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A B S T R A C T   

The present study investigated the possibilities and limitations of using a low-cost NIR spectrometer for the 
verification of the presence of the declared active pharmaceutical ingredients (APIs) in tablet formulations, 
especially for medicine screening studies in low-resource settings. Spectra from 950 to 1650 nm were recorded 
for 170 pharmaceutical products representing 41 different APIs, API combinations or placebos. Most of the 
products, including 20 falsified medicines, had been collected in medicine quality studies in African countries. 
After exploratory principal component analysis, models were built using data-driven soft independent modelling 
of class analogy (DD-SIMCA), a one-class classifier algorithm, for tablet products of penicillin V, sulfamethox-
azole/trimethoprim, ciprofloxacin, furosemide, metronidazole, metformin, hydrochlorothiazide, and doxycy-
cline. Spectra of amoxicillin and amoxicillin/clavulanic acid tablets were combined into a single model. Models 
were tested using Procrustes cross-validation and by projection of spectra of tablets containing the same or 
different APIs. Tablets containing no or different APIs could be identified with 100 % specificity in all models. A 
separation of the spectra of amoxicillin and amoxicillin/clavulanic acid tablets was achieved by partial least 
squares discriminant analysis. 15 out of 19 external validation products (79 %) representing different brands of 
the same APIs were correctly identified as members of the target class; three of the four rejected samples showed 
an API mass percentage of the total tablet weight that was out of the range covered in the respective calibration 
set. Therefore, in future investigations larger and more representative spectral libraries are required for model 
building. Falsified medicines containing no API, incorrect APIs, or grossly incorrect amounts of the declared APIs 
could be readily identified. 

Variation between different NIR-S-G1 spectroscopic devices led to a loss of accuracy if spectra recorded with 
different devices were pooled. Therefore, piecewise direct standardization was applied for calibration transfer. 

The investigated method is a promising tool for medicine screening studies in low-resource settings.   

1. Introduction 

Substandard and falsified (SF) medicines expose patients worldwide 
to the risk of prolonged illness, economic loss or even death, due to 
ineffective therapy or toxic effects. With an estimated prevalence of 
10.5 %, low- and middle-income countries (LMICs) are especially 
affected by SF medicines [1,2]. 

In LMICs, the national medicine regulatory authorities and other 
stakeholders in medicine quality assurance are often underfunded, and 
they lack both personnel and access to fully equipped medicine quality 
control laboratories. This allows medical products to enter the market 

without sufficient quality control, or even through illicit channels [3,4]. 
Rapid, low-cost medicine quality screening technologies have therefore 
been recommended in the fight against SF medicines in LMICs [5], and 
several countries have started implementing such programmes [6–8]. 
Easy-to-use screening technologies may also be used by personnel 
specialized in other disciplines such as supply chain staff and health care 
workers. We recently reported on the use of the Global Pharma Health 
Fund (GPHF)-Minilab® by faith-based medicine supply organizations in 
Africa [9]. The GPHF-Minilab® employs thin-layer chromatography for 
the identification of active pharmaceutical ingredients (APIs), and is 
currently the most widely used medicine quality screening tool 
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worldwide [10,11]. 
In recent years, portable near-infrared (NIR) spectrometers have 

received attention as medicine quality screening technologies [10, 
12-16]. They require neither consumables nor sample prepara-
tion/destruction, the time required for analysis is very short, and only 
minimal training is necessary for their operation [10,17,18]. However, 
interpretation of the complex NIR spectra usually requires the use of 
multivariate data analysis [19–24]. 

NIR spectra of pharmaceutical products depend both on the chemical 
composition, i.e. on the APIs as well as on the excipients, and on phys-
icochemical characteristics such as crystallinity, particle size, moisture 
etc. [19]. Extensive research has been carried out on the use of NIR 
spectroscopy for the discrimination of authentic, usually branded 
products of a given manufacturer from falsified products, even in cases 
when both have a similar composition [25–32]. Obviously, this 
approach requires a complete and up-to-date library of the NIR spectra 
of all authentic products of interest, and the creation of such libraries 
requires considerable effort [19,33]. For many stakeholders involved in 
medicine procurement in LMICs, such as the faith-based medicine sup-
ply organizations mentioned above [9,34], complete and up-to-date li-
braries of the NIR spectra of all relevant authentic products are 
impossible to obtain, since these organizations procure generic medi-
cines at low prices from a large and ever-changing number of manu-
facturers located in India, China and many other countries [9,35]. 
Unfortunately, the occurrence of falsified medicines which contain no 
APIs, grossly insufficient amounts of APIs or even incorrect APIs remains 
a constant problem in such settings [1,36]. 

In the present study, we investigated whether a low-cost NIR spec-
trometer combined with the chemometric tools of principal component 
analysis (PCA) [21] and DD-SIMCA [37,38] may represent a useful 
technology for the verification of the APIs in pharmaceutical tablets, 
irrespective of specific brands, in low-resource settings. While some 
previous studies have addressed API verification by NIR spectroscopy, 
they used more expensive equipment or included only small numbers of 

products [39–41]. We now investigated 170 pharmaceutical products. 
110 of these had been collected in African countries, and all of these had 
been investigated in our laboratory for the identity, quantity and 
dissolution of the APIs using compendial high-performance liquid 
chromatography (HPLC) methods [9,35,42]. The present study also 
included 20 products which had been identified as falsified. We 
employed the low-cost handheld NIR-S-G1 spectrometer (InnoSpectra, 
Taiwan; 1200–1600 USD per unit [13]) which has been evaluated in 
previous studies for its use in low-resource settings [30-32,43-46]. 

2. Methods 

2.1 Investigated pharmaceutical products 

Table 1 shows the types of medicines investigated in the present 
study. All of these are listed in the 2021 WHO Model List of Essential 
Medicines [47], and all were formulated as tablets. Of these, 105 
products had been collected in Cameroon, the Democratic Republic (DR) 
of Congo and Chad during recently published medicine quality studies of 
our group; the procedures for their collection are described in the 
respective publications [9,35,42]. Additionally, five falsified medicines 
had been purchased in an ongoing study in Nigeria, from different 
commercial suppliers in Anambra and Enugu states. Most of the samples 
collected in African countries had been sold without a package leaflet, 
and no information was available on the excipients they contained. 

Furthermore, 60 products were purchased from the pharmacy of 
Tübingen University Hospital and from a licensed retail pharmacy in 
Tübingen, and represented medicines licensed and marketed in Ger-
many. If more than one brand of a certain type of medicine was pur-
chased in Germany (Table 1), brands were selected which differed from 
each other in their excipient composition. 

As shown in Table S1 (Supplementary Material), 143 of the products 
were white tablets, while the remaining 27 products were green (1), 
yellow (12), blue (2), brown (2), beige (3), grey (1), pink (4) or orange 

Table 1 
Overview of the pharmaceutical products investigated in this study.  

Stated API(s) Stated strength 
(mg) 

Number of products: Collected in: Total 
number 

Mass% 
API(s) 

$ Calibration 
set 

External validation sets Africa* Germany 

V1 
different 

brand 

V2 
different 

batch 

V3 
different 
strength 

V5-V8 
falsified 

medicines 

Medicine types included in calibration and validation sets: 
Amoxicillin 500 6 2 3 2 0 11 2 13 52–82 
Amoxicillin/ 

clavulanic acid 
500/125 5 2 0 1 2 8 2  10 45–55/ 

8–13 
Ciprofloxacin 500 6 2 1 2 0 7 4 11 59–73 
Doxycycline 100 6 2 3 0 0 10 1 11 32–68 
Furosemide 40 6 2 2 0 4 12 2 14 21–38 
Hydrochlorothiazide 50 3 1 1 5 1 7 4 11 12–50 
Metformin 500 6 2 2 4 0 12 2 14 77–94 
Metronidazole 250 6 2 3 3 2 13 3 16 34–85 
Penicillin V 250 6 2 2 3 1 12 2 14 71–89 
Sulfamethoxazole/ 

trimethoprim 
400/80 6 2 1 1 8 16 2 18 58–77/ 

12–15 
Placebo – 3 1 0 0 0 0 4 4  
Total  59 20 18 21 18 108 28 136  
Further medicine types: 
Falsified “chloroquine” 

§

2 2 0 2  

30 additional APIs #      0 0 32 32 32–92 
Grand total      20 110 60 170  

All products were formulated as tablets. * Cameroon, Democratic Republic of Congo, Chad, and Nigeria [9,35,42]. 
$ Proportion of active pharmaceutical ingredient(s) in total tablet weight, expressed as percent. The stated mass% range was calculated from tablets of calibration 

and validation sets and the tablets of different batches and strength but excluding the falsified products. 
§ Two products labelled as chloroquine tablets, containing no chloroquine but 124 mg or 14 mg of metronidazole, respectively [42]. 
# 32 products containing 30 additional active pharmaceutical ingredients from the WHO Essential Medicines List 2021 [47], purchased in Germany and listed in 

Table S1. Table S1 (Supplementary Materials) gives detailed information on each of the 170 products. 
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(2). In twelve of these products, the coating had a different colour than 
the tablet core. A total of 45 products showed smooth top and bottom 
sides, 83 had a score line or an embossing on one side, and 40 on both 
sides. For two falsified products, tablets from the same container showed 
different kinds of embossing and score lines. 

