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A B S T R A C T

The direct imaging of exoplanets through 10-m class ground-based telescopes
is now a reality of modern astrophysics. Reaching this milestone is the re-
sult of significant advances in the field of high-contrast imaging, marked by
the development of dedicated telescope instrumentation, including extreme
adaptive optics and advanced coronagraphy. However, despite these advance-
ments, residual optical aberrations persist, generating quasi-static speckles in
the image field of view, whose shape and intensity are similar to potential
companions. Over the past two decades, numerous image post-processing
techniques have been proposed to further eliminate this residual speckle
noise and detect the planet signature. Among these techniques, supervised
deep learning was introduced through the SODINN detection algorithm, a
binary classifier that uses a convolutional neural network to learn a model
that distinguishes between noise and the point-like source in the image.
The recent Exoplanet Imaging Data Challenge (EIDC) served as a platform for
benchmarking SODINN and other image post-processing techniques. The
results revealed that SODINN tends to produce a notable number of false
positives, while the most effective techniques rely on mechanisms to capture
local image noise dependencies. Building upon these findings, this thesis
aims to improve the detection performance of SODINN through capturing
new local noise dependencies. Through the development of new statistical
methods, we explore the possibility to identify different noise regimes across
the angular differential imaging processed image and adapt the SODINN
neural network, and its training process, to work under this stratification
strategy. This model adaptation leads to the creation of a new detection algo-
rithm, called NA-SODINN. Through ROC analyses, NA-SODINN undergoes
rigorous testing against its predecessor, demonstrating an improved balance
between sensitivity and specificity in detection. Furthermore, NA-SODINN
is benchmarked against the full set of detection algorithms submitted in
the EIDC. The results indicate that NA-SODINN either matches or exceeds
the performance of the most powerful detection algorithms. NA-SODINN
is finally used to reanalyze a filtered sample from the recent SHINE exo-
planet survey, providing valuable insights and potential exoplanet candidates.
Throughout the supervised machine learning case, this study illustrates and
reinforces the importance of adapting the task of detection to the local content
of processed images.
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Where there is a will, there is a way.

A C K N O W L E D G E M E N T S

Today, my dream comes true ...

It all began 27 years ago, when a misfortune led me to the hospital as a critical
medical emergency. A brain injury due to a cranioencephalic trauma changed
my life. While I could resist the ambulance ride and the long post-surgery,
this incident left me with profound challenges, including the inability to walk,
use my arms, and speak. However, it never stole my dreams.

In those early days, in my hospital room, my ambition to look up and
know more about the Universe seemed like an unattainable possibility. But
as time passed, I found the strength thanks to the love and dedication of my
parents, family, and friends, and I could return to the primary school with a
helmet on my head. I was very happy. I still remember my dad’s constant
encouragement, repeating me the sentence heel-toe, heel-toe, ..., to help me
regain proper walking ability on our way to school. Likewise, I also recall my
mum teaching me to speak again while talking to me about the solar planets.

Over the years, I gradually regained the skills of speech, walking, and
substantial use of my affected arm due to persistent daily therapy. In parallel,
I successfully completed primary, secondary, and high school education, and
managed to pass the university entrance exams. With a clear determination
of becoming an astronomer, I started my studies in Physics. However, the
illusion was short-lived, as I suddenly started experiencing multiple seizures
as a consequence of my prior head trauma. To manage these seizures, I
underwent different medication changes, resulting in the loss of an entire
year of university studies. Nonetheless, one of these changes was crucial to
achieving stability and facilitating normal studies. Thanks to this adjustment,
I successfully completed all the physics courses, recovering the lost time
from my first year. Upon graduation, I pursued my master’s degree and a
traineeship in the European Space Agency, where I could gain expertise on
Machine and Deep learning, three of the most rewarding years of my life,
both in terms of professional growth and health stability.

Finally, the moment I had longed for arrived. I was selected for a Ph.D.
position at Université de Liège to work in exoplanet direct imaging through
deep learning. I still remember the day when I received Olivier’s message,
tears streaming down my face on a warm day at the French coast, alongside
Nuria.
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thank you for your support, for inviting me to go to Paris, and encouraging
me for the postdoc.

A very special thanks to Héctor for wishing me the best and giving me
his support whenever I needed it. Santi, you were the first person to place
trust in me and my work. Thank you so much. Carme, thank you for your
teaching, and for introducing me into the Gaia mission. I also want to express
my appreciation to Juan and Carme. I greatly enjoyed with both of you and
learned invaluable lessons along the way.

To all my friends, Irmina, Sergio, Laura, Sergi, Lluis, Oscar, Jaume, Roger,
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To my neurologists, physiotherapists, and speech therapists from the Hospital
Vall d’Hebron, Hospital Santa Creu i Sant Pau, and Institut Guttmann. I am
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thanks to Mercè, for her love, for her professionalism, for so many things we



x

lived together, for her magic hands. Begoña, thank you for giving me the
opportunity for introspection, for helping me discover my inner self, and for
making the journey enjoyable.

A big thank you to Javier Berché and his foundation for their support,
their courses, and for affording me the opportunity to study astronomy in
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My profound gratitude and love go to my parents, to whom I dedicate this
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que mai, absolutament mai, trobaré una vida com la que vosaltres m’heu donat a mi.
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P R E FA C E

In the boundless expanse of the Universe, a persistent question has stirred
human curiosity: do other worlds exist beyond ours? This questioning, a part
of human contemplation for millennia, has transcended epochs, from the
speculative thoughts of antiquity to the modern astronomical observations.

The endeavour to detect exoplanets –planets orbiting other stars beyond
ours– has unravelled an odyssey that connects the aspirations of philosophers
and the innovations of astronomers. From the profound ponderings of
ancient Greek philosophers like Epicurus and Democritus to the revolutionary
ideas of Copernicus and Newton, the notion of distant worlds has been a
constant companion on our intellectual journey. These visionaries dared
to imagine Earth as not the only origin of life but as one among several.
The advent of telescopes in the Renaissance illuminated this longing to
explore. Galileo’s research on Jupiter’s moons and Saturn’s rings rewrote the
understanding of planetary motion, revealing previously unknown aspects
of celestial movement. However, despite the use of telescopes, the mystery of
exoplanets remained unresolved.

As theoretical insights merged with technological advancements, the ap-
proach to discovering other worlds began to crystallize. In 1992, the first
exoplanets were finally discovered, and since then, thousands of them have
been detected in the close vicinity of the Sun. Today, this exploration story
continues, but it has seen remarkable progress, allowing us to accomplish
what was once thought to be impossible: thanks to advancements in instru-
mentation, we are now equipped not only to detect, but also to capture the
thermal emission of exoplanets in images.

In parallel with such a milestone, a transformative player has recently taken
the stage: artificial intelligence. Machine learning algorithms are bringing in
a new era in the management of massive amounts of data, and they are
enabling us to solve much more complex problems. Within this context,
the integration of exoplanet direct imaging with machine learning holds the
promise of significantly advancing exoplanet detection.

Through the five parts of this thesis, the reader is invited to embark on
a voyage to witness firsthand the birth of a powerful exoplanet imaging
algorithm based on machine learning. As this algorithm reveals its potential,
it reflects the spirit of philosophers and scientists past, who sought to unlock
the mysteries of existence through observation and reason. Building upon
their legacy, we advance not only technologically, but also intellectually.

xiii



C O N T E N T S

List of Figures xvii
List of Tables xix
Acronyms xx
Research contributions xxiii

I INTRODUCTION
1 Exoplanet detection 3

1.1 Indirect detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Pulsar timing . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 Radial velocity . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.3 Transit photometry . . . . . . . . . . . . . . . . . . . . . 5

1.1.4 Microlensing . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.5 Astrometry . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Direct detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 High-contrast imaging . . . . . . . . . . . . . . . . . . . 8

1.2.2 Angular resolution and adaptive optics . . . . . . . . . 10

1.2.3 Contrast and coronagraphy . . . . . . . . . . . . . . . . 13

1.2.4 Speckle noise . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.5 Observing strategies . . . . . . . . . . . . . . . . . . . . . 15

1.2.6 Image processing techniques . . . . . . . . . . . . . . . . 16

2 Machine Learning 24

2.1 Unsupervised learning . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 The artificial neuron . . . . . . . . . . . . . . . . . . . . . 28

2.3.2 Neural networks . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.3 Types of neural networks . . . . . . . . . . . . . . . . . . 32

2.4 Machine learning for exoplanet detection . . . . . . . . . . . . . 34

3 Scope and outline of this dissertation 35

II EXOPLANET IMAGING DATA CHALLENGE
4 Phase-1: Exoplanet detection 40

4.1 Subchallenge-1: ADI . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.1 Data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.2 Evaluation procedure . . . . . . . . . . . . . . . . . . . . 43

4.1.3 Submissions and results . . . . . . . . . . . . . . . . . . 45

4.1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Subchallenge-2: ADI + mSDI . . . . . . . . . . . . . . . . . . . . 54

xiv



contents xv

4.2.1 Data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.2 Evaluation procedure . . . . . . . . . . . . . . . . . . . . 54

4.2.3 Submissions and results . . . . . . . . . . . . . . . . . . 55

4.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 My contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Phase-II: Characterization of exoplanets 60

5.1 Data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1.1 Injection procedure . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Evaluation procedure . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Submission example . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3.1 Test data set . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4 My contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

III NOISE REGIMES IN PROCESSED ADI IMAGES
6 Speckle noise statistics 75

6.1 Speckle noise in raw data . . . . . . . . . . . . . . . . . . . . . . 75

6.2 Speckle noise in ADI processed frames . . . . . . . . . . . . . . 76

7 Identification of noise regimes 78

7.1 Paving the image field of view . . . . . . . . . . . . . . . . . . . 78

7.1.1 The rolling annulus . . . . . . . . . . . . . . . . . . . . . 80

7.2 Moments evolution analysis . . . . . . . . . . . . . . . . . . . . . 81

7.3 Normality test combination analysis . . . . . . . . . . . . . . . 83

7.3.1 Field of view splitting strategy . . . . . . . . . . . . . . . 85

7.4 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

IV THE NA-SODINN DEEP LEARNING ALGORITHM
8 The SODINN algorithm 94

8.1 Generation of the training set . . . . . . . . . . . . . . . . . . . . 94

8.2 Training of the network . . . . . . . . . . . . . . . . . . . . . . . 96

8.3 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

9 The NA-SODINN algorithm 98

9.1 Adding S/N curves to the network . . . . . . . . . . . . . . . . 98

9.2 Generation of the training set . . . . . . . . . . . . . . . . . . . . 102

9.3 Training and inference . . . . . . . . . . . . . . . . . . . . . . . . 102

10 Model evaluation 104

10.1 Performance assessment . . . . . . . . . . . . . . . . . . . . . . . 104

10.2 NA-SODINN in the EIDC . . . . . . . . . . . . . . . . . . . . . . 106

11 NA-SODINN on the SHINE survey 113

11.1 The SHINE survey . . . . . . . . . . . . . . . . . . . . . . . . . . 114

11.2 The F150 sample . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

11.2.1 Data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115



contents xvi

11.2.2 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . 115

11.3 Model configuration . . . . . . . . . . . . . . . . . . . . . . . . . 118

11.4 Detection maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

V CONCLUSIONS
12 Summary 129

13 Perspectives 132

VI APPENDIX
a Detection maps for ADI subchallenge 136

b Detection maps for ADI+mSDI subchallenge 146

c Planetary injection and flux estimation 152

c.1 Planetary injection . . . . . . . . . . . . . . . . . . . . . . . . . . 152

c.1.1 Injection limitations . . . . . . . . . . . . . . . . . . . . . 152

c.2 Flux estimation for a given S/N range . . . . . . . . . . . . . . 152

d Performance assessment detection maps 155



L I S T O F F I G U R E S

Figure 1.1 Exoplanet discoveries census and timeline . . . . . . . . 4

Figure 1.2 RV curve and exoplanet transit . . . . . . . . . . . . . . . 5

Figure 1.3 Microlensing technique . . . . . . . . . . . . . . . . . . . 7

Figure 1.4 Exoplanet direct imaging examples . . . . . . . . . . . . 8

Figure 1.5 Analogy of the contrast problem . . . . . . . . . . . . . . 9

Figure 1.6 Full pipeline example of HCI . . . . . . . . . . . . . . . . 10

Figure 1.7 The point spread function . . . . . . . . . . . . . . . . . . 11

Figure 1.8 AO correction example . . . . . . . . . . . . . . . . . . . 12

Figure 1.9 Illustration of an AO system . . . . . . . . . . . . . . . . 13

Figure 1.10 The Lyot coronagraph . . . . . . . . . . . . . . . . . . . . 14

Figure 1.11 PSF subtraction image post-processing steps . . . . . . . 17

Figure 1.12 Medsub, LOCI and PCA post-processing . . . . . . . . . 19

Figure 2.1 Clustering families . . . . . . . . . . . . . . . . . . . . . . 25

Figure 2.2 Basics of supervised learning . . . . . . . . . . . . . . . . 27

Figure 2.3 Perceptron and activation functions . . . . . . . . . . . . 28

Figure 2.4 Multilayer Perceptron . . . . . . . . . . . . . . . . . . . . 30

Figure 2.5 Image convolution example . . . . . . . . . . . . . . . . . 33

Figure 4.1 EIDC HCI data sets representation . . . . . . . . . . . . 43

Figure 4.2 EIDC subchallenge-1 leader-board . . . . . . . . . . . . . 52

Figure 4.3 EIDC subchallenge-2 leader-board . . . . . . . . . . . . . 57

Figure 5.1 The sph− test data set . . . . . . . . . . . . . . . . . . . 65

Figure 5.2 PCA and ANDROMEDA results . . . . . . . . . . . . . 67

Figure 5.3 Predictions versus ground-truth . . . . . . . . . . . . . . 69

Figure 7.1 Paving of processed frame . . . . . . . . . . . . . . . . . 79

Figure 7.2 Statistical moments analysis . . . . . . . . . . . . . . . . 82

Figure 8.1 SODINN generation stage . . . . . . . . . . . . . . . . . 95

Figure 9.1 Example of S/N curves . . . . . . . . . . . . . . . . . . . 99

Figure 9.2 The NA-SODINN framework . . . . . . . . . . . . . . . 101

Figure 10.1 ROC analysis per noise regime from sph2 . . . . . . . . 107

Figure 10.2 ROC analysis per noise regime from nrc3 . . . . . . . . . 108

Figure 10.3 NA-SODINN detection maps for the EIDC . . . . . . . . 109

Figure 10.4 NA-SODINN scores for the EIDC . . . . . . . . . . . . . 111

Figure 10.5 Updated EIDC leader-board . . . . . . . . . . . . . . . . 112

Figure 11.1 ADI median frames from F150 data sets . . . . . . . . . 117

Figure 11.2 Detection maps for HIP30030 . . . . . . . . . . . . . . . . 120

Figure 11.3 Detection maps for HIP27321 . . . . . . . . . . . . . . . . 121

Figure 11.4 Detection maps for HIP15457 . . . . . . . . . . . . . . . . 122

xvii



list of figures xviii

Figure 11.5 Detection maps for HIP102409 . . . . . . . . . . . . . . . 123

Figure 11.6 Detection maps for HIP99742 . . . . . . . . . . . . . . . . 124

Figure A.1 EIDC phase-1 detection maps for sph1 . . . . . . . . . . 137

Figure A.2 EIDC phase-1 detection maps for sph2 . . . . . . . . . . 138

Figure A.3 EIDC phase-1 detection maps for sph3 . . . . . . . . . . 139

Figure A.4 EIDC phase-1 detection maps for nrc1 . . . . . . . . . . 140

Figure A.5 EIDC phase-1 detection maps for nrc2 . . . . . . . . . . 141

Figure A.6 EIDC phase-1 detection maps for nrc3 . . . . . . . . . . 142

Figure A.7 EIDC phase-1 detection maps for lmr1 . . . . . . . . . . 143

Figure A.8 EIDC phase-1 detection maps for lmr2 . . . . . . . . . . 144

Figure A.9 EIDC phase-1 detection maps for lmr3 . . . . . . . . . . 145

Figure B.1 EIDC phase-1 detection maps for ifs1 . . . . . . . . . . . 147

Figure B.2 EIDC phase-1 detection maps for ifs2 . . . . . . . . . . . 147

Figure B.3 EIDC phase-1 detection maps for ifs3 . . . . . . . . . . . 148

Figure B.4 EIDC phase-1 detection maps for ifs4 . . . . . . . . . . . 148

Figure B.5 EIDC phase-1 detection maps for ifs5 . . . . . . . . . . . 149

Figure B.6 EIDC phase-1 detection maps for gpi1 . . . . . . . . . . . 149

Figure B.7 EIDC phase-1 detection maps for gpi2 . . . . . . . . . . . 150

Figure B.8 EIDC phase-1 detection maps for gpi3 . . . . . . . . . . . 150

Figure B.9 EIDC phase-1 detection maps for gpi4 . . . . . . . . . . . 151

Figure B.10 EIDC phase-1 detection maps for gpi5 . . . . . . . . . . . 151

Figure C.1 Injection fluxes estimation for sph2 . . . . . . . . . . . . 154

Figure D.1 Detection maps for 5− 7 λ/D regime in sph2 . . . . . . . 156

Figure D.2 Detection maps for 8− 14 λ/D regime in sph2 . . . . . . 157

Figure D.3 Detection maps for 15− 16 λ/D regime in sph2 . . . . . 158

Figure D.4 Detection maps for 1− 3 λ/D regime in nrc3 . . . . . . . 159

Figure D.5 Detection maps for 4− 16 λ/D regime in nrc3 . . . . . . 160



L I S T O F TA B L E S

Table 1 Data sets of EIDC phase-1 subchallenge-1 . . . . . . . . 42

Table 2 Submitted algorithms in the EIDC phase-1 . . . . . . . . 46

Table 3 Results for classical PSF subtraction techniques . . . . . 47

Table 4 Results for advanced PSF subtraction techniques . . . . 48

Table 5 Results for the Unknown submission . . . . . . . . . . . . 49

Table 6 Results for inverse problem techniques . . . . . . . . . . 50

Table 7 Results for machine learning techniques . . . . . . . . . 51

Table 8 Data sets of EIDC phase-1 subchallenge-2 . . . . . . . . 55

Table 9 Results for EIDC subchallenge-2 . . . . . . . . . . . . . . 56

Table 10 Data sets of EIDC phase-2 . . . . . . . . . . . . . . . . . 61

Table 11 Results for the submission example . . . . . . . . . . . . 66

Table 12 Main parameters of the targeted stars . . . . . . . . . . . 116

Table 13 ADI properties of the targeted stars . . . . . . . . . . . . 116

xix



A C R O N Y M S

ADI Angular Differential Imaging

AI Artificial Intelligence

AO Adaptive Optics

ANDROMEDA ANgular Differential OptiMal Exoplanet Detection

AU Astronomical Unit

AUC Area Under the Curve

CEVR Cumulative Explained Variance Ratio

CNN Convolutional Neural Network

DM Deformable Mirror

DNN Deep Neural Networks

EIDC Exoplanet Imaging Data Challenge

ELT Extremely Large Telescope

ESO European Southern Observatory

FDR False Discovery Rate

FITS Flexible Image Transport System

FMMF Forward Model Matched Filter

FN False Negative

FP False Positive

FPR False Positive Rate

FWHM Full Width High Maximum

GAN Generative Adversarial Network

GMT Giant Magellan Telescope

GPI Gemini Planet Imager

GRU Gated Recurrent Unit

HCI High Contrast Imaging

HSR Half-Sibling Regression

IFS Integral Field Spectrograph

IRDIS InfraRed Dual-band Imager and Spectrograph

IWA Inner Working Angle

LBT Large Binocular Telescope

xx



acronyms xxi

LLSG Local Low-rank plus Sparse plus Gaussian decomposition

LMIRCam LBTI’s L and M Infrared Camera

LOCI Locally Optimized Combination of Images

LSTM Long-Short Term Memory

METIS Mid-infrared ELT Imager and Spectrograph

ML Machine Learning

MLAR Multi-level Low-rank Approximation Residuals

MLP MultiLayer Perceptron

MOA Microlensing Observations in Astrophysics

NA-SODINN Noise-Adaptive SODINN

NIRC2 Near InfraRed Camera 2

NMF Non-Matrix Factorization

OGLE Optical Gravitational Lensing Experiment

OWA Outer Working Angle

PACO PAtch COvariances

PC Principal Component

PCA Principal Component Analysis

PSF Point Spread Function

RDI Reference-star Differential Imaging

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic

RSM Regime Switching Model

RTC Real-Time Control system

SDI Spectral Differential Imaging

SHINE SpHere INfrared survey for Exoplanets

SODINN Supervised exOplanet detection via Direct Imaging with DNN

STIM Standarized Trajectory Intensity mean Map

SVD Singular Value Descomposition

SVM Support Vector Machine

S/N Signal-to-Noise ratio

SPHERE Spectro Polarimetric High contrast Exoplanet Research

SR Strehl Ratio

TMT Thirty Meter Telescope

TN True Negative

TP True Positive

TPR True Positive Rate



acronyms xxii

TRAP Temporal Reference Analysis of Planets

VIP Vortex Image Processing

VLT Very Large Telescope

WFS WaveFront Sensor



R E S E A R C H C O N T R I B U T I O N S

publications

• C. Cantero, O. Absil, C-H. Dahlqvist and M.Van Droogenbroeck. NA-
SODINN: a deep learning algorithm for exoplanet image detection based on
residual noise regimes. Accepted for publication in A&A.

• V. Christiaens, C. Gomez-Gonzalez, R. Farkas, C.-H. Dahlqvist, E.
Naskedin, J. Milli, O. Absil, H. Ngo, C. Cantero, A. Rainot, I. Ham-
mond, M.J. Bonse, F. Cantalloube, A. Vigan, V. Kompella and P. Hancock.
VIP: A Python package for high-contrast imaging Journal of Open Source
Software (JOSS), vol. 8 (2023).

• F. Cantalloube, V. Christiaens, C. Cantero, E. Naskedin, A. Cioppa,
O. Absil, M.J. Bonse, P. Delorme, C. Gomez-Gonzalez, S. Juillard, J.
Mazoyer, M. Samland, J.-B. Ruffio and M. Van Droogenbroeck. Exoplanet
Imaging Data Challenge, phase II: Characterization of exoplanet signals in
high-contrast images. Proceedings of the SPIE, Volume 12185, id. 1218505
17 pp. (2022).

• F. Cantalloube, C. Gomez-Gonzalez, O. Absil, C. Cantero, R. Bacher,
M.J. Bonse, M. Bottom, C.-H. Dahlqvist, C. Desgrange, O. Flasseur, T.
Fuhrmann, Th. Henning, R. Jensen-Clem, M. Kenworthy, D. Mawet,
D. Mesa, T. Meshkat, D. Mouillet, A. Mueller, E. Nasedkin, B. Pairet, S.
Pierard, J.-B. Ruffio, M. Samland, J. Stone and M. Van Droogenbroeck.
Exoplanet Imaging Data Challenge: benchmarking the various image process-
ing methods for exoplanet detection. Proceedings of the SPIE, Volume
11448, 1027 – 1062 (2020).

talks and posters in conferences and seminars

• Planned poster: Imaging hidden worlds? Exploring the SpHere INfrared
survey for Exoplanets (SHINE) through deep learning. The 2023 conference
on Machine Learning in astronomical surveys. November 27-December
1st IAP, Paris / Flatiron institute, New York.

• Talk: Using local noise statistics to improve the supervised learning of exo-
planets detection. In spirit of Lyot Conference. University of Leiden, 27
June - 1 July 2022, Leiden (The Netherlands).

xxiii



research contributions xxiv

• Talk: Supervised deep learning for exoplanet imaging. L’Observatoire de
Paris: Laboratoire d’Etudes Spatiales et d’Instrumentation en Astro-
physique (LESIA) - Laboratory for Space Science and Astrophysical
Instrumentation. June 2023, Paris (France).





Part I

I N T R O D U C T I O N



1
E X O P L A N E T D E T E C T I O N

The concept of a planet in astronomy has evolved over time. In 2006, the
International Astronomical Union (IAU) established criteria for an object
to be classified as a planet: it must orbit a star, have sufficient mass to form a
spherical shape, and clear its orbit of other objects. Although this definition was
clear and concise, it was designed for solar system planets, and it thus failed
to encompass other planet-like objects, such as brown dwarfs1 (Schneider
et al., 2011), free-floating planets2 (Sumi et al., 2011), and exoplanets.

Although alternative planet definitions have emerged to incorporate all
planet-like objects (e.g., Boss et al., 2005; Margot, 2015), distinguishing be-
tween these objects remains unclear due to the limited number of observed
cases. Currently, around 5500 exoplanets have been confirmed3, with an
additional 9800 candidates awaiting confirmation. These findings collectively
account for about 4100 planetary systems in the vicinity of our star, the
Sun. These discoveries have been made possible through complex detection
techniques employed by ground- and space-based telescopes.

The aim of this first chapter is to provide a description of all these detection
techniques. However, due to its relevance for the presented work, the focus
is on exoplanet direct imaging, and therefore a full section is dedicated
to providing the reader with all the necessary concepts to understand this
revolutionary method.

1.1 indirect detection

Thus far, the detection of exoplanets has mostly relied on the application of
indirect detection methods. The underlying concept behind these techniques
is to infer the existence of orbiting planets around a star by detecting var-
ious indirect effects or phenomena, such as changes in the star’s light, or
alterations in the motion of the host star.

1 Brown dwarfs are sub-stellar objects that lack sufficient mass for nuclear fusion of ordinary
hydrogen into helium in their cores. However, they are massive enough to fuse deuterium.

2 Free-floating planets are planetary-mass objects that do not orbit any star or brown dwarf,
and therefore, they are not gravitationally bound.

3 NASA exoplanet archive: https://exoplanetarchive.ipac.caltech.edu/
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Figure 1.1: Overview of the current exoplanetary census. Left: Planetary mass versus
semi-major axis space in which confirmed exoplanets and brown dwarfs
are displayed according to the detection method. Solar system planets
are drawn through their own illustrations. Right: Cumulative amount of
exoplanet discoveries over time according to the detection method. The
vertical dashed black line denotes the present day in this timeline, while
the terminal points of each curve represent the total number of discoveries
per method. Data extracted from the NASA exoplanet archive.

1.1.1 Pulsar timing

The pulsar timing technique stands as the initial breakthrough in detecting
exoplanets (Wolszczan & Frail, 1992) as shown in Fig. 1.1-right. Pulsars4 emit
regular radio waves from their magnetic poles as they undergo rotation. By
monitoring the arrival time of these pulses on Earth, it becomes possible to
trace these electromagnetic beams over time. Consequently, the presence
of unseen planets orbiting pulsars results in subtle but systematic changes
in the expected timing of pulse arrival on Earth. Nonetheless, the practical
applicability of this technique is hindered by several limitations. Pulsars
are exceedingly rare when juxtaposed with main-sequence stars, and the
intricate process of planetary formation around pulsars requires singular
conditions, resulting in a low occurrence rate of planets. Consequently, only
a few exoplanets have been detected using this technique over the past two
decades (Fig. 1.1).

1.1.2 Radial velocity

The discovery of the first exoplanets orbiting a pulsar engaged numerous
astronomers in the pursuit of detecting the first planet orbiting a main-

4 Pulsars are compact remnant neutron stars that form as a result of supernova explosions.



1.1 indirect detection 5

Figure 1.2: Examples of radial velocity and transit detections. Left: RV curve of
51 Peg, phased to a period of 4.23 days. The solid line is the fit to the
observational data (red dots). Figure from Mayor & Queloz (1995). Right:
Photometric time series of HD209458 during a transit. The solid line
represents the best fit model indicating a maximum reduction of 1.7%
of the host star brightness during the transit. Figure from Charbonneau
et al. (2000).

sequence star. It was an observation in January 1995 that validated this
endeavor. Professor Michael Mayor and his Ph.D. student Didier Queloz
announced the groundbreaking detection of an exoplanet in orbit around the
nearby G-type star 51 Pegasi (Mayor & Queloz, 1995) employing the radial
velocity (RV) method. The fundamental principle underlying the RV method
lies in the fact that stars, when orbited by planets, do not remain stationary.
Instead, they exhibit subtle oscillations around the center of mass of the star-
planet system. Consequently, when the exoplanet is massive enough and/or
close enough to its parent star, the center of mass shift becomes, through
Doppler spectroscopy5, sufficiently large to allow a measurable periodic radial
motion of the host star (Fig. 1.2-left). This phenomenon clarifies why the RV
method has primarily succeeded in identifying exoplanets characterized by
relatively short orbital periods and masses surpassing that of Earth (Fig. 1.1-
left). The RV method has been able to find a total of 1044 exoplanets to date
(Fig. 1.1-right).

1.1.3 Transit photometry

After the emergence of the RV method, two different teams were able to
reveal for the first time a transiting exoplanet (Charbonneau et al., 2000;
Henry et al., 1999). A transit is done when a planet passes in front of their
host star (as seen from Earth), so that it causes a slight reduction in the star’s

5 The motion of the star causes a shift in the wavelengths of its emitted light. When the star
moves toward the Earth, its light becomes slightly blueshifted, and when it moves away, the
light becomes slightly redshifted.
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apparent brightness (Fig. 1.2-right). Consequently, whether the exoplanet is
massive/big enough with respect to its parent star, this apparent brightness
reduction becomes sufficiently large to be measurable by telescopes. This
explains the fact that astronomers have been able to detect transits of super-
Earths and giant planets very close to their parent star (Fig. 1.1-left). The
transit photometry method has discovered 3945 exoplanets (Fig. 1.1-right),
and it is nowadays the most successful detection technique. This is mainly due
to the NASA Kepler/K2 space mission (Borucki et al., 2010), which confirmed
3251 new detections, and the ongoing TESS mission (Ricker et al., 2015) with
396 confirmed detections so far.

