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Abstract Dichotomous high-Ti and low-Ti magmas are ubiquitous in large igneous provinces (LIPs). These magmas often form economically critical Fe–
Ti oxide ores in layered intrusions via mechanisms that remain debated. To constrain the evolution of high-Ti and low-Ti basalts during
fractionation, we performed stepwise equilibrium crystallization experiments at atmospheric pressure. We specifically aimed to quantify the
influences of starting composition and oxygen fugacity (fO2) on phase stability, phase compositions, and the onset of silicate liquid
immiscibility during cooling. Both types of magma crystallize similar phase assemblages at QFM (quartz–fayalite–magnetite thermodynamic
equilibrium) and QFM + 2: olivine, clinopyroxene, plagioclase, Fe–Ti oxides, and whitlockite. Tridymite crystallizes late in experiments at
QFM + 2. The starting composition exerts a strong influence on phase and melt compositions. High CaO and Al2O3 contents in the melt favor
the early crystallization of plagioclase and enhance FeO enrichment before Fe–Ti oxide saturation. fO2 affects the composition and stability of
Fe–Ti oxides, and high fO2 conditions may promote melt differentiation into the calc-alkaline field. Silicate liquid immiscibility occurs in both
compositional trajectories, producing Fe-rich melt globules in equilibrium with Si-rich melts. Strong iron enrichment is not necessary for
immiscibility to develop; unmixing also occurs in Fe depleted compositions. We propose a new parameterization to map the binodal surface in
temperature-composition space that successfully fits the two-liquid field in experiments and natural immiscible compositions. Our results
indicate that Fe–Ti oxide ores in layered intrusions associated with LIPs form by the segregation of Fe-rich melts and/or the accumulation of
early crystallized Fe–Ti oxides during fractionation.
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Abstract
Dichotomous high-Ti and low-Ti magmas are ubiquitous in large igneous provinces (LIPs). These magmas often form 
economically critical Fe–Ti oxide ores in layered intrusions via mechanisms that remain debated. To constrain the evolu-
tion of high-Ti and low-Ti basalts during fractionation, we performed stepwise equilibrium crystallization experiments at 
atmospheric pressure. We specifically aimed to quantify the influences of starting composition and oxygen fugacity (fO2) 
on phase stability, phase compositions, and the onset of silicate liquid immiscibility during cooling. Both types of magma 
crystallize similar phase assemblages at QFM (quartz–fayalite–magnetite thermodynamic equilibrium) and QFM + 2: olivine, 
clinopyroxene, plagioclase, Fe–Ti oxides, and whitlockite. Tridymite crystallizes late in experiments at QFM + 2. The starting 
composition exerts a strong influence on phase and melt compositions. High CaO and  Al2O3 contents in the melt favor the 
early crystallization of plagioclase and enhance FeO enrichment before Fe–Ti oxide saturation. fO2 affects the composition 
and stability of Fe–Ti oxides, and high fO2 conditions may promote melt differentiation into the calc-alkaline field. Silicate 
liquid immiscibility occurs in both compositional trajectories, producing Fe-rich melt globules in equilibrium with Si-rich 
melts. Strong iron enrichment is not necessary for immiscibility to develop; unmixing also occurs in Fe depleted composi-
tions. We propose a new parameterization to map the binodal surface in temperature-composition space that successfully 
fits the two-liquid field in experiments and natural immiscible compositions. Our results indicate that Fe–Ti oxide ores in 
layered intrusions associated with LIPs form by the segregation of Fe-rich melts and/or the accumulation of early crystal-
lized Fe–Ti oxides during fractionation.

Keywords Flood basalt · Large igneous province · Immiscibility · Phase equilibria · Liquid line of descent

Introduction

Large igneous provinces (LIPs) are regions compris-
ing extremely large volumes of mafic/ultramafic magmas 
erupted or emplaced in the upper crust within a relatively 
short time (~ 1–5 Myr; Bryan and Ernst 2008). As the largest 
volcanic episodes on Earth and occurred in both oceanic and 
continental crust, they are thought to result from hot mantle 

plumes causing high degrees of melting at the base of the 
lithosphere (Campbell and Griffiths 1990; Campbell 2005).

LIPs generally contain large volumes of moderately 
evolved, phenocryst-poor, lavas (< 8 wt% MgO) asso-
ciated with rare picritic dikes, and, locally, ultramafic/
mafic layered intrusions. They usually show a geochemi-
cal dichotomy between high-Ti and low-Ti compositions 
(Cox et al. 1967), which are discriminated based on their 
 TiO2 contents or ratios of Ti to highly incompatible trace 
elements (e.g., Ti/Y, Peate et al. 1992). These contrasting 
magma compositions may reflect lithologically distinct 
mantle sources and/or the degree to which the sources 
are enriched in incompatible elements (Marsh et al. 2001; 
Bryan and Ernst 2008; Ernst 2014; Heinonen et al. 2022). 
However, recent studies have scrutinized this classifica-
tion, because the melt evolution during cooling, especially 
with respect to  TiO2, depends strongly on oxygen fugac-
ity (fO2), pressure, and temperature, and can produce a 
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continuum of lava compositions between high-Ti and 
low-Ti endmembers (e.g., Kamenetsky et al. 2012). In 
addition, differences between the fO2 conditions of high-
Ti and low-Ti magmas, attributed to different degrees of 
crustal assimilation (e.g., Xu et al. 2003), influence phase 
equilibria, especially the crystallization of Fe–Ti oxides. 
Therefore, a low-Ti composition could theoretically evolve 
into a high-Ti composition if Fe–Ti oxide saturation is 
delayed (Hou et al. 2011).

To better understand the compositional diversity of 
LIPs, it is important to investigate the differentiation of 
high-Ti and low-Ti magmas and systematically evaluate 
the roles of primary magma composition and fO2 in deter-
mining phase relations and differentiation processes. Fe–Ti 
oxides ore deposits are commonly preserved in LIPs and 
are geochemically associated with high-Ti lavas (e.g., Pang 
et al. 2010; Zhang et al. 2018; Fan et al. 2013). The forma-
tion of these deposits remains controversial, they form by 
either the density-driven accumulation of Fe–Ti oxides 
during fractional crystallization (Charlier et  al. 2010; 
Pang et al. 2008), or their crystallization from a segre-
gated immiscible Fe-rich melt (Zhou et al. 2005, 2013; 
Fischer et al. 2016). However, tracking the onset of silicate 
immiscibility has relied heavily on relatively few experi-
ments (e.g., Charlier and Grove 2012) and thermodynamic 
modelling (Ghiorso and Carmichael 1980; Ghiorso et al. 
1983). Unfortunately, no valid predictive model for the 
development of immiscibility currently exists, hindering 
our ability to validate or invalidate whether of Fe–Ti oxide 
ore formation requires silicate liquid immiscibility.

In this study, we use a stepwise experimental approach 
to closely reproduce the fractional crystallization of 
high-Ti and low-Ti basalts under various fO2 conditions 
at atmospheric pressure. Our results show that the differ-
ent starting compositions, i.e. primary magma variability, 
strongly affect phase and melt compositions. The early 
crystallization of plagioclase in the low-Ti composition 
may enhance FeO enrichment in the melt and crystallinity 
at a given degree of fractionation. Oxygen fugacity has a 
profound effect on the stability, saturation temperature and 
chemistry of Fe–Ti oxides, in turn affecting the differentia-
tion of the melt with respect to FeO and MgO as well as 
other major elements. We demonstrate that the residual 
melts of high-Ti and low-Ti basalts at both low and high 
fO2 conditions develop silicate liquid immiscibility during 
cooling and fractionation. We propose a new parameteriza-
tion to describe the binodal surface of the immiscible pairs 
and thus the temperature-composition space of the two-
liquid field. We apply our model in the ~ 260 Ma Emeishan 
LIP, China, and show that the development of immiscibil-
ity in high-Ti lavas may contribute to the formation of 
Fe–Ti oxide ores.

