LIÈGE université
Sciences Appliquées

Finite element computations on foam geometry reconstructed from tomographic images

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosphy (Phd) in Engineering Science

Members of the Examination Committee

Supervisor:
Prof. Eric Béchet
Université de Liège (Liège, Belgium)
Members:
Prof. Pierre Duysinx
Université de Liège (Liège, Belgium)
Prof. Christophe Geuzaine
Université de Liège (Liège, Belgium)
Prof. Ludovic Noels
Université de Liège (Liège, Belgium)
Prof. Thierry Massart
Université Libre de Bruxelles (Bruxelles, Belgium)
Prof. Sébastien Mercier
Université de Lorraine (Metz, France)

"Poets say sciences takes away from the beauty of the stars... but far more marvellous is the truth than any artist imagined it."

Richard Feynman

"I have always wished for my computer to be as easy to use as my telephone; my wish has come true because I can no longer figure out how to use my telephone."

Bjarne Stroustrup

Abstract

Christophe Leblanc

Finite element computations on foam geometry reconstructed from tomographic images

The present thesis introduces an automated procedure for constructing geometrical representative volume elements of cellular materials from computerised tomography, with an emphasis on open foams. The final aim of this procedure is to generate meshable geometries that can be used in some finite element method in order to analyse their mechanical behaviour. The methodology consists in growing and fitting a set of ellipsoids to each cell foam. These ellipsoids are seeded by local maxima of the distance to the struts/walls obtained from computerised tomography images. Then, auxiliary ellipsoids are constructed in order to better fit local struts' geometries. From ellipsoids' surfaces, a set of "exterior" points and associated normals is extracted. Finally, from this set, a geometry is obtained using a Poisson surface reconstruction. This methodology is thus fully voxel-based and does not depends on any assumption about the statistical distributions of the foam cells. Therefore, it is able to reproduce an accurate geometric model of the foams' microstructure and its possible irregularities. Moreover, this procedure allows the processing of large 3D data sets that do not fit the random access memory by slicing it into smaller independent chunks. The minimal thickness of each chunk is only limited by the maximum cell size lying inside this chunk. The effectiveness of the proposed approach is illustrated by comparing it to finite element simulations with experimental results of uniaxial compressions of an open foam.

Abstract

Christophe Leblanc

Finite element computations on foam geometry reconstructed from tomographic images

Cette thèse présente une procédure automatisée pour construire des volumes représentatifs à partir d'images tomographiques de matériaux cellulaires, en considérant tout particulièrement le cas des mousses. L'objectif final de cette procédure est de produire des géométries qui peuvent être maillées à des fins d'utilisations dans des solveurs éléments finis; avec l'objectif d'analyser les comportements mécaniques de mousses ouvertes. La méthode proposée consiste à dilater et ajuster un ensemble d'ellipsoïdes à chaque cellule de la mousse considérée. Ces ellipsoïdes sont initialement déterminés en calculant les maxima locaux du champ des distances aux entretoises/parois des cellules obtenues à partir d'images tomographiques. Ensuite, des ellipsoïdes auxiliaires sont construits afin de mieux coller à la géométrie de la mousse. A partir des surfaces des ellipsoïdes est extrait un ensemble de points "extérieurs" associés à des normales locales. Finalement, à partir de cet ensemble de points et normales associées, une représentation de la surface de la mousse est obtenue au moyen de l'algorithme de reconstruction de surface de Poisson. La procédure proposée dépend donc entièrement des voxels de l'image tomographique et est indépendante de toute distribution statistique que pourraient adopter les cellules de la mousse. En conséquence, cette procédure est capable de reproduire de manière précise un modèle géométrique fidèle de la microstructure d'une mousse et ses éventuelles irrégularités. De plus, cette procédure est capable de traiter de grandes quantités de données qui dépasseraient la RAM disponible en découpant celles-ci en tranches indépendantes plus petites. L'épaisseur minimale de chaque tranche est uniquement limitée par la taille maximale des cellules occupant cette tranche. L'efficacité de cette méthode est illustrée en comparant un modèle éléments finis utilisant un maillage généré à partir d'une géométrie obtenue par cette procédure, à des résultats expérimentaux d'une mousse d'aluminium ouverte soumise à une compression uniaxiale.

Acknowledgements

I would like to take here the opportunity to express my gratitude to everyone who has supported me during my studies and research:

Firstly, I would like to thank Prof. Eric Béchet for providing me the opportunity to conduct a doctoral research under his advised guidance. His countless suggestions and comments all along his supervision have been priceless. The opportunity he offered me to teach his students has been an enriching experience.

I am grateful to the members of the thesis committee, Ludovic Noels, Pierre Duysinx and Christophe Geuzaine, as well as Dr. Anne Jung and Prof. Thierry Massart, for their time spending on reviewing and commenting my works, and for theirs help in submitting my research results to the community.

I would like to thank the University of Liège for providing an awesome platform and workplace for enabling me to conduct all my works and duties. I would like also to express my gratitude to the "little personnel", such as the cleaning ladies and waitresses, whose daily work is underappreciated, though essential to everybody.

I gratefully acknowledge the funding by the Actions de recherche concertées $A R C$ 09/14-02 BRIDGING and granted by the Académie Universitaire Wallonie-Europe and by the F.R.S-F.N.R.S. Enlighten It project, grant number PDR T.0038.16.

I would to like to thanks my parents, Liana and Michel for their long-life help, support and encouragement along all my studies. I will literally not be here without them. I also thank my brother Gabriel and my sister-in-law Liuba.

I thank my cat Pilou for reminding me to take some rest during those months of quarantine by sitting on my keyboard and leaving cryptic messages on my screen, such as "hjuojdavubaj".

Finally, I thank the compiler g++ for sometimes entertaining my boring coding sessions with its verbose and difficult to read and understand debugging messages.

Contents

Acknowledgements ix
1 Introduction, state of the art, and summary of contributions 1
1.1 Foam manufacturing 1
1.2 Microstructure representations 2
1.2.1 Direct discretisation 3
1.2.2 Idealised geometries 4
1.2.3 "Dressed" idealised geometries 7
1.3 Motivation and present contributions 8
1.4 Publications 11
1.5 Summary of the thesis 12
1.5.1 Contribution 12
1.5.2 Chapter 2 12
1.5.3 Chapter 3 15
1.5.4 Chapter 4 16
1.5.5 Chapter 5 17
2 Image analysis 19
2.1 Summary 19
2.2 Standard image analysis procedure 20
2.3 Proposed image analysis procedure 21
2.3.1 Framework used 23
2.3.2 Step 0: RGB to luminance filter 24
2.3.3 Step Obis: Spacing filter 25
2.3.4 Step 1: Threshold filter 26
2.3.5 Step 1bis: Box filter 30
2.3.6 Step 2: Distance filter 38
2.3.7 Step 3: Distance post-processing 42
2.3.8 Step 4: Local maxima 43
2.3.9 Step 5: Parent ellipsoids 62
2.3.10 Step 5 (part 2): Clustering and merging of ellipsoids 82
2.3.11 Step 6: Auxiliary ellipsoids 110
3 Streaming 115
3.1 Summary 115
3.2 The itk::StreamingFilter 116
3.3 Streaming of the RGB to luminance filter (step 0) 116
3.4 Streaming of the spacing filter (step 0bis) 117
3.5 Streaming of the threshold filter (step 1) 117
3.6 Streaming of the box filter (step 1bis) 119
3.7 Streaming of the distance transform (step 2) 122
3.7.1 Extended region strategy 123
3.7.2 Discussion 124
3.7.3 Distance transform of a subregion of an image 124
3.7.4 Implementation of the strategy 132
3.8 Streaming of distance post-processing (step 3) 134
3.9 Streaming of local maxima (step 4) 135
3.9.1 Note on boundaries 136
3.10 Streaming of ellipsoid growth and merge (steps 5 and 6) 138
3.10.1 Quantitative analysis 140
3.11 Discussion 141
3.12 Memory usage 142
3.13 Application to foam reconstruction 146
3.13.1 Open foam 146
3.13.2 Closed foam 148
4 Reconstruction of the geometry 153
4.1 Reconstruction using the DN-CT-SCAN model 154
4.2 Reconstruction using the Ellipsoidal Model 159
4.2.1 Discretisation of ellipsoids 159
4.2.2 Boundary management 160
4.2.3 Poisson surface reconstruction 162
5 FEM simulations: uniaxial compression test on open foam sample 167
5.1 Summary 167
5.2 Introduction 168
5.2.1 Macroscopic formulation 169
5.2.2 Microscopic formulation 171
5.2.3 Scale transition 172
5.2.4 Enforcing boundary conditions at the microscopic level 173
5.2.5 Contribution 173
5.3 Experimental data 174
5.4 Material properties 175
5.5 Boundary conditions 175
5.6 Comparison of simulations against experimental data 177
5.6.1 Periodic boundary conditions 177
5.6.2 Free boundary conditions 179
5.6.3 Mixed boundary conditions 179
5.6.4 Discussion: numerical convergence 180
5.6.5 Discussion: the Gurson-Tvergaard-Needleman model 181
6 Conclusion and perspectives 183
6.1 Recall of the motivation 183
6.2 Contribution 183
6.3 Perspectives and limitations 184
A Streaming 187
A. 1 ITK's pipeline execution 187
A.1.1 ITK's image meta-data 187
A.1.2 ITK's pipeline execution 188
A.1.2.1 DataObject::UpdateOutputInformation() 188
A.1.2.2 DataObject::PropagateRequestedRegion() 189
A.1.2.3 DataObject::UpdateOutputData() 189
B Notion of distance 191
B. 1 Distance transforms 191
B. 2 Maurer et al. algorithm 191
B.2.1 Preliminary definitions. 191
B.2.2 Properties 193
B.2.3 Computation of the FT 195
C Mathematical morphology 197
C. 1 Grayscale reconstruction 197
C.1.1 Binary reconstruction 197
C.1.2 Geodesic distance 198
C.1.3 Grayscale reconstruction 199
C. 2 Local maxima of an image 200
C. 3 H-maxima/minima transformation 201
C. 4 H-convex/concave transformation 202
C. 5 Watershed transform 202
C.5.1 Formal definition (P. Soille [155]) 202
D Closest point of a polyhedra to an ellipsoid 205
D. 1 Problem to solve 205
D. 2 KKT constraint qualifications 205
D. 3 Algorithm solving the optimisation problem D. 1 206
E Maximum volume ellipsoid inside a polyhedron 209
E. 1 Mathematical expression of the problem. 209
E.1.1 KKT constraint qualifications 211
E.1.2 Simplification of the KKT constraint qualifications 212
E.1.3 Algorithm solving the optimisation problem E. 10 213
F The GDBSCAN algorithm 217
F. 1 Preliminary definitions 217
F. 2 Algorithm 219
F.2.1 Remarks 221
G Algorithms for a R^{*}-tree data structure 223
H Intersection volume between two colliding ellipsoids 227
H. 1 Monte Carlo integration and the VEGAS algorithm 227
H.1.1 Description of the VEGAS algorithm 227
H.1.1.1 Classic Monte Carlo integration 227
H.1.1.2 Error estimation 230
Bibliography 233

List of Figures

1.1 Scanning electron microscopy images of a closed foam. 1
1.2 Scanning electron microscopy image of an open foam. 2
1.3 Different specimens of foams. 2
1.4 Variability in foam-like trabecular bone. 3
1.5 Schematic drawing of the electro-deposition process to produce grad- ually coated foams. 3
1.6 Direct foaming of melts with blowing agents 4
1.7 SEM image of the cross section of a typical strut. 4
1.8 Voxellisation and segmentation of a closed foam sample obtained from a 3D CT-scan. 5
1.9 Kelvin cell. 5
1.10 Dodecahedral Weaire-Phelan cell. 6
1.11 Example of a Laguerre tessellation of a foam 6
1.12 A Poisson-Voronoï and Laguerre tessellations. 7
1.13 3D rendering of random soap froth with $12 \times 8 \times 8$ cells. 8
2.1 Standard and proposed image processing steps. 20
2.2 Illustration of the standard image processing steps. 21
2.3 Illustration of the proposed image processing steps. 22
2.4 Example of the ITK pipeline 23
2.5 Example of negotiation between filters in ITK. 24
2.10 Effect of different morphological operations on an initial binary image. 32
2.11 Intuitive idea of the box filter. 33
2.12 Illustration of the box filter process. 35
2.13 Noise filtering: opening vs box filter. 36
2.15 2D digitalisation. 40
2.16 Schematic example for computing a chamfer distance. 41
2.17 Euclidean distance transform of a binary image. 41
2.20 Schematic idea of the Watershed algorithm. 43
2.21 Comparison of detections of local maxima in a simple gray-scale image 45
2.22 Sketch of the scan-line algorithm of T.Q. Pham along a one-dimensional line of pixels 47
2.23 Filtering of saddle points 48
2.24 Behaviour of integral 2.32 for some values of σ. 55
2.26 Example of a 2-dimensional image oversegmentation by the water- shed transformation and its watershed transformation after pre-filtering. 63
2.27 Schematic representing the process of growing ellipsoids and cluster- ing and merging groups of overlapping ellipsoids. 63
2.28 Illustration of the growing of ellipsoids with obstacles in 2D. 65
2.29 2-dimensional sketch of the fitting of an ellipsoid inside a cell. 68
2.30 Schematic of the growth of an ellipsoid near the boundaries of an image. 69
2.31 Uniform shrinking of an ellipsoid. 71
2.32 2-dimensional sketch example of a fast ellipsoid dilation. 72
2.33 Sketch of the algorithm of R. Deits and R. Tedrake applied to a two- dimensional image of a cell. 75
2.34 3D CT-scan image of a polypropylene foam. 82
2.35 Schematic of a tree data-structure obtained from some ellipses in two dimensions. 86
2.36 Oriented enclosing box of an ellipse. 90
2.37 Schematics illustrating test 3 93
2.38 Schematic illustrating the principle of the Monte-Carlo method. 94
2.39 Schematic example of an orthogonal projection of an ellipse. 95
2.40 Schematics sketching how the MVCEE algorithm is operating. 98
2.41 3D illustration of the MVCEE algorithm at different iteration stages. 99
2.42 3D CT-scan image of a polypropylene foam with fitted, clustered and merged ellipsoids by MVCEE. 99
2.43 Sketch of the MVCEEInitialise algorithm 30. 104
2.44 Fitted ellipsoids to a 3D artificially generated honeycomb foam. 105
2.45 Schematic graphic of the general behaviour of the match pixels vs mis- match pixels ratio. 108
2.46 Schematics illustrating the general behaviour of the match pixels vs mismatch pixels ratio. 108
2.47 Behaviour of the match pixels vs mismatch pixels ratio with respect to the intersection volume ratio τ 109
2.48 Schematic sequence illustrating the growth of auxiliary ellipsoids into a cell. 111
2.49 Parent ellipsoids and surface obtained by the auxiliary ellipsoids. 113
3.2 Extraction of a slice from a 3D image. 116
3.6 Temporary and main pipeline for computing an histogram-driven thresh- old of an image while streaming. 118
3.8 Image region negotiation process for the box filter. 120
3.9 Scheme showing how the Box filter discards or keep sets of connected foreground pixels during the streaming process. 121
3.10 Results of the box filter for the streaming and non-streaming case for the same input image. 121
3.12 Computation of the correct distance transform when streaming. 123
3.13 Schematics illustrating definitions 3.1 to 3.8. 126
3.14 Schematic illustrating definition 3.8. 127
3.15 Illustration of lemma 3.1 128
3.16 Illustration of lemma 3.2 129
3.17 Illustration of corollary 3.2 131
3.18 Temporary and main pipeline for computing the exact distance trans- form of an image while streaming. 132
3.19 Example of Euclidean distance transforms on a image without and with the extended region strategy. 133
3.22 Example of non-maxima suppression on a image without and with taking into account streaming. 137
3.24 Growth of ellipsoids inside a slice when streaming. 138
3.25 Ellipsoids generated from the 3D-image in "normal" and streaming modes 139
3.27 Artificially generated honeycomb foams. 143
3.28 Peak memory usages in GB on a set of artificially generated honey- comb foams. 145
3.30 3D-image extracted from raw CT-scans of a cubic aluminium foam. 147
3.31 Surfaces of the parent ellipsoids obtained by the proposed image anal- ysis steps on an open foam. 148
3.32 Surfaces of the auxiliary ellipsoids obtained by the proposed image analysis steps on an open foam. 149
3.33 Example of the proposed processing steps on a 3D CT-scan image of a closed polypropylene foam. 150
3.34 Surfaces of the parent ellipsoids obtained by the proposed image anal- ysis steps on an closed foam. 150
3.35 Surfaces of the auxiliary ellipsoids obtained by the proposed image analysis steps on an closed foam. 151
4.2 Distance functions $D N_{1}, D N_{2}$, and $D N_{3}$. 155
4.3 Distance fields and treatment of inclusions for the DN-CT-SCAN model. 156
4.4 Ellipsoids obtained by processing the CT-scan. 157
4.5 Polyhedra obtained by processing the CT-scan. 157
4.6 Visual representation of the Hausdorff distance in mm between the CT-scan image and the meshes extracted using DN-CT-SCAN 158
4.7 Schematics of the reconstruction of the geometry from the ellipsoids. 162
4.8 Schematic of the Poisson surface reconstruction. 162
4.9 Relationship between a set of oriented points and the (smoothed) gra- dient of the indicator function. 163
4.10 View inside the set of points extracted from CT-scan data. 165
4.11 Hausdorff distance between the CT-scan image and the meshes ex- tracted using Ellipsoidal Model for the an open foam. 165
4.12 Reconstruction of small defects with the Ellipsoidal Model. 165
4.13 Hausdorff distance between the CT-scan image and the meshes ex- tracted using Ellipsoidal Model for the a closed foam. 166
5.2 Computational homogenisation scheme. 168
5.3 Meshed RVEs used for the simulations. 174
5.4 Experimental setup for the uniaxial compression test. 174
5.5 Tested boundary conditions for a simple uniaxial compression. 176
5.6 Simulations of a uniaxial compression test on an open cubic sample of aluminium foam with periodic boundary conditions. 177
5.7 Zoom of Figure 5.6. 178
5.8 Simulations of a uniaxial compression test on an open cubic sample of aluminium foam with periodic boundary conditions, using increasing degrees of interpolation for Lagrangian polynomials. 178
5.9 Simulations of uniaxial compression tests on an open cubic aluminium foam for different boundary conditions. 179
5.10 Simulations of uniaxial compression tests on an open cubic aluminium foam for different boundary conditions using increasingly refined meshes. 181
5.11 Simulation of an uniaxial compression test using the Gurson-Tvergaard- Needleman metal porosity model for aluminium at 93% porosity. 182
A. 1 ITK image meta-data. 188
A. 2 ITK regions. 189
B. 1 Maurer et al. algorithm: sets S_{d} and S_{d}^{\prime}. 193
B. 2 Maurer et al. algorithm: partial Voronoï diagram. 194
C. 1 Binary image reconstruction of a mask from a marker. 198
C. 2 Geodesic distance between a pixel and a connected set. 198
C. 3 Example of a grayscale reconstruction of a mask from a marker. 200
C. 4 H-maxima transformation of a 1-dimensional image. 201
C. 5 H-convex transformation of a 1-dimensional image 202
F. 1 Core objects and border objects. 218
F. 2 Density-reachability and density-connectivity 218
H. 1 One-dimensional sketch of the process dividing interval into subin- tervals and merging the obtained subintervals. 229

List of Tables

2.1 Parameters of the Spacing filter. 25
2.2 Parameter of the Threshold filter 28
2.3 NIST attenuation table. 31
2.4 Parameters of the Box filter. 34
2.5 Parameters of the Local maxima filter. 56
3.1 Left and right extensions and final sizes of extended regions needed for computing the exact Euclidean distance transform 134
3.2 Sizes in pixels, number of cells and minimum RAM needed for storing data for artificially generated honeycomb 3D foams images. 144
3.3 Parameters used in the image analysis of the CT-scan data for an open foam 147
3.4 Parameters used in the image analysis of the CT-scan data for a closed foam 149
4.1 Parameters used in the image analysis of the CT-scan data for a real- world open foam 166
4.2 Parameters used in the geometric reconstruction of the CT-scan data data of the closed foam presented in Section 3.13.2 for the Ellipsoidal Model. 166
5.1 Averaged struts material properties identified for the isotropic hard- ening law used for the simulations 175
5.2 Relative differences between computed strain-stress curves using dif- ferent meshes. 180

List of Abbreviations

RGB	Red, Green, Blue
FIFO	First In, First Out
RVE	Representative Volume Element
CT	Computerised Tomography
FEM	Finite Eelement Method
XFEM	eXtended Finite Element Method
RAM	Random Access Memory
SEM	Scanning Electron Microscopy
DN-RSA	Distance Neighbour based Random Sequential Addition
B-REP	Boundary REPresentation
ITK	Insight ToolKit
OTB	Orfeo ToolBox
DT	Distance Transform
FP	Feature Pixel
CFP	Closest Feature Pixel
KKT	Karush-Kuhn-Tucker
GDBSCAN	Generalised Density Based SCAN
SVD	Singular Value Decomposition
MVCE	Minimum Volume Covering Ellipsoid
MVCEE	Minimum Volume Covering Ellipsoid of Ellipsoids
BVP	Boundary Value Problems

List of Symbols

\varnothing
$A \subset B$
B
$A \supseteq B$
$\cup_{i} B_{i}$
$\cap_{i} B_{i}$
$A \backslash B$
∂A
int A
$a \in A$
$\forall a$
s.t.
resp.
$\sup A$
$\inf A$
\mathcal{N}
Z
\mathcal{R}_{+}
R
\mathcal{R}^{n}
|a
Bold letters such as \mathbf{Q} or \mathbf{v}
v_{i}
$\|\mathbf{v}\|$
$\mathbf{u} \wedge \mathbf{v}$
$\hat{\mathbf{v}}$
\mathbf{v}^{t}, M^{t}
I
M^{-1}
$M \succ 0, M \succeq 0$
$\succ A, M \succ A$
\mathcal{E}
$\stackrel{\frac{\partial}{\partial x_{i}}}{\vec{\nabla}}=\frac{\partial}{\partial \bar{x}}, \Delta=\vec{\nabla} \cdot \vec{\nabla}$
empty set.
set A is a subset of set B.
set A is a subset of or equal to set B.
set A includes set B as a subset.
set A includes set B and may be equal to set B.
union of sets B_{i}.
intersection of sets B_{i}.
set A minus set B.
boundary of set A.
interior of set A.
element a belongs to set A.
for all a...
it exists $a \ldots$
such that.
respectively.
volume of (compact) set A.
supremum of (ordered) set A, i.e. minimum of majorant set of A.
infininum of (ordered) set A, i.e. maximum of minorant set of A.
set of positive integers (including zero).
set of integers.
set of real numbers.
set of positive real numbers (including zero).
set of negative real numbers (including zero).
abbreviation for $\mathcal{R}^{n \times 1} n$-dimensional vector space on \mathcal{R}.
absolute value of number a.
column vectors in \mathcal{R}^{n}.
i-th component of vector \mathbf{v}.
Euclidean norm of vector \mathbf{v}.
Euclidean dot product of vectors \mathbf{u} and \mathbf{v}.
cross product of vectors $\mathbf{u}, \mathbf{v} \in \mathcal{R}^{3}$.
normalized vector \mathbf{v}, i.e. $\|\mathbf{v}\|=1$.
transpose of vector \mathbf{v} and matrix M.
identity matrix.
inverse of matrix M.
matrix M is positive definite, resp. positive semi-definite.
matrix $M-A$ is positive definite, resp. positive semi-definite.
matrix M is negative definite, resp. negative semi-definite.
matrix $M-A$ is negative definite, resp. negative semi-definite.
ellipsoid.
Kronecker delta.
partial derivative along component x_{i}.
gradient and Laplacian.

Dedicated to my parents, Liana Raţiu and Michel Leblanc.

Foreword

This thesis is divided in three main parts: an image analysis (chapters 2 and 3), geometry reconstruction (chapter 4), and finite element simulations (chapter 5). Many of these parts require some knowledge in different fields that the reader may not be familiar with. In order to ease the reading of this thesis, some used concepts that may be unfamiliar to the reader are further explained in the appendices. The appendices contain explanations which have been rewritten, condensed and adapted with homogenised notations from external sources by the author of this thesis. As such, the contents of the appendices are already existing works produced by other authors. They are mentioned in this thesis for the sake of completeness and to avoid the interested reader to have to search for external sources and algorithms each have their own sets of notations.

Chapter 1

Introduction, state of the art, and summary of contributions

Nowadays, cellular materials represent promising approach for obtaining simultaneously strength, stiffness, dissipation, and weight reduction, and are increasingly used in numerous engineering applications. Among other things, they are used as insulators, filters and crash absorbers [56, 88], see Figures 1.1 and 1.2. In particular, the class of open-foam materials has found countless applications in many domains such as energy absorbers [71], vibration dampening [186] (see Figure 1.3), hydrogen production [174] and aerospace [40], for instance. As a matter of fact, cellular materials also exist in nature such as in bones [41] (see Figure 1.4) or wood.

FIGURE 1.1: Scanning electron microscopy images of a closed foam [100].

1.1 Foam manufacturing

Manufacturing of foams can be achieved via several processes. For instance, one approach for producing metallic open-cell foams is to turn to the technique of electrodeposition onto a sacrificial polymer foam with open-cells. The polymer phase is then etched away, resulting in an open foam with hollow struts [12] (see Figure 1.5). Foams can also be manufactured by direct blowing agent injection (such as CO_{2} gas) into melt, the viscosity of which is controlled by temperature and by adding ceramics powder (see Figure 1.6). This technique is extensively used to obtain aluminium alloy foams. For an extensive survey of metallic foam manufacturing techniques, the interested reader may refer to Reference [154].

Figure 1.2: Scanning electron microscopy image of an open foam [65], and Longitudinal crash absorber with cellular internal structure [172].

Figure 1.3: From right to left: silicon rubber specimen, silicon rubber/aluminum foam composite, aluminum foam only, room-temperature-vulcanising silicone/aluminum foam composite, room-temperature-vulcanising silicone only [186].

The microstructure of foams is complex and consists in an interconnected network of ligaments located along the edges of random packed cells. Cells can be open and closed or partially closed by walls. Foam's struts can themselves adopt various cross sections, from sharp edged cross sections, to smooth ones and can be hollow [74, 192] (see Figure 1.7). In regards of their manufacturing processes, foams share structural similarities with equilibrated liquid foams, such as dry foam and soap froth, where the cells originated from bubbles separated by tensioned liquid films adopt the shapes of near-polyhedral volumes. Under conditions of mechanical equilibrium where the surface free energy is minimised, these latter foams obey locally Plateau's laws [132, 87]. Under these conditions, each face adopts a constant mean curvature and each face meets at each cell edge at equal dihedral angles of 120°; while each vertex is adjacent to four joining edges ate equal tetrahedral angles of $\cos ^{-1}(-1 / 3)=109.47^{\circ}$.

1.2 Microstructure representations

In the current context, there is a need to develop foam models able to predict the homogenised or apparent behaviour based on the microstructural features. The improvements of computer tomography during the last decade made the direct observation of the foam internal microstructure easier [157], and this approach has been used extensively for building geometrical foam models [57, 187, 193, 117]. Though very detailed, images obtained from computer tomography need to be preprocessed in order to allow their use as a geometrical basis in FEM models. Generally, the pre-processing involves, among other steps depending on the acquisition process and quality of the obtained images, a watershed and, optionally, a $\mathrm{H}-$ maxima transform $[57,71,138,73]$, both of which can be computationally expensive.

Figure 1.4: Variability in foam-like trabecular bone. On the left is the trabecular bone of the bighorn sheep's horn core and on the right is the trabecular bone in the proximal femur of a black bear [41].

Figure 1.5: Schematic drawing of the electro-deposition process to produce gradually coated foams. Outlined are six different electrolyte levels, which occur successively over the plating time. [71].

Some efforts have been made to asses this difficulty, by either designing new algorithms with improved complexity $[176,155,159]$, or by parallelising them $[21,82]$. Notwithstanding, computing a watershed still remains to this day a memory expensive algorithm for large 3D images.

1.2.1 Direct discretisation

One strategy to avoid these computationally expensive steps is to resort to direct image discretisation [3, 193] (see Figure 1.8). However, obtaining FEM models from discretised images $[173,48]$ remains a daunting task since characterising large data samples requires both time and computational capacity, as well as frequent user input; currently restricting this method to smaller samples [113]. An interesting strategy, though, has been proposed in Reference [91]. It consists in coupling extended finite element methods (XFEM) with level sets on non-conforming meshes. The use of non-conforming meshes allows to alleviate near zero or negative Jacobian mesh element issues. Indeed, the complex geometry of the microstructure is implicitly encoded by the level sets. Elements of the non-conforming mesh intersecting the level sets are then locally enriched within the XFEM framework in order to take into account the presence of physical interfaces.

Figure 1.6: Direct foaming of melts with blowing agents ("Alporas"-process) [12].

FIGURE 1.7: SEM image of the cross section of a typical strut [74].

1.2.2 Idealised geometries

Another possibility is to turn to idealised microstructural geometries. One advantage of this approach is to allow exploring the basic mechanism linking the microstructure of the considered material to its mechanical behaviour. A simple model using rectangular prisms, as proposed in Reference [56], can already provide some insights. However, a better idealised microstructure has been proposed by Kelvin [163] whose model tessellates space with a minimum partitional area using tetrakaidecahedra cells (see Figure 1.9). Kelvin's model has been later improved by the Weaire-Phelan foam model [181] (see Figure 1.10). As these models show a highly periodic geometry, they are unable to capture the randomness of real microstructures, and, consequently, are poorly effective for capturing the mechanical properties of real foams.

In order to tackle this randomness issue, various strategies are proposed in the literature (see, e.g., References [61, 27, 191] to mention a few). A straightforward strategy is to start from a periodic cell structure and add some imperfections to it. This method has been studied in Reference [177], leading to a better agreement with experimental data for the elastic response and the plateau stage of the strain-stress curve for a foam sample undergoing uniaxial compression. A common strategy consists in using Voronoï tessellations that are based on the distribution of nuclei [166]; and their generalisations, especially the Laguerre tessellations [89, 88, 95] (see Figure 1.11). The Laguerre tessellation is a form of weighted Voronoï tessellation in which the space is partitioned using (possibly) random packings of spheres of different radii instead of pointwise nuclei. Though versatile and leading to more realistic geometric representation of foam's microstructures, Laguerre tessellations are

Figure 1.8: Voxellisation and segmentation of a closed foam sample obtained from a 3D CT-scan. [91].

Figure 1.9: (a) Single Kelvin cell, and (b) 2×2 Kelvin cell array [105].
not of straightforward use. Indeed, the question arise of how to randomly pack the spheres (loosely or densely), following which distribution (normal, log-normal, gamma, Poisson...) and how to choose the sphere radii. The link between these model parameters and geometric characteristics of the foams (such as the porosity, the average pore size and the pore size variation) is also far from being trivial and has been subject of numerous studies $[136,135,169,96,107,106]$. However, Laguerre tessellation are not able, by construction, to capture non-convex cells, cells with curved boundaries, and suffer from inconsistency of presenting seedless cells [90] (see Figure 1.12). Also, when available, a Laguerre tessellation does not fully exploit the voxel informations present in CT-images. These issues have motivated the development of more generalised models exploiting voxel informations and/or generalised metrics such as in References [22, 148, 4, 157, 150, 151, 25], and the present thesis.