1.1.4 Microlensing

Although the RV and transit photometry methods have proven to be highly
successful, they have only detected companions in the vicinity of the Sun, ap-
proximately 1 kpc away from Earth. However, in April 2004, a breakthrough
occurred when the OGLE and MOA programs6 presented the first exoplanet
discovery (Fig. 1.1-right) near the center of our galaxy using the microlensing
method (Bond et al., 2004). When a distant background star becomes precisely
aligned with a foreground star, the gravitational field of the latter causes
the light from the background star to bend, resulting in the appearance of
two distorted, brightened images. This observable phenomenon is known as
gravitational lensing (Fig. 1.3-left). The resulting effect is a sudden dramatic
increase in the brightness of the background star, which is commonly known
as magnification (Fig. 1.3-right). In instances where a planet orbits in close
proximity to the foreground star, crossing one of the two light paths ema-
nating from the background star, the planet’s gravitational force bends the
light stream, momentarily generating a third image of the source star. This
phenomenon, when observed from Earth, manifests as a temporary spike in
brightness superimposed on the regular magnification pattern (Fig. 1.3-right).
The number of exoplanets detected through this strategy is currently up to
150 (Fig. 1.1-right). The microlensing method possesses a particular disad-
vantage. It does not allow to reproduce observations, given the extremely
low probability of follow-up alignment with another background star.

1.1.5 Astrometry

Since the first detection through the pulsar timing strategy in 1992, there has
been a remarkable advancement in the precision and accuracy of instruments
in the telescope. These advancements have spurred the development of

6 The Optical Gravitational Lensing Experiment (OGLE) and the Microlensing Observations in
Astrophysics (MOA) are long term projects with the main goal of searching for microlensing
phenomena and detect dark matter and extra-solar planets.



1.2 direct detection 7

Figure 1.3: The microlensing method. Left: Illustration of a microlensing event. Right:
Light curve magnification example, where a second peak reveals the
presence of an orbiting planet. Image from the NASA Exoplanet Science
Institute.

more sophisticated detection techniques, such as the astrometry method.
Instead of relying on Doppler spectroscopy (RV method) to identify periodic
movements of stars, astrometry looks for these movements directly on the
celestial sphere. This strategy demands an extraordinary degree of precision
for ground-based telescopes, which explains why only two exoplanets (Curiel
et al., 2022; Sahlmann et al., 2013) have been discovered through astrometry
measurements so far (Fig. 1.1). Nonetheless, equipped with an exceptionally
high level of precision, the Gaia space mission is expected to overcome the
limitations faced by ground-based telescopes holding immense promise for
significantly increasing the number of exoplanet detections via astrometry in
the coming years.

1.2 direct detection

Parallel to the use of indirect detection techniques, significant progress has
been made in various technologies in the telescopes, such as adaptive optics
and coronagraphy. The combined progress in these areas has offered an
opportunity to explore strategies for directly imaging exoplanets through
infrared observations using 10-m class telescopes. Stars emit considerably
less radiation in the infrared band compared to the visible and ultraviolet
spectra. Consequently, astronomers can directly capture the thermal emission
emanating from orbiting exoplanets, as opposed to attempting to detect their
reflected starlight in the visible range.

The first successful instance of detection of an exoplanet thermal emission
took place in 2004 (Fig. 1.1-right). A research team captured an image of
the giant planet 2M1207 b (Chauvin et al., 2004) orbiting the brown dwarf
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Figure 1.4: Examples of three imaged exoplanets through ground-based telescopes.
Left: First ever image of an exoplanet (red source), which is orbiting the
2MASSWJ 1207334− 393254 brown dwarf (blue source). Image from
Chauvin et al. (2004). Middle: Four giant planets orbiting the HR8799

main-sequence star. Image from NRC-HIA, C. Marois, and Keck Obser-
vatory. Right: Planet (bright point to the right of the centre of the image)
caught in the very act of formation around the T Tauri star PDS70 and
its protoplanetary disk. Image from Müller et al. (2018).

2MASSWJ 1207334− 393254 (Fig. 1.4-left) using the Very Large Telescope
(VLT). Since this remarkable discovery, a total of 66 exoplanets and brown
dwarfs have been directly imaged. Some notable examples include the
detection of the HR8799 b, c, d, and e giant planets (Fig. 1.4-middle) using the
Keck and Gemini-South telescopes (Marois et al., 2008b, 2010), the discovery
of Beta Pictoris b using the VLT (Lagrange et al., 2009), the detection of the
lowest mass planet yet with direct imaging (51 Eridani b) with the Gemini-
South telescope (Macintosh et al., 2015), and the observation of a protoplanet
within the PDS70 disk (Keppler et al., 2018a) as shown in Fig. 1.4-right.

1.2.1 High-contrast imaging

The direct imaging of exoplanets through ground-based telescopes is a very
challenging task. The angular separation between a nearby star and its or-
biting exoplanets is extremely small when observed from Earth, typically
within the range of a few milli-arcseconds to a few arcseconds. Further-
more, even when operating within the infrared, the very high flux ratio (or
contrast) between an exoplanet and its parent star significantly complicates
the isolation of the planet’s signal from the overwhelming brightness of the
star (Fig. 1.5). Typical contrasts range from 10−3 − 10−4 for hot Jupiters and
can be as low as 10−10 for Earth-like planets in the habitable zone. The
Earth’s atmosphere further complicates the direct detection. As starlight
passes through the atmosphere, turbulent regions cause the light wavefront
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Figure 1.5: Analogy of the contrast problem. The lighthouse represents the star and
the firefly the orbiting exoplanet. Left: Desired scenario for imaging the
planet. Right: Real scenario where starlight overwhelm planetary signal
and avoids its detection.

to distort, subsequently degrading the quality of images obtained when the
light reaches telescopes.

In order to deal with the aforementioned challenges, the field of high-
contrast imaging (HCI) relies on four fundamental pillars that are used in
synergy to directly image exoplanets. The practical application of these four
pillars is illustrated through the imaging example of Fig. 1.6:

1. Given a long exposure of a star, which is affected by the Earth’s atmo-
sphere (Fig. 1.6-a), the first HCI pillar concerns correcting this image
degradation. This is done through Adaptive Optics (AO) systems im-
plemented on the telescopes, which improve image quality and angular
resolution (Fig. 1.6-b). This pillar is addressed later in Section 1.2.2.

2. After this AO correction, HCI makes use of a coronagraphic instrument
to block out the starlight and decrease the contrast between the star and
its unseen companions. Unfortunately, the starlight is never perfectly
removed in practice, and some residuals remain in the coronagraphic
image in the form of speckles (Fig. 1.6-c). Speckles can mimic the
expected signal of an exoplanet in both shape and contrast. This pillar
is explained later in Section 1.2.3 and Section 1.2.4.

3. In order to deal with quasi-static speckles in coronagraphic images, HCI
employs specific observing strategies in the telescope, enabling the
acquisition of data structures for modeling the residual speckle pattern.
This pillar is addressed in Section 1.2.5.

4. Complementing observing strategies, HCI finally relies on powerful im-
age post-processing techniques that are designed to effectively remove
the modelled speckle pattern and reveal hidden companions (Fig. 1.6-d).
This pillar is described in Section 1.2.6.
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Figure 1.6: Practical example of the use of the four pillars in HCI for the imaging
of the four giant planets around the HR8799 star. (a) Telescope exposure
of HR8799 degraded by the Earth’s atmosphere. (b) Same exposure after
AO-correction. (c) Coronagraphic image after the propagation of the
AO-corrected image, in which the residual speckle pattern is shown. (d)
Residual processed frame after applying a post-processing algorithm
into a data structure acquired through a given observing strategy, which
reveals the four planet signatures. The reached contrast C is decreased
on each of these steps.

1.2.2 Angular resolution and adaptive optics

A distant star can be considered as point-like source of light. Due to the
principles of optics, this point-like source undergoes diffraction when it
passes through the circular aperture of the telescope. Consequently, it is
spread out creating a pattern known as the point-spread function (PSF, Racine,
1996). The PSF is mathematically described by an Airy function, which shows
a central peak (or Airy disk) representing the main concentration of light
from the star (Fig. 1.7-left). Surrounding this peak, there are a series of
concentric rings with diffracted starlight that spread out from the central
peak. In astronomy, an important measure of the PSF is the Full Width at Half
Maximum (FWHM), which represents the width of the PSF at the intensity
level equal to half of its peak intensity (Fig. 1.7-right).

The angular resolution of a telescope refers to its ability to distinguish
between two closely spaced objects in the sky, such as two stars, and their
corresponding PSFs. Under ideal observing conditions, this resolving power
is only limited by optical diffraction effects, and is typically expressed in
terms of the smallest angle θL that the telescope can resolve between the two
star PSFs. This angle is known as the diffraction limit and it is given by the
Rayleigh criterion:

θL = 1.22 · λ
D

, (1)
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Figure 1.7: Left: Point spread function of a circular aperture showing the Airy-disk
and the three first Airy rings. Image from Waterman (2019). Right:
Illustration of the same PSF showing the full width at half maximum
(FWHM) measure in red. Image from Majewski lecture notes (University
of Virginia).

where λ is the wavelength of light being observed, and D is the diameter of
the telescope’s aperture.

From Eq. 1, it is directly inferred that the larger the telescope’s aperture,
the better its resoluving power. However, for a ground-based telescope, this
diffraction-limited scenario is never achieved in practice, since its resolution
power is also limited by atmospheric turbulence. When light enters the
Earth’s atmosphere, the different temperature layers and different wind
speeds distort the light waves, leading to time and space-varying phase shifts
of the wavefronts. As a result, the expected sharp PSF core is instead replaced
by a fuzzy blob or halo (Fig. 1.8-left), decreasing the angular resolution limit
of the telescope, which is now given by the Fried criterion (commonly known
as seeing):

θL = 0.98 · λ

r0
, (2)

where r0 is the so-called Fried parameter, which is a measure of the strength of
atmospheric turbulence. More precisely, r0 quantifies the distance over which
the wavefront of incoming light remains relatively undistorted by atmospheric
turbulence. Larger values of r0 indicate a more stable atmosphere, while
smaller values indicate stronger turbulence. Therefore, the angular resolution
limit of the telescope becomes independent of its aperture D, and it instead
depends on atmospheric conditions.

In order to partially correct this wavefront distortion phenomena and
improve angular resolution, the concept of adaptive optics was originally
proposed by Babcock (1953) and was first applied in astronomy by ESO in
1990 at La Silla Observatory (Rousset et al., 1990). Generally, an AO-system
consists of three main components that work in synergy in the telescope:
the wavefront sensor (WFS, e.g. Shack & Platt, 1971; Ragazzoni & Farinato,
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Figure 1.8: Example of an distorted image PSF due to atmosphere turbulence (left)
and its AO-correction (right) in H band at VLT/SPHERE. The correspond-
ing SR values are shown at each image case. Images from Sauvage et al.
(2016).

1999), the deformable mirror (DM), and the real-time control (RTC) system. Using
a guide star (or a laser guide star), the WFS measures the phase variations
of the light wavefront. Then, this information is sent to the RTC, which
reconstructs the entire wavefront. Based on this reconstructed wavefront, the
RTC computes the correction to be applied to the DM (consisting in path
delays or advances) and send it to numerous small actuators placed behind
the DM, which locally deform it accordingly. By doing this, the DM cancels
out the wavefront errors, flattening the wavefront and therefore sharpening
the PSF in real-time. These steps are repeated in a closed loop mode at a
high frequency (typically ∼ 1 kHz ). Fig. 1.9 illustrates this AO-system loop
process.

To quantify the performance of an AO-system, the Strehl Ratio (SR) metric
is commonly used (Perrin et al., 2003). SR is defined as the ratio of the
peak aberrated PSF intensity from a point source compared to the maximum
attainable intensity using an ideal optical system limited only by diffraction
(no atmosphere turbulence). Consequently, SR provides an indication of how
well the telescope is performing after AO correction compared to an ideal
diffraction-limited system. SR can be expressed as a value between 0 and
1, where SR = 1 means that the system is diffraction-limited, and SR < 1

that the system has aberrations. The smaller the SR, the more severe these
aberrations, and the poorer the image PSF quality (Fig. 1.8). A complete
review about AO systems can be found in Milli et al. (2016).
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Figure 1.9: Illustration of a simplified adaptive optics system. Image taken from Skaf
et al. (2022).

1.2.3 Contrast and coronagraphy

The challenges associated with the star-planet contrast persist even after AO
correction. HCI deals with the contrast problem (Fig. 1.5) through the use
of coronagraphs that are attached to the telescope within the a dedicated
HCI instrument. The fundamental principle behind a coronagraph is to block
out the glaring starlight, enabling the observation of nearby objects such
as orbiting planets. Coronagraphs employ various techniques to mitigate
starlight, based on their ability to manipulate the light’s amplitude or phase.
Additionally, these methods can be applied either in the focal plane or the
pupil plane of the telescope, depending on the specific optical configuration
used. For example, the first coronagraph configuration, commonly known
as theLyot coronagraph, dates back to 1939 (Lyot, 1939) and comprises an
opaque disk (the Lyot mask), placed at the focal plane to block the starlight.
Additionally, a second annulus-shaped opaque mask (the Lyot stop), is posi-
tioned at the pupil plane to further eliminate most of the remaining diffracted
starlight (Fig. 1.10). Thus, the Lyot coronagraph acts on the amplitude of
starlight at both the focal and pupil planes. In terms of performance, the Lyot
coronagraph design has important drawbacks, such as it has not a perfect
cancellation of the starlight even when the Lyot mask and the star are aligned,
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(a) (b) (c) (d) (e) (f)

Figure 1.10: Lyot coronagraph optical design. Beams in blue and red represents
the star and exoplanet incoming light, respectively. (a) Intensity in the
entrance pupil; (b) Star PSF; (c) Star PSF after FP, where the Lyot mask
is located and aligned; (d) Star PSF before Lyot stop; (e) Star PSF after
Lyot stop; (f) Final coronagraphic image. Image based on a figure by M.
Kenworthy.

it has a reduced throughput7 due to the smaller size of the Lyot stop, and it
has a large inner working angle8 (IWA).

More advanced coronagraph designs have been proposed and tested on
various ground-based telescopes. For instance, the four quadrant phase mask
(FQPM, Rouan et al., 2000) and the vortex (Mawet et al., 2005) coronagraphs
make use of transparent masks to shift the phase of star light, creating self-
destructive interference instead of simply blocking it with an opaque disc as
done with the Lyot mask. These designs significantly improve throughput
and reduce the IWA. However, they are more sensitive to instrument misalign-
ments (tip-tilt). In addition, the apodized pupil Lyot coronagraph (APLC,
Soummer, 2005) is an hybrid coronagraph combining a Lyot coronagraph and
a pupil plane apodizer, which helps further reduce the on-axis light intensity.
Other designs such as apodized vortex coronagraphs are currently under
development and foreseen for current and future ground-based instruments.
A detailed review of most of these coronagraphic technologies may be found
in Galicher & Mazoyer (2023).

7 The throughput refers to the fraction of the companion’s light that reaches the detector after
passing through the entire coronagraph system.

8 IWA is the smallest angular separation from the star at which the companion throughput
reaches 50%.
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1.2.4 Speckle noise

Despite of AO correction (Section 1.2.2) and the use of the coronagraph
(Section 1.2.3), some residual starlight still reaches the detector in the form of
speckles. Speckles are scattered starlight blobs that resemble the diffraction-
limited PSF of the telescope, and can therefore mimic the signature of planets
in both shape (∼ λ/D scale) and contrast, which greatly affects the detectabil-
ity of such companions in high contrast images.

According to their origin, speckles can be classified as atmospheric and
instrumental speckles. Atmospheric speckles (Males et al., 2021) appear due
to atmospheric residual aberrations that have not been totally corrected in
the AO system (Fig. 1.9) and they have a short lifetime (few miliseconds).
On the other hand, instrumental speckles (Hinkley et al., 2007; Goebel et al.,
2016) are produced by instrumental aberrations, commonly known as non-
common path aberrations (NCPA), that appear after the beam splitter (Fig. 1.9)
and have much longer lifetime (several minutes to hours). Because of this
long-lived behaviour, they are commonly referred as quasi-static speckles, and
are very difficult to remove for image post-processing techniques. Quasi-
static speckle represent the main challenge for current algorithms to identify
companions in the image field of view.

1.2.5 Observing strategies

Different data acquisition techniques in the telescope (or observing strategies)
have been proposed to deal with quasi-static speckles in HCI. These are based
on differential imaging, which relies on a sequence of coronagraphic images
of a single target (or multiple targets) to model the speckle noise structure.
This model is then used to remove the quasi-static speckle pattern from each
image in the sequence, affecting the planetary signal as little as possible
during the subtraction process. Astronomers distinguish between different
observing strategies according to the manner the speckle noise pattern is
modelled.

1.2.5.1 Angular differential imaging

The most commonly used observing strategy is Angular Differential Imaging
(ADI, Marois et al., 2006). An ADI data set consists of a sequence of coro-
nagraphic images acquired in pupil-stabilized mode, where the instrument
derotator tracks the telescope pupil instead of the field, in such a way that the
instrument and optics in the telescope stay aligned while the image rotates
in time due to the Earth rotation. As a result, quasi-static speckles remain
mostly fixed in the focal plane while the exoplanet signal rotates around the
star as a function of the parallactic angle. By using this angular diversity, a
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speckle model may be built from the data and subtracted from the set of ADI
images (see later in Section 1.2.6).

ADI has some limitations. One major drawback is the significant amount
of observing time required to obtain sufficient angular diversity (usually
around one hour) as well as the planetary signal self-subtraction observed at
close separations. Moreover, ADI has limitations in terms of sky coverage,
as achieving the required total parallactic angle rotation for an acceptable
observing time can be challenging.

1.2.5.2 Spectral differential imaging

Another observing strategy, which is commonly used to complement ADI, is
the Spectral Differential Imaging (SDI). Unlike ADI, SDI aims to separate the
planetary signal from the speckle field based on their wavelength dependen-
cies. Originally proposed by Racine (1996), SDI originally relied on selecting
two wavelengths to insure the presence of the exoplanet in one image but
limit its brightness in the other in such a way that speckle noise can be
removed while preventing self-cancellation during the subtraction process.
A more advanced version of SDI, known as multi-spectral SDI (mSDI), was
later introduced by Sparks & Ford (2002). mSDI (nowadays more commonly
referred to as SDI) takes advantage of the fact that speckles expand radially in
the field of view as the wavelength increases, while planetary signals remain
fixed.

1.2.5.3 Reference-star differential imaging

To overcome the limitations of ADI at small angular separations, Reference-
star Differential Imaging (RDI, Lafreniere et al., 2007; Ruane et al., 2019)
was proposed. The principle behind RDI is to model the speckle pattern
through collecting images of similar stars in the immediate vicinity of the
target star. However, this strategy needs a high stability of the instrument.
RDI is therefore preferentially used with space-based telescopes which avoids
the time-variable aberrations due to uncorrected atmospheric turbulence.

1.2.6 Image processing techniques

As shown in the example of Fig. 1.6, the implementation of image processing
techniques represents the last cornerstone to directly image exoplanets. A
plethora of such techniques have been developed in the last two decades,
and it is nowadays a very active field of research in HCI. The main objective
of these techniques is to remove the residual quasi-static speckle pattern
observed in coronagraphic images (Section 1.2.4), and identify potential
exoplanet candidates. These techniques have been adapted to work with
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Figure 1.11: General image processing steps from raw data coming from the tele-
scope, i.e., an ADI sequence. The basic idea is to apply pre- and
post-processing image techniques to finally generate a residual image,
also called processed frame, where the exoplanet detection is performed.
See text for more details.

different observing strategies (Section 1.2.5), with ADI (Section 1.2.5.1) being
the most commonly used approach.

In general terms, performing image processing entails two consecutive
steps: applying image pre-processing to clean the raw data of possible er-
rors/artifacts produced along with the acquisition of the images, and after
that, using dedicated post-processing algorithms to perform the detection task
(Fig. 1.11). There are three main corrections performed by pre-processing
techniques: (i) Image calibration, including dark current subtraction, flat field
correction, subtraction of the thermal background radiation of the sky, and
bad pixels removal (dead or hot pixels) in images; (ii) Bad frames removal
(caused by star/coronagraph misalignment, bad observing conditions or
AO correction errors) through frame correlation analyses or pixel statistics
analysis; (iii) Image recentering to solve potential image misalignment of the
central star along the image sequence.

Image post-processing algorithms are classified into three main families:
speckle subtraction-based techniques (also known as PSF subtraction tech-
niques), inverse problem techniques, and supervised machine learning tech-
niques.

1.2.6.1 PSF subtraction techniques

PSF subtraction techniques are the most commonly used post-processing
techniques in the HCI community to detect exoplanet signatures. The con-
cept behind these methods is to model the residual speckle noise as good
as possible and subtract it from science images to finally detect unseen com-
panions. As illustrated in Fig.1.12, four basic steps are usually followed for
the case of ADI: (i) estimation of the speckle pattern, or PSF, by means of a
dedicated algorithm; (ii) subtraction of this PSF model from each frame in
the sequence; (iii) derotation of residual frames according to the parallactic
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angle (Section 1.2.5.1); (iv) combination of derotated frames to generate a
residual image, commonly known as processed frame (this convention is used
from now on). All PSF subtraction techniques follow these four steps. They
mostly differ in the manner the PSF is modelled. In the following, the most
used PSF subtraction algorithms are described.

Median subtraction

The median subtraction algorithm (Marois et al., 2006) relies on the median
operator to model the PSF through all science images in the ADI sequence
(Fig. 1.12-a). The idea behind this approach is that due to its rotation in
time, the planetary signal minimally affects the estimation of the median.
After performing the subtraction, the residual noise is centered around zero
in such a way that, when all the PSF-subtracted images are de-rotated and
combined, the residual noise should average out. However, this approach
does not perform well in the innermost region, as self-subtraction is strong at
these separations and residual speckles remain even after subtraction.

LOCI

The Locally Optimized Combination of Images algorithm (LOCI, Lafreniere et al.,
2007) aims to model the PSF as a linear combination of coronagraphic images
taken from the ADI sequence (Fig. 1.12-b). These images are selected based
on a field rotation criterion and their coefficients for the linear combination
are computed through a least square minimization of the residuals after
subtraction of the speckle field. In order to minimize the impact of a potential
planetary signal when estimating the coefficients, LOCI processes indepen-
dently sub-regions of the field of view. A region larger than the one for which
the reference PSF is computed, is used for the least square minimization.
Improved versions of LOCI have been proposed in the literature in the last
decade (e.g., Pueyo et al., 2012; Marois et al., 2014; Wahhaj et al., 2015).

PCA

The Principal Component Analysis algorithm (PCA, Soummer et al., 2012;
Amara & Quanz, 2012) aims to model the PSF from each frame in the
ADI sequence by projecting it onto a lower-dimensional orthogonal space
(Fig. 1.12-c). This projected space is constructed by means of the so-called
Principal Components (PCs), i.e., linear combinations of the original space
(the frame) which are computed using eigen decomposition or singular value
decomposition (SVD). PCA orders PCs according to the variance they capture
from the original space, such that first PC captures the maximum variance
in the image, the second PC captures the second highest variance, and so
on. Amara & Quanz (2012) show that PCA outperforms LOCI at detecting
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(a) Median subtraction

(b) LOCI

(c) PCA

Figure 1.12: Illustration of median subtraction, LOCI and PCA algorithms in an ADI
sequence (A with i frames) showing the four steps in PSF subtraction
techniques: PSF modelling (Bi), its subtraction (Ci), the de-rotation
of residuals (Di), and their combination (E) generating the processed
frame. Red dots over frames represent the planet position. Images taken
from Gómez González (September 2017).
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companions at close separations from the star. Absil et al. (2013) improves
the original version of PCA, often referred as full-frame PCA, by adapting it
to work in annuli, processing the speckle noise in a more local manner and
improving detectability in front of its predecessor.

LLSG

The Local Low-rank plus Sparse plus Gaussian-noise decomposition algorithm
(LLSG, Gómez González et al., 2016) makes use of the Go Decomposition robust
PCA algorithm (Zhou & Tao, 2011) to locally decompose the ADI sequence
into three sub-spaces: the low-rank, sparse, and Gaussian spaces. This local
three-term decomposition separates the starlight and the associated speckle
noise from the planetary signal, which mostly remains in the sparse term.
The LLSG algorithm improves the detectability of faint planets compared to
full-frame PCA, but it is sensitive to outliers that can appear in the sparse
term along with planetary signals.

NMF

The Non-negative Matrix Factorization algorithm (NMF, Lee & Seung, 1999)
aims to find a k-dimensional approximation of the ADI sequence in terms
of the product of two non-negative components through the minimization
of their Frobenius norm. Ren et al. (2018) applies NMF for the case of
circumstellar disk directly imaging.

S/N & STIM maps

The aforementioned PSF subtraction algorithms transform the raw data
(i.e., ADI sequence) into a processed frame where residual speckle noise is
mostly removed and the star-planet contrast is improved. The identification
of planets within these processed frames entails the visual recognition of pixel
patches exhibiting similar characteristics to the instrument’s PSF. However,
the effectiveness of human perception in this task can be constrained by
inherent biases.

To address this limitation, a widely adopted solution involves incorporating
the Signal-to-Noise ratio (S/N) metric to assist in the detection process.
Building upon the approach outlined in Mawet et al. (2014), the S/N for each
pixel in the processed frame can be calculated, enabling the transformation
of the processed frame into a S/N map. As of today, this methodology stands
as the prevailing standard for observational HCI campaigns.

The S/N map is based on the assumption that the residual noise in the
processed frame is Gaussian. However, it is known that ADI processing does
not completely remove speckle noise, especially at the innermost region, and
therefore, assuming Gaussian noise in the processed frame leads to high
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false positives rates (Marois et al., 2008a). Pairet et al. (2019) introduces a
more advanced detection map called Standarized Trajectory Intensity mean Map
(STIM), which computes a trajectory intensity metric for each pixel along
time domain in the ADI residual maps, avoiding any Gaussian assumption.

RSM

The Regime-Switching Model algorithm (RSM, Dahlqvist et al., 2020), origi-
nally developed for econometrics, employs Markov-switching regressions
to identify significant shifts in the behavior of time series data. It aims to
describe different states that a time series system can exhibit. In the context
of HCI, the RSM is applied by combining ADI residual cubes produced
by different post-processing techniques, such as annular PCA, LLSG, NMF,
and LOCI, among others, to construct the time-series. The RSM algorithm
models two distinct states: one representing speckle noise in the data and
the other incorporating both speckle noise and potential planetary signals.
This model assigns probabilities to each element of the time series, indicating
which regime it belongs to, and uses this information to construct a detection
map. RSM is time-consuming and parameter selection complex. To address
this issue, Dahlqvist et al. (2021a) proposes an unsupervised optimization
framework based on a clustering approach (see Section. 2.1) to determine
optimal parameters.

1.2.6.2 Inverse problem techniques

Another family of image post-processing techniques are based on inverse
problem approaches. Unlike PSF subtraction, these algorithms directly model
the expected planetary signal and track it in the image cube raw data based
on the knowledge of the speckle noise statistics, the expected planetary
movement (depending on the observing strategy), and the impact of the
speckle field modelling. By construction, these methods estimate the contrast
of the potential planetary signal, at any position in the field of view, via a
maximum likelihood estimation. In the following, the main inverse problem
approaches in HCI are described.

ANDROMEDA

The ANgular DiffeRential OptiMal Exoplanet Detection Algorithm algorithm
(ANDROMEDA, Cantalloube et al., 2015) performs pairwise subtraction of
adjacent frames in the ADI sequence to reduce speckle noise, making the
assumption that the speckle noise in adjacent images is highly correlated.
Through this pairwise subtraction, ANDROMEDA achieves the creation of a
distinctive signature or the planetary signal (Cantalloube et al., 2015) which
can be modelled. This signature becomes the cornerstone of ANDROMEDA’s
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methodology, facilitating the algorithm’s ability to perform estimations of
planetary flux. Such estimations are accomplished for every position within
the field of view via maximum likelihood approach.

FMMF

The Forward Model Matched Filter algorithm (FMMF, Pueyo, 2016; Ruf-
fio et al., 2017) employs the Karhunen-Loève transformation to calculate a
forward-modeled planetary template for the KLIP PSF-subtraction method-
ology (Soummer et al., 2012). This forward-modeled approach effectively
encompasses the perturbations induced in the PSF due to the process of
subtracting the speckle field model (accounting for both self-subtraction and
over-subtraction). To compute the flux at any given position within the field
of view, FMMF incorporates a Gaussian maximum likelihood strategy, similar
to the ANDROMEDA technique.