In total, samples of 170 different pharmaceutical products were 
included into this study. Table S1 gives detailed information about each 
of these medicines, including brand names and stated manufacturers. 

2.2 HPLC analysis 

Medicines collected in African countries were shipped to Germany by 
commercial courier services and were stored at Tübingen University at 
21 ◦C until analysis. Compendial analysis was carried out according to 
the monographs of the United States Pharmacopeia (USP 41) for the 
respective medicines. This comprised identification and quantification 
of the API as well as dissolution testing. For the 105 products collected in 
Cameroon, the DR Congo and Chad, the procedures and results of this 
testing have been published [9,35,42]. 

Additionally, five falsified products labelled as sulfamethoxazole/ 
trimethoprim tablets 400/80 mg had been collected in Nigeria (see 
above). They were investigated by HPLC-UV analysis for identity and 
quantity of the APIs, using an Agilent 1260 Infinity II HPLC system 
(Agilent Technologies, Santa Clara, California, USA), with columns and 
solvents as specified in the USP 41. Certified pharmaceutical secondary 
reference standards from Sigma-Aldrich (St. Louis, Missouri, USA) were 
used. The results of this analysis are listed in Table S1. 

2.3 Creation of calibration and external validation sets 

For each of the ten APIs or fixed API combinations listed in Table 1, it 
was attempted to obtain eight products representing different brands 
containing the same API(s) in the same strength. Using the RAND 
function of MS Excel®, two of these products were selected randomly for 
inclusion into the external validation set V1, and the other six products 
were included into the calibration set. 

As summarized in Table 2, further external validation sets were 
created from tablets belonging to different batches of the brands 
comprised in the calibration set, or from tablets of different strength 
than those comprised in the calibration set. Furthermore, an external 
validation set was created from tablet preparations of 30 additional APIs 
which were contained in the 2021 WHO Model List of Essential Medi-
cines [47] and were commercially available in Germany. Finally, 
external validation sets were created from tablets which had been 
identified as falsified in the course of the aforementioned medicine 
quality studies [9,35,42] or in the present study. 

All products collected in African countries and included into the 
calibration set or into the validation sets V1, V2 and V3 (Table 2) had 
been confirmed to comply with the USP specifications for identity, assay 
(= quantity) and dissolution of the API(s) by analysis in our laboratory. 

2.4 NIR spectrometers 

Five NIR-S-G1 spectrometers (devices A-E), produced by InnoSpectra 
(Hsinchu, Taiwan), were purchased; however, device A had to be 
excluded due to a technical defect. As described by Crocombe [48] the 
NIR-S-G1 uses the digital light processing (DLP) technology of Texas 
Instruments (Dallas, Texas, USA), i.e. it contains a digital micromirror 
device and a single 1 mm uncooled InGaAs detector [49]. It performs 
measurements in diffuse reflection mode, in the wavelength range of 
900–1700 nm. A performance evaluation of NIR-S-G1 devices, including 
wavelength and photometric accuracy and repeatability, as well as 
spectroscopic noise, has been published recently [50]. 

2.5 Software 

ISC WinForms SDK GUI (v3.7.2, InnoSpectra, Hsinchu, Taiwan) was 
used to control the NIR-S-G1 devices. The Aspen Unscrambler® (V12.2, 
Aspen Technology Inc., Bedford, MA, USA) was utilized for the initial 
principal component analyses. PLS Toolbox (v.9.21, Eigenvector 
Research Inc., Manson, WA, USA) in a MATLAB environment (v.R2023a, 
The Mathworks Inc., Natick, MA, USA) was used for partial least squares 
discriminant analysis and piecewise direct standardization. The DD- 
SIMCA toolbox (v 1.2) [38] was used to compute the one-class classifi-
cation models, and the MATLAB code for the Procrustes cross-validation 
was downloaded from the GitHub repository indicated by Kucher-
yavskiy et al. [51]. 

2.6 Spectra acquisition 

For spectra acquisition, the NIR-S-G1 device was fixed in an upright 
position, either by using a 3D printed device holder (Fig. S1, Supple-
mentary Materials) or by attaching self-adhesive plastic feet to the 
rounded bottom of the device. The device was connected to a computer 
using a USB cable. Tablets were removed from blisters and placed 
directly onto the sapphire scan window for spectra acquisition. Any 
vibrations or movements were avoided during the measurements. 

The spectrometer was switched on one hour before the first mea-
surement. Ten initial blind scans were then performed to ensure a sys-
tem temperature between 30 and 40 ◦C for all measurements. The 
employed NIR-S-G1 instrument settings were: Hadamard mode; spectral 
range 900–1700 nm; pattern width 7.03 nm; digital resolution 583; 
exposure time 1.27 ms; 16 repeats. Spectra were saved as comma 
separated values (CSV) files. Four spectra were acquired of each tablet, 
two each from the bottom and the top side, with a vertical flip in be-
tween the two measurements. Of each product, two tablets were 
investigated. 

Calibration set products were first measured by investigator BM 
using the devices C and D. After two weeks, measurements were 
repeated by investigator GG using devices C and B. Thereby, 32 spectra 
were acquired from each calibration set product. Another two weeks 
later, products of validation set V1 were measured by investigator JG 
using devices C and E. Thereby, 16 spectra were acquired from each 
product of this validation set. In this way, procedures were validated by 
measurements carried out on different days, by different persons and 
using different pieces of equipment, following the recommendations of 
the International Council for Harmonisation (ICH) [52] and the USP 
[53]. 

Products of the validation sets V2 – V8 (Table 2) were measured by 
investigator BM using device C. Eight spectra were acquired from each 
product. However, for two products representing falsified medicines, 
only one tablet was left after chemical analysis, and therefore only four 
spectra were recorded. In total, 2928 spectra were recorded and 
included into the data analysis. 

Between measurements, tablets were stored at 21 ◦C in a dark place, 
in low-density polyethylene zip lock bags which were placed in a high- 
density polyethylene box together with desiccant silica gel. 

Table 2 
External validation sets for testing the chemometric models developed in this 
study.  

Set Products 

V1 Products representing brands not comprised in the calibration set, but 
containing the same APIs in the same strength as the products in the calibration 
set 

V2 Products representing different batches of brands comprised in the calibration 
set 

V3 Products of different strength than those comprised in the calibration set 
V4 Tablet preparations of 30 additional APIs not contained in the calibration set 
V5 Falsified medicines containing no API at all 
V6 Falsified medicines containing a different API instead of the declared one 
V7 Falsified medicines containing the correct amount of the declared API but 

carrying a label misrepresenting the source or the expiry date of the product 
V8 Falsified medicines containing the declared API in an incorrect amount  
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2.7 Spectral data pretreatment 

Each NIR-S-G1 device records data points at slightly different 
wavelengths, spaced in unequal steps. Therefore, the raw NIR spectra 
were interpolated in 1 nm intervals using natural cubic splines with the 
Aspen Unscrambler® software. According to the NIR-S-G1 manufac-
turer’s information [49], the photosensitivity of the device is low at 
wavelengths <950 nm, and it changes with temperature at wavelengths 
>1650 nm, resulting in noise in these ranges. Furthermore, the common 
excipient talcum exhibits a prominent absorption peak at 1391 nm 
(Fig. S2) which interfered with the desired classification of spectra ac-
cording to the APIs (rather than according to excipients). Therefore, 
only the spectral ranges 950–1375 nm and 1405–1650 nm were used for 
chemometric analyses. 

