PhD Program 2019-2020

Fluid meeting 14th October 2019

Performance and Stability Analysis of a Highly-Loaded Low-Pressure Compressor Under Distorted Inflow Conditions

Riccardo TORACCHIO

ULiège Supervisor: Koen Hillewaert VKI Supervisor: Fabrizio Fontaneto

von KARMAN INSTITUTE FOR FLUID DYNAMICS

Context

Reasons:

- Stringent environmental legislation
- Growth of the aviation sector

Geared high-bypass turbofans

Community objective:

 Reduction of CO2 and NOx emissions

Boundary Layer Ingestion (BLI)

Credit: https://www.flickr.com/photos/ramis-photos/44852983645 Leiffson L.T. "Multidisciplinary Design Optimization of Low-Noise Transport Aircraft" PhD thesis, Virginia Polytechnic and State University, 2005

Geared high-bypass turbofans

Credit: <u>https://aerospaceamerica.aiaa.org/features/high-gear/</u> Peters A. et al. *"Ultrashort Nacelles for Low Fan Pressure Ratio Propulsors"* Journal of Turbomachinery 2014

Riccardo Toracchio – Performance and Stability Analysis of a Highly-Loaded Low-Pressure Compressor Under Distorted Inflow Conditions - 17/10/2019

Shorte

Boundary layer ingestion

Improvement of the propulsive efficiency:

× Generation of inlet distortions!

Credit: https://www.paramountbusinessjets.com/blog/nasa-double-bubble-d8-aircraft/ Plas A.P. et al. *"Performance of a Boundary Layer Ingesting (BLI) Propulsion System"* 45 th AIAA Aerospace Sciences Meeting and Exhibit 2007 Gunn et al. *"Aerodynamics of Boundary Layer Ingesting Fans"* ASME Turbo Expo 2014

Given its crucial role on the overall propulsive efficiency, the fan has been in the focus of research on distortion effects

The distortion reduces the efficiency of the fan!

Plas A.P. et al. "Performance of a Boundary Layer Ingesting (BLI) Propulsion System" 45 th AIAA Aerospace Sciences Meeting and Exhibit 2007 Gunn E.J. et al. "An Experimental Study of Loss Sources in a Fan Operating With Continuous Inlet Stagnation Pressure Distortion" Journal of Turbomachinery 2013

Low-pressure compressor

A performance and stability reduction occurs also in the LPC

* No representative geometries for LPC

* No representative distortions for LPC

There is a lack of information on the LPC!

Sans J., Brouckaert J. F. "DREAM project: Experimental study of two highly loaded low pressure compressors" 2011-2012 Taghavi Zenouz R. et al. "Performance of a Low Speed Axial Compressor Rotor Blade Row Under Different Inlet Distortions" Mechanical Sciences 2017 Plas A.P. et al. "Performance of a Boundary Layer Ingesting (BLI) Propulsion System" 45 th AIAA Aerospace Sciences Meeting and Exhibit 2007

Old blade shape

Research objective

Research objective

Assessment of the global performance reduction and the dynamic behavior of modern LPC under "real" distortions

How? Description of the involved flow physics!

Methodology

Numerical activity

Sebastian B. et al. "Unsteady CFD simulation of transonic axial compressor stages with distorted inflows" 2016 Sans J., Brouckaert J. F. "DREAM project: Experimental study of two highly loaded low pressure compressors" 2011-2012

Riccardo Toracchio – Performance and Stability Analysis of a Highly-Loaded Low-Pressure Compressor Under Distorted Inflow Conditions - 17/10/2019

Experimental activity

Scientific challenges

- Characterize steady and unsteady phenomena
- Link the flow phenomena with performance and stability reduction
- Identify the flow mechanisms inducing stall
- ✓ Describe the post-stall behavior

Industrial challenges

- Provide new designs to reduce the performance and stability loss
- Allow the development of distortion tolerant LPC for geared and BLI aircraft
- Support the development of modern engine technologies

Innovation

- Fully characterize the flow physics under real distortions
- Quantify the performance and stability reduction induced by distortions
- \checkmark Describe the stable and unstable operating conditions

Research activity

Steps of the research activity:

Step 3: Steady and unsteady experimental characterization

Step 4: Interpretation of the numerical and experimental results

Timeline

Step 1 & 2: URANS simulations

Numerical characterization of the flow under distorted conditions

The bibliographic research aims at characterizing the **most critical distortions** for the LPC!