PACO

The PAtch COvariances algorithm (PACO, Flasseur et al., 2018) considers
each pixel within the field of view and, for every frame in the ADI sequence,
analyzes patches centered on the selected pixel across all other science images.
It then relies on a maximum likelihood estimator based on a multi-variate
Gaussian model to compute the estimated flux using the off-axis PSF as a
planetary template. The existence of a companion is inferred at a predefined
level through a generalized likelihood ratio test. Therefore, unlike other
inverse problem approaches, PACO does not perform any subtraction prior
to tracking the planetary signal. A more advanced version, referred as PACO
ASDI, is proposed in Flasseur et al. (2020), where PACO is adapted to also
capture the spectral and temporal fluctuations of background structures.
Flasseur et al. (2021) proposed REXPACO, an extension of the original PACO
to work with extended features, i.e. circumstellar disks in ADI sequences.
More recently, Flasseur et al. (2023) proposes deep PACO, a combination
of the original PACO with supervised deep learning to improve detection
performance.

TRAP

Unlike other methods that model the planetary signal for each frame in the
ADI sequence, the Temporal Reference Analysis of Planets (TRAP, Samland et al.,
2021) estimates both the starlight residuals and the planetary signal along
the temporal axis. The former is modelled by considering pixels that should
share similar noise statistical properties but do not include the planetary
signal. The latter is fitted alongside the obtained temporal model describing
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the speckle noise to best fit the temporal evolution of the pixel intensity and
determine the presence or absence of planetary signal.

1.2.6.3 Supervised Machine Learning techniques

More recently, the field of supervised machine learning has been introduced
in HCI, especially for image post-processing. As explained later in Section 2.2,
supervised learning aims to build a model directly from data, enabling the
automatic extraction of patterns and relationships, which are then used for
achieving accurate predictions on new data.

SODIRF & SODINN

The Supervised exOplanet detection via Direct Imaging with a Random Forest
(SODIRF) and Neural Networks (SODINN) models (Gómez González et al.,
2018) employ a random forest algorithm (Breiman, 2001) and a convolutional
neural network, respectively. These are binary classifier models that learn to
distinguish between two classes of square patch sequences, respectively with
and without planetary signal. Based on this learning, they are able to classify
new square patch sequences and generate a detection map where each pixel
value refers to the model confidence to contain exoplanetary signal. SODINN
is further explained in Chapter 8.

HSR

The Half-Sibling Regression method (HSR, Gebhard et al., 2022) aims to
estimate the systematic noise in a pixel in the ADI sequence by regressing the
time series of this pixel onto a set of causally independent, signal-free predic-
tor pixels that are situated in specific areas that should ensure some mutual
information. A modified Half-sibling regression (Schölkopf et al., 2016) is
then used to learn a supervised model of the pixel speckle noise, based on
the information contained in these areas, and predict the systematic noise
associated to the selected pixel. It also incorporates observing conditions
such as wind speed or air temperature as additional predictors.

GAN + CNN

Yip et al. (2020) train a Generative Adversial Network (GAN) on real data
from the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) on the
Hubble Space Telescope (HST) to obtain a generative model of the speckle
noise pattern. This generative model can produce HST images without
planets. It then uses this generative model to obtain a suitable dataset for
training a convolutional neural network classifier to detect and locate planets
across a wide range of SNRs on HST data.



2
M A C H I N E L E A R N I N G

Artificial intelligence (AI) is completely changing the way humans engage
with technology and make decisions in the modern society. At the heart of AI
lies Machine Learning (ML), a set of computer science algorithms that are able
to learn and model complex patterns directly from data. This radically differs
from the classical programming approach of static program instructions and
rules, in which machines follow predefined steps without the capacity to
adapt to changing situations. ML systems, on the other hand, are dynamic
and data-driven, constantly evolving and refining their understanding of
the problem at hand as they encounter more information. This capacity to
learn and adapt is what sets ML apart and makes it a cornerstone of AI’s
transformative potential.

A powerful synergy between astrophysics and machine learning has
emerged over the past decade. With the advent of large astronomy data
surveys, our access to an exceptionally rich repository of astronomical infor-
mation has widened significantly. These surveys have enabled us to explore
further into the universe, discovering new astrophysical phenomena, further
understanding its origin, and modelling the evolution of stars and planets.
In such a scenario, ML is providing an automated process of data analysis,
uncovering hidden patterns, and enabling predictions with unprecedented
accuracy. As this synergy evolves, it holds great promise for pushing the
boundaries of our understanding of the universe.

This second chapter aims to provide a general view of ML, exploring the
fundamentals of this technology. Our focus is, however, on the sub-field of
deep learning, where neural networks and their optimisation processes are
introduced. The chapter concludes by illustrating the link between machine
learning and astronomy through a selection of published applications, with a
particular emphasis on exoplanet detection.

24
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(a) Centroid-based (b) Density-based (c) Distribution-based (d) Hierarchically-based

Figure 2.1: Illustration of the four types of clustering methods. Images from Google
for developers.

2.1 unsupervised learning

Unsupervised learning is a category of ML techniques used to analyze and
extract patterns from unlabeled data, where data points are not associated
with any specific categories, classes, or target labels and there is no predefined
information about what they represent. There exist two general types of
unsupervised learning algorithms according to their task: clustering and
dimensionality reduction algorithms.

A clustering algorithm allows to organize a dataset into meaningful sub-
groups (clusters) based on some similarity metric. Different clustering models
differ in the particular definition of a cluster. Centroid-based clustering relies
on grouping similar data points based on their proximity to a central point
known as centroid (Fig. 2.1-a). Density-based clustering identifies clusters as
regions of high data point density, effectively handling outliers and irregular
shapes (Fig. 2.1-b). Distribution-based clustering assume data arises from vari-
ous probability distributions, estimating the underlying data distribution to
assign points to clusters based on likelihood (Fig. 2.1-c). Hierarchical clustering
construct cluster hierarchies, which merge individual data points into clusters
based on linkage criteria, facilitating hierarchical organization of data into
clusters of varying granularity levels (Fig. 2.1-d). We refer to Xu & Tian (2015)
for an extended review of clustering methods.

Dimensionality reduction algorithms seek to project input data onto a
lower-dimensional subspace while preserving most of the relevant informa-
tion. This approach is commonly used for feature pre-processing because
it reduces computational time and storage demands while facilitating im-
proved visualization. PCA is the most prevalent technique. As explained in
Section 1.2.6, it linearly decomposes a multivariate dataset into a sequence
of orthogonal components that explain the maximum amount of variance.
Consequently, it may not effectively capture non-linear patterns inherent in
the data. However, techniques like t-SNE (Van der Maaten & Hinton, 2008)
and UMAP (McInnes et al., 2018) are particularly well-suited for handling
non-linear structures.
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2.2 supervised learning

Supervised learning aims to build a model from labeled data. The term
supervised refers to the need for a ground truth or set of examples where the
desired output signals (targets or labels) are already known. For instance,
an image of a cat paired with the label cat serves as a clear example of this
concept. The model learns the mapping function from input data features
(i.e., the cat image) to targets (i.e., its label) by observing many examples of
inputs and targets. This process is commonly referred as training.

Supervised tasks can be broadly categorized into two families: classification,
where the labels are categories (as in the cat example), and regression, where
the labels represent real numeric values (e.g., the cat’s weight). Among
the most important families of supervised machine learning algorithms
that work in these categories of problems, we count the linear methods
(Hastie et al., 2009), support vector machines (SVM, Boser et al., 1992),
nearest neighbor methods, and tree-based methods (Breiman, 2001). However,
regardless both the label and the algorithm nature, the ultimate goal of any
supervised training process is to achieve optimal generalization capabilities.
Generalization refers to the model’s ability to go beyond simple memorization
of the data set and, instead, capture the fundamental relationships inherent
in the data, allowing accurate model predictions on data that it has never
encountered during the training.

The prediction error of a supervised model can be decomposed into three
components: an irreducible error, a bias, and a variance (Yu et al., 2006). The
irreducible error represents the inherent uncertainty in the data set, setting
the lower limit on a model’s predictive power due to factors beyond its control.
Bias, on the other hand, refers to the error introduced by approximating a
real-world problem, which may be complex, by a simplified model that makes
strong assumptions. At last, variance accounts for errors introduced by the
model’s sensitivity to small fluctuations or noise in the data set. The trade-
off between bias and variance presents a fundamental challenge during the
training process. In the early stages of training, when the model’s complexity
is low, it struggles to capture the underlying data relationships, resulting in a
high bias and low variance scenario, which is commonly known as underfitting
(Fig. 2.2-left). However, as the training progresses and the model becomes
more complex, it fits its parameters better to the data set. There comes a point
where the model starts overfitting the data, effectively modeling random noise
as well, leading to lower bias but higher variance (Fig. 2.2-left). Finding the
right balance between bias (underfitting) and variance (overfitting) is crucial
to achieve optimal predictive performance and generalization.

In order to control this bias-variance trade-off and assess the generalization
error during the model training, the hold-out method is usually employed. It
consists on randomly dividing the data set into three subsets: the training,
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Figure 2.2: Supervised learning optimization strategy. Left panel: Representation of
the bias-variance trade-off showing the typical U-shaped curve behavior
of the generalization error together with the three possible scenarios
(underfitting, optimal and overfitting models). Right panel: Typical hold-
out partition method used to train a supervised ML algorithm and asses
its generalization error.

the validation and the test sets (Fig. 2.2-right). The training set is exclusively
used to train the model, allowing it to learn inherent relationships in the
data. The validation set is used to assess the model’s performance during
training and make decisions about model hyperparameters and architecture.
It is essential for tuning the model to ensure it generalizes well to unseen
data. Finally, the test set is used to evaluate the final model’s performance
after training and hyperparameter tuning. Later, in Section 2.3.1, a more
illustrative example of this supervised training process is provided through
neural networks. More advanced partition strategies exists, such as the k-fold
cross-validation (Hastie et al., 2009), which involves iteratively splitting the
data into multiple train-validation sets, providing a more robust estimation
of model performance and helping to reduce the risk of overfitting.

2.3 deep learning

Deep learning is a sub-field of machine learning. The term deep refers to
the use of successive layers of representations from data that are learned
through neural networks models. These are inspired by the brain’s use of
layers of neurons working together, although there is no evidence that the
brain implements anything like the learning mechanisms used in modern
deep learning models.
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Figure 2.3: Basics of artificial neural networks. Left panel: Diagram of the perceptron
model (green box) with N inputs features, and its optimization process
through the perceptron learning rule. See text for more details. Right panel:
The step activation function used in the perceptron model together with
three of the most common non-linear activation function used in neural
networks.

2.3.1 The artificial neuron

Understanding artificial neural networks requires revisiting the most basic
neuron unit, the so-called perceptron (Rosenblatt, 1958). As depicted in Fig. 2.3-
left, this computational model receives multiple inputs xi (e.g. features in the
training data) and multiplies a continuous-valued weight wi to each of them.
These weighted inputs are summed up, along with a random bias term b as
follows:

z =
∑
i

(xi ·wi) + b. (3)

The final step involves passing this weighted sum z through an activation
function, which essentially decides the final output ŷ of the neuron. In
Rosenblatt’s perceptron, the activation function is a simple step function
(Fig. 2.3-right): if z exceeds a specific threshold, ŷ = 1, otherwise, ŷ = 0.

Originally designed for supervised learning, this neuron model is tailored
for binary classification tasks. When provided with a labeled dataset con-
taining numerous examples from two classes, the training of this artificial
neuron model, as described in Section 2.2, refers to the process of learning a
mapping function between classes and their labels. This is achieved through
the fine-tuning of the model’s weights wi and bias b (Eq. 3) by conducting
numerous forward and backward passes through the neuron using the train-
ing set (Fig. 2.2-right): A forward pass entails feeding a mini-batch of training
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samples into the neuron and calculating the error (or loss) between the true
label y and the predicted label ŷ (Fig. 2.3). Then, if y , ŷ, the weights wi and
bias b are updated during a backward pass, which involves computing new
values wnew

i and bnew using the perceptron’s learning rule:

wnew
i = wi +α · (y− ŷ) · xi, (4)

bnew = b+α · (y− ŷ), (5)

where the term α · (y− ŷ) is the error (or loss) function and α is the so-called
learning rate, an hyperparameter controlling the step size of parameter updates
which plays a pivotal role when optimizing neural networks (described later).

This forward-backward process typically involves multiple passes through
the entire training set, also known as epoch. An epoch is completed when the
perceptron has seen and updated its parameters using all the training samples
once. After each epoch, the whole validation set is fed into the neuron and
the validation error is computed to assess how well the perceptron, with
the adjusted parameters from that epoch, is generalizing to new data. The
process of fine-tuning parameters and continuously evaluating validation
performance throughout epochs is tracked by monitoring both training and
validation errors. Typically, the process is stopped when a predefined criterion
is met, such as when the validation error converges, no longer improves, or
exhibits signs of overfitting (where the validation error begins to rise while
the training error remains relatively constant, Fig. 2.2-left).

This artificial neuron model, as described, relies on a single layer of weights,
and this simplicity imposes a significant constraint on its ability to handle
more complex data. While it effectively captures linear relationships (Eq. 3),
the majority of data sets are composed of intricate structures and non-linear
correlations. This is where neural networks come into play.

2.3.2 Neural networks

Artificial neural networks (e.g., Abiodun et al., 2019) can be thought as
a composition of multiple layers of interconnected perceptrons (Fig. 2.4),
which is commonly known as Multilayer Perceptron (MLP). Within this
structure, each perceptron receives an input value from every neuron in
the preceding layer. Each of these inputs is then associated with specific
weight and bias parameters through Eq. 3, and the output value ŷ of the
perceptron is then passed to each perceptron in the next layer. Through this
concatenation, the MLP is able to transform the input data into increasingly
complex representations. Neural networks are often referred to deep neural
networks (DNNs) when they consist of numerous layers, also referred to
as hidden layers (Fig. 2.4). Finally, the output layer consists on one or
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Figure 2.4: Illustration of a Multilayer Perceptron. The network comprises three
input features xi and four layers (l) of perceptrons (green circles denoted
by h): three hidden layers (2− 3 neurons each), and one output layer
(single neuron). We use the index notation i (origin) and j (target) for
weight connections, being wij, w ′

ij, w
′′
ij for hidden layers, and w ′′′

ij for
the output layer. The illustration also depicts a backward pass through
the backpropagation algorithm.

more perceptrons depending on the specific task at hand. Its purpose is to
generate the final prediction or decision based on the transformed information
processed through the hidden layers.

While the original perceptron model relies on the simple step activation
function to generate the neuron’s output (Section 2.3.1), neural networks
employ more advanced activation functions enabling the capture of non-
linear data patterns. Fig. 2.3-right shows three of the most common non-
linear activation functions, the sigmoid (smooth, differentiable with a range
of 0 to 1), ReLU (efficient, setting negative values to 0, with a range from 0

to infinity), and hyperbolic tangent (similar to sigmoid but with a range of
−1 to 1, helping center data around zero). We refer to Dubey et al. (2022) for
more information about linear and non-linear activation functions in deep
learning.

Thus, neural networks can be seen as a composition of simple linear data
transformations (matrix multiplications and summations), specified by the
layer’s weights, and non-linearities introduced by the activation functions.
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2.3.2.1 Optimization of neural networks

As described, the optimization of a single perceptron entails fine-tuning
the weights and the bias through an iterative forward-backward process
of batches of training samples. The aim of this process is to minimize the
loss function associated with the perceptron’s learning rule (Section 2.3.1).
However, when dealing with neural networks, the adjustment of weights
and biases demands a more intricate procedure involving the propagation of
errors across the network’s layered architecture. This propagation is typically
achieved by means of the so-called backpropagation algorithm (Rumelhart et al.,
1986).

Backpropagation relies on gradient descent and the chain rule to compute
and propagate errors through the network, updating weights and biases for
each neuron at each layer. Gradient descent, at its core, aims to minimize
a function f(x) by iteratively updating its input x in small steps in the
opposite direction of its derivative df

dx . When dealing with multidimensional
functions, the concept of derivatives is extended to partial derivatives ∂f

∂xi
,

which measure how f(x) changes as only the variable xi increases at point
x. Note that in a neural network with l layers, h neurons in each layer, and
j connections in each neuron (e.g., Fig. 2.4), the loss function is a complex
multidimensional function defined as L = L(ŷl

h(z
l
h(w

l
hj,b

l
h))). Computing

errors associated to weights wl
hj and biases bl

h in a backward pass thus
implies the computation of the gradient of the loss function with respect to
each of these parameters. This computation is carried out using the chain
rule,

∂L

∂wl
hj

=
∂L

∂ŷl
h

·
∂ŷl

h

∂zlh
·
∂zlh
∂wl

hj

, (6)

∂L

∂bl
h

=
∂L

∂ŷl
h

·
∂ŷl

h

∂zlh
·
∂zlh
∂bl

h

, (7)

where Eq. 6 and Eq. 7 account for the gradient of the loss with respect to
weights and bias, respectively. These gradients are then used for updating
the neuron’s parameters as follows:

w
l(new)
hj = wl

hj −α · ∂L

∂wl
hj

, (8)

b
l(new)
h = bl

h −α · ∂L

∂bl
h

, (9)

where α is the learning rate. Choosing an appropriate learning rate is crucial
to minimize the loss function. If α it is too small, the process would take
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many iterations (and it could get stuck in a local minimum), whereas, if the
step is too large, it would never converge. A way to avoid getting trapped
in local minima is to use momentum (Sutskever et al., 2013), which draws
inspiration from physics, and updates the weights based not only on the
current gradient value but also based on the previous weight updates. Other
methods have been proposed to automatically tune the learning rates, such
as Adagrad (Duchi et al., 2011) and Adam (Kingma & Ba, 2015). For an
overview of gradient descent optimization algorithms, see Ruder (2016).

One of the most important aspects when optimizing neural networks is
regularization. As described in Section 2.2, overfitting is a challenge for the
generalization capacity of supervised learning algorithms. Regularization
techniques play a pivotal role in addressing this issue by constraining the
network’s capacity for memorization. Common regularization techniques
are dropout (Srivastava et al., 2014), batch normalization (Ioffe & Szegedy,
2015), data augmentation techniques, and early stopping. In general terms,
dropout consists of randomly "dropping out" (deactivating) a fraction of
neurons during the training to introduce randomness into the network.
Designed for solving other issues like the vanishing problem (explained
later), batch normalization is also a slight form of regularization, which
normalizes the activations of each layer in a mini-batch. Data augmentation
is the process of creating synthetic training data through different data
transformations to make a model generalize better. Early stopping involves
monitoring the model’s performance on a validation dataset during training.
Training is stopped when the performance on the validation set starts to
degrade, indicating overfitting. The model is saved at this point. We refer
to Goodfellow et al. (2016) for more information about other regularization
techniques.

2.3.3 Types of neural networks

The MLP (Fig. 2.4) establishes an initial basis to understand neural networks
and its optimization process. However, over the last few decades, deep
learning has experienced rapid transformation by developing more complex
network architectures capable of capturing stronger relationships within
diverse types of data, such as images and time-series information. These
advances have surpassed the capabilities of MLPs, empowering the field of
deep learning and broadening its applications across a wide spectrum of
domains. In the following, two of the most used architectures are explained.

2.3.3.1 Convolutional neural networks

Convolutional Neural Networks (CNNs, Krizhevsky et al., 2012) are a type
of deep learning model well-suited for processing grid-like data, such as
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Figure 2.5: Convolution of a 3× 3 kernel (dark blue grid) over a 6× 6 input image
(blue grid) using unit strides. Images from left to right illustrates the
kernel movement along the input image, which generates and output
image, commonly known as feature map. Figure from Dumoulin & Visin
(2016).

images or 3D structures (videos). In essence, a CNN is composed by three
consecutive layers. First, the convolutional layer involves applying a set of 2D
or 3D learnable filters (also known as kernels) to small, overlapping regions of
a 2D image (Fig. 2.5) or 3D cube, respectively. By sliding these filters across
the entire input (Fig. 2.5), the convolutional layer generates feature maps that
capture spatial correlations, such as edges, textures, and shapes, at different
spatial locations. Second, after the convolution operation, an activation
function (usually a ReLU function, Fig. 2.3-right) is applied element-wise
to the feature maps helping the network capture non-linear relationships.
Finally, a pooling layer is used for downsampling the spatial dimensions of
the feature maps while retaining essential information. A common pooling
operation is max-pooling, where the maximum value within a small window
is retained, and the rest is discarded.

2.3.3.2 Recurrent neural networks

Recurrent Neural Networks (RNNs, Rumelhart et al., 1986) are a type of neu-
ral network architecture designed for processing one-dimensional sequential
data. RNNs have connections that loop back on themselves, allowing them
to maintain a form of memory (or state) that captures information about
previous time steps in the data sequence. However, despite their effective-
ness in modeling time-series correlations, traditional RNNs suffer from the
vanishing gradient problem1 during training. More advanced RNN variants,
such as Long-Short-Term Memory (LSTM, Hochreiter & Schmidhuber, 1997),
were developed to solve this problem. The major innovation of LSTM is its
memory cell, which essentially acts as an accumulator of the state informa-
tion. The cell is accessed, written and cleared by several controlling gates.
An alternative is to use Bi-directional RNNs (Schuster & Paliwal, 1997). They
consist of two separate RNNs, one processing the sequence from left to right

1 The vanishing problem happens when gradients become very small during backpropagation
over many time steps, hindering long-range dependency learning.
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(forward RNN) and the other processing it from right to left (backward RNN).
This strategy helps the model to understand the context surrounding each
element in the sequence, and leads to better performance. More recently
proposed, Gated Recurrent Unit (GRU, Cho et al., 2014) RNNs are similar
to LSTMs but have a simplified architecture with fewer gates, making them
computationally more efficient while still addressing the vanishing gradient
problem to some extent.

2.4 machine learning for exoplanet detection

Machine and deep learning techniques have instigated a profound transfor-
mation within the field of astronomy. These cutting-edge methodologies
have found diverse applications in astronomical research, including but not
limited to galaxy morphology prediction (Dieleman et al., 2015; Vavilova, I. B.
et al., 2021), astronomical image reconstruction (Flamary, 2017; Schmidt, K.
et al., 2022), photometric redshift prediction (Hoyle, 2016; Brescia et al., 2021),
and star-galaxy classification (Kim & Brunner, 2016; Baqui, P. O. et al., 2021),
among others.

In the realm of exoplanet detection, machine and deep learning techniques
have made significant impacts on both indirect (see Section 1.1) and direct
(see Section 1.2) methods. For instance, within the domain of transit pho-
tometry, machine learning has played a pivotal role in augmenting detection
capabilities. Space-based missions like Kepler and the TESS provide large
data sets that require efficient and systematic analysis. The application of
deep learning techniques has enabled the automatic detection of exoplanetary
transits with unprecedented accuracy (Ansdell et al., 2018; Valizadegan et al.,
2022; Malik et al., 2021). In the context of the radial velocity method, where
instrumental precision continually improves but stellar activity remains a
significant obstacle to achieving reliable measurements, deep learning has
proven its ability to model and mitigate this stellar activity, thereby enhanc-
ing the accuracy of Doppler measurements (Perger, M. et al., 2023; de Beurs
et al., 2022; Nieto, L. A. & Díaz, R. F., 2023). Even the microlensing method
has not been immune to the influence of machine learning, benefiting from
its data-driven insights (Zhang et al., 2022). In the case of direct imaging,
both unsupervised and supervised machine learning techniques have been
harnessed for various purposes, including the improvement of focal-plane
wavefront sensing (Quesnel, M. et al., 2022) and the enhancement of detection
in image post-processing (Fergus et al., 2014; Gómez González et al., 2018;
Yip et al., 2020; Gebhard et al., 2022).



3
S C O P E A N D O U T L I N E O F T H I S D I S S E RTAT I O N

In this introductory Part I, the groundwork for this thesis has been established
through two chapters. On one hand, in Chapter 1, we have explored exo-
planet detection methods, tracing the history of indirect techniques and their
associated limitations. Our primary focus, however, has been on the field of
HCI, which tackles the challenges of directly imaging exoplanets. Within HCI,
we have covered its four pillar strategies: adaptive optics systems, coronagra-
phy, observing strategies, and image post-processing. The synergy of these
techniques has so far pushed contrast levels to below 10−6, enabling the direct
imaging of giant exoplanets. Nevertheless, the emergence of 20− 40m class
ground-based telescopes such as the Extreme Large Telescope (ELT1), the
Thirty Meter Telescope (TMT2), and the Giant Magellan Telescope (GMT3), as
well as space-based observatories such as the operational James Webb Space
Telescope (JWST) and the upcoming Roman space telescope, hold promise
to achieve even better contrasts, opening up new opportunities to directly
image medium to small-sized exoplanets for the first time. Pursuing these
ambitions requires the improvement of image post-processing algorithms,
and machine learning-based techniques have proven to be very powerful
with respect to more classical approaches. In Chapter 2, we have introduced
the field of machine learning, with a special focus on deep learning. Through
the fundamentals of neural networks and their optimization processes, we
have explored new methodologies to solve intricate problems, such as sample
classification, directly from labeled data. Due to its high impact in astronomy,
we have finally reviewed its increasing role in exoplanet detection.

Within this context, my journey as a Ph.D. candidate started by becoming a
new team member of the Exoplanet Imaging Data Challenge (EIDC Cantalloube
et al., 2020, 2022), a community-wide data challenge for HCI post-processing
techniques. The Part II of this thesis is devoted to explaining my contribution
to the EIDC development, as well as results and main conclusions we have
derived from all submission analysis.

1 ELT webpage: https://elt.eso.org/
2 TMT webpage: https://www.tmt.org/
3 GMT webpage: https://giantmagellan.org/
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The core of this thesis has significantly been shaped by the EIDC’s success.
One of the EIDC conclusions has been the identification of a notable issue
with the SODINN deep learning algorithm, which has frequently produced
false detections in the final detection maps. Furthermore, we have also
observed that the best EIDC results have been achieved by those algorithms
that process image noise at a local level, allowing them to capture stronger
physical-based dependencies within the HCI data. In light of these findings,
my principal aim during my PhD thesis has been to enhance the performance
of SODINN by developing novel strategies to capture better the physics of
image noise. Our approach has focused on studying the spatial behavior of
residual noise within the ADI-PCA processed frame, where despite the ADI
processing, speckle noise still dominates at small angular separations, leading
to different noise regimes across the image field of view. The Part III of
the thesis is devoted to describing all statistical strategies we have proposed
to detect these noise regimes, as well as derived conclusions regarding the
nature of residual noise.

The Part IV of this thesis stands as the culmination of my research, intro-
ducing the novel NA-SODINN algorithm (Cantero et al., 2023), an adapted
version of SODINN tailored to the noise regimes approach. We first explain
the adaptation process of the neural network, designed to learn from image
noise regimes, and the consequential implications for training. We then
subject our novel NA-SODINN to rigorous evaluation, comparing it against
its predecessor and other standard post-processing techniques across various
ADI data sets from different HCI instruments. NA-SODINN is also entered
into the first phase of the EIDC, allowing for a direct comparison with state-
of-the-art detection techniques. Ultimately, to further test its potential, we
employ NA-SODINN in the analysis of the SHINE HCI survey (Desidera
et al., 2021), aiming to apply NA-SODINN to real HCI data and possibly
uncover previously undetected exoplanetary candidates.

The concluding Part V of this dissertation is dedicated to deriving valuable
insights from our research journey, particularly in the realms of exoplanet
direct imaging and image noise analysis. Furthermore, we provide a glimpse
into the promising future prospects of NA-SODINN, demonstrating its po-
tential to drive substantial advancements in the field of HCI.





Part II

E X O P L A N E T I M A G I N G D ATA C H A L L E N G E



I N T R O D U C T I O N

Over the past two decades, the field of HCI post-processing (Section 1.2.6)
has been very active in developing and publishing numerous algorithms
to detect and characterize exoplanets. However, one inherent difficulty has
emerged in this progress: each of these algorithms has been tested on different
data sets, under varying observing conditions, and using different metrics.
This disparity has caused confusion in the HCI community when trying to
determine the best-suited method for a given task.

To address these limitations, the Exoplanet Imaging Data Challenge (EIDC4)
was conceived with a specific objective in mind: to homogenize the evaluation
of current HCI post-processing methods across various scientific cases and
serve as a reference for future algorithm developments. Initially conceived by
Dr. Carlos Alberto Gómez González and a small initial team, the EIDC has
evolved into a collaborative effort among multiple international institutions
under the leadership of Dr. Faustine Cantalloube. Today, it stands as an open-
source community initiative, inviting participation from anyone interested in
contributing.

This second part of the thesis is devoted to introducing the EIDC through
three chapters. Chapter 4 describes and discusses results from the inaugural
phase of the EIDC (Cantalloube et al., 2020) which was dedicated to the
task of exoplanet detection. Similarly, Chapter 5 explains the second EIDC
phase (Cantalloube et al., 2022) dedicated to exoplanet characterization. My
contribution as a team member of the EIDC is highlighted for both phases.

4 EIDC official webpage: https://exoplanet-imaging-challenge.github.io/
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4
P H A S E - 1 : E X O P L A N E T D E T E C T I O N

The first phase of the EIDC (Cantalloube et al., 2020), launched on September,
2019, with a deadline of October, 2020, was entirely dedicated to assess-
ing the capability of image post-processing algorithms to detect exoplanets
(point-like sources). The ensemble of data sets is hosted on a Zenodo open-
access repository1. Participants were invited to submit their results via the
CodaLab competition platform2, which computes various detection metrics
and calculates a score publicly displayed on a leader-board.