Different pre-processing methods were tested, i.e. a Savitzky-Golay 
(SG) algorithm [54] using either no derivative or 1st or 2nd deriva-
tive; using 2nd, 3rd, 4th or 5th order polynomial; and using a window 
size of 3, 7, 13, 15 or 21. Either no standard normal variate (SNV) 
transformation [55] was applied, or SNV before or after SG. The best 
separation of different APIs in PCA and DD-SIMCA was obtained using 
SG with 2nd or 1st derivative, window size 13 or 15, and SNV performed 
after SG. Therefore, for most chemometric analyses SG (2, 2, 13) fol-
lowed by SNV was used. However, for the spectral data of amoxicillin, 
amoxicillin/clavulanic acid and ciprofloxacin, SG with the 1st derivative 
and a window size of 15 was chosen, since using SG with the 2nd de-
rivative resulted in the observed numbers of extremes falling outside of 
the tolerance limits for many values of α in the extreme plots (see Section 
2.9). Spectra were mean centred before analysis. 

2.8 Principal component analysis (PCA) 

PCA models were computed from the spectra of APIs in the cali-
bration set using pretreated spectral data. The singular value decom-
position (SVD) algorithm was applied with cross validation. The results 
were visualized in the respective PC-1 vs. PC-2 scores plots. 

2.9 DD-SIMCA analysis 

In DD-SIMCA analysis [37,38], the first step is a PCA of the cali-
bration samples for the investigated target class (in the present case, of 
the spectra of the calibration set products containing a specific API). 
Subsequently, for each spectrum a score distance hi and an orthogonal 
distance vi are calculated from the PCA results. These two distances are 
scaled and combined in a total distance that follows the scaled 
Chi-squared distribution. Based on the calibration set, the parameters of 
the Chi-squared distribution (degrees of freedom and scaling factor) are 
computed, and an acceptance area is calculated using a chosen type I 
error α. The calculated model is represented by an acceptance plot, 
usually with the x- and y-axis in logarithmic scale, i.e. x = log (1 + hi /h0) 
and y = log (1 + vi /v0). New samples are projected onto the acceptance 
plot and can be classified as members or non-members of the target class 
according to their projection falling inside or outside of the acceptance 
area, respectively. 

Furthermore, extreme plots can be generated from the calibration set 
data by plotting the theoretically expected and the observed numbers of 
extreme samples for different values of the type I error α. The perfor-
mance of the model is satisfactory if, for all values of α, the observed 
numbers of extreme samples are inside of the tolerance limits calculated 
using a binomial distribution [37,38,56]. 

In the present study, models were built applying the rigorous 
approach [56,57], with the probability of type I error set at α = 0.01. The 
γ value for definition of the outlier area [37] was set at 0.01. Outlying 
spectra were identified with DD-SIMCA using the “robust” method [37, 
38], and were removed from the datasets. Subsequent analyses were 
carried out using the “classical” method [37,38]. The optimal number of 
principal components was chosen based on both the extreme plots 

(E-plots) and the sensitivity plots, using the calibration and the Pro-
crustes cross-validation datasets [51,58]. The model with the E-plots 
showing the best extreme pattern (as close as possible to the tolerance 
corridor) and the sensitivity closest to the 100 × (1-α)% value were 
selected [56,59]. 

Subsequently, spectra of products of the external validation set V1 
were projected onto the respective model. The models were further 
tested for sensitivity using products of external validation sets V2 and V3 
(see Table 2) containing the same API, and for specificity using spectra 
of all products containing other APIs in the calibration set and in 
external validation sets V1, V2, V3 and V4. The results were visualized in 
acceptance plots. 

2.10 Partial least squares discriminant analysis (PLS-DA) 

A PLS-DA model was computed to separate the classes of amoxicillin 
and amoxicillin/clavulanic acid. The optimal PLS dimension (four latent 
variables) was determined through a Venetian blind cross-validation 
process and confirmed by predictions of the Procrustes cross- 
validation dataset. 

2.11 Piecewise direct standardization (PDS) 

PDS was used to compute models for calibration transfer between the 
employed spectroscopic devices. Device C was chosen as “master”, and 
devices B and D as “slaves”. Using the spectra of selected samples (see 
Section 3.10), a transform matrix was computed and employed to 
transfer spectra measured on the “slave” devices. The optimal window 
size, i.e. the “slave” spectrum’s spectral range on which the transform 
matrix was computed, was selected as follows: a Procrustes cross- 
validation dataset (Xpvslave) was computed for the slave transfer data-
set. Subsequently, PDS models with window sizes between 1 and 201 
were computed and applied on the Xpvslave dataset. The transferred 
datasets were projected onto the DD-SIMCA model of the “master” de-
vice, and sensitivity was determined. The window size resulting in the 
highest sensitivity was selected. 

2.12 Definitions 

In this study, the current definitions of substandard and falsified 
medicines by the World Health Organization (WHO) were used [1,2]. 
Where necessary, additionally the criteria suggested by Hauk et al. [60] 
and by Ozawa et al. [36] were applied. 

Calibration set spectra were classified as regular objects, extreme 
objects or outliers as described by Pomerantsev and Rodionova [37,56]. 
For the DD-SIMCA models, the a posteriori sensitivity was calculated as 
follows [38]:  

Sensitivity (%) = 100 % × (nspectra – nextreme objects)/nspectra                           

Rigorous DD-SIMCA models [57] are based on the target dataset 
alone, therefore no specificity values can be calculated for these models 
[56]. When a model was used for predictions using a test set of samples 
outside the target class, the specificity value for this model and this test 
set was calculated as follows [38]:  

Specificity (%) = 100 % × (nexternal objects)/nsamples)                                     

New samples were classified as external objects if at least half of their 
spectra were projected outside of the acceptance area of the respective 
DD-SIMCA model. 

3. Results 

3.1 Visual comparison of acquired NIR spectra 

Fig. 1 shows the NIR spectra of different brands of penicillin V, 
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amoxicillin, ciprofloxacin, and placebo tablets. NIR spectra of tablets 
depend both on the chemical composition, i.e. on the APIs as well as on 
the excipients, and on physicochemical characteristics such as crystal-
linity, particle size, moisture etc. [19]. Excipients and physicochemical 
characteristics are different between products from different manufac-
turers, and this results in differences between the NIR spectra of 
different brands. Nevertheless, Fig. 1 clearly suggests that for tablets 
containing e.g. penicillin V or ciprofloxacin, the spectral features in the 
investigated wavelength range predominantly depend on the respective 
API. Amoxicillin tablets showed fewer distinctive absorption peaks in 
this wavelength range, and the investigated placebo tablets showed even 

less. Fig. S2 depicts the spectra of all products included into the cali-
bration set of this study. Most of them show API-related differences to 
each other and to the spectra of the placebo tablets. This suggests that 
spectra recorded on the low-cost NIR-S-G1 device may allow verification 
of the presence and type of APIs contained in tablet products, provided 
the respective API shows absorption bands in the range of 950–1650 nm. 
Interestingly, the spectra of penicillin V and amoxicillin tablets are very 
different, despite the considerable chemical similarity between these 
two beta-lactam antibiotics (Fig. 1). 

3.2 Principal component analysis (PCA) 

For a first exploratory analysis, the spectra of all products in the 
calibration set, recorded with device C, were investigated by PCA. 
Fig. 2A displays the result as a PC-1 vs. PC-2 scores plot. Five of the ten 
APIs or API combinations were quite well separated from each other. 
The spectra of those products were removed from the data set and a 
second PCA (Fig. 2B) was carried out. This led to a separation of most of 
the remaining APIs. However, the data points of amoxicillin and 
amoxicillin/clavulanic acid tablets still overlapped. Even when a PCA 
with spectra only of these two types of tablets was conducted, and up to 
seven principal components were investigated, their separation could 
not be achieved. 

As expected, the NIR spectra of different tablet brands (containing 
the same API in the same amount) still showed differences from each 
other in their PC scores, prominent especially in the case of hydro-
chlorothiazide and metformin tablets. For metformin, six brands were 
comprised in the calibration set. All contained 500 mg metformin per 
tablet, but the average tablet weight of the brands varied from 533.4 to 
649.1 mg, due to different amounts of excipients used by the manufac-
turers. Fig. 2B shows for each of the six brands the mass percentage of 
metformin in the total tablet weight. As clearly visible, the PC-1 scores 
were correlated to the mass percentage of the API in the tablets. For 
hydrochlorothiazide, only three brands were available for inclusion in 
the calibration set. All three brands contained 50 mg API per tablet, but 
they showed extremely different API mass percentages in the total tablet 
weight: 15.9 %, 35.0 %, and 50.3 %, respectively. Correspondingly the 
spectra of three brands showed large differences in their PC scores 
(Fig. 2A). These observations exemplify that API mass percentage is an 
important, albeit not the only factor influencing the NIR spectra of 
different commercial products containing the same API. 