Another approach for trying to generate realistic foam geometries consists in randomly packing spheres. Numerous packing algorithms can be found in the literature and can be classified under collective rearrangement, sequential addition, or sedimentation methods [19]. For instance, the random sequential addition consists in adding one by one spheres with randomly chosen diameters under the action of some "gravitational" field. In order to obtain a packing as tight as possible, simulated annealing can be used subsequently for randomly perturbing the locations of the spheres and improve the tightness of the packing. An alternative option is to

Figure 1.10: Dodecahedral cell of the Weaire-Phelan foam [149].

Figure 1.11: Example of a Laguerre tessellation of a foam. Left: Section of a tomographic image of a polymer foam (pixel size: $10.21 \mu \mathrm{~m}$, Source: Fraunhofer IWM). Right: Visualisation of a Laguerre tessellation generated by a dense packing of spheres. The spheres are inscribed in their cells [135].
start with a very dense configuration of large overlapping spheres and then reduce stepwise their diameters and location in order to reduce the overlapping [20].

However, in order to reproduce accurately the morphological parameters of the considered foam, some minimisation criterion has to be designed; which is a task far from being trivial. To this aim, strategies using surface minimisation principles by evolving tessellations thanks to the Surface Evolver Software have been studied [86, 85, 170]. Moreover, in the case of poly-dispersed spheres, some statistical distribution for the sphere diameters must be chosen (e.g., Poisson, log-normal, gamma, or Gaussian) [87]. Finally, from these algorithms it is only possible to reconstruct convex cells and tessellation of the obtained packing only provides infinitely thin struts/walls that need to be "dressed". Despite all these issues and difficulties, random packing algorithms have been extensively used in conjunction with Voronoï tessellations [114], as well as Laguerre tessellations [137, 184].

Figure 1.12: A Poisson-Voronoï tessellation in \mathcal{R}^{2} (left) and the Laguerre tessellation of the same set of points with radii chosen from a two-atom distribution (right). Note how the cell geometry is altered by the introduction of weights, that some Laguerre cells are empty (around position $(0.3,0.6)$ or $(0.9,0.3)$), and that some cells do not contain the nucleus (for instance, the almost triangular cell at $(0.1,0.1))$ [90].

1.2.3 "Dressed" idealised geometries

All in all, the above idealised models are able to reproduce accurately some foam morphological parameters such as the cell-size distribution, face-by-cell count, and edge-by-cell count; provided that the considered sample is large enough to be statistically representative of the overall foam [141]. However, they fail to account for local morphological variations as, for instance, struts cross-section shapes, variation of cell-wall curvatures, local defects (such as damaged or partially missing struts) or the existence of partially reticulated foams (presenting an intermediate state between closed and open microstructures). Such instances of local morphological changes require further construction [67]. In order to introduce these microstructural features, the Distance Neighbour based Random Sequential Addition (DN-RSA) was developed in Reference [156] and further improved and enriched in Reference [79] to represent complex struts morphologies through level set functions.

An alternative model was also developed in References $[13,51]$ in order to overcome some issues and limitations of random packing algorithms. This model consists in generating a "skeletal" foam using a Voronoï tessellation constructed from randomly packed mono-dispersed spheres. The constructed ligaments are then "dressed" with circular cross-sections (see Figure 1.13), the areas of which vary along the length of the ligaments; based on empirical expressions developed from in-situ measurements. Nevertheless, though theses models are able to produce faithful geometries (at least statistically ${ }^{1}$) and quality meshes for FEM simulations, they still require some input parameters that are difficult to assess.

[^0]

FIGURE 1.13: (a) 3D rendering of random soap froth with $12 \times 8 \times 8$ cells and (b) slice from the same model after ligaments are dressed with beam elements [51].

1.3 Motivation and present contributions

As geometrical features have a considerable impact on the mechanical behaviour of foams [58, 70], manufacturing cellular materials with the desired mechanical behaviour is a challenging task. Indeed, on the one hand, foams exhibit a large versatility in their physical characteristics (mechanical, thermic and / or electromagnetic); allowing a large field of applications. On the other hand, obtaining a specific physical property can be complex and cumbersome as the link between a given property and a foam's microstructure is far from being trivial. For instance, inside a same sample different pores may have variable mechanical properties [62]. Moreover, ensuring the production of foams with nominal and stable microstructural and mechanical properties is still a challenging task in the research and industrial domain $[117,154]$. As a consequence, there is a significant demand for quality control and characterisation of new foam products in the industry. In this context, reliable computerised foam models that require minimum user input and reasonable computer means are of potential use [113]. Such numerical model may need to exploit the geometrical information of Representative Volume Elements (RVEs) obtained from Computer Tomography scans (CT-scans) of foams; while requiring affordable computer resources.

The current work proposes a new model, hereafter called Ellipsoidal Model, to obtain a geometric representation of foams from CT-scan images. This model relies on the Poisson surface reconstruction [76] from points and normals associated to the exterior surfaces of ellipsoids. It allows obtaining a closed surface representation of the considered foam. The surface provided by the Ellipsoidal Model can be subsequently meshed for based finite element methods simulations. Providing a geometric model with the properties of a Boundary REPresentation (B-REP) instead of a mesh offers the possibility to "tune" to some extent the mesh generated from that B-REP (for instance different levels of mesh refinements can be generated from the same geometric surface). In the present thesis, the three-dimensional mesh generator used is Gmsh [54].

Last be not least, the image analysis procedure has been designed to support the processing or large CT-scan images, i.e. image data that can not be fitted entirely into the Random Access Memory (RAM). This feature is achieved by using the Insight ToolKit (ITK) framework [69] and its streaming capabilities [194]: large CT-scan images can be processed slice-by-slice by loading only one image slice at a time into the RAM. This specific feature allows even standard consumer computers to process large CT-scan images, at a cost of a larger computational time and with a limitation on the minimum allowed slice thickness in the CT-scan images. This feature and associated costs and limitations are described in Section 3.

The remainder of the present thesis is organised as follows. Chapter 2 describes the proposed image analysis steps, along with the corresponding streaming capabilities (Chapter 3) and its impact in peak memory usage (Section 3.12). Section 3.13 shows how ellipsoids (parents and auxiliaries) are fitted to the cells of a foam. Chapter 4 describes how a B-REP is extracted from these ellipsoids. Finally, Chapter 5 compares FEM simulations of a real-world foam, which geometry has been reconstructed from CT-scan images, with respect to experimental data taken from [62].

The novelties presented in this thesis for the reconstruction of the geometry from 3-dimensional CT-scan images of foams are the following:

- Geometric reconstruction using ellipsoids from identifying cells and "auxiliary" ellipsoids for reproducing faithfully the microstructure, including imperfections such as missing or deformed struts.
- Avoid computationally expensive algorithms such as watershed and H-maxima transform, commonly used to prevent oversegmentation, by clustering and merging overlapping ellipsoids.
- Geometric surface representations generation of foams microstructures from which different meshes can be constructed or merged with user-supplied geometries.
- Streamed image-analysis procedure which allows either to process 3-dimensional CT-scan images that can not fit into the available RAM and, possibility, to parallelise it among several processing units.
- Possibility to "feed" other reconstruction models as demonstrated in Section 4.1.

In order to keep a global insight of the entire proposed procedure, Algorithm 1 summarises it.

```
Algorithm 1 Ellipsoidal Model summarising algorithm
    Input: 3D CT-scan image of a foam.
    Output: Surface geometric model of the foam.
    1. Identification of cells.
```

 a: Threshold the image (Section 2.3.4) and clean it from spurious pixels (Sec-
 tion 2.3.5).
 b: Replace each pixel value by its distance value from the closest pixel representing
 a wall/strut (Section 2.3.6).
 c: Identify cell centre candidates by computing local maxima (Section 2.3.8) of the
 previously computed distances.
 d: From each cell centre candidates, grow "parent" ellipsoids (Section 2.3.9).
 e: Merge overlapping "parent" ellipsoids in order to avoid oversegmentation (Sec-
 tion 2.3.10).
 f: Identify the microstructure by growing "auxiliary" ellipsoids from the "parents"
 (Section 2.3.11).
 2. Reconstruction of the microstructure.
a: Discretise all ellipsoids into a set of points and keep all "exterior" points (Section 4.2.1).
b: Get a geometric representation of the microstructure using a Poisson surface reconstruction (Section 4.2.3).

1.4 Publications

This work has directly resulted in the publication of the following article in peer reviewed journal as main author:

- Christophe Leblanc, Nanda Gopala Kilingar, Anne Jung, Ehab Moustafa Kamel, Thierry Jacques Massart, Ludovic Noels, Eric Béchet. Analysis of an open foam generated from computerised tomography scans of physical foam samples. International Journal for Numerical Methods in Engineering, 2022; 1-29.
doi:10.1002/nme. 7008

This work has been presented at the following international conferences:

- Christophe Leblanc, Van Dung Nguyen, Ludovic Noels, Eric Béchet. Streamable Laguerre-Voronoi Tessellation Model for Tomographic Images. 11th World Congress On Computational Mechanics WCCM XI - ECCM V - ECFD VI, Barcelona, Spain 2014.
- Christophe Leblanc, Van Dung Nguyen, Ludovic Noels, Eric Béchet. Streamable Generalized Voronoi Tessellation Model for Tomographic Images. European Congress on Computational Methods in Applied Sciences and Engineering - ECCOMAS Congress; Hersonissos, Grece 2016.
- Nanda Gopala Kilingar, Ludovic Noels, Thierry Jacques Massart, Karim Ehab Moustafa Kamel, Bernard Sonon, Christophe Leblanc, Anne Jung. Data driven computational analysis of open foam RVEs. Computational Methods in Multiscale, multi-uncertainity and multi-physics problems conference; Porto, Portugal 2019.

1.5 Summary of the thesis

1.5.1 Contribution

The contribution presented in this thesis is two-fold: First a new generic image analysis procedure is proposed were computationally expensive morphological algorithms such as the watershed and the H-maxima transforms are replaced by merging of overlapping ellipsoids. Moreover, the image analysis procedure is streamable, allowing the processing of huge CT-scan images with commercial personal computers. Second, the reconstruction of the geometry of the microstructure is performed by using growth of ellipsoids, instead of spheres as in the Laguerre-Voronoï models, allowing to better take into account cell anisotropies. Moreover, from these "parent" ellipsoids, "auxiliary" ellipsoids are grown such to accurately reproduce the microstructure. From these ellipsoids, a suitable geometric model can be extracted and meshed for FEM models.

1.5.2 Chapter 2

This chapter presents the ITK framework used for implementing the different proposed steps; as well as those steps for identifying cells from CT-scan images of foams. The use of the ITK framework adds flexibility to the image analysis procedure, allowing the user to add/remove/replace some steps by other as he or she sees fit for its own needs.

Step 1 in Section 2.3.4 is the threshold of gray-level images. In this thesis the algorithm of Ridler and Calvard [139] was used. This algorithm analyses the histogram of the CT-scan image to process and determines automatically a suitable threshold value. Thanks to the ITK framework, it is possible to use more advanced thresholding techniques, such as the popular Otsu algorithm [126], if deemed necessary by the user.

As threshold algorithms may still classify background pixels as foreground pixels, step 1 is completed in Section 2.3 .5 by a Box filter which aims to remove noisy pixel. The Box filter simply removes chunks of connected pixels which fit inside a given box. Although usually the binary opening is used for such situations, it has been found that this morphological operation (see Appendix C) is not suitable in the context of foam. Indeed, as demonstrated in Figure 2.13, a simple binary opening with a spherical stencil tends to remove noisy pixels along to legit ones, creating artificial holes in thin cell walls or removing thin struts. It should be possible to reduce this effect by choosing a better structuring element, but this choice is not obvious and require user's input. Instead, the Box filter is simpler to use and leads to better results.

Step 2 in Section 2.3.6 is devoted to compute the distance transform (see Appendix B). Given that cell centres are usually the pixels located the furthest from the cell walls/struts, the local maxima of the distance transform can be a good indicator of these cell centres. Usually, in the context of foams, the Euclidean distance is used for computing the distance transform. Several algorithms for computing the Euclidean distance transform exist. In this thesis, the algorithm of Maurer et al [111]. has been chosen. This algorithm is indeed reasonably fast (linear with the number of pixel in an image), and easily adaptable for streaming (see Appendix A).

Step 3 in Section 2.3.7 is an optional step for post-processing the Euclidean distance transform. Here, no such post-processing has been used. However, on some occasions, a smoothing step may be useful and can be applied here.

Step 4 in Section 2.3.8 describes how local maxima of the distance transform can be computed. Again, several algorithms exist for computing local maxima. The native algorithm proposed in the ITK library was not used because not streamable. Instead, an adapted and customised version for 3D images of the algorithm of T.Q. Pham [130] was designed and used. The fact that this algorithm scans for local maxima candidates along lines, and then determine the "true" local maxima by inspecting the neighbourhood of each candidate, makes it easy to adapt for streaming image by slices: it is enough for the slices to contain the scanning lines and have a thickness equal to the extent of the inspection neighbourhoods.

Unfortunately, if local maxima usually represent suitable identifiers for the cell centres, some of them may not. It may happen that some local maxima are not "true" maxima, but rather saddle points of the distance transform. Algorithms computing local maxima usually can not discriminate genuine maxima from saddle points. It is the case of the algorithm of T.Q. Pham. In order to remove saddle points, a procedure proposed by Lopez-Reina [99] in her master-thesis has been applied. For each detected local maxima (genuine and saddle), this procedure remove saddle points by considering the eigenvalues of the local Hessians at each detected local maximum. However, computing local Hessians in discrete images is an ill-conditioned problem. This ill-conditioning issue was solved by locally computing a discretised scale-space representation of the distance transform at each local maximum, which has the property of smoothing local Hessians.

Step 5 in Section 2.3.9 discusses how genuine local maxima are used to "seed" parent ellipsoids in cells. From the genuine local maxima, parent ellipsoids are initialised as unit spheres. They are then grown using the algorithm of R. Deits et al [39]. which consists in growing iteratively each ellipsoid independently inside a polyhedron (see Appendix E). This polyhedron is itself iteratively updated using its associated ellipsoid and the surrounding pixels which are seen as obstacles limiting the growth of the ellipsoid (see Figure 2.28). Contrary to other spheres/ellipsoids growing algorithms such the ones developed by, e.g., A. Alpers and O. Sedivy [4, 150, 151], the algorithm of R. Deits et al. has been designed to be fast ${ }^{2}$ and highly parallelisable. These characteristics allow to process rapidly a large number of ellipsoids. As a matter of fact, the algorithm of R. Deits et al. is of several orders of magnitudes faster than the algorithm of A. Alpers and O. Sedivy. The only drawback, though, is that there is no guarantee that grown ellipsoids will not overlap with each other, as it is the case for A. Alpers and O. Sedivy. However, this drawback is not an issue in this thesis.

Actually, it is even an advantage. Indeed, in Step 4 several local maxima can be associated to a same cell. Classically, this issue is tackled using the (expensive) watershed transform (and, possibly, the H-maxima transform (see Appendix C) in order to guarantee a univocally correspondence between local maxima and cells. Here, grown ellipsoids by the algorithm of R. Deits et al. associated to local maxima

[^1]located in a common cell will likely more overlap with each other rather than overlap with ellipsoids associated to a neighbouring cell. This is the subject of Section 2.3.10 which explains how this overlapping criterion is computed using a Monte-Carlo method for evaluating intersection volumes between ellipsoids.

As obtaining an accurate volume estimation of a given region using a Monte-Carlo method (see Appendix H) can be computationally expensive, three "cheap" tests are carried out, previously to maybe requiring the computation using the Monte-Carlo method. The first test checks if two neighbouring ellipsoids are colliding. If not, there intersection volume is zero and no further computation is needed. The second test consist in computing an upper bound of the intersection volume, while the third test calculates a lower bound of the intersection volume. If the overlapping criterion falls outside these bounds, a Monte-Carlo computation is not needed.

This section also describes how the ellipsoids belonging to a common cell are clustered together following this overlapping criterion using the GDBSCAN algorithm (see Appendix F). Although numerous other clustering algorithms exists, the GDBSCAN algorithm has been chosen mainly because it designed to cluster objects based on a density criterion. In the context of clustering ellipsoids which overlap the most (thus which are the most densely packed) this is a highly desirable feature.

Finally, each cluster of ellipsoids should univocally corresponds to a given cell of the considered foam. Ellipsoids belonging to a common cluster are then merged into one MVCEE using the algorithm of E.A. Yildirim [185]. The advantage of this algorithm, is that it given sets of ellipsoids, it still outputs ellipsoids that can be used in the next step (step 6 auxiliary ellipsoids).

It should be noted that clustering and merging ellipsoids is not mandatory for this next step. However, as discussed in Section 2.3.9 and illustrated in Figure 2.44, clustering and merging ellipsoids can be useful in the case of sets of undesirable connected voxels that the previous steps did not remove. Moreover, clustering and merging ellipsoids is also useful if one would like to obtain some statistics such as the presence of a preferred cell orientation/anisotropy.

Step 6 in Section 2.3 .11 shows how auxiliary ellipsoids are computed. They are seeded from discrete points evaluated from the surface of the parent ellipsoids and then grown using again the algorithm of R. Deits et al. The only difference with the growth of the parent ellipsoids, is that artificial obstacles are added for the auxiliary ellipsoids in order for them to "decay" to their respective parent ellipsoids. As illustrated in Figures 2.49 and 4.12, auxiliary ellipsoids are highly effective for reproducing small features and defect present in a given microstructure. Section 3.13 shows qualitative results of the reconstructions of the microstructures of two realworld foams, one with open cells and the other with closed cells. It can be seen in Figures 3.32 and 3.35 that auxiliary ellipsoids closely reproduce the microstructure.

1.5.3 Chapter 3

This chapter discuss how the algorithms chosen in steps 1 to 6 can be used for streaming. Streaming is performed by extracting slices of a 3D CT-scan image and processing each slices independently through steps 1 to 6 . If needed, the thickness of given slice can be increased for accommodating the needs of one or another algorithm through the negotiation process between filters in the ITK framework. For instance, the algorithm of T.Q. Pham may require a neighbourhood around a given local maximum candidate that falls outside the current slice ${ }^{3}$. In this case, a slightly thicker slice can be returned through the negotiation process for accommodating the neighbourhood.

The situation for the distance transform is however different and is discussed thoroughly in Section 3.7: A first wrong distance transform is first computed on the current slice. Then, an extended region strategy is applied for determining the amount by which the thickness of the current slice should be increased so that for the distance transform to become exact on this slice.

The growth of ellipsoids while streaming is discussed in Section 3.10. The strategy used is similar to the one used for algorithms requiring a given neighbourhood, such as the algorithm of T.Q. Pham. The difference, is that the required neighbourhood around a given ellipsoid is not known in advance. This neighbourhood is therefore iteratively computed as the ellipsoid grows: while the ellipsoid grows outside the current slice, a thicker slice is requested through the negotiation process of ITK, until the ellipsoid has reached its final volume.

Section 3.11 discusses the fact that the applied above strategies for streaming have one major limitation: it is useless if a cell traverses the whole foam. However, this case can be considered quite exceptional, especially for large CT-scan images where the streaming can be useful.

Section 3.12 shows the effectiveness of the strategies used for streaming on three different datasets, where two were artificially generated and one was obtained from a real-world foam sample. For each of the three datasets, Figure 3.28 shows that indeed peak memory usage using the proposed image analysis steps are lower than a classic image analysis steps involving the watershed transform. Besides, the usage of streaming (here with ten slices) allowed to reduce the peak memory usage further by approximately a factor of ten. It even allowed to generate the geometry of an artificial honeycomb foam containing 34,410 cells, while this was not possible with the classical image analysis steps and the available computation resources.

Finally, Section 3.13 shows qualitatively that the proposed algorithms in steps 1 to 6 are indeed able to faithfully reproduce the complex geometry of real-world foam. More precisely parent ellipsoids were able to correctly and uniquely identify cell pores, while auxiliary ellipsoids were able to closely fit cell struts.

[^2]
1.5.4 Chapter 4

In this chapter, two models for the reconstruction of the geometry of foams from 3D CT-scan images were presented: the DN-CT-SCAN model and the Ellipsoidal Model.

Both models rely on a first step consisting into an image analysis of 3D CT-scan images. The image analysis stage provides the models with uniquely fitted ellipsoids and associated polyhedra to identified cells.

Section 4.1 gives a brief description of the DN-CT-SCAN model, as well as reconstruction results by this model using parent ellipsoids and their associated polyhedra. In Figure 4.6, it can be seen that the reconstruction using polyhedra gives better results in terms of the Hausdorff distances between the reconstructed geometry and the (thresholded) CT-scan images of a real-world open foam provided by A. Jung from the Saarland University, Germany. This is an expected result, as each ellipsoid is circumscribed by its corresponding polyhedron. Polyhedron thus closer matches the geometry of the cells.

Section 4.2 describes how a geometric model is obtained from parent and auxiliary ellipsoids: All ellipsoids are discretised in a set of points and associated normals. Points and associated normals strictly inside at least one ellipsoid are discarded and the other are kept and used via the Poisson surface reconstruction to obtain a surface of the microstructure of the foam. Again, Figure 4.11 shows a good agreement in terms of Hausdorff distances between the geometric model obtained by the Ellipsoidal Model and the (thresholded) CT-scan image of a real-world open foam provided by A. Jung.

Geometric models generated by the Ellipsoidal Model are output in *.geo file format that can be subsequently used by the software Gmsh. This allows to generate several meshes from one file. This feature can be useful for generating meshes at different refinement levels from the same geometry, or combining the geometric model with other geometric elements. For instance for adding some external geometries using boolean operations for the aim of satisfying any specific needs or study. This feature was actually exploited in this thesis for generating from a unique geometric model the four meshes used for computing by FEM the strain-stress curves shown in Figure 5.10.

1.5.5 Chapter 5

This chapter is devoted to assess the usefulness of both the DN-CT-SCAN model and Ellipsoidal Model for generating suitable geometries for FEM simulations from CTscan images of a real-world open foam provided by A. Jung [62], using the above proposed image analysis steps.

Section 5.2 introduces the main computational approaches for simulating the mechanical behaviour of a cellular or composite material. A popular and standard approach, is the so-called multi-scale approach which needs RVEs of the body to simulate. The ability to provide accurate geometric model of RVEs for the multi-scale approach is one of the main contribution of this thesis; another being the ability to provide identifications of cells in cellular materials using ellipsoids and polyhedra for the use in other models. This was demonstrated in this thesis with the use of the DN-CT-SCAN model.

The next sections discuss simulations using the geometries generated by both the DN-CT-SCAN model and the Ellipsoidal Model with the J_{2}-elasto-plastic material law, and for three different sets of boundary conditions. It has been concluded that the so-called mixed boundary conditions leads to the better simulated strain-stress results for both models compared to experimental strain-stress curves. In particular, the initial strain-stress slope is reproduced, as well as the plateau stage. The densification stage was however not reproduced due to the fact that contacts between struts were ignored in the FEM model.

Chapter 2

Image analysis

2.1 Summary

The present chapter details all the steps of part 1 ("Identification of cells") of the summarising algorithm 1 and discuss the differences with the standard analysis procedure generally performed when identifying cells form 3D CT-scan images (Section 2.2).

Figure 2.1 illustrates both standard and proposed image analysis procedures. Steps 1 to 4 are similar in both procedures, up to the minor details in steps 2 and 4 . Their aims are the following:

1. Thresholding: provide a gray-level image for the distance transform to be performed on; and, possibly, remove spurious voxels.
2. (Inverse) Euclidean distance transform: use the fact that voxels located at cell centres should, ideally, have lower/higher associated distance values than their neighbouring voxels.
3. Smoothing (optional): smooth the distance transform in order to reduce the number of spurious local minima/maxima to be identified.
4. Identification of local minima/maxima: provide a first guess for cell centres and seed, respectively, the watershed transform or the initial "parent" ellipsoids to be grown.
5. Watershed transform/"parent" ellipsoids: identify cells univocally.
6. "Auxiliary" ellipsoids: reproduce the local geometric features of each identified cell.

For steps 2 and 4, respectively, the Euclidean distance transform instead of its inverse is computed, and local maxima instead of local minima are searched for. Moreover, step 4 includes a small difference where spurious local maxima located on missing cell walls are discarded.

The main differences between both procedures appear from step 5 where the watershed transform (and, possibly, the H-maxima transform) of the standard procedure is replaced by the growing and merging of so-called "parent" ellipsoids. The main advantages of this replacement are:

- Growing and merging ellipsoids is computationally cheaper than a watershed transform (see Section 3.12 for an assessment).
- Over-segmentation is controlled through merging of ellipsoids (see Section 2.3.9).

Last but not least, the growth of "auxiliary" ellipsoids from their respective "parents" allows to reproduce faithfully small features captured in the 3D CT-scan images (see Section 4.2 for an assessment).

Finally, all the proposed steps have their "streamed" counter-part (see Section 3) allowing the processing of data that does not fit into the RAM.

2.2 Standard image analysis procedure

The microstructure of a foam sample is described in terms of geometric characteristics of its cells. For algorithms based on the image analysis of CT-scan images, identifying these cells and extracting the associated geometric characteristics, requires the use of a chain of image processing algorithms [88]. The aim of this processing chain is to unequivocally identify the cells and their shapes. A typical processing chain is given in References [138,88] and outlined in Figure 2.1a.

In principle, identifying the cells is easy: once a black and white image obtained via thresholding (step 1), it is only necessary to identify where the inverse distance transform (step 2) presents local minima which identify cell centres. However, in practice, the (inverse) distance transform may present several local minima for a given cell. As a consequence, superfluous local minima have to be removed. Typically, this is achieved using morphological transforms such as the watershed transform, optionally preceded by a (possibly adaptive) H-maxima transform [88, 125, 33, 57], or even gray-scale reconstruction [176], in order to avoid cell oversegmentation. Figure 2.2 illustrates this procedure.

Figure 2.1: (a) Standard image processing steps. (b) Proposed image processing steps.

(a)

(c)

(b)

(d)

Figure 2.2: Foam reconstruction: (a) sections of the original 3D image, (b) thresholding, (c) the inverted distance image, (d) and the reconstructed foam cells [138].

2.3 Proposed image analysis procedure

The following section is structured as follow:

- Description of the proposed image analysis procedure and the framework used (Section 2.3.1) and the different steps involved, namely (see Figure 2.1b):
- Section 2.3.2 (step 0) shows of to convert an RGB image to a gray-level image. This step is optional if a gray-level image is already available.
- Section 2.3.3 (step 0bis) describes how to take into account CT-scan images with non-cubic voxels. This step is also optional.
- Section 2.3.4 (step 1) explains how to identify struts and/or walls boundaries in a gray-scale image by applying a threshold.
- Section 2.3.5 (step 1bis) describes how to remove spurious voxels in a noisy image.
- Section 2.3.6 (step 2) shows how to compute the distance transform from a thresholded image; with the aim of identifying the centres of cell pores by locating local maxima of the distance transform.
- Section 2.3.7 (step 3) mentions the possibility to add an optional smoothing filter to the distance transform in order to reduce the number of spurious local maxima.
- Section 2.3.8 (step 4) describes how to compute these local maxima, how to remove local maxima located on saddle points using Hessians-based maxima selection, how these Hessians are locally computed on a given neighbourhood, and how this neighbourhood are themselves determined.
- Section 2.3.9 (step 5) explains how cell pores sizes and orientations are determined based on the growths of "parent" ellipsoids. The detection, clustering and merging of parent ellipsoids belonging to a single pore are explained in Section 2.3.10.
- Section 2.3.11 (step 6) shows how the "auxiliary" ellipsoids are constructed. Their aim is to faithfully describe the microstructure of a foam, defects and missing features included.

The standard image analysis steps usually require the use of morphological algorithms, such as the watershed transform, for unequivocally identifying cells. These algorithms are often computationally heavy, despite efforts for tackling the issue (see, e.g., References [176, 21, 159, 82] for the watershed transform). The present contribution presents an altenative processing chain for identifying cells as outlined in Figure 2.1b.

This alternative processing chain replaces the watershed transform (and, optionally, the H-maxima transform or other smoothing algorithms) by a stage of growing and clustering ellipsoids. This, as it will be shown later, is memory-wise much cheaper than morphological algorithms since it does not operate at the voxel level. Figure 2.3 shows an example of the proposed processing steps applied on a 3D CTscan image of an open aluminium foam.

Figure 2.3: Example of the proposed processing steps of Figure 2.1b applied on a 3D CT-scan image of an open aluminium foam.

2.3.1 Framework used

The proposed processing chain illustrated in Figure 2.1b and steps 1 to 6 of Algorithm 1 has been implemented using the Insight ToolKit (ITK) library as a backbone [69]. The ITK library is handful and versatile: it allows the user to construct its own processing chain using a large choice of pre-implemented algorithms. This library also allows the user to implement customised algorithms which can be integrated in any processing chain. The capabilities of the ITK library can be handful if some CT-scan images need extra processing steps due to some particular characteristics.

The ITK's paradigm lies in the use of processing objects (called hereafter filters), and multi-dimensional image data objects. Filters process the image data and can be connected together. Filters then can pass their processed images to each other. A set of connected filters passing data objects to each other is called a pipeline, see Figure 2.4.

FIGURE 2.4: Example of pipeline. (Image source: ITK Software Guide [69], pp. 198).

Once set, a pipeline is executed backward through the Update() method and a negotiation process takes place with the filters that define the pipeline. Once the requested amount of data for each filter has been determined, the pipeline is executed forward. Each upstream filter generates the requested data to the downstream filters via the GenerateData() method. Indeed, some filters may require images of different dimensions on input and/or on output. For example, an erosion filter requires an extra input (boundary padding) given the size of the requested output. On the contrary, a shrink filter will output a smaller image than the input. This negotiation process presents the appreciable advantage that a given (multi-dimensional) image can be processed into sub-regions. ITK provides a special filter for it: the StreamingImageFilter. It is therefore possible to process (multi-dimensional) images that can not fit the memory, into smaller pieces. Figure 2.5 shows an example of negotiation between filters.

Figure 2.5: Example of negotiation between filters in ITK. (Image source: ITK Software Guide [69], pp. 199).

2.3.2 Step 0: RGB to luminance filter

- Aim: convert a RGB (Red, Green, Blue) image to a gray-level image.
- Input: RGB image.
- Output: gray-level image.
- Streaming: see Section 3.3.

The filters used for the proposed image processing steps only process gray-level images. However, it may happens that some images contain red, green and blue components (R, G and B components). In that case, an RGB image can be converted in a gray-level image by computing its luminance L. Within ITK, the luminance is computed as follows:

$$
\begin{equation*}
L=0.3 R+0.59 G+0.11 B \tag{2.1}
\end{equation*}
$$

Nevertheless, it should be emphasised that equation 2.1 may not be well-suited for getting the wanted features from an RGB image. However, it is believed that most,if not all, X-ray image scan are intensity image and therefore gray-level images. In the extraordinary contrary case, the user can build its own filter pipeline from filters provided by the ITK toolbox for obtaining a satisfactory gray-level image from an RGB image. Then, this filter pipeline can directly be connected to the rest of the pipeline.

TAble 2.1: Parameters of the Spacing filter.

Parameter	Value	Description
N_{x}	1	Voxel physical length along the x-direction.
N_{y}	1	Voxel physical length along the y-direction.
N_{z}	1	Voxel physical length along the z-direction.

2.3.3 Step 0bis: Spacing filter

- Aim: add spacing information at the voxels of an image.
- Input: RGB or gray-level image.
- Output: RGB or gray-level image with spacing information.
- Streaming: see Section 3.4.

During image acquisition form a sample (by CT-scans or other means), the spatial resolution may not be isotropic. For instance, in the used datasets for this thesis, the resolution ${ }^{1}$ in the depth direction (i.e. parallel to the ray emission direction of the scanner) of the sample can be smaller than the resolution in the other perpendicular directions.