Experimental strategy and analytical 
methods

Starting materials and experimental conditions

The high-Ti and low-Ti starting materials were selected 
based on a compiled database of lava compositions from 
the Emeishan LIP. Geochemical and structural features 
of the Emeishan province, such as kilometer-scale uplift, 
indicate its mantle plume origin (e.g., Chung and Jahn 
1995; Xu et al. 2001). We consider the Emeishan prov-
ince to be representative of world-wide LIPs; for example, 
they share similar bulk rock geochemistry with the Karoo 
LIP, Southern Africa (Fig. 1). Bulk-rock compositions 
of Emeishan rocks are classified as high-Ti and low-Ti 
using a threshold Ti/Y ratio of 500 (Xu et al. 2001; Xiao 
et al. 2004). Nonetheless, a continuum of bulk-rock Ti/Y 
ratios and  TiO2 contents are observed for both provinces 
(Fig. 1a, b). We excluded compositions with > 15 wt% 
MgO to avoid drastic bulk-rock compositional changes due 
to olivine ± spinel accumulation. Therefore, the bulk-rock 
compositions in our database should close to the true liq-
uid compositions. Finally, we selected high-Ti and low-Ti 
experimental starting compositions (HT1 and LT1, respec-
tively; Table 1) by averaging the major oxide compositions 
of each group at ~ 14 wt% MgO, corresponding to the esti-
mated primary melt for the Emeishan LIP (Xu et al. 2020).

The starting materials for experiments are synthetic 
powders prepared from mixtures of high-purity oxides and 
silicates  (SiO2,  TiO2,  Al2O3, MnO, MgO,  Fe2O3,  CaSiO3, 
 AlPO4,  Na2SiO3,  K2Si4O9,  Cr2O3) in appropriate propor-
tions. The  CaSiO3,  Na2SiO3, and  K2Si4O9 silicates were 
produced by mixing appropriate proportions of carbon-
ates and  SiO2, then reacted and decarbonated for 5 days 
at 1100 °C for  CaSiO3 and at 750 °C for  Na2SiO3, and 
 K2Si4O9. The silicate compounds were then checked for 
homogeneity, no silica relics were observed. The products 
were weighed to ensure complete decarbonization and then 
grinded in ethanol in an agate mortar for 1 h.

We employed a three-step experimental approach 
to simulate fractional crystallization of the high-Ti and 
low-Ti starting compositions at fO2 conditions of QFM 
(quartz–fayalite–magnetite thermodynamic equilibrium) 
and QFM + 2 (Table 2). The corresponding fO2 conditions 
at different temperature were calculated following O’Neill 
(1987), and the obtained fO2 values are consistent with 
the estimated fO2 range of different LIPs (e.g., Bai et al. 
2019; Freise et al. 2009; Cao and Wang 2022). Additional 
experiments, referring as ‘step 4’ in Table 1, were per-
formed to explore the potential development of silicate liq-
uid immiscibility at the lowest experimental temperature. 
In step 1 (runs ending in ‘s1’ in Table 2), compositions 
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HT1 and LT1 were used for isothermal experiments at 
temperatures ranging from 1330 °C (super-liquidus) to 
1160  °C. These compositions typically attained ~ 50% 
crystallinity at 1170  °C. Then, we prepared synthetic 
compositions HT2 and LT2 (Table 1) corresponding to 
the residual melts produced at 1170 °C under QFM + 2 in 
step 1 (runs 18As1 and 18Bs1). We prepared only these 
two new starting materials, because the compositions of 

the residual liquids at QFM are almost identical to those at 
QFM + 2 due to the absence of Fe–Ti oxide crystallization 
in the step 1 temperature interval (see below). These new 
compositions were used in step 2 (runs ending in ‘s2’in 
Table 2) for isothermal experiments at temperatures rang-
ing from 1175 to 1120 °C. Due to the significant influ-
ence of fO2 on the  TiO2 and FeO contents of the melts 
in this temperature range, particularly after saturation of 

Fig. 1  Compositions of our starting materials compared to high-Ti 
and low-Ti lavas from the Emeishan and Karoo LIPs. The dashed 
line in a indicates Ti/Y = 500, the criterion used by Xu et al. (2001) 
to classify Emeishan lavas as high-Ti or low-Ti. Symbols indicating 
starting compositions according to their liquidus temperature. The 
Emeishan lavas are from a compiled database (Chung and Jahn 1995; 

Song et al. 2001; Xu et al. 2001; Xiao et al. 2004; Zhou et al. 2005, 
2008; Zhang et  al. 2006; Wang et  al. 2007; Qi et  al. 2008; Hanski 
et al. 2010; He et al. 2010; Kamenetsky et al. 2012; Tao et al. 2015; 
Arguin et al. 2016; Ren et al. 2017). Data for Karoo LIP are from the 
GEOROC database (https:// georoc. mpch- mainz. gwdg. de// georoc/)
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Fe–Ti oxides, four starting materials with distinct FeO and 
 TiO2 contents were then synthesized as third-step compo-
sitions (HT31, LT31, HT32, and LT32; Table 1). These 
compositions correspond to the residual melt composi-
tions produced at 1140 °C at QFM and QFM + 2 in step 
2 (runs 11As2, 11Bs2, 12As2, and 12Bs2; Table 2). Step 
3 experiments were performed with a 1 °C/h cooling rate 
from above the liquidus temperature (1160 °C) to final 
temperatures ranging from 1080 to 1040 °C.

An additional set of ten experiments (step 4) was per-
formed with an identical cooling protocol and temperature 
range as step 3. Step 4 experiments were performed with the 
same four compositions as in step 3 but under different fO2 
conditions (see Table 2). For example, the high fO2 starting 
materials (HT32 and LT32) of both series were used for 
additional experiments at more reduced conditions (QFM). 
This set of experiments was performed to test the develop-
ment of liquid immiscibility in a variety of melt composi-
tions under changing fO2. The compositions of all starting 
materials are shown in Fig. 1.

Experimental methods

All experiments were performed in a GERO HTRV 
70-250/18 vertical tube furnace at University of Liège, Bel-
gium and in a Nabertherm HTRV 50/150/17 vertical tube 
furnace at KU Leuven, Belgium. Approximately 50 mg of 
the starting powders were suspended on a 0.2-mm-wide Pt 
loop and heated to a super-liquidus temperature for 10 min 
in a muffle furnace to produce glass. The starting glass was 
then suspended in the hot spot of the vertical furnace (~ 5 cm 
of the furnace where the temperature is within ± 1 °C). 
Experimental temperatures were measured using a S-type 

(Pt–Pt90Rh10) thermocouple calibrated against the melting 
points of Ag and Au. To minimize Fe loss from the start-
ing materials, the Pt loops were pre-saturated in Fe by elec-
troplating following the method of Grove (1981). Oxygen 
fugacity was buffered at QFM and QFM + 2 by flushing the 
furnace with mixtures of high-purity CO and  CO2 using 
Bronkhorst gas-flow controllers operating at a flow rate of 
0.12 cm/s.

Isothermal experiments (steps 1 and 2) were equilibrated 
for 24–96 h at target temperatures between super-liquidus 
(1320–1330 °C) and 1120 °C. To produce crystals large 
enough for reliable analyses in lower temperature step 3 and 
step 4 experiments, we used a three-step approach: experi-
ments were (1) held above the liquidus (1160 °C) for ~ 24 h, 
(2) cooled to 1080–1040 °C at a rate of 1 °C/h, and then (3) 
held at the final temperature for an additional 176–240 h. 
Four additional isothermal experiments (192 h durations) 
were performed at 1060 °C and QFM + 2 to compare their 
phase assemblages with the cooling experiments to check 
how the reliability of the cooling experiments and to ver-
ify whether the cooling experiments attained full thermo-
dynamic equilibrium. All experiments were quenched by 
dropping the charges in water. Details on experimental con-
ditions, run products, and phase proportions are reported 
in Table 2.