No or only very small differences were observed between spectra 
recorded from different sides of the tablets, even when the tablets had 
embossings or score lines on one side. Notably, even coloured tablets (e. 
g. of furosemide or metronidazole; Table S1) did not show noticeable 
differences from white tablets in their PC scores. 

The spectra of the calibration set had been recorded using three 
separate NIR-S-G1 devices (see Section 2.6). For a further analysis, all 
spectra recorded with devices B, C, and D from the calibration set 
products and placebos were pooled and investigated by PCA. The results 
are shown in Figs. 2C and 2D. As expected, the resulting model showed 
more variation than the model obtained with device C alone, but it still 
allowed a similar separation of the ten APIs and the placebos in the same 
two PCA steps. However, the variation introduced into the model by the 
use of different devices suggests that an adjustment of the spectra from 
different devices with calibration transfer methods, e.g. by piecewise 
direct standardization, may be useful to improve the accuracy of the 
model [61]. In contrast, no influence was detected regarding the 
investigator operating the device. 

A different approach which led to a somewhat better separation of 
the spectra of the different APIs recorded with the three devices is 
illustrated and explained in Fig. S3. In that approach, nine consecutive 
PCA steps were used instead of two, and after each step the spectra of 
one of the APIs were removed from the dataset. 

In summary, these PCA analyses suggested that a verification of the 
presence of the declared API in different tablet brands using the low-cost 

Fig. 1. Near-infrared spectra (950 - 1650 nm) of penicillin V tablets (11 
products), amoxicillin tablets (10 products), ciprofloxacin tablets (10 products) 
and placebo tablets (4 products). 

J. Gabel et al.                                                                                                                                                                                                                                    



Talanta Open 8 (2023) 100270

6

Fig. 2. Principal component analysis of the spectra of tablets from all active pharmaceutical ingredients (APIs) in the calibration set. A) and B): Spectra recorded with 
device C. Different colours denote different APIs. C) and D): Spectra recorded with devices B, C and D. Different colours denote different spectrometric devices. For 
hydrochlorothiazide and metformin tablets, the mass percentage of the API in the total tablet weight is indicated for each of the investigated brands. Amo, 
amoxicillin; AC, amoxicillin/clavulanic acid; Cip, ciprofloxacin; Dox, doxycycline; Fur, furosemide; Hyd, hydrochlorothiazide; Metf, metformin; Metr, metronidazole; 
Pen, penicillin V; ST, sulfamethoxazole/trimethoprim; Pla, placebo. 

Fig. 3. DD-SIMCA analysis of the spectra of ciprofloxacin tablets. Spectra were recorded with device C. α = 0.01 and two prinicipal components were used for model 
building with the “classical” method [37]. Panels D-F: projection of spectra of further ciprofloxacin products onto the DD-SIMCA model. 
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NIR-S-G1 device may be possible, and encouraged us to expand the in-
vestigations using further, more adapted chemometric methods. 

3.3 DD-SIMCA model building and Procrustes cross-validation 

While PCA is an unsupervised method which investigates the data 
without prior knowledge on their class membership, data-driven soft 
independent modelling of class analogy (DD-SIMCA) is a one-class 
classification method. It distinguishes objects from one target class (in 
this case, tablets containing a certain API) from all other objects and 
classes, without the necessity of known samples of the other classes. This 
is important in the screening for substandard and falsified (SF) medi-
cines, as the composition of such SF medicines is not known a priori. DD- 
SIMCA is particularly useful in the verification of the identity of prod-
ucts [43,57]. The basic principles of DD-SIMCA are explained in Section 
2.9. 

Models were computed for each API using the spectra of the cali-
bration set obtained with NIR-S-G1 device C. Fig. 3 shows as an example 
the resulting plots for ciprofloxacin. Initial analysis using the "robust” 
method (based on median and interquartile range statistics) [37] iden-
tified one outlier (Fig. 3A). This was removed from the dataset, and 
subsequently the optimal number of principal components (PCs) was 
selected comparing DD-SIMCA models built using the “classical” method 
(based on mean and variance statistics) [37,38]. 

Fig. 3B shows the acceptance plot of the final model, built using two 
PCs. As visible, all but one of the spectra are inside the acceptance area, 
i.e. sensitivity is 98.9 % which is good since the expected sensitivity is 
99 % (for α = 1 %) (Table 3). 

DD-SIMCA models were internally validated using Procrustes cross- 
validation (PCV), a novel approach for the validation of chemometric 
models. PCV has been suggested especially for short datasets as a bridge 
between conventional cross-validation and the use of independent 
validation sets [51,58]. Fig. 3C shows the result of the PCV for cipro-
floxacin. The agreement between the acceptance plot and the PCV plot is 
very good. 

The quality of models built with different numbers of PCs was also 
investigated for each API using and comparing extreme plots [38] for 
the models and the PCVs (see Section 2.9). As shown in Fig. S4, in all 
cases the extreme plots for the model and the PCV were very similar, and 
the observed numbers of extremes were within the tolerance limits for 
all values of α. Table 3 shows that for all APIs it was possible to build 
models (using α = 0.01) showing an a posteriori sensitivity close to the 
expected value of 100 × (1 – α)% both for the model and the PCV, and 
this further confirmed the quality of the models. As described below, 
spectra of amoxicillin and amoxicillin/clavulanic acid tablets could not 
be reliably separated from each other and were therefore combined into 
a single class, later to be separated by partial least squares discriminant 
analysis. 

3.4 External validation of the models 

In the present study, for most APIs eight commercial products of the 
same strength could be obtained for inclusion in the calibration and 
validation sets. For each API, two of these products were selected 
randomly for the validation set V1 and six for the calibration set (see 
Methods). As an example, the results for ciprofloxacin external valida-
tion set V1 are shown in Fig. 3D. All eight spectra of each of the two 
products of this validation set were projected into the acceptance area of 
the ciprofloxacin model, therefore both products were classified 
correctly. Obviously, six calibration set products are not enough to 
represent the variability of all commercial tablet products of this API on 
the market, therefore a limited sensitivity of this external validation was 
to be expected. As an example, for metformin the spectra of only one of 
the two products of validation set V1 were projected into the acceptance 
area (Fig. S5). The spectra of the other product were projected outside of 
the acceptance area resulting in a sensitivity of 50 % for the external Ta
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validation of the metformin model. The results for all APIs are sum-
marized in Table 3 and visualized in Fig. S5. Out of 19 products in the 
external validation sets V1 for the different APIs, 15 (79 %) were 
correctly classified as members of the respective target class. Out of the 
four products which were classified as non-members, three showed API 
mass percentages out of the range represented in the respective cali-
bration set. This exemplifies that, as mentioned above, API mass per-
centage is an important, albeit not the only factor influencing the NIR 
spectra of different commercial products containing the same API. 

For 16 of the 19 products of validation sets V1, their classification as 
members or non-members of the target class was supported by the 
projected position of all eight spectra of this product, and for the other 
three products by seven out of eight spectra (Fig. S5). 

3.5 Testing of the models with different batches of brands contained it the 
calibration set 

Eighteen samples were available which represented the same brands 
and strengths as contained in the calibration set, but different batches 
thereof (= external validation set V2, Table 2). Fifteen (83 %) of these 
samples were correctly classified as members of the target class 
(Table 3). For ciprofloxacin, this is exemplified in Fig. 3E. 

In striking contrast, all eight spectra of a metronidazole sample 
(stated manufacturer CSPC Ouyi Pharmaceutical Co. Ltd., China; batch 
no. 825160701) were projected to a position quite far outside the 
acceptance area (Fig. S6), very different from the corresponding sample 
of the same brand in the calibration set (batch no. 825170302). Both 
samples had been collected in the DR Congo, and both had passed 
analysis for correct identity, content, and dissolution of the API in our 
laboratory. However, the average tablet weight of the two batches was 
very different (293.7 mg and 340.6 mg, respectively). Therefore, the API 
mass percentage of the first-mentioned batch resulted as 85.1 %, which 
was higher than for any of the six samples of the calibration set. The 
most likely explanation for this observation is that the manufacturer had 
used different manufacturing protocols for the two different batches of 
the same brand. A similar, though less pronounced observation was 
made for a doxycycline sample, again from CSPC Ouyi Pharmaceutical 
Co. Ltd. Also in this case the average tablet weight of the batch in the 
external validation set V2 was different from that of the batch in the 
calibration set (173.0 mg and 186.5 mg, respectively), and four of its 
eight spectra were projected to a position just outside of the acceptance 
area (Fig. S6). 