Moreover, taking into account the physical spacing between the voxels of a 3Dimage is crucial for assessing the mechanical properties of a foam. Indeed, these properties strongly depends on the geometric features of a given foam [56]. Working with a wrong spacing may modify the geometric features of the considered foam (e.g. by reducing the strut length in a given direction) and thus impact the results given by any model using this geometry. Fortunately, ITK provides an automatic mechanism for taking into account inhomogeneous spacing through the ChangeInformationImageFilter ${ }^{2}$. Table 2.1 shows the list of expected parameters by the Spacing filter.

[^3]
2.3.4 Step 1: Threshold filter

- Aim: convert a gray-level image into a binary (black and white) image.
- Input: gray-level image.
- Output: binary image.
- Streaming: see Section 3.5.

Thresholding is a basic image transformation method consisting in isolating in a gray-scale image a given foreground object from its background. This is done by checking each pixel value P_{i} and setting it to 0 if it is below a given threshold T ($P_{i}<T$) and to 1 otherwise (hence the name of the method). Although simple, the whole difficulty of the method resides in the choice of the threshold T. A simple thersholding procedure with a known threshold T is given as Algorithm 2.

```
Algorithm 2 Simple thresholding
Require: gray-scale Image \(I\) of domain \(D_{I}\).
Require: \(T \in\) range of pixel values.
    procedure SimpleThresholding(I, T)
        \(i \leftarrow 0\)
        for \(\mathbf{x}_{i} \in D_{I}\) do
            if \(I\left(\mathbf{x}_{i}\right)<T\) then
                \(I\left(\mathbf{x}_{i}\right) \leftarrow 0\)
            else
                \(I\left(\mathbf{x}_{i}\right) \leftarrow 1\)
            end if
            \(i \leftarrow i+1\)
        end for
    end procedure
```

Though, algorithm 2 reaches quickly its limits and proves to be most of the time unsatisfactory for more complex images (for instance when the illumination varies spatially inside the image [28]). Therefore, considerable efforts have been invested in the so-called automatic thresholding methods, where the threshold T is computed following some criteria. A comprehensive survey of thresholding methods has been conducted by Sezgin and Sankur in 2004 [152]. They categorised the thresholding methods as follow, according to the information they are using:

1. Histogram shape-based methods: maxima, minima and curvatures of a (possibly smoothed) histogram are analysed. For example, Raju and Neelima method [134] belongs to this category. Several histogram shape-based functions have been implemented in ITK by Beare [15].
2. Clustering-based methods: gray-level samples are clustered into two groups (background and foreground). For instance the Otsu's method [126] implemented in ITK by Mosaliganti et al. [115] belongs to this category.
3. Entropy-based methods: entropy of sub-regions of the image are used. An entropy-based function has been implemented in ITK by Beare [15]. More recently, Liang and Cuevas used an entropy measure together with meta-heuristic algorithms for computing multilevel thresholding ${ }^{3}$ [94].
4. Object attribute-based methods: shape similarities between objects and coincidence between geometric entities are used.
5. Spatial methods: higher probability distribution functions and sometimes correlation between pixels are used.
6. Locally adaptive methods: the threshold value T is locally adapted at each pixel given some image characteristics. For example, the method developed by Bradley and Roth [28] belongs to this category.

For the foam images considered, it has been noticed that the thresholding method of Ridler and Calvard [139], using the image histogram computed by the ITK class for the switching function, gave all satisfaction. The algorithm developed by Ridler and Calvard can be categorised as an iterative clustering-based method. The algorithm 3 is described here below ${ }^{4}$. Table 2.2 describes its unique parameter and a typical value range for it which depends on the bit depth of the considered image.

The idea behind algorithm 3 is as follow:

1. Construct the histogram of the gray-level image (line 6).
2. Compute a first threshold thresh as the average histogram value (lines 7 and 8).
3. Compute two thresholds mat and mbt as the average histogram values below and above the value of thresh (lines 9 to 12).
4. Compute a new threshold value as the average of mat and mbt, and set tresh as this new threshold value (line 13).
5. Repeat from step 3 until the new threshold value does not significantly change from the old one (lines 14 to 21).

It should be emphasised that any of the above thresholding methods can be used if one of them is to be found more accurate and/or convenient to use. Some of them are already implemented inside ITK and can be readily used, the others can be implemented and added to ITK with minimal effort ${ }^{5}$.

[^4]```
Algorithm 3 Ridler \& Calvard thresholding
Require: gray-scale Image \(I\) of domain \(D_{I}\).
Require: \(N b _\)Bins: number of histogram bins.
Require: Bin_min: minimum histogram bin value.
Require: Bin_max: maximum histogram bin value.
 procedure RidlerCalvard(Image)
 \(T \leftarrow\) ComputeThresh \((I)\)
 SimpleThresholding(I, T) \(\triangleright\) See algorithm 2.
 end procedure
 procedure COMPUTETHRESH(\(I\))
 Hist \(\leftarrow\) ComputeHistogram \((I)\).
 \(\mu \leftarrow\) COMputeCumSum(Hist,0,Nb_Bins)
 thresh \(\leftarrow\) COMPUTETHRESHSUB(Hist,0,Nb_Bins, \(\mu\))
 \(\mu_{2} \leftarrow\) COMPUTECumSum(Hist,0,round(thresh))
 \(m b t \leftarrow\) COMPUTETHRESHSUB(Hist, 0 , round (thresh), \(\mu_{2}\))
 \(\mu_{3} \leftarrow\) ComputeCumSum(Hist, round(thresh), Nb_Bins)
 mat \(\leftarrow\) COMPUTETHRESHSUB(Hist, round(thresh), Nb_Bins, \(\mu_{3}\))
 newThresh \(\leftarrow(\) mat \(+m b t) / 2\)
 while \(\operatorname{abs}(\) thresh - newThresh \() \geq 1\) do
 thresh \(\leftarrow\) newThresh
 \(\mu_{2} \leftarrow \operatorname{COMPUTECUMSUM}(\) Hist, 0 , round(thresh) \()\)
 \(m b t \leftarrow\) COMPUTETHRESHSUB(Hist, 0 , round (thresh), \(\mu_{2}\))
 \(\mu_{3} \leftarrow\) COMPUTECUMSUM(Hist, round (thresh), Nb_Bins)
 mat \(\leftarrow\) COMPUTETHRESHSUB(Hist, round (thresh), \(N b\) _Bins, \(\mu_{3}\))
 newThresh \(\leftarrow(\) mat \(+m b t) / 2\)
 end while
 return thresh
 end procedure
```

Table 2.2: Parameter of the Threshold filter.

| Parameter | Typical value range | Description |
| :--- | :--- | :--- |
| Nb_Bins | $[256,65536]$ | Number of bins in histogram. |

```
procedure COMPUTEHISTOGRAM(I)
 interval \(\leftarrow \frac{\text { Bin_max-Bin_min }_{N b-B i n s-1}^{1}}{\bar{N}}\)
 Hist \(\leftarrow\) zero vector of length \(N b _B i n s\)
 for \(\mathbf{x}_{i} \in D_{I}\) do
 histIndex \(\leftarrow I\left(\mathbf{x}_{i}\right) /\) interval
 Hist \([\) histIndex \(] \leftarrow\) Hist \([\) histIndex \(]+1\)
 end for
 return Hist
 end procedure
 procedure COMPUTECUMSUM(Hist, begin, end)
 sum \(\leftarrow 0\)
 for begin \(\leq i<\) end do
 sum \(\leftarrow\) sum + Hist \([i]\)
 end for
 return sum
 end procedure
 procedure COMPUTETHRESHSUB(Hist, begin, end, \(\mu\))
 thresh \(\leftarrow 0\)
 step \(\leftarrow \frac{\text { Bin_max-Bin_min }}{N b \text { Bins-1 }}\)
 for begin \(\leq i<\) end do
 thresh \(\leftarrow\) thresh \(+i \times\) step \(\times\) Hist \([i]\)
 end for
 return thresh \(/ \mu\)
end procedure
```


### 2.3.5 Step 1bis: Box filter

## $2 \rightarrow 2$

- Aim: remove small groups of isolated voxels from a binary image.
- Input: binary image.
- Output: processed binary image with small groups of voxel removed.
- Streaming: see Section 3.6.


## Origin of the noise in tomographic images

Foam images obtained by X-ray tomography are naturally noisy. The origin of this noise is two-fold. One contribution comes from the electrical noise and round-off error of the detector. The other contribution comes from the X-ray itself which is not strictly monochromatic [72,165]. Moreover, for foam thin cell walls may appear transparent to the X-rays, especially for polymeric foam which consist in lighter elements than metallic foams.

Indeed, for a narrow beam of mono-energetic photons of incident intensity $I_{0}$ passing through a material of mass thickness $\tau$ and density $\rho$, the output intensity $I$ is given by (see Reference [124]):

$$
\begin{equation*}
I=I_{0} \exp (-(\mu / \rho) \tau) \tag{2.2}
\end{equation*}
$$

Where the ratio $(\mu / \rho)$ is the attenuation coefficient.
The typical wavelength of a X-ray beam is of the order of $\lambda \sim 1 \mathrm{~nm}$, which gives a typical energy of $E=h c / \lambda \sim 3.10^{-2} \mathrm{MeV}$. Where, $h \approx 6,626.10^{-34} \mathrm{~J} . s$ is the Planck constant, $c=299,792,458 \mathrm{~m} / \mathrm{s}$ is the light speed in vacuum, and $1 \mathrm{MeV}=10^{6} \mathrm{eV} \approx$ $1,602.10^{-13} \mathrm{~J}$.

For this energy of $3.10^{-2} \mathrm{MeV}$, NIST tables (see Table 2.3) give the values for the attenuation coefficient for different materials. From this table, it is possible to infer that foam constituted from light elements (hydrogen, oxygen and carbon) will present an attenuation coefficient one order (or more) of magnitude smaller than nickel and aluminium foams. Consequently, X-ray photons are more susceptible to be absorbed by metallic foams, and, therefore, longer scan times are necessary for these type of foams in order to gather enough photons for getting an usable image.

## Consequences on foam tomographic images.

The small attenuation coefficients for polymeric foams and the fact that these foams have thin walls produce tomographic images where walls are often missing. Moreover, noisy features have the same gray level intensity of the wanted geometric features [165]; making noise filtering challenging.

For metallic foams, large attenuation coefficients imply longer scanning times in order to obtain an acceptable signal-to-noise ratio for the CT-scan images.

TABLE 2.3: NIST table of the mass attenuation coefficients $\mu / \rho$ for a monochromatic photon beam of $3 \cdot 10^{-2} \mathrm{MeV}$ (typical X-ray energy) for different materials [124].

| Material | $\left(\mu / \rho\left(\mathrm{cm}^{2} / \mathrm{g}\right)\right.$ |
| :---: | :---: |
| Hydrogen | $3,57.10^{-1}$ |
| Oxygen | $3,779.10^{-1}$ |
| Carbon | $2,562.10^{-1}$ |
| Aluminium | $1,126.10^{0}$ |
| Nickel | $1,034.10^{1}$ |

## Noise removal

A noise removal technique: binary opening The most commonly used tool for noise filtering is the opening procedure [125]. A binary opening is a morphological operation that can be used to remove noisy pixels from a black and white image, without disturbing it too much. In consists in a binary erosion, followed by a binary dilation.

The aim of the erosion step is to get rid of the noisy pixels, while the dilation tries to recover as much as possible relevant geometric features erased by the erosion step (see Reference [155], pp.105).

Binary erosion In order to perform an erosion, a structuring element is needed. A structuring element is a small connected set of pixels used to probe the considered image [155]. Last but not least, in order to completely define a structuring element, an origin has to be associated to it. Usually, this origin is taken as the centre of the structuring element. Finally, the size and shape of the structuring element have to be chosen accordingly to the geometries of the image objects to be processed.

The technique of binary erosion deals with binary images, i.e. images in which pixels can take only two values (often referred as black and white pixels or background and foreground pixels). For an image $I$, a structuring element $B$ and a connected subset of foreground pixels $X$, the erosion $E(X, B)$ of set $X$ by the structuring element $B$ can be defined as "the locus of points $\mathbf{x}$ such that $B$ is included in $X$ when its origin is placed at $\mathbf{x "}^{\prime \prime}$ (P. Soille [155], pp.65):

$$
\begin{equation*}
E(X, B)=\left\{\mathbf{x} \mid B_{x} \subseteq X\right\} \tag{2.3}
\end{equation*}
$$

More intuitively, only subsets of connected pixels $X$ in which the structuring element $B$ can fit are kept. The other subsets are discarded (their foreground pixels are set to the value of the background pixels). Figure 2.10 b shows a simple example of erosion. Note that the operation of erosion can be generalised to gray-scale images (see Reference [155]) or in term of geodesic distances (see Reference [176]).

Binary dilation As for the binary erosion, the binary dilation deals with binary images and uses a structuring element. For an image $I$, a structuring element $B$ and a connected subset of foreground pixels $X$ in $D_{I}$, the dilation $D(X, B)$ of set $X$ by the structuring element $B$ can be defined as "the locus of points $\mathbf{x}$ such that $B$ hits $X$ when its origin coincides with $\mathbf{x}^{\prime \prime}$ (P. Soille [155], pp.68):

$$
\begin{equation*}
D(X, B)=\left\{\mathbf{x} \mid B_{x} \cap X \neq \varnothing\right\} \tag{2.4}
\end{equation*}
$$

More intuitively, any set hitting the structuring element are expanded by the structuring element. Figure 2.10c shows a simple example of dilation. Note that the operation of dilation can be generalised to gray-scale images (see Reference [155]) or in term of geodesic distances (see Reference [176]).

Binary opening The technique of binary opening combines an erosion followed by a dilation. An opening $O(X, B)$ on a connected subset $X$ belonging to an image $I$ with a structuring element $B$ can be defined by equation 2.5 .

$$
\begin{equation*}
O(X, B)=D(E(X, B), B) \tag{2.5}
\end{equation*}
$$

The aim of binary opening is thus to try to keep the wanted features of an image while discarding the unwanted ones (often smaller than the wanted features) and is widely used in image processing (as in the Insight Toolbox [92], or in Mavi [171]). However, erosion and dilation are not inverse of each other. In fact, there is no inverse to both transformations (see Reference [155], pp. 70). As a consequence, even if opening seems to be able to keep quite accurately the wanted geometric feature of an image as it the case for Figure 2.10d, it may fails in other cases (depending on the choice of the structuring element) as discussed later for thin cell walls in Figures 2.13 e and 2.13 f where thin cell walls are partially lost.


FIgURE 2.10: Effect of different morphological operations on an initial binary image (a).

## An alternative noise removal technique: box filter

As noted in the previous paragraph, the classic opening is not well suited for denoising tomographic images of foams. Though, adaptive techniques exists for computing the opening of a noisy image (see Reference [36] for a survey of the field), which may be suitable; a simpler filtering technique through a box has been preferred here. This technique has been chosen because its simplicity to implement and also its streaming capabilities, i.e. its ability to process images by parts.

The idea of the box filter is as follows: A parallelepipedic box, which size is set by the user, scans each foreground pixel of the image. If a cluster of connected foreground pixels is found to fit entirely inside the box, this cluster is discarded (i.e. its belonging foreground pixels are set as background pixels), otherwise the cluster is kept (figure 2.11).

(a) A cluster of foreground pixels fits into the scanning box and is therefore discarded.

(b) A cluster of foreground pixels does not fit into the scanning box and is therefore kept.

FIGURE 2.11: Intuitive idea of the box filter. A box scans the image pixel by pixel and discards any cluster of foreground (white) connected pixels that fits into the box.

The implementation of this idea is as follow: each time the current scanned pixel turns out to be a foreground pixel, it is marked and, all its connected neighbours are also marked and inserted into a FIFO queue (First In, First Out), provided they are foreground pixels and not already marked. The first element in the FIFO queue is marked and then erased, and all unmarked foreground neighbours pixels of the next element (which become the first after the erasure) are marked and inserted at the end of queue. The first (a.k.a. old second element) element is again erased and the process of inserting unmarked foreground neighbours pixels continues until the FIFO queue becomes empty. Step by step a cluster of marked pixels is constructed. Figure 2.12 illustrates the process. Table 2.4 shows the parameters needed by the filter with a typical value range. These values have to be chosen with respect to the maximum size of connected sets of pixels to be discarded.

Table 2.4: Parameters of the Box filter.

| Parameter | Typical value range | Description |
| :--- | :--- | :--- |
| $B_{x}$ | $[5,20]$ | Box size along the $x$-direction. |
| $B_{y}$ | $[5,20]$ | Box size along the $y$-direction. |
| $B_{z}$ | $[5,20]$ | Box size along the $z$-direction. |

During this process, an axis-aligned circumscribing box of the cluster is computed on the fly (the box grows each time a new pixel is added to the FIFO queue). Eventually, the axis-aligned circumscribing box of the cluster is then compared to the user's parallelepipedic box. If the circumscribing box fits inside the parallelepipedic one, the current cluster of pixels is discarded (i.e. all pixels are marked as background pixels), otherwise it is kept. Once the current cluster has been processed, the process continues with the next foreground pixel until no more foreground pixels are to be found or the end of the image is reached. Algorithm 4 describes the process in more details.

Figure 2.13 compares the opening process using a spherical structuring element (two-bottom left images) with the above process of box filter (two-bottom right images). It can be seen that the opening tends to smooth and even discard cell walls, while the box filter keep the walls intact provided they are not fragmented into small disconnected pieces. The unwanted effect of discarding cell walls by the opening process may perhaps be mitigated by using a more suitable structuring element. However, it is not clear which could be such structuring element. Instead, the box filter is simpler to use (no structuring element to choose) and leads to better results.


FIGURE 2.12: Illustration of the box filter process.

(a) Original image of foam slice.

(c) Opening applied to thresholded image (b) with a flat ball structuring element of radius two pixels.

(e) Difference between thresholded image (b) and opening (c).

(b) Threshold applied to image (a).

(d) Box filter applied to thresholded image (b) with a box of side ten pixels.

(f) Difference between thresholded image (b) and box filter (d).

Figure 2.13: Noise filtering: opening versus box filter. Opening leads in discarding some thin cell walls (Figure (e)) while they are more preserved with the box filter (Figure (f)).

```
Algorithm 4 Box filter
Require: Binary (black \& white) image \(I\) of domain \(D_{I}\).
Require: Axis-aligned Box.
Require: Foreground \& Background pixel values.
 procedure BoxFilter(I, Box, Foreground, Background)
 \(i \leftarrow 0\)
 cluster \(\mathrm{Nb} \leftarrow \max (\) Foreground, Background \()+1\)
 for \(\mathbf{x}_{i} \in D_{I}\) do
 if \(I\left(\mathbf{x}_{i}\right)==\) Foreground then
 queиe \(\leftarrow \mathbf{x}_{i}{ }^{\text {'s }}\) s position. \(\left(x_{i, 1}, x_{i, 2}, \ldots\right)\)
 \(I\left(\mathbf{x}_{i}\right) \leftarrow\) cluster \(N b\)
 clusterBox \(\leftarrow\left[x_{i, 1}, x_{i, 1}, x_{i, 2}, x_{i, 2}, \ldots\right] \quad \triangleright\) Degenerated box.
 \(\triangleright\) Box described by: \(\left[x_{\min }, x_{\max }, y_{\min }, y_{\max }, \ldots\right]\)
 while queue \(\neq \varnothing\) do \(\quad \triangleright N_{I}(\ldots)\) : neighbourhood of...
 for \(\mathbf{x}_{j} \in N_{I}(\) queue. front ()\() \wedge I\left(\mathbf{x}_{j}\right)==\) Foreground do
 quеие \(\leftarrow \mathbf{x}_{j}\).
 \(I\left(\mathbf{x}_{j}\right) \leftarrow\) cluster \(N b\)
 for \(\mu=0,1, \ldots, n\) do \(\quad \triangleright n\) : number of dimensions.
 if clusterBox \((2 \mu)>x_{j, \mu}\) then
 clusterBox \((2 \mu) \leftarrow x_{j, \mu}\)
 end if
 if clusterBox \((2 \mu+1)<x_{j, \mu}\) then
 clusterBox \((2 \mu+1) \leftarrow x_{j, \mu}\)
 end if
 end for
 end for
 queиe.pop () \(\triangleright\) Erase position of first pixel in queue.
 end while
 if clusterBox \(\subset\) Box then
 for \(\mathbf{x}_{k}\) that was in queue do
 \(I\left(\mathbf{x}_{k}\right) \leftarrow\) Background
 end for
 end if
 cluster \(\mathrm{Nb} \leftarrow\) cluster \(\mathrm{Nb}+1\)
 end if
 end for
 return \(I\)
 end procedure
```


### 2.3.6 Step 2: Distance filter

- Aim: compute the Euclidean distance transform of a binary image, where white (feature) voxels represent cell walls/struts and are assigned distance zero.
- Input: binary image with black and white (feature) voxels.
- Output: gray-level image ${ }^{6}$ with each voxel value equal to the Euclidean distance to the closest feature voxel.
- Streaming: see Section 3.7

In the field of image analysis, the notion of distance between pixels plays a major role [155]. A distance carries with him the notions of balls ${ }^{7}$ which themselves provides important topological notions, such as the interior ${ }^{8}$, adherence ${ }^{9}$ and bound$a r y{ }^{10}$ of a given domain.

Moreover, a distance provides a notion of separations between points and is intimately linked to binary erosion, binary dilation, opening and closing through thresholding (see References [35] and [155], section 3.5 .1 pp .75 for more details). In the modelling of cellular materials, the distance transform of an image (see Appendix B) is widely used (often as input for a watershed transform, see for instance References [149, 165, 138, 33, 38, 103, 95, 169, 32, 156]). Indeed, the maxima of the distance transform are (generally) located at the cell centres, while the zeros of the distance transform allow to identify (partially) cell walls. The Ellipsoidal Model (described in Section 4.2) takes advantage of the distance transform for having a first insight about cell centres and cell walls and uses it for initialising an ellipsoid-based algorithm for identifying the cells.

## Distance transform algorithms

The first reference sequential algorithm for computing the $d_{1}$ and $d_{\infty}$ distance transforms (DT) is due to A. Rosenfeld and J. L. Pfaltz [143]. This algorithm performs one forward scan and one backward scan for computing the $d_{1}$ (or $d_{\infty}$ ) distance. It is thus linear in term of number of pixels. The algorithm uses one forward and one backward scan of the image as well as forward and backward neighbourhoods of the current scanned pixel ${ }^{11}$. Although it is not used in this thesis, the algorithm of A. Rosenfeld and J. L. Pfaltz is given by algorithm 5.

[^5]```
Algorithm 5 DT Rosenfeld and Pfalts [143]
Require: Binary image \(I\) of domain \(D_{I}\).
Require: Background pixels to 0 .
Require: Foreground pixels to 1.
    procedure \(D T_{\text {ROSENFELD }}(I)\)
        for forward scan of all pixels \(\mathbf{x}_{i} \in D_{I}\) do
            if \(I\left(\mathbf{x}_{i}\right)=1\) then
                    \(I\left(\mathbf{x}_{i}\right) \leftarrow 1+\min \left\{I(\mathbf{y}) \mid \mathbf{y} \in N_{I}^{\leftarrow}(\mathbf{x})\right\}\)
            end if
        end for
        for backward scan of all pixels \(\mathbf{x}_{i} \in D_{I}\) do
            if \(I\left(\mathbf{x}_{i}\right) \neq 0\) then
                \(I\left(\mathbf{x}_{i}\right) \leftarrow \min \left\{I\left(\mathbf{x}_{i}\right), 1+\min \left\{I(\mathbf{y}) \mid \mathbf{y} \in N_{I}\left(\mathbf{x}_{i}\right)\right\}\right\}\)
            end if
        end for
    end procedure
```

However, for reconstructions of cellular materials (especially foams), an Euclidean distance measure is often preferred. Indeed, reconstruction algorithms are considerably affected by the distance used in distance transforms (see Reference [125], pp. 27). In the field of reconstruction of cellular materials, the most natural and most used distance is the Euclidean distance, through the use of Voronoï diagrams (see, e.g., References [140, 55, 149, 93]). Moreover, the Euclidean distance is the simplest one (its associated metric is the identity) and derives from a norm as well from a scalar product. Nevertheless, it should be noted that the power distance distance is increasingly used through the Laguerre tessellation (see, e.g., References [149, 138, 182, $95,169]$). Though, the computation of the Euclidean distance remains mandatory, as the power distance relies on the Euclidean distance by its very definition. Finally, more "esoteric" distances have been introduced by Sonon et al. [156], with the purpose of using them for describing more precisely foam microstructures. However, the properties of the distances introduced by Sonon et al. are not fully understood yet and need to be further investigated.

FIGURE 2.15: Examples of 2-dimensional digitalisation networks.

Algorithms for the Euclidean distance.

Several efforts have been made for computing approximate or exact Euclidean distances in images. Among them can be found:

- Danielsson's algorithm [37]. This algorithm computes two integers L_{1} and L_{2} given, respectively the horizontal and vertical path lengths separating two pixels. The Euclidean distance between those two pixels is then given by $\sqrt{L_{1}^{2}+L_{2}^{2}}$.
- The chamfer transformations proposed by Borgerfors [24] measure the minimal length of all possible paths between two pixels p and q using a weighted version of the digitalisation network of the image.
For instance, for 2-dimensional images, by measuring the number L_{1} of horizontal and the numbver L_{2} of vertical pixels separating p from q, their Euclidean distance is given by $\sqrt{L_{1}^{2}+L_{2}^{2}}$. If the digitalisation network is a $8-$ connected network (see Figure 2.15c) weighted by w_{1} for its horizontal and vertical edges and by w_{2} for its diagonal edges, the chamfer distances become (see Figure 2.16):

$$
d_{w w_{1}, w_{2}}=L_{2} w_{2}+\left(L_{1}-L_{2}\right) w_{1}
$$

For this case, the optimal weights are $w_{1}=1, w_{2}=1 / \sqrt{2}+\sqrt{\sqrt{2}-1}$. With respect to the exact Euclidean distance, the error $\left\|d_{e}(p, q)-d_{w_{1}, w_{2}}(p, q)\right\|$ of this optimal chamfer distance amounts to approximatively $0.06 L_{1}$. Thus, the error grows when the distance between pixels p and q increases.
It is possible to reduce this error by complexifying the weighting of the digitalisation networks thanks to masks. However, larger masks do not lead to significant accuracy gain [23] and slow down the computation of the chamfer distance (see Reference [125], pp. 27).

- Many other algorithms as Vincent's algorithms based on chain propagations [175] or Saito and Toriwaki based on manipulations of squared distance [145]. A more comprehensive description and comparisons between different Euclidean DT algorithms has been conducted by Fabbri et al. [46].

Figure 2.16: Schematic example for computing a chamfer distance: weighted shortest path between two pixels along the digitalisation network. Figure inspired from Figure 7 of [24].

Maurer et al. algorithm For the Euclidean distance transform, it has been chosen here to use an algorithm developed by Maurer et al. [111] and for which a parallelised version has been implemented in ITK by Staubs et al. [158]. This algorithm computes efficiently the exact Euclidean distance transform and is linear with respect to the number of pixels in the image. It relies on dimensional reduction and partial Voronoï diagram constructions. The algorithm consists in scanning the image along each of its directions and finding the closest feature pixel for a given pixel. This particularity make the algorithm suitable for streaming a 3D image by slices. Details on how this algorithm works can be found in Appendix B. Figure 2.17 illustrates an Euclidean distance transform computed on a 2D binary image of a foam. It can be seen that local maxima of the distance transform roughly correspond to the centres of cells. In general, unfortunately, local maxima only give a rough first guess of cell centres, and more post-processing is needed for accurately identifying cell centres. This is the topic of the next sections.

FIGURE 2.17: Original 2D binary image of a foam (left) and Euclidean distance transform using Maurer et al. algorithm [111]. Warmers colours stand for larger distances.

2.3.7 Step 3: Distance post-processing

- Aim: smooth a distance transform or perform other post-processing tasks.
- Input: gray-level image representing a distance transform.
- Output: gray-level image representing the corresponding smoothed distance transform.
- Streaming: see Section 3.8

This step is optional. If some post-processing of the distance transform is needed, it can be added here. For instance, a smoothing step may be desirable for avoiding superfluous maxima and oversegmentation [138]. For the datasets used in this thesis, such an optional processing step was not proven necessary and none was used.

2.3.8 Step 4: Local maxima

- Aim: given a gray-level image representing the distance transform of a binary foam image, identify local maxima that will be used as seeds for growing ellipsoids.
- Input: gray-level image.
- Output: gray-level image marked with local maxima.
- Streaming: see Section 3.9.

Finding local maxima in a gray-scale image is a important basic operation in image analysis for mainly two reasons. Firstly, local maxima (and local minima) often mark relevant distinct objects [18, 155, 33]. Secondly, the ability of finding local maxima (and local minima) can be useful for the development of more advanced algorithms such as queue-based reconstructions $[142,162]$. Conversely, the presence of superfluous local maxima (or minima) in noisy images can lead to oversegmentation for the watershed transform [155, 149, 138]; which can have been a motivating reason for the development of H-maxima (and H-minima) transforms [155, 149].

The basic idea of the watershed transformation is the following: let's be a grayscale image to be seen as the topographical representation of a landscape. Let's drop a water fall on this "landscape". The water will flow towards local minima (a.k.a. "valleys") of the landscape which will constitute "catchment basins". Catchment basins are progressively flooded and, when two different basins reach each-other, a "dam" at their meeting points is "constructed". Figure 2.20 illustrates the concept of watershed transformation seen as a flooding process.

Figure 2.20: Gray-scale image seen as the topographic representation of a landscape. The local minima are progressively flooded and constitute "catchment basins". When two catchment basins meet, "dams" separating them are constructed. (Image from P. Soille [155], Figure 9.2).

For the interested reader, some notions related to mathematical morphology, and more formal definitions of the watershed and H-maxima transforms are given in Appendix C.

Non-maximum suppression

The technique of non-maximum suppression for gray-scale images was first used in the context of edge-thinning in digitalised images [144]. It was then developed and generalised to edge-corner detection and localisation of two-dimensional features [80]. The algorithm used here for the detection of local maxima is a modified version of the algorithm developed by T.Q. Pham [130].

The ITK library [69] provides mainly two filters for finding maxima, namely the itk::HConvexImageFilter and the itk::ValuedRegionalMaximaImageFilter. The last one from R. Beare and G. Lehman [16] is currently the fastest ${ }^{12}$. Nevertheless, the current implementation of these filters ${ }^{13}$ does not allow streaming. For instance, the algorithm of R. Beare and G. Lehman (see Algorithm 6) relies on a flooding approach, where the flooding region cannot be predicted a priori, while the itk::HConvexImageFilter relies on a H -convex transformation.

```
Algorithm 6 R. Beare and G. Lehman algorithm [16] for finding regional maxima
inside a grayscale image I.
Require: gray-scale image I.
    procedure BeareLehmanREGIONALMAXIMA(I)
        Copy the input image I to an output image J.
        Visit each pixel of the input image I.
        if The corresponding output value is not maximal (meaning this pixel has
    not already been visited) then check all the neighbours. then
            if Any of the neighbouring gray level are bigger than the current pixel
    value, then this pixel can not be a regional maxima. then
            Flood fill the region, in the output image, with the same gray level as
                the current pixel that contains the current pixel, with the minimal
                value for the pixel type [sic].
            end if
        end if
        Goto to next input pixel, if any.
        return Output image J.
    end procedure
```

[^6]

Figure 2.21: Comparison of detections of local maxima in a simple gray-scale image (a). Local maxima detected by the original algorithm of T.Q. Pham (b), and by its modified version (c). Note that the original algorithm does not detect plateaus.