The data challenge was communicated through various media, including
mailing lists, social networks, instrument consortia, and advertisements
during conferences. The outcome of this phase was discussed during a
dedicated workshop called Post-processing for high-contrast imaging of exoplanets
and circumstellar disks, which took place at the end of January 2020 at the Max
Planck Society Harnack-Haus in Berlin, Germany. During this workshop, the
EIDC team discussed the feedback from participants and the relevance of the
metrics used in the data challenge.

This first phase of the EIDC consisted of two subchallenges to be completed
by each participant. The first subchallenge was devoted to assessing the task
of exoplanet detection in ADI sequences. The second subchallenge was
designed to evaluate the task of detection in combined ADI+mSDI sequences.
This chapter includes different sections to explain each subchallenge. To
conclude, there is a final section where my contribution is explicitly described.

4.1 subchallenge-1 : adi

As explained in Section 1.2.5.1, the most common observing strategy when
attempting to directly image exoplanets with ground-based telescopes is the
so-called angular differential imaging (ADI, Marois et al., 2006). Therefore,
the first subchallenge of the EIDC was designed to evaluate the capability of
post-processing algorithms to detect injected fake companions in different
ADI sequences.

1 EIDC phase-1 data repository: https://zenodo.org/record/3361544

2 EIDC phase-1 competition platform: https://competitions.codalab.org/competitions/20693
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4.1.1 Data sets

The ADI sequences were carefully chosen, considering that the performance
of an image post-processing algorithm can vary significantly depending
on the characteristics of the data itself, such as the distribution of speckle
noise along the sequence and the observing conditions (e.g., air mass, seeing,
etc.). To minimize these effects in the final comparison of algorithms, we
used data from various high-contrast instruments installed on ground-based
telescopes. This selection process aimed to encompass a broad range of data
diversity to ensure that no single algorithm would gain an unfair advantage.
Additionally, even within a single instrument, we thoughtfully chose multiple
data sets captured under various observing conditions, further enhancing
this diversity.

As a result, we provided temporal ADI sequences from HCI instruments
installed on three different ground-based telescopes: VLT/SPHERE-IRDIS
(Beuzit et al., 2019), Keck/NIRC2 (Serabyn et al., 2017), and LBT/LMIRCam
(Skrutskie et al., 2010). For each instrument, three representative data sets
were provided, making a total of nine ADI sequences. The VLT/SPHERE
instrument is a second-generation instrument equipped with extreme adap-
tive optics (Fusco et al., 2006) and an apodized Lyot coronagraph (APLC,
Soummer, 2005), feeding light into three subsystems, including the IRDIS
dual-band imager (Vigan et al., 2010), working from the Y-band (1.02 µm)
to the K-band (2.25 µm). The Keck/NIRC2 instrument is equipped with
an adaptive optics system (Wizinowich et al., 2000) and an Annular Groove
Phase Mask (AGPM) vector vortex coronagraph (Mawet et al., 2009), op-
timized for observations in the Lp-band (3.78 µm). The LBT/LMIRCam
instrument is equipped with an extreme adaptive optics system (Esposito
et al., 2010) and the data for the EIDC are taken without coronagraph, in the
Lp-band (3.78 µm).

Each of these nine ADI data sets comprised four files (in .fits format): (i)
the ADI sequence (3-D image cube, illustrated in Fig. 4.1), (ii) the parallactic
angle variation corrected from true North, corresponding to each frame in
the cube, (iii) the pixel scale of the detector, and (iv) a non-coronagraphic
(and non-saturated) instrument PSF taken either before or after the observing
sequence, used to calibrate the detection in terms of contrast and which can
be used as a model for a planetary signal.

The provided images were pre-processed to remove bad pixels, subtract
dark current and background, flat fielding, and normalize the flux for the
PSF. We assumed that the users would not perform further frame selection
and that all the images were to be exploited. The VLT/SPHERE-IRDIS data
were pre-reduced with the SPHERE Data Center (Delorme et al., 2017) using
the SPHERE Data Reduction and Handling pipeline (Pavlov et al., 2008).
The Keck/NIRC2 data were pre-reduced by the dedicated pre-processing
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pipeline for AGPM images (Xuan et al., 2018). The LBT/LMIRCam data
were pre-reduced by the pipeline developed for the LEECH exoplanet survey
(Stone et al., 2018). The properties of the nine ADI sequences are summarized
in Table 1.

ID Telescope/Instr. FWHM Nt Nimg λobs ∆rot Inj.

[px] [px×px] [µm] [º]

sph1 VLT/SPHERE 4 252 160× 160 1.625± 0.29 40.3 1

sph2 VLT/SPHERE 4 80 160× 160 1.593± 0.052 31.5 0

sph3 VLT/SPHERE 4 228 160× 160 1.593± 0.052 80.5 5

nrc1 Keck/NIRC2 9 29 321× 321 3.776± 0.70 53.0 3

nrc2 Keck/NIRC2 9 40 321× 321 3.776± 0.70 37.3 4

nrc3 Keck/NIRC2 9 50 321× 321 3.776± 0.70 166.9 0

lmr1 LBT/LMIRCAM 5 4838 200× 200 3.780± 0.10 153.4 2

lmr2 LBT/LMIRCAM 4 3219 200× 200 3.780± 0.10 60.6 2

lmr3 LBT/LMIRCAM 4 4620 200× 200 3.780± 0.10 91.0 3

Table 1: Features of the nine ADI sequences from the EIDC subchallenge-1. Nt is
the number of frames, Nimg the frame size, λobs is the wavelength, and ∆rot
is the field rotation. The column on the right shows the number of fake
companions injected in each ADI sequence.

4.1.1.1 Injection procedure

In each ADI sequence listed in Table 1, a different number of fake com-
panions, ranging from none to five, were injected using the Vortex Imaging
Processing (VIP, Gómez González et al., 2017; Christiaens et al., 2023) open
source package3. To avoid interfering with potential real planetary signals or
extended sources (e.g., circumstellar disks) in the ADI sequences, the point
sources were injected using the opposite parallactic angles. This is a common
practice in HCI in which it is assumed that the temporal statistical behavior of
the starlight speckles is kept, while smearing out the potential circumstellar
signals.

In HCI, the injection of an exoplanet involves first modeling the non-
coronagraphic PSF, and pasting it into each image in the ADI sequence
according to the parallactic angles. This injection process is further detailed
in a dedicated Appendix C. The coordinates of each injection were randomly
selected within angular separations between the IWA of the coronagraph and
the edge of the AO correction zone making sure that the injected signals will

3 VIP: https://vip.readthedocs.io/en/v1.4.0/

https://vip.readthedocs.io/en/v1.4.0/
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Figure 4.1: Dimensionality of the image cubes used in the EIDC: the left panel shows
a single ADI data cube and the right panel shows an ADI + mSDI data
cube. Blue spots in each frame represents the position of the exoplanet.
Figure taken from EIDC webpage.

not overlap. The flux (or contrast) of each injection was selected in a range of
±3σ from the 5σ contrast curve provided when running the chosen baseline
algorithm, which is an annular PCA (Amara & Quanz, 2012; Soummer et al.,
2012), also using the VIP package implementation.

4.1.2 Evaluation procedure

Participants were requested to provide three types of files (all in .fits format)
for each ADI data set: a detection map (the output of the algorithm), a
detection threshold applicable to all data sets, and the FWHM of the expected
planetary signal within the detection map.

To assess the performance of each participant’s submission, we approached
the analysis as a classification problem. Specifically, we examined each
submitted detection map in terms of identifying detections and non-detections.
A detection was defined as any signal above the detection threshold in the
detection map. Thereby, a true positive (TP) was defined as a detection within
a circular aperture of FWHM diameter (we considered the instrumental
PSF FWHM instead of the submitted FWHM) centered on the position of
an injected companion. Conversely, a false positive (FP) was defined as a
detection at any other location within the map’s field of view. A false negative
(FN) encompassed instances where no detection occurred at the positions of
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injected companions, while a true negative (TN) accounted for the absence
of detections at all other locations, considering the FWHM aperture grid
applied to the image. For the non-detections, we computed the number of
possible detections in the image and subtracted the number of detections.
Therefore, following with this criterion, we counted the number of TPs, FPs,
TNs and FNs at the detection threshold for each submitted detection map
provided by the participants. We then repeated this procedure for a range of
thresholds. In addition, each image post-processing algorithm has its own
inner and outer working angles. To allow a fair comparison, we applied to
all the detection maps received for a given data set, a unique binary mask to
select the smallest IWA and largest OWA submitted for this data set.

Based on these detection considerations, we computed the following met-
rics for each submitted detection map at different detection thresholds (rang-
ing from 0 to twice the submitted threshold):

• The True Positive Rate (TPR):

TPR =
TP

TP+ FN
(10)

• The False Positive Rate (FPR):

FPR =
FP

FP+ TN
(11)

• The False Discovery Rate (FDR):

FDR =
FP

FP+ TP
(12)

• The F1-score:

F1 =
2 · TP

2 · TP+ FP+ FN
(13)

The TPR measures the proportion of injections correctly identified by a
submitted algorithm. If the number of injection is non-null, the TPR as a
function of the threshold is a decreasing step function. An ideal algorithm
should provide a TPR of 1 whatever the threshold (up to the maximum value
of the detection map). On the contrary, the FPR characterizes the residual
noise in the detection map. It decreases monotonically as a function of
the threshold. An ideal algorithm should provide a FPR of 0 whatever the
threshold. The FDR gives information about the detections, regardless of
the true negatives, which is more important for our science case as we want
to detect planetary signals (and we are not interested in knowing how we
cannot detect them). It is a decreasing step function with the threshold. An
ideal algorithm should also provide an FDR of 0 whatever the threshold. The
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F1-score combines information from both TPR and FPR into a single metric,
and it provides a balanced measure of an algorithm’s performance. It is also
a metric that does not include TN, avoiding the need and artificial count of
TNs.

To rank the performance of submissions, we relied on the area under
the curve (AUC) for both TPR (denoted as AUCTPR) and FDR (denoted as
AUCFDR), as well as the F1-score, as indicators of merit. The area under
the curve regarding the FPR metric is used later in Chapter 10. For the sake
of clarity, both the AUCTPR and the F1-score range between 0 (indicating
poor performance) and 1 (indicating exceptional performance). However,
the AUCFDR ranges between 0 (indicating exceptional performance) and 1

(indicating poor performance). Note that if no synthetic planetary signals
were injected into the data set (e.g., sph2 and nrc3 sequences in Table 1), these
three scores would be undefined. These scores were computed for each data
set separately, on average for each instrument, and finally on average for all
the data sets.

4.1.3 Submissions and results

For this first ADI subchallenge, 22 valid submissions were received: 11 for
speckle subtraction techniques, 5 for inverse problem techniques, 5 for super-
vised machine learning techniques, as well as a reference-less submission,
which is denoted as unknown hereafter. Table 2 summarizes these submis-
sions. A more detailed description of algorithms can be found in Section 1.2.6
or in Cantalloube et al. (2020). The metrics AUCTPR, AUCFDR and F1-score
proposed in Section 4.1.2 are gathered in Tables 3 and 4 for the 11 speckle
subtraction techniques, in Table 5 for the unkwnown submission, in Table 6

for the 5 inverse problem approaches, and in Table 7 for the 5 supervised
machine learning techniques. The final ranking leader-board of all these
detection algorithms is shown in Fig. 4.2. Additionally, the 22 submitted
detection maps obtained for the nine ADI sequences of this subchallenge can
be found in Appendix A.
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Algorithm Family Reference Subchallenge-1 Subchallenge-2 Code source

cADISpecal Speckle sub. Galicher, R. et al. (2018) ✓ SpeCal

LOCI Speckle sub. Lafreniere et al. (2007) ✓ VIP

TLOCISpecal Speckle sub. Marois et al. (2014) ✓ SpeCal

PCASpecal Speckle sub. Amara & Quanz (2012) ✓ SpeCal

PCAMPIA Speckle sub. Launhardt, R. et al. (2020) ✓ SpeCal

PCAPadova Speckle sub. Chauvin et al. (2017) ✓ ✓ SpeCal

Unknown ? ? ✓ ?

STIMfullframe Speckle sub. Pairet et al. (2019) ✓ VIP

STIMannuli Speckle sub. Pairet et al. (2019) ✓ VIP

STIMhpf Speckle sub. Pairet et al. (2019) ✓ ✓ VIP

SLIMask Speckle sub. Pairet et al. (2019) ✓

RSM Speckle sub. Dahlqvist et al. (2020) ✓ VIP

ANDROMEDA Inverse Cantalloube et al. (2015) ✓ ✓∗ SpeCal, VIP

FMMF Inverse Ruffio et al. (2017) ✓ ✓ pyKLIP, VIP

PACO Inverse Flasseur et al. (2018) ✓ ✓ Github

pyPACO Inverse Flasseur et al. (2018) ✓ VIP

TRAP Inverse Samland et al. (2021) ✓ Github

SODIRForiginal ML Gómez González et al. (2018) ✓ Github

SODIRFadapted ML ✓

SODINNLSTM ML Gómez González et al. (2018) ✓ Github

SODINNBiLSTM ML ✓

SODINN3D ML Gómez González et al. (2018) ✓ Github

Table 2: Submitted algorithms in the EIDC phase-1. (✓∗) Two ANDROMEDA versions were submitted for the subchallenge-2: ANDROMEDAADI and
ANDROMEDAASDI. SODIRFadapted and SODINNBiLSTM are modified versions regarding the model training.

https://github.com/carlgogo/sodinn
https://github.com/m-samland/trap
https://github.com/carlgogo/sodinn
https://github.com/carlgogo/sodinn
https://github.com/carlgogo/sodinn
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Algorithm
VLT/SPHERE-IRDIS Keck/NIRC2 LBT/LMIRCam

All
sph1 sph2 sph3 Mean nrc1 nrc2 nrc3 Mean lmr1 lmr2 lmr3 Mean

Baseline
1.00 u 0.75 0.88 0.00 0.00 u 0.00 0.67 0.50 0.00 0.39 0.42

0.52 u 0.54 0.53 0.35 0.24 u 0.29 0.50 0.49 0.17 0.38 0.40

0.42 u 0.21 0.32 0.29 0.54 u 0.41 0.32 0.49 0.31 0.37 0.37

cADISpeCal

0.00 u 0.03 0.02 0.00 0.00 u 0.00 0.00 0.00 0.00 0.00 0.01

0.00 u 0.80 0.40 0.01 0.01 u 0.01 0.00 0.00 0.01 0.01 0.14

1.00 u 0.98 0.99 0.01 0.01 u 0.01 0.01 0.01 0.01 0.01 0.34

LOCI
1.00 u 0.67 0.83 0.86 0.50 u 0.68 0.67 0.50 0.80 0.66 0.72

0.74 u 0.75 0.75 0.48 0.30 u 0.39 0.65 0.55 0.60 0.60 0.58

0.42 u 0.35 0.39 0.36 0.43 u 0.40 0.39 0.43 0.36 0.39 0.39

TLOCISpeCal

0.00 u 0.75 0.38 0.00 0.00 u 0.00 0.00 0.00 0.00 0.00 0.12

0.39 u 0.49 0.44 0.21 0.08 u 0.15 0.00 0.25 0.00 0.08 0.22

0.27 u 0.20 0.23 0.37 0.39 u 0.38 0.82 0.98 0.79 0.86 0.49

PCASpeCal

0.00 u 0.20 0.10 0.00 0.00 u 0.00 0.00 0.00 0.00 0.00 0.03

0.00 u 1.00 0.50 0.01 0.01 u 0.01 0.00 0.00 0.01 0.00 0.17

1.00 u 0.81 0.90 0.01 0.01 u 0.01 0.01 0.01 0.01 0.01 0.31

PCAMPIA

1.00 u 0.75 0.88 0.67 0.00 u 0.33 0.67 0.80 0.50 0.66 0.62

0.68 u 0.65 0.67 0.41 0.22 u 0.31 0.50 0.71 0.45 0.55 0.51

0.31 u 0.29 0.30 0.32 0.37 u 0.34 0.33 0.42 0.32 0.36 0.33

PCAPadova

0.50 u 0.83 0.67 0.00 0.00 u 0.00 0.40 0.50 0.22 0.37 0.35

0.66 u 0.84 0.75 0.16 0.17 u 0.17 0.66 0.53 0.54 0.58 0.50

0.48 u 0.43 0.46 0.22 0.25 u 0.23 0.64 0.50 0.56 0.57 0.42

Table 3: Results from the subchallenge-1 (ADI) for classic speckle subtraction techniques. The table shows, for each algorithm and data set, the F1-score (in
black) computed at the submitted threshold, the AUCTPR (in green) and the AUCFDR (in red). When there are no injected planetary signals, the
scores cannot be computed and are therefore undefined (indicated with u). The last column is the mean of the scores for the seven data sets that
include injected planetary signal(s). The baseline algorithm is annular PCA with standard hyperparameters. Table from Cantalloube et al. (2020).
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Algorithm
VLT/SPHERE-IRDIS Keck/NIRC2 LBT/LMIRCam

All
sph1 sph2 sph3 Mean nrc1 nrc2 nrc3 Mean lmr1 lmr2 lmr3 Mean

STIMfullframe

1.00 u 1.00 1.00 0.00 0.50 u 0.25 0.00 0.67 0.50 0.39 0.55

0.79 u 0.88 0.84 0.36 0.19 u 0.28 0.23 0.48 0.62 0.44 0.52

0.40 u 0.36 0.38 0.44 0.39 u 0.41 0.45 0.42 0.40 0.42 0.41

STIMannuli

0.67 u 1.00 0.83 0.00 0.00 u 0.00 0.67 0.67 0.67 0.67 0.50

0.84 u 0.81 0.83 0.21 0.22 u 0.21 0.26 0.68 0.67 0.54 0.53

0.49 u 0.36 0.43 0.52 0.38 u 0.45 0.37 0.42 0.43 0.40 0.43

STIMhpf

0.67 u 1.00 0.83 0.00 0.50 u 0.25 0.00 0.00 0.50 0.17 0.42

0.81 u 0.85 0.83 0.23 0.21 u 0.22 0.33 0.35 0.43 0.37 0.47

0.48 u 0.35 0.42 0.49 0.41 u 0.45 0.39 0.50 0.30 0.40 0.42

SLIMask
1.00 u 1.00 1.00 0.67 0.50 u 0.58 0.67 0.80 1.00 0.82 0.80

0.88 u 0.89 0.89 0.39 0.27 u 0.33 0.67 0.64 0.71 0.67 0.63

0.37 u 0.07 0.22 0.34 0.40 u 0.37 0.36 0.36 0.31 0.34 0.31

RSM
1.00 u 1.00 1.00 0.86 0.50 u 0.68 0.67 1.00 1.00 0.89 0.86

0.84 u 0.88 0.86 0.55 0.21 u 0.38 0.45 0.62 0.73 0.60 0.61

0.09 u 0.04 0.06 0.06 0.02 u 0.04 0.14 0.29 0.08 0.17 0.09

Table 4: Same as Table 3 for advanced speckle subtraction techniques. Table from Cantalloube et al. (2020).
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Algorithm
VLT/SPHERE-IRDIS Keck/NIRC2 LBT/LMIRCam

All
sph1 sph2 sph3 Mean nrc1 nrc2 nrc3 Mean lmr1 lmr2 lmr3 Mean

Unknown
0.00 u 0.33 0.17 0.00 0.00 u 0.00 0.00 0.00 0.00 0.00 0.06

0.00 u 0.38 0.19 0.15 0.14 u 0.15 0.00 0.12 0.07 0.06 0.13

1.00 u 0.37 0.69 0.60 0.37 u 0.48 0.39 0.38 0.43 0.40 0.52

Table 5: Same as Table 3 for the Unknown submission. Table from Cantalloube et al. (2020).
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Algorithm
VLT/SPHERE-IRDIS Keck/NIRC2 LBT/LMIRCam

All
sph1 sph2 sph3 Mean nrc1 nrc2 nrc3 Mean lmr1 lmr2 lmr3 Mean

ANDROMEDA
1.00 u 1.00 1.00 0.00 0.50 u 0.25 0.00 1.00 0.00 0.33 0.53

0.53 u 0.82 0.68 0.30 0.40 u 0.35 0.18 0.63 0.21 0.34 0.46

0.38 u 0.35 0.36 0.36 0.39 u 0.38 0.38 0.39 0.38 0.38 0.37

FMMF
0.67 u 1.00 0.83 0.67 0.50 u 0.58 0.67 0.80 1.00 0.82 0.75

1.00 u 0.87 0.93 0.51 0.27 u 0.39 0.65 0.80 0.85 0.77 0.70

0.43 u 0.33 0.38 0.39 0.39 u 0.39 0.43 0.43 0.33 0.40 0.39

PACO
1.00 u 1.00 1.00 0.60 0.40 u 0.50 0.67 0.57 0.06 0.43 0.64

1.00 u 0.93 0.97 0.44 0.34 u 0.39 0.29 0.58 0.51 0.46 0.61

0.39 u 0.32 0.36 0.43 0.48 u 0.45 0.30 0.51 0.90 0.57 0.46

pyPACO
0.08 u 0.83 0.46 0.00 0.00 u 0.00 0.07 0.09 0.12 0.09 0.18

1.00 u 0.94 0.97 0.23 0.10 u 0.16 0.78 1.00 1.00 0.93 0.69

0.70 u 0.50 0.60 0.40 0.69 u 0.55 0.91 0.75 0.68 0.78 0.64

TRAP
1.00 u 1.00 1.00 0.00 0.50 u 0.25 0.67 0.80 0.80 0.76 0.67

0.68 u 0.91 0.80 0.33 0.33 u 0.33 0.50 0.70 0.61 0.60 0.58

0.37 u 0.36 0.36 0.32 0.35 u 0.33 0.32 0.45 0.33 0.37 0.35

Table 6: Same as Table 3 for inverse problem techniques. Table taken from Cantalloube et al. (2020).
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Algorithm
VLT/SPHERE-IRDIS Keck/NIRC2 LBT/LMIRCam

All
sph1 sph2 sph3 Mean nrc1 nrc2 nrc3 Mean lmr1 lmr2 lmr3 Mean

SODIRForiginal

0.40 u 0.59 0.49 0.22 0.00 u 0.11 0.18 0.33 0.86 0.46 0.35

0.70 u 0.64 0.67 0.36 0.10 u 0.23 0.28 0.58 0.52 0.46 0.45

0.55 u 0.48 0.52 0.66 0.62 u 0.64 0.52 0.53 0.47 0.50 0.55

SODIRFadapted

0.33 u 0.91 0.62 0.22 0.00 u 0.11 0.33 0.80 0.86 0.66 0.47

0.71 u 0.55 0.63 0.42 0.22 u 0.32 0.30 0.57 0.54 0.47 0.48

0.56 u 0.41 0.48 0.64 0.62 u 0.63 0.51 0.44 0.45 0.47 0.53

SODINNLSTM

0.67 u 0.83 0.75 0.33 0.00 u 0.17 0.33 0.57 0.55 0.48 0.47

0.50 u 0.50 0.50 0.19 0.16 u 0.17 0.50 0.50 0.50 0.50 0.39

0.47 u 0.43 0.45 0.43 0.34 u 0.38 0.47 0.47 0.48 0.48 0.44

SODINNBiLSTM

0.40 u 0.71 0.56 0.00 0.50 u 0.25 0.11 0.33 0.20 0.21 0.34

0.50 u 0.50 0.50 0.08 0.17 u 0.13 0.50 0.50 0.50 0.50 0.38

0.48 u 0.45 0.47 0.45 0.22 u 0.34 0.49 0.49 0.49 0.49 0.43

SODINN3D

0.29 u 0.83 0.56 0.25 0.29 u 0.27 0.50 1.00 0.86 0.79 0.54

0.84 u 0.50 0.67 0.29 0.35 u 0.32 0.47 0.50 0.50 0.49 0.50

0.65 u 0.40 0.53 0.70 0.68 u 0.69 0.48 0.46 0.48 0.47 0.56

Table 7: Same as Table 3 for supervised machine learning techniques. Table from Cantalloube et al. (2020).
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Figure 4.2: ADI subchallenge leader-board according to the F1-score (left column), AUCTPR (middle column), and AUCFDR (right column). The light,
medium and dark colors correspond to the three SPHERE, NIRC2, and LMIRCam data sets respectively. Figure from Cantalloube et al. (2020).
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4.1.4 Discussion

Valuable insights can be gathered from the results (Section 4.1.3) of this initial
ADI subchallenge:

• Consistency in rankings: Results are consistent regarding the con-
sidered metrics. Specifically, a high F1-score consistently corresponds
to a high AUCTPR and a low AUCFDR for a given method (Fig. 4.2).
However, it is worth mentioning that in some cases, the AUCFDR may
deviate significantly from other scores. For example, certain algorithms
might excel in minimizing false alarms (high AUCFDR) but perform
less effectively in detecting faint signals (low AUCTPR). Depending on
the science case, the choice of the most relevant metric becomes crucial
in selecting the optimal method.

• Poor performance of classical techniques: As expected, classical
speckle subtraction techniques (depicted in red in Fig. 4.2) demonstrate
relatively poorer performance compared to more advanced approaches.

• Challenges with supervised ML: The exception goes to the supervised
machine learning techniques (in green in Fig. 4.2) for which we observe
numerous false positives. It is worth noting that applying supervised
machine learning to HCI is relatively new, and ongoing efforts are aimed
at enhancing their performance. Another source of bias in the current
ranking of these techniques arises from the nature of the detection
maps they produce. These maps are binary classifiers normalized
to one, causing the true positive rate (TPR) to abruptly drop to zero
for thresholds greater than the submitted threshold. Consequently,
computing AUCTPR over a range of thresholds from 0 to twice the
submitted threshold may not be an appropriate evaluation, potentially
disadvantaging these methods.

• Instrument and data dependency: Fig. 4.2 also highlights that the
performance of algorithms is clearly dependent on the type of instru-
ment used. Coronagraphic images (represented by light and medium
colors) exhibit different characteristics in terms of stellar light residu-
als compared to non-coronagraphic images (depicted by dark colors).
Additionally, wavelength and exposure time (number of frames) play a
role, especially for algorithms that operate along the temporal axis.

• High performance of recent algorithms: The most recent algorithms,
RSM and SLIMask for speckle subtraction techniques, and FMMF,
PACO, and TRAP for inverse problem approaches, exhibit excellent
performance across all three evaluation metrics employed in this study.
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4.2 subchallenge-2 : adi + msdi

The second generation of instruments dedicated to exoplanet imaging, such
as VLT/SPHERE and Gemini-S/GPI, are equipped with integral field units
(IFUs) that have a relatively low spectral resolving power. These IFUs pro-
duce images simultaneously at different wavelengths, which enables the
combination of ADI sequences with mSDI sequences (Section 1.2.5.2) in such
a way that for each parallactic angle, frames at different wavelengths are
captured (Fig. 4.1-right). Thus, the second subchallenge aimed to assess the
performance of current image post-processing techniques when applied to
these 4-D ADI+mSDI sequences.

4.2.1 Data sets

For this subchallenge, five ADI+mSDI sequences were provided from two
different instruments: VLT/SPHERE-IFS (Beuzit et al., 2019), and Gemini-
S/GPI (Macintosh et al., 2008), thus making a total of ten data sets. The
VLT/SPHERE-IFS has two wavelength ranges, either covering the YJH bands
(0.95 to 1.64 µm) or the YJ bands (0.95 to 1.33 µm). Gemini-S/GPI is similarly
equipped with an extreme AO system and an APLC, and works from the
J-band (0.95 µm) to the K-band (2.12 µm). In these ADI+mSDI data sets, a
total of 23 planetary signals were injected following the same specifications
as in Section 4.1.1.1.

Each of the ten data sets consisted of five .fits files. These files included the
same four as those used for the ADI subchallenge data sets (Section 4.1.1),
along with an additional vector that contains wavelength information corre-
sponding to each spectral channel of the IFU. The pre-processing of image
sequences was conducted using the SPHERE Data Center (Delorme et al.,
2017) for the VLT/SPHERE-IFS data, employing the SPHERE Data Reduction
and Handling pipeline (Pavlov et al., 2008). On the other hand, the Gemini-
S/GPI data was pre-processed using the GPI Data Cruncher (Maire et al.,
2010; Perrin et al., 2016) and the GPI reduction pipeline (Wang et al., 2018). A
summary of the properties of these ten data sets can be found in Table 8.

4.2.2 Evaluation procedure

The evaluation of submissions for this second subchallenge was based on the
same metrics (AUCTPR, AUCFDR and F1) as proposed for the ADI subchal-
lenge (Section 4.1.2).
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ID Telescope/Instr. λrange Nt Nimg Nλ ∆rot Inj.

[µm] [px×px] []

ifs1 VLT/SPHERE-IFS 0.957− 1.329 128 200× 200 39 25.6 2

ifs2 VLT/SPHERE-IFS 0.957− 1.636 112 200× 200 39 131.9 4

ifs3 VLT/SPHERE-IFS 0.957− 1.636 109 200× 200 39 43.5 2

ifs4 VLT/SPHERE-IFS 0.957− 1.636 112 200× 200 39 46.2 4

ifs5 VLT/SPHERE-IFS 0.957− 1.329 80 200× 200 39 31.8 0

gpi1 Gemini-S/GPI 1.495− 1.797 35 161× 161 37 54.7 1

gpi2 Gemini-S/GPI 1.495− 1.797 41 161× 161 37 22.5 3

gpi3 Gemini-S/GPI 1.495− 1.797 38 161× 161 37 12.6 0

gpi4 Gemini-S/GPI 1.495− 1.797 37 161× 161 37 13.8 3

gpi5 Gemini-S/GPI 1.495− 1.797 44 161× 161 37 24.4 4

Table 8: Features of the ten ADI+mSDI sequences from the EIDC subchallenge-2.
Nt is the number of frames, Nimg the frame size, λrange is the range of
observation wavelength, Nλ is the number of channels along the spectral
axis, and ∆rot is the field rotation. The column on the right shows the
number of fake companions injected in each ADI+mSDI sequence.