Finally, a penicillin V sample from external validation set V2 was 
classified as non-member of the target class, since six of its eight spectra 
were projected to a position just outside of the acceptance area (Fig. S6). 
This sample, and the corresponding batch in the calibration set, showed 
the lowest API mass percentage of all products used for model building. 
It appears possible that small differences in composition or physico-
chemical properties of this penicillin V sample may have resulted in 
projection of its spectra outside of the acceptance area. 

3.6 Testing of the models with tablets of different strength than those 
comprised it the calibration set 

Into the calibration and validation sets, for each API only products of 
identical strength had been included. For further testing, a total of 21 
products were available containing the same API in different strength 
than the products in the calibration set (external validation set V3, 
Table 2). 17 of these 21 products were from different manufacturers 
than those in the calibration set (Table S1). 9 of the 21 products (43 %) 
were classified as members of the target class of the respective API, by 
projection of their spectra onto the DD-SIMCA models (Table 3 and 
Fig. S7). Notably, for many of the 21 products, the position of the pro-
jections inside or outside of the acceptance area was related to the mass 
percentage of the API in the total tablet weight in comparison to the 
calibration set. E.g. in case of ciprofloxacin (Fig. 3F), the six spectra 

projected outside of the acceptance area belonged to a sample with a 
mass percentage outside of the range covered in the calibration set. 

3.7 Testing of the models with tablets containing different APIs 

Next, the DD-SIMCA model for each API was tested by projecting the 
spectra of products of all other APIs (and placebos) onto this model, to 
investigate whether these products would be correctly identified as non- 
members of the respective target class. The projected spectra were ob-
tained from the products included in the calibration set and the vali-
dation sets V1, V2 and V3 of the other investigated APIs (Tables 1 and 2), 
but also from products of 30 additional APIs (= external validation set 
V4, Table 2), not comprised in the calibration set. In total, >1.250 
spectra from ≥129 products representing 40 different APIs or API 
combinations were projected onto each model. The results are shown in 
Fig. 4. Without a single exception, all spectra were projected to positions 
outside of the acceptance areas of the respective models, in most cases 
very far outside. 

External validation set V4 also comprised tablets of moxifloxacin 
hydrochloride, an API which is chemically closely related to ciproflox-
acin hydrochloride. These two APIs were clearly distinguishable in the 
DD-SIMCA analysis (Fig. 4), while they had not been separated using 
projections of moxifloxacin hydrochloride spectra onto the initial, 
exploratory PCA models (data not shown). As further shown in Fig. 4, 
tablets containing free moxifloxacin base were clearly separated from 
those containing moxifloxacin hydrochloride. (All “ciprofloxacin” sam-
ples in the calibration set contained ciprofloxacin in form of its hydro-
chloride, see Table S1.) External validation set V4 also comprised tablets 
of xipamide, which is chemically closely related to furosemide. The 
xipamide spectra were projected to a position clearly outside of the 
furosemide acceptance area, though not very far outside (Fig. 4). 
Furthermore, external validation set V4 comprised one product repre-
senting doxycycline monohydrate tablets. These were very clearly 
separated from the calibration set tablets which contained doxycycline 
hyclate, i.e. doxycycline hydrochloride hemiethanolate hemihydrate 
(Fig. 4). 

3.8 Discrimination of spectra of amoxicillin and amoxicillin/clavulanic 
acid tablets by partial least squares discriminant analysis (PLS-DA) 

As already observed in the initial exploratory PCA analysis, the 
separation of spectra of amoxicillin tablets from those of amoxicillin/ 
clavulanic acid tablets was problematic. Also in the DD-SIMCA analysis, 
spectra of amoxicillin/clavulanic acid tablets were projected to positions 
close to the acceptance area of the amoxicillin model, and some spectra 
of amoxicillin tablets were projected even into the acceptance area of 
the model for amoxicillin/clavulanic acid (Supp. Fig. S8). Very similar 
problems have been reported previously [40]. Therefore, in the 
DD-SIMCA analyses described above, we had combined these APIs into a 
single class. Their separation was now attempted using partial least 
squares discriminant analysis (PLS-DA). PLS-DA typically outperforms 
SIMCA in classification rates, provided that within-class variability is 
low [62]. The classification was performed using two classes, i.e. 
amoxicillin and amoxicillin/clavulanic acid tablets. The calibration set 
spectra from device C were used to compute the PLS-DA, and the models 
were then tested by Procrustes cross-validation as well as against the 
spectra of the external validation set V1 (recorded with device C). The 
results are shown in Table 4: all spectra from the calibration set were 
classified correctly, and so were the spectra from the three products of 
validation set V1 which had been identified by DD-SIMCA as members of 
the combined amoxicillin and amoxicillin/clavulanic acid class. One 
further validation set product of amoxicillin/clavulanic acid had been 
classified, by projection onto the DD-SIMCA model, as a non-member of 
that combined class (Fig. S5) and was therefore not included into the 
PLS-DA. 
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3.9 Testing of the models with falsified medicines 

The key purpose of the present study was to examine whether the 
developed method would be useful for the identification of falsified (and 
possibly also substandard) medicines in low-resource settings. Twenty 
samples of falsified medicines were available (Table 5). They had been 

collected in African countries and analysed according to the Unites 
States Pharmacopeia in our laboratory. The spectra of all 20 falsified 
products were projected onto each of the DD-SIMCA models. The results 
are shown in Fig. 5 and were consistent with the expectations. 

The spectra of seven falsified products which had been found to 
contain the correct amounts of the labelled active ingredients but to 

Fig. 4. Testing of DD-SIMCA models for each active pharmaceutical ingredient (API) by projecting the spectra of all other APIs (and placebos) used in this study (40 
APIs or API combinations, i.e. ≥129 products resulting in >1.250 spectra) onto the respective model. It should be noted that all scales are logarithmic. Models were 
built using spectra recorded with device C. 

Table 4 
Results obtained from the partial least squares discriminant analysis (PLS-DA) of the spectra of amoxicillin and amoxicillin/clavulanic acid tablets (recorded with 
device C).  

API Calibration set External validation set V1 

No. of spectra Calibration set correct identification PCV 
correct identification 

No. of spectra Correct identification 

Amoxicillin 96 100 % 100 % 16 100 % 
Amoxicillin/ 

clavulanic acid 
80 100 % 100 % 8 100 % 

PCV, Procrustes cross-validation. 
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state a false manufacturer or a false expiry date on their label were 
projected into the acceptance area of the respective DD-SIMCA model. 
All the other 13 falsified products were correctly identified as non- 
members of any of the investigated target classes. Furthermore, as 
shown in Fig. 5B, three sulfamethoxazole/trimethoprim products which 
contained insufficient amounts of the APIs were projected to positions 
outside of the acceptance area. All three products showed API mass 
percentages out of the range covered in the calibration set. Likewise, as 
shown in Fig. 5E, spectra of two falsified medicines labelled as chloro-
quine but containing a low dose of metronidazole (126 mg and 14 mg, 
respectively, rather than the 250 mg contained in the metronidazole 
tablets of the calibration set) were projected to a position near to the 
acceptance area of the metronidazole model. Also, a falsified product 
labelled to contain (free) metronidazole but found to contain metroni-
dazole in form of its benzoate ester was clearly distinguished from 
authentic products (Fig. 5E). 

In the initial PCA analyses (Fig. 2 and Fig. S3), projections of several 
falsified tablets labelled as sulfamethoxazole/trimethoprim but found to 
contain no API at all had not been separated from the spectra of the 
doxycycline tablets in the calibration set (data not shown). In the DD- 
SIMCA analysis, this separation was achieved (Fig. 5H). 

3.10 Calibration transfer between the different spectroscopic devices by 
piecewise direct standardization 

PCA analysis had shown obvious differences between the spectra 
recorded with three different NIR-S-G1 devices (Fig. 2C and 2D). This is 
a common problem in NIR spectroscopy [61,63] and was also observed 
in DD-SIMCA analysis. An example is shown in Fig. 6A and 6B for cip-
rofloxacin tablets: in the acceptance plot of the model built using the 
calibration set spectra recorded with device C, all but one spectrum from 
device C were correctly located within the acceptance area. In contrast, 
all calibration set spectra recorded with device B were projected to 
positions outside the acceptance area of this model, i.e. were not iden-
tified as members of the ciprofloxacin class. 