Analytical methods

The experimental charges were analyzed using a JEOL 
JXA-8530F wavelength dispersive spectrometer cou-
pled to a field emission gun electron microprobe at Uni-
versity of Münster, Germany and at the Department of 
Material Engineering, KU Leuven, Belgium. We used a 

Table 1  Compositions (wt%) of starting materials in this and other studies

Ca# = Ca/(Na + Ca) and Al# = Al/(Al + Si)

Sample no SiO2 TiO2 Al2O3 FeOt MnO MgO CaO Na2O K2O P2O5 Cr2O3 Total Ca# Al#

This study
 HT1 (step 1) 48.79 2.28 9.41 12.12 0.18 14.11 10.74 2.03 0.51 0.20 0.13 100.12 0.84 0.16
 HT2 (step 2) 49.91 3.11 13.93 11.14 0.16 6.46 12.37 2.55 0.42 0.22 0.02 100.29 0.83 0.22
 HT31 (step 3 and 4) 48.43 4.42 12.65 13.53 0.19 5.82 10.40 2.13 0.81 0.23 0.02 98.63 0.83 0.21
 HT32 (step 3 and 4) 54.63 3.29 13.10 9.33 0.21 5.13 9.19 2.82 0.83 0.19 0.04 98.76 0.77 0.19
 LT1 (step 1) 49.09 0.97 12.34 10.61 0.17 14.73 11.31 1.32 0.76 0.10 0.14 99.54 0.90 0.20
 LT2 (step 2) 53.68 1.44 14.49 9.54 0.19 6.63 11.91 1.96 0.95 0.16 0.02 99.97 0.86 0.21
 LT31 (step 3 and 4) 53.89 1.97 13.60 12.76 0.17 5.18 9.42 1.43 1.19 0.18 0.01 99.80 0.87 0.20
 LT32 (step 3 and 4) 59.90 1.99 13.20 8.12 0.19 4.85 8.00 1.67 1.58 0.16 0.01 99.67 0.83 0.18

Snyder et al. (1993)
 4-3 47.4 2.27 14.2 14.34 0.20 6.13 9.04 2.97 0.70 0.22 – 99.2 0.75 0.23
 4-83C 46.2 3.83 13.4 17.33 0.22 4.66 7.58 3.56 1.03 0.35 – 99.5 0.68 0.22

Toplis and Carroll (1995)
 SC1 48.8 2.90 14.90 13.10 – 6.50 10.90 2.70 0.30 – – 100.10 0.80 0.23
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15 kV accelerating voltage and beam currents of 10 nA 
for glasses and 20 nA for minerals. Glasses were analyzed 
with a defocused beam (5–10 µm diameter) and miner-
als with a focused beam (~ 1 µm diameter). We measured 
Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, P, and Cr concentra-
tions with on-peak and background counting times of 10 
and 5 s, respectively. Na, Al, K, and Cr were analyzed 
first to minimize migration. Natural and synthetic pri-
mary standards (reported in the Appendix) were used, 
and the CITZAF online data correction package was used 
for matrix correction of all analyses (Armstrong 1995). 
To ensure accuracy and precision as well as consistency 
between analytical sessions, we measured the following 
secondary standards at regular intervals (every 80–100 
points): VG-2 (NMNH 111240-52) for glass, San Carlos 
olivine (NMNH 111312-44) for olivine, kakanui augite 
for pyroxene (NMNH 122142), County Lake plagioclase 
(NMNH 115900) for plagioclase, ilmenite (NMNH 96189) 
for Fe–Ti oxides. Experimental phase compositions gener-
ally have ~ 98% accuracy for major elements. The complete 
dataset of glass and mineral analyses and primary and sec-
ondary standards is reported in the Appendix.

Attainment of equilibrium

In isothermal experiments (steps 1 and 2), we gauged the 
attainment of equilibrium mainly based on compositional 
and textural characteristics. Furthermore, the run durations 
presented herein are considerably longer than those in pre-
vious experimental studies (e.g., Toplis and Carroll 1995; 
Charlier and Grove 2012). Melts and minerals in experi-
mental charges show homogeneous backscattered electron 
intensities (Fig. 2), except pyroxenes, which are known 
to show apparent sector zoning with prominent  Al2O3 
concentrations (Neave and Putirka 2017). Euhedral crys-
tal morphologies indicate that equilibrium was attained. 
Fe–Mg partition coefficients between olivine and melt 
(KD

Fe−Mg see Compositional details section) in our experi-
ments are ~ 0.30 ± 0.02, in good agreement with previously 
reported values for similar compositions (0.30 ± 0.03; e.g., 
Toplis and Carroll 1995), further indicating that our exper-
iments attained thermodynamic equilibrium.

To assess the degree of equilibrium attained in steps 
3 and 4 cooling experiments, we compared those experi-
ments with isothermal experiments performed at 1060 °C 
and QFM + 2. The cooling experiments produced larger 
crystals but had identical phase assemblages (melt, augite, 
plagioclase, and magnetite) as the isothermal experiments 
(Fig. S1). This confirms that our 1 °C/h cooling protocol 
did not hinder the attainment of equilibrium. Nevertheless, 
we report only the compositions of crystal rims in direct 
contact with melt.

Phase proportion estimates

Modal phase proportions were estimated using a non-nega-
tive least squares regression algorithm implemented using 
the SciPy module in Python (https:// github. com/ eazzz on/ 
MassB alanc eCal), in which we balanced the starting compo-
sitions with the average compositions of all analyzed phases 
in each experimental charge. The squared sum of the residu-
als (∑r2) was typically <0.5. A few experiments, mainly 
cooling experiments with zoned pyroxenes and/or zoned pla-
gioclase resulted in ∑r2 > 1. Fe loss (∆Fe) was calculated 
by adding a pure Fe phase in the mass balance calculation 
(Li et al. 2020). Our results show a maximum 13.1% Fe loss 
in only one run; minor to no Fe loss was detected in the rest 
of the experiments. We used a similar procedure to evaluate 
potential Na loss due to volatility in the atmosphere of the 
furnace (Tormey et al. 1987; Table 2). Calculated values 
were generally low (< 5–10%) but reached 35% in some 
low-temperature, near-solidus experiments. However, such 
Na loss estimations are strongly affected by the accuracy of 
microprobe Na analyse due to potential Na migration under 
the electron beam (Voigt et al. 2017), particularly in low-
temperature experiments, where both residual melt pools 
and plagioclase crystals are small (< 2–3 µm) inhibiting 
analyses with large beam diameters. Such cases affect both 
least square calculations and measurement of elements in 
plagioclase. Consequently, Na losses reported in Table 2, 
and especially the high values, should be taken with caution.

Experimental results

Phase equilibria and immiscibility textures

Figure 3 shows phase relations in the liquid lines of descent 
experiments (steps 1–3) and step 4 experiments as a function 
of temperature and fO2 (QFM and QFM + 2). In both high-Ti 
and low-Ti liquid lines of descent experiments (steps 1–3), 
solid phases crystallizing upon cooling are olivine, Cr-spi-
nel, augite, plagioclase, trace of low-Ca pyroxene (pigeonite 
and/or orthopyroxene), magnetite, ilmenite, pseudobrookite, 
whitlockite, and tridymite.

