorted machine

simulations : ;
O Design of experiments

Current activity Characterisation of the clean machine:

L
=
=
E
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campaign o Distorted experimental campaign

Suppor

o Define a robust numerical setup

o Cl ' tal |
Measurement Reach high level of accuracy

- existing experimental data

Suppor

o Validation of the numerical results

Results and |, A scessment of distortion effects

conclusions

o Design guidelines
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- design of experiments

(Generate a clean reference case




Experimental environment

DREAM test section:

Axial Stations lmm2 3mm4
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Inlet rakes

Outlet rakes

Characteristics of the test section

O

O
O
O

Representative of a modern GTF LPC

4 measurement planes available

VKI R4 high-speed compressor test rig:

Characterised in clean conditions (EU FP7 DREAM project)

Nominal speed considered for the present activity
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Test section

Characteristics of the facility

@)

O
O
@)

Controlled temperature and pressure
Precision throttling
Independent variation of Re and Ma

Different engine operating conditions (cruise, take-off)



Numerical model and setup

Numerical setup and domain:

Meridional view:

Plane 1 Plane 2 Plane 3 Plane 4
IGV Rotor Stator
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Inlet

R /S interfaces

B2B view:

Solver: Numeca Fine/Turbo

Grid generator: AutoGrid5 (multi-block structured)
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Outlet

Numerical setup:

O

O O O O

O O O O

Simulation: RANS & URANS
R/S int. RANS: Mixing plane + NRBC
R/S int. URANS: Domain scaling

Tu model

: k-epsilon Chien

Inlet Tu BC: TI = 0.35%, Tu viscosity ratio
Inlet BC: Pt & Tt (from experiments)

Outlet BC: Mass-flow (from experiments)

Solid wal

BC: Adiabatic

Wall reso]

ved simulation (y+ = 1.2)

Geometrical setup:

o Fillets and tip gaps

o Hot geometries

o Closed cavities (not included)

Chosen after assessment of real

geometrical features impact



Presentation overview

Sections of the presentation:

o Turbulence model assessment for secondary-flow characterisation (ASME Turbo Expo 2022)

O
O

O
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Turbulence model assessment

Grid refinement study:

Global performance Rotor outlet flow-field
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o Three mesh levels: 1.2M, 9.3M, 74M
o @, R, Z isotropic refinement by factor 2 at each step

o Setup: RANS with k-omega SST model at DE conditions
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Medium mesh provides results
closer to finest mesh



Turbulence model assessment

Impact on global performance and secondary structures:

Global performance
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Turbulence model assessment

Overall driving mechanisms and secondary flow field evolution:

Rotor inlet/outlet conditions: eddy viscosity

Inlet

Outlet
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Rotor hub wall - skin friction lines

The larger K-eps eddy viscosity into the BL decreases

the crossflow and the size of the hub corner separation

The smaller K-eps eddy viscosity at mid-span increases
the size of the shock-BL separation

Overestimation of hub corner separation for SST is
linked to the computed eddy viscosity and BL height




Turbulence model assessment

tal results

imen

t exper

Ins

Validation aga

rotor outlet

2D map validation

Spanwise validation
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Presentation overview

Sections of the presentation:
O

o Characterisation of the machine in clean conditions
0

O
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Critical flow regions and phenomena

Rotor hub corner separation:

o Critical behaviour visible from Tu-model analysis

o Low-momentum flows impacted by large loading

o Criticality confirmed by unsteady results

o Hub corner sep. largely impacted by OP variation

(unsteadiness already filtered by RANS)

Rotor hub: Skin friction lines | - DE

NS
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Critical flow regions and phenomena

IGV-rotor wake propagation: experimental evidence

Static pressure at casing rotor inlet - From near stall to flow break-down

09'
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Revolutions

Experimental observation

5, 27Hz components appear prior to flow breakdown

—

IGV wakes through rotor generate a Pt “hole” at stator outlet

o
o
o Pt reduction moves toward stator SS at reduced mass-flow
o

Stator midspan separation induced

by increased incidence

[5] Dell’Era G. et al. “Experimental Characterisation of the Unstable Range of a High Speed

Booster” Draft version

Stator Pitch

Stator Pitch

o Role of IGV-rotor wake interaction?

o Improve stability modifying IGV-stator clocking?