One possible approach to deal with this problem is to include the 

calibration set spectra from some or all instruments into the model 
building, forcing the calibration algorithm to try to find an equation that 
is robust to between-instrument variation [61]. Therefore, calibration 
set spectra recorded with devices B, C and D were pooled and used for 
building DD-SIMCA models for each API. However, as expected this 
resulted in a loss of accuracy of the models. This was most strikingly 
observed in the case of the doxycycline model (Fig. S9, panels A and B). 
External validation set V4 contained products of 30 different APIs; seven 
of these were now projected into the acceptance area of the doxycycline 
model (five with all their eight spectra, and two with some of the eight 
spectra). Therefore, these products could not be differentiated from 
doxycycline tablets any more. The loss of accuracy from pooling the 
spectra of three devices before model building is further illustrated and 
explained in Fig. S10. 

A more suitable approach to address the observed problem of 
between-instrument variation may therefore be the application of a 
transfer method, to match the signals from secondary (“slave”) in-
struments to those of the primary (“master”) instrument. Piecewise 
direct standardization (PDS) is the most commonly used method for 
such a transfer [61,63-65]. For PDS, a few samples with high leverage 
are selected from the set of samples measured on the "master”, and 
remeasured on the “slave” instrument. The differences between the 
subset spectra obtained on both instruments are then used to compute 
the transfer parameters [64]. It is obviously of crucial importance that 
the samples selected for this subset are representative for the whole 
dataset, and a higher number of samples in this subset leads to better 
results in the correction of between-instrument variation [64]. In the 
present study, only six products for each API were available, allowing 
only a first pilot experiment of PDS. This is exemplified for ciprofloxacin 
in Fig. 6D-F. Device C was chosen as “master” instrument, and devices B 
and D as “slaves”. Using PCA, the three calibration set products with the 
most different spectra were identified (Fig. 6D) and used to compute 
transfer parameters. These parameters were applied to transfer the 
spectra of the remaining calibration set products obtained with devices B 
and D, which were then projected onto the original model (built with the 
calibration set spectra recorded on device C). As shown in Figs. 6E and 

Table 5 
Falsified medicines investigated in this study.  

Product 
code 

Stated API Stated strength 
[mg] 

Determined API content 
[mg] 

Validation set (Table 2) and observed 
deficiency 

Country of 
collection 

Reference 

Pen_Oxf Penicillin V 500 50 mg paracetamol V6 - incorrect API Cameroon [35] 
ST_Cit Sulfamethoxazole/ 

trimethoprim 
400/80 0 V5 - no API Nigeria this study 

ST_Opt Sulfamethoxazole/ 
trimethoprim 

400/80 0 V5 - no API Chad [9] 

ST_Rot Sulfamethoxazole/ 
trimethoprim 

400/80 0 V5 - no API Nigeria this study 

ST_Wel Sulfamethoxazole/ 
trimethoprim 

400/80 27 mg paracetamol V6 - incorrect API Nigeria this study 

ST_Spr Sulfamethoxazole/ 
trimethoprim 

400/80 as stated on label V7 - false manufacturer stated Cameroon [60] 

ST_Gau Sulfamethoxazole/ 
trimethoprim 

400/80 414/19 V8 - insufficient API Nigeria this study 

ST_Mao Sulfamethoxazole/ 
trimethoprim 

400/80 191/17 V8 - insufficient API Chad [9] 

ST_Zun Sulfamethoxazole/ 
trimethoprim 

400/80 273/54 V8 - insufficient API Nigeria this study 

Fur1_Mic Furosemide 40 as stated on label V7 - false expiry date stated Cameroon [60] 
Fur2_Mic Furosemide 40 as stated on label V7 - false expiry date stated Cameroon [60] 
Fur3_Mic Furosemide 40 as stated on label V7 - false expiry date stated Cameroon [60] 
Fur4_Mic Furosemide 40 as stated on label V7 - false expiry date stated Cameroon [60] 
Metr_Mac Metronidazole 200 93 mg metronidazole 

benzoate 
V6 - incorrect API DR Congo [35] 

ChF_Daw Chloroquine 250 126 mg metronidazole V6 - incorrect API DR Congo [42] 
Chl_Jia Chloroquine 100 14 mg metronidazole V6 - incorrect API Cameroon [42] 
Metr_Mem Metronidazole 250 as stated on label V7 - false expiry date stated DR Congo [60] 
Hyd_Ste Hydrochlorothiazide 50 5 mg glibenclamide V6 - incorrect API Cameroon [9,70] 
AC_Gla Amoxicillin/clavulanic acid 500/125 0 V5 - no API Cameroon [35] 
AC_Med Amoxicillin/clavulanic acid 500/125 as stated on label V7 - false manufacturer stated Cameroon [60]  
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6F, the transferred spectra were recognized as members of the target 
class with 100 % sensitivity. 

Table 6 shows the parameters used and results obtained for the PDS 
of all investigated APIs. In most cases, the transferred spectra were 
recognized as members of the target class with good sensitivity. The only 
exception were metformin tablets, which had already shown a high 
variability in the initial exploratory PCA (Fig. 2). Hydrochlorothiazide 
tablets could not be included into the PDS, as only three products had 
been available for the calibration set. 

These results indicate that the PDS may indeed be suitable to reduce 
the problem of between-instrument variation in the present in-
vestigations, though experiments with a larger dataset will be necessary 
to provide conclusive evidence. 

4. Discussion 

The present study investigated the possibilities and limitations of 
using a low-cost NIR spectrometer combined with chemometric methods 

for the verification of the presence of the declared APIs in tablet for-
mulations, especially for medicine screening studies in low-resource 
settings. 

Clearly, the NIR spectra of the investigated medicines showed API- 
specific differences (Fig. 1 and Suppl. Fig. S2), despite of different 
types and amounts of excipients used by different manufacturers, and 
despite the limited wavelength range and resolution of the employed 
NIR-S-G1 spectrometer. DD-SIMCA analysis of these spectra allowed to 
classify the medicines according to their APIs. When 170 different 
commercial products representing 40 different APIs or API combina-
tions, as well as placebos, were tested using a single NIR-S-G1 instru-
ment, non-members of the target classes could be identified by DD- 
SIMCA analysis with 100 % specificity. However, amoxicillin and 
amoxicillin/clavulanic acid tablets could not be reliably separated from 
each other by DD-SIMCA analysis. Better results for their separation 
were achieved by PLS-DA, after the members of a combined amoxicillin 
and amoxicillin/clavulanic acid class had been identified by DD-SIMCA 
analysis. Difficulties in the separation of these two medicine types have 

Fig. 5. Projection of the spectra of 20 falsified medicines onto each of the DD-SIMCA models for the active pharmaceutical ingredients (APIs) or API combinations in 
the calibration set. Chl, chloroquine; see legend of Fig. 2 for abbreviations for the other APIs. Extensions after the API abbreviations (such as PenV_Oxf) refer to the 
manufacturer stated on the label. Details on the 20 falsified medicines are listed in Table 5. In panel B, the sulfamethoxazole/trimethoprim assay results for the three 
products with insufficient API content are stated (label claim: 400/80 mg). Product ST_Gau contained an extremely insufficient amount of trimethoprim but a slightly 
excessive amount of sulfamethoxazole. Due to its low tablet weight, the mass percentage of sulfamethoxazole in the total tablet weight (80 %) was higher than in the 
six products comprised in the respective calibration set (66–71 %). For products ST_Zun and ST_Mao, the API mass percentage was lower than in the calibration 
set products. 
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been reported previously, even using spectrometers of different wave-
length ranges and better resolution [40]. 

In the present study, in most cases the spectra of non-members of the 
respective target class were projected to positions far from the accep-
tance areas of that target class (Fig. 4), indicating that the chance of a 
wrong acceptance of a non-member of the target class (e.g. a falsified 
medicine containing no or wrong APIs) was very small. This was 
confirmed by the investigation of falsified medicines which had been 
previously identified in medicine quality studies in African countries 
(Fig. 5). The observed performance of the present method was even 
better than reported from NIR spectroscopic investigations by Tie et al. 
[40] and by Zambrzycki et al. [13] The latter authors reported that 91.5 

% of medicines containing no or incorrect APIs were classified correctly, 
using the NIR-S-G1 device coupled to a smartphone app termed PillS-
canNIR. This app was at that time under development by a non-profit 
organization (Zambrzycki et al. [13], S4 Appendix). Details on the 
chemometric method employed by this app have not been published. 