Design of experiments

- Increased spatial and temporal resolution in secondary flows and gradient regions
- Right bandwidth for the instrumentation
- Probes location optimization

Lesser A., Niehuis R. "Transonic Axial Compressors With Total Pressure Inlet Flow Field Distortions" ASME Turbo Expo 2014 (GT2014-26627, pp. V01AT01A036)

Distorted sector

VKI R4 closed-loop compressor rig

- ✓ 750 [kW] installed power
- ✓ Up to 25000 rpm
- Controlled inlet temperature for stabilized conditions
- Precision throttling
- Independent variation of pressure and temperature

Different operating conditions (take-off, cruise) can be tested!

Sans J., Brouckaert J. F. "DREAM project: Experimental study of two highly loaded low pressure compressors" 2011-2012

FLOW

DREAM test section

Sans J., Brouckaert J. F. "DREAM project: Experimental study of two highly loaded low pressure compressors" 2011-2012

DREAM test section

 ✓ Installation of a screen to reproduce the desired swirl and total pressure distortion

Thanks to Astoria!

Sans J., Brouckaert J. F. "DREAM project: Experimental study of two highly loaded low pressure compressors" 2011-2012 Stephens J.E., Celestina M., Hughes C. "Swirl Distortion Using Stream Vanes for Boundary Layer Ingestion Research" ASME Turbo Expo 2019 (GT2019-92073).

DREAM test section

Measurements

- ✓ Steady measurements:
 - Global performance
 - 2D maps of total quantities and flow angles
- ✓ Unsteady measurements:
 - Total pressure 2D maps
 - Static pressure (rotor casing)
 - Operating conditions:
 - Stable operation
 - Stall inception
 - Post-stall
- ✓ Measurement planes: 1 to 4

Sans J., Brouckaert J. F. "DREAM project: Experimental study of two highly loaded low pressure compressors" 2011-2012

Step 4: Physical interpretation

Simulations & experiments become complementary

Detailed analysis of the results

- Performance and stability reduction with respect to the clean case
- Identification of the flow phenomena linked with the performance and stability loss
- Understand the role of unsteady effects, as secondary flows, shock-BL interactions and BL separations
- ✓ Identification of stall inception mechanisms and type of stall cells
- ✓ Design considerations for distorted operation

This project will provide unprecedented numerical and experimental outcomes to support the development and design of LPC for geared aircraft and BLI engines

Thank you a lot for the attention

Backup slides

Geared Turbofan - Layout

19

Range of application

Christopher E. Huges "Aircraft Engine Technology for Green Aviation to Reduce Fuel Burn" 3rd AIAA Atmospheric Space Environments Conference, 2011.

Range of application

Christopher E. Huges "Aircraft Engine Technology for Green Aviation to Reduce Fuel Burn" 3rd AIAA Atmospheric Space Environments Conference, 2011.

HBP turbofan advantages

Why does the propulsive efficiency improve by increasing the by-pass ratio?

LIEGE

von KARMAN INSTITUT

OR FLUID DYNAMICS

22

BLI advantages

The power needed for the podded engine is larger than that for the BLI

Plas A.P. et al."Performance of a Boundary Layer Ingesting (BLI) Propulsion System" 45 th AIAA Aerospace Sciences Meeting and Exhibit 2007

Distortion effects

Pressure reduction

Numerical simulations

25

Riccardo Toracchio - Performance and Stability Analysis of a Highly-Loaded

Low-Pressure Compressor Under Distorted Inflow Conditions - 17/10/2019

Measurements

on KARMAN INSTITUTE

FOR FLUID DYNAMICS

26

Low-Pressure Compressor Under Distorted Inflow Conditions - 17/10/2019

Work plan