Algorithm of T.Q. Pham

The idea of the scan-line algorithm of T.Q. Pham is to scan a gray-scale image I of dimension n along a 1D-direction and find local peaks along this direction. Then, the pixels located in the neighbourhoods of the local peaks are scanned and compared against the local peaks in order to determine local maxima.

The scan-line algorithm proposed by T.Q. Pham allows streaming using slices that are aligned with the chosen 1D-direction, and then requests only a constant neighbourhood around the peaks. This latest request can easily be handled using the image region negotiation process between filters, in a similar fashion that has been done for the box filter.

The original algorithm of T.Q. Pham was initially designed for processing 2-dimensional images and was written in Matlab (see Reference [130]). A modified C++ version of this algorithm for n-dimensional images has been written for the needs of this thesis. The core of the algorithm of T.Q. Pham consisting in scanning lines in 2-dimensional images, the modification for n -dimensional images is straightforward: it only needs to apply the original algorithm to a given 2D slice and then repeat it on the other slices. The modified C++ version has been implemented as a standard streamable ITK filter and, in addition to streaming, plateau detection and the ability to discard saddle points by computing discrete Hessians have been added.

All-in-all, the core of the algorithm of T.Q. Pham remains untouched, while some improvements for getting a streamable C++ version on n-dimensional images and plateaus and saddle points detections were added to it. As a result, the modified version of the algorithm of T.Q. Pham is not faster than the original one (as it performs some additional checks for plateaus and saddle points detections) but it is more general as shown in Figure 2.21.

Description of the modified version of the algorithm of T.Q. Pham. The algorithm searches for local maxima over $(2 R+1)^{n}=\overbrace{(2 R+1) \times \ldots \times(2 R+1)}^{n}$ neighbourhoods of radius R. Given a grayscale image I of parallelepipedic domain $D_{I}=$ $\left[0, D_{1}\right] \times \ldots \times\left[0, D_{n}\right]$, a one-dimensional scan-line of I is performed. Let's, without loss of generality, the scan direction be the x-direction (first leading direction).

In order to set notations, let's, for a pixel $\mathbf{x} \in D_{I}$, write:

- $\tilde{I}_{0}(\mathbf{x})=I\left(x_{1}, 0,0, \ldots, 0\right)$.
- $\tilde{I}_{1}(\mathbf{x})=I\left(x_{1}, 1,0, \ldots, 0\right)$.
- $\tilde{I}_{2}(\mathbf{x})=I\left(x_{1}, 2,0, \ldots, 0\right)$.
- ...
- $\tilde{I}_{D_{1}}(\mathbf{x})=I\left(x_{1}, D_{1}, 0, \ldots, 0\right)$.
- $\tilde{I}_{D_{1}+1}(\mathbf{x})=I\left(x_{1}, 0,1, \ldots, 0\right)$.
- ...
- $\tilde{I}_{D_{1}+D_{2}}(\mathbf{x})=I\left(x_{1}, 0, D_{2}, \ldots, 0\right)$.
- ...
- $\tilde{I}_{D_{1} D_{2}+D_{2}}(\mathbf{x})=I\left(x_{1}, D_{1}, D_{2}, \ldots, 0\right)$
- ...
- ...
- $\tilde{I}_{D_{1} \ldots D_{n}+D_{2} \ldots D_{n}+\ldots+D_{n}}(\mathbf{x})=I\left(x_{1}, D_{1}, D_{2}, \ldots, D_{n}\right)$.

For $d \in\left[0, D_{1} \ldots D_{n}+D_{2} \ldots D_{n}+\ldots+D_{n}\right]$ fixed and two consecutive pixels $\mathbf{x}^{(i)}$ and $\mathbf{x}^{(i-1)}$ along the scan line d, let's g be the sign of the finite difference of \tilde{I}_{d} :

$$
\begin{equation*}
g: D_{I} \rightarrow\{-1,0,1\} ; \mathbf{x}^{(i)} \mapsto g(\mathbf{x}(i))=\operatorname{sgn}\left(\tilde{I}_{d}\left(\mathbf{x}^{(i)}\right)-\tilde{I}_{d}\left(\mathbf{x}^{(i-1)}\right)\right) . \tag{2.6}
\end{equation*}
$$

Moreover, let's h be the finite difference of g :

$$
\begin{equation*}
h: D_{I} \rightarrow\{-2,-1,0,1,2\} ; \mathbf{x}^{(i)} \mapsto h\left(\mathbf{x}^{(i)}\right)=g\left(\mathbf{x}^{(i)}\right)-g\left(\mathbf{x}^{(i-1)}\right) . \tag{2.7}
\end{equation*}
$$

Where:

- $h\left(\mathbf{x}^{(i)}\right)=-2$ at local peaks with their corresponding neighbourhood N_{I} inside $D_{I}\left(N_{I} \subset D_{I}\right)$.
- $h\left(\mathbf{x}^{(i)}\right)=-1$ at other local peaks.
- $h\left(\mathbf{x}^{(i)}\right)=+2$ at other local throughs with their corresponding neighbourhood N_{I} inside $D_{I}\left(N_{I} \subset D_{I}\right)$.
- $h\left(\mathbf{x}^{(i)}\right)=+1$ at other local throughs.
- $h\left(\mathbf{x}^{(i)}\right)=0$ elsewhere.

Figure 2.22a sketches an example of the result obtained with functions g and h along a scan line. A first set S_{1} of maxima candidates is computed by scanning the image I along the \mathbf{x}-directions and taking pixels \mathbf{x} with strictly negative corresponding Hessian $(h(\mathbf{x})<0)$. Then a second set S_{2} of maxima candidates is obtained by decimating the set S_{1}. Figure 2.22 b illustrates the decimation process where the maxima candidates of set S_{1} are selected against their $2(2 R+1)$ neighbours along the current scan line. Pixels on a downward slope (hollow pixels) can be immediately ruled out as maxima candidates. Red star-shaped pixels, on the other hand, need to be compared against the circled pixels as they appear after a slope change in their $2(2 R+1)$ neighbourhood.

(a) Computation of the sign of the discrete derivative and its Hessian along a line of pixels.

(b) Comparison of the maxima candidates against their $(2 R+1)(R=1)$ neighbours along the scan direction. Hollow pixels does not need to be compared to maxima candidates (circled pixels) as they are located on a downward slope.

Figure 2.22: Sketch of the scan-line algorithm of T.Q. Pham along a one-dimensional line of pixels. (Images from Figure 3 of the article of
T.Q. Pham [130].)

Eventually, the maxima candidates of set S_{2} are compared against their n-dimensional neighbourhoods $N_{I}(\mathbf{x})=\left[x_{1}-(2 R+1), x_{1}+(2 R+1)\right] \times \ldots \times\left[x_{n}-(2 R+1), x_{n}+\right.$ $(2 R+1)]$ (see Algorithm 10).

Note on boundaries If the pixel \mathbf{x} lies on a boundary of the image I, part of its neighbourhood $N_{I}(\mathbf{x})$ does not exist anymore. In order to detect maxima located on the image boundaries, the image is padded over a radius $(2 R+1)$ with zeros (the minimum possible value for an unsigned distance).

Hessian-based maxima selection

The local maxima found by the algorithm of T.Q. Pham may not all be genuine local maxima. Some of these maxima may be saddle points ${ }^{14}$. As the aim is to locate cell centres thanks to the maxima of the image I obtained by an Euclidean distance transform (definition B.2), these saddle points have to be avoided. Indeed, saddle points are located at missing cell wall regions and not at cell centres (see Figure 2.23a).

Therefore, it is needed to detect and discard saddle points. This can be done by looking at the eigenvalues of the Hessian of image I evaluated at each maximum.

[^7]

FIGURE 2.23: Filtering of saddle points by computing the eigenvalues of the Hessian evaluated at the maxima candidates.

If all the eigenvalues are negative, then the considered maximum is a genuine one, otherwise it is a saddle point and it should be discarded.

In practice, for noisy images, some tolerance tol >0 should be added on the criterion of the negativity of the eigenvalues of the Hessian. In her master-thesis [99], A. Lopez-Reina suggest to use the following criteria:

1. If all eigenvalues $<-t o l$, then accept the associated maximum.
2. If $-t o l<$ some eigenvalues $<t o l$, and the other $<-t o l$, then accept the associated maximum.
3. If there is some eigenvalues $\lambda_{i}>$ tol, and if $\lambda_{\text {min }}$ is the smallest eigenvalue such that $\lambda_{\min }<0$, then accept the associated maximum if:

$$
\begin{equation*}
\lambda_{i} \leq \text { tol }\left|\lambda_{\text {min }}\right| \tag{2.8}
\end{equation*}
$$

Reject it otherwise.

The above criteria can be summarised as follow: if $\lambda_{\max }$ is the highest positive eigenvalue (if any) and $\lambda_{\text {min }}$ is the smallest eigenvalue, then:

1. If there is no $\lambda_{\max }:$ accept the associated maximum.
2. Elsewhere, if $!\left(\lambda_{\max }>\operatorname{tol}\left|\lambda_{\min }\right|\right) \& \&\left(\lambda_{\min }<0\right)$ accept the associated maximum, else reject it.

Algorithm 11 describes the procedure for discarding saddle-points within a given tolerance. Figure 2.23b shows filtered maxima found from the same image as Figure 2.23a.

Computation of the Hessians

The selection algorithm 11 of A. Lopez-Reina of the local maxima requires the computation of the corresponding Hessians. Computing these Hessians requires the computations of derivatives in discrete images, which is an ill-posed problem [101]. Derivatives in discrete images are usually computed as convolutions of the considered discrete image with a given predefined operator which performs a prior smoothing on the image. One method to compute such prior smoothing is to resort to a scale-space representation of the considered image.

The truncated discrete scale-space representation and its Hessian - amongs other discrete derivatives of the scale-space representation - have been implemented by I. Macia [101] in the ITK library and its used in the Ellipsoidal Model for computing the local Hessians à maxima's locations. The following describes in details how scale-space representations are defined, how to compute them in the continuous and discrete case, and, in particular, how to truncate their discrete developments by computing a correct neighbourhood radius $R_{\text {Hessian }}$ around each local maxima in order to ensure a correct calculation of the local Hessian within a given tolerance.

Preliminary definitions

Definition 2.1. The modified Bessel function of integer order $I_{n}: \mathcal{R} \rightarrow \mathcal{R} ; x \mapsto I_{n}(x)$ can be defined as:

$$
\begin{equation*}
I_{n}(x)=(-1)^{n} J_{n}(i x) \tag{2.9}
\end{equation*}
$$

Where $n \in \mathcal{Z}, i \in \mathcal{C}$ is the imaginary number such that $i^{2}=-1$ and $J_{n}=$ $\frac{1}{\pi} \int_{0}^{\pi} \cos (n t-x \sin (t)) d t$ is the Bessel function of the first kind.

Definition 2.2. Given two integrable functions $f: \mathcal{R}^{n} \rightarrow \mathcal{R}^{p}$ and $g: \mathcal{R}^{n} \rightarrow \mathcal{R}^{p}$, their convolution over a range $[a, b]$, with $a \in \mathcal{R}$ and $b \in \mathcal{R}$, is:

$$
\begin{equation*}
(f * g)(\mathbf{x})=\int_{a}^{b} f(\mathbf{y}) g(\mathbf{x}-\mathbf{y}) d \mathbf{y}=\int_{a}^{b} g(\mathbf{y}) f(\mathbf{x}-\mathbf{y}) d \mathbf{y} \tag{2.10}
\end{equation*}
$$

Definition 2.3. A scale-space kernel is a function $g: \mathcal{R}^{n} \times \mathcal{R}^{+} \backslash\{0\} \rightarrow \mathcal{R}^{p} ;(\mathbf{x} ; t) \mapsto$ $g(\mathbf{x} ; t)$ satisfying the following axioms [10]:

1. $\forall \mathbf{x} \in \mathcal{R}^{n}$ and $\forall t>0$, there exists a function $h: \mathcal{R}^{n} \rightarrow \mathcal{R}^{p}$ such that $g(\mathbf{x} ; t)=$ $t h(\mathbf{x} t)$.
2. $\forall \mathbf{x} \in \mathcal{R}$, the kernel g is symmetrical : $g(-\mathbf{x} ; t)=g(\mathbf{x} ; t)$.
3. $\forall t>0, \int_{-\infty}^{+\infty} g(\mathbf{x} ; t) d \mathbf{x}=1$.
4. $\exists p \in \mathcal{Z}$ such that $\frac{\partial^{2 p} h(\mathbf{x})}{\partial \mathbf{x}_{i}^{p} \mathbf{x}_{j}^{p}} \neq 0 ; i, j=1, \ldots, n$.
5. Given an admissible function $f: \mathcal{R}^{n} \rightarrow \mathcal{R}^{p}$, the number of maxima (respectively minima) of the convolution $g(\mathbf{x} ; t) * f(\mathbf{x})$ increases (respectively decreases) monotonically with t.
J.Badaud et al. [10] showed that, for the above set of axioms, the scale-space kernel is unique and is the Gaussian kernel:

$$
g(\mathbf{x} ; t)=\frac{1}{(2 \pi t)^{n / 2}} \exp \left(-\frac{\|\mathbf{x}\|^{2}}{2 t}\right)
$$

Definition 2.4. A scale-space representation of a function $f: \mathcal{R}^{n} \rightarrow \mathcal{R}^{p}$ is a function $L: \mathcal{R}^{n} \times \mathcal{R}^{+} \backslash\{0\} \rightarrow \mathcal{R}^{p} ;(\mathbf{x} ; t) \mapsto L(\mathbf{x} ; t)$ of the form:

$$
\begin{equation*}
L(\mathbf{x} ; t)=(g * f)(\mathbf{x} ; t) \tag{2.11}
\end{equation*}
$$

Where the function $g: \mathcal{R}^{n} \times \mathcal{R}^{+} \backslash\{0\} \rightarrow \mathcal{R}^{p} ;(\mathbf{x} ; t) \mapsto g(\mathbf{x} ; t)$ is a scale-space kernel.

Explicitly, the scale-space representation of an integrable function $f: \mathcal{R}^{n} \rightarrow \mathcal{R}^{p}$ is:

$$
\begin{equation*}
L(\mathbf{x} ; t)=(g * f)(\mathbf{x} ; t)=\int_{-\infty}^{+\infty} \frac{1}{(2 \pi t)^{n / 2}} \exp \left(-\frac{\|\mathbf{x}-\mathbf{y}\|^{2}}{2 t}\right) f(\mathbf{y}) d \mathbf{y} . \tag{2.12}
\end{equation*}
$$

Intuitively, $L(\mathbf{x} ; t)$ corresponds to a "blurred" version of the function $f(\mathbf{x})$, where t is a "blurring" parameter. For $t \rightarrow 0$, the "blur" disappears and $\lim _{t \rightarrow 0} L(\mathbf{x} ; t)=$ $f(\mathbf{x})$, while the "blur" increases with increasing values of t.

If the derivatives of the function f are numerically ill-conditioned (i.e. $\exists \mathbf{x} \in$ $\operatorname{dom}\left(f^{\prime}\right), \exists M>0\left|\forall \epsilon>0, \exists \mathbf{y} \in \operatorname{dom}\left(f^{\prime}\right),\left|f^{\prime}(\mathbf{x}+\epsilon \mathbf{y})-f^{\prime}(\mathbf{x})\right| \geq M\right)$ or not continuous, the derivatives of its scale-space representation $L(\mathbf{x} ; t)$ present a better behaviour, depending on the value of the parameter t.

Moreover, thanks to the properties of the Gaussian kernel, it is possible to precompute the Hessian of a scale-space representation [101]:

$$
\begin{align*}
\frac{\partial^{2} L(\mathbf{x} ; t)}{\partial x_{i} \partial x_{j}} & =\frac{\partial^{2}}{\partial x_{i} \partial x_{j}}(g * f)(\mathbf{x} ; t) \\
& =\left(\frac{\partial^{2} g(\mathbf{x} ; t)}{\partial x_{i} \partial x_{j}}\right) * f(\mathbf{x}) \tag{2.13}\\
& =g(\mathbf{x} ; t) *\left(\frac{\partial^{2} f(\mathbf{x})}{\partial x_{i} \partial x_{j}}\right) ; i, j=1, \ldots, n
\end{align*}
$$

As a consequence, computing the Hessian of the scale-space representation $L(\mathbf{x} ; t)$ of the function $f(\mathbf{x})$ amounts to compute a "blurred" version of the original Hessian $\frac{\partial^{2} f(\mathbf{x})}{\partial x_{i} \partial x_{j}} ; i, j=1, \ldots, n$.

Hessian of a discrete image If the above considered function $f(\mathbf{x})$ is a discrete image $I(\mathbf{x})$, a discrete version of the Gaussian kernel is needed. However, as pointed by T. Lindeberg [97], a naïve discretisation of the Gaussian kernel will not, in general, satisfy the scale-space axioms. Furthermore, the interesting property (2.13) will in general be lost.

However, T. Lindeberg [97] proved that a discretisation of the Gaussian kernel preserving the scale-space and the property (2.13) exists for any dimension $n \in \mathcal{N} \backslash\{0\}$. For the one-dimensional case, he suggested to use the following discretisation:

$$
\begin{equation*}
T(m ; t)=\exp (-t) I_{m}(t) \tag{2.14}
\end{equation*}
$$

Where the $I_{m}(t)$ are the modified Bessel function of integer order.
The corresponding one-dimensional discrete scale-space representation $L_{d}: \mathcal{Z} \times$ $\mathcal{R}^{+} \backslash\{0\} ;(x ; t) \mapsto L_{d}(x ; t)$ for a one-dimensional discrete image $I(x)$ is given by:

$$
\begin{equation*}
L_{d}(x ; t)=\sum_{m=-\infty}^{+\infty} T(m ; t) I(x-m) \tag{2.15}
\end{equation*}
$$

For higher dimensions, the corresponding discrete scale-space representation L_{d} : $\mathcal{Z}^{n} \times \mathcal{R}^{+} \backslash\{0\} ;(\mathbf{x} ; t) \mapsto L_{d}(\mathbf{x} ; t)$ for a n-dimensional discrete image $I(\mathbf{x})$ of infinite domain $D_{I}=\mathcal{Z}^{n}$ is given by:

$$
\begin{equation*}
L_{d}(\mathbf{x} ; t)=\sum_{m_{1}=-\infty}^{+\infty} T\left(m_{1} ; t\right) \ldots \sum_{m_{n}=-\infty}^{+\infty} T\left(m_{n} ; t\right) I\left(x_{1}-m_{1}, \ldots, x_{n}-m_{n}\right) \tag{2.16}
\end{equation*}
$$

The discretisation of the Hessian of the scale-space representation $L(\mathbf{x} ; t)$ is, in turn, given by:

$$
\begin{align*}
\frac{\partial^{2} L(\mathbf{x} ; t)}{\partial x_{i} \partial x_{j}} & =\left(\frac{\partial^{2} g(\mathbf{x} ; t)}{\partial x_{i} \partial x_{j}}\right) * I(\mathbf{x}) \text { (Property 2.13). } \\
& =\left(\frac{x_{i} x_{j}-\delta_{i j} t}{t^{2}} g(\mathbf{x} ; t)\right) * I(\mathbf{x}) \\
& \downarrow \text { discretise } \\
& =\sum_{m_{1}=-\infty}^{+\infty} \ldots \sum_{m_{n}=-\infty}^{+\infty} \frac{m_{i} m_{j}-\delta_{i j} t}{t^{2}} T\left(m_{1} ; t\right) \ldots T\left(m_{n} ; t\right) I\left(x_{1}-m_{1}, \ldots, x_{n}-m_{n}\right) \\
& =\frac{\partial^{2} L_{d}(\mathbf{x} ; t)}{\partial x_{i} \partial x_{j}} \\
& (i, j=1, \ldots, n) \tag{2.17}
\end{align*}
$$

Where $\delta_{i j}=\left\{\begin{array}{l}1 \text { if } i=j \\ 0 \text { elsewhere }\end{array}\right.$, is the Kronecker delta.

In practice, the domain D_{I} of the discrete image I is not infinite. Also, the summations given for the discrete scale-space representation $L_{d}(\mathbf{x} ; t) 2.16$ and for the discrete Hessian of the scale-space representation $\frac{\partial^{2} L_{d}(x ; t)}{\partial x_{i} \partial x_{j}} ; i, j=1, \ldots, n 2.17$ are truncated.

$$
\begin{equation*}
L_{d}^{\text {trunc }}(\mathbf{x} ; t)=\sum_{m 1=-M_{1}}^{M_{1}} T\left(m_{1} ; t\right) \ldots \sum_{m_{n}=-M_{N}}^{M_{n}} T\left(m_{n} ; t\right) I\left(x_{1}-m_{1}, \ldots, x_{n}-m_{n}\right) . \tag{2.18}
\end{equation*}
$$

And

$$
\begin{align*}
\frac{\partial L_{d}^{\text {trunc }}(\mathbf{x} ; \mathbf{t})}{\partial x_{i} \partial x_{j}} & =\sum_{m_{1}=-M_{1}}^{M_{1}} \ldots \sum_{m_{n}=-M_{n}}^{M_{n}} \frac{m_{i} m_{j}-\delta_{i j} t}{t^{2}} T\left(m_{1} ; t\right) \ldots T\left(m_{n} ; t\right) \tag{2.19}\\
& \times I\left(x_{1}-m_{1}\right) \ldots I\left(x_{n}-m_{n}\right) ; i, j=1, \ldots, n .
\end{align*}
$$

The bounds M_{1}, \ldots, M_{n} are computed such that the discretisation error, defined as the "difference between the area under the discrete Gaussian and the area under the continuous Gaussian", is below a prescribed value ${ }^{15}$.

Remark: boundary condition The truncated discrete Hessian of the scale space representation given in equation 2.19 requires for each pixel \mathbf{x} in the domain D_{I} of the image I, the values of the surrounding pixels in a neighbourhood $N_{I}(\mathbf{x})$ centred on \mathbf{x} and of size $\left[-M_{1}, M_{1}\right] \times \ldots \times\left[-M_{n}, M_{n}\right]$. If \mathbf{x} is located near a boundary of D_{I}, some pixels $\mathbf{y} \in N_{I}(\mathbf{x})$ of the requested neighbourhood may overflow the domain D_{I} : i.e. $\exists \mathbf{y} \in N_{I}(\mathbf{x}) \mid \mathbf{y} \notin D_{I}$. For such overflowing pixels \mathbf{y}, their values are simply set to zero, so they do not contribute to the computation of the convolution.

Neighbourhood computation for the Hessians The selection algorithm 11 of A. Lopez-Reina of the local maxima requires the computation of corresponding Hessians. The computations of these Hessians require themselves the knowledge of pixel values around given neighbourhoods of the local maxima candidates. The extent of these neighbourhood is an integer constant and depends on a Gaussian and its first and second derivatives:

$$
\begin{gather*}
g: \mathcal{R}^{+} \rightarrow \mathcal{R}^{+} ; r \mapsto g(r ; \sigma)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}} \exp \left(-\frac{r^{2}}{2 \sigma^{2}}\right) . \tag{2.20}\\
\frac{\partial g}{\partial r}: \mathcal{R}^{+} \rightarrow \mathcal{R} ; r \mapsto \frac{\partial g}{\partial r}(r ; \sigma)=\frac{-r}{\sigma^{2}} g(r ; \sigma) . \tag{2.21}\\
\frac{\partial^{2} g}{\partial r^{2}}: \mathcal{R}^{+} \rightarrow \mathcal{R} ; r \mapsto \frac{\partial^{2} g}{\partial r^{2}}(r ; \sigma)=\frac{r^{2}-\sigma^{2}}{\sigma^{4}} g(r ; \sigma) . \tag{2.22}
\end{gather*}
$$

Where n is the image dimension, $r=\|\mathbf{x}-\mathbf{y}\|$ is the distance between the considered local maximum candidate $\mathbf{x} \in \mathcal{R}^{n}$ and a pixel $\mathbf{y} \in \mathcal{R}^{n}$ in its neighbourhood, and $\sigma=\sqrt{t}>0$ is a given standard deviation.

[^8]Note Given the truncated discrete Hessian of the scale-space representation 2.19, the class itk::DiscreteHessianGaussianImageFunction of the ITK library computes the convolution region $\left[-M_{1}, M_{1}\right] \times \ldots \times\left[-M_{n}, M_{n}\right]$. However, this class does not offer a public access to these values, but only a default threshold value through its public function GetMaximumKernelWidth() which is pessimistic ${ }^{16}$. It is in principle possible compute some optimal values M_{1}, \ldots, M_{n} by running the algorithm used by the class itk::DiscreteHessianGaussianImageFunction several times and minimising some error criterion. However, this algorithm is relatively complex and running it several times requires a fair computational effort.

Instead, the method suggested in this thesis is fast (logarithmic in time) and simple. It consists in computing a radius bound $R \geq \max \left(M_{1}, \ldots, M_{n}\right)$ as small as possible for the needed neighbourhood such that the contribution to the truncated discrete Hessian of the scale-space function 2.19 of pixels located outside the neighbourhood of radius R is negligible. Then, the algorithm used by the class itk::DiscreteHessianGaussianImageFunction is only required to be run once with the found radius R as threshold.

From a given pixel \mathbf{x}, pixels in the neighbourhood of \mathbf{x} are convolved with the second derivative of the Gaussian $\frac{\partial^{2} g}{\partial r^{2}}$. This second derivative tends towards zero for $r \rightarrow \infty$, as the term $g(r ; \sigma)$ tends exponentially towards zero by positive values for $r \rightarrow \infty$, while the term $\frac{r^{2}-\sigma^{2}}{\sigma^{4}}$ tends only quadratically towards infinity for $r \rightarrow \infty$. As a consequence, neighbourhood pixels \mathbf{y} far enough from the considered pixel \mathbf{x} do not contribute significantly to the convolution and may be discarded. Mathematically speaking:

$$
\begin{align*}
\forall \epsilon>0, \exists R>0 \mid \forall \mathbf{x} & \in D_{I}, \left\lvert\, \int_{\Omega=\left\{\mathbf{y} \in D_{I} \mid(\mathbf{x} \pm \mathbf{y}) \in D_{I}\right\}} I(\mathbf{y}) \frac{\partial^{2} g}{\partial r^{2}}(\|\mathbf{x}-\mathbf{y}\| ; \sigma) d \mathbf{y}\right. \\
& \left.-\int_{\Omega_{R^{-}}=\left\{\mathbf{y} \in D_{I} \mid\|\mathbf{x}-\mathbf{y}\| \leq R\right\}} I(\mathbf{y}) \frac{\partial^{2} g}{\partial r^{2}}(\|\mathbf{x}-\mathbf{y}\| ; \sigma) d \mathbf{y} \right\rvert\, \leq \epsilon \tag{2.23}
\end{align*}
$$

Where I is an image, D_{I} its associated domain, and R is the radius of the neighbourhood to consider.

As:

$$
\begin{align*}
& \Omega=\left\{\mathbf{y} \in D_{I} \mid(\mathbf{x} \pm \mathbf{y}) \in D_{I}\right\}= \\
& \quad\left\{\mathbf{y} \in D_{I} \mid\|\mathbf{x}-\mathbf{y}\| \leq R\right\} \cup\left\{\mathbf{y} \in D_{I} \mid\|\mathbf{x}-\mathbf{y}\|>R\right\}=\Omega_{R^{-}} \cup \Omega_{R^{+}} \tag{2.24}
\end{align*}
$$

And, trivially:

$$
\begin{equation*}
\Omega_{R^{-}} \cap \Omega_{R^{+}}=\varnothing \tag{2.25}
\end{equation*}
$$

[^9]One have:

$$
\begin{equation*}
\int_{\Omega} I(\mathbf{y}) \frac{\partial^{2} g}{\partial r^{2}}(\|\mathbf{x}-\mathbf{y}\| ; \sigma) d \mathbf{y}=\int_{\Omega_{R^{-}}} I(\mathbf{y}) \frac{\partial^{2} g}{\partial r^{2}}(\|\mathbf{x}-\mathbf{y}\| ; \sigma) d \mathbf{y}+\int_{\Omega_{R^{+}}} I(\mathbf{y}) \frac{\partial^{2} g}{\partial r^{2}}(\|\mathbf{x}-\mathbf{y}\| ; \sigma) d \mathbf{y} \tag{2.26}
\end{equation*}
$$

And the inequality 2.23 becomes:

$$
\begin{equation*}
\forall \epsilon>0, \exists R>0\left|\forall \mathbf{x} \in D_{I},\left|\int_{\Omega_{R^{+}}} I(\mathbf{y}) \frac{\partial^{2} g}{\partial r^{2}}(\|\mathbf{x}-\mathbf{y}\| ; \sigma) d \mathbf{y}\right| \leq \epsilon\right. \tag{2.27}
\end{equation*}
$$

The problem to solve here, is thus to find a neighbourhood radius $R>0$ such that the inequality 2.27 is satisfied. Moreover, a value of R as small as possible should be preferred. Indeed, a high value of R implies the request of a large neighbourhood during the ITK's pipeline execution, which should be avoided in order to save RAM memory usage. For a given $\epsilon>0$, the problem to solve is thus:

$$
\left\{\begin{array}{l}
\min _{R>0} R \tag{2.28}\\
\text { s.t. }\left|\int_{\Omega_{R^{+}}} I(\mathbf{y}) \frac{\partial^{2} g}{\partial r^{2}}(\|\mathbf{x}-\mathbf{y}\| ; \sigma) d \mathbf{y}\right| \leq \epsilon, \forall \mathbf{x} \in D_{I}
\end{array}\right.
$$

In the special case where I is an image obtained from a distance transform, I is bounded:

$$
\begin{equation*}
\exists M>0 \mid \forall \mathbf{y} \in D_{I}, I(\mathbf{y}) \leq M . \tag{2.29}
\end{equation*}
$$

For a parallelepipedic domain and an Euclidean distance transform, M is, at worst, the length of the largest diagonal of the domain (this is the maximum possible Euclidean distance between two pixels in the image). Here M is simply approximated by a simple analytical upper bound.

In that case, the problem 2.28 becomes:

$$
\left\{\begin{array}{l}
\min _{R>0} R \tag{2.30}\\
\text { s.t. }\left|\int_{\Omega_{R^{+}}} \frac{\partial^{2} g}{\partial r^{2}}(\|\mathbf{x}-\mathbf{y}\| ; \sigma) d \mathbf{y}\right| \leq \frac{\epsilon}{M}, \forall \mathbf{x} \in D_{I}
\end{array}\right.
$$

Which is equivalent to the problem:

$$
\left\{\begin{array}{l}
\min _{R>0} R \tag{2.31}\\
\text { s.t. }\left|\int_{R}^{+\infty} \frac{\partial^{2} g}{\partial r^{2}}(r ; \sigma) d r\right| \leq \frac{\epsilon}{M}
\end{array}\right.
$$

Using the definition of function $g(r ; \sigma)(2.20)$ and $\frac{\partial g}{\partial r}(r ; \sigma)(2.21)$:

$$
\begin{equation*}
\int_{R}^{+\infty} \frac{\partial^{2} g}{\partial r^{2}}(r ; \sigma) d r=\left[\frac{\partial g}{\partial r}(r ; \sigma)\right]_{R}^{+\infty}=\frac{R}{\sigma^{2}} g(R ; \sigma) \tag{2.32}
\end{equation*}
$$

For $R \in \mathcal{R}^{+}$, the integral $\int_{R}^{+\infty} \frac{\partial^{2} g}{\partial r^{2}}(r ; \sigma) d r$ is always positive, because $\exp \left(-\frac{R^{2}}{2 \sigma^{2}}\right)>$ 0 . Furthermore, this integral is strictly decreasing for $R>\sigma$.