Olivine is the first liquidus phase in the primitive com-
positions HT1 and LT1 (1320–1160 °C). Cr-spinel joined 
the liquidus at around 1280–1260 °C, followed by the crys-
tallization of augite at around 1240–1180 °C, and plagio-
clase at around 1180–1160 °C. These temperature ranges 
depend on both, the starting composition [low-Ti (LT1) vs 
high-Ti (HT1)] and fO2 (QFM vs QFM + 2). Compared to 
experiments at QFM, olivine and augite saturation is delayed 
by ~ 20–40 °C at QFM + 2 in both high-Ti and low-Ti com-
positions. Plagioclase saturation is weakly dependent on fO2 
(1180 °C at QFM + 2 vs 1170 °C at QFM), but plagioclase in 
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Fig. 2  Back-scattered electron images of selected isothermal experiments. Ol olivine; Cr-Spl Cr-spinel; Aug augite; Pl plagioclase; Mag magnet-
ite
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the low-Ti composition begins crystallizing 20 °C hotter than 
in the high-Ti composition. The cotectic proportion of pla-
gioclase relative to mafic minerals (olivine ± clinopyroxene) 
is ~ 1:3 when olivine is present and changes to 1:1 when oli-
vine disappears. Trace amount of pigeonite and orthopyrox-
ene are observed at low temperature (1120–1040 °C) in low-
Ti experiments at QFM and QFM + 2. No low-Ca pyroxene 
phase is observed in high-Ti experiments during steps 1–3. 
Fe–Ti oxides join the liquidus after olivine ± augite ± pla-
gioclase ± low-Ca pyroxene. The liquidus temperature of 
Fe–Ti oxides is strongly related to fO2 and melt composi-
tion. At QFM, magnetite is the first Fe–Ti oxide phase in 
both high-Ti and low-Ti experiments appearing at ~ 1120 °C. 
Ilmenite is stable in high-Ti compositions below ~ 1080 °C 
but does not crystallize in low-Ti experiments. At QFM + 2, 
the magnetite liquidus in low-Ti and high-Ti experiments 
increases 1160 °C, followed by pseudobrookite at 1140 °C. 
The relative stability of Fe–Ti oxides as a function of fO2 
is consistent with observations in natural rocks (Mullen 
and McCallum 2013). Whitlockite (too small for chemical 

analyses) follows Fe–Ti oxides at ~ 1060 °C, regardless of 
melt composition and fO2. Subsequently, tridymite appears 
in both the high-Ti and low-Ti experiments at 1040 °C under 
QFM and at 1060 °C under QFM + 2, because the residual 
melt reaches markedly higher  SiO2 contents (see below).

In step 3 and 4 experiments (Table 1), liquid immiscibil-
ity between Fe-rich and Si-rich melts develops at 1040 °C 
in all compositions at both QFM and QFM + 2 (i.e., com-
positions HT31, HT32, LT31 and LT32). In step 4 experi-
ments at QFM + 2, using starting materials HT31 and LT31, 
representing residual melts from both series equilibrated at 
QFM (i.e., runs H101 and L101; Fig. S1, Table 2), immis-
cibility develops at a slightly higher temperature (1060 °C). 
This may be due to the high total Fe-contents of the starting 
compositions and/or the higher  Fe3+/∑Fe at QFM + 2 (Hou 
et al. 2018). In experiments showing silicate liquid immis-
cibility, we observe sharp interfaces between the conjugate 
melts (Figs. 4, S1).

In experiments at QFM and QFM + 2 quenched at 
1040 °C, Fe-rich melt droplets range in size from nanome-
ters to several micrometers and are widely distributed within 
the Si-rich melt. In the interstices between plagioclase crys-
tals, aggregates of Fe-rich melt form irregular melt pools. 
Fe-rich melt droplets wet plagioclase surfaces with relatively 
high wetting angles, and are attached to augite and Fe–Ti 
oxides with lower wetting angles. Whitlockite is usually 
observed around augite and Fe–Ti oxides, or as feathery 
fringe microstructures around grain boundaries, as described 
by Honour et al. (2019a, b). Experiments at QFM + 2 and 
quenched at 1060 °C (H101 and L101; Table 2) show small 
Fe-rich droplets (< 0.5 µm) concentrated near or attached 
to plagioclase.

Melt compositions

The experimental melts produced in steps 1–3 range from 
basaltic to rhyolitic in composition (Fig. S2). Major element 
concentrations in homogeneous melts, as well as those in 
immiscible conjugate melts produced in steps 3 and 4 are 
shown as a function of temperature in Fig. 5. Due to the 
small size of Fe-rich droplets, we could only confidently 
measure the compositions of immiscible melt pairs produced 
at 1040 °C and QFM (steps 3 and 4), and Si-rich melts at 
1060 °C and QFM + 2 (step 4).

Upon cooling, the high-Ti and low-Ti melts show similar 
compositional trends, because they crystallize similar min-
eral assemblages. Melt MgO contents are linearly related 
with experimental temperature. Melt  Al2O3 and  P2O5 con-
tents are insensitive to experimental fO2 conditions. Melt 
CaO and total alkali  (Na2O +  K2O) contents are weakly 
dependent on fO2. Melt CaO concentrations at QFM are 
slightly higher than those at QFM + 2. In both high-Ti and 
low-Ti experiments, melt CaO content increases steadily 
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during early crystallization, reaching a maximum of ~ 13.5 
wt% upon augite saturation at ~ 1200–1240 °C, then decreas-
ing gradually to ~ 4.0 wt%. Similarly,  Al2O3 contents in 
both the high-Ti and low-Ti melts steadily rise to maximum 
values of 14.1 wt% at 1160 °C and 15.5 wt% at 1180 °C, 
respectively, corresponding to the initiation of plagioclase 
crystallization, and then gradually decrease. The total alkali 
and  P2O5 concentrations steadily increase with decreasing 
temperature. Although whitlockite crystallizes at the lowest 
experimental temperatures, we do not observe depletion of 
 P2O5 in the residual melt.

Due to its critical control on the stability of Fe–Ti oxides, 
fO2 has more profound effects on melt  TiO2, FeO, and  SiO2 
contents.  TiO2 content is strongly controlled by the crys-
tallization of ilmenite and pseudobrookite, and less so by 
magnetite. The  TiO2 content of the high-Ti melt reaches a 
maximum of 4.4 wt% at 1140 °C at QFM, and 3.6 wt% at 
1160 °C at QFM + 2, then decreases upon crystallization 

of Fe–Ti oxides. Similarly, the  TiO2 content of the low-Ti 
melts reaches a maximum of 2.6 wt% at 1080 °C at QFM 
before dropping slightly due to magnetite crystallization and 
a maximum of 2.0 wt% at 1140 °C at QFM + 2, correspond-
ing to the crystallization of pseudobrookite.

The FeO content of the melt evolved differently in the 
high-Ti and low-Ti experimental series. In the high-Ti 
experiments, the FeO content of the melt at QFM slightly 
decreases from ~ 13.0 to ~ 12.0 wt% from 1320 to 1160 °C, 
increases to 14.1 wt% at 1140  °C then decreases when 
magnetite crystallizes at 1120 °C. At QFM + 2, the melt 
FeO content remains constant (at ~ 12.5 wt%) from 1320 to 
1160 °C, does not obviously increase just before magnet-
ite saturation (12.7 wt%), then decrease sharply to < 10.0 
wt% at 1060 °C. In the low-Ti experiments, the FeO con-
tent of the melt at QFM decreases from 11.5 to 9.7 wt% 
from 1320 to 1175 °C, increases to 12.6 wt% at 1140 °C, 
then decreases when magnetite crystallizes at 1120 °C. At 

Aug

Mag

Fe-rich droplets

Si-rich melt

Pl

Aug

Mag
Wht

Fe-rich droplets

Si-rich melt

Pl

feathery fringes

Aug

Mag

Wht

Fe-rich droplets

Si-rich melt

Pl

feathery fringes

Trd

Aug

Mag

Fe-rich droplets

Si-rich melt

Pl
Trd

H106, QFM, 1040 ˚C H107, QFM+2, 1040 ˚C

L107, QFM+2, 1040 ˚CL106, QFM, 1040 ˚C

a b

c d

Fig. 4  Back-scattered electron images of selected experimental 
products showing silicate liquid immiscibility. a, c Experiments at 
QFM showing Fe-rich droplets in Si-rich melt. b, d Experiments at 

QFM + 2 showing smaller Fe-rich droplets within the Si-rich melt and 
attached to plagioclase crystals. Abbreviations are as in Fig. 3

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434



UNCORRECTED PROOF

Journal : Large 410 Article No : 1990 Pages : 25 MS Code : 1990 Dispatch : 2-1-2023

 Contributions to Mineralogy and Petrology _#####################_

1 3

_####_ Page 12 of 25

Fig. 5  Binary diagrams of selected major element concentrations in the melt as a function of temperature
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QFM + 2, the melt FeO content slightly decreases from 
liquidus to 1160 °C, then decreases sharply the magnetite 
crystallization.