4.2.3 Submissions and results

A total of 6 valid submissions were received for this subchallenge: 2 for
speckle subtraction techniques, and 4 for inverse problem techniques (see
Table 2). Their evaluation scores (AUCTPR, AUCFDR and F1) proposed in
Section 4.1.2 are gathered in Table 9. The final ranking leader-board is shown
in Fig. 4.3. Additionally, the 6 submitted detection maps obtained for the 10

data sets of this subchallenge can be found in Appendix B.
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Algorithm
VLT/SPHERE-IFS Gemini-S/GPI All

ifs1 ifs2 ifs3 ifs4 ifs5 Mean gpi1 gpi2 gpi3 gpi4 gpi5 Mean

Baseline
0.80 0.75 0.40 0.00 u 0.49 0.00 0.00 u 0.00 0.67 0.17 0.33

0.78 0.77 0.63 0.21 u 0.60 0.34 0.24 u 0.19 0.60 0.34 0.47

0.57 0.36 0.71 0.98 u 0.65 0.46 0.39 u 0.46 0.30 0.40 0.53

PCAPadova,ASDI

0.50 0.25 0.18 0.17 u 0.27 0.00 0.15 u 0.22 0.57 0.24 0.26

0.94 0.87 0.73 0.50 u 0.76 0.46 0.44 u 0.41 0.99 0.57 0.67

0.59 0.78 0.83 0.58 u 0.69 0.60 0.97 u 0.61 0.54 0.68 0.69

STIMADI

1.00 0.86 0.67 0.40 u 0.73 0.00 0.00 u 0.00 0.86 0.21 0.47

0.86 0.80 0.65 0.42 u 0.68 0.39 0.29 u 0.24 0.82 0.44 0.56

0.32 0.30 0.29 0.29 u 0.30 0.36 0.38 u 0.30 0.39 0.36 0.33

ANDROMEDAADI

0.80 1.00 0.67 0.40 u 0.72 1.00 0.00 u 0.29 0.86 0.54 0.63

0.75 0.81 0.66 0.44 u 0.66 0.73 0.26 u 0.38 0.76 0.53 0.60

0.46 0.36 0.39 0.41 u 0.41 0.38 0.44 u 0.55 0.36 0.43 0.42

ANDROMEDAASDI

1.00 1.00 0.50 0.33 u 0.71 1.00 0.00 u 0.29 1.00 0.57 0.64

0.81 0.76 0.65 0.53 u 0.69 0.51 0.35 u 0.34 0.89 0.52 0.60

0.44 0.32 0.44 0.44 u 0.41 0.37 0.53 u 0.58 0.40 0.47 0.44

FMMFASDI

1.00 1.00 0.80 1.00 u 0.95 0.00 0.80 u 0.00 1.00 0.45 0.70

1.00 0.97 1.00 0.98 u 0.99 0.37 0.55 u 0.33 1.00 0.56 0.77

0.39 0.34 0.40 0.33 u 0.36 0.43 0.38 u 0.39 0.33 0.38 0.37

PACOASDI

1.00 0.86 0.67 0.86 u 0.85 x x u x 1.00 x x

1.00 0.86 0.57 0.78 u 0.81 x x u x 0.98 x x

0.34 0.37 0.38 0.33 u 0.36 x x u x 0.36 x x

Table 9: Same as Table 3 for subchallenge-2 (ADI+mSDI), encompassing both speckle subtraction and inverse problem algorithms. The x symbol means
that the detection map was not submitted. The corresponding algorithm, PACOASDI, will not be taken into account in the ranking. Table from
Cantalloube et al. (2020).
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Figure 4.3: EIDC ranking of submitted algorithms for the subchallenge-2
(ADI+mSDI) according to the F1-score (top left), AUCTPR (top right),
and AUCFDR (bottom). The light and dark colors correspond to the five
VLT/SPHERE-IFS and five Gemini-S/GPI data sets respectively. Figure
taken from Cantalloube et al. (2020).

4.2.4 Discussion

Different insights can be gathered from the results (Section 4.2.3) of this
ADI+mSDI subchallenge:

• Effective exploitation of spectral information: It is clear from Fig. 4.3
that exploiting the spectral information enhances the ability to detect
faint planetary signals. For example, when comparing the detection
maps of STIMADI and PCAPadova to PCAASDI, or ANDROMEDAADI

to ANDROMEDAASDI in Fig. B.10, we observe a clear disadvantage
in detecting the faintest companions.

• Impact of spectral templates: The spectral template used as a prior
for the planetary signal in some methods plays an important role. For
instance, in Fig B.4, PACOASDI uses a uniform spectral template prior
and does not detect one of the four planetary signal. However, by using
a non-flat spectrum as a prior, the signal of the fourth planet is above
the submitted threshold.

• Inconsistent performance: As a general rule, based on the image gal-
leries in Appendix B, the more advanced/recent techniques perform
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better at detecting planetary signals but the results are not homoge-
neous. This shows once again that applying various algorithms based
on different concept is the most appropriate way of validating or invali-
dating a candidate based on a single data set.

• Unique value of inverse problem approaches: Again, inverse problem
approaches stand out as the only methods that directly yield infor-
mation about the contrast of the planetary signal candidates. This
capability enables to further disentangle the candidate from any re-
maining stellar residuals by comparing the extracted spectrum of the
candidate with that of a residual speckle.

4.3 my contribution

During the first phase of the EIDC, I played a dual role as both a team
member and an active participant. My contributions included providing
support during group meetings to facilitate decision-making processes, sub-
mitting supervised machine learning algorithms, and conducting a thorough
evaluation of all the data challenge submissions.

With respect to the challenge submissions, owing to my line of research, I
was exploring and implementing supervised machine learning algorithms.
Specifically, my focus was on the development and deployment of SODIRF

and SODINN (Gómez González et al., 2018), two binary classifiers that uses
a random forest and CNNs, respectively. For the case of SODINN, I imple-
mented the two versions – one using convolutional 3D layers (SODINN3D)
and the other employing Convolutional-LSTM layers (SODINNLSTM). Ini-
tially, I applied the original versions of these algorithms to the EIDC dataset.
As I delved deeper into their functionalities, I recognized opportunities for
enhancing their architectures and refining training methodologies. In the case
of SODIRF, I introduced a Grid Search Cross-Validation during the training.
This strategy, unlike the common hold-out method, systematically explores a
predefined set of hyperparameters by evaluating each combination through
k-fold cross-validation (see Section 2.2). This adaptation was referred to
as SODIRFadapted (Table 2) and resulted in a better performance than the
SODIRForiginal (Fig 4.2). For the case of SODINN, I modified its network
through introducing GRU and Bidirectional layers (see Section 2.3.3.2). This
was motivated by the fact that these layers better capture temporal informa-
tion in time-series data, such as the patch sequences used in SODINN. My
experiments with the GRU version did not yield substantial improvements,
and that is the reason why I finally opted not to submit it. However, my
tests with the Bidirectional version proved to be insightful, leading me to
submit this iteration, denoted as SODINNBiLSTM, to the EIDC. Given the
time constraints imposed by the challenge deadline, I was unable to conduct
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more complex testing on these algorithms. Nevertheless, this experience was
valuable as it marked my initial contact into these advanced techniques.

Once the EIDC challenge concluded, my role, as a team member, was to
evaluate all of submitted detection maps according to the criteria explained in
Section 4.1.2. I carefully reviewed each submission file to ensure compliance
with the prescribed format and EIDC guidelines. To streamline the evaluation
process and maintain consistency, I then developed a specialized code. This
code automatically extracted proposed metrics from the detection maps
provided by each algorithm submission. With the extracted metrics in hand,
I finally conducted a comprehensive analysis of all the results. This involved
examining performance metrics and looking for patterns and trends within
the submissions to gain insights into the strengths and weaknesses of different
approaches. It is important to mention that this evaluation process was
conducted by another team member in parallel. This was crucial in providing
an objective and unbiased interpretation of the results. It helped ensure
that our assessments were robust and reliable, ultimately contributing to fair
judgment and selection of the most effective algorithms.



5
P H A S E - I I : C H A R A C T E R I Z AT I O N O F E X O P L A N E T S

Following the successful completion of the first phase of the EIDC (Chapter
4), the endeavour of the EIDC team was to expand its scope with a second
phase dedicated to exoplanet characterization. When an exoplanet is detected
within high-contrast images, it needs to be characterized. This involves
estimating its relative projected position and brightness with respect to the
target star, across one or more wavelengths. This characterisation step is
essential to confirm that the detected signal is gravitationally bound to the
star and is of a (sub)stellar nature, making it a firm companion detection.
Additionally, characterizing the detected object is essential for extracting
information about its orbital and atmospheric properties.

This second phase of the EIDC (Cantalloube et al., 2022) was launched
on April, 2022, and it is still open for submissions. The goal is to assess
the characterization capabilities of various HCI post-processing techniques.
To achieve this, each participant is tasked with two specific subchallenges,
diverging from the previous phase where subchallenges were related to the
observing strategy. In EIDC phase-2, participants must accurately recover the
position (subchallenge-1) of each injected object in the dataset and precisely
recover their spectral information (subchallenge-2). The ensemble of data sets
for this phase are again hosted on Zenodo1. The participants are invited to
submit their results via the EvalAI2 competition platform.

Because the competition is still ongoing, official results are yet to be pub-
lished. Nevertheless, this short chapter aims to provide a general description
of the challenge, including a submission example, as well as to highlight my
ongoing contribution to it.

5.1 data sets

This challenge is composed by eight ADI+mSDI cubes (Table 10) from where
participant’s algorithm have to characterize injected companions. These data
sets are taken with the integral field units (IFU), installed at the Gemini-South

1 EIDC phase-2 data repository: https://zenodo.org/record/6902628

2 EIDC phase-2 competition platform: https://eval.ai/web/challenges/challenge-page/1717/
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telescope GPI (Macintosh et al., 2008), and SPHERE-IFS (Beuzit et al., 2019),
installed at the Very Large Telescope (VLT). The various data sets are taken
under different observing conditions, ranging from very good observing
conditions on a bright target star to very bad observing conditions on a faint
target star (Table 10).

ID Target λrange Nt Nimg Nλ ∆rot Obs.

[µm] [px×px] [º] conditions

gpi1 B 1.495 - 1.797 37 169× 169 37 14.4 Very good

gpi2 B 1.495 - 1.797 36 169× 169 37 156.6 Medium (WDH)

gpi3 B 1.495 - 1.797 38 169× 169 37 13.3 Medium

gpi4 F 1.495 - 1.797 37 169× 169 37 14.2 Poor (LWE)

sph1 B 0.957 - 1.329 144 189× 189 39 26.8 Very good

sph2 B 0.957 - 1.329 80 189× 189 39 14.4 Poor (WDH)

sph3 F 0.957 - 1.329 64 189× 189 39 25.8 Very good

sph4 B 0.957 - 1.329 90 189× 189 39 144.8 Poor (WDH)

Table 10: Features of the eight data sets provided for the EIDC phase-2. Nt is the
number of frames, Nimg the frame size, λrange is the range of observation
wavelength, Nλ is the number of channels along the spectral axis, and ∆rot
is the field rotation. The target star is labeled as bright (B) for magnitude
in the J-band below 7 and as faint (F) above. The last column qualitatively
indicates the observing conditions: LWE stands for low-wind effect and
WDH stands for wind-driven halo.

Each data set is composed of different files (in .fits format): (i) the ADI+mSDI
sequence (4-D image cubes, see right of Fig. 4.1), (ii) vectors of parallactic
angles and airmass variation, the multispectral PSF (non-coronagraphic) of
the target, (iii) the vector of the central wavelength of each IFU channel, and
(iv) a first guess position of the injected signals.

The pre-processing of the raw images (i.e. dark subtraction, flat fielding,
bad pixel correction, re-centering, cropping, flux normalization and frame
selection) was performed by the GPI and SPHERE consortia via the custom-
tools they developed: the GPI data cruncher (Perrin et al., 2016), and the
SPHERE data center (Delorme et al., 2017), respectively. Before injecting
synthetic planetary signals, we homogenized the data (centering, cropping
and setting of a parallactic angles direction convention).
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5.1.1 Injection procedure

In each ADI+mSDI cube, two to three synthetic planetary signals are injected
at various locations of the field of view. Each companion is injected with
subpixel precision through Fourier-transform methods to avoid interpolation
errors (Larkin et al., 1997). As in EIDC phase-1, the synthetic planetary
signals were injected using the opposite parallactic angle variation in order
to avoid any real astrophysical signal to interfere. Additionally, because the
final goal of planetary spectrum retrieval is to estimate the atmospheric phys-
ical parameters of the planet, the companions have been injected following
emission spectra simulated with the radiative transfer tool petitRADTRANS
(Mollière et al., 2019) that is available in open source3. For these injected
spectra (unknown to the participants), we chose realistic physical parameters
(L- or T-dwarf typical spectra) and sometimes added the contribution of cir-
cumplanetary material emission by adding a black-body contribution using
the SPEctral Characterization of directly ImAged Low-mass companions (SPECIAL,
Christiaens, 2022) open-source package4, and sometimes a bit of noise. To
choose the signal-to-noise of the injected planetary signals, we ran an annular
PCA, as implemented in VIP (Gómez González et al., 2017; Christiaens et al.,
2023), and extracted the average contrast over all wavelengths that we defined
for the injection. We refer to Cantalloube et al. (2022) for a detailed descrip-
tion of this injection procedure, the spectra simulation, and their potential
limitations.

5.2 evaluation procedure

For every planetary injection, participants are tasked with two subchallenges:
accurately estimating the planet astrometry (distance to the star in pixels,
using Cartesian coordinates) and its spectrum (contrast to the star, estimated
at each wavelength λ).

Based on the submitted astrometry, EvalAI calculates the L2-norm (Eu-
clidean distance) between the estimated position p̂i and the ground truth
position pGT

i for each injection i, and then aggregate these distances across
all injections. The resulting astrometry metric, denoted as DXY , represents
the mean distance for all Ninj injections, where the closer to 0 the better:

DXY =
1

Ninj
.
∑
i

|p̂i − pGT
i |2

=
1

Ninj
.
∑
i

√
(x̂i − xGT

i )2 + (ŷi − yGT
i )2.

(14)

3 petitRADTRANS: https://petitradtrans.readthedocs.io/en/latest/
4 SPECIAL: https://special.readthedocs.io/en/latest/

https://petitradtrans.readthedocs.io/en/latest/
https://special.readthedocs.io/en/latest/


5.3 submission example 63

For the spectral retrieval, EvalAI computes the L1-norm-based distance,
calculated independently for each spectral channel (λ). It quantifies the
absolute difference between the estimated value ĉλ and the corresponding
ground truth value cGT

λ . This difference is normalized by the ground-truth
contrast for each channel, ensuring equal weight for relative differences across
all spectral channels. The final metric DC is the mean of these normalized
distances across all Ninj injections and Nλ spectral channels of the IFU,
where again, the closer to 0 the better:

DC =
1

Ninj
.

1

Nλ
.
∑
i

∑
λ

|ĉλ,i − cGT
λ,i |1

cGT
λ,i

. (15)

It is worth mentioning that both the DXY and DC metrics do not take into
account the uncertainties on the estimations ĉλ and ĉλ. The decision to omit
uncertainties was driven by the fact that some algorithms, particularly those
based on supervised machine learning, do not provide uncertainty estimates.

5.3 submission example

The EIDC team used two image post-processing algorithms to exemplify a
submission for this second phase of the EIDC. These are the PCA-NEGFC
(Marois et al., 2010) and ANDROMEDA (Cantalloube et al., 2015), two
techniques widely used in the community to characterize companions.

5.3.1 Test data set

In this submission example, we make use of an ADI+mSDI data set obtained
from the SPHERE-IFS instrument. Hereafter, this data set is referred to as
sph-test. It is also provided to the participants to estimate hyper-parameters
of algorithms when necessary and perform various tests before their final
submission on the EvalAI platform. The observations were conducted under
average conditions, with a mean seeing of 0.99± 0.22 arcsec and a mean
coherence time of 5.8± 1.3 ms. The target star has a magnitude of Hmag =

6.22 and Vmag ≃ 9.4, resulting in a Strehl ratio of 68±10% in the H-band. It is
a bright target star observed for about one hour, with an exposure time of 64 s,
giving 65 images with a field rotation of 22.2º . The airmass variation during
the observing time is shown in Fig. 5.1 (bottom-left panel). The stellar flux
extracted from Gaussian fits to the non-coronagraphic multispectral images
is shown in Fig. 5.1 (bottom-central panel). The model stellar spectral energy
distribution (SED) used for calculation of the atmospheric and instrumental
transmission is a K7V spectral type, with an effective temperature Teff =

4000 K and a surface gravity log(g) = 4.5 cm/m2 , whose shape is shown in
Fig. 5.1 (bottom-right panel).
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Two fake companions are injected in the sph-test sequence. The first,
referred to as planet b, is injected close to the star at a separation of 155.3 mas.
The second, referred to as planet c, is injected outside of the AO correction
zone, at a separation of 615.9 mas. Fig. 5.1 (top-left panel) shows the ADI
median subtraction processed frame at the shortest wavelength (0.957 µm)
along with the location of the two injected planets. The model planet spectra
considered for the two injections are shown in Fig. 5.1 (top-central panel).
These correspond to a 1800 K black body (orange line) and the best-fit
model to planet HR8799e (red line), for b and c respectively. These spectra
are also shown in Fig. 5.1 after convolution and resampling considering
the SPHERE-IFS spectral resolving power and wavelength sampling (top-
right panel). The actual spectra injected in the data cube further consider
atmospheric+instrumental transmission, and the effect of airmass. The mean
contrast over all the spectral channels chosen for the injections is set to
1.8× 10−4 and 2.0× 10−4 for planets b and c, respectively. After a simple
full frame ASDI PCA processing, using 10 principal components to build the
model PSF that is subtracted, it corresponds to S/N values of 5σ and 25σ in
the post-processed image, respectively.
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Figure 5.1: Properties of the sph-test data set. Top: Median-subtraction processed frame at the shortest wavelength highlighting the two injections b and c with
colored circles (left) and their injected spectra of the two planetary signals (middle), sampled at the SPHERE-IFS spectral resolving power (right).
Bottom: Airmass factor used for the whole observing sequence (left), extracted spectrum of the non-coronagraphic PSF (middle), and stellar SED
model used for the target star (right), sampled at the SPHERE-IFS spectral resolving power. Plots taken from Cantalloube et al. (2022).
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Algorithm
Astrometry Spectro-photometry

Planet b Planet c Mean Planet b Planet c Mean

PCA-NEGFC 0.37 0.03 0.20 16.98 1.03 9.00

ANDROMEDA 1.95 0.06 1.01 35.67 2.29 18.99

Table 11: Distance metrics DXY (astrometry) and DC (spectro-photometry) of Sec-
tion 5.2 computed from the PCA-NEGFC and ANDROMEDA algorithm
submissions for the two injections b and c on the sph− test data set. The
closer to 0 the better.

5.3.2 Results

The final detection maps from the two considered algorithms are shown in
the left column of Fig. 5.2, and their astrometry distance metrics (Eq. 14)
are shown in Table 11. To complement, Fig. 5.3 (top panels) illustrates the
subpixel precision of both methods at estimating the position of planets b
and c.

The detection limits for both methods as 5σ contrast curves are shown in
the right column of Fig. 5.2, and their contrast distance metrics (Eq. 15) are
shown in Table 11. Moreover, Fig. 5.3 (middle and bottom panels) illustrates
the precision of both methods at estimating the contrast of planets b and c at
each wavelength channel.

5.3.3 Discussion

Table 11 shows that distance metrics are always better (closer to 0) for planet
c than for planet b, regardless of the subchallenge or the algorithm used. This
can be explained in terms of image noise: planet b lies very near the star
(Fig. 5.1 top-left), in an area where residual speckles dominate, conditions
for which HCI algorithms struggle. On the contrary, planet c is easier to
detect/characterize because it is brighter, distant from the star, and less
impacted by residual starlight.

Valuable conclusions can be gathered regarding the astrometry task:

• Planet b: PCA-NEGFC obtained better results than ANDROMEDA. In
addition to being located at small angular separations, planet b lies on
a bright speckle, with a S/N spot that is quite elongated radially for the
case of ANDROMEDA (Fig.5.2, bottom-left). This biases its estimation
towards a closer separation. The PCA-NEGFC technique appears to be
less affected by this effect.
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Figure 5.2: PCA (row on top) and ANDROMEDA (row on bottom) results from the
sph− test sequence. The left column show the detection maps, a residual
map obtained using 10 principal components (for PCA) and a S/N map
(for ANDROMEDA). The right column the corresponding detection limit
as 5σ contrast curves, where the 39 thin lines are the contrast curve for
each channel of the spectro-imager. The thick line is the mean of all the
thin lines. The two dots show the radial position and mean contrast of
the two injected planetary signals. Plots taken from Cantalloube et al.
(2022).

• Planet c: Both methods provide estimations within ∼ 0.05 pixel from
the ground truth, although it is worth mentioning that the associated
uncertainties appear slightly underestimated in both cases.

Regarding the spectro-photometry task:

• Planet b: ANDROMEDA provides the correct trend but seems to be
always slightly higher than the ground truth, in particular in the redder
spectral channels (i.e. the residuals are flat with wavelength). This
can again be explained by the presence of the bright speckle that lies
below the injection and that crosses the injection location at larger
wavelength. On the contrary, PCA-NEGFC slightly overestimates the
bluer spectral channels, while extracting very accurate values at longer
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wavelengths (i.e. the residuals are decreasing with wavelength). PCA-
NEGFC provides a rather flat spectrum. This can be understood by the
residual minimization procedure performed by NEGFC that is more
aggressive towards residual speckles. However, we can see that even
though both methods give results within 5σ from the ground truth, this
is still sub-optimal as many points are not within 3σ (for both methods),
demonstrating that there is still room for improvement.

• Planet c: PCA-NEGFC provides an almost perfect estimate of the
spectrum. ANDROMEDA provides slightly worst results at bluer
wavelengths. This is probably because the starlight residuals distri-
bution is more intense and shaped in this part of the spectrum and
ANDROMEDA heavily relies on the assumption that the subtraction
residuals are Gaussian and white, which we now know is not a perfect
assumption (this Gaussianity problem is further explained in Part III of
the thesis). Both methods have larger uncertainties at short wavelength
due to the inherent shape of the spectrum.

5.4 my contribution

For this second phase of the EIDC, my contributions included providing
support during group meetings to facilitate decision-making processes, as
well as developing the challenge’s evaluation back-end code (Section 5.2) for
the EvalAI platform. Furthermore, as in the first phase of the EIDC, it is
expected that I will share joint responsibility with another member of the
team for conducting the evaluation analysis once the challenge is completed.
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Figure 5.3: Estimations of PCA (in orange) and ANDROMEDA (in blue) compared
to the ground truth (in black) for the astrometry task (top) for planet b
(top-left) and c (top-right), and the spectro-photometry task for planet
b (middle) and planet c (bottom). For the astrometry plots, the size of
the symbols corresponds to the 1σ uncertainty and the shaded area to
the 3σ uncertainty. The two centered grey shaded areas represent the
size of a half resolution element (0.5 λ/D) for the shortest and largest
wavelengths of the spectro-imager. For the spectro-photometry plots, the
error bars displayed correspond to the 3σ uncertainties on the photometry
estimation. Plots taken from Cantalloube et al. (2022).



C O N C L U S I O N S

In this part II of the thesis, the first phase (exoplanet detection, Cantalloube
et al., 2020) and the second phase (exoplanet characterization, Cantalloube
et al., 2022) of the Exoplanet Imaging Data Challenge5(EIDC) were presented,
as well as my contribution to them. A clear message emerges from the
whole set of conclusions extracted from the EIDC: The most recent HCI post-
processing algorithms outperform more traditional techniques commonly
employed in direct imaging campaigns. This enhanced performance can be
directly attributed to the substantial advancements in our understanding
of the underlying physics governing high-contrast images and observing
strategies, particularly concerning the temporal and spatial characteristics of
image noise (speckle noise) within HCI data, such as ADI sequences. This,
in turn, paves the way for the development of novel strategies that, when
integrated into post-processing algorithms, enable the capture of stronger
image pixel correlations. Consequently, this leads to a notable improvement
in the ability to differentiate residual speckles from planetary signatures.

Plans for future EIDC phases involve expanding the challenge’s horizons to
other imaging tasks and HCI instruments. In the third phase, the focus should
shift towards circumstellar disk imaging. Recent advancements, including
methods such as MAYONNAISE (Pairet et al., 2021), REXPACO (Flasseur
et al., 2021) and MUSTARD (Juillard et al., 2023), alongside adaptations of
classical techniques like iterative PCA (Pairet et al., 2018) and NMF (Ren
et al., 2018), will be used. This phase aims not only to detect circumstellar
signals but also to accurately reconstruct their total intensity distribution. In a
potential fourth phase, the focus could shift to High-Resolution Spectroscopy
(HRS) with instruments like VLT/ERIS (Davies et al., 2023), VLT/MUSE
(Bacon et al., 2010), VLT/CRIRES+ (Follert et al., 2014), and Keck/NIRSPEC
(McLean et al., 1998). This phase will specifically focus on techniques based
on molecular mapping, which are currently in active development (Rameau
et al., 2021). Additionally, this phase could involve simulating high-contrast
images from the coming ELT to assess the adaptability of post-processing
techniques and prepare the image processing toolkit for the forthcoming first
light (Houllé et al., 2021).

5 EIDC webpage: https://exoplanet-imaging-challenge.github.io/
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Part III

N O I S E R E G I M E S I N P R O C E S S E D A D I I M A G E S



I N T R O D U C T I O N

The research conducted in the EIDC (Part II) has exposed the limitations
of recent image post-processing techniques based on supervised machine
learning, such as SODINN. While this method has showcased its potential in
enhancing traditional PSF subtraction approaches (Gómez González et al.,
2018), it has also revealed a significant susceptibility to various factors, in-
cluding data characteristics and observing conditions. These factors can
significantly impact its effectiveness in detecting exoplanets, leading to a
notable occurrence of false positives. In contrast, more recent inverse prob-
lem techniques (Section 1.2.6.2), such as FMMF (Pueyo, 2016; Ruffio et al.,
2017), PACO (Flasseur et al., 2018) and TRAP (Samland et al., 2021), as well
as advanced PSF subtraction methods (Section 1.2.6.1) like RSM (Dahlqvist
et al., 2020) and its subsequent refinements (Dahlqvist et al., 2021a,b), have
demonstrated higher detection performance. As discussed in Part II, this
improvement can be directly attributed to the fact that, along the last two
decades, we have accumulated a better understanding of high-contrast imag-
ing data, including the temporal and spatial behaviours of speckle noise. As a
result, these insights have been smartly integrated into novel post-processing
techniques.

In this context, a trend has emerged when designing novel post-processing
techniques: exploiting the local characteristics of image noise yields signif-
icant advantages in exoplanet detection. The term local is often used in
image processing to describe a process applicable to a smaller portion of the
image, such as the neighborhood of a pixel, in which pixel values exhibit
a certain amount of correlation. In HCI, defining image locality implies a
good understanding of the physical information captured in the image. A
common way to define this locality is linked to the noise distribution along
the field of view. For example, after some pre-processing steps (including
background subtraction), a high-contrast image is composed of three com-
ponents: (i) residual starlight under the form of speckles; (ii) the signal of
possible companions; and (iii) the statistical noise associated with all light
sources within the field of view, generally dominated by background noise
in infrared observations. In these raw images, exoplanets are hidden because
starlight speckles and/or background residuals dominate at all angular sepa-
rations, and act as a noise source for the detection task. Here, the locality of
the noise is driven by the distance to the host star (Marois et al., 2008a), which
already gives an indication on how local noise will be defined in a processed
image. Consequently, a large fraction of post-processing algorithms currently

73



5.4 my contribution 74

work and process noise on concentric annuli around the star. For example,
the annular-PCA algorithm (Absil et al., 2013; Gómez González et al., 2016)
performs PSF subtraction with PCA on concentric annuli. Nevertheless, more
sophisticated local approaches have recently been proposed in the literature.
For instance, both the TRAP algorithm (Samland et al., 2021) and the HSR
algorithm (Gebhard et al., 2022) take into account the symmetrical behavior
of speckles around the star when defining pixel predictors for the model.

In light of these recent advancements on capturing improved image corre-
lations from a local perspective, our main goal for this third part of the thesis
is to explore and develop a novel local noise approach tailored to enhance the
performance of image post-processing techniques, especially for SODINN.
The presented approach relies on the existence of two noise regimes in the
ADI processed frame: a speckle-dominated residual noise regime close to the
star, and a background-dominated noise regime further away. The presence
of these two different regimes along the field of view is usually assumed for
HCI studies, however, to the best of our knowledge, their identification has
never been thoroughly addressed. Thereby, our goal is to spatially define
these regimes in the processed frame through the study of their statistical
properties.