Figure 2.24: Values on the interval [0,6] of $G(R ; \sigma)=$ $\int_{R}^{+\infty} \frac{\partial^{2} g}{\partial r^{2}}(r ; \sigma) d r$ for some values of σ, where $g(r ; \sigma)=$ $\frac{1}{\left(2 \pi \sigma^{2}\right)^{3 / 2}} \exp \left(-\frac{r^{2}}{2 \sigma^{2}}\right)$ is the 3-dimensional Gaussian of zero mean. For a radius of $R=4$ pixels, one has: $G(4 ; 0.75) \approx 5.3410^{-7}$, $G(4 ; 1) \approx 8.5210^{-5}$ and $G(4 ; 1.25) \approx 6.2210^{-4}$.

Figure 2.24 illustrates the behaviour of this integral for some values of σ, and qualitatively shows that the values of this integral can be neglected for sufficient big values of R with respect to any finite (strictly positive) value of σ. Quantitatively, using equation 2.22 , it may observed that its derivative with respect to R is strictly negative for $R>\sigma$:

$$
\begin{equation*}
\frac{\partial}{\partial R} \int_{R}^{+\infty} \frac{\partial^{2} g}{\partial r^{2}}(r ; \sigma) d r=\frac{\partial}{\partial R}\left(\frac{R}{\sigma^{2}} g(R ; \sigma)\right)=\frac{\sigma^{2}-R^{2}}{\sigma^{4}} g(R ; \sigma) \tag{2.33}
\end{equation*}
$$

As a consequence:

$$
\begin{equation*}
\left|\int_{R}^{+\infty} \frac{\partial^{2} g}{\partial r^{2}}(r ; \sigma) d r\right|=\int_{R}^{+\infty} \frac{\partial^{2} g}{\partial r^{2}}(r ; \sigma) d r=G(R ; \sigma) \tag{2.34}
\end{equation*}
$$

Where the primitive $G(R ; \sigma)$ is explicitly given by the right-hand side of equation 2.32.

Furthermore, as $\lim _{z \rightarrow+\infty} \exp \left(-z^{2}\right)=0$:

$$
\begin{equation*}
\lim _{R \rightarrow+\infty} G(R ; \sigma)=0 \tag{2.35}
\end{equation*}
$$

Thus, the problem 2.31 can be stated as:

$$
\left\{\begin{array}{l}
\min _{R>0} R \tag{2.36}\\
\text { s.t. } G(R ; \sigma) \leq \frac{\epsilon}{M}
\end{array}\right.
$$

Table 2.5: Parameters of the Local maxima filter.

Parameter	Typical value range	Description
$R_{\text {user }}$	$[3,10]$	Search radius for genuine maxima.
σ	$[1,5]$	Width of the Gaussian kernel for the Hessian.
eigenTol	$\left[10^{-5}, 10^{-2}\right]$	Tolerance for criterion on eigenvalues (algo. 11).
tol	$\left[10^{-5}, 10^{-2}\right]$	Tolerance for the Hessian radius search (algo. 12).

The problem 2.36 can be solved using a simple bisection method on the function:

$$
\begin{equation*}
G(R ; \sigma)-\frac{\epsilon}{M} \tag{2.37}
\end{equation*}
$$

Indeed, this function is continuous (combination of continuous functions) and its limit at infinity is $\left(-\frac{\epsilon}{M}\right)$ (consequence of 2.35). The bisection method can thus be applied on the interval $[0, b]$ provided that $G(0 ; \sigma)=\frac{\sqrt{2 \pi}}{(2 \pi)^{n / 2} \sigma^{n+1}}>\frac{\epsilon}{M}$ and $G(b ; \sigma)<$ $\frac{\epsilon}{M}$.

For reasonable values of σ, the interval $[0, D]$, where D is the length of the larger diagonal of the parallelepipedic domain D_{I}, is a suitable interval. Indeed, $G(0 ; \sigma)$ is the global maximum ${ }^{17}$ of the function $G(R ; \sigma)$ over \mathcal{R}^{+}, while the ball $B(\mathbf{x} ; R)$ contains the whole image domain I_{D} for all $\mathbf{x} \in I_{D}$. The largest possible interval to consider is thus $[0, D]$. Algorithm 12 shows the procedure for solving the problem 2.36.

Remark about the algorithm 12 The stopping condition at line 14 in algorithm 12 is not the usual stopping condition used for a classic bisection algorithm. This is due by the fact that the aim is not to find precisely the root of the function $G(R ; \sigma)-\frac{\epsilon}{M}$, but rather to find an integer radius value $R \in \mathcal{N}$ such that the function $G(R ; \sigma)$ is smaller than the quantity tol $=\frac{\epsilon}{M}$. As a consequence, if the difference between two consecutive radii values R_{i-1} and R_{i} is smaller than one - a.k.a $\left|R_{i-1}-R_{i}\right|<1$ - and are such that $G\left(R_{i-1} ; \sigma\right)-$ tol >0 and $G\left(R_{i} ; \sigma\right)-$ tol <0, then $\operatorname{ceil}\left(R_{i}\right)^{18}$ is a suitable integer radius value. Indeed, $\operatorname{ceil}\left(R_{i}\right)$ is large enough for the function $G\left(R_{i} ; \sigma\right)$ to be negligible, while minimising the extent of the neighbourhood regions over which the Hessians have to be computed. Table 2.5 shows the parameters needed by the modified version of the algorithm 7 of T.Q. Pham.

[^10]```
Algorithm 7 Modified version of the algorithm of T.Q. Pham [130]. Given a grayscale image \(I\) of parallelepipedic domain \(D_{I}\) and a provided radius \(R_{u s e r}\), computes the local maxima of I over a neighbourhood of radius \(R_{\text {user }}\). Optionally, selects the local maxima based on the eigenvalues of their respective Hessians.
```

Require: I gray-scale image.
Require: $R_{u s e r}$ radius of the neighbourhood.
Require: $\sigma$ (optional) width of the Gaussian kernel (see eq. 2.20).
Require: eigenTol (optional) tolerance for the eigenvalues (see algo. 11).
Require: tol (optional) tolerance for Hessian radius search (see algo. 12).
procedure LOCALMAXIMA( $\left(, R_{\text {user }}, \sigma\right.$, eigenTol, tol)
if sigma, eigenTol and tol exists then
$D \leftarrow$ biggest diagonal length of $D_{I}$.
$R_{\text {Hessian }} \leftarrow$ IntegralofgaussianSecondDerivativeBisection $(0, D$,
$\sigma$, tol)
$\triangleright$ See algo 12 .
end if
Maxima $\leftarrow \varnothing$.
$\triangleright$ Compute sign of first derivative.
$G \leftarrow \varnothing$
for pixel line $\tilde{I}_{d}$, 1D-restriction of $I$ along the $x$-direction do for $\mathbf{x}^{(k)} \in \operatorname{dom}\left(\tilde{I}_{d}\right) \mathbf{d o}$
$G \leftarrow G \cup\left\{g\left(\mathbf{x}^{(k)}\right)\right\} \quad \triangleright$ See equ. 2.6. $\triangleright$ If $\mathbf{x}^{(k-1)} \notin \operatorname{dom}\left(\tilde{I}_{d}\right)$, then $\tilde{I}_{d}\left(\mathbf{x}^{(k-1)}\right)=$ min. pixel value.
end for
$\triangleright$ Find 1D-peaks by computing discrete Hessian $h$ from $g$.
Peaks $\leftarrow \varnothing, H \leftarrow \varnothing, j \leftarrow 0$.
for $\mathbf{x}^{(k)} \in \operatorname{dom}\left(\tilde{I}_{d}\right)$ do
$H \leftarrow H \cup\left\{h\left(\mathbf{x}^{(k)}\right)\right\} \quad \triangleright$ See equ. 2.7.
if $h\left(\mathbf{x}^{(k)}\right)==-2 \| h\left(\mathbf{x}^{(k)}\right)==-1$ then
Peaks $\leftarrow$ Peaks $\cup\left\{\left(j, x_{2}^{(k)}, \ldots, x_{n}^{(k)}\right)\right\}$.
end if
$j \leftarrow j+1$
end for
$\triangleright$ Loop over peaks.
$l \leftarrow$ number of pixels along $x$-direction.
skip $\leftarrow \overbrace{(\text { false }, \ldots, \text { false })}$.
for $\mathbf{p}^{(k)} \in$ Peaks do
if $\operatorname{skip}(k)$ then continue $\quad \triangleright$ Go to the next peak.
end if

```
Algorithm 8 Modified algorithm of T.Q. Pham (continued).
29: \(\quad \triangleright\) Test the current peak against its \(\left(2 R_{\text {user }}+1\right)\) neighbourhood.
 \(\triangleright\) Right side.
not1DMaximum \(\leftarrow\) false.
for \(j_{1}=k, \ldots, k+R_{\text {user }}\) do
 if \(H\left(j_{1}\right)==0\) then break \(\quad \triangleright\) We are on a slope.
 end if
end for
\(\triangleright\) Test if the slope is going upwards.
\(\mathbf{y} \leftarrow \mathbf{p}^{(k)}, y_{1} \leftarrow j_{1}\).
for \(j_{2}=j_{1}, \ldots, k+R_{\text {user }}\) do
 if \(\tilde{I}_{d}\left(\mathbf{p}^{(k)}\right)<\tilde{I}_{d}(\mathbf{y})\) then \(\triangleright\) Current peak not a 1D-local maximum.
 not1DMaximum \(\leftarrow\) true.
 break.
 end if
 skip \(\left[j_{2}\right] \leftarrow\) true \(\quad \triangleright\) Skip future smaller pixel values.
end for
if not1DMaximum then continue \(\quad \triangleright\) Go to the next peak.
end if
 \(\triangleright\) Left side.
for \(j_{1}=k-1, \ldots, k-R_{\text {user }}\) do
 if \(H\left(j_{1}\right)==0\) then break \(\quad \triangleright\) We are on a slope.
 end if
end for
\(\triangleright\) Test if the slope is going upwards.
\(\mathbf{y} \leftarrow \mathbf{p}^{(k)}, y_{1} \leftarrow j_{1}\).
for \(j_{2}=j_{1}, \ldots, k-R_{\text {user }}\) do
 if \(\tilde{I}_{d}\left(\mathbf{p}^{(k)}\right)<\tilde{I}_{d}(\mathbf{y})\) then \(\triangleright\) Current peak not a 1D-local maximum.
 not1DMaximum \(\leftarrow\) true.
 break.
 end if
 \(\triangleright\) No skip here, as previous pixels already scanned.
end for
if not1DMaximum then continue \(\quad \triangleright\) Go to the next peak.
end if
```

```
Algorithm 9 Modified algorithm of T.Q. Pham (continued).
 6: \(\quad \triangleright\) Test if selected 1D-maxima are true nD -maxima.
 \(N_{I}\left(\mathbf{p}^{(k)}\right) \leftarrow\left[p_{1}^{(k)}-R_{\text {user }}, p_{1}^{(k)}+R_{\text {user }}\right] \times \ldots \times\left[p_{n}^{(k)}-R_{\text {user }}, p_{n}^{(k)}+R_{\text {user }}\right]\).
 if \(\operatorname{IsMAxImUM}\left(I, \mathbf{p}^{(k)}, N_{I}\left(\mathbf{p}^{(k)}\right)\right.\)) then \(\quad \triangleright\) Algo. 10 .
 if \(R_{\text {Hessian }}\) exists then
 \(H_{k} \leftarrow\) Hessian of the discrete scale-space representation of \(I\)
 evaluated at \(\mathbf{p}^{(k)}\) with \(t=\sigma^{2}\) and \(M_{1}, \ldots, M_{n}=R_{\text {Hessian }} \quad \triangleright\)
 See equ. 2.19.
 \(\Lambda_{k} \leftarrow\) eigenvalues of the Hessian \(H_{k}\).
 if SelectMaximumOnHessianEigenvalues(\(\Lambda_{k}\), eigenTol)
 then \(\quad \triangleright\) See algo. 11 .
 Maxima \(\leftarrow \operatorname{Maxima} \cup\left\{\mathbf{p}^{(k)}\right\}\).
 end if
 else
 Maxima \(\leftarrow \operatorname{Maxima} \cup\left\{\mathbf{p}^{(k)}\right\}\).
 end if
 \(\triangleright\) Check for plateau in the \(\left(2 R_{\text {user }}+1\right)\) neighbourhood.
 \(\mathbf{y} \leftarrow \mathbf{p}^{(k)}\).
 for \(j=k, \ldots, l\) do
 \(y_{1} \leftarrow j\).
 if \(\tilde{I}_{d}\left(\mathbf{p}^{(k)}\right)==\tilde{I}(\mathbf{y})\) then \(\quad \triangleright\) Plateau found.
 \(N_{I}(\mathbf{y}) \leftarrow\left[y_{1}-R_{u s e r}, y_{1}+R_{u s e r}\right] \times \ldots \times\left[y_{n}-R_{u s e r}, y_{n}+\right.\)
 \(R_{\text {user }}\).
 if \(\operatorname{ISmAximum}\left(I, \mathbf{y}, N_{I}(\mathbf{y})\right)\) then \(\quad \triangleright\) See algo. 10 .
 if \(R_{\text {Hessian }}\) exists then
 \(H_{\mathbf{y}} \leftarrow\) Hessian of the discrete scale-space repre-
 sentation of \(I\) evaluated at \(\mathbf{y}\) with \(t=\sigma^{2}\) and
 \(M_{1}, \ldots, M_{n}=R_{\text {Hessian }} \quad \triangleright\) See equ. 2.19.
 \(\Lambda_{\mathrm{y}} \leftarrow\) eigenvalues of the Hessian \(H_{\mathrm{y}}\).
 if SelectMaximumOnHessianEigenvalues(\(\Lambda_{y}\),
 eigenTol) then
 \(\triangleright\) See algo. 11 .
 Maxima \(\leftarrow \operatorname{Maxima} \cup\left\{\mathbf{p}^{(k)}\right\}\).
 end if
 else
 Maxima \(\leftarrow \operatorname{Maxima\cup \{ \mathbf {y}\} .~}\)
 end if \(\quad\) Compute Hessian option.
 end if \(\quad \triangleright\) Plateau pixel is maximum check.
 end if \(\quad \triangleright\) Plateau check.
 end for \(\quad \triangleright\) Loop for plateau check.
 end if \(\quad \triangleright\) nD-maximum check.
 end for \(\quad \triangleright\) Loop on peaks.
 end for \(\quad \triangleright\) Loop on pixel lines.
 return Maxima.
 end procedure
```

```
Algorithm 10 Given a maximum pixel candidate \(\mathbf{x}\) in a gray-scale image \(I\) and a
neighbourhood \(N_{I}(\mathbf{x})\) around \(\mathbf{x}\), tests \(\mathbf{x}\) is a local maximum for the neighbourhood
\(N_{I}(\mathbf{x})\).
Require: I grayscale image of domain \(D_{I}\).
Require: \(\mathbf{x} \in D_{I}\) maximum candidate.
Require: \(N_{I}(\mathbf{x})\) neighbourhood around \(\mathbf{x}\).
 procedure \(\operatorname{ISMAXIMUM}\left(I, \mathbf{x}, N_{I}(\mathbf{x})\right)\)
 for \(\mathbf{y} \in N_{I}(\mathbf{x})\) do
 if \(I(\mathbf{y})>I(\mathbf{x})\) then
 \(\triangleright\) If \(\mathbf{y} \notin D_{I}\), then \(I(\mathbf{y})=\) minimum pixel value.
 return false.
 end if
 end for
 return true.
 end procedure
```

```
Algorithm 11 Accept or reject a given maximum pixel candidate based on the eigen-
values of the Hessian evaluated at this maximum candidate.
Require: tol tolerance for the eigenvalues.
Require: \(\Lambda=\left\{\lambda_{i}\right\}_{i=1, \ldots, n}\), the eigenvalues of the Hessian evaluated at the consid-
 ered maximum.
 procedure SelectMaximumOnHessianEigenvalues(\(\Lambda\), tol)
 \(\lambda_{\text {min }} \leftarrow \lambda_{1}, \lambda_{\text {max_pos }} \leftarrow 0\).
 for \(i=1, \ldots, n\) do
 if \(\left(\lambda_{i}>0\right) \& \&\left(\lambda_{\text {max_pos }}<\lambda_{i}\right)\) then
 \(\lambda_{\text {max_pos }}=\lambda_{i}\).
 end if
 if \(\lambda_{\text {min }}>\lambda_{i}\) then
 \(\lambda_{\text {min }}=\lambda_{i}\).
 end if
 end for
 return ! \(\left(\lambda_{\text {max_pos }}>\right.\) tol \(\left.\left|\lambda_{\text {min }}\right|\right) \& \&\left(\lambda_{\text {min }}<0\right)\).
 end procedure
```

```
Algorithm 12 Algorithm for solving problem 2.36 for determining the minimal inte-
ger radius of the convolution region needed for the computation of the Hessians so
that the error stays below a given tolerance.
Require: tol error tolerance and \(\sigma\), standard deviation for the Gaussian.
Require: Interval \(\left[a_{0}, b_{0}\right]\) such that \(\left(G\left(a_{0} ; \sigma\right)-t o l\right)\left(G\left(b_{0} ; \sigma\right)-t o l\right)<0\)
 : procedure InTEGRALOFGAUSSIANSECONDDERIVATIVEBISECTION \(\left(a_{0}, b_{0}, \sigma\right.\),
 tol)
 \(i \leftarrow 0\).
 \(R_{i} \leftarrow \frac{a_{i}+b_{i}}{2}\).
 repeat
 if \(G\left(R_{i} ; \sigma\right)-t o l>0\) then
 \(a_{i+1} \leftarrow R_{i}\).
 \(b_{i+1} \leftarrow b_{i}\).
 else
 \(a_{i+1} \leftarrow a_{i}\).
 \(b_{i+1} \leftarrow R_{i}\).
 end if
 \(R_{i+1} \leftarrow \frac{a_{i+1}+b_{i+1}}{2}\).
 \(i \leftarrow i+1\).
 until \(\left|R_{i-1}-R_{i}\right|<1\)
 return \(R_{\text {Hessian }} \leftarrow \operatorname{ceil}\left(R_{i}\right)\).
 end procedure
```


### 2.3.9 Step 5: Parent ellipsoids



- Aim: from found local maxima, fit ellipsoids to cells. Cluster and merge overlapping ellipsoids so to obtain one fitted ellipsoid per cell.
- Input: local maxima and threshold image.
- Output: parent ellipsoids, each fitted to one particular cell.
- Streaming: see Section 3.10.


## The oversegmentation problem

As the watershed transformation is a key and extensively used transformation, many efforts have been invested in designing fast (parallel) and accurate watershed algorithms ([21, 155, 159, 82, 162]. In this thesis, the watershed transformation is avoided and its flooding basins philosophy is replaced by growing ellipsoids. The advantage is that the input image can be locally referenced (i.e., only a small part of the image needs to be loaded into memory) and ellipsoids can be grown in parallel.

The watershed transform is often subject to oversegmentation: irrelevant small local minima (often generated by the noise in the image) generate catchment basins and induce the segmentation of the considered image in too many small zones (see, e.g., Figure 2.26). As a consequence, relevant features (as cells) may be fractured into subcomponents. Avoiding oversegmentation for the watershed transformation is a hard task. Several solutions may be used, depending on the nature of the considered image: simple smoothing [138], pre-processing by a H-maxima/minima transformation [176, 155], pre-identifying markers [155], etc. It should be noted that seemingly even the H -maxima/minima transformation appears to be insufficient for certain cases. Indeed, adaptive H-maxima transformations techniques have emerged [57, $125,149,33$ ] and added to image analysis softwares such as MAVI [171].

Clearly, even if some superfluous local maxima are discarded on the basis of the eigenvalues of their associated Hessians, most of them are still present at this stage (Figure 2.27b). From local maxima, even superfluous ones, ellipsoids are associated. As is, this will lead to an oversegmentation problem. This oversegmentation problem is tackled here by merging overlapping ellipsoids above a given intersection volume ratio. Ellipsoids are associated to local maxima as follows: The ellipsoids are initially set as unit spheres centred at the local maxima positions (Figure 2.27c). They are then grown by an optimisation procedure described in Reference [39] (Figure 2.27 d ). This optimisation procedure iteratively grows ellipsoids inside associated polyhedra. At each iteration, the associated polyhedra are constructed from their current associated ellipsoids and the surrounding obstacles (here, the voxels corresponding to the cells boundaries in the considered CT image). Once the polyhedra are constructed, the ellipsoids are grown by one more increment. This process is repeated until the relative volume variation of each ellipsoid drops below a prescribed threshold. Figure 2.28 sketches in two dimensions how the algorithm works.


Figure 2.26: Example of a 2-dimensional image oversegmentation by the watershed transformation and its watershed transformation after pre-filtering. (Images for P. Soille [155], Figure 9.9, sub-figures $a, c$ and f).

Once the ellipsoids are fully grown, overlapping volumes between pairs of intersecting ellipsoids are computed. If a given overlapping volume is bigger than a prescribed percentage of both ellipsoids volumes, both ellipsoids are clustered together (Figure 2.27e). Clustered ellipsoids are then merged inside a minimum volume covering ellipsoid (Figure 2.27f). These clustering and merging stages allow to tackle the oversegmentation problem without using the expensive H-maxima transform.

(a) Schematic representing cells by their walls (black lines).

(d) Grown ellipsoids using algorithm in Reference [39].

(b) Local maxima. Red stars: local maxima discarded on the basis of their associated Hessians. Blue points: local maxima kept.

(e) Clustering of overlapping ellipsoids.

(c) Initial ellipsoids as unit spheres centred at local maxima positions.

(f) Merging of clustered ellipsoids into a minimum volume covering ellipsoid (dashed blue curves).

Figure 2.27: Schematic representing the process of growing ellipsoids and clustering and merging groups of overlapping ellipsoids.

Step 5 (part 1) of the proposed image analysis procedure depicted in Figure 2.1b is organized into two parts:

1. Growing of parent ellipsoids.
2. Clustering and merging of overlapping parent ellipsoids.

Part 1 is structured as follows:


## Step 5 (part 1): Algorithms for growing ellipsoids surrounded by obstacles.

This section describes more precisely how the algorithm of R. Deits et al. [39] operates for dilating ellipsoids. It should be noted that the algorithm of R. Deits et al. is preceded by a "fast dilatation stage". This stage also grows ellipsoids given some surrounding obstacles. It is however far less optimal than the algorithm of R. Deits et al. in the sense that it provides ellipsoids of lower volumes, but it is designed to be fast. The aim of the "fast dilatation stage" is to initialise the algorithm of R. Deits et al. with pre-grown ellipsoids and reduce the number of iterations necessary for it to converge.


FIGURE 2.28: A demonstration of the algorithm for growing ellipses in a planar environment consisting of 20 uniformly randomly placed convex obstacles and a square boundary. Each row above shows one complete iteration of the algorithm: on the left, the hyperplanes are generated, and their polyhedra intersection is computed. On the right, the ellipse is inflated inside the polyhedra. After three iterations, the ellipse has ceased to grow, and the algorithm has converged. (Figure from [39]).

Preliminary definitions. Ellipsoids in $\mathcal{R}^{n}$ can be represented as follows:
Definition 2.5. An ellipsoid $\mathcal{E}$ in a n-dimensional affine Euclidean space can be represented as:

$$
\begin{aligned}
\mathcal{E} & =\left\{\mathbf{x} \in \mathcal{R}^{n} \mid(\mathbf{x}-\mathbf{c})^{t} M(\mathbf{x}-\mathbf{c}) \leq 1\right\} \\
& =\left\{\mathbf{x} \in \mathcal{R}^{n} \mid(\mathbf{x}-\mathbf{c})^{t} G G^{t}(\mathbf{x}-\mathbf{c}) \leq 1\right\} \\
& =\left\{\mathbf{x} \in \mathcal{R}^{n} \mid \mathbf{x}=\mathbf{c}+G^{-t} \mathbf{y},\|\mathbf{y}\| \leq 1\right\} \\
& =\left\{\mathbf{x} \in \mathcal{R}^{n} \mid \mathbf{x}=\mathbf{c}+E \mathbf{y},\|\mathbf{y}\| \leq 1\right\}
\end{aligned}
$$

Where $\mathbf{c} \in \mathcal{R}^{n}$ is the centre of the ellipsoid and $M \in \mathcal{R}^{n \times n}, M=G^{t} G$ is a symmetric definite positive matrix (see Reference [133] for more details).
$G \in \mathcal{R}^{n \times n}$ is the lower Cholesky decomposition of $M$.
Often, $M$ is called the shape matrix of the ellipsoid $\mathcal{E}$ and $E=G^{-t}$ is referred as the scaling matrix of the ellipsoid $\mathcal{E}$.

Definition 2.6. Given definition 2.5, the surface $\partial \mathcal{E}$ of an ellipsoid $\mathcal{E}$ in an n-dimensional affine Euclidean space can be represented as:

$$
\partial \mathcal{E}=\left\{\mathbf{x} \in \mathcal{R}^{n} \mid(\mathbf{x}-\mathbf{c})^{t} G G^{t}(\mathbf{x}-\mathbf{c})=1\right\}
$$

Definition 2.7. Given definition 2.5 , the interior int $\mathcal{E}$ of an ellipsoid $\mathcal{E}$ in an n-dimensional affine Euclidean space can be represented as:

$$
\operatorname{intE}=\left\{\mathbf{x} \in \mathcal{R}^{n} \mid(\mathbf{x}-\mathbf{c})^{t} G G^{t}(\mathbf{x}-\mathbf{c})<1\right\}
$$

Definition 2.8. Given definition 2.5, the uniform scaling of factor $\alpha$ of an ellipsoid $\mathcal{E}$ is an ellipsoid $\mathcal{E}_{\alpha}$ that can be represented as:

$$
\mathcal{E}_{\alpha}=\left\{\mathbf{x} \in \mathcal{R}^{n} \mid \mathbf{x}=\mathbf{c}+G^{-t} \mathbf{y},\|\mathbf{y}\| \leq \alpha\right\}
$$

Where $\alpha \in \mathcal{R}^{+} \backslash\{0\}$ is the scaling factor.
If $\alpha<1$, the uniform scaling will be referred as a uniform shrink.
If $\alpha>1$, the uniform scaling will be referred as a uniform dilation.
Ellipsoid dilation. The aim of ellipsoid dilation is, given an initial ellipsoid $\mathcal{E}^{0}$ located inside a given cell, to fit the ellipsoid to the cell. More precisely, the aim is to find the maximum volume ellipsoid inside a given cell where the wall's pixels are seen as obstacles for the ellipsoid (see Figure 2.29). Dilated ellipsoids will model the cell shapes and anisotropies.

The dilation of an initial ellipsoid $\mathcal{E}^{0}$ is performed in a two-fold fashion. Firstly, a fast dilation, possibly preceded by a uniform shrink, is performed. Secondly, a full dilation computes the final, fitted, ellipsoid $\mathcal{E}^{*}$. The initial ellipsoid $\mathcal{E}^{0}$ is a sphere centred at the position of its associated maximum with radius value of the value of the distance transform at that maximum. Algorithm 13 describes the whole process. Note that algorithm 13 calls other algorithms which will be described in details hereafter.

```
Algorithm 13 Given an initial ellipsoid \(\mathcal{E}^{0}\) and an image \(I\), iteratively fits the ellip-
soid to its corresponding cell.
Require: Discrete digitalised image I of domain \(D_{I}\).
Require: Pixel value \(p \in \operatorname{Im}(I)\) figuring the value associated to the cell walls.
Require: Ellipsoid \(\mathcal{E}^{0} \subset \mathcal{R}^{n}\).
Require: \(\mathcal{O}_{\text {artif }}\) a set of artificial obstacles (may be empty).
 procedure ElLipsoidExpand \(\left(I, p, \mathcal{E}^{0}, \mathcal{O}_{\text {artif }}\right)\)
 \(k \leftarrow 0\).
 \(\tilde{B}^{k} \leftarrow \operatorname{AxisALIGNEDBOX}\left(\mathcal{E}^{k}\right) \quad \triangleright\) Bounding box, algo. 27 .
 \(f \leftarrow 2\). \(\quad\) Box dilation factor.
 \(B^{k} \leftarrow\) DilateAxisAlignedBox \(\left(\tilde{B}^{k}, f\right) \quad \triangleright\) Dilate box by a factor \(f\), algo. 14 .
 \(B^{k} \leftarrow B^{k} \cap D_{I} \quad \triangleright\) Crop box by the image domain.
 Scan for feature pixels in \(B^{k}: \mathcal{O} \leftarrow\left\{\mathbf{v} \in B^{k} \mid I(\mathbf{v})=p\right\}\).
 \(\mathcal{O} \leftarrow \mathcal{O} \cup \mathcal{O}_{\text {artif }}\). \(\quad \triangleright\) Add artificial obstacles (if any).
 Get scaling matrix \(E^{k}\) and centre \(\mathrm{c}^{k}\) from ellipsoid \(\mathcal{E}^{k}\).
 \(\left(\mathbf{v}^{*}\right.\), is_inside \() \leftarrow\) CLOSESTPIXELTOELLIPSOID \(\left(E^{k}, \mathbf{c}^{k}, \mathcal{O}\right) \quad \triangleright\) Algo. 15 .
 if is_inside then
 \(\mathcal{E}^{k} \leftarrow \operatorname{ShrinkElLIPSOID}\left(\mathcal{E}^{k}, \mathbf{v}^{*}\right) \quad \triangleright\) Algo. 16.
 end if
 \(\tilde{\mathcal{E}}^{k} \leftarrow \operatorname{FASTELLIPSOIDEXPAND}\left(\mathcal{O}, \mathcal{E}^{k}\right) \quad \triangleright\) Algo. 17.
 \(\mathcal{E}^{k+1} \leftarrow \operatorname{FULLELLIPSOidExpAND}\left(\mathcal{O}, \tilde{\mathcal{E}}^{k}\right) \quad \triangleright\) Algo. 18 .
 \(\tilde{B}^{k+1} \leftarrow \operatorname{AxisAlignedBox}\left(\mathcal{E}^{k+1}\right) \quad \triangleright\) Algo. 27.
 \(B^{k+1} \leftarrow \operatorname{DilATEAxiSALIGNEDBOX}\left(\tilde{B}^{k+1}, f\right) \quad \triangleright\) Algo. 14 .
 \(B^{k+1} \leftarrow B^{k+1} \cap D_{I}\).
 if \(B^{k} \subset B^{k+1}\) or \(\left|\operatorname{Vol}\left(\mathcal{E}^{k+1}\right)-\operatorname{Vol}\left(\mathcal{E}^{k}\right)\right| \leq \operatorname{Vol}\left(\mathcal{E}^{k}\right)\).tol then
 return \(\mathcal{E}^{k+1}\)
 else
 \(k \leftarrow k+1\)
 Go back to line 7
 end if
 end procedure
```



FIGURE 2.29: 2-dimensional sketch of the fitting of an ellipsoid inside a cell. Black squares represent pixel belonging to the cell walls.

Remark about algorithm 13. At lines 3 and 16 this algorithm uses axis-aligned boxes that surround ellipsoids ${ }^{19}$. Ellipsoids can not grow outside theses boxes. The aim of theses boxes is two-fold.

First, their role is to avoid that ellipsoids at located near the image boundaries grow to an infinite volume because the lack of obstacles (absence of feature voxels in the image on its boundaries). As illustrated in Figure 2.30, if an ellipsoid reaches one or more side of a box, the said box is dilated by a factor two (lines 5 and 17 in the algorithm) in order to allow the ellipsoid to continue its growth. However, the box is always cropped to the size of the image (lines 6 and 18), effectively forbidding any ellipsoid to grow outside the image.

Second, in case of streaming (see Section 3.10), if a surrounding box is dilated outside the boundaries of the current considered image slice, and if that boundary is not also a boundary of the whole image, the ITK filter implementing this algorithm can request a bigger slice through the ITK pipeline in order to have more available data for growing the ellipsoid associated to the corresponding box.