Oxygen fugacity also strongly affects the  SiO2 content in 
the melt. In both the high-Ti and low-Ti melts,  SiO2 content 
increases slowly but steadily from 1320 to 1140–1160 °C, 
then more drastically increases below ~ 1140 °C due to 
Fe–Ti oxide crystallization. In both series, the  SiO2 contents 
of the melt at QFM + 2 increase more steeply with decreas-
ing temperature than those at QFM, probably due to higher 
proportions of Fe–Ti oxide crystallization at more oxidizing 
conditions and higher bulk crystallinity.

The compositions of immiscible melt globules produced 
at low temperatures (1040–1060 °C in steps 3 and 4) from 
the high-Ti and low-Ti melts are plotted against melt  SiO2 
content in Fig. 6, alongside with the homogeneous melts 
produced at higher temperatures. Major and minor ele-
ments show different degrees of enrichment/depletion in the 
two immiscible melts. Si-rich melts (65.8–74.2 wt%  SiO2, 
3.2–6.9 wt% FeO) are enriched in  Al2O3 and total alkalis, 
whereas their conjugate Fe-rich melts (41.9–45.7 wt%  SiO2, 
16.6–17.8 wt% FeO) are enriched in  TiO2, CaO, and  P2O5.

By plotting the degree of polymerization of the sili-
cate melts (NBO/T, [the ratio of non-bridging oxygens to 
tetrahedrally coordinated network-forming cations, i.e., 
T = Si + Al + P + Ti; Mysen 1983) against experimental tem-
perature (Fig. 7), we observe that the immiscible melts pro-
duced in this study plot near the binodal surface defined by 
Charlier and Grove (2012), although the binodal apex might 
be at a slightly higher temperature here (~ 1060 °C at NBO/T 
≈ 0.5). Furthermore, the compositions of the last homogene-
ous melts produced before attaining immiscibility in both the 
high-Ti and low-Ti series are compositionally similar to the 
first (i.e. highest-temperature) immiscible Si-rich melts. This 
is because both compositional trends intersect the binodal 
nearly tangentially and towards low NBO/T values as pre-
viously reported in other tholeiitic settings (Charlier et al. 
2011, 2013; Namur et al. 2011; 2012a).

Olivine

Olivine compositions are reported in the Appendix and 
shown in Fig. 8. Olivine is present in experiments performed 
at 1320–1160 °C (Table 2). The forsterite content of olivine 
[Fo = molar Mg/(Mg + Fe)] does not clearly differ between 
the high-Ti and low-Ti series. In the high-Ti experiments, oli-
vine Fo content ranges from  Fo87 to  Fo79 at QFM and from 
 Fo89 to  Fo82 at QFM + 2 (Fig. 8a). This difference is likely 
due to the higher  Fe3+/∑Fe of the equilibrium melt. In low-
Ti experiments, olivine Fo content varies from  Fo89 to  Fo78 
at QFM and from  Fo91 to  Fo83 at QFM + 2. The relationship 
between olivine Fo content and the Mg# of the coexisting 
liquid (= molar Mg/[Mg +  Fe2+] accounting for ferrous iron 

in the liquid; Kress and Carmichael 1991) is comparable for 
both high-Ti and low-Ti compositions (Fig. 8b). Olivine-
melts KD

Fe−Mg values range between 0.26 and 0.33, consist-
ent with previous studies (Roeder and Emslie 1970; Toplis 
2005; Blundy et al. 2020).

Pyroxene

The high-Ti and low-Ti compositions crystallize augite, 
and trace amounts of low-Ca pyroxene, orthopyroxene 
and pigeonite (Fig. 9a). Augite compositional ranges are 
similar in both magma series:  Wo37–45En40–51Fs4–20 and 
 Wo41–47En40–50Fs6–13 at QFM and QFM + 2, respectively, 
in high-Ti experiments, and  Wo28–43En38–52Fs6–30 and 
 Wo38–45En44–51Fs5–12 at QFM and QFM + 2, respectively, in 
low-Ti experiments (Fig. 9a). We calculated pyroxene ferric 
and ferrous iron contents using the stoichiometric method 
of Lindsley (1983) and then pyroxene Mg# accordingly. 
Pyroxene Mg# is positively correlated with temperature, 
and pyroxenes at QFM + 2 have generally higher Mg# than 
those at QFM (Fig. 9b). Pyroxene-melt KD

Fe−Mg values are 
0.27 ± 0.08 in both the high-Ti and low-Ti compositions 
(Fig. 9c), consistent with those reported by Toplis and Car-
roll (1995) for tholeiitic basalts.

Plagioclase

Plagioclase compositions are reported in the Appendix 
and shown in Fig. 10. Plagioclase compositions (An con-
tent = molar Ca/[Ca + Na]) range from  An72 to  An58 at QFM 
and from  An67 to  An57 at QFM + 2 in high-Ti experiments, 
and from  An78 to  An70 at QFM and from  An76 to  An73 at 
QFM + 2 in low-Ti experiments. In low-temperature experi-
ments (< 1080 °C), plagioclase crystals are typically small 
(< 2–3 µm) and locally zoned, inhibiting accurate measure-
ment of their rim composition; therefore, the reported An 
contents for those experiments are probably slightly elevated 
because they include both core and rim compositions. Plagi-
oclase in low-Ti experiments start crystallizing earlier (20 °C 
hotter) than in high-Ti experiments and from a melt with 
higher CaO- and lower  Na2O-contents (i.e., higher Ca/Na 
ratio; Fig. 10b). The An content at the plagioclase liquidus 
is also higher in low-Ti experiments.

Cr‑spinel and Fe–Ti oxides

Cr-spinel and Fe–Ti oxide compositions are reported in the 
Appendix. Cr-spinel Cr# (= molar Cr/[Cr + Al]]) ranges 
from 0.70 to 0.67 at QFM and from 0.68 to 0.53 at QFM + 2 
in high-Ti experiments, and from 0.65 to 0.51 at QFM and 
from 0.59 to 0.45 at QFM + 2 in low-Ti experiments. Cr# is 
not correlated with temperature.
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Endmember compositions of Fe–Ti oxides (i.e., XMag, 
XHem, and XPsb for the magnetite–ulvöspinel here ‘mag-
netite’), hematite–ilmenite (‘ilmenite’), and pseudobrook-
ite–ferropseudobrookite (‘pseudobrookite’) were recalcu-
lated following the method of Andersen et al. (1993) (Fig. 
S3). At a given fO2, the recalculated magnetite (XMag) and 

pseudobrookite (XPsb) components are not correlated with 
temperature. Pseudobrookite was only observed in QFM + 2 
experiments, with compositions XPsb = 0.69–0.66 and 0.60 
in high-Ti and low-Ti experiments, respectively. Magnet-
ite has compositions of XMag = 0.90–0.83 and 0.92–0.79 in 
high-Ti and low-Ti experiments at QFM + 2, respectively, 

Fig. 6  Major element compositional variations in the melt as a function of melt  SiO2 content (wt%) for high-Ti and low-Ti melts. Immiscible 
melt pairs are connected by dashed lines

532

533

534

535

536

537

538

539

540

541

542

543



UNCORRECTED PROOF

Journal : Large 410 Article No : 1990 Pages : 25 MS Code : 1990 Dispatch : 2-1-2023

Contributions to Mineralogy and Petrology _#####################_ 

1 3

Page 15 of 25 _####_

whereas at QFM, but lower respective compositions of 
XMag = 0.50–0.43 and 0.54–0.48 at QFM. Ilmenite was only 
observed in high-Ti experiments at QFM, with compositions 
of XHem = 0.25–0.19 that correlate with temperature. Both 
MgO content in ilmenite and  Al2O3 content in magnetite 
decrease with decreasing temperature.