Considerations about the loss of stability

Stator outlet total pressure maps - CFD:
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Presentation overview

Sections of the presentation:
O

O

o Current activities

o Conclusions and next steps
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Current activities

Full-annulus simulations in clean conditions:

Motivations behind the use of a full annulus domain:

Entropy (J/ (kg K))
30

o To avoid impact on secondary flow structures

o To capture low-frequency modes and instabilities

2

Numerical setup and mesh:

o Same setup and mesh of previous URANS (domain scaling) 20

o Analysis at DE and NS operating points o

o Computational cost: 0.75M CPU hours/simul on 350M cells
Infrastructure: 10-

, 1

o Access to Tier-1 Zenobe cluster (Consortium CECI) -
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Current activities

Experimental campaign in clean conditions:

Tasks

o Steady and unsteady characterisation of the machine in stable operating range

o Characterisation of the unstable operating range (critical features for stability)

I.essons learned from CFD:

o Need of high instrumentation resolution at rotor and stator outlet

o An

alyse axial correlation for IGV wakes propagation and clocking etfects

Realised so far:

o Dei

inition of experimental setup and instrumentation to employ

o Ca

ibration of 3 hole virtual fast-response pressure probe: static, dynamic, aerodynamic

The complementary interpretation of numerical and experimental results will

allow a full-characterisation of the DREAM test section in clean conditions
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Conclusions and next steps

Outcome of the presented activity:

o Geometrical features included into the domain (fillets, tip gaps and hot geometries)
o No general Tu-model better than others (K-eps better at NS, while SST at DE)

o Two critical flow structures detected in clean conditions:

1. Rotor hub corner separation: structure most affected by OP variation

2. Propagation of IGV-rotor wakes: phenomena impacting on the stability

Next steps:

May 2022 1 o Full-annulus simulations in distorted conditions (Tier-1 Zenobe cluster):

o Understand distortion effects on compressor performance and stability
o Characterise pre-existing and new critical phenomena

o Distortion pattern considered: Under definition - targeting as realistic as possible pattern

Timeline
Starting date

May 2023 2 o Experimental campaign in distorted conditions:

o Modification of the test section for installation of distortion screen on target pattern

o Steady and unsteady data in both stable and unstable operating range
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Numerical domain - geometrical features Backup slide

List of geometrical features of interest: . .
Features to investigate:

Axial Stations lmn2 3pnd o TFillets
0 o e b . o ° °
af Closed cavities o Tip gaps Limited impact on mesh size
o Hot geometries
y | 2 ‘ - Large impact on mesh size
= malll e, N o Closed cavities S ,
. (to further investigate)
/ o = Domain and mesh for cavity and no-cavity case:
e — == Solid wall boundary conditions Mesh topology

No cavity Cavity

N s sam s d L e I I 7,

] L=

Matching connections

Added block

1 | 1 J

Inlet rakes T

Outlet rakes \
Interface

with cavities

m—— Fixed surfaces
Rotating surfaces

Interfaces substituted with non-rotating , ,
, , , , , Same topology for the 2 configurations
solid walls in the no-cavity configuration

Cavities

Connection




Numerical domain - geometrical features Backup slide

Impact of cavities on the main channel flow:

Rotor hub

Compressor map Rotorimet L4 ALV
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Experimental instrumentation Backup slide

Steady and unsteady instrumentation:

Total pressure Inlet and outlet rakes

™~ (Kiel probe)

‘_ _____ ' ”| Total temperature
E : ' (Shielded thermocouple)
Steady measurements ---

Static pressure
(Pressure taps)

Flow direction
(3-hole probes)

. Hot-wire anemometer
Hot-wire measurements ---------=x-=s-smemmenenees | | (Hub and tip turbulence
intensity)

Total and static
~ pressure, total

temperature
(AP1-C25 probe)

Unsteady measurements -as--------smmemeeiiiccciiiiiiieceeiii i inoeees

Total pressure
(FP2, FP3, 3-hole virtual
probe)




Experimental instrumentation Backup slide
0

Quantities to measure:

Steady measurements: Unsteady measurements: Y 4

o Compressor map: Spanwise distributions:

270 f i

90

- Total to total pressure ratio - Total pressure in planes 3,4

- Static to total pressure ratio Maps:
- Efficiency - Total pressure in planes 3,4

- Massflow - Flow angles in planes 3,4

o Spanwise distributions:

- Static pressure at casing

- Total pressure in planes 1,2,3,4 Unstable operating range: (Circumferential locations where it is

- Total temperature in planes 1,2,3,4| o Stall inception and post-stall: possible to perform radial traversing)

- Ma in planes 1,2,3,4 - Hub, midspan and casing velocity in planes 1,2

- Flow angle in planes 1,2,3,4 - Pressure signals at casing inlet, midchord and outlet

o Maps: - Pressure signal at rotor outlet hub, midspan and tip

- Total pressure in plane 4 - Pressure signal at stator outlet hub

- Total temperature in plane 4

- Ma in plane 4

- Flow angle in plane 4 23




Experimental setup Backup slide

Plane by plane and meridional experimental setup: Nomenclature:

o HW: Hot-wires

o PST: 5 Hole Steady

o PUN: 3 Hole Virtual Unsteady
o ST: Shielded Thermocouple

HW2 From K1 to K13

HWI1 Plane 2: ST

Rotor inlet

Plane 1:
IGV inlet

o
-

T T . 4 -f
HW?2 PST : : :
| IGV , 1
Plane 3: PUN Plane 4: Pt : : E
Rotor outlet Stator outlet : 58 . !
Plane 1 Plane 2 Plane 3 Plane 4
ST PST PST PUN
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