```
Algorithm 14 Dilates around its centre an axis-aligned box \(B\) by a dilation factor \(f\).
Require: Axis-aligned box \(B \subset \mathcal{R}^{n}\).
Require: Dilation factor \(f \in \mathcal{R}\).
 procedure DilateAxisAlignedBox \((B, f)\)
 for \(i=1, \ldots, n\) do
 temp \(\leftarrow \frac{1}{2}\left(s_{i}^{+}(1+f)+s_{i}^{-}(1-f)\right)\).
 \(s_{i}^{-} \leftarrow \frac{1}{2}\left(s_{i}^{-}(1+f)+s_{i}^{+}(1-f)\right)\).
 \(s_{i}^{+} \leftarrow t e m p\).
 end for
 return \(B=\left[s_{1}^{-}, s_{1}^{+}\right] \times \ldots \times\left[s_{n}^{-}, s_{n}^{+}\right]\).
 end procedure
```

[^11]

Figure 2.30: Schematic of the growth of an ellipsoid near the boundaries of an image. Image boundaries represented with black lines, ellipsoid represented with a blue line and its surrounding axis-aligned box with red lines.

```
Algorithm 15 Given an ellipsoid \(\mathcal{E}\) and a set of pixels \(\mathcal{O}\), computes the closest pixel
to the ellipsoid \(\mathcal{E}\).
Require: Ellipsoid \(\mathcal{E}=\mathcal{E}(E, \mathbf{c}) \subset \mathcal{R}^{n}\).
Require: Set of point-wise obstacles \(\mathbf{O}=\left\{\mathbf{v}_{j}\right\}_{j=1, \ldots, m}\).
 procedure ClOSESTPIXELTOELLIPSOID \((E, \mathbf{c}, \mathcal{O})\)
 distances \(\leftarrow \varnothing\).
 for \(\mathbf{v}_{j} \in \mathcal{O}\) do
 \(\tilde{\mathbf{v}}_{j} \leftarrow E^{-1}\left(\mathbf{v}_{j}-\mathbf{c}\right)\).
 distances \(\leftarrow\) distances \(\cup\left\|\tilde{\mathbf{v}}_{j}\right\|\).
 end for
 min_distance \(\leftarrow \min\) (distances).
 closest_point \(\leftarrow \mathbf{v} \in \mathcal{O}\) associated to the minimal distance min_distance.
 is_inside \(\leftarrow\) (min_distance \(<1\)) ? true : false.
 return closest_point, is_inside.
 end procedure
```

Remark about algorithm 15. Among a set of pixels $\mathcal{O}$, algorithm 15 simply finds the closest one to a given ellipsoid $\mathcal{E}=\mathcal{E}(E, \mathbf{c})$ and determines if this pixel lies inside the ellipsoid. This computation is performed by using the transform:

$$
\begin{equation*}
T_{\mathcal{E}}: \mathcal{R}^{n} \rightarrow \mathcal{R}^{n} ; \mathbf{x} \mapsto T_{\mathcal{E}}(\mathbf{x})=E^{-1}(\mathbf{x}-\mathbf{c}) \tag{2.38}
\end{equation*}
$$

This transform reduces the ellipsoid $\mathcal{E}$ to the unit sphere centred at the origin. Algorithm 15 simply apply this transform to the pixels of the set $\mathcal{O}$ and look for the closest one to the origin. If the Euclidean distance of this closest pixel to the origin is less than one, then the considered pixel lies inside the ellipsoid.

Uniform shrinking stage. Before any dilation, it is already possible that an initial ellipsoid $\mathcal{E}^{0}$ overlaps an obstacle (pixel belonging to a cell wall, see Figure 2.31). Though improbable ${ }^{20}$, this occurrence can not be ruled-out.

Let's be $\mathcal{E}=\mathcal{E}(E, \mathbf{c}) \subset \mathcal{R}^{n}$ an ellipsoid represented by a centre $\mathbf{c} \in \mathcal{R}^{n}$ and a scaling matrix $E \in \mathcal{R}^{n \times n}$, and a point $\mathbf{v} \in \mathcal{E}$. Then, a uniformly shrunk ellipsoid $\mathcal{E}_{\alpha}=\mathcal{E}_{\alpha}(\tilde{E}, \mathbf{c})$ that does not overlap the point $\mathbf{v}$ is such that:

$$
\begin{equation*}
\mathbf{v}=\mathbf{c}+\tilde{E} \mathbf{y}=\mathbf{c}+\alpha E \mathbf{y} . \tag{2.39}
\end{equation*}
$$

With $\|\mathbf{y}\|=1$.
The segment joining the centre $\mathbf{c}$ to the point $\mathbf{v}$ is intersecting the surface of $\mathcal{E}_{\alpha}$ at:

$$
\begin{equation*}
\mathbf{y}=\frac{\mathbf{v}-\mathbf{c}}{\|\mathbf{v}-\mathbf{c}\|} \tag{2.40}
\end{equation*}
$$

Then, it is possible to find the shrinking factor $\alpha$ such that $\mathbf{v}$ will lie on the surface of $\mathcal{E}_{\alpha}$ :

$$
\begin{align*}
& \mathbf{v}=\mathbf{c}+\alpha E \frac{\mathbf{v}-\mathbf{c}}{\|\mathbf{v}-\mathbf{c}\|} \\
\Leftrightarrow & (\mathbf{v}-\mathbf{c})=\alpha E-\mathbf{v}-\mathbf{c} \\
\Leftrightarrow & E^{-1}(\mathbf{v}-\mathbf{c})\|\mathbf{v}-\mathbf{v}\|  \tag{2.41}\\
\Rightarrow & \left.\left(E^{-t}(\mathbf{v}-\mathbf{c})\right)^{t}(\mathbf{v}-\mathbf{c})\|\mathbf{v}-\mathbf{c}\|\right) \alpha \\
\Leftrightarrow & \alpha=\frac{\left(E^{-t}(\mathbf{v}-\mathbf{c})\right)^{t}(\mathbf{v}-\mathbf{c})}{\|\mathbf{v}-\mathbf{c}\|}
\end{align*}
$$

In the computation of the shrinking factor $\alpha$, it is needed to compute the denominator $\|\mathbf{v}-\mathbf{c}\|$ which gives the distance between the cell wall pixel $\mathbf{v}$ and the ellipsoid's centre $\mathbf{c}$. This denominator is unlikely to be zero (in practice, this case never occurs) because, by construction, the centre of an initial ellipsoid $\mathcal{E}^{0}$ is located as far as possible from any cell wall pixel.

[^12]
(a) Initial ellipsoid $\mathcal{E}$ (black line).

(b) Uniformly shrinked ellipsoid $\tilde{\mathcal{E}}$ (black line).

Figure 2.31: Uniform shrinking of an ellipsoid $\mathcal{E}$ containing a pixel (black square) so that the new ellipsoid $\tilde{\mathcal{E}}$ does not contain the pixel anymore.

```
\(\overline{\text { Algorithm } 16 \text { Given an ellipsoid } \mathcal{E} \text { and a point } \mathbf{v} \in \operatorname{intE} \text {, computes an uniform }}\)
shrunk ellipsoid \(\mathcal{E}_{\alpha}\) such that \(\mathbf{v} \in \partial \mathcal{E}_{\alpha}\).
Require: Ellipsoid \(\mathcal{E}=\mathcal{E}(E, \mathbf{c}) \subset \mathcal{R}^{n}\).
Require: Point \(\mathbf{v} \in \operatorname{intE}\).
 procedure \(\operatorname{SHRINKELLIPSOID}(\mathcal{E}, \mathbf{v})\)
 if \(\|\mathbf{v}-\mathbf{c}\| \leq \epsilon\) then
 return Error. \(\triangleright\) Division by (almost) zero. Unlikely to occurs.
 else
 \(\alpha \leftarrow \frac{\left(E^{-t}(\mathbf{v}-\mathbf{c})\right)^{t}(\mathbf{v}-\mathbf{c})}{\|\mathbf{v}-\mathbf{c}\|}\).
 \(E_{\alpha} \leftarrow \alpha E\).
 return Ellipsoid \(\mathcal{E}_{\alpha}=\left\{\mathbf{x} \mathcal{R}^{n} \mid \mathbf{x}=\mathbf{c}+E_{\alpha} \mathbf{y},\|\mathbf{y}\| \leq 1\right\}\).
 end if
 end procedure
```

Fast dilation stage. The fast dilation stage consists only in lengthen the semi-axes of the considered ellipsoid, till it is no more possible to increase the ellipsoid volume without hitting the surrounding obstacles. This stage will not find the maximum volume ellipsoid possible, but is faster than the full dilation stage and it will be used as an initialisation for the latter.

In practice, during the first iterations the semi-axis lengths $\left\{r_{i}\right\}_{i, \ldots, n}$ are uniformly increased by a factor $\alpha$ till the current ellipsoid $\mathcal{E}^{k}$ hits a cell wall pixel $\mathbf{v}$ (i.e. $\mathbf{v} \in$ $\left.\mathcal{E}^{k}\right)$. In that case, the last iteration $k$ is cancelled and a penalisation factor temp $f_{i}$ for each semi-axis length $r_{i}, i=1, \ldots, n$ is computed. The penalisation factors are simply given as (the absolute values of) the projections of the vector connecting the ellipsoid's centre $\mathbf{c}$ to the hit point $\mathbf{v}$ on each semi-axis $\mathbf{u}_{i}, i=1, \ldots, n$; where $\mathbf{u}_{i}$ is the ith eigenvector of the shape matrix $M^{0}$ of the initial ellipsoid ${ }^{21} \mathcal{E}^{0}$.

$$
\begin{equation*}
\operatorname{temp} f_{i}(\mathbf{v})=\left\|r_{i}(\mathbf{v}-\mathbf{c})^{t} \mathbf{u}_{i}\right\|, i=1, \ldots, n \tag{2.42}
\end{equation*}
$$

The penalisation factor 2.42 is then weighted by the penalisation factors over all the semi-axes $\mathbf{u}_{i}, i=1, \ldots, n$ :

$$
\begin{equation*}
f_{i}(\mathbf{v})=\frac{\operatorname{temp} f_{i}(\mathbf{v})}{\sum_{j=1}^{n} \operatorname{temp} f_{j}(\mathbf{v})}, i=1, \ldots, n \tag{2.43}
\end{equation*}
$$

[^13]At iteration $k$, if the ellipsoid $\mathcal{E}^{k}$ hits a cell wall pixel $\mathbf{v}^{m}$, while having already hit $(m-1)$ cell wall pixels $\mathbf{v}^{1}, \ldots, \mathbf{v}^{m-1}$ during the preceding iterations, its weighted penalisation factor for all the $m$ cell wall pixels is given as:

$$
\begin{equation*}
f_{i}^{m}=f_{i}^{m-1}+\frac{\operatorname{temp} f_{i}\left(\mathbf{v}^{m}\right)}{\sum_{j=1}^{n} \operatorname{temp} f_{j}\left(\mathbf{v}^{m}\right)}, i=1, \ldots, n \tag{2.44}
\end{equation*}
$$

Where $f_{i}^{m-1}$ is defined recursively by equation 2.44 and $f_{i}^{1}$ is defined by equation 2.43 with $\mathbf{v}=\mathbf{v}^{1}$.

A non-recursive definition of $f_{i}^{m}$ is given by:

$$
\begin{equation*}
f_{i}^{m}=\sum_{k=1}^{m} \frac{\operatorname{temp} f_{i}\left(\mathbf{v}^{k}\right)}{\sum_{j=1}^{n} \operatorname{temp} f_{j}\left(\mathbf{v}^{k}\right)}, i=1, \ldots, n \tag{2.45}
\end{equation*}
$$

Finally, at iteration $k$, the semi-axis lengths $\left\{r_{i}\right\}_{1, \ldots, n}$ are updated as follow:

$$
\begin{equation*}
r_{i}^{k+1}=r_{i}^{k}+\alpha^{m}\left(1-\frac{f_{i}^{m}}{m}\right) r_{i}^{k} \tag{2.46}
\end{equation*}
$$

Where $\alpha^{m}$ is a rate factor and $\left(1-\frac{f_{i}^{m}}{m}\right)$ is the final penalisation term.
By construction, $\frac{f_{i}^{m}}{m}$ is bounded by the interval $[0,1]$. Each time a cell wall pixel $\mathbf{v}$ is hit by the growing ellipsoid, its projections relatively to the ellipsoid's centre c on the semi-axes are computed. These projections are added to the weighted penalisation factors $f_{i}^{m}$ which increase towards one. Conversely, the term $\left(1-\frac{f_{i}^{m}}{m}\right)$ will decrease towards zero. The more the vector $(\mathbf{v}-\mathbf{c})$ is aligned with a semi-axis $\mathbf{u}_{j}$, the more its corresponding radius $r_{j}$ will be penalised. Similarly, the more cell wall pixels are hit, the more the radii $\left\{r_{i}\right\}_{1, \ldots, n}$ will be penalised. Figure 2.32 sketches the effect of the penalisation terms over the semi-axis lengths $\left\{r_{i}\right\}_{1, \ldots, n}$ for a simple 2-dimensional case.


Figure 2.32: 2-dimensional sketch example of a fast ellipsoid dilation. Cell wall pixels are represented by black squares.

```
Algorithm 17 Given a initial ellipsoid \(\mathcal{E}^{0}\) and a list of cell wall pixels \(\mathcal{O}\), increases as
much as possible the semi-axes lengths of \(\mathcal{E}^{0}\) such that \(\mathcal{E}^{0} \cap \mathcal{O}=\varnothing\).
Require: Ellipsoid \(\mathcal{E}^{0} \subset \mathcal{R}^{n}\).
Require: List of obstacles \(\mathcal{O}=\left\{\mathbf{v}_{j}\right\}_{j=1, \ldots, m}\).
 procedure \(\operatorname{FastElLIPSOIDExpand}\left(\mathcal{O}, \mathcal{E}^{0}\right)\)
 \(m \leftarrow 1, k \leftarrow 0\).
 \(\alpha^{m} \leftarrow 0.5 . \quad \triangleright\) Rate parameter.
 \(f_{i}^{m} \leftarrow 0, i=1, \ldots, n . \quad \triangleright\) Penalisation factors.
 repeat
 Get the semi-axis lengths \(\left\{r_{i}\right\}_{i=1, \ldots, n}\) and eigenvectors \(\left\{\mathbf{u}_{i}\right\}_{i=1, \ldots, n}\) of \(\mathcal{E}^{k}\).
 \(r_{i}^{k+1} \leftarrow r_{i}^{k}+\alpha^{m}\left(1-\frac{f_{i}^{m}}{m}\right) r_{i}^{k}, i=1, \ldots, n \quad \triangleright\) dilation step.
 \(\Delta r^{k}=\max _{i=1, \ldots, n}\left(r_{i}^{k+1}-r_{i}^{k}\right)\).
 Set \(\mathcal{E}^{k+1}\) as \(\mathcal{E}^{k}\) with radii \(r_{i}^{k+1}, i=1, \ldots, n\).
 Extract scaling matrix \(E^{k+1}\) and ellipsoid centre \(\mathbf{c}\) from ellipsoid \(\mathcal{E}^{k+1}\)
 \(\left(\mathbf{v}^{*}\right.\), is_inside \() \leftarrow\) CLOSESTPIXELTOELLIPSOID \(\left(E^{k+1}, \mathbf{c}, \mathcal{O}\right) \quad \triangleright\) Algo. 15 .
 if is_inside then
 \(\alpha^{m+1} \leftarrow \alpha^{m} / 2\).
 \(\operatorname{temp} f_{i}\left(\mathbf{v}^{*}\right)=\left\|r_{i}^{k}\left(\mathbf{v}^{*}-\mathbf{c}\right)^{t} \mathbf{u}_{i}\right\|, i=1, \ldots, n\).
 \(f_{i}^{m+1} \leftarrow f_{i}^{m}+\frac{\text { temp } f_{i}\left(\mathbf{v}^{*}\right)}{\sum_{j=1}^{n} \text { temp } f_{j}\left(\mathbf{v}^{*}\right)}, i=1, \ldots, n\).
 \(m \leftarrow m+1\).
 Continue. \(\triangleright\) Go back at the beginning of the loop.
 end if
 \(k \leftarrow k+1\).
 until \(\Delta r^{k} \leq 1 \triangleright\) Stop when the radius increment is less or equal to one pixel.
 return Ellipsoid \(\mathcal{E}^{k}\).
 end procedure
```

Full dilation stage. This stage is the one which really fits the considered initial ellipsoid $\mathcal{E}^{0}$ to its corresponding cell. Starting from the initial ellipsoid $\mathcal{E}^{0}$ and a set of cell wall pixels $\mathcal{O}$, it computes the maximum volume ellipsoid $\mathcal{E}^{*}$ such that $\mathcal{E}^{*} \cap \mathcal{O}=\varnothing$. To this end, it uses the algorithm of R. Deits and R. Tedrake [39] which iteratively dilates the ellipsoid inside a growing set of polyhedra $P^{k}, k=1, \ldots$. The polyhedra $P^{k}, k=1, \ldots$ are themselves constructed from the current considered ellipsoid at a given iteration and from the set of cell wall pixels $\mathcal{O}$.

```
Algorithm 18 Given a initial ellipsoid \(\mathcal{E}^{0}\) and a list of cell wall pixels \(\mathcal{O}\), finds the
maximum volume ellipsoid \(\mathcal{E}^{*}\) such that \(\mathcal{E}^{*} \cap \mathcal{O}=\varnothing\).
Require: Ellipsoid \(\mathcal{E}^{0} \subset \mathcal{R}^{n}\).
Require: List of obstacles \(\mathcal{O}=\left\{\mathbf{v}_{j}\right\}_{j=1, \ldots, m}\).
 procedure \(\operatorname{FullEllipsoidExpand}\left(\mathcal{O}, \mathcal{E}^{0}\right)\)
 Extract scaling matrix \(E^{0}\) and ellipsoid centre \(\mathbf{c}\) from ellipsoid \(\mathcal{E}^{0}\)
 return DeitsMaxVolEllipsoid \(\left(E^{0}, \mathbf{c}, \mathcal{O}\right) \quad \triangleright\) Algo. 21.
 end procedure
```

Ellipsoid dilations inside a given cell is performed thanks to the algorithm of R. Deits and R. Tedrake [39]. This algorithm was originally designed for determining large, obstacle-free, convex (ellipsoidal) regions where a bipedal robot can safely step and move. As pointed by R. Deits and R. Tedrake themselves, it has been found that this algorithm could be used for a totally different context: namely here determining a maximum volume ellipsoid located inside a given cell.

Here, the list of obstacles $\mathcal{O}$ is simply a list of feature pixels $\left\{\mathbf{v}_{k}\right\}_{1, \ldots, K}$ (i.e., pixels identified as cell struts/walls) lying in a given neighbourhood $V$ of an initial ellipsoid $\mathcal{E}^{0}$.

The algorithm of R. Deits and R. Tedrake first consists in generating separating planes between the obstacles and the initial ellipsoid $\mathcal{E}^{0}$. Then, "redundant" separating planes are discarded. The remaining planes define a polyhedron $P^{1}$ containing the initial ellipsoid $\mathcal{E}^{0}$. From this initial ellipsoid $\mathcal{E}^{0}$, a maximum volume inscribed ellipsoid $\mathcal{E}^{1} \subset P^{1}$ is computed. Given this new ellipsoid $\mathcal{E}^{1}$, a new set of separating planes is generated from it. Then redundant separating planes are discarded from this set and a new polyhedron $P^{2}$ is determined from the remaining separating planes. From $\mathcal{E}^{1}$, a new maximum volume inscribed ellipsoid $\mathcal{E}^{2} \subset P^{2}$ is computed. This process is repeated until the relative volume difference between two consecutive ellipsoids $\mathcal{E}^{i}$ and $\mathcal{E}^{i+1}$ is below a given threshold. Figure 2.33 gives a sketch of the algorithm of R. Deits and R. Tedrake in two dimensions.

The main advantage of the algorithm of R. Deits and R. Tedrake lies in the fact that redundant planes are removed. Indeed, the problem of computing a maximum volume ellipsoid inscribed in a given polyhedron $P$ defined by planes is a constrained convex optimisation problem, where each plane corresponds to a constraint. Complexity bounds for the optimisation algorithms solving this kind of optimisation problems are mainly driven by the number of constraints. Typically, the complexity bounds with respect to the number of constraints $m$ for these algorithm are of the order $O\left(m^{3.5} \ln \left(\frac{m}{e}\right)\right)$, where $\left.e \in\right] 0,1[$ is a constant [189]. Therefore, the less constraints (a.k.a. the less separating planes) the better.


Figure 2.33: Sketch of the algorithm of R. Deits and R. Tedrake applied to a two-dimensional image of a cell. Pixels representing the cell walls are shown as black squares, separating planes and polyhedra as black lines.

As cell walls may be constituted by a large number of pixels, each representing one obstacle and each associated to a separating plane, the number of constraints may rapidly become overwhelming for the considered optimisation algorithms. But, since most of the separating planes in the algorithm of R. Deits and R. Tedrake are redundant, this dramatically improves the efficiency of the stage where maximum volumes inscribed ellipsoids are computed.

Given an initial ellipsoid $\mathcal{E}^{0}$ and a list of convex obstacles $\left\{\zeta_{j}\right\}_{j=1, \ldots, K}$, the algorithm of R. Deits and R. Tedrake finds a polyhedron $P^{*}$ whose boundaries are touching the obstacles and a maximum volume inscribed ellipsoid $\mathcal{E}^{*} \subset P^{*}$.

Generating the separating planes. Given an ellipsoid $\mathcal{E}$ and a convex obstacle $\zeta_{j}$, the aim is to find a separating plane $H_{j}$ which touches the obstacle $\zeta_{j}$ and separates the ellipsoid $\mathcal{E}$ from the obstacle.

The plane $H_{j}$ can be represented as:

$$
\begin{equation*}
H_{j}=H_{j}\left(\hat{\mathbf{n}}_{j}, b_{j}\right)=\left\{\mathbf{x} \in \mathcal{R}^{n} \mid \hat{\mathbf{n}}_{j}^{t} \mathbf{x}-b_{j}=0\right\} \tag{2.47}
\end{equation*}
$$

Where $\hat{\mathbf{n}}_{j} \in \mathcal{R}^{n}$ is the normal vector and $b_{j} \in \mathcal{R}$ a shift term.
The ellipsoid $\mathcal{E}=\mathcal{E}(E, \mathbf{c})$ can be represented as:

$$
\begin{equation*}
\mathcal{E}(E, \mathbf{c})=\left\{\mathbf{x} \in \mathcal{R}^{n} \mid(\mathbf{x}-\mathbf{c})^{t} E^{-t} E^{-1}(\mathbf{x}-\mathbf{c}) \leq 1\right\} \tag{2.48}
\end{equation*}
$$

Where $E=G^{-t} \in \mathcal{R}^{n \times n}$ is the scaling matrix and $\mathbf{c} \in \mathcal{R}^{n}$ its centre.
The algorithm of R. Deits and R. Tedrake aims to solve the following optimisation problem:

$$
\begin{array}{ll}
\operatorname{maximise}_{E, \mathbf{c},\left\{\mathbf{n}_{j}, b_{j}\right\}_{j=1, \ldots, \ldots K}} & \log \operatorname{det} E \\
\text { s.t. } & \mathbf{n}_{j}^{t} \mathbf{v}_{k} \geq b_{j} \forall \mathbf{v}_{k} \in \zeta_{j}, j=1, \ldots, K  \tag{2.49}\\
& \sup _{\|\mathbf{y}\| \leq 1} \mathbf{n}_{i}^{t}(\mathbf{c}+E) \mathbf{y} \leq b_{i}, \forall i=1, \ldots, K
\end{array}
$$

Given the closest point $\mathbf{x}^{*} \in \zeta_{j}$ to $\mathcal{E}(E, \mathbf{c})$, R. Deits and R. Tedrake take the normal vector $\hat{\mathbf{n}}_{j}$ of the separating plane $H_{j}$ as the gradient vector of the ellipsoid's barrier function at $\mathbf{x}^{*}$ :

$$
\begin{align*}
\mathbf{n}_{j} & =\nabla_{\mathbf{x}}\left[(\mathbf{x}-\mathbf{c})^{t} E^{-t} E^{-1}(\mathbf{x}-\mathbf{c})\right]_{\mathbf{x}=\mathbf{x}^{*}}  \tag{2.50}\\
& =2 E^{-t} E^{-1}\left(\mathbf{x}^{*}-\mathbf{c}\right)
\end{aligned} \quad \begin{aligned}
\hat{\mathbf{n}}_{j}=\frac{\mathbf{n}_{j}}{\left\|\mathbf{n}_{j}\right\|}
\end{align*}
$$

The closest point $\mathbf{x}^{*} \in \zeta_{j}$ is found by solving an optimisation problem, using the algorithm of Mattingley et al. [110]. See Appendix D for more details. Note that if the considered obstacle $\zeta_{j}$ is reduced to a point, there is no need to solve an optimisation problem.

Finally, the separating plane $H_{j}$ is imposed to pass through $\mathbf{x}^{*}$ :

$$
\begin{equation*}
b_{j}=\hat{\mathbf{n}}_{j}^{t} \mathbf{x}^{*} \tag{2.52}
\end{equation*}
$$

Algorithm 19 describes the procedure.

```
Algorithm 19 Compute a separating plane \(H_{j}=H_{j}\left(\hat{\mathbf{n}}_{j}, b_{j}\right)\) between an ellipsoid \(\mathcal{E}\)
and a convex polyhedral obstacle \(\zeta_{j}\). R. Deits and R. Tedrake ([39]).
```

```
Require: Ellipsoid \(\mathcal{E}(E, \mathbf{c}) \subset \mathcal{R}^{n}\).
```

Require: Ellipsoid $\mathcal{E}(E, \mathbf{c}) \subset \mathcal{R}^{n}$.
Require: Convex polyhedral obstacle $\zeta_{j} \subset \mathcal{R}^{n}$.
Require: Convex polyhedral obstacle $\zeta_{j} \subset \mathcal{R}^{n}$.
procedure DeitsTangentPlane $\left(E, \mathbf{c}, \zeta_{j}\right)$
procedure DeitsTangentPlane $\left(E, \mathbf{c}, \zeta_{j}\right)$
if $\zeta_{j}$ not a point then
if $\zeta_{j}$ not a point then
Find the closest point $\mathbf{x}^{*} \in \zeta_{j}$ to $\mathcal{E}: \mathbf{x}^{*} \leftarrow \operatorname{CVX}\left(E, \mathbf{c}, \zeta_{j}\right) . \quad \triangleright$ Algorithm 41.
Find the closest point $\mathbf{x}^{*} \in \zeta_{j}$ to $\mathcal{E}: \mathbf{x}^{*} \leftarrow \operatorname{CVX}\left(E, \mathbf{c}, \zeta_{j}\right) . \quad \triangleright$ Algorithm 41.
else
else
$\mathbf{x}^{*} \leftarrow \zeta_{j}$.
$\mathbf{x}^{*} \leftarrow \zeta_{j}$.
end if
end if
$\mathbf{n}_{j} \leftarrow 2 E^{-t} E^{-1}\left(\mathbf{x}^{*}-\mathbf{c}\right)$.
$\mathbf{n}_{j} \leftarrow 2 E^{-t} E^{-1}\left(\mathbf{x}^{*}-\mathbf{c}\right)$.
$\hat{\mathbf{n}}_{j} \leftarrow \frac{\mathbf{n}_{j}}{\left\|\mathbf{n}_{j}\right\|}$.
$\hat{\mathbf{n}}_{j} \leftarrow \frac{\mathbf{n}_{j}}{\left\|\mathbf{n}_{j}\right\|}$.
$b_{j} \leftarrow \hat{\mathbf{n}}_{j}^{\dagger} \mathbf{x}^{*}$.
$b_{j} \leftarrow \hat{\mathbf{n}}_{j}^{\dagger} \mathbf{x}^{*}$.
return $\hat{\mathbf{n}}_{j}, b_{j}$. $\quad$ Quantities defining the plane $H_{j}$.
return $\hat{\mathbf{n}}_{j}, b_{j}$. $\quad$ Quantities defining the plane $H_{j}$.
end procedure

```
 end procedure
```

Removing redundant planes. As already stated, iterating over all the obstacles will generate a large number of separating planes. For already mentioned algorithmic efficiency reasons, it is preferable to keep the number of separating planes as small as possible. To this aim, redundant planes are removed.

Given an obstacle $\zeta_{j}$, it is possible to compute its corresponding separating plane $H_{j}=H_{j}\left(\hat{\mathbf{n}}_{j}, b_{j}\right)$ relatively to a given ellipsoid $\mathcal{E}$. If, for another obstacle $\zeta_{k}, k \neq j$, it holds:

$$
\begin{equation*}
\hat{\mathbf{n}}_{j}^{t} \mathbf{y}-b_{j} \geq 0, \forall \mathbf{y} \in \zeta_{k} \tag{2.53}
\end{equation*}
$$

Then, the computation of the separating plane corresponding to $\zeta_{k}$ can be skipped, as the obstacle $\zeta_{k}$ is already separated from ellipsoid $\mathcal{E}$ by the separating plane $H_{j}$. In that case, the separating plane $H_{k}$ associated to the obstacle $\zeta_{k}$ is called redundant.

In practice, as the considered obstacles are convex polyhedra, equation 2.53 need only to be checked on the vertices of $\zeta_{k}$. Algorithm 20 describes the procedure for computing the non-redundant separating planes.

Remark about algorithm 20. This algorithm computes the separating planes between obstacles and an ellipsoid $\mathcal{E}$. The next step, involves computing a maximum volume ellipsoid belonging to the intersection of the half-spaces $\left\{H S_{j}\right\}_{j=1, \ldots, m}$ defined by the separating planes. Namely:

$$
\begin{equation*}
P=\cap_{j=1}^{m} H S_{j}=\left\{\mathbf{x} \in \mathcal{R}^{n} \mid A \mathbf{x} \leq \mathbf{b}\right\} \tag{2.54}
\end{equation*}
$$

Where the matrix $A \in \mathcal{R}^{m \times m}$ and the vector $\mathbf{b} \in \mathcal{R}^{m}$ are computed by algorithm 20; while the half-spaces $\left\{H S_{j}\right\}_{j=1, \ldots, m}$ are defined by:

$$
\begin{equation*}
H S_{j}=\left\{\mathbf{x} \in \mathcal{R}^{n} \mid \hat{\mathbf{n}}_{j}^{t} \mathbf{x} \leq b_{j}\right\}, j=1, \ldots, m \tag{2.55}
\end{equation*}
$$

```
Algorithm 20 Compute the non-redundant separating planes between a given el-
lipsoid \(\mathcal{E}\) and a list of convex polyhedral obstacles \(\mathcal{O}=\left\{\zeta_{j}\right\}_{j=1, \ldots, K}\). R. Deits and
R. Tedrake ([39]).
Require: Ellipsoid \(\mathcal{E}(E, \mathbf{c}) \subset \mathcal{R}^{n}\).
Require: List of convex polyhedral obstacles \(\mathcal{O}\).
 procedure DeitsSeparatingPlanes \((E, \mathbf{c}, \mathcal{O})\)
 \(\mathcal{O}_{\text {excluded }} \leftarrow \varnothing\).
 \(\mathcal{O}_{\text {remaining }} \leftarrow \mathcal{O}\).
 \(i \leftarrow 1\).
 while \(\mathcal{O}_{\text {remaining }} \neq \varnothing\) do
 \(\zeta^{*} \leftarrow\) closest obstacle in \(\mathcal{O}\) to ellipsoid \(\mathcal{E}\).
 \(\left(\hat{\mathbf{n}}_{i}, b_{i}\right) \leftarrow\) DeitsTangentPlane \(\left(E, \mathbf{c}, \zeta^{*}\right) \quad \triangleright\) Algorithm 19.
 for \(\zeta_{k} \in \mathcal{O}_{\text {remaining }}\) do
 if \(\hat{\mathbf{n}}_{i}^{\dagger} \mathbf{x}_{j}-b_{i} \geq 0, \forall \mathbf{x}_{\mathbf{j}} \in \zeta_{k}\) then
 \(\mathcal{O}_{\text {remaining }} \leftarrow \mathcal{O}_{\text {remaining }} \backslash \zeta_{k}\).
 \(\mathcal{O}_{\text {excluded }} \leftarrow \mathcal{O}_{\text {excluded }} \cup \zeta_{k}\).
 end if
 end for
 \(i \leftarrow i+1\).
 end while
 \(A \leftarrow\left(\begin{array}{c}\hat{\mathbf{n}}_{1}^{t} \\ \mathbf{n}_{2}^{t} \\ \vdots\end{array}\right), \mathbf{b} \leftarrow\left(\begin{array}{c}b_{1} \\ b_{2} \\ \vdots\end{array}\right) . \triangleright\) Non-redundant plane parameters associated
 to obstacles \(\mathcal{O} \backslash \mathcal{O}_{\text {excluded }}\).
 return \(A, \mathbf{b}\).
 end procedure
```

However, there is no guarantee that the polyhedron $P$ is bounded ${ }^{22}$. If the polyhedron $P$ is unbounded, so can also be the corresponding maximum volume ellipsoid and the algorithm of R. Deits et al. will never converge. In order to avoid this unbounded case, a bounding box is added to the constraints computed by the algorithm 20. In practice, this bounding box is, at most, of the size of the largest possible region of the considered image.

Computing the maximum volume ellipsoid Given the algorithm 20, computing a bounded polyhedron given a set of polyhedral convex obstacles $\mathcal{O}=\left\{\zeta_{j}\right\}_{j=1, \ldots, K}$ and an initial ellipsoid $\mathcal{E}^{0}$, it is now possible possible to iteratively find a maximum volume ellipsoid $\mathcal{E}^{*}$ which is constrained by the set of obstacles $\mathcal{O}$. Algorithm 21 describes how such a maximum volume ellipsoid $\mathcal{E}^{*}$ is computed. Figure 2.33 sketches the algorithm for a 2-dimensional case.