Discussion

Effect of primary magma composition on phase 
relations and differentiation

As expected, due to their different compositions, our high-Ti 
and low-Ti melts cooled to crystallize plagioclase and Fe–Ti 
oxides with different compositions and liquidus tempera-
tures. Nonetheless, both melts have similar MgO and  Cr2O3 
contents and bulk Ca/Al ratios, and thus saturate clinopyrox-
ene of similar compositions at similar liquidus temperatures. 
The most obvious difference between the high-Ti and low-Ti 
compositions is the timing of plagioclase saturation. The 
Ca- and Al-enriched low-Ti melt is closer to the forsterite-
anorthite cotectic in the simplified CMAS system than the 
Na- and Fe-enriched high-Ti melt (Fig. S4; Presnall et al. 
1978; Neave et al. 2019). The former meets the cotectic at 
a lower diopside content and further away from the eutectic 
point, and therefore, saturates plagioclase at a higher temper-
ature (Fig. S4). Plagioclase An content is controlled by the 
melt Ca# (= Ca/[Na + Ca]) and Al# (= Al/[Al + Si]) and Ca/
Al ratio (Panjasawatwong et al. 1995; Namur et al. 2012b; 
Neave and Namur 2022;) which are all higher in primitive 
low-Ti melts than in equivalent high-Ti melts. Consequently, 
low-Ti melts tend to crystallize plagioclase with higher An 
content than high-Ti melts (Fig. 10).

The distinct melt compositions also play a role in the 
saturation of Fe–Ti oxides, although this effect is less pro-
nouncing than that of fO2. Although our high-Ti and low-Ti 
melts have indistinguishable magnetite liquidus tempera-
tures at a given fO2 condition (1120 °C at QFM, 1160 °C at 
QFM + 2), both are significantly higher than the magnetite 
liquidus in experiments of Toplis and Carroll (1995; 1096 °C 

binodal curve

Fig. 7  The degree of melt polymerization (expressed as NBO/T, the 
ratio of non-bridging oxygens to tetrahedrally coordinated cations, 
T = Si + Al + P + Ti) versus temperature (< 1200  °C). Immiscible 
melts from Charlier and Grove (2012) are shown for comparison. 
The solid and dashed curve are the estimated binodal curve on which 
our experiments lie and the binodal curve from Charlier and Grove 
(2012), respectively

Fig. 8  Olivine forsterite contents as a function of a temperature and b Mg# of the coexisting melt. The  Fe2+ content in the melt was calculated 
following Kress and Carmichael (1991). The grey curves in b indicate olivine-melt KD

Fe−Mg = 0.30 ± 0.02
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at QFM) and Juster et al. (1989; 1135 °C at QFM + 2.9; 
1120 °C at QFM + 1.4). Similarly, two compositions in the 
experiments of Snyder et al. (1993) have different magnetite 
liquidi: 1130 °C at QFM in a relatively FeO and  TiO2-rich 
composition (17.3 wt% FeO, 3.8 wt%  TiO2) and 1109 °C 
at QFM in a relatively FeO and  TiO2-depleted composition 
(14.3 wt% FeO, 2.3 wt%  TiO2). Toplis et al. (1994) proposed 
that the progressive addition of phosphorus may destabilize 
magnetite under oxidizing conditions; however, is inconsist-
ent with our experiments and those of Snyder et al. (1993), 
perhaps implying that the magnetite liquidus is controlled 
by a complex dependence on melt FeO,  TiO2,  P2O5 and  SiO2 

contents and fO2 (Ariskin and Barmina 1999). The ilmen-
ite crystallization is also affected by the melt  TiO2 content 
(Toplis and Carroll 1995); indeed, ilmenite did not saturate 
in the low-Ti melts, which only crystallized pseudobrookite 
at QFM + 2.

The most representative feature of tholeiitic magmas 
prior to the saturation of Fe–Ti oxides is the progressive 
enrichment of FeO in the evolved melt (less than ~ 6 wt% 
MgO; e.g., Grove and Bryan 1983; Toplis and Carroll 1995; 
Juster et al. 1989; Snyder et al. 1993). However, compared 
to the experiments of Toplis and Carroll (1995) and Snyder 
et al. (1993), our high-Ti and low-Ti melts do not reach high 
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Fig. 9  Experimental pyroxene compositions. a Wollastonite (Wo)-
enstatite (En)-ferrosilite (Fs) ternary diagram showing the composi-
tions of experimental pyroxenes. b Pyroxene Mg# variations as a 

function of temperature. c Pyroxene Fe/Mg equilibrium diagram; gray 
curves indicate the equilibrium field from Toplis and Carroll (1995; 
i.e., pyroxene-melt KD
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FeO enrichments (up to ~ 18 wt%; Toplis and Carroll 1995) 
at similar fO2. This is because we saturate Fe–Ti oxides at 
much higher temperatures, and likely also due to the sig-
nificantly higher FeO concentrations in their starting com-
positions and the higher cotectic proportions of plagioclase 
in their cumulates during crystallization. For instance, our 
starting compositions for step 2 contain ~ 6.5 wt% MgO and 
only ~ 10 wt% FeO, concentrations that were generated by 
the protracted fractionation of mafic olivine ± clinopyroxene, 
compared to 13–15 wt% FeO at similar MgO concentrations 
in the bulk compositions of Toplis and Carroll (1995) and 
Snyder et al. (1993). Furthermore, the cotectic proportion of 
plagioclase relative to mafic minerals (olivine ± clinopyrox-
ene) in the experiments of Toplis and Carroll (1995) is ~ 3:1 
when only olivine and plagioclase are present, but progres-
sively changes to 2:1 when clinopyroxene crystallizes, and 
the proportion is roughly 2:1 in the experiments of Snyder 
et al. (1993). In contrast, our high-Ti and low-Ti melts crys-
tallize plagioclase and augite in the proportion 1:1.

Beside FeO enrichment,  TiO2 enrichment in tholeiitic 
melts is also observed before Fe–Ti oxides crystallized. 
Because Ti is relatively incompatible in tholeiitic melts, the 
maximum  TiO2 enrichment in the melt is related to the  TiO2 
content of the parental melt and the liquidus temperatures of 
Fe–Ti oxides. This is illustrated by the fact that high-Ti melts 
have higher  TiO2 concentration than low-Ti melts before 
Fe–Ti oxide saturation (i.e., ilmenite and pseudobrookite). 
We note that no significant  TiO2 depletion is observed in our 
low-Ti melts at QFM due to the absence of ilmenite crystal-
lization. This supports the notion that a low-Ti composition 
could evolve to a high-Ti composition if Fe–Ti oxide satura-
tion is delayed late during differentiation (Hou et al. 2011).

Effect of  fO2 on phase relations and differentiation 
path

Changing fO2 significantly affects Fe–Ti oxide phase rela-
tions but has only minor effects on silicates. Consistent 
with previous experiments showing that increasing fO2 
expands the stability field of magnetite (Toplis and Carroll 
1995; Snyder et al. 1993; Ariskin and Barmina 1999), the 
magnetite liquidus in our experiments increases by ~ 40 °C 
between QFM and QFM + 2 in both the high-Ti and low-
Ti compositions. Increasing fO2 also increases XMag com-
ponent of magnetite and causes  Al2O3-bearing pseudo-
brookite to form rather than ilmenite. These changes in 
the stability of Fe–Ti oxides at different fO2 will thus have 
significant effect on melt FeO and  SiO2 contents. Figure 11 
shows the melt FeO/MgO ratio as a function of  SiO2 con-
tent. Because the high-Ti and low-Ti melts follow a simi-
lar differentiation trend in terms of MgO concentration 
(i.e., dMgO/dT ≈ 0.04 wt%/°C), the observed change of 
FeO/MgO with  SiO2 content in our experimental melts 
is directly related to the degree of FeO depletion under 
different fO2 conditions. Both high-Ti and low-Ti melts 
follow a tholeiitic trend at QFM, but a calc-alkaline trend 
at QFM + 2 due to the early crystallization of high XMag 
magnetite. We note, however, that adding water in natural 
systems may have a similar effect by delaying plagioclase 
crystallization (Mandler et al. 2014; Almeev et al. 2012). 
For comparison, experiments on FeO-rich melts coexisting 
only with low XMag magnetite at QFM-1 to QFM + 1 (Top-
lis and Carroll 1995) evolve uniquely within the tholeiitic 
field (Fig. 11).