This third part of the thesis explains part of our recent publication Cantero
et al. (2023) and consists of three chapters. Chapter 6 is dedicated to revisit
image noise statistics from different HCI stages, from raw data such as
AO-corrected and coronagraphic images, to processed frames after ADI
processing. Chapter 7 is then devoted to present different statistical methods
to identify noise regimes in the ADI processed frame, list their limitations
from an statistical point of view, and discuss their applicability for the task
of exoplanet detection.



6
S P E C K L E N O I S E S TAT I S T I C S

The statistical behavior of starlight speckles emerged as a central focus of at-
tention in early publications in the field of direct imaging. This emphasis was
due, in part, to the importance of understanding the limitations introduced
by noise when detecting companions in images.

6.1 speckle noise in raw data

In order to model the intensity distribution of speckle noise in both corrected
and non-corrected AO images from ground-based telescopes, a series of
pioneering investigations in HCI proposed to adapt laser speckle theory
(Goodman, 1975). For example, Aimé & Soummer (2004) proposed that the
mean intensity I of a long-exposure AO-corrected image can be described as
the sum of two independent intensity sources: the deterministic diffraction
pattern Ic (perfect PSF) and a halo produced by random speckles Is. This
standpoint led to the derivation of the probability density function (PDF) of
the speckle intensity for a given location in the image plane, resulting in a
modified Rician (MR) probability distribution:

pMR(I) =
1

Is
exp

(
−
I+ Ic

Is

)
I0

(
2
√
IIc

Is

)
, (16)

where I0 denotes the zeroth-order modified Bessel function of the first kind,
and the expectation and variance of I are given by:

EI = Is + Ic, (17)

σ2
I = I2s + 2IsIc. (18)

These equations describe the statistics of image plane intensity in an
idealized absence of other noise sources, such as photon and detector noise.
In high flux regimes, these additional noise sources are negligible in front
of speckle noise. However, in low flux regimes, these must be taken into
account (Aimé & Soummer, 2004).
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Later, through using the Lick Observatory AO system, Fitzgerald & Graham
(2006) showed for various locations in the image plane that the Rician model
(Eq. 16) is consistent with the observed data. Similarly, Soummer et al.
(2007) also tested the Rician model, this time with thousands of AO-corrected
simulated images corresponding to an ExAO system on a 8-m telescope. They
concluded that the Rician statistics were compatible with their simulated
data. Soummer et al. (2007) also addressed the problem of long-lived quasi-
static speckles in coronagraphic images. They proposed a generalization of
the Rician model to include the description of static, quasi-static and fast
residual atmospheric speckles. They concluded that the Rician model in
coronagraphic images is only valid outside of the focal plane mask occulting
area.

Beyond the validity of the Rician statistics in AO-corrected and coron-
agraphic images, another important aspect of quasi-static speckles is the
different timescales at which they form and evolve. Through using a long
series of AO-corrected and coronagraphic H-band images from the AEOS
telescope, Hinkley et al. (2007) found two different lifetime regimes of quasi-
static speckles: a short timescale regime τ1 corresponding to lifetimes of a
few seconds (1− 10 s), and a longer timescale regime τ2 corresponding to
lifetimes of a few hundred seconds (∼ 400 s). When adapting the Rician
model to quasi-static speckles, Soummer et al. (2007) also included these two
lifetime regimes arguing that the effect can be modeled by changing Is to
Is1 + Is2 in Eq. 16, where Is1 and Is2 are the random speckle noise instensity
of timescales τ1 and τ2.

Most of these studies focused on the temporal aspects of speckle noise
by demonstrating that time intensity variations of speckles follow an MR
distribution. However, to assess the significance of a point source detection
(exoplanet), studying the speckle noise spatial distribution is necessary. Using
numerical simulations for coronagraphic and non-coronagraphic data, Marois
et al. (2008a) demonstrated that this temporal intensity distribution also
represents the speckle spatial intensity distribution, and therefore, quasi-
static speckle noise inside annuli centered on the PSF core follows the MR
PDF.

6.2 speckle noise in adi processed frames

To deal with this complex spatio-temporal speckle noise distribution and
detect companions in the images, the majority of post-processing algorithms
rely on modelling the speckle noise pattern and subtracting it from ADI
high contrast images. As illustrated in Fig. 1.12, performing speckle (or PSF)
subtraction on each high-contrast image in an ADI sequence generates a
sequence of residual images where speckle noise is significantly reduced, and
partly whitened (Mawet et al., 2014). After de-rotating these residual images
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based on their parallactic angle, and combining them into a final frame, the
remaining speckles are further attenuated and whitened. This final frame is
commonly referred to as processed frame (or post-processed frame).

Because of the different post-processing steps and the whitening operator
that removes correlation effects, the S/N map technique (Mawet et al., 2014),
the industry standard for observing campaigns, makes use of the central
limit theorem1 (CLT) to state that residual noise in processed frames follows
a Gaussian distribution. This assertion is based on the premise that when a
large number of random (uncorrelated) speckles are temporally co-added at a
specific location in the image, the sample means will be normally distributed.
Within the scenario where speckle noise is only due to atmospheric turbu-
lence, this Gaussian assumption can be accepted since atmospheric speckles
have a very short correlation time, and therefore, they can be considered as
independent and identically distributed. However, in the realm of quasi-static
instrumental speckles, the spatio-temporal autocorrelation of the image PSF is
disturbed, and the Gaussian assumption is not valid. Indeed, it is known that
this Gaussian assumption leads to high false positive detection rates (Marois
et al., 2008a; Mawet et al., 2014) since residual speckle noise in processed
frames still dominates at small angular separations.

More recent studies explored the behaviour of residual noise in ADI pro-
cessed frames. Pairet et al. (2019) found experimentally that the tail decay of
residual noise close to the star in PCA-processed frames is better explained by
a Laplacian distribution than a Gaussian distribution. Later, Dahlqvist et al.
(2020) reached the same conclusion. These experimental results suggest the
presence of two residual noise spatial regimes in the ADI processed frame: a
non-Gaussian noise regime close to the star, dominated by residual speckle
noise, which was not fully removed by the ADI processing, and a Gaussian
regime located further away, in which speckles were properly removed and
therefore, other noise sources such as photon noise starts to dominate instead.
Hereafter, these noise regimes in the ADI processed frame are respectively
referred to as speckle regime and background regime.

1 In probability theory, the CLT states that for independent and identically distributed random
variables, the sampling distribution of the standardized sample mean tends towards the
standard normal distribution.



7
I D E N T I F I C AT I O N O F N O I S E R E G I M E S

In HCI, it is common practice to assume the presence of speckle and back-
ground noise regimes (Section 6.2) when dealing with ADI processed frames.
However, the potential consequences of this spatial stratification, including its
impact on detecting point-like sources, have not been thoroughly investigated.
In order to understand how this remaining noise structure affects detection
algorithms, the first task is to develop a method capable of detecting both
noise regimes within the image. In this chapter, this problem is addressed
through looking for the best estimate of the radial distance from the star
where residual speckle noise starts to become negligible compared to back-
ground noise (top-left of Fig. 7.1). To do so, our strategy is to study the
evolution of noise statistics as a function of angular separation with the aim
to detect anomalies along the transition of both regimes.

For illustrative purposes, we make use, in this section, of two ADI se-
quences chosen from the set of nine ADI sequences used in the first phase of
the EIDC (Cantalloube et al., 2020). Our two sequences, referred to as sph2
and nrc3 (see Table 2), were respectively obtained with the VLT/SPHERE in-
strument (Beuzit et al., 2019) and the Keck/NIRC2 instrument (Serabyn et al.,
2017). They have the advantage of not containing any confirmed or injected
companions, which makes them appropriate for algorithm development and
tests that rely on the injection of exoplanet signatures in the image.

7.1 paving the image field of view

First of all, in order to study the noise statistics as a function of the angular
separation, the ADI processed frame is paved with concentric annuli of λ/D
width (top-left of Fig. 7.1). Each annulus contains pixels that are expected to
be drawn from the same parent population (Marois et al., 2008a), although,
it is acknowledged that this working hypothesis is not completely fulfilled
when diffraction patterns associated with the spiders of the telescope or to
the wind-driven halo (see Cantalloube et al., 2019) are present in the image
field of view. Note that, in the presence of residual speckles, pixels that
contain information from the same speckle are all spatially correlated. When
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Figure 7.1: The pavement of the processed frame. Top-left: Processed frame over
which both speckle and background residual noise regimes are high-
lighted in green and blue, respectively. The black circle refers to the
unknown radial distance where both regimes split. Other concentric
circles represent all λ/D-width annuli along the image. Top-right: Illus-
tration of the three first annuli (1− 3 λ/D) of the top-left image paved
with non-overlapping circular apertures of λ/D diameter. The number of
circular apertures for each annulus is given by Naper = 2πr, where r is
the radius in λ/D units. Image taken from Mawet et al. (2014). Bottom:
Rolling annulus with N = 100 over the top-left processed frame. Exam-
ples of the first rolling annulus (in red), the ninth rolling rolling annulus
(in blue) and the eighteenth rolling annulus (in green) are displayed over
the central pixel pavement in the image. Below, the complete set of rolling
annuli is shown in a straight line that represents the distance from the
star.
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background noise dominates over residual speckle noise, it can be instead
assumed that all pixels in an annulus are independent, since photon noise
occurs on a pixel-wise basis. However, this assumption of independence
can be non-optimal when bad pixels are interpolated since it can still leave
spatially correlated footprints.

In HCI, a common procedure to guarantee the independence of pixel
samples when performing statistical analysis is to work by integrating pixel
intensities on non-overlapping circular apertures of λ/D diameter within
the annulus (Mawet et al., 2014), as shown in the top-right image of Fig. 7.1.
This procedure is based on the characteristic spatial scale of residual speckles
(∼ λ/D size). However, Bonse et al. (2023) have recently showed that, in the
presence of speckle noise, this independence assumption on non-overlapping
apertures is incorrect. Instead, they propose to (i) only consider the central
pixel value in each circular aperture, to produce a more statistically indepen-
dent set of pixels, and (ii) possibly repeat the experiment with various spatial
arrangements of the non-overlapping apertures to reduce statistical noise
in the measured quantities. We follow this recommendation and therefore,
for the rest of this study, we define our annulus samples on the processed
frame by only taking the central pixel value for each non-overlapping circu-
lar aperture. This approach also minimizes the possible effect of bad pixel
interpolation.

7.1.1 The rolling annulus

One limitation in using non-overlapping apertures instead of pixels for paving
the processed frame is the small sample statistics problem, especially at small
angular distances (Mawet et al., 2014). Small samples make statistical analysis
not significant so that derived conclusions are not strong enough from a
statistical point of view. In order to avoid this issue, we propose to use the
concept of a rolling annulus that always contains a minimum number of
independent pixels N. These N pixels are the central pixels of apertures
that pave the field of view and are included in the rolling annulus. It can
be understood as an annular window around the star for which the inner
boundary moves in 1 λ/D steps, while the outer boundary is set to achieve
the criterion on the minimum number of independent pixels. The movement
of the rolling annulus along the field of view is non-continuous; it always
moves over the grid of non-overlapping apertures that paves the image. An
example of this process with N = 100 pixels is shown in the bottom image of
Fig. 7.1, where the first rolling annulus that achieves the condition, composed
of all central pixels of the non-overlapping apertures between 1− 6 λ/D, is
displayed in red color in the processed frame. Then, the rolling annulus
moves away from the star, changing its boundaries as illustrated with the
black line at the bottom of Fig. 7.1. For example, the ninth rolling annulus (in
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blue) with N = 100 is located between 9− 10 λ/D, and the eighteenth rolling
annulus (in green) is at 18 λ/D distance, achieving the N = 100 condition
without the need to expand the outer boundary to another annulus. From
now on, when using rolling annuli, we select N = 100 minimum samples,
considered to be the minimum number of samples required to reach a reliable
statistical power and significance for our statistical analysis. The statistical
consequences of using a rolling annulus for paving the processed frame field
of view are further discussed later in Section 7.4.

7.2 moments evolution analysis

Once the processed frame is paved using a rolling annulus with N = 100 (Sec-
tion 7.1.1), we are well-positioned to study the evolution of different statistical
moments as a function of the angular separation to the star. Three statistical
moments are considered to provide valuable information about image noise:
the variance (amount of energy/power), the skewness (distribution symmetry),
and the excess kurtosis (distribution tails). Figure 7.2 shows this evolution
for the case of the sph2 (top row) and nrc3 (bottom row) data sets, on which
annular-PCA is employed to produce the processed frames. It is observed
that the variance (green curves) decreases as the rolling annulus moves away
from the star. This trend is common to both data sets and is what we would
expect in physical terms as the intensity of residual speckles decreases rapidly
with angular separation, especially at short distance. We also see that this
behaviour is damped when using a larger number of principal components
(PCs), which leads to a more effective speckle subtraction. Regarding the
skewness analysis (red curves), the convention of Bulmer (1979) is adopted,
which states that a distribution is symmetrical when its skewness ranges
from −0.5 to 0.5. For both data sets, we clearly observe a loss of symmetry at
small angular separations. The presence of speckles can provoke this distribu-
tion asymmetry due to their higher intensity values in comparison with the
background. Looking now at the excess kurtosis (blue curves) in Fig. 7.2, we
observe a strong leptokurtic1 trend for the entire set of PCs at small angular
separations, and for both data sets. This perfectly matches with the fact that a
Laplacian distribution fits better the tail decay of residual noise (Pairet et al.,
2019), since it is, by definition, leptokurtic. At larger angular separations
instead, we observe differences between both data sets. In the sph2 processed
frames, we detect one mesokurtic regime approximately between 6− 13 λ/D

followed by a weaker leptokurtic regime approximately between 14− 17 λ/D.
For nrc3, we only observe one mesokurtic regime at large distance from the
star, beyond about the 3− 6 λ/D rolling annulus (Fig. 7.2).

1 In statistics, a leptokurtic distribution has a kurtosis greater than the kurtosis of a normal
distribution (mesokurtic), and it is associated in HCI to increase the false alarm probability.
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Figure 7.2: Statistical moments evolution based on a rolling annulus which paves the full annular-PCA processed frame. The top and bottom rows refer,
respectively, to sph2 and nrc3 ADI sequences. Colour curves on each subplot refers to a different number of principal components used to produce
the annular PCA processed frame, ranging from 1 to 30. The bold curve on top of each subplot indicates the average of the thirty PCs, and PC=1
and PC=20 are illustrated with specific symbols. In the case of sph2, gray areas highlight the IWA.
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7.3 normality test combination analysis

Another way to explore the spatial distribution of noise is to use hypothesis
testing. Assuming that residual speckle noise is non-Gaussian by nature,
while background noise is Gaussian (see Sect. 6.2), we can assess the probabil-
ity of the null hypothesis H0 that data is normally distributed, i.e., explained
solely by background noise. We rely on a combination of a series of normality
tests, making use of four of the most powerful tests:

• The Shapiro-Wilk test (sw, Shapiro & Wilk, 1965).

• The Anderson-Darling test (ad, Anderson & Darling, 1952).

• The D’Agostino-K2 test (ak, D’Agostino & Pearson, 1973).

• The Lilliefors test (li, Lilliefors, 1967).

This choice is motivated by the fact that they have been well-tested in many
studies, including Monte-Carlo simulations (Yap & Sim, 2011; Marmolejo-
Ramos & González-Burgos, 2013; Ahmad & Khan, 2015; Patrício et al., 2017;
Wijekularathna et al., 2019; Uhm & Yi, 2021). It is worthwhile to remark
that the goal is not to benchmark the robustness of all these tests. Our
purpose, instead, is to collect a larger amount of statistical evidence for a
same hypothesis, which can then be combined to increase the statistical power
when making a decision regarding the null hypothesis. Moreover, regarding
the statistical requirements, the only constraints to be verified before using
these tests are the independence and sufficient size of the sample. In terms of
sample size, Jensen-Clem et al. (2017) shows that normality tests can exhibit
lower statistical power with sample sizes under 100 observations. Here, the
independence and the size constraints are met by the proposed approach to
pave the field of view, using the central pixels of non-overlapping apertures
within rolling annuli of N = 100. Additionally, we follow for this analysis the
recommendation of Bonse et al. (2023) to perform our statistical tests with
various spatial arrangements for the non-overlapping apertures. We leverage
the fact that different aperture arrangements within a same annulus contain
valuable noise diversity that can directly benefit the analysis when making a
decision about the null hypothesis.

Our analysis is thus composed as follows. Given a processed frame, we
test the null hypothesis H0 in a specific rolling annulus through the following
consecutive steps:

1. Randomly select a normality test t from T = {sw,ad,ak, li}.

2. Randomly select an angular displacement θ of circular apertures for
each single annulus within the rolling annulus. Assuming Nann single
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annuli, then, Θ = {θi}i={1,...,Nann}, where Θ thus represents a random
aperture arrangement.

3. Define the sample of central pixels X(Θ).

4. Using the selected statistical test t, compute the p-value associated with
the null hypothesis for the sample X(Θ), denoted as p(t,Θ).

5. Repeat steps 1− 4 m times. Because these m p-values computed in
step 4 are not statistically independent, we use the harmonic mean as
proposed by Vovk & Wang (2020) to combine them into a global p-value
noted p̄.

6. Compare p̄ with a predefined significance threshold α, and reject H0 if
p̄ < α.

By repeating steps 1− 6 for each rolling annulus in the processed frame
and for various numbers of principal components in our annular-PCA post-
processing algorithm, we can build what we call as a PCA p-value map, or
PCA-pmap for short. Figures 7.3 and 7.4 show examples of PCA-pmaps for
the sph2 and nrc3 data sets, respectively. For both, we only considered the
first 29 principal components to produce the annular-PCA space (y-axis in
figures). Each cell in a PCA-pmap shows, through the number in white and its
background color, the combined p-value p̄ computed in step 5 with m = 300.
P-values below the pre-defined threshold α (step 6) are marked with yellow
stars on the figures. In order to minimize the Type I error (false rejection of
the null hypothesis), we selected a conservative threshold value α = 0.05 in
Figures 7.3 and 7.4. Afterwards, we calculate the ratio of yellow star markers,
or H0 rejection rate, along the PCA domain for each rolling annulus in PCA-
pmaps. As selection criterion, we classify rolling annuli as speckle-dominated
(or non-Gaussian) when they contain more than 50% of stars. Fig. 7.5 shows
this selection criterion for both data sets by plotting the H0 rejection rate
per rolling annulus. In the case of sph2 (Fig. 7.5-left), we clearly observe the
presence of four noise regimes beyond the inner working angle: a first regime
dominated by non-Gaussian noise due to residual speckles approximately
between 5− 7 λ/D angular separation, a second regime where noise is more
consistent with Gaussian statistics, probably dominated by background noise
between 8− 14 λ/D, a third regime with non-Gaussian noise between 15− 16

λ/D, where speckles are dominating again as we approach the limit of the
well-corrected area produced by the SPHERE adaptive optics (Cantalloube
et al., 2019), and finally, a fourth regime with Gaussian noise again between
17 − 19λ/D. This speckle-dominated regime at 15 − 16 λ/D would also
explain the slightly leptokurtic behavior observed at those separations in
Fig. 7.2 for sph2. However, for the nrc3 data set (Fig. 7.4), we only observe
two noise regimes, with speckle noise dominating approximately between
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1− 3 λ/D distance, and background noise dominating beyond 3 λ/D (Fig. 7.5-
right). Fig. 7.6 shows a representation of all detected noise regimes for the
sph2 and nrc3 data sets. The white dotted line and circles overplotted on the
PCA-pmaps of Figures 7.3 and 7.4 will be explained later in Part IV.

7.3.1 Field of view splitting strategy

At this point, we can see that, for both sph2 and nrc3, similar estimations of
the noise regimes are reached using the two proposed methods: the study of
statistical moments and the PCA-pmaps. Figure 7.2 provides a first insight
into the spatial structure of residual noise and, thereby, brings us closer to
estimating the radius split (top-left of Fig. 7.1) in the processed frame. Indeed,
the significant increase of the variance together with the leptokurtic behavior
and the positively skewed trend at small angular separations, suggest that
this regime is still dominated by residual starlight speckles. On the other
hand, PCA-pmaps contain more statistical diversity through the combination
of p-values with which very similar regime estimations are reached. Thus,
both analyses are complementary from a statistical perspective. Yet, from
now on, we elect to use PCA-pmaps to define the noise regime as a baseline,
since they can also be used for other purposes.

7.4 interpretation

The tests developed in this section are designed to identify noise regimes
based on their statistical behaviour in a rolling annulus. For example, we
have observed that rolling annuli at small angular separations in both sph2
and nrc3 data sets are described by non-Gaussian statistics, and therefore,
dominated by residual speckles. However, note that these results do not
necessarily mean that residual speckle noise is non-Gaussian in the innermost,
individual annuli. Instead, compound distributions could be at the origin of
this non-Gaussian noise behavior.

Compound distributions refer to the sampling of random variables that
are not independent and identically distributed. When we sample pixels
by expanding the annulus across the image to meet the condition N =

100 (see Section 7.1.1), we essentially create samples that encompass pixels
from different individual annuli, which by nature, are drawn from different
parent populations (Marois et al., 2008a). These samples can be considered
as compound distributions. For large angular separations (e.g., the green
annulus in the bottom image of Fig. 7.1), we generally observe that the
variance is approximately the same for all central pixels. Because they can
be considered as independent random variables, we can apply the central
limit theorem to state that these samples follow a Gaussian distribution, as
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Figure 7.3: PCA-pmap derived from the sph2 ADI sequence. Each cell shows the
combined p-value p̄ both as a color code and as values, for a given
distance to the star through the rolling annulus (x axis) and the number
of principal components used in the PCA-based PSF subtraction (y axis).
Yellow star markers indicate when the null hypothesis H0 (Gaussian
noise) is rejected. The white dashed line shows the 90% CEVR in each
rolling annulus. White circles in bold highlight the principal component
that maximizes the S/N of fake companion recoveries. The gray area
refers to the inner working angle.
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Figure 7.4: Same as Fig. 7.3, for the nrc3 ADI sequence.
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Figure 7.5: H0 rejection rate (y axis) for each rolling annulus (x axis) for the sph2 (left)
and nrc3 (right) data sets computed from their PCA-pmaps of Figures 7.3
and 7.4, respectively. The rejection rate is computed as the percentage of
yellow star markers for each annulus in PCA-pmaps. The dashed black
line highlights the selection criterion for determining the dominant noise
at each rolling annulus.

Figure 7.6: Final representation of estimated noise regimes along the ADI-PCA pro-
cessed frames of sph2 (left) and nrc3 (right) data sets. These illustrations
are drawn according to the selection criterion for rejecting H0 presented
in Fig. 7.5.
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expected for background noise. However, for small angular separations (e.g.,
red annulus in bottom of Fig. 7.1) where residual speckle noise dominates
over background noise, the samples are taken from distributions that might
be Gaussian, but with different variances. If they are Gaussian and their
variance follows an exponential distribution, then according to Gneiting
(1997), the compound distribution follows a Laplacian, as observed by Pairet
et al. (2019). Likewise, the compound distribution problem could also explain
why we observe a non-Gaussian behavior in the outermost annuli of the sph2
processed frame. At those separations, our rolling annuli contain samples
drawn at exactly the same radial distance, which would lean us to assume
that the variances of the underlying distributions are all identical. However,
due to different physical reasons, such as the possible presence of a wind-
driven halo or of telescope spiders, there is no guarantee for a perfect circular
symmetry inside this speckle-dominated annulus. This explanation, which
is not a proof, would reconcile the belief that residual speckle noise should
be locally Gaussian. Because of the small sample size, there is, however, no
proper way to test this interpretation on individual annuli in the innermost
regions.



C O N C L U S I O N S

In this part III of the thesis, we presented the PCA-pmap, a statistical tech-
nique that relies on several normality tests and different pixel arrangements
to identify both speckle- and background-dominated noise regimes over the
ADI-PCA processed frame. The noise analysis conducted with PCA-pmap
using two ADI sequences from different HCI instruments suggests that there
can be more than two noise regimes over the processed frame depending
on the structure of the data. Despite the fact that this is not enough to
extract a general conclusion for all HCI instruments, it suggests that noise
regions should be defined on a case-by-case basis. Furthermore, this strati-
fication strategy led to interpret the non-Gaussian behavior detected in the
speckle-dominated regime through compound distributions. However, this
interpretation requires further research for validation. Thus, our main con-
clusion is that the shape of a local distribution in the processed frame (in this
case using PCA as PSF subtraction technique) is influenced by three factors:
(i) physics (origin of noise, instrumentation), (ii) post-processing (whitening
capability of PCA), and (iii) statistical sampling (compound distribution).
For all these reasons, we believe that splitting the processed frame field of
view in different noise regimes is duly motivated, and, in Part IV, we will
explain how we have implemented this stratified strategy in a new algorithm
to improve the detection performance of SODINN.

This study presented in Part III has certain limitations that could become
focal points for future research. The noise analysis conducted with both
moments analysis and PCA-pmap relies on a rolling annulus to pave the
image, which moves away from the star in 1 λ/D steps instead of pixel-based
steps. This approach results in a more discrete than continuous behaviour.
The discretization of samples in the field of view leads to less precise estimates
of the radial distance from the star where the transition between speckle- and
background-dominated regimes occurs. Possible enhancements could involve
achieving a continuous behavior concerning angular separation. Another
potential area of research involves employing neural networks to improve the
identification of regimes compared to normality tests. Simić (2021) proposed
addressing the normality testing problem as a binary classification task by
constructing a supervised model capable of classifying a distribution as either
normal or non-normal by inspecting a small sample drawn from it. This
approach, adapted to HCI, could aid in avoiding the use of a rolling annulus
and providing a better identification of noise regimes.
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Part IV

T H E N A - S O D I N N D E E P L E A R N I N G A L G O R I T H M



I N T R O D U C T I O N

In Part III, our focus has been on exploring and understanding the spatial
structure of residual noise in ADI processed frames. This study has led to the
development of statistical methods that facilitate the identification of regimes
dominated by speckle and background noise. Now, our aim is to employ
this local noise approach to enhance the performance of HCI post-processing
algorithms, particularly with regard to deep learning. Neural networks are
well-suited for capturing a pattern hidden in images, even with a high level
of noise, and make complex decisions.

To maximize the value of working within noise regimes and illustrate its
benefits for the detection task, we propose to revisit SODINN, the pioneering
supervised deep learning algorithm for exoplanet imaging (Gómez González
et al., 2018). Chapter 8 is dedicated to providing a comprehensive explanation
of the SODINN detection algorithm. As a supervised technique, we begin
by describing the methods used to generate a labeled dataset and clarify the
types of correlations that SODINN aims to capture. Subsequently, we delve
into the training architecture and the learning process. Finally, we detail
the inference process through which SODINN detects point-like sources.
Chapter 9 is devoted to explaining the adaptation of SODINN to function
within our noise regime approach, highlighting its main advantages and
drawbacks. This adaptation results in a novel detection algorithm that we
refer to as NA-SODINN. In Chapter 10, we focus on evaluating the detection
performance of the new NA-SODINN in comparison to its predecessor and
to more conventional post-processing techniques. Furthermore, NA-SODINN
undergoes assessment in the initial phase of the EIDC to benchmark it against
the most powerful HCI algorithms. Chapter 11 centers on the utilization
of NA-SODINN with real data, particularly within the SPHERE exoplanet
survey. We present preliminary results of NA-SODINN, including detection
maps and potential exoplanet candidates that have been identified.
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8
T H E S O D I N N A L G O R I T H M

SODINN stands for Supervised exOplanet detection via Direct Imaging with deep
Neural Network. It is a binary classifier that uses a convolutional neural net-
work (CNN) to distinguish between two classes of square image sequences
based on ADI processed frames: sequences that contain an exoplanet signa-
ture (c+, the positive class), and sequences that contain only residual noise
(c−, the negative class). Figure 8.1 (bottom) shows an example sequence for
each class, where the individual images are produced with various number
of principal components. The first image in the sequence corresponds to
the first principal component, while the last corresponds to a number of
principal components with which a maximum of 90% cumulative explained
variance ratio (CEVR) is captured. Gómez González et al. (2018) refer to these
patch sequences as Multi-level Low-rank Approximation Residual (MLAR)
samples.

8.1 generation of the training set

The first step in SODINN is to build a training data set composed of thou-
sands of different c+ and c− MLAR sequences. A c+ sequence is formed
through three consecutive steps that are summarized in Fig. 8.1. (i) First, a
PSF-like source is injected at a random pixel within a given annulus of the
ADI sequence. The flux of this injection is the result of multiplying the nor-
malized off-axis PSF by a scale factor randomly chosen from a pre-estimated
flux range that corresponds to a pre-defined range of S/N in the processed
frame. The estimation of injection flux ranges is further explained in Ap-
pendix C. (ii) Singular value decomposition (SVD, Halko et al., 2011) is then
used on this synthetic ADI sequence to perform PSF subtraction for different
number of singular vectors (or principal components), thereby producing a
series of processed frames. (iii) Finally, square patches are cropped around
the injection coordinates for each processed frame. This forms a series of
c+ MLAR sequences, where each sequence contains the injected companion
signature for different numbers of principal components. The patch size is
usually defined between 1.5− 2 times the FWHM of the PSF.
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Figure 8.1: SODINN generation stage. Top: steps for generating MLAR samples. Nf

is the number of frames in the ADI sequence and Npc is the number of
principal components in the cube of processed frames and therefore in
the final MLAR sequence. Bottom: example of an MLAR sequence of each
class.