In the present study, only six different commercial products of each 
API were used for DD-SIMCA model building, resulting in limited 
sensitivity: 15 out of 19 products of external validation set V1 (79 %) 
were correctly identified as members of the target class. As already 
observed by Ciza et al. [32], a DD-SIMCA model might reject a sample 
even if it contains the correct API but differs in the quantitative 
composition or other properties. The present study showed that for the 

Fig. 6. Testing a possible calibration transfer for spectra of ciprofloxacin tablets (calibration set) by piecewise direct standardization. Using PCA, the three products 
from the calibration set with the most different spectra (recorded with device C) were identified (panel D) and used to compute the parameters for a subsequent 
transfer of spectra of the other calibration set products (recorded with devices B and D; panels E and F). Abbreviations for manufacturers: Cip, Cipla Ltd.; Hex, Hexal/ 
SANDOZ S.R.L.; Max, Maxheal Laboratories Pvt. Ltd. 

Table 6 
Parameters and results of piecewise direct standardization (PDS).  

API Number of transferred spectra 
(for device B/D) 

Device B Device D 

Window width Sensitivity post-transfer Window width Sensitivity post-transfer 

Penicillin V 24/24 1 100 % 3 100 % 
Sulfamethoxazole/trimethoprim 24/24 3 100 % 3 100 % 
Ciprofloxacin 23/24 3 100 % 3 100 % 
Furosemide 24/24 3 100 % 3 100 % 
Metronidazole 24/23 3 100 % 3 96 % 
Metformin 24/24 1 67 % 3 79 % 
Doxycycline 24/24 3 100 % 3 96 % 
Amoxicillin and amoxicillin/clavulanic acid 56/56 1 93 % 3 98 % 

Device C was used as “master” instrument, and devices B and D as “slaves”. For each API three calibration set products were used to compute transfer parameters (for 
Amo and Amo/AC: four calibration set products). These parameters were applied to transfer the spectra of the other calibration set products (excluding outliers). 
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products of external validation sets V1 and V3 (Supp. Figs. S5 and S7, 
respectively) many of the rejected samples showed a mass percentage of 
the API in the total tablet weight that was out of the range covered in the 
respective calibration set. Therefore, larger and more representative 
spectral libraries are required for model building, covering products 
with different API mass percentages and other differences in their 
excipient composition and physicochemical properties, in order to 
achieve better sensitivities in the correct classification of members of the 
target class. For some medicine types, such as hydrochlorothiazide and 
metformin tablets (Fig. 2A and B), it may even be necessary to build 
separate models covering products of different API mass percent ranges. 
In medicine quality studies, the API mass percentage can be readily 
calculated from the tablet weight and the API content stated on the label. 

It may appear tempting to speculate that the differences observed 
between the NIR spectra of tablets with different API mass percentages 
could be used to obtain quantitative information, e.g. for the identifi-
cation of substandard medicines with insufficient API content. However, 
in diffuse reflectance spectroscopy quantitative API determination re-
quires a precise calibration using tablets with identical excipient 
composition and physicochemical properties, but with different API 
contents. Accurate results are not likely to be obtained in the investi-
gation of substandard and falsified medicines, due to the inherent 
unpredictability of their precise composition. Zambrzycki et al. [13] 
reported that using the NIR-S-G1 device and the PillScanNIR app, only 
30.6 % of medicines containing insufficient quantities of APIs were 
detected correctly as being substandard. The present method will 
therefore only detect gross deviations from the declared API content (see 
Fig. 5B and E). For more precise quantitative NIR investigations of 
substandard and falsified medicines, transmission spectroscopy using 
solutions of the investigated products is likely to be more appropriate 
[43]. 

For the (qualitative) verification of the presence of the declared API 
in medicine samples, the method presented in this study offers the 
typical advantages of NIR spectroscopy, e.g. simplicity and speed of data 
acquisition, independence from solvents and reagents, and performance 
without sample destruction. The employed NIR-S-G1 spectrometer was 
purchased for 1.600 USD per unit for the present study, and even lower 
prices have been reported in the literature [13]. However, also the limits 
of the present method must be recognized. E.g. for fixed combinations of 
two or more APIs, it needs to be investigated to what extent the presence 
or absence of individual components can be verified. In this study, the 
presence of the minor component clavulanic acid in fixed amox-
icillin/clavulanic acid combinations could not be readily confirmed by 
DD-SIMCA analysis but required an additional PLS-DA. Further, the 
present method cannot be expected to be suitable for medicines with 
very low API amounts, such as oral contraceptives. In the present study, 
only samples with ≥12.5 mg API per dosage unit were included. In the 
core list of the 22nd WHO Model List of Essential Medicines 2021 [47], 
71.8 % of the medicines used as solid oral dosage forms (excluding vi-
tamins and minerals) have an API content of ≥ 12.5 mg per unit. 
Another 10.0 % of the medicines are listed with strengths both higher 
and lower than 12.5 mg API per unit, and for 18.2 %, all listed solid oral 
dosage forms contain less than 12.5 mg. Furthermore, the present 
method requires that the investigated APIs show NIR absorption bands 
in the investigated wavelength range (950–1650 nm). Doxycycline 
shows only weak absorption bands in this range (Supp. Fig. S2), and 
possibly for that reason doxycycline was less perfectly separated from 
external products than other investigated APIs (Supp. Fig. S10). Further 
research is required to establish the applicability of the present method 
to different dosage forms, beyond tablets. In conclusion, the present 
method can be suitable for many but certainly not for all medicines of 
interest. 

A common problem in NIR spectroscopy is variation between spectra 
recorded on different spectroscopic devices, even of the same type [61, 
63]. This was clearly observed in the present study, and led to a loss of 
accuracy of the chemometric analysis if spectra from different devices 

were pooled (Figs. 2C and 2D; Supp. Figs. S9 and S10). Notably, with the 
exception of doxycycline, a complete separation of the investigated APIs 
from all other APIs was still possible (Supp. Fig. S10). Therefore, at least 
for APIs with characteristic absorption bands in the investigated wave-
length range, using different instruments even without calibration 
transfer may be possible. However, better accuracy can be achieved 
using a suitable method for calibration transfer. Fig. 6 and Table 6 
indicate that piecewise direct standardization (PDS) [61,63-65] is likely 
to be effective for such a transfer. However, ideally the determination of 
the transfer parameters is based on measurement of exactly the same 
samples under exactly the same conditions on the different instruments 
[61]. This can be very challenging, especially if the instruments are to be 
operated in different countries or even different continents. A study on 
performance qualification procedures for NIR-S-G1 devices used at 
different geographic locations has recently been published [50], 
although it does not address the problem of calibration transfer. 

The present investigation confirms the results of previous studies, 
conducted with smaller numbers of APIs, that DD-SIMCA as a one-class 
classifier (OCC) method is valuable for authentication studies in the 
screening for substandard and falsified medicines [39,43]. DD-SIMCA 
has been reported to result in similar sensitivity and specificity as clas-
sical SIMCA analysis [39]. (Note that for OCC models, specificity values 
can only be determined for a given dataset of non-members of the target 
class). However, using DD-SIMCA in the “compliant” approach [38,57] 
readily allows to optimize the values for type I and type II errors (i.e. α 
and β values) for a given model and a given non-member dataset, and 
such optimizations will be useful once larger spectral databases, repre-
sentative for a large part of the products on the market, have been 
established. Procrustes cross-validation (PCV), a novel approach for the 
validation of chemometric models which is useful especially for small 
datasets [58,59], was used in this study, and it proved helpful especially 
in the selection of the optimal number of PCs for each DD-SIMCA model, 
based on a comparison of sensitivities and extreme plots between model 
and PCV datasets. 

While this manuscript was in preparation, Waffo Tchounga et al. 
[46] published a study of 292 samples of ciprofloxacin and metronida-
zole tablets (total 64 brands) collected in Cameroon, which were 
investigated using a single NIR-S-G1 device followed by chemometric 
analysis using DD-SIMCA. The results are in very good agreement with 
those of the present study. The spectroscopic analysis allowed to reliably 
distinguish tablets containing either one of the two APIs from each other 
and also from tablets containing chemically related APIs (three nitro-
imidazoles and four fluoroquinolones). That study also documented the 
importance of sufficiently large and representative spectral libraries for 
the sensitive identification of members of the target class, noted espe-
cially in case of the metronidazole samples. 

The primary use of the method described in this study will be in 
screening investigations in the post-marketing surveillance of medicines 
in low-resource settings. Samples failing the screening analysis will have 
to be further analysed by compendial methods [60]. In this situation, the 
DD-SIMCA model should reliably classify samples containing no or 
incorrect APIs as non-members of the target class, i.e. should have a 
small type II error. In contrast, occasional misclassifications of target 
class medicines as externals, i.e. type I errors, may be acceptable, as they 
will be corrected in subsequent compendial analysis. 