Fig. 10  a Experimental plagioclase An content variations as a function of temperature. b Ca/Na exchange between plagioclase and melt; gray 
lines indicate the equilibrium field from Toplis and Carroll (1995; i.e., plagioclase-melt KD

Ca−Na = 0.8–1.6)
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Comparison between low‑pressure liquid lines 
of descent and natural lavas

Here, we use our experimental data to discuss the low-pres-
sure differentiation of natural lavas in LIPs. We choose the 
Emeishan LIP as an example due to the considerable amount 
of data on those natural lavas and because our starting mate-
rials were selected based on them. However, we note that 
Emeishan LIP magmas may have differentiated at higher 
pressure (Tao et al. 2015) and that the system may also have 
been slightly hydrous (Liu et al. 2017).

Figure 12 compares our experimental liquid lines of 
descent (LLDs) with a compilation of Emeishan high-Ti and 
low-Ti lavas. Overall, our high-Ti LLDs only partly over-
lap with observed high-Ti lavas, whereas our low-Ti LLDs 
match the low-Ti lavas relatively well in terms of  TiO2, 
 Al2O3, and  SiO2. This mismatch with the natural lavas may 
be related to the differences in differentiation conditions 
(pressure, water content, fO2), source heterogeneities and 
perhaps mineral accumulations (i.e., pyroxene, plagioclase 
and Fe–Ti oxide) in the natural rocks; therefore, the lavas 
may not represent true liquid compositions. The CaO con-
tents and CaO/Al2O3 ratios of natural lavas are often lower 
than those of our experimental melts, likely reflecting the 
pressure effect on the stability of clinopyroxene: high-pres-
sure conditions favor the crystallization of clinopyroxene, 
decreasing the melt CaO content (Villiger et al. 2004, 2007). 
Alternatively, these low-CaO lavas could also be explained 
by mixing between the primitive and evolved. Further-
more, natural lavas often have higher FeO contents than our 

experimental melts (< 7 wt% MgO), although this is proba-
bly not caused by the early crystallization of plagioclase (see 
above discussion above), because high pressure or slightly 
hydrous conditions, that may be realistic for the Emeishan 
LIP (Tao et al. 2015; Liu et al. 2017; Ganino et al. 2008), 
would suppress the plagioclase crystallization and delay or 
inhibit the enrichment of the melt FeO. Thus, the observed 
difference between the FeO contents of the natural lavas with 
our experimental melts could result from three processes. 
(1) The natural lavas may have evolved from a primitive 
melt with a higher FeO content than our selected composi-
tions; indeed, the compiled database exhibits a broad range 
of primitive FeO contents (Fig. 1c). (2) The lavas may have 
evolved from a multi-component source. For example, the 
partial melting of a pyroxenitic source can produce paren-
tal melts more enriched in FeO than those produced by the 
melting of a peridotitic source (Lambart et al. 2013). This is 
supported by the multivariate trace element and radiogenic 
isotopic composition of primitive picrites and olivines in the 
Emeishan LIP (e.g., Kamenetsky et al. 2012); (3) Finally, 
the accumulation of dense magnetite phases that crystal-
lized at high fO2 conditions (Howarth et al. 2013) may have 
increased the lavas’ FeO contents, consistent with previous 
estimates of high fO2 conditions for the Emeishan lavas (Cao 
and Wang 2022; Bai et al. 2019).

Predicting the onset of silicate liquid immiscibility

Liquid immiscibility is known to occur during the late-stage 
fractionation of basalts and has been identified in many lay-
ered intrusions related to LIPs (Veksler and Charlier 2015), 
such as the Skaergaard intrusion (Holness et al. 2011; Hum-
phreys 2011; Jakobsen et al. 2005; McBirney and Nakamura 
1974), the Sept Iles intrusion (Charlier et al. 2011; Namur 
et al. 2012a; Keevil et al. 2020), the Bushveld Complex 
(Fischer et al. 2016; VanTongeren and Mathez 2012; Yuan 
et al. 2017) and the Panzhihua intrusion (Zhou et al. 2013; 
Wang et  al. 2018; 2021). It is commonly accepted that 
unmixing begins at temperatures around 1040 °C (Philpotts 
2008; Charlier and Grove 2012; Hou et al. 2018; Honour 
et al. 2019a, 2019b), although Hou and Veksler (2015) also 
produced super-liquidus immiscibility at temperature up 
to 1200 °C. Our and Charlier and Grove’s (2012) experi-
ments suggest that immiscibility does not require extreme 
iron enrichments (> 20 wt%; Veksler 2009) and can even 
start after the crystallization of magnetite, which depletes 
FeO in the residual melt. Increased  TiO2,  P2O5 and alkali 
contents have also been shown to promote immiscibility by 
expanding the two liquids field (Charlier and Grove 2012). 
Increasing fO2 and aH2O may also widen the immiscibility 
field (Hou et al. 2018; Naslund 1983).

Considering the energy of the entire system, when immis-
cibility occurs, the total Gibbs free energy of mixing ( Gmix ) 

Fig. 11  The relation between the FeO/MgO weight ratio in the 
melt and melt  SiO2 content. The dashed line indicates the boundary 
between the calc-alkaline and tholeiitic fields after Miyashiro (1974). 
Experimental melts (fO2: QFM-1 to QFM + 1) from Toplis and Car-
roll (1995) are shown for comparison
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Fig. 12  Harker diagrams showing the evolution of experimental melts 
obtained in this study compared to natural lavas from the Emeishan 
LIP (the compiled dataset is listed in the caption to Fig. 1). The histo-

grams atop the uppermost panels show the distribution of MgO con-
tents in natural Emeishan high-Ti and low-Ti lavas
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for a single liquid prior to unmixing is higher than the sum 
of Gmix for the immiscible pair, with Gmix being identical 
for the coexisting immiscible pair (Ghiorso and Carmichael 
1980; Ghiorso et al. 1983):

with A and B representing the immiscible pairs. The first 
derivative of the Gibbs free energy of mixing ( �Gmix∕�n

k
 , 

where nk is the moles of the component k) with respect 
to any component in the silicate liquid will thus change 
from negative to positive when unmixing occurs (Fig. 13). 
Ghiorso and Carmichael (1980) defined 17 independent 
components (see their Table 1) to quantitatively calculate 
Gmix based on the interaction energies between those compo-
nents in the silicate liquids. Thus �Gmix∕�n

k
 can be equated 

to RTlna
k
 as (see Eq. 18 in Ghiorso and Carmichael 1980):

where R is the gas constant (8.314 J  mol−1  K−1), T is the 
experimental temperature in Kelvin and X

k
 , γ

k
 and a

k
 are 

the mole fraction, activity coefficient and activity of com-
ponent k. Ghiorso and Carmichael (1980) gave the example 
of calculating the first derivative of Gibbs free energy of 
mixing with respect to the  SiO2 component (�Gmix∕�nSiO2 ; 
see their Fig. 2), which can potentially be used to investigate 
the development of immiscibility by solving the evolution of 
aSiO2 in the melt upon cooling. When immiscibility devel-
ops, �Gmix∕�nSiO2 of the liquid, i.e., RTlnaSiO2 can be used 
to define the binodal surface of the immiscible pair (i.e., 
the width of the binodal surface). We tested Ghiorso and 
Carmichael’s (1980) model, but it did not successfully pre-
dict immiscibility in our experiments or other experiments 
where immiscibility was observed. This is probably due to 
our still far-from-perfect knowledge of thermodynamics in 

(1)ΔG
mix = G

ideal + G
excess

(2)ΔG
mix
single liquid

> ΔG
mix
A

+ ΔG
mix
B

(3)
(

�Gmix

�n
k

)

T ,P,n≠nk

= RTlnX
k
+ RTlnγ

k
= RTlna

k
,

multi-component silicate melts, precluding the accurate cal-
culation of the activities of their various components.