Likewise, we construct a c− sequence by extracting MLAR sequences for
pixels where no fake companion injection is performed. The number and
order of singular vectors is the same as those used for the c+ sequences. For
the case of c− sequences, SODINN must deal with the fact that, using only one
ADI sequence, we obtain a single realization of the residual noise, so that the
number of c− sequences we can grab per annulus is not enough to train the
neural network without producing over-fitting. SODINN solves this problem
by increasing the number of c− sequences in a given annulus through a
dedicated data augmentation strategy that is based on four consecutive steps:
(i) Build a first subset randomly grabbing c− sequences centered on up to ten
percent of the total number of pixels; (ii) Build a second subset by grabbing
all the available pixels in the annulus and flip the sign of the parallactic angle
when de-rotating the residual images, a common practise in HCI to remove
possible planetary sources while preserving noise properties; (iii) Randomly
pick groups of three c− sequences from the two subsets and average them
to produce new sequences; (iv) Finally, perform random rotations and small
shifts of the c− sequences obtained in the previous three steps to create even
more diversity. The same rotation angle and shift is applied to all the slices
of a given MLAR sample. Note that this augmentation process ensures that
we mostly use augmented c− sequences for the training.

This procedure of generating c+ and c− sequences is repeated thousands
of times for each annulus in the field of view. Once the entire field of view
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is covered, MLAR sequences of a same class from all annuli are aggregated,
and the balanced training set (same amount of c+ and c− samples) is built.

8.2 training of the network

The training set is then used to train the SODINN neural network. This
produces a detection model that is specific for the ADI sequence from which
MLAR sequences were generated. The SODINN network architecture is
composed of two concatenated convolutional blocks. The first block contains
a convolutional-LSTM (Shi et al., 2015) layer with 40 filters and an hyperbolic
tangent activation function, and kernel and stride size of (1, 1), followed by a
spatial 3D dropout (Srivastava et al., 2014) and a MaxPooling-3D (Boureau
et al., 2010). The second block contains the same except for it has now 80

filters, and kernel and stride size of (2, 2). These first two blocks extract the
feature maps capturing all spatio-temporal correlations between pixels of
MLAR sequences. After that, they are flattened and sent to a fully connected
dense layer of 128 hidden units. Then, a rectifier linear unit (ReLU, Nair &
Hinton, 2010) is applied to the output of this layer followed by a dropout
regularization layer. Finally, the output layer of the network consists of a
sigmoid unit, which provide a normalized value between 0 and 1. This value
is usually referred as a probability. However, it is known in computer vision
that the output of a deep learning architecture normalized between 0 and
1 with classical activation functions (e.g. the sigmoid function) tends to be
more binary, and therefore, it cannot be interpreted as a real probability.
For this reason, from now on, we refer to this output score as the model
confidence. The network weights are initialized randomly using a Xavier
uniform initializer, and are learned by back-propagation with a binary cross-
entropy lost function:

L(yn, ŷn) = −
∑
n

(yn ln(ŷn) + (1− yn) ln(1− ŷn)), (19)

where yn is the true label of the nth MLAR sample and ŷn is the predicted
confidence that this nth MLAR sample belongs to the c+ class. SODINN
uses an Adam optimizer with a step size of 0.003, and mini-batches of 64
training samples. An early stopping condition monitors the validation loss.
The number of epochs is usually set to 15, with which SODINN generally
reaches ∼ 99.9% validation accuracy (Gómez González et al., 2018).

8.3 inference

Once the detection model is trained and validated, it is finally used to find
real exoplanets in the same ADI sequence. Because the input of the model is



8.3 inference 97

an MLAR structure, we first map the entire field of view by creating MLAR
samples (with no injection) centered on each pixel. Note that these MLAR
samples have never been processed during the training, since the c− class
MLAR samples in the training set are built by augmentation (Sect. 8.1).
The goal of the trained model is to assign a confidence value between 0

(no confidence) and 1 (maximum confidence) for each of these new MLAR
sequences to belong to the c+ class. Computing a confidence score for each
individual pixel leads to a confidence map, from which exoplanet detection
can be performed by choosing a confidence threshold.



9
T H E N A - S O D I N N A L G O R I T H M

In SODINN, the training set is built by aggregating all MLAR sequences
from a same class, generated on every annulus in the field of view. In the
presence of different noise regimes, this way to proceed can complicate the
training of the model, as the statistics of an MLAR sequence generated in the
speckle-dominated regime differ from a sequence of the same class generated
in the background-dominated regime. In order to deal with this, we propose
to train an independent SODINN detection model per noise regime instead of
a unique model for the full frame field of view. Thereby, each detection model
is only trained with those MLAR sequences that contain statistical properties
from the same (or similar) probabilistic distribution function. Therefore,
our region of interest in the field of view is now smaller. This means that
the number of pixels available to generate MLAR sequences is reduced and
therefore, that we are losing noise diversity in comparison with a model
that is trained in the full frame. However, this diversity loss comes with the
benefit of better capturing the statistics of noise within a same noise regime,
which improves the training.

9.1 adding s/n curves to the network

In order to compensate for the noise diversity loss associated with the training
on individual noise regimes, we attempt to reinforce the training by means of
new handcrafted features. An interesting discriminator between the c+ and
c− classes, which is also physically motivated, comes from their behavior
in terms of signal-to-noise ratio (S/N). The most accepted and used S/N
definition in the HCI literature is from Mawet et al. (2014). It states that,
given a 1 λ/D wide annulus in a processed frame at distance r (in λ/D units)
from the star, paved with N = 2πr non-overlapping circular apertures (see
top-right image of Fig. 7.1), the S/N for one of these apertures is defined as

S/N =
x̄t − x̄N−1

σN−1

√
1+ 1

N−1

, (20)
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Figure 9.1: S/N curves generated from the sph2 cube of processed frames at a 8 λ/D

distance from the star. Curves in blue contain the exoplanet signature
and curves in red just residual noise. The flux of injections is randomly
selected from a range that is between one and three times the level of
noise. Dotted curves over populations show the mean of each class. Later,
in Section 9.2, the principal component where the maximum S/N is
reached for an injection (blue curves) is referred to as kopt. In this case,
kopt ≃ 10.

where x̄t is the aperture flux photometry in the considered test aperture,
x̄N−1 the average intensity over the remaining N− 1 apertures in the annulus,
and σN−1 their standard deviation. In order to maximize the S/N, image
processing detection algorithms need to be tuned through finding the optimal
configuration of their parameters (see e.g., Dahlqvist et al., 2021b). Here,
rather than optimizing the algorithm parameters, we use the fact that we can
leverage the behavior of the S/N versus some of the algorithm parameters
in our deep learning approach. This is especially the case for the number of
principal components used in the PSF subtraction. We define an S/N curve as
the evolution of the S/N computed for a given circular aperture as a function
of the number of principal components (Gómez González et al., 2017). Fig. 9.1
shows an example of 1000 S/N curves generated from the sph2 ADI sequence.
We clearly see in Fig. 9.1 that, in the presence of an exoplanet signature (blue
curves), the S/N curve first increases and then decreases, which leads to
the appearance of a peak at a given number of principal components. This
behavior, capturing the competition between noise subtraction and signal
self-subtraction, was already documented elsewhere (e.g., Gómez González
et al., 2017). The peak in the S/N curve indicates the number of principal
components for which the contrast between the companion and the residual
noise in the annulus is maximum. Hereafter, we denote as kopt the principal
component at which this S/N peak is located.
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For a given 1-FWHM circular aperture, the MLAR sequence (no matter the
class) and the S/N curve are linked from a physical point of view. Actually,
the evolution of the S/N as a function of the number of principal components
can be readily extracted from intermediate products used in the production
of the training data set. Therefore, the information conveyed through the S/N
curve is already partly contained in the MLAR patches. But while the MLAR
sequence contains localized information on the signal and noise behavior, the
S/N curve conveys an annulus-wise information, obtained through aperture
photometry. Indeed, each aperture S/N estimation depends on the noise
in the rest of the annulus (Eq. 20), so that it also contains information that
connects with other circular apertures at the same angular separation from
the star. This dependency is not captured in MLAR sequences. S/N curves
make this rich summary statistics directly available to the neural network
to improve the neural network training. One complication in using S/N
curves in the training relates to data augmentation, which is mandatory to
build up a sufficiently large training data set for SODINN. Because these
augmentation operations modify the intensity and distribution of pixels in
the MLAR sequence, there is no direct way to compute the associated S/N
curve of an augmented MLAR sequence through Eq. 20. To deal with this, we
make simplifying assumptions for each augmentation operation in SODINN:
(i) image rotations do not affect the S/N curve as the same pixels are kept
in the final sequence, (ii) averaging two sequences can be approximated as
averaging their S/N curves, and (iii) image shifts do not affect the S/N curve
as long as the shift is sufficiently small.

By adding the noise regimes approach and the S/N curves to SODINN,
we are building a new detection algorithm. We refer to this novel framework,
depicted in Fig. 9.2, as Noise-Adaptive SODINN, or NA-SODINN for short. As
its predecessor, NA-SODINN is composed of the same three steps: producing
the training set from an ADI sequence, training a detection model with this
training set, and applying the model to find companions in the same ADI
sequence.
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Figure 9.2: Illustration of the three steps within the NA-SODINN algorithm working flow. Left: Generation of the training set. NA-SODINN uses the
annular-PCA algorithm to perform PSF-subtraction and produce the cube of processed frames. Then, it detects residual noise regimes by applying
the PCA-pmap technique in this cube and build both the training, validation, and test (or inference) data sets (see Fig. 2.2-right) at each regime,
which are composed of both MLAR samples and S/N curves. Middle: Model training. NA-SODINN trains as many detection models as detected
noise regimes using their respective training and validation data sets (note that for the sake of simplicity, we have not duplicated the central
deep neural network). This case contains two regimes, the speckle- and background-dominated noise regimes, so that two models are trained.
Right: Detection map. Finally, NA-SODINN uses each trained model to assign a confidence value to belong to the c+ class to each pixel of the
corresponding noise regime field of view.
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9.2 generation of the training set

NA-SODINN generates as many training sets as detected residual noise
regimes. Each of these sets are composed of MLAR sequences and their
corresponding S/N curves generated from the corresponding noise regime,
including data augmentation.

Unlike SODINN, which makes use of the CEVR to define the appro-
priate range of principal components to generate the MLAR sequences
(Gómez González et al., 2018), the selection of the principal components
for producing both MLAR sequences and S/N curves in NA-SODINN is
instead determined through a novel metric derived from the PCA-pmap. For
each rolling annulus, the PCA-pmap can be used to estimate the principal
component kopt that maximizes the S/N for any planetary injection at any
position within the annulus (see the peak on the blue curves of Fig. 9.1).
The underlying motivation behind the identification of kopt is that MLAR
sequences and their S/N curves can then be defined around this principal
component, thus maximizing the gap between planetary and noise signals in
the training set.

To identify kopt at a given angular separation and for a pre-defined S/N
interval of injections, the PCA-pmap relies on two steps: (i) through the
data-driven procedure of Appendix C, it pre-estimates the injection flux
range that corresponds to the selected S/N range; (ii) once this flux range
is estimated, it is used to randomly select fluxes within the range to inject
many fake companions, within the annulus at random coordinates, and
retrieve their S/N curves (e.g., Fig. 9.1). The kopt can finally be estimated by
averaging all these S/N curves. Here, we select the injected companion fluxes
to produce an S/N ranging between 1 and 3 in the final PCA-processed map
obtained with one single principal component, which was experimentally
found to be appropriate for the NA-SODINN training as it generally produces
companions close to the detection limit for a larger number of PCs. We
indicate the kopt obtained for this S/N range as white circles in Figs. 7.3 and
7.4. By comparing kopt with the principal components where the 90% CEVR
is reached in PCA-pmaps for both sph2 and nrc3 ADI sequences (Figs. 7.3 and
7.4), we observe that at some angular separations, kopt is not well captured by
the CEVR metric. This suggests that the use of CEVR as a figure of merit for
choosing the principal components is not always optimal. The range of PCs
around the value of kopt can be chosen differently each time NA-SODINN is
employed. A range between 15− 30 PCs is generally optimal.

9.3 training and inference

NA-SODINN trains an independent detection model for each regime by
using its corresponding training set. For each MLAR sequence in the training
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set, the feature maps created through convolutional blocks are now concate-
nated with their respective S/N curves after the flattened layer (Fig. 9.2).
NA-SODINN generally reaches a ∼ 99.9% validation accuracy with 5 − 8

epochs. In last step, NA-SODINN does inference in individual noise regimes.
It applies the trained model of each regime to infer its corresponding con-
fidence map of the same regime (Fig. 9.2). Finally, NA-SODINN builds
the final confidence detection map by joining all confidence regime maps
inferred with each detection model. Thus, our NA-SODINN algorithm is
conceived to keep the main characteristics of the pioneering SODINN algo-
rithm (Gómez González et al., 2018), such as its architecture, and adapt its
optimization process to our local noise approach.



10
M O D E L E VA L UAT I O N

Now that NA-SODINN has been introduced, we aim to thoroughly evaluate
its performance. In the first part of this section, we explain the evalua-
tion strategy and benchmark NA-SODINN with respect to its predecessor
SODINN using the same sph2 and nrc3 ADI sequences. Then, in the second
part, we apply NA-SODINN to the first phase of EIDC (Cantalloube et al.,
2020), providing confidence maps for each ADI sequence in the data chal-
lenge and running the same statistical analysis to compare the NA-SODINN
performance with the rest of HCI algorithms.

10.1 performance assessment

The evaluation of HCI detection algorithms consists of minimizing the false
positive rate (FPR) while maximizing the true positive rate (TPR) at different
detection thresholds applied in the final detection map. This information is
summarized by a curve in the Receiver Operating Characteristics (ROC) space,
where each point in the curve captures both metrics at a given threshold value
(Gómez González et al., 2018; Dahlqvist et al., 2020). In order to produce ROC
curves for various versions of SODINN applied on a given ADI sequence
D, we first build the evaluation set Deval = {D1,D2,D3, . . . ,Ds} containing
s synthetic data sets Di, where each synthetic data set is a copy of D with
one fake companion injection per noise regime. Here, we limit the number of
injected companions per noise regime to one at a time to avoid any risk of
cross-talk between companions in the detection algorithms themselves (e.g.,
because multiple companions can affect the PCA), or in their evaluation (e.g.,
if they get too close and merge in terms of confidence patch). The coordinates
of these injections are randomly selected within the considered noise regime
boundaries, and their fluxes are randomly set within a pre-defined range of
fluxes that correspond to a S/N range between 0.5 and 2 in the ADI-PCA
processed frame considering one PC. This pre-defined range of fluxes is
estimated through the same data-driven method explained in Appendix C
and illustrated in Fig. C.1. Hence, each algorithm provides s final detection
maps, from which true positives (TPs), false positives (FPs), true negatives
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(TNs) and false negatives (FNs) indicators are computed across the whole
noise regime field of view at different detection thresholds. Then, all these
indicators are averaged and the corresponding ROC curve for the considered
noise regime is produced. Instead of using the FPR metrics as in standard
ROC curves, here we use the mean number of FPs within the considered
noise regime, which is more representative of the HCI detection task and
facilitates the interpretation of our performance simulations.

We perform the proposed ROC curve analysis on both sph2 and nrc3 ADI
sequences with s = 100 for each. For this assessment, a detection is defined
as a blob in the final detection map with at least one pixel above the threshold
inside a circular aperture of diameter equal to the FWHM centered at the
position of each injection. With the aim to benchmark NA-SODINN, we
include in this evaluation the annular-PCA algorithm (Absil et al., 2013) as
implemented in the VIP Python package (Gómez González et al., 2017; Chris-
tiaens et al., 2023), the SODINN framework by Gómez González et al. (2018),
and two hybrid detection models. These hybrid models are modifications of
SODINN to include only one of the two additional features introduced in
NA-SODINN: the adaptation to noise regimes, or the addition of S/N curves
in the training. Hereafter, we refer to them respectively as SODINN +Split
and SODINN +S/N. In the same spirit as an ablation study, these two hybrid
models are included in our evaluation in order to provide information about
the added value of each approach separately for the task of detection. It is
worth mentioning that instead of re-training all considered SODINN-based
models every time a different fake companion is injected into each evaluation
set, we train them once per ADI sequence. While re-training would be more
accurate, as the presence of an injected fake companion could slightly perturb
the c− class, we assume that our augmentation strategy (Sect. 8.1) mitigates
this perturbation and does not significantly impact the training process and
the model performance. Using the same model to detect all fake companion
injections in a single ADI sequence saves computation time.

An important aspect to consider when comparing algorithms in ROC space
is to optimally choose their model parameters. In the case of annular-PCA,
we use 1, 5 and 10 principal components for each annulus as a good com-
promise to analyze its performance. For the various versions of SODINN,
we need to define two main parameters: the list of principal components
PC = (pc1,pc2, . . . ,pcm) that are used to produce each sample in both the
MLAR sequence and S/N curve, and the level of injected fluxes used for
making c+ class samples (see Sect. 8.1). For SODINN, we used the criterion
based on the cumulative explained variance ratio (CEVR), as proposed by
Gómez González et al. (2018), to define the range of PC. For NA-SODINN
and the hybrid models, we instead rely on the novel PCA-pmaps technique
presented in Sect. 7.3, and we choose a list of m = 15 principal components
centered around kopt (Section 9.1). Regarding the injected fake companion
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fluxes, we choose for all SODINN-based models a range of fluxes that cor-
respond to an S/N between 1 and 3 in the ADI-PCA processed frame with
one PC(Appendix C). This range of fluxes does generally not lead to class
overlapping, where c+ and c− class samples would look too similar. How-
ever, in order to avoid FPs in the final detection map, the user may consider
higher flux ranges. Finally, to build the ROC curve, we consider a list of S/N
thresholds ranging from 0.1 to 4.5 in steps of 0.05 for annular PCA, while for
the SODINN-based models we use a list of confidence thresholds from 0.09
to 0.99 in steps of 0.1. All SODINN-based models are trained on balanced
training sets containing around 105 samples for each class using a NVIDIA
GeForce RTX 3070 graphics processing unit (GPU).

Figures 10.1 and 10.2 display a series of ROC spaces –one for each detected
noise regime–, respectively for the sph2 and nrc3 ADI sequences. For the sake
of simplicity, note that we do not consider the detected regime comprised
between 17− 19λ/D in sph2 (Fig. 7.3) in this analysis. Each of these ROC
spaces displays one ROC curve per algorithm, which informs about its
detection performance on that specific noise regime for different thresholds.
We observe from both figures that NA-SODINN outperforms its predecessor,
the hybrid models, and the annular-PCA technique for each noise regime.
This behavior is further illustrated in Appendix D, with Figs. D.1,D.2 and D.3
for the case of sph2, and Figs. D.4,D.5 for nrc3, where the confidence maps
from each algorithm are compared at different threshold levels. Regarding
hybrid models, we generally observe that they land between the SODINN and
NA-SODINN detection performance, with SODINN+S/N generally being
the best hybrid model. It can also be observed that annular-PCA with PC = 5

and PC = 10 perform better than with PC = 1 for all regimes. We associate
this behavior to the fact that for PC = 5 and PC = 10, we are closer to the
principal component kopt where the S/N is maximized, and therefore, the
star-planet contrast is improved.

Based on these results and on additional experiments, we observe a general
trend for both approaches separately. While splitting the field of view in
noise regimes tends to reduce the number of false positives, especially when
residual speckle noise is significant, adding a S/N curve for each MLAR
sequence tends to enhance the algorithm’s sensitivity to detect signals. These
findings imply that both techniques, when combined in the neural network,
considerably improve the SODINN detection performance.

10.2 na-sodinn in the eidc

By design, the first phase of the Exoplanet Imaging Data Challenge (EIDC,
Cantalloube et al., 2020), presented in Chapter 4, can be used as a laboratory
to compare and evaluate new detection algorithms against other state-of-the-
art HCI detection algorithms. For instance, Dahlqvist et al. (2021a) used the
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Figure 10.1: ROC analysis per noise regime for the sph2 data set showing the perfor-
mance of SODINN, NA-SODINN, annular-PCA, and hybrid SODINN
models. The values plotted alongside each curve highlight some of the
selected thresholds.
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Figure 10.2: Same as Fig. 10.1 for the nrc3 data set.

EIDC to highlight the improvement of the automated version of their RSM
algorithm. Here, we use the ADI sub-challenge of the EIDC (Section 4.1) to
generalize the ROC analysis, and evaluate how NA-SODINN performs with
respect to the state-of-the-art HCI algorithms that entered the data challenge.

We apply our NA-SODINN framework to the EIDC, and as in the ROC
analysis, we use PCA-pmaps as a tool for both estimating residual noise
regimes and choosing the list of principal components PC at each angular
separation. For the injection flux ranges, we use an S/N range between
two and four times1 the level of noise in the ADI-PCA processed frame
with one PC. Each model is trained with balanced training sets that contain
around 105 samples per class. Because all three LMIRCam cubes contain
more than 3000 frames (Table 1), we decided to reduce this number to around
250− 300 frames to limit the computational time. To do that, we average a
certain number of consecutive frames along the time axis in the sequence.
Figure 10.3 shows a grid of all resulting NA-SODINN confidence maps
from EIDC ADI sequences where we observe, by visual inspection, that
NA-SODINN finds most of the injected fake companions, while producing
only faint false positives that all fall below our default detection threshold
τ = 0.9. In order to quantify this information, we follow the same approach
as in Cantalloube et al. (2020) by considering the area under the curve (AUC)
for the TPR, FPR, and FDR as a function of the threshold, which allows

1 The choice for using a range S/N = [2, 4] instead of the range S/N = [1, 3] to produce c+
samples in NA-SODINN for the EIDC is due to we know, as the rest of participants, that the
contrast of EIDC planetary injections cover a wide range. In the end, this is a parameter that
users can control.
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sph1 - 1/1 detections sph2 - 0/0 detections sph3 - 5/5 detections

nrc1 - 3/4 detections nrc2 - 1/3 detections nrc3 - 0/0 detections

lmi1 - 1/2 detections lmi2 - 2/2 detections lmi3 - 2/3 detections

Figure 10.3: NA-SODINN confidence maps obtained on the whole set of EIDC
ADI sequences (Table 1). For the submitted confidence threshold τ =

0.90, we highlight with green circles the correct detection of injected
companions (true positives), and with red circles the non-detection
of injected companions (false negatives). The circles have a FWHM
diameter. No false positive is reported in our maps, as all the remaining
non-circled peaks in the confidence maps are below the threshold.
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to mitigate the arbitrariness of the threshold selection by considering their
evolution for a pre-defined range (see Section 4.1.2). The AUCTPR should be
as close as possible to one and the AUCFPR and AUCFDR as close as possible
to zero. The F1-score ranges between zero and one, where one corresponds
to a perfect algorithm, and is computed only on a single threshold τsub that
is chosen by the participant.

Figure 10.4 shows the result of this analysis for all NA-SODINN confi-
dence maps of Fig. 10.3, in which all TPR, FPR, and FDR metrics (and their
respective AUCs) are computed for different confidence threshold values
ranging from 0 to 1. Here, we mainly see that the AUCFDR is generally higher
along the range of thresholds for NIRC2 and LMIRCam than for SPHERE
data sets, the AUCFPR is close to zero for all data sets, and the AUCTPR is
almost perfect for SPHERE data sets. To compute the F1-score, we choose
a τsub = 0.9 confidence threshold. From our test with NA-SODINN, we
consider this value as the minimum confidence threshold for which one can
rely on the significance of detections, maximizing TPs while minimizing FPs.
Thus, any pixel signal above this τsub on each confidence map of Fig. 10.3 is
considered as a detection for the computation of the F1-score. Finally, through
the AUCTPR, AUCFDR and F1-score metrics obtained with the NA-SODINN
algorithm, we are able to update the general EIDC leader-board (Cantalloube
et al., 2020). Figure 10.5 shows how NA-SODINN ranks compared to the
algorithms originally submitted to the EIDC, for each considered metric. We
clearly observe that NA-SODINN ranks at the top, or close to the top, for each
of the EIDC metrics, with results generally on par with the RSM algorithm by
Dahlqvist et al. (2020). In particular, NA-SODINN provides the highest area
under the true positive curve, while preserving a low false discovery rate.
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sph1 sph2 sph3

nrc1 nrc2 nrc3

lmi1 lmi2 lmi3

Figure 10.4: TPR, FDR and FPR metrics computed from the confidence maps of
Fig. 10.3 for a range of confidence thresholds varying from zero to
one. Their respective AUCs are showed in each legend. The F1-score
is computed at the submitted threshold on the challenge τsub = 0.9
(vertical dashed line) and it is showed in the top of each subplot.
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Figure 10.5: Updated EIDC leader-board after the NA-SODINN submission. Rank-
ing based on the F1-score (on top), the AUCTPR (on middle) and the
AUCFDR (on bottom). Colors refer to HCI detection algorithm families:
PSF-based subtraction techniques providing residual maps (red) or de-
tection maps (orange), inverse problems (blue) and supervised machine
learning (green). The light, medium and dark tonalities correspond to
SPHERE, NIRC2, and LMIRCam data sets respectively.
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N A - S O D I N N O N T H E S H I N E S U RV E Y

The field of direct imaging has grown significantly over the last two decades,
as evidenced by the design of numerous HCI surveys using various ground-
based telescopes, instruments, and observing strategies. These surveys have
resulted in the discovery of approximately 60 sub-stellar and planetary-mass
companions orbiting young nearby stars, as documented in Wagner et al.
(2019) and showed in Fig. 1.1. Initially, HCI surveys were relatively small,
typically targeting samples of 50 to 100 stars. However, ongoing surveys are
aiming to observe 500 to 600 stars. Among the most ambitious projects to
date are the SHINE project conducted with SPHERE (Langlois et al., 2021)
and the Gemini Planet Imager (GPI) Exoplanet Survey (GPIES, Macintosh
et al., 2015). So far, SHINE and GPIES have collectively contributed three new
exoplanet discoveries (Macintosh et al., 2015; Chauvin et al., 2017; Keppler
et al., 2018b), along with several high-mass brown dwarfs (e.g. Konopacky
et al., 2016; Cheetham et al., 2019). These surveys have also provided spectral
and orbital characterization data for confirmed exoplanets (e.g., Nielsen
et al., 2019; Rameau et al., 2013).

In this context, it is a logical progression to leverage advanced image post-
processing algorithms to search for new planetary candidates. Thus, having
successfully introduced and evaluated the NA-SODINN algorithm, our next
step is its practical implementation within HCI surveys. In this chapter, we
present preliminary results from applying NA-SODINN to the F150 sample
of the SHINE survey. The complete set of results will be presented in a near
future, including the upcoming Conference on Machine Learning in Astronomical
Surveys, scheduled for November 27th to December 1st, 2023, jointly hosted
at the IAP in Paris and the Flatiron Institute in New York. This concluding
chapter is devoted to demonstrate the effectiveness of the novel NA-SODINN
algorithm at detecting confirmed exoplanets in real HCI data from a survey
and also observe whether it captures new potential candidates in the image
field of view.
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11.1 the shine survey

The SpHere INfrared survey for Exoplanets (SHINE) was designed to use 200

telescope nights of guaranteed time observations with the SPHERE instru-
ment (Beuzit et al., 2019) at the VLT. SPHERE combines the use of the SAXO
extreme adaptive optics system (Fusco et al., 2006, 2014; Petit et al., 2016) and
a series of three scientific cameras (IRDIS, IFS, ZIMPOL), fed by an apodized
pupil Lyot coronagraph (Soummer, 2005). This configuration allows for
very high-quality imaging, achieving a SR of over 90% in the H-band under
favorable observing conditions. The survey spanned from February 2015

to 2021 and aimed to observe 500− 800 nearby young stars. Observations
were acquired in either IRDIFS or IRDIFS-EXT mode, that is, with both NIR
cameras, (IFS and IRDIS) that were carrying out observations in parallel.
The IFS covers a 1.7 ′′ × 1.7 ′′ FoV and IRDIS covers a nearly circular FoV of
diameter ∼ 9 ′′. In IRDIS, all first epoch observations were performed with
the DB-H23 or DB-K12 dual-band filter pairs (Vigan et al., 2010).

The primary objectives of the SHINE survey included: (i) the identification
and characterization of new planetary and brown dwarf companions; (ii)
the study of the architecture of planetary systems; (iii) the study of the
link between the presence of planets and disks; (iv) the determination of
the frequency of giant planets beyond 10 au; and (v) the investigation of
the impact of stellar mass on the frequency and characteristics of planetary
companions over the range 0.5− 3 solar masses. Detailed information about
the survey concept and sample selection can be found in Desidera et al.
(2021), while the observations and data reduction procedures are described
in Langlois et al. (2021).