```
Algorithm 21 Given a set of polyhedral convex obstacles \(\mathcal{O}=\left\{\zeta_{j}\right\}_{j=1, \ldots, K}\) and an
initial ellipsoid \(\mathcal{E}^{0}\), computes iteratively a maximum volume ellipsoid constrained
by the obstacles. R. Deits and R. Tedrake ([39]).
Require: Ellipsoid \(\mathcal{E}^{0}\left(E^{0}, \mathbf{c}^{0}\right) \subset \mathcal{R}^{n}\).
Require: Set of convex polyhedral obstacles \(\mathcal{O}\).
 procedure DeitsMaxVolEllipsoid \(\left(E^{0}, \mathbf{c}^{0}, \mathcal{O}\right)\)
 \(i \leftarrow 0\).
 repeat
 \(\left(A^{i+1}, \mathbf{b}^{i+1}\right) \leftarrow\) DeitsSeparating \(\operatorname{PLANeS}\left(E^{i}, \mathbf{c}^{i}, \mathcal{O}\right) \quad \triangleright\) Compute
 polyhedron \(P^{i}\), algorithm 20.
 \(\left(E^{i+1}, \mathbf{c}^{i+1}\right) \leftarrow\) MAXVOLELLIPSOIDINPOLYHEDRON \(\left(A^{i+1}, \mathbf{b}^{i+1}, \mathbf{c}^{i}\right) \quad \triangleright\)
 Compute the maximum volume ellipsoid inside polyhedron \(P^{i+1}\), al-
 gorithm 42.
 \(i \leftarrow i+1\).
 until \(\left(\operatorname{det} E^{i}-\operatorname{det} E^{i-1}\right) / \operatorname{det} E^{i-1}<t o l\)
 return \(A_{i}, \mathbf{b}_{i}, E^{i}, \mathbf{c}^{i}\).
 end procedure
```

Closest polyhedron point to an ellipsoid. The algorithm of R. Deits and R. Tedrake requires to find the closest point belonging to a convex polyhedron to a given ellipsoid. The present section describes how such a point can be found.

Let's $\zeta_{j}$ be a convex obstacle with vertices $\left\{\mathbf{v}_{j, i}\right\}_{i=1, \ldots, m}$ such that $\zeta_{j}$ is the convex hull of $\left\{\mathbf{v}_{j, i}\right\}_{i=1, \ldots, m}$. Let's also $\mathcal{E} \subset \mathcal{R}^{n}$ be an ellipsoid of centre $\mathbf{c} \in \mathcal{R}^{n}$ and nonsingular scaling matrix $E=G^{-t} \in \mathcal{R}^{n \times n}$ represented by:

$$
\begin{equation*}
\mathcal{E}(E, \mathbf{c})=\left\{\mathbf{x} \in \mathcal{R}^{n} \mid \mathbf{x}=\mathbf{c}+E \mathbf{y},\|\mathbf{y}\| \leq 1\right\} \tag{2.56}
\end{equation*}
$$

[^14]In order to find the closest point $\mathbf{x}^{*} \in \zeta_{j}$ to the ellipsoid $\mathcal{E}$, it is convenient to construct the transform that maps the ellipsoid $\mathcal{E}$ to the unit ball centred at the origin:

$$
\begin{equation*}
\tilde{\mathcal{E}}=\left\{\tilde{\mathbf{x}} \in \mathcal{R}^{n} \mid\|\tilde{\mathbf{x}}\| \leq 1\right\} \tag{2.57}
\end{equation*}
$$

In that case, the transformed obstacle is:

$$
\begin{align*}
\tilde{\zeta}_{j} & =\text { ConvexHull }\left\{\tilde{\mathbf{v}}_{j, 1}, \ldots, \tilde{\mathbf{v}}_{j, m}\right\}  \tag{2.58}\\
\tilde{\mathbf{v}}_{j, k} & =E^{-1}\left(\mathbf{v}_{j, k}-\mathbf{c}\right), k=1, \ldots, m \tag{2.59}
\end{align*}
$$

Indeed, from the definition 2.56 of an ellipsoid, one can see that:

$$
\begin{align*}
\mathbf{x} & =\mathbf{c}+E \mathbf{y},\|\mathbf{y}\| \leq 1  \tag{2.60}\\
\Leftrightarrow \mathbf{y} & =E^{-1}(\mathbf{x}-\mathbf{c}) \tag{2.61}
\end{align*}
$$

Thus, the transform:

$$
\begin{equation*}
T_{\mathcal{E}}: \mathcal{R}^{n} \rightarrow \mathcal{R}^{n}, \mathbf{x} \mapsto T_{\mathcal{E}}(\mathbf{x})=E^{-1}(\mathbf{x}-\mathbf{c}) \tag{2.62}
\end{equation*}
$$

maps an ellipsoid $\mathcal{E}$ to a unit ball centred at the origin.
The closest point $\tilde{\mathbf{x}}^{*}$ of $\tilde{\zeta}_{j}$ to the unit ball $\tilde{\mathcal{E}}$ is then simply the closest point of $\tilde{\zeta}_{j}$ to the origin. Mathematically, this problem can be expressed as [39]:

$$
\left\{\begin{align*}
\arg & \min _{\tilde{\mathbf{x}} \in \mathcal{R}^{n}, \mathbf{w} \in \mathcal{R}^{m}}\|\tilde{\mathbf{x}}\|^{2}=\tilde{\mathbf{x}} \tilde{\mathbf{x}}  \tag{2.63}\\
& \sum_{k=1}^{m} \tilde{\mathbf{v}}_{j, k} w_{k}=\tilde{\mathbf{x}} \\
\text { s.t. } & \sum_{k=1}^{m} w_{k}=1 \\
& \mathbf{w} \succeq \mathbf{0}
\end{align*}\right.
$$

An algorithm for solving the problem 2.63 is given in appendix D , while the mean of computing the maximum volume ellipsoid inside a polyhedron is given in appendix $E$.

## Discussion

It should be emphasised that the idea of modelling the geometry of a foam as the result of a growth process, as presented here, is not new. The Voronoï and Laguerre tessellations can be defined as the result of a growth process of spheres [136]. For growth of spheres, the idea has been explicitly exploited by, e.g., K. Mader et al. ([103]). However, their approach only deals with spheres, ignoring thus the possible effects of anisotropy of foams on their mechanical behaviours. Ellipsoids are indeed able to capture cell anisotropies, which is considered as a necessity for assessing the mechanical behaviour of foams [56, 164,30, 6]. Although sets of growing spheres are able to capture some foam anisotropies [103], it is believed that ellipsoids lead to better results by capturing more precisely local cell features [160, 150, 151]. Growth of ellipsoids has been proposed in Reference [8], and, in the context of polycrystalline microstructures reconstruction in Reference [160].

More recently, algorithms implementing ellipsoid growths for fitting cell have been presented by A. Alpers et al. [4] and improved by O. Sedivy et al. [150, 151]. These algorithms try to optimise an objective function encoding the positions and shape factors of all ellipsoids. The objective function is designed so to try to maximise ellipsoids volumes while avoiding voxels representing boundaries between crystal grains. Obviously, the optimisation problem becomes rapidly high-dimensional as the number of parameters to consider grows linearly with the number of ellipsoids. This issue has been tackled in Reference [151] with an heuristic approach. In this approach, only a subset of the parameters are optimised at each step, using simulated annealing.

Though faster, the algorithm proposed in Reference [151] still requires on the order of several million of iterations to converge. On the contrary, the optimisation procedure used in this thesis for the Ellipsoidal Model relies on the algorithm proposed by R. Deits et al. [39]. This algorithm maximises the volumes of the considered ellipsoids independently. As a consequence, it breaks down the high-dimensional optimisation problem of A. Alpers in a set of independent low-dimensional optimisation problems. Indeed, since each ellipsoid volume is independently maximised, only nine parameters (three for the position of the centre and six for the shape factors) need to be optimised. Therefore, the number of ellipsoids (and thus cells) that can be processed can be much higher than with the approaches of A. Alpers. and O. Sedivy. Moreover, the algorithm presented by R. Deits can be trivially parallelised. A drawback, though, of the approach of R. Deits. is that there is no guarantee that ellipsoids will not overlap. However, this drawback is not a concern here as subsequent steps do not depends on this peculiarity. Therefore, the approach proposed by R. Deits for growing ellipsoids has been chosen as it can process a large number of ellipsoids while being less computationally expensive than the approach proposed by O. Sedivy.

## Results

Figure 2.34 illustrates the obtained ellipsoids for a 3D CT-scan image of size $670 \times$ $670 \times 670$ voxels obtained from a closed polypropylene foam provided by Erwan Plougonven (Department of Chemical Engineering / PEPs - Products, Environment, and Processes at University of Liège). It can been seen that indeed some cells contain several ellipsoids. This issue is tackled in the next section.


Figure 2.34: Red: walls of a $670 \times 670 \times 670$ 3D CT-scan image of a polypropylene foam provided by E. Plougonven, Department of Chemical Engineering at University of Liège. Gray: computed ellipsoids using the algorithm of R. Deits et al. [39]. It can be noticed that some cells contain several ellipsoids.

### 2.3.10 Step 5 (part 2): Clustering and merging of ellipsoids

For the purpose of identifying unequivocally each cell by one ellipsoid, it is needed to determine superfluous ellipsoids associated to superfluous local maxima. In order to merge them correctly, it is required to cluster together ellipsoids belonging to a same cell. Once clusters of ellipsoids identified, it is then possible to merge ellipsoids belonging to a same cluster and identify cells.

The criterion for deciding if two ellipsoids belong to a same cluster (and thus a same cell) is as follows: if two ellipsoids "significanly" overlap, then they are clustered together. Otherwise, they are identify as belonging to two different clusters. The idea behind is that, since ellipsoids were growth inside cells, ellipsoids belonging to a same cell (even from different starting local maxima) are more likely to overlap than ellipsoids grown in two different cells. Thus the criterion for associated two ellipsoids to the same cluster is based on their relative intersection volume. More precisely, two ellipsoids $\mathcal{E}_{1}$ and $\mathcal{E}_{2}$ potentially associated to the same cell, are clustered together if their associated volume satisfy one of the relations 2.64.

$$
\begin{equation*}
\frac{\operatorname{Vol}\left(\mathcal{E}_{1} \cap \mathcal{E}_{2}\right)}{\operatorname{Vol}\left(\mathcal{E}_{1}\right)} \geq \tau \text { or } \frac{\operatorname{Vol}\left(\mathcal{E}_{1} \cap \mathcal{E}_{2}\right)}{\operatorname{Vol}\left(\mathcal{E}_{2}\right)} \geq \tau \tag{2.64}
\end{equation*}
$$

Where $\tau \in[0,1]$ is the relative intersection volume threshold. When $\tau$ is set close to zero, any slightly intersecting pair of ellipsoids will be clustered together; while for $\tau$ set close to one, only pair of almost overlapping ellipsoids will be clustered together. In general, a suitable guess value for this parameter will be $\tau \approx 0.5$.

Step 5 (part 2) of the proposed image analysis procedure depicted in Figure 2.1b is organized in two main branches:

1. Clustering of ellipsoids identified as belonging to a common cell thanks to criterion 2.64.
2. Merging of ellipsoids belonging to a same cluster.


## The GDBSCAN algorithm

The Generalised Density Based SCAN algorithm (GDBSCAN) of J. Sander et al. [147] is a generalisation of the Density Based SCAN algorithm (DBSCAN) of M. Ester et al. [45]. Its aim is to cluster a set of spatially distributed objects (here ellipsoids). The final purpose is to obtain a one-to-one correspondence between ellipsoids and cells by merging together ellipsoids identified as belonging to the same cluster.

Naturally, the GDBSCAN algorithm is not the only existing algorithm for performing clustering. As a matter of fact, there exists a huge variety of algorithms for performing this task. Two main classes of clustering algorithm can be distinguished [75]: partitioning and hierarchical algorithms. Partitioning algorithms, as the well-known KNN (K-Nearest Neighbours) algorithm [102], their weighted variants [11] and CLARANS (Clustering Large Application based on RANdomized Search [98]), try to optimise an objective function from an initial partition by determining cluster centres.

Hierarchical algorithms, such as the GDBSCAN algorithm of J. Sander et al. [147] or the BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) algorithm of T. Zhang et al. [188], try to create a hierarchical tree of the objects to cluster by grouping them for a given criterion. Then, each level of the constructed tree gives a clustering of the objects.

Among all the above algorithms (and many others), the GDBSCAN algorithm has been chosen here for the following reasons ${ }^{23}$ :

- It deals with spatially extended objects.
- It is versatile on its neighbourhood criterion, accepting as well spatial criteria (e.g. separation distance), as binary predicates (e.g. overlapping versus nonoverlapping), and non-spatial criteria (e.g. colour).
- It has been designed to cluster "dense" (in some sense) sets of objects. This behaviour is desired, as ellipsoids covering the same cell will appear "denser" than their surrounding.
- Finally, it take into account "noise" ${ }^{24}$.

On input, the GDBSCAN algorithm takes the grown ellipsoids obtained from previous section. In order to perform clustering, the GDBSCAN algorithm needs a neighbourhood criterion. The chosen neighbourhood criterion is here given by an overlapping threshold as specified by condition 2.64 . Eventually, the data storage and query of the ellipsoids is provided by a $\mathrm{R}^{*}$-tree data structure [17].

At first sight, it may sound odd to use an algorithm such as GDBSCAN along a $\mathrm{R}^{*}$-tree data structure for performing clustering. Indeed, a $\mathrm{R}^{*}$-tree data structure already performs some kind of clustering by hierarchically sorting objects in a tree following an overlapping of enclosing boxes criterion (see Appendix G for details). Therefore one may ask what is the point of using an algorithm such as GDBSCAN. A first difference is that the neighbourhood criterion of a $\mathrm{R}^{*}$-tree data structure is fixed: ellipsoids (or any other objects) are clustered following the distances separating their enclosing boxes. The GDBSCAN algorithm may accept other clustering criteria. A second difference is that a $\mathrm{R}^{*}$-tree data structure will classify all the objects it gets as input, while the GDSCAN algorithm may exclude some of them (the "noisy" ones). In this respect the GDBSCAN algorithm is much more versatile and tunable than a simple $R^{*}$-tree data structure and is able to achieve better classification results.

The GDBSCAN algorithm mechanism is as follows: it chooses the first unclassified object (i.e. an object not yet belonging to any cluster) and look at is neighbouring objects ${ }^{25}$. Neighbours satisfying the overlapping criterion 2.64 are set into the same cluster as the object. Then, neighbours are in their turn inspected to see if there is any of their neighbours satisfying the criterion 2.64. This is repeated until no neighbours to inspect remains. Then, the next unclassified object is selected for constructing the next cluster by inspecting its neighbours, until no unclassified object remains. The interested reader can find a more detailed description of the algorithm in Appendix $F$.

[^15]The $R^{*}$-tree data structure The $R^{*}$-tree data structure used by the GDBSCAN algorithm ${ }^{26}$ is a generalisation of the $R$-tree data structure of A. Guttman [59]. It is used in order to efficiently perform neighbour queries needed by the GDBSCAN algorithm. The following describes the $R^{*}$-tree data structure as presented by N. Beckmann et al. in their article [17]. Figure 2.35 shows a schematic of how a tree data structure can be constructed from axis-aligned boxes containing objects (either ellipsoids, either other axis-aligned boxes).

The $R^{*}$-tree algorithm of N . Beckmann et al. [17] builds a tree of axis-aligned boxes which combines optimisation (minimisation) of volume, overlap and margin. The $R^{*}$-tree algorithm generalises the $R$-tree algorithm of A. Guttman [59] in the sense that the latter only optimises the volume of the axis-aligned boxes in the tree.
"Child nodes" axis-aligned boxes are constructed by the algorithm 27 and contain each one ellipsoid $\mathcal{E}$. Other "non-child nodes" axis-aligned boxes contain other axis-aligned boxes.

The $R^{*}$-tree algorithm tries to minimise the following quantities:

1. Volume of a "non-child" axis-aligned box: allows to decide which paths in the tree should be traversed at a higher node.
2. Overlap between axis-aligned boxes: allows to decrease the number of paths to be traverses.
3. Margin of a "non-child" axis-aligned box. The margin of an axis-aligned box is the sum of the length of its edges. For a given volume, the optimal axis-aligned box is a cube. Minimising the margin will improves the structure of the tree by generating parent nodes with smaller volumes.

Moreover, as for R -trees, the shape of a $\mathrm{R}^{*}$-tree is driven by two other parameters $M$ and $m$, with $2 \leq m \leq M / 2$, and where:

1. $M$ is the maximum number of child nodes that a node can have, except the root.
2. $m$ is the minimum number of child nodes that a node can have, except the root.

Here, the following values have been chosen: $m=2$ and $M=8$. It has been indeed observed that, for each cell in average, there is between 1 and 10 associated ellipsoids.

Finally, a $R^{*}$-tree satisfies the following properties [17]:

- The root has at least two children unless it is a child.
- Every non-child node has between $m$ and $M$ children unless it is the root.
- Every leaf node contains between $m$ and $M$ entries unless it is the root.
- All leaves appear on the same level.

[^16]

Figure 2.35: Schematic of a tree data-structure obtained from some ellipses in two dimensions.

The most important two sub-algorithms of the $R^{*}$-tree algorithm when inserting a new entry are:

1. ChooseSubTree: find on every level the best subtree to accomodate the new entry.
2. Split: if ChooseSubTree ends in a node filled with the maximum $M$ of allowed children, Split distributes $M+1$ child nodes over two new parent nodes.

The Split algorithm 48 computes volume-values, overlap-values and margin-values over $M-2 m+2$ distributions of the $M+1$ entries. For $k=1, \ldots, M-2 m+2$, the first group contains the first $(m-1)+k$ entries and the second group the remaining entries. The associated values to the $k$ th distribution is then computed as follow:

- volume-value $=$ volume $[b b(f i r s t ~ g r o u p)]+$ volume[bb(second group $)]$.
- overlap-value $=$ volume $[b b(f i r s t ~ g r o u p) ~ \cap b b(s e c o n d ~ g r o u p)] . ~$
- $\operatorname{margin}-\mathrm{value}=\operatorname{margin}[b b(f i r s t ~ g r o u p)]+\operatorname{margin}[b b($ second group $)]$.

Where bb denotes the bounding box of a set of boxes.

Detailed algorithms for handling a $R^{*}$-tree data structure can be found in Appendix G.

## Computation of the overlapping criterion (2.64)

In order to evaluate the overlapping criterion 2.64, the GDBSCAN algorithms needs to evaluate two quantities. Namely the volume of an ellipsoid $\operatorname{Vol}\left(\mathcal{E}_{i}\right)$ and the volume of the intersection of two ellipsoids $\operatorname{Vol}\left(\mathcal{E}_{i} \cap \mathcal{E}_{j}\right)$. While the volume of an ellipsoid can be computed analytically ${ }^{27}$, the intersection volume of two ellipsoids can only be evaluated numerically.

As computing the intersection volume of two ellipsoids is rather expensive, the algorithm evaluating the criterion 2.64 (referenced hereafter as algorithm 22) first performs three "cheap" tests consisting in testing if the two ellipsoids are intersecting, and, if applicable, computing some upper and lower bounds for the criterion 2.64 . If none of these "cheap" tests are passed, then a more expensive volume intersection algorithm is used. It should be noted that using the intersection volume between objects as (partial) criterion for determining whether they belong to the same cell or not is not a new idea. For instance, this criterion has been exploited by K. Mader et al [103], for removing what they call "artificial seeds" (roughly corresponding to our ellipsoids in this thesis).

The first "cheap" test is testing if the two ellipsoids are colliding or not. If not, there is no intersection volume and the criterion 2.64 is not satisfied (except if $\tau=$ 0 ). The collision test is based on Reference [180] which is based of the signs of the roots of a "characteristic equation" constructed in homogeneous coordinates from the centres and shape matrices of the two considered ellipsoids. Details on how this "characteristic equation" is computed are given hereafter.

The second "cheap" test consists in computing the volume intersection VolBox Inter of the boxes enclosing the two considered ellipsoids $\mathcal{E}_{1}$ and $\mathcal{E}_{2}$. As the volume VolBoxInter is bigger or equal to the intersection volume of the ellipsoids, there is no chance for the inequalities 2.64 to be satisfied if both ratios:

$$
\begin{equation*}
R_{i}=\operatorname{VolBoxInter} / \operatorname{Vol}\left(\mathcal{E}_{i}\right), i=1,2 \tag{2.65}
\end{equation*}
$$

are smaller than $\tau: R_{i}<\tau, i=1,2$.
The third "cheap" test resides in calculating the intersection volume of two enclosed spheres $S_{1} \subset \mathcal{E}_{1}$ and $S_{2} \subset \mathcal{E}_{2}$. As the intersection volume $\operatorname{Vol}\left(S_{1} \cap S_{2}\right)$ of the spheres $S_{1}$ and $S_{2}$ is smaller than the intersection volume $\operatorname{Vol}\left(\mathcal{E}_{1} \cap \mathcal{E}_{2}\right)$ of ellipsoids $\mathcal{E}_{1}$ and $\mathcal{E}_{2}$, it is possible to infer a sufficient condition to satisfy criterion 2.64.

Finally, if all "cheap" tests fail, an expensive test is performed. The expensive test directly evaluates the intersection volume of two ellipsoids using a Monte-Carlo method. Algorithm 22 shows how these tests are used to determine if criterion 2.64 is satisfied.

[^17]```
Algorithm 22 Predicate NPred for determining if two objects (ellipsoids) belong to
the same cluster.
Require: \(\mathcal{E}_{1}\) first ellipsoid belonging to the current cluster.
Require: \(\mathcal{E}_{2}\) candidate ellipsoid for belonging to the same cluster as \(\mathcal{E}_{1}\).
Require: \(\tau\) overlapping volume ratio criterion as given in condition 2.64.
Require: \(M_{\max }\) maximum number of integration points for estimating the overlap-
    ping volume.
Require: tol convergence tolerance for algorithm 28.
    procedure \(\operatorname{NPRED}\left(\mathcal{E}_{1}, \mathcal{E}_{2}, \tau, M_{\text {max }}\right.\), tol \()\)
                                    \(\triangleright\) Cheap test 1 .
        if Not CollisionTest \(\left(\mathcal{E}_{1}, \mathcal{E}_{2}\right)\) then \(\quad \triangleright\) Algorithm 25.
            return false.
        end if
        \(B_{1}=\operatorname{AxisAlignedBox}\left(\mathcal{E}_{1}\right) \quad \triangleright\) Algorithm 27.
        \(B_{2}=\operatorname{AxisAlignedBox}\left(\mathcal{E}_{2}\right) \quad \triangleright\) Algorithm 27.
        VolBoxInter \(=\operatorname{Vol}\left(B_{1} \cap B_{2}\right)\)
        \(R_{1}=\operatorname{VolBoxInter} / \operatorname{Vol}\left(\mathcal{E}_{1}\right)\)
        \(R_{2}=\operatorname{VolBoxInter} / \operatorname{Vol}\left(\mathcal{E}_{2}\right) \quad \triangleright\) Upper bounds for inequalities 2.64 .
        if \(R_{1}<\tau\) and \(R_{2}<\tau\) then return false
        end if
                            \(\triangleright\) Cheap test 3 .
        Extract \(r_{1}, r_{2}\) the smallest semi-axes lengths of, respectively, \(\mathcal{E}_{1}\) and \(\mathcal{E}_{2}\).
        Extract \(\mathbf{c}_{1}, \mathbf{c}_{2}\) the centres of, respectively, \(\mathcal{E}_{1}\) and \(\mathcal{E}_{2}\).
        Construct the spheres \(S_{1}, S_{2}\) of respective centres \(\mathbf{c}_{1}\) and \(\mathbf{c}_{2}\) and radii \(r_{1}\) and
            \(r_{2}\).
        \(d=\left\|\mathbf{c}_{1}-\mathbf{c}_{2}\right\|_{2}\)
        if \(\left(r_{1}+r_{2}\right)>d\) then \(\quad \triangleright\) Spheres \(S_{1}, S_{2}\) are intersecting.
            if \(r_{1} \geq d+r_{2}\) or \(r_{2} \geq d+r_{1}\) then \(\quad \triangleright\) One sphere contains the other.
                return true
            else
                VolSphereInter \(=\frac{\pi}{12 d}\left(r_{1}+r_{2}-d\right)^{2}\left(d^{2}+2 d(r 1+r 2)-3(r 1-r 2)^{2}\right)\)
                \(R_{1}=\operatorname{VolSphereInter} / \operatorname{Vol}\left(\mathcal{E}_{1}\right)\)
                \(R_{2}=\operatorname{VolSphereInter} / \operatorname{Vol}\left(\mathcal{E}_{2}\right) \quad \triangleright\) Lower bounds for inequalities 2.64.
                if \(R_{1} \geq \tau\) or \(R_{2} \geq \tau\) then return true
                end if
            end if
        end if
                                    \(\triangleright\) Expensive test.
        \(\left\{R_{1}, R_{2}\right\}=\) ELLIPSOIDOVERLAPPINGRATIOS \(\left(\mathcal{E}_{1}, \mathcal{E}_{2}, M_{\text {max }}\right.\), tol \()\)
    Algorithm 28.
        return \(R_{1} \geq \tau\) or \(R_{2} \geq \tau\)
    end procedure
```

First "cheap" tests: collision detection between two ellipsoids. Given two ellipsoids \mathcal{E}_{1} and \mathcal{E}_{2} their collision detection is performed in two steps. A first test involving enclosing boxes is achieved. This test is cheap from a computational point of view but it may fail as it represents only a necessary condition. If the first test fails, a second test, more computationally expensive, is performed. This test involves computing the roots of a so called "characteristic equation".

Test 1: oriented enclosing boxes. The two considered ellipsoids \mathcal{E}_{1} and \mathcal{E}_{2} are enclosed in oriented boxes: $O B_{i}$ such that $\mathcal{E}_{i} \subset O B_{i}, i=1,2$. If the two boxes do not intersect $\left(O B_{1} \cap O B_{2}=\varnothing\right)$, then there is no possible collision between \mathcal{E}_{1} and \mathcal{E}_{2}. If the two boxes overlaps ($O B_{1} \cap O B_{2} \neq \varnothing$), then the two ellipsoids \mathcal{E}_{1} and \mathcal{E}_{2} may or may not collide and a second test is necessary.

An oriented enclosing box is computed using the semi-axes lengths $r_{i} ; i=1, \ldots, n$ and directions $\mathbf{v}_{i} ; i=1, \ldots, n$ of the considered ellipsoid. These semi-axis lengths and vectors can be computed for the singular value decomposition (SVD) of the matrix G used in definition 2.5. Indeed, the semi-axis lengths $\left\{r_{i}\right\}_{i=1, \ldots, n}$ and directions $\left\{\mathbf{v}_{i}\right\}_{i=1, \ldots, n}$ can be extracted from the shape matrix M of the considered ellipsoid through eigenvalue decomposition:

$$
\begin{equation*}
M=U \Sigma^{2} U^{t} \tag{2.66}
\end{equation*}
$$

Where:

- $U \in \mathcal{R}^{n \times n}$ is an orthonormal matrix containing along its columns the semi-axis directions $\left\{\mathbf{v}_{i}\right\}_{i=1, \ldots, n}$.
- $\Sigma \in \mathcal{R}^{n \times n}$ is a diagonal matrix such that $\Sigma_{i i}=\lambda_{i}=1 / r_{i}>0 ; i=1, \ldots, n$, gives the semi-axis lengths.

As $G G^{t}=M$ and if $G=U_{G} \Sigma_{G} V_{G}^{t}$ is the SVD of G, then:

$$
\begin{aligned}
G G^{t} & =\left(U_{G} \Sigma_{G} V_{G}^{t}\right)\left(U_{G} \Sigma_{G} V_{G}^{t}\right)^{t} \\
& =\left(U_{G} \Sigma_{G} V_{G}^{t}\right)\left(V_{G} \Sigma_{G} U_{G}^{t}\right) \\
& =U_{G} \Sigma_{G}^{2} U_{G}^{t} \quad\left(V_{G}^{T} V_{G}=I d\right) \\
& =M \\
& =U \Sigma^{2} U^{t} \\
\Leftrightarrow U_{G} & =U \text { and } \Sigma_{G}=\Sigma \text { (because the eigenvalues are all positives). }
\end{aligned}
$$

Therefore, the semi-axis directions can be obtained from the left singular vectors of G and their corresponding lengths from the singular values of G.