Here, by analogy to the thermodynamic expression of 
Ghiorso and Carmichael (1980), we propose a new empiri-
cal parameterization to predict immiscibility in silicate 
melts. Previous studies have found that the sum of the 
mole percentages of  TiO2, FeO, MgO, CaO and  P2O5 may 
effectively distinguish Si-rich and Fe-rich melts (Charlier 
and Grove 2012; Hou et al 2018; Kamenetsky et al 2013). 
We thus use this term instead of the mole fraction of the 
 SiO2 component (as in Ghiorso and Carmichael 1980) 
to describe the compositional contrast between the two 
immiscible melts. We performed a polynomial curve fit 
on all the available experiments with immiscible melts 
under condition relevant to natural systems. Our best fit-
ting result is:

where XSiO2
 is the mole percentage of  SiO2 in the liq-

uid and, � is the sum of the mole percentage of oxides 
dominantly partitioning into the Fe-rich melt, i.e. 
XTiO2

+ XFeO + XMgO + XCaO + XP2O5
 .  The coeff icient 

of determination (r2) for this fit is 0.95. The fitted curve 
covers the calibration range: � = 6.3–67.8 (mol%); 
T = 938–1053 °C; P from 1 atm to 100 MPa, fO2 from QFM 
−6 to QFM + 3.3, 0–2.6 wt%  H2O in the Si-rich melt and 
0–1.6 wt% in the Fe-rich melt.

The fitted curve and the experimental data used to 
calibrate it are shown in Fig. 14. When only miscible 
melts are considered, the melt gradually evolves towards 
 TiO2 + FeO + MgO + CaO +  P2O5 depletion in the single-
liquid field, reflecting the effect of the fractionation of 
mafic phases on melt differentiation. We further tested our 
model on natural immiscible melts hosted in melt inclu-
sions from Siberian Traps (Kamenetsky et al. 2013) and 
the Bushveld Complex (Fischer et al. 2016); they mostly 
plot well within the two-liquids field delimited by our fit-
ted binodal surface, supporting the use of the model on 
natural samples. Some of the data of Bushveld data plot 
above the binodal surface, possibly due to contamination 
by the host phase resulting from the small sizes of these 
melt inclusions, which limit the width of the electron 
beam. Nonetheless, they still intersect the Fe-rich melt 
endmember at high  TiO2 + FeO + MgO + CaO +  P2O5. In 
contrast, the crystallization experiments of Juster et al. 
(1989) and Toplis and Carroll (1995), which did not 
develop liquid immiscibility, follow the fractionation trend 
but correctly plot above the binodal surface on the Si-rich 
melt endmember.

(4)
RTlnXSiO2

=
4.6 × 10

−4 ×
(

(−14736.5 − ϕ)2 − 12323.9 ×
(

ϕ2
))

2.155
,

Gmix

nk
0 1

two-liquid field

Single liquid

ba

∂Gmix/∂nk

Onset of immiscibility

Fig. 13  Sketch of the Gibbs free energy of mixing ( Gmix ) and the 
change of its first derivative ( �Gmix∕�nk ) with respect to component 
k in the system, modified after Ghiorso and Carmichael (1980). a and 
b indicate where �Gmix∕�nk changes to 0, i.e., the onset of unmixing 
and the development of immiscible melt compositions
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Immiscibility and implications for Fe–Ti ore deposits 
in LIPs

Immiscibility between Si-rich and Fe-rich melts is often pro-
posed as a mechanism for the origin of Fe–Ti oxide deposits 
in layered intrusions (e.g., Zhou et al. 2005; 2013; Char-
lier et al. 2011; Fischer et al. 2016). However, this remains 
controversial and these Fe–Ti oxide deposits could also be 
produced by the simple mechanical accumulation of Fe–Ti 
oxide crystals (e.g., Tegner et al. 2006; Song et al. 2013).

The Panzhihua layered intrusion within the Emeishan 
LIP hosts one of the largest Fe–Ti oxide ore deposit and 
is genetically associated with the Emeishan high-Ti lavas 
(Zhou et al. 2005; Pang et al. 2008). To assess whether natu-
ral Emeishan lavas could have developed immiscibility, we 
apply our model (Eq. 4) to the high-Ti and low-Ti lavas in the 
database complied in Fig. 14. Both the high-Ti and low-Ti 
lavas follow trends similar to our experimental melts before 
they attained immiscibility. The high-Ti lavas eventually 

intersect our binodal, but this is not the case for the low-
Ti lavas. We note that the Emeishan lavas may have been 
slightly hydrous (Ganino et al; 2008; Liu et al. 2017), which 
may shift them closer to the binodal, because  H2O depresses 
the liquidus temperature (Parman and Grove 2004; Méd-
ard and Grove 2008). These results suggest that the high-Ti 
lavas may have developed immiscibility and contributed to 
the formation of the Fe–Ti oxide ore deposits, as previously 
proposed by Zhou et al. (2008) and consistent with obser-
vations of immiscibility textures in the Emeishan LIP (Liu 
et al. 2016; Dong et al. 2021; Wang et al. 2018, 2021; Xiong 
et al. 2021).

Moreover, our experimental results indicate that FeO 
depletion caused by Fe–Ti oxide crystallization does not 
hinder the development of immiscibility. This suggests that 
the formation of Fe–Ti ore could result from a combina-
tion of both fractionation and immiscibility. If a magma is 
buffered at high fO2, either intrinsically or due to interac-
tion with a sedimentary host (e.g., Ganino et al. 2008) and 
crystallizes Fe–Ti oxides early, the residual melt may still 
evolve to develop immiscibility. It is thus probable that early 
crystallized Fe–Ti oxides would preferentially settle to the 
bottom of the intrusion/magma chamber, causing the melt to 
evolve by fractional crystallization and eventually develop 
liquid immiscibility. The unmixing process would further 
enrich the accumulated layer of Fe–Ti oxides by downward 
percolation of the dense immiscible Fe-rich melt or produce 
Fe–Ti enriched layers at a more evolved stage in upper levels 
of the intrusion/chamber.

Conclusions

We performed experiments to determine the controls of 
primitive magma compositions and fO2 on the liquid lines 
of descent, phase stability, and compositions of high-Ti and 
low-Ti LIP basalts. Our results indicate that starting com-
position affects phase chemistry, whereas fO2 exerts a major 
control on the stability and chemistry of Fe–Ti oxides. Both 
high-Ti and low-Ti magmas can reach the two-liquid field 
at late stages of differentiation. High fO2 conditions trigger 
the early crystallization of Fe–Ti oxides but do not hinder 
the development of immiscibility. We propose a new empiri-
cal parameterization for the binodal surface of the two liq-
uid field in compositional space. Our model successfully 
replicates unmixing in both experiments and natural melt 
inclusions. Massive Fe–Ti oxide ores in layered intrusions 
associated with LIPs may thus form by the segregation of 
immiscible Fe-rich melts and/or the accumulation of early 
Fe–Ti oxides during fractionation.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00410- 022- 01990-x.

Fig. 14  Parameterization of the binodal surface for immiscible melts 
in LIPs. The kernel density plot at the top indicates the distribution of 
experimental and natural immiscible melts. The solid black line rep-
resents the best fit of our model and the gray envelope indicates the 1 
σ error of our estimation. Experimental data used for fitting include 
dry immiscibility experiments (this study; Charlier and Grove 2012; 
Dixon and Rutherford1979; Philpotts and Doyle 1983; Hess et  al. 
1975; Longhi 1990; Ryerson and Hess 1978, 1980; Hou et al. 2017; 
Rutherford et al. 1974; Honour et al. 2019a) and hydrous experiments 
from Hou et al. (2018). Natural melt inclusion (MI) data are from the 
Siberian Traps, Russia (Kamenetsky et  al. 2013) and the Bushveld 
Complex, South Africa (Fischer et al. 2016); Experimental melts that 
did not develop immiscibility (Toplis and Carroll 1995; Juster et al. 
1989) are shown for comparison
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