11.2 the f150 sample

In order to apply NA-SODINN to the SHINE survey, we make use of the
F150 sample (Vigan et al., 2021). This sub-sample consists of 150 targets,
with first epoch observations obtained between February 2015 and February
2017, and second epoch observations extending until 2019. It is important to
note that the sample was not optimized for completeness at this stage, as the
scheduling favored the broader survey. Nevertheless, it is still representative
of the overall data set well. The sample includes 53 BA stars, 77 FGK stars,
and 20 M stars. The median age of stars in this sample is about 45 million
years, with a median stellar mass of 1.15 times that of our Sun and a median
distance of 48 parsecs. We refer to Vigan et al. (2021) for more information
about the F150 sample, its analysis and conclusions.
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11.2.1 Data sets

For this preliminary NA-SODINN analysis, we have chosen five represen-
tative ADI sequences from the F150 sample. This selection is made to en-
compass four distinct scenarios: (i) Sequences that do not contain confirmed
exoplanets or disks, (ii) sequences that contain confirmed exoplanets but
no disks, (iii) sequences that contain confirmed disks but no exoplanets,
and (iv) sequences that contain both confirmed exoplanets and disks. The
rationale for this selection criteria is as follows: firstly, we aim to rigorously
test the efficacy of our NA-SODINN technique under various image noise
configurations. These configurations include scenarios with the presence of
extended sources in the image. Secondly, we intend to test the capability
of our method to accurately recover confirmed targets in the field of view.
Moreover, it is worth noting that each of these data sets was acquired under
different observing conditions. Table 12 summarizes the properties of each
ADI sequence, and Fig. 11.1 shows the median frames.

11.2.2 Pre-processing

In addition to the standard pre-processing (Langlois et al., 2021), we have
performed two additional steps before applying the NA-SODINN algorithm.
Making use of the open-source VIP Python package (Gómez González et al.,
2017; Christiaens et al., 2023), our initial step consists in cropping the image’s
field of view to a dimension of 180× 180 pixels. We also perform cropping
and normalization of the stellar PSF for each data set. Finally, we conduct
the Pearson distance correlation analysis to identify bad frames within the
sequence. Ranging from zero (no-correlation) to one (maximum correlation),
this metric measures the correlation of each frame in the sequence with a
reference frame, which is the median frame of the sequence in our case. By
applying a correlation threshold, frames that have correlations below this
threshold are then removed. We apply a correlation threshold of 0.8 to each
of our five ADI sequences. The final count of frames presented in Table 12

for each ADI sequence reflects the outcome of this pre-processing.
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Star RA DEC Dist ST

[h : min : sec] [º: ′: ′′] [pc]

HIP27321 05 : 47 : 17 −51 : 03 : 59 19.44± 0.05 A6V

HIP30030 06 : 19 : 08 −03 : 26 : 20 52.0± 1.3 G0V

HIP15457 03 : 19 : 21 +03 : 22 : 13 9.14± 0.02 G5V

HIP102409 20 : 45 : 09 −31 : 20 : 27 9.714± 0.002 M1V

HIP99742 20 : 14 : 16 +15 : 11 : 52 46.0± 0.5 A2V

Table 12: Summary of the main parameters of the five targeted stars from the F150 sample. RA and DEC columns correspond to the star coordinates right
ascension and declination. The Dist column refers to the distance of the star with respect the Earth. Distances are derived from the Gaia-EDR3. ST
stands as Spectral Type.

Star Observation date λobs Nt Nimg ∆rot Seeing τ̂0 Air mass

[µm] [px× px] [º] [”] [ms]

HIP27321 2015− 12− 26 1.667 472 180× 180 37.3 1.443 2.16 1.120

HIP30030 2017− 02− 08 1.667 40 180× 180 36.4 0.626 8.65 1.089

HIP15457 2015− 12− 26 1.667 480 180× 180 33.2 1.043 2.91 1.141

HIP102409 2015− 05− 30 1.667 159 180× 180 118.7 0.739 1.77 1.021

HIP99742 2016− 06− 11 1.667 159 180× 180 35.7 0.639 4.66 1.316

Table 13: Properties of the SPHERE ADI sequence of each selected sample in Table 12. λobs is the observed wavelength, Nt denotes the number of frames
within the sequence, Nimg indicates the frame size, and ∆rot the field of rotation. Both the seeing and τ̂0 (coherence time) are averaged values
along the observation. The air mass column also presents the average value.
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Figure 11.1: Median frame of each ADI data set from Table 13. The name of the star is written on the bottom of each frame. Various SPHERE structures
can be observed in the images, such as satellite spots, strong wind-driven halos, and the corrected areas (Cantalloube et al., 2019).
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11.3 model configuration

After pre-processing the five data sets of Table 12, NA-SODINN is used
to search for potential companion candidates. As previously described in
Chapter 9, NA-SODINN initiates the detection process by first identifying
noise regimes in the annular PCA-processed frames through the PCA-pmap
technique (Section 7.3). In the analysis of the five ADI sequences, we observed
a noise pattern closely resembling that of the sph2 dataset, which was used
for testing. This pattern consisted of a speckle-dominated regime spanning
1− 7 λ/D (including the IWA), followed by a background-dominated regime
from 8− 14 λ/D, another speckle-dominated regime spanning 15− 17 λ/D,
and finally, a background-dominated regime extending beyond approximately
18 λ/D. Having identified these noise regimes, NA-SODINN generates a
training set for each of them separately, including MLAR sequences and S/N
curves for both the c+ and c− classes. For the c+ samples, NA-SODINN
initially estimates the injection fluxes at each annulus corresponding to a
specified S/N range in the first processed frame (as detailed in Appendix C).
In this analysis, we opted for injecting companions with a S/N range between
2 and 4. The selection of PCs used to generate each sample was customized to
include roughly 20 PCs around kopt (see Section 9.1). As for model training,
we followed the optimization parameters used in Chapter 10.

11.4 detection maps

The detection maps produced by NA-SODINN and various PSF subtraction
techniques for each of the five ADI sequences are shown in Figures 11.2 to
11.6. In the case of NA-SODINN, we also included binary maps generated
by applying different confidence thresholds, τ = [0.5, 0.7, 0.9, 0.99] to its
confidence map.

Figure 11.2 depicts the case of the ADI sequence for the star HIP30030,
also referred to as HD43989 or V1358 Ori. No exoplanets or disks have been
confirmed around this star thus far. Nevertheless, NA-SODINN detects a
faint point-like source at an angular separation of approximately 10 λ/D, with
only a few pixels exceeding 99% confidence. Notably, this point-like source
is challenging to discern in the detection maps generated by PSF subtraction
techniques, as its S/N values are very close to the mean S/N of the image
noise. This candidate needs to be confirmed with at least one additional
epoch. NA-SODINN also identifies two more small candidates, but with
confidence values in the range of 50− 70%. Additionally, an over-density is
observed in all the PCA-based S/N maps at the field’s edge, with S/N values
around 4− 5. NA-SODINN does not attribute any confidence to this feature
as a potential candidate.
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Figure 11.3 presents the case of HIP27321, commonly known as β Pictoris.
In this system, two exoplanets, β Pictoris b (Lagrange et al., 2009) and
β Pictoris c (Lagrange et al., 2019) have been confirmed, along with a young
debris disk surrounding the star. NA-SODINN clearly detects the signature
of planet b, with high confidence value s exceeding 99%. No other signals are
identified within the field of view. All of the PSF subtraction techniques also
detect the signature of planet b, with S/N values typically exceeding 7. The
disk profile can be faintly observed in all of the PSF subtraction techniques,
with median subtraction yielding the highest S/N values for the disk signals.
However, the disk is not detected by NA-SODINN, which is expected as it
relies on point-like sources.

Figure 11.4 illustrates the case of HIP15457, also known as HD20630 or
κ1Ceti. Although no extra-solar planets have been confirmed to orbit this
star, κ1Ceti is considered a strong candidate for the presence of terrestrial
planets. The confidence map produced by NA-SODINN reveals three point-
like sources with varying confidence levels. Two are at very small angular
separations, with confidence levels reaching 90%, and a larger signature near
the field of view limit attains confidence levels of 99%. None of these three
signatures are clearly distinguishable in the S/N maps. These candidates
need to be confirmed with at least one additional epoch.

Figure 11.5 shows the case of HIP102409, also known as HD197481 or
AU Microscopii. This star features a large asymmetric circumstellar disk
extending up to 210 au from the star (Kalas et al., 2004). Two transiting
exoplanets, AU Mic b (Plavchan et al., 2020) and AU Mic c (Martioli et al.,
2021), have been detected, and a third candidate, AU Mic d (Wittrock et al.,
2023), was recently validated. In this data set, NA-SODINN clearly detects
a point-like source with confidence levels exceeding 99%, even though it
does not identify the circumstellar disk. When examining the S/N maps, we
observe that the disk is fully recovered, especially for PCA-based techniques,
which also faintly distinguish the signature detected by NA-SODINN. For
median subtraction and NMF post-processing algorithms, we observe an
unusual behavior close to the star. We associate this structure to the strong
wind-driven halo (Fig. 11.1).

Finally, Figure 11.6 displays the case of HIP99742, also known as HD192425

or ρ Aquilae. No exoplanet or disk has been detected in this system thus far.
NA-SODINN does not detect any potential signatures across the field of view.
The S/N maps also fail to identify a clear circumstellar signal. NMF and
median subtraction algorithms present the same unusual structure close to
the star observed in HIP102409 Figure 11.5. We also associate this structure
to the strong wind-driven halo (Fig. 11.1).
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Figure 11.2: Detection maps for the HIP30030 star ADI sequence. The first row shows the NA-SODINN confidence map and its binary maps at a thresholds
τ = [0.5, 0.7, 0.9, 0.99]. The second and third row show the S/N maps of full-frame PCA, annular-PCA, Median subtraction, LLSG, and NMF
post-processing algorithms. The dashed crossfair in white indicates the position of the obscured star (middle of the image).
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Figure 11.3: Same as Fig. 11.2 for the HIP27321 (β-pictoris) star ADI sequence.



1
1.

4
d

e
t

e
c

t
i
o

n
m

a
p

s
1

2
2

Figure 11.4: Same as Fig. 11.2 for the HIP15457 star ADI sequence.
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Figure 11.5: Same as Fig. 11.2 for the HIP102409 star ADI sequence.
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Figure 11.6: Same as Fig. 11.2 for the HIP99742 star ADI sequence.



C O N C L U S I O N S

In this part IV of the thesis, we presented and evaluated NA-SODINN, our
novel exoplanet detection algorithm that combines the SODINN technique
(Gómez González et al., 2018) with our noise regimes approach. NA-SODINN
was evaluated through two distinct analyses. The first performance assess-
ment was based on ROC curves using two ADI sequences provided by the
VLT/SPHERE and Keck/NIRC2 instruments. In this analysis, NA-SODINN
was evaluated with respect to the annular-PCA post-processing algorithm,
the original SODINN, and two SODINN-based hybrid models that only used
one of the two proposed approaches (the regime split or the addition of S/N
curves). Results showed that hybrid models improve the detection perfor-
mance of SODINN in all noise regimes, which demonstrated the interest of
the local noise approaches considered in this thesis. Moreover, NA-SODINN
reached even higher detection performance, by combining both approaches
in the same framework. In order to benchmark NA-SODINN against other
state-of-the-art HCI algorithms, it was then applied to the first phase of the
EIDC. NA-SODINN ranks at the top (first or second position) of the challenge
leaderboard for all considered evaluation metrics, providing in particular the
highest TPR among all entries, while still keeping a low false detection rate.
The NA-SODINN algorithm was finally applied to a small sample of the
recent SHINE HCI survey. Results show that NA-SODINN identifies some
potential candidates with strong confidence along the field of view. However,
we acknowledge that this preliminary study does not conclude on the nature
of the detections. More detection maps and analyses with different filters
and epochs are necessary in order to really conclude on potential discoveries.

While NA-SODINN shows promise, we identified some limitations that
could be addressed in future work. The algorithm relies on previous noise
analyses, such as PCA-pmaps, to define these regime boundaries, limiting its
independence. Future improvements could involve modifying the network
architecture to enable the identification of noise regimes during training.
Another limitation is the challenge of setting an appropriate detection thresh-
old in the final detection map. This is typically based on the presence of
obvious false positives, which may affect the application of NA-SODINN in
certain contexts. However, this limitation can be mitigated by using dedicated
metrics such as ROC-space to assess detection performance. We also note
that NA-SODINN, and its predecessor, rely on data augmentation techniques
to generate a diverse training set. While this methodology is used to prevent
over-fitting during the training and lack of generalization, we believe that it is
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not the most appropriate to really capture inherent relationships in HCI data.
Exploring alternative methods such as generative deep learning models, such
as latent diffusion models (Rombach et al., 2022) and generative adversarial
networks (Goodfellow et al., 2014), may lead to more robust supervised
models with better generalization. Lastly, extending the application of NA-
SODINN to work on other observing strategies, such as SDI or even RDI, and
detect extended sources, such as protoplanetary disks, would be a valuable
avenue to increase the flexibility of the algorithm.
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S U M M A RY

The research conducted in this thesis focused on the development and
testing of NA-SODINN (Cantero et al., 2023), a novel deep learning algo-
rithm for exoplanet image detection using angular differential imaging
(ADI). The thesis is divided into four main parts, comprising 11 chapters.

Part I served as an introduction to the thesis and consisted of three
chapters. Chapter 1 provided insights into the current exoplanet census,
explaining the indirect detection techniques employed in both ground-
and space-based telescopes. The chapter then delved deeper into the
direct imaging of exoplanets, which forms the cornerstone of the research
in this work. Chapter 2 revisited the fundamentals of unsupervised
and supervised machine learning, with a specific emphasis on neural
networks, their intricate optimization processes, and their impact on
exoplanet detection. Chapter 3 concluded this introduction by expanding
on the scope of the thesis, highlighting its objectives, and providing a
detailed explanation of its structure.

Part II, composed of two chapters, delved into the Exoplanet Imaging
Data Challenge (EIDC) and my contribution to it. Chapter 4 addressed
the inaugural phase of the EIDC (Cantalloube et al., 2020), dedicated to
exoplanet detection. In this phase, various ADI and ADI+mSDI data sets
from HCI instruments on different ground-based telescopes were used
to inject a total of 20 planetary signals with different contrast levels. Par-
ticipants were tasked with using their image post-processing algorithms
to detect these signals. As a participant, I submitted supervised machine
learning-based image post-processing algorithms, such as SODIRF and
SODINN (Gómez González et al., 2018) and I modified their training
procedures and architectures in order to test and improve them in the
context of the EIDC. As a team member of the EIDC, I evaluated, in
parallel with another team member, all the submissions according to the
evaluation rules of the challenge. Chapter 5 explained the ongoing second
phase of the EIDC, focused on exoplanet characterization (Cantalloube
et al., 2022). In this phase, ADI+mSDI data sets are provided, and partic-
ipants are tasked with accurately determining the positions of injected
companions and retrieving their injected spectra. My contribution thus
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far in this second phase has been the development of the challenge’s eval-
uation back-end code for the metrics computation. In order to exemplify
an algorithm submission, results for two well-known algorithms in the
characterization tasks were presented.

Part III, consisting of two chapters, was dedicated to the development
of a novel local image noise approach aimed at enhancing the detection
performance of supervised machine learning exoplanet detection algo-
rithms, such as SODINN (Gómez González et al., 2018). This approach
relied on the identification of two different noise regimes along the pro-
cessed frame: a residual speckle-dominated regime close to the star, and a
background-dominated regime further away. Chapter 6 first revisited the
theory of speckle noise and explained the origin of residual noise regimes
after ADI processing. Chapter 7 addressed the challenge of identifying
these noise regimes through developing two statistical techniques that
rely on finding the best approximation of the radial distance from the
star on the image at which the transition between both noise regimes
occurs. The first method was based on the evolution study of different
statistical moments with the angular separation and using different PCs
for producing the ADI-PCA processed frame. The second method, called
PCA-pmap, was instead based on a combination of normality test that,
together with different arrangements of image non-correlated pixels, it
achieved a higher noise diversity to decide about the null hypothesis.
Both methods were tested through VLT/SPHERE and Keck/NIRC2 ADI
sequences. Results showed consistent noise regime estimates.

Part IV, composed of four chapters, was finally devoted to explore the
possibility of enhancing the detection performance of SODINN by adapt-
ing its labelling, training, and inference processes to the noise regimes
approach. Chapter 8 first revisited the full SODINN framework. Chap-
ter 9 explained the adaptation of the SODINN neural network to work
under the presence of image noise regimes. This adaptation was further
complemented by the integration of S/N curves, enhancing the model’s
ability to capture new local noise statistics in conjunction with MLAR
patch sequences. As a result, a novel exoplanet imaging algorithm called
Noise-Adaptive SODINN, NA-SODINN for short, was conceived. Chap-
ter 10 evaluated the detection performance of NA-SODINN through two
distinct analyses, a first performance assessment based on ROC curves
using ADI sequences from the VLT/SPHERE and Keck/NIRC2 instru-
ments, and a second analysis based on benchmarking NA-SODINN to the
first phase of the EIDC. A clear message can be extracted from both eval-
uations: NA-SODINN significantly improves the detection performance
of its predecessor, and is ranked at the top (first or second position) of
the challenge leaderboard for all considered evaluation metrics. Finally,
Chapter 11 presented the results of applying NA-SODINN to a small
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sample of the recent SHINE exoplanet survey (Desidera et al., 2021),
where the NA-SODINN detection maps revealed few point-like sources
with exceptionally high confidence levels. While this presents promising
initial findings, further analyses are imperative to establish the definitive
potential of these signatures as exoplanet discoveries.

Concluding this Ph.D. research, I have learned two fundamental lessons.
On one hand, the pursuit of training complex neural network architec-
tures is not always imperative to significantly improve our model’s per-
formance. Instead, understanding the intricacies of the data itself can
reveal powerful, previously unseen correlations. Leveraging these new-
found insights and implementing innovative strategies can be the key
to integrating these correlations into the model, ultimately enhancing
its performance. In HCI, this entails a profound understanding of the
underlying physics governing images and the dependencies of image
noise during data acquisition. Image noise, in particular, exerts the most
significant influence on the exoplanet detection task. However, different
tasks or types of data might necessitate a diverse emphasis on aspects
relevant to their specific nature. On the other hand, while deep learning
stands as a remarkable tool reshaping our interaction with technology, it
falls short when it comes to providing interpretability for its outcomes.
As explained, neural networks execute non-linear transformations on
input data, and the intricate interplay of numerous parameters and layers
complicates our comprehension of how the model arrives at a specific
output. Furthermore, neural networks learn high-dimensional feature
representations of data, which are not readily interpretable since they
might not correspond to easily discernible features or patterns. Although
deep learning models offer accurate predictions, they lack the inherent
capacity to explain the rationale behind a particular prediction. This
limitation can pose challenges in applications where understanding the
decision-making process is essential. In my opinion, these aforementioned
challenges regarding the lack of interpretability underscore the need for
further research in the field of deep learning, and they also emphasize
the importance of continued exploration and understanding of data itself,
particularly in the field of exoplanet direct imaging.
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P E R S P E C T I V E S

The NA-SODINN algorithm, introduced in this thesis, represents a signif-
icant step forward in the search for new and unconfirmed exoplanets and
brown dwarfs in HCI data sets. Its ability to accurately identify point-like
sources across all angular separations in ADI sequences outperforms the
algorithms currently used in major surveys, as well as the majority of
cutting-edge post-processing techniques. As a result, NA-SODINN is
expected to be particularly well-suited for improving our understanding
of the demographics of directly imaged exoplanets (Fig. 1.1).

In the near to mid-term future, our focus is directed towards reana-
lyzing ground-based HCI surveys in the search of potential candidates.
As showcased in Chapter 11, we will first focus on the complete sample
of the SHINE survey. However, other surveys like GPI-GPIES (Nielsen
et al., 2019) or LEECHS (Stone et al., 2018) will be also considered for
study. The emergence of upcoming 20− 40m ground-based telescopes
(currently under construction), such as the ELT, coupled with dedicated
HCI instruments like METIS (Brandl et al., 2021), holds the promise of
groundbreaking observational capabilities. NA-SODINN has the potential
of pushing the detection limits of such powerful instruments and thus of
helping detect fainter exoplanets in their images.

Looking towards the long-term, the adaptability of NA-SODINN for
processing data from space-based telescopes, such as the James Webb
Space Telescope (JWST) and the planned Roman Space Telescope, is a
promising avenue. Within the realm of HCI, the ultimate goal of these
observatories is the direct imaging of Earth-like planets orbiting Sun-like
stars, aiming to detect bio-signatures and explore planetary habitability.
This ambitious objective demands achieving contrast levels of approxi-
mately 10−10 within the visible range, enabling the detection of cooler
and older exoplanets through their reflected light. NASA is resolutely
committed to achieving these detection limits, pioneering the use of HCI
technology in space through JWST and, particularly, Roman, which will
serve as a demonstrator for future space missions about exoplanet direct
imaging, such as the Habitable Worlds Observatory (HWO, formerly
known as LUVOIR-B/LuvEx) flagship mission. However, adapting the
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NA-SODINN framework in this context comes with its challenges, par-
ticularly concerning the impact of low photon count rates on machine
learning performance. For instance, Roman will use an Electron Multi-
plying Charge Coupled Device (EMCCD, Morrissey et al., 2023) detector
optimized for low photon counting rates, providing only 1− 10 photon-
s/pixel/minute. Consequently, the final Roman sequence may consist
of approximately 10− 100 frames, significantly fewer than ground-based
sequences. Operating in such conditions introduces uncertainty regarding
the performance of machine learning models, given the shift into a distinct
operational regime. Nonetheless, neural networks exhibit adaptability to
varying conditions and complex scenarios. Hence, a concerted effort is
imperative to design optimal training strategies that maximize exoplanet
imaging performance in this low photon regime.
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A
D E T E C T I O N M A P S F O R A D I S U B C H A L L E N G E

In this appendix, we display the detection maps of the 22 submissions for
the nine data sets of the EIDC subchallenge-1 (ADI). Each detection map
is shown with a color-bar ranging from 0 to the submitted threshold by the
participant. The yellow circles indicate true positives at the given threshold,
while red squares indicate false positives. The first image (top left) shows
the detection map for the chosen baseline algorithm (annular PCA). The
last image (bottom right) shows the mask used to conduct the analysis of
each map, with blue circles indicating the location of the injected synthetic
planetary signals.
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Figure A.1: Detection maps for the sph1 data set. Figure from Cantalloube et al.
(2020).
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Figure A.2: Detection maps for the sph2 data set. Figure from Cantalloube et al.
(2020).
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Figure A.3: Detection maps for the sph3 data set. Figure from Cantalloube et al.
(2020).
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Figure A.4: Detection maps for the nrc1 data set. Figure from Cantalloube et al.
(2020).
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Figure A.5: Detection maps for the nrc2 data set. Figure from Cantalloube et al.
(2020).
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Figure A.6: Detection maps for the nrc3 data set. Figure from Cantalloube et al.
(2020).
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Figure A.7: Detection maps for the lmr1 data set. Figure from Cantalloube et al.
(2020).
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Figure A.8: Detection maps for the lmr2 data set. Figure from Cantalloube et al.
(2020).
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Figure A.9: Detection maps for the lmr3 data set. Figure from Cantalloube et al.
(2020).



B
D E T E C T I O N M A P S F O R A D I + M S D I S U B C H A L L E N G E

In this appendix, we display the detection maps of the 6 submissions for
the ten data sets of the EIDC subchallenge-2 (ADI+mSDI). Each detection
map is shown with a color-bar ranging from 0 to the submitted threshold
by the participant. The yellow circles indicate true positives at the given
threshold, while red squares indicate false positives. The first image (top left)
shows the detection map for the chosen baseline algorithm (annular PCA).
The last image (bottom right) shows the mask used to conduct the analysis
of each map, with blue circles indicating the location of the injected synthetic
planetary signals.
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Figure B.1: Detection maps for the ifs1 data set. Figure from Cantalloube et al. (2020).
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Figure B.2: Detection maps for the ifs2 data set. Figure from Cantalloube et al. (2020).



detection maps for adi+msdi subchallenge 148

Baseline

0

1

2

3

4

5 PCA_PadovaASDI

0

1

2

3

4

5 STIM_hpfADI

0

1

2

3

4

5 ANDROMEDAADI

0

1

2

3

4

5

ANDROMEDAASDI

0

1

2

3

4

5 FMMFASDI

0

1

2

3

4

5 PACOASDI

0

1

2

3

4

5

0

1

Figure B.3: Detection maps for the ifs3 data set. Figure from Cantalloube et al. (2020).
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Figure B.4: Detection maps for the ifs4 data set. Figure from Cantalloube et al. (2020).
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Figure B.5: Detection maps for the ifs5 data set. Figure from Cantalloube et al. (2020).
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Figure B.6: Detection maps for the gpi1 data set. Figure from Cantalloube et al.
(2020).
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Figure B.7: Detection maps for the gpi2 data set. Figure from Cantalloube et al.
(2020).
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Figure B.8: Detection maps for the gpi3 data set. Figure from Cantalloube et al.
(2020).
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Figure B.9: Detection maps for the gpi4 data set. Figure from Cantalloube et al.
(2020).
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Figure B.10: Detection maps for the gpi5 data set. Figure from Cantalloube et al.
(2020).



C
P L A N E TA RY I N J E C T I O N A N D F L U X E S T I M AT I O N

In this appendix, we describe the concept of planetary injection in HCI
and its current limitations, as implemented in the open-source VIP package
(Gómez González et al., 2017). In addition, we explain the methodology used
in this dissertation to estimate injection flux according to a given S/N value.
This flux estimation is performed multiple times along the presented work.

c.1 planetary injection

Given a HCI data set, i.e. an ADI sequence, a synthetic planetary injection is
defined as the process to past the AO-corrected instrumental PSF (centered,
cropped and normalized) to every frame in the image sequence at specific
coordinates (r, θ) following field rotation. To control the flux of this injection,
the standard procedure is to multiply the normalized PSF by a flux scale
factor, denoted as α.

c.1.1 Injection limitations

This injection procedure has some limitations:

• The flux of each exoplanet injection is constant throughout the observing
sequence (same flux for each frame).

• The center of the image (position of the host star) is fixed when injecting
the signals, that is to say potential mis-centering of the star throughout
the sequence is not taken into account.

• We do not consider the azimuthal smearing of the signal that could
appear for long exposure times and/or at large angular separation from
the star.

c.2 flux estimation for a given s/n range

A common metric to assess exoplanet detection is the Signal-to-Noise ratio
(S/N, Mawet et al., 2014). Unlike the planetary flux, a S/N measurement
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sets a qualitative reference between the planetary signal and the noise at its
position within the annuli in the field of view. Estimating an injection flux
range that corresponds to a given S/N range in the post-processed frame
implies estimating its respective flux scale factor range αR = [αmin,αmax].
Given a desired S/N range and an angular separation, αmin and αmax are
estimated through the following data-driven procedure:

1. inject a companion in the raw image sequence at random coordinates
(r, θ) within the annuli and with a random scale factor α;

2. compute the ADI-PCA processed frame for this synthetic image se-
quence using one single principal component in the PCA approximation
of the speckle field;

3. apply Eq. 20 on the processed frame at the injection coordinates (r, θ),
retrieving the companion S/N value;

4. Repeat 1− 3 steps Ninj times.

5. plot all S/N values retrieved from all Ninj injections of step 4 as a
function of their corresponding scale factor;

6. linearly fit the data plotted in step 5, and define αmin and αmax as the
intersection between the linear fit and the corresponding S/N range
boundaries.

This process is repeated for each angular separation in the field of view
in such a way that a different flux scale factor range αR is estimated for
each annulus. Fig. C.1 illustrates this data-driven procedure for the case of
the sph2 data set, showing the plots of step 5 for different annuli, each with
Ninj = 3000 injections (step 4). From Fig. C.1, we observe a general trend: the
estimated scale factor range decreases as the angular distance increases. This
observation aligns with our expectations, given that the spatial component of
speckle noise intensity displays a radial dependency in the raw HCI data, a
characteristic that persists even after the ADI processing. However, for this
sph2 data set, a notable departure from this trend occurs between 15-16 λ/D

separations. In this specific interval, we observe in Fig. C.1 an anomalous
increase in the estimated scale factors instead. We associate this behavior
with the fact that, at these angular separations for sph2, speckle dominates
over background noise, as concluded in Chapter 7.



C.2 flux estimation for a given s/n range 154

Figure C.1: Example of the data-driven flux estimation method for the case of the
sph2 sequence for S/NR = [1, 3]. Each subplot refers to a different angular
distance, and shows the S/N of injections (y axis), retrieved from the
ADI-PCA processed frame (PC = 1), as a function of their scale factor
(x axis). Each point in cyan color represents an injection, the thin red
line is the curve fit, and dashed horizontal curves in black delimit the
S/NR. The two red dots show the intersection between the curve fit and
the S/N range, delimiting the corresponding range of scale factors.



D
P E R F O R M A N C E A S S E S S M E N T D E T E C T I O N M A P S

In this final appendix, we show a comparison example between the detection
maps of NA-SODINN, SODINN, hybrid models, and annular PCA for each
noise regime of sph2 and nrc3 data sets.
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Figure D.1: Performance assessment example used for the ROC analysis of Fig.10.1
top-left (5− 7 λ/D regime of sph2). The injection has S/N=0.75.
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Figure D.2: Performance assessment example used for the ROC analysis of Fig.10.1
top-right (8− 14 λ/D regime of sph2). The injection has S/N=0.89.
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Figure D.3: Performance assessment example used for the ROC analysis of Fig.10.1
bottom (15− 16 λ/D regime of sph2). The injection has S/N=0.78.
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Figure D.4: Performance assessment example used for the ROC analysis of Fig.10.2-
left (2− 3 λ/D regime of nrc3). The injection has S/N=0.78.
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Figure D.5: Performance assessment example used for the ROC analysis of Fig.10.2-
right (4− 16 λ/D regime of nrc3). The injection has S/N=0.84.
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