NIR spectroscopic methods have been explored not only for the 
authentication of the APIs present in medicines but also for the 
authentication of specific brands of medicines [29,31,32,66]. Obviously, 
brand authentication requires a complete and up-to-date library of all 
commercial products which are present on the respective market. In 
many low- and middle-income countries, which import medicines from 
a multitude of sources and have relatively weak medicine regulatory 
agencies, such complete libraries may be very difficult to establish and 
to maintain [33]. Reportedly, the governments of China and Russia, i.e. 
countries with well-controlled domestic markets and strong governance, 
have established surveillance systems for falsified and substandard 
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medicines based on NIR-spectroscopic verification of brand authenticity 
[6,67]. 

In future applications in low-resource settings, spectral libraries 
which are not yet complete enough to allow brand authentication may 
already be sufficient for API verification, especially if such libraries are 
combined from different countries. International organizations like 
WHO may try to co-ordinate the establishment of such libraries and 
provide guidance to different stakeholders e. g. regarding methods for 
spectra recording, wavelength ranges, suitable instruments and instru-
ment settings, data pre-processing etc. to make spectral data collected by 
different researchers and institutions comparable worldwide. Ideally, 
easy-to-use chemometric software tools for field application should be 
developed, most feasibly for use on laptop computers, and should be 
made available to government and non-government stakeholders in 
LMICs. 

Like most screening technologies, the present method cannot provide 
definitive evidence of compliance or non-compliance of a medicine with 
pharmacopeial specifications. In practice it may best be employed 
together with other screening methods, such as visual inspection [68, 
69] and the GPHF Minilab [9,11] as well as together with confirmatory 
analysis by compendial methods for samples which fail in the screening 
[60]. The speed of analysis by NIR spectroscopy may allow the screening 
of a much larger number of medicine samples compared to previously 
employed technologies. 
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[23] A.Y. Miró Vera, M. Alcalà Bernàrdez, Near-infrared Spectroscopy in Identification 
of Pharmaceutical Raw Materials, Encyclopedia of Analytical Chemistry - 
Pharmaceuticals and Drugs, 2017, https://doi.org/10.1002/9780470027318. 
a9619. 

[24] European Medicines Agency. Guideline on the use of near infrared spectroscopy by 
the pharmaceutical industry and the data requirements for new submissions and 
variations. EMEA/CHMP/CVMP/QWP/17760/2009 Rev2, 2014. https://www.em 
a.europa.eu/en/documents/scientific-guideline/guideline-use-near-infrared-spectr 
oscopy-pharmaceutical-industry-data-requirements-new-submissions_en.pdf 
(accessed 28. October 2023). 

[25] P.Y. Sacre, E. Deconinck, T. De Beer, P. Courselle, R. Vancauwenberghe, P. Chiap, 
J. Crommen, J.O. De Beer, Comparison and combination of spectroscopic 
techniques for the detection of counterfeit medicines, J. Pharm. Biomed. Anal. 53 
(2010) 445–453, https://doi.org/10.1016/j.jpba.2010.05.012. 

[26] I. Storme-Paris, H. Rebiere, M. Matoga, C. Civade, P.A. Bonnet, M.H. Tissier, 
P. Chaminade, Challenging near infrared spectroscopy discriminating ability for 

J. Gabel et al.                                                                                                                                                                                                                                    

https://doi.org/10.1016/j.talo.2023.100270
https://www.who.int/publications-detail-redirect/9789241513432
https://www.who.int/publications-detail-redirect/9789241513432
https://apps.who.int/iris/handle/10665/326708
http://tropicaldoctor.altervista.org/wp-content/uploads/2013/07/2010-WHO-Assessment26African_countries.pdf
http://tropicaldoctor.altervista.org/wp-content/uploads/2013/07/2010-WHO-Assessment26African_countries.pdf
http://tropicaldoctor.altervista.org/wp-content/uploads/2013/07/2010-WHO-Assessment26African_countries.pdf
https://www.ncbi.nlm.nih.gov/books/NBK202530/
https://www.ncbi.nlm.nih.gov/books/NBK202530/
https://www.usp-pqm.org/sites/default/files/pqms/article/risk-based-post-marketing-surveillance-feb-2018.pdf
https://www.usp-pqm.org/sites/default/files/pqms/article/risk-based-post-marketing-surveillance-feb-2018.pdf
https://doi.org/10.1255/jnirs.1154
https://doi.org/10.1016/j.trac.2015.11.009
https://doi.org/10.1186/s12992-018-0360-y
https://doi.org/10.1186/s12992-018-0360-y
https://doi.org/10.1038/s41598-022-17123-0
https://doi.org/10.1038/s41598-022-17123-0
https://doi.org/10.1038/s41598-022-17123-0
https://www.usp.org/sites/default/files/usp/document/our-work/global-public-health/2020-usp-technology-review-global-pharma-health-fund-minilab.pdf
https://www.usp.org/sites/default/files/usp/document/our-work/global-public-health/2020-usp-technology-review-global-pharma-health-fund-minilab.pdf
https://www.usp.org/sites/default/files/usp/document/our-work/global-public-health/2020-usp-technology-review-global-pharma-health-fund-minilab.pdf
https://doi.org/10.1186/s41120-019-0031-y
https://doi.org/10.1186/s41120-019-0031-y
https://doi.org/10.1371/journal.pntd.0009360
https://doi.org/10.1016/j.trac.2019.02.035
https://doi.org/10.1016/j.trac.2019.02.035
https://doi.org/10.1177/23992026211002089
https://doi.org/10.1016/j.forsciint.2020.110143
https://doi.org/10.1016/j.aca.2005.06.018
https://doi.org/10.1016/j.aca.2005.06.018
https://doi.org/10.1371/journal.pone.0090601
https://doi.org/10.1016/j.addr.2005.01.020
https://doi.org/10.1016/j.addr.2005.01.020
https://doi.org/10.1021/bk-2011-1081.ch004
https://doi.org/10.1039/C3AY41907J
http://refhub.elsevier.com/S2666-8319(23)00090-5/sbref0022
http://refhub.elsevier.com/S2666-8319(23)00090-5/sbref0022
https://doi.org/10.1002/9780470027318.a9619
https://doi.org/10.1002/9780470027318.a9619
https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-use-near-infrared-spectroscopy-pharmaceutical-industry-data-requirements-new-submissions_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-use-near-infrared-spectroscopy-pharmaceutical-industry-data-requirements-new-submissions_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-use-near-infrared-spectroscopy-pharmaceutical-industry-data-requirements-new-submissions_en.pdf
https://doi.org/10.1016/j.jpba.2010.05.012


Talanta Open 8 (2023) 100270

15

counterfeit pharmaceuticals detection, Anal. Chim. Acta 658 (2010) 163–174, 
https://doi.org/10.1016/j.aca.2009.11.005. 

[27] R. da Silva Fernandes, F.S. da Costa, P. Valderrama, P.H. Março, K.M. de Lima, 
Non-destructive detection of adulterated tablets of glibenclamide using NIR and 
solid-phase fluorescence spectroscopy and chemometric methods, J. Pharm. 
Biomed. Anal. 66 (2012) 85–90, https://doi.org/10.1016/j.jpba.2012.03.004. 

[28] Y.V. Zontov, K.S. Balyklova, A.V. Titova, O.Y. Rodionova, A.L. Pomerantsev, 
Chemometric aided NIR portable instrument for rapid assessment of medicine 
quality, J. Pharm. Biomed. Anal. 131 (2016) 87–93, https://doi.org/10.1016/j. 
jpba.2016.08.008. 

[29] N. Fuenffinger, S. Arzhantsev, C. Gryniewicz-Ruzicka, Classification of 
ciprofloxacin tablets using near-infrared spectroscopy and chemometric modeling, 
Appl. Spectrosc. 71 (2017) 1927–1937, https://doi.org/10.1177/ 
0003702817699624. 

[30] M. Eady, M. Payne, S. Sortijas, E. Bethea, D. Jenkins, A low-cost and portable near- 
infrared spectrometer using open-source multivariate data analysis software for 
rapid discriminatory quality assessment of medroxyprogesterone acetate 
injectables, Spectrochim. Acta, Part A 259 (2021), 119917, https://doi.org/ 
10.1016/j.saa.2021.119917. 

[31] M. Yabre, L. Ferey, A.K. Sakira, C. Bonmatin, C. Faure, T.I. Some, K. Gaudin, Green 
analytical methods of antimalarial artemether-lumefantrine analysis for 
falsification detection using a low-sost handheld NIR spectrometer with DD-SIMCA 
and drug quantification by HPLC, Molecules 25 (2020) 3397, https://doi.org/ 
10.3390/molecules25153397. 
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