Construction of an oriented box. Thanks to the directions vectors $\left\{\mathbf{v}_{i}\right\}_{i=1, \ldots, n}$ and lengths $\left\{r_{i}\right\}_{i=1, \ldots, n}$, it is then possible to construct an oriented box enclosing the considered ellipsoid \mathcal{E}. Indeed, in the reference frame defined by point \mathbf{c} and orthonormal vectors $\left\{\mathbf{v}_{i}\right\}_{i=1, \ldots, n}$, such a box is axis-aligned with the vectors $\left\{\mathbf{v}_{i}\right\}_{i=1, \ldots, n}$ and can be defined as $O B(\mathcal{E})=\left[-r_{1}, r_{1}\right] \times \ldots \times\left[-r_{n}, r_{n}\right]$ in the eigenspace of the associated ellipsoid (see Figure 2.36 for a 2D example). Such an oriented enclosing box is constructed using the GeometricTools toolbox developed by P. J. Schneider and D H. Eberly [131].

Figure 2.36: Oriented enclosing box of an ellipse.

In the framework of the GeometricTools toolbox, oriented boxes in \mathcal{R}^{n} are defined by a centre $\mathbf{C} \in \mathcal{R}^{n}$, n right-handed orthonormal axes $\mathbf{A}_{1}, \ldots, \mathbf{A}_{n} \in \mathcal{R}^{n}$, and three corresponding extents $a_{1}, \ldots, a_{n}>0$. Then, an oriented box in \mathcal{R}^{n} can be represented as:

$$
\begin{equation*}
O B=\left\{\mathbf{x} \in \mathcal{R}^{n}\left|\mathbf{C}+\sum_{i=1}^{n} y_{i} \mathbf{A}_{i} ;\left|y_{i}\right|<\left|a_{i}\right|, i=1, \ldots, n\right\}\right. \tag{2.67}
\end{equation*}
$$

```
Algorithm 23 Oriented enclosing box for ellipsoid
Require: Ellipsoid \(\mathcal{E}=\left\{\mathbf{x} \in \mathcal{R}^{n} \mid(\mathbf{x}-\mathbf{c})^{t} G G^{t}(\mathbf{x}-\mathbf{c}) \leq 1\right\}\)
    procedure EnclosingBox \((\mathcal{E})\)
        Compute SVD of \(G=U_{G} \Sigma_{G} V_{G}^{t}\).
        Extract left singular vectors \(\{\mathbf{v}\}_{i=1, \ldots, n}\) from the columns of \(U_{G}\).
        Extract radii \(\left\{r_{i}=1 / \lambda_{i}\right\}_{i=1, \ldots, n}\) from \(\Sigma_{G}\).
        Define oriented box in the eigenspace as \(O B(\mathcal{E})=\left[-r_{1}, r_{1}\right] \times \ldots \times\left[-r_{n}, r_{n}\right]\).
        Alternatively, define oriented box by its centre \(\mathbf{C}=\mathbf{c}\), axes
            \(\mathbf{A}_{i}=\mathbf{v}_{i}, i=1, \ldots, n\), and extents \(a_{i}=r_{i}, i=1, \ldots, n\).
    end procedure
```

Separation of two oriented boxes in \mathcal{R}^{3}. In order to determine if two oriented boxes intersect or not, the procedure detailed in the documentation of GeometricTools toolbox [131] is applied, and is only given in Algorithm 24 for the sake of completeness.

```
Algorithm 24 Oriented box separation test [131]
Require: Two oriented boxes \(O B_{1}\) and \(O B_{2}\) in \(\mathcal{R}^{3}\) defined by their respective centres
    \(\mathbf{C}_{1}\) and \(\mathbf{C}_{2}\), axes \(\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}\) and \(\mathbf{B}_{1}, \mathbf{B}_{2}, \mathbf{B}_{3}\), and corresponding extents \(a_{1}, a_{2}, a_{3}>\)
    0 and \(b_{1}, b_{2}, b_{3}>0\).
    procedure OrientedBoxSeparationTest \(\left(O B_{1}, O B_{2}\right)\)
        \(\mathrm{D} \leftarrow \mathrm{C}_{2}-\mathrm{C}_{1}\)
        for \(\mathbf{L}\) is one of \(\mathbf{A}_{i}, \mathbf{B}_{i},(i=1,2,3)\) or \(\mathbf{A}_{i} \wedge \mathbf{B}_{j},(i, j=1,2,3)\) do
            \(R \leftarrow|<\mathbf{L}| \mathbf{D}>\mid\)
            \(R_{1} \leftarrow \sum_{i=1}^{3} a_{i} \operatorname{sgn}\left(<\mathbf{L} \mid \mathbf{A}_{i}>\right)<\mathbf{L} \mid \mathbf{A}_{i}>\)
            \(R_{2} \leftarrow \sum_{i=1}^{3} b_{i} \operatorname{sgn}\left(<\mathbf{L} \mid \mathbf{B}_{i}>\right)<\mathbf{L} \mid \mathbf{B}_{i}>\)
            if \(R>R_{1}+R_{2}\) then
                return True. \(\quad\) Separation found. Boxes do not intersect.
            end if
        end for
        return False. \(\quad \triangleright\) Boxes are intersecting.
    end procedure
    Where:
    \(\wedge: \mathcal{R}^{3} \times \mathcal{R}^{3} \rightarrow \mathcal{R}^{3},(\mathbf{A}, \mathbf{B}) \mapsto \mathbf{A} \wedge \mathbf{B}\) is the cross product.
    \(\operatorname{sgn}: \mathcal{R} \rightarrow\{-1,0,1\}, x \mapsto \operatorname{sgn}(x)=\left\{\begin{array}{l}-1 \text { if } x<0 \\ 0 \text { if } x=0 \\ 1 \text { elsewhere }\end{array}\right.\)
    \(<\ldots\left|\ldots>: \mathcal{R}^{3} \times \mathcal{R}^{3} \rightarrow \mathcal{R},(\mathbf{A}, \mathbf{B}) \mapsto<\mathbf{A}\right| \mathbf{B}>\) is the Euclidean dot product.
```

Test 2: characteristic equation If the first test fails, to determine if the two ellipsoids do not collide, the following test is used. Before stating it, some definitions and properties about homogeneous coordinates are needed.

Ellipsoid in homogeneous coordinates Proposition 2.1 allows to define an ellipsoid in homogeneous coordinates and links it to definition 2.5.

Proposition 2.1. Given the representation of an ellipsoid
$\mathcal{E}=\left\{\mathbf{x} \in \mathcal{R}^{n} \mid(\mathbf{x}-\mathbf{c})^{t} M(\mathbf{x}-\mathbf{c}) \leq 1\right\}$ in the n-dimensional Euclidean affine space, its representation in homogeneous coordinates is $\mathcal{E}=\left\{\mathbf{x}_{h} \mid \mathbf{x}_{h}^{t} A_{h} \mathbf{x}_{h} \leq 0\right\}$.

Where: $A_{h}=\left(\begin{array}{cc}M & -M \mathbf{c} \\ -\mathbf{c}^{t} M & \mathbf{c}^{t} M \mathbf{c}-1\end{array}\right)$ and $\mathbf{x}_{h}=\left(\mathbf{x}^{t}, 1\right)^{t}$.
Proof.

$$
\begin{array}{lcl}
& & \leq 0 \\
\Leftrightarrow & \left(\begin{array}{cc}
\mathbf{x}^{t} & 1
\end{array}\right)\left(\begin{array}{cc}
\mathbf{x}_{h}^{t} A_{h} \mathbf{x}_{h} & -M \mathbf{c} \\
-\mathbf{c}^{t} M & \mathbf{c}^{t} M \mathbf{c}-1
\end{array}\right)\binom{\mathbf{x}}{1} & \leq 0 \\
\Leftrightarrow & \binom{\mathbf{x}^{t} M-\mathbf{c}^{t} M}{-\mathbf{x}^{t} M \mathbf{c}+\mathbf{c}^{t} M \mathbf{c}-1}\binom{\mathbf{x}}{1} & \leq 0 \\
\Leftrightarrow & \mathbf{x}^{t} M \mathbf{x}-\mathbf{c}^{t} M \mathbf{x}-\mathbf{x}^{t} M \mathbf{c}+\mathbf{c}^{t} M \mathbf{c}-1 & \leq 0 \\
\Leftrightarrow & (\mathbf{x}-\mathbf{c})^{t} M \mathbf{x}-(\mathbf{x}-\mathbf{c})^{t} M \mathbf{c} & \leq 1 \\
\Leftrightarrow & (\mathbf{x}-\mathbf{c})^{t} M(\mathbf{x}-\mathbf{c}) & \leq 1
\end{array}
$$

Which is definition 2.5.

It is therefore possible to define the representation of an ellipsoid in homogeneous coordinates using definition 2.9.

Definition 2.9. The representation of a n-dimensional ellipsoid \mathcal{E} in the homogeneous coordinates is:

$$
\mathcal{E}=\left\{\mathbf{x}_{h} \in \mathcal{R}^{n+1} \mid \mathbf{x}_{h}^{t} A_{h} \mathbf{x}_{h} \leq 0\right\}
$$

Where $\mathbf{x}_{h}=(\mathbf{x}, w)^{t}$ is written in homogeneous coordinates and $A_{h} \in \mathcal{R}^{(n+1) \times(n+1)}$ is a symmetric matrix.

Definition 2.10. (From W. Wang et al. [180])
Given two ellipsoids with homogeneous representation $\mathcal{E}_{1}=\left\{\mathbf{x}_{h} \mid \mathbf{x}_{h}^{t} A_{h} \mathbf{x} \leq 0\right\}$ and $\mathcal{E}_{2}=\left\{\mathbf{x}_{h} \mid \mathbf{x}_{h}^{t} B_{h} \mathbf{x} \leq 0\right\}$, their characteristic polynomial is defined as:
$f(\lambda)=\operatorname{det}\left(\lambda A_{h}+B_{h}\right)$,
and $f(\lambda)=0$ is called the characteristic equation.
The following property is the base of the second test for testing if two ellipsoids collide or not. Its complete proof can be found in [180].

Proposition 2.2. (From W. Wang et al. [180])
Let's A_{h} and B_{h} be two matrices representing respectively two ellipsoids \mathcal{E}_{1} and \mathcal{E}_{2} in homogeneous coordinates. Then:

1. \mathcal{E}_{1} and \mathcal{E}_{2} are disjoint if and only if $f(\lambda)=0$ has two distinct positive roots.
2. \mathcal{E}_{1} and \mathcal{E}_{2} touch each other externally if and only if $f(\lambda)=0$ has a positive double root.

The test involving the characteristic equation $f(\lambda)=0$ is thus the following: The homogeneous matrices A_{h} and B_{h} from ellipsoids \mathcal{E}_{1} and \mathcal{E}_{2} are computed. The root of the characteristic equation $f(\lambda)=0$ are then found as the eigenvalues of the real eigenvalue problem $-A_{h}^{-1} B_{h} \mathbf{z}_{h}=\lambda \mathbf{z}^{28}$. Indeed, if A_{h} is non-singular (i.e. ellipsoid \mathcal{E}_{1} is non-degenerated), $\operatorname{det}\left(\lambda A_{h}+B_{h}\right)=0 \Leftrightarrow \operatorname{det}\left(A_{h}\right) \operatorname{det}\left(A_{h}^{-1} B_{h}+\lambda I\right)=$ $0 \Leftrightarrow \operatorname{det}\left(-A_{h}^{-1} B_{h}-\lambda I\right)=0^{29}$. Then, if two roots are positive and distinct, the two ellipsoids do not collide. Otherwise they collide (possibly in only one point). Algorithm 25 summarises all the steps used for determining if two ellipsoids collide or not.

[^18]```
Algorithm 25 Two ellipsoids collision
Require: Two ellipsoids \(\mathcal{E}_{1}, \mathcal{E}_{2} \subset \mathcal{R}^{3}\).
 procedure \(\operatorname{CollisionTest}\left(\mathcal{E}_{1}, \mathcal{E}_{2}\right)\)
 \(\triangleright\) Test 1: enclosing boxes
 Compute enclosing boxes \(O B_{1} \supset \mathcal{E}_{1}\) and \(O B_{2} \supset \mathcal{E}_{2}\). \(\triangleright\) Algorithm 23
 if \(O B_{1} \cap O B_{2}=\varnothing\) then \(\quad \triangleright\) Algorithm 24
 return false.
 else
 \(\triangleright\) Test 2: characteristic equation
 Compute the homogeneous matrices \(A_{h}\) and \(B_{h}\) of \(\mathcal{E}_{1}\) and \(\mathcal{E}_{2}\). \(\triangleright\) Prop. 2.1
 Compute the four eigenvalues \(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4} \in \mathcal{C}\) of the eigenvalue prob-
 lem \(-A_{h}^{-1} B_{h} \mathbf{z}=\lambda \mathbf{z}\)
 if \(\exists \lambda_{i}, \lambda_{j} \in \mathcal{R}\) and \(\lambda_{i}, \lambda_{j}>0\) then \(\quad \triangleright\) Prop. 2.2.
 return false.
 else
 return true.
 end if
 end if
 end procedure
```



Figure 2.37: Schematics illustrating test 3 (see text).
Test 3: volume intersection of enclosed spheres If the two first tests fail, this third "cheap" test resides in calculating the intersection volume of two enclosed spheres $S_{1} \subset \mathcal{E}_{1}$ and $S_{2} \subset \mathcal{E}_{2}$ (see Figure 2.37). These two spheres $S_{1}$ and $S_{2}$ are centred at their corresponding ellipsoid centres $\mathbf{c}_{1}$ and $\mathbf{c}_{2}$ and have radii equal to the smallest semi-axes lengths $r_{1}$ and $r_{2}$ of their corresponding ellipsoids (see Figure 2.37 b ). The intersection volume of $S_{1}$ with $S_{2}$ (see Figure 2.37 c) is then given by the formula ${ }^{30} 2.68$.

$$
\begin{equation*}
\text { VolSphereInter }=\frac{\pi}{12 d}\left(r_{1}+r_{2}-d\right)^{2}\left(d^{2}+2 d(r 1+r 2)-3(r 1-r 2)^{2}\right) \tag{2.68}
\end{equation*}
$$

Where $d=\left\|\mathbf{c}_{1}-\mathbf{c}_{2}\right\|_{2}$ is the Euclidean distance separating the two spheres centres $\mathbf{c}_{1}$ and $\mathbf{c}_{2}$.

As VolSphereInter is smaller or equal than the intersection volume of the ellipsoids $\mathcal{E}_{1}$ and $\mathcal{E}_{2}$, at least one of the inequalities 2.64 is satisfied if $\operatorname{VolSphereInter~} / \operatorname{Vol}\left(\mathcal{E}_{1}\right) \geq$ $\tau$ or $\operatorname{VolSphereInter} \operatorname{Vol}\left(\mathcal{E}_{2}\right) \geq \tau$ is satisfied.

[^19]

Figure 2.38: Schematic illustrating the principle of the Monte-Carlo method, see text (images from Wikipedia https://fr.wikipedia.o rg/wiki/Méthode_de_Monte-Carlo).

Computation of the intersection volume of two ellipsoids. Criterion 2.64 requires the computation of the intersection volume of two ellipsoids. In general, this volume is not an ellipsoid and can not be readily computed (i.e. with an analytical formula). Instead, a Monte-Carlo technique is here used in order to estimate this volume.

The principle of the Monte-Carlo for estimating an area/volume/hyper-volume of a geometrically non-trivial object is as follows (see Figure 2.38): given a nontrivial object $O_{\text {complex }}$ (in blue in the figure) and an enclosing object $O_{\text {enclosing }}$ (in green in the figure) whose area/volume can be computed analytically; sample $N$ random points over the enclosing object. Count the number $X$ of points inside the non-trivial object. Then the an estimation of the area/volume of the non-trivial object is given in equation 2.69.

$$
\begin{equation*}
\text { Area }\left(O_{\text {complex }}\right) \approx \frac{N-X}{X} \text { Area }\left(O_{\text {enclosing }}\right) \tag{2.69}
\end{equation*}
$$

Construction of an enclosing axis-aligned box. In order to compute the intersection volume between two ellipsoids, the so-called VEGAS algorithm of G.P. Lepage [129] is used here. This algorithm has been implemented by M. Booth in the GNU Scientific Library (GSL) [52]. Like any Monte-Carlo algorithm, the algorithm of G.P. Lepage requires an integration domain separable along each dimension for which the volume is easily (i.e. analytically) computable. This requirement is indeed mandatory for estimating the volume of two intersecting ellipsoids using an equation of the form $2.69^{31}$. It is therefore necessary to construct such a domain from two ellipsoids.

This domain is obtained as the intersection of two axis-aligned boxes ${ }^{32}$ from two colliding ellipsoids. An axis-aligned box $B(\mathcal{E})$ containing an ellipsoid $\mathcal{E}$ is constructed from the orthogonal projections of the ellipsoids on the axes of the canonical frame of reference. These projections are computed as suggested by S. Pope and the following paragraphs are essentially a rewriting of the section 12 of its report [133].

[^20]

FIGURE 2.39: Schematic example of an orthogonal projection of an ellipse $\mathcal{E}$ on a line $\mathcal{L}$. (Figure taken from S. Pope [133] and slightly modified).

Definition 2.11. A line $\mathcal{L} \subset \mathcal{R}^{n}$ parametrised by $t \in \mathcal{R}$ and defined as:

$$
\begin{equation*}
\mathcal{L}=\left\{\mathbf{x} \in \mathcal{R}^{n} \mid \mathbf{x}=\mathbf{x}_{0}+t \mathbf{v}\right\} \tag{2.70}
\end{equation*}
$$

Where $\mathbf{x}_{0} \in \mathcal{R}^{n}$ is a point on the line $\mathcal{L}$ and $\mathbf{v} \in \mathcal{R}^{n}$ is a unit-length vector.
Definition 2.12. For any point $\mathbf{x} \in \mathcal{R}^{n}$, its orthogonal projection on the line $\mathcal{L}$ is a point on $\mathcal{L}$ with associated parameter $t$ such that:

$$
\begin{equation*}
t=\mathbf{v}^{t}\left(\mathbf{x}-\mathbf{x}_{0}\right) \tag{2.71}
\end{equation*}
$$

Considering now an ellipsoid $\mathcal{E}=\mathcal{E}(\mathbf{c}, G) \subset \mathbf{R}^{n}$ of centre $\mathbf{c} \in \mathcal{R}^{n}$ and its associated matrix $G \in \mathcal{R}^{n \times n}$ as given by definition 2.5 , the orthogonal projections of the points of ellipsoid $\mathcal{E}$ on the line $\mathcal{L}$ can be obtained through the parameter $t$, with:

$$
\begin{align*}
t & =\mathbf{v}^{t}\left(\mathbf{c}+G^{-t} \mathbf{y}-\mathbf{x}_{0}\right),\|\mathbf{y}\| \leq 1  \tag{2.72}\\
& =t_{0}+\mathbf{w}^{t} \mathbf{y},\|\mathbf{y}\| \leq 1 \tag{2.73}
\end{align*}
$$

Where $t_{0}=\mathbf{v}^{t}\left(\mathbf{c}-\mathbf{x}_{0}\right)$ and $\mathbf{w}=G^{-1} \mathbf{v}$.

Given equation 2.73, it can be found that the orthogonal projection of ellipsoid $\mathcal{E}$ on the line $\mathcal{L}$ corresponds to parameters:

$$
\begin{equation*}
t_{ \pm}=t_{0} \pm\|\mathbf{w}\| \tag{2.74}
\end{equation*}
$$

Figure 2.39 illustrates the above equations, while algorithm 26 implements them.

```
Algorithm 26 Orthogonal projection of an ellipsoid on a line (S. Pope [133]).
Require: Line \(\mathcal{L}=\mathcal{L}\left(\mathbf{x}_{0}, \mathbf{v}\right)=\left\{\mathbf{x} \in \mathcal{R}^{n} \mid \mathbf{x}=\mathbf{x}_{0}+t \mathbf{v},\|\mathbf{v}\|=1\right\}\).
Require: Ellipsoid \(\mathcal{E}=\mathcal{E}(\mathbf{c}, G)=\left\{\mathbf{x} \in \mathcal{R}^{n} \mid \mathbf{x}=\mathbf{c}+G^{-t} \mathbf{y},\|\mathbf{y}\| \leq 1\right\}\).
 procedure EllipsoidOnLineProjection \((\mathcal{L}, \mathcal{E})\)
 \(t_{0}=\mathbf{v}^{t}\left(\mathbf{c}-\mathbf{x}_{0}\right)\).
 \(\mathbf{w}=G^{-1} \mathbf{v}\).
 \(t_{ \pm}=t_{0} \pm\|\mathbf{w}\|\).
 return \(\mathbf{x}_{ \pm}=\mathbf{x}_{0}+t_{ \pm} \mathbf{v}\).
 end procedure
```

From the orthogonal projections of an ellipsoid $\mathcal{E}$ on the axis of the canonical reference frame, it is then possible to construct an enclosing axis-aligned box of the ellipsoid, as described by the algorithm 27. From algorithm 27 it should be noted that the returned box is indeed centred at the centre of the enclosed ellipsoid, even if this centre is not the origin.

```
Algorithm 27 Axis-aligned bounding box for an ellipsoid.
Require: Ellipsoid \(\mathcal{E}=\mathcal{E}(\mathbf{c}, G)=\left\{\mathbf{x} \in \mathcal{R}^{n} \mid \mathbf{x}=\mathbf{c}+G^{-t} \mathbf{y},\|\mathbf{y}\| \leq 1\right\}\).
 procedure AxisAlignedBox \((\mathcal{E})\)
 for \(i=1, \ldots, n\) do
 Construct \(\mathbf{e}_{i}\), the ith canonical vector which is zero everywhere, except in
 the ith position where it is one.
 Construct the line \(\mathcal{L}_{i}=\mathcal{L}_{i}\left(\mathbf{c}, \mathbf{e}_{i}\right)\) passing through the ellipsoid's centre \(\mathbf{c}\)
 and oriented following \(\mathbf{e}_{i}\).
 \(x_{i}^{ \pm}=\operatorname{ELLIPSOiDONLiNEPROJECTION}\left(\mathcal{L}_{i}, \mathcal{E}\right) \quad \triangleright\) Algorithm 26.
 end for
 return box as \(B(\mathcal{E})=\left[x_{1}^{-}, x_{1}^{+}\right] \times \ldots \times\left[x_{n}^{-}, x_{n}^{+}\right]\).
 end procedure
```

Computation of the volume intersection Thanks to the VEGAS algorithm 56 (see Appendix H for details) it is now possible to compute the volume intersection $\operatorname{Vol}\left(\mathcal{E}_{1} \cap \mathcal{E}_{2}\right)$ of two colliding ellipsoids $\mathcal{E}_{1}$ and $\mathcal{E}_{2}$. As the VEGAS algorithm only estimates the integral of a given function, the following algorithm 28 uses repeatedly the VEGAS algorithm with an increasing number of integration points until convergence. On convergence, the algorithm 28 returns the overlapping ratios $R_{1}$ and $R_{2}$ as defined in equations 2.64.

```
Algorithm 28 Overlapping ratios of two colliding ellipsoids.
Require: Two colliding ellipsoids \(\mathcal{E}_{1}\) and \(\mathcal{E}_{2}\).
Require: Number of initial integration points \(M_{i n i t}\).
Require: Convergence tolerance tol.
 procedure ElLipsoidOverlappingRatios \(\left(\mathcal{E}_{1}, \mathcal{E}_{2}, M_{\text {init }}\right.\), tol \()\)
 \(M \leftarrow M_{\text {init }}\)
 \(f_{\mathcal{E}_{1}, \mathcal{E}_{2}}^{\text {inter }}\) as defined in equation H. 1
 \(A A B\left(\mathcal{E}_{i}\right) \leftarrow \operatorname{AxisAlignedBox}\left(\mathcal{E}_{i}\right) i=1,2 \quad \triangleright\) Algoritm 27.
 \(\Omega \leftarrow A A B\left(\mathcal{E}_{1}\right) \cap A A B\left(\mathcal{E}_{2}\right) \quad \triangleright\) Integration domain.
 \(N \leftarrow M / n^{3}\).
 \(\operatorname{Vol}\left(\mathcal{E}_{1} \cap \mathcal{E}_{1}\right) \leftarrow \operatorname{VEGAS}\left(f_{\mathcal{E}_{1}, \mathcal{L}_{2}}^{\text {inter }}, M, \Omega, N\right) \quad \triangleright\) Algorithm 56.
 \(R_{i} \leftarrow \operatorname{Vol}\left(\mathcal{E}_{1} \cap \mathcal{E}_{1}\right) / \operatorname{Vol}\left(\mathcal{E}_{i}\right), i=1,2\)
 repeat
 \(R_{o l d, i} \leftarrow R_{i}, i=1,2\)
 \(M \leftarrow 2 M\)
 \(N \leftarrow M / n^{3}\)
 \(\operatorname{Vol}\left(\mathcal{E}_{1} \cap \mathcal{E}_{1}\right) \leftarrow \operatorname{VEGAS}\left(f_{\mathcal{E}_{1}, \mathcal{E}_{2}}^{\text {inter }}, M, \Omega, N\right) \quad \triangleright\) Algorithm 56.
 \(R_{i} \leftarrow \operatorname{Vol}\left(\mathcal{E}_{1} \cap \mathcal{E}_{1}\right) / \operatorname{Vol}\left(\mathcal{E}_{i}\right), i=1,2\)
 until \(\left|R_{i}-R_{\text {old }, i}\right| \leq t o l\left|R_{i}\right|, i=1,2\)
 return \(\left\{R_{1}, R_{2}\right\}\)
 end procedure
```


## Merging of clustered ellipsoids

From here, the GDBSCAN algorithm has clustered (hopefully correctly) "sufficiently" overlapping ellipsoids, so that there is an unequivocally correspondence between clusters of ellipsoids and the cells of the considered foam. Ellipsoids clustered together are merged into one ellipsoid using the Minimum Volume Covering Ellipsoid of Ellipsoids (MVCEE) algorithm given in Reference [185].

Essentially, the MVCEE algorithm works as follows:

1. Given a set of ellipsoids $\left\{\mathcal{E}_{i}\right\}_{1 \leq i \leq n}$ and an initial covering ellipsoid $\tilde{\mathcal{E}}(\tilde{\mathbf{c}}, \tilde{M})$ of centre $\tilde{\mathbf{c}}$ and shape matrix $\tilde{M}$ (Figure 2.40a), the furthest point $\mathbf{x}_{1}$ belonging to $\left\{\mathcal{E}_{i}\right\}_{1 \leq i \leq n}$ from the centre $\tilde{\mathbf{c}}$ is computed (Figure 2.40b).
2. Then, the centre $\tilde{\mathbf{c}}$ and the shape matrix $\tilde{M}$ of the covering ellipsoid $\tilde{\mathcal{E}}$ are updated so to minimise the distance of $\mathbf{x}_{1}$ to the boundary of $\tilde{\mathcal{E}}$ (Figure 2.40c).
3. Afterwards, a new furthest point $\mathbf{x}_{2}$ in $\left\{\mathcal{E}_{i}\right\}_{1 \leq i \leq n}$ from centre $\tilde{\mathbf{c}}$ is computed (Figure 2.40d).
4. A new update of the centre $\tilde{\mathbf{c}}$ and the shape matrix $\tilde{M}$ is performed by minimising the distances to $\mathbf{x}_{1}$ and $\mathbf{x}_{2}$ to the boundary of $\tilde{\mathcal{E}}$. This process is repeated by adding new furthest points $\mathbf{x}_{3}, \ldots, \mathbf{x}_{m}$ until the ellipsoid does not vary any more (within given threshold) when adding new furthest points.


Figure 2.40: Schematic sketching how the MVCEE algorithm [185] is operating. See text for details.

Figure 2.41 shows a three-dimensional example of the MVCEE of three ellipsoids, while Figure 2.42 shows the obtained ellipsoids for a 3D CT-scan image of size $670 \times$ $670 \times 670$ voxels obtained from a closed polypropylene foam provided by Erwan Plougonven (Department of Chemical Engineering / PEPs - Products, Environment, and Processes at University of Liège). Compared to Figure 2.34, it can be seen that ellipsoids belonging to common cells have been merged into single ellipsoids.

From here, it is assumed that clustered ellipsoids are provided in a form of a search tree, such an $\mathrm{R}^{*}$-tree. Sets of ellipsoids belonging to a same cluster are then merged together into a single Minimum Volume Covering Ellipsoid of Ellipsoids (MVCEE), thank to an algorithm developed by E.A. Yildirim [185].

Given a set of $m$ full-dimensional (i.e. non-degenerated) ellipsoids $\mathcal{E}_{1}, \ldots \mathcal{E}_{m} \in$ $\mathcal{R}^{n}$, let's $S$ denotes their convex hull. The merging of the $m$ ellipsoids $\mathcal{E}_{1}, \ldots \mathcal{E}_{m}$ will be performed by searching (an approximation to) the Minimum Volume Covering Ellipsoid (MVCE) of $S$, denoted by $\operatorname{MVCE}(S)$. If $S$ has a non-empty interior, the MVCE is guaranteed to exists and is unique [50].

Given a finite set of ellipsoids $S=\left\{\mathcal{E}_{1}, \ldots, \mathcal{E}_{m}\right\}$, the problem is here to find the minimum volume covering ellipsoid of these ellipsoids (MVCEE) as stated by problem 2.75.

$$
\left\{\begin{array}{l}
\min _{M, c} \operatorname{Vol}(\mathcal{E})  \tag{2.75}\\
\text { s.t. } \mathcal{E} \supseteq\left\{\mathcal{E}_{1}, \ldots, \mathcal{E}_{m}\right\}
\end{array}\right.
$$

Where $\mathcal{E}$, with representation given by definition 2.5, is the MVCEE of ellipsoids $\mathcal{E}_{i},<i=1, \ldots, m$.


FIGURE 2.41: MVCEE algorithm 29 used on a three-dimensional set of three ellipsoids (solids) at different iterations. The MVCEEs are showed in semi-transparent blue. (Images generated using POV-

Ray [29]).


Figure 2.42: Red: walls of a $670 \times 670 \times 670$ 3D CT-scan image of a polypropylene foam provided by E. Plougonven, Department of Chemical Engineering at University of Liège. gray: clustered and merged ellipsoids by MVCEE. It can be noticed, by comparing to Figure 2.34, that some cells that used to contain several ellipsoids, now contain only one ellipsoid.

Link between $\operatorname{Vol}(\mathcal{E})$ and its shape matrix $M$. Problem 2.75 can be restated in terms of the matrix $M$ as follows:

The volume $\operatorname{Vol}(\mathcal{E})$ of an ellipsoid $\mathcal{E} \subseteq \mathcal{R}^{3}$ is given by:

$$
\begin{equation*}
\operatorname{Vol}(\mathcal{E})=\frac{4 \pi}{3} r_{1} r_{2} r_{3} \tag{2.76}
\end{equation*}
$$

Where the $r_{i}, i=1,2,3$ are the semi-axis lengths of the considered ellipsoid.
These semi-axis lengths $r_{i}, i=1,2,3$ are related to the eigenvalues $\lambda_{i}, i=1,2,3$ of the corresponding shape matrix $M$ as follow:

$$
\begin{equation*}
r_{i}=\frac{1}{\sqrt{\lambda_{i}}}, i=1,2,3 \tag{2.77}
\end{equation*}
$$

Leading, for a fully dimensional ellipsoid (i.e. positive definite shape matrix $M \succ$ $0)$, to the result:

$$
\begin{align*}
& \operatorname{det}(M)=\lambda_{1} \lambda_{2} \lambda_{3}=\frac{1}{r_{1}^{2} r_{2}^{2} r_{2}^{2}}  \tag{2.78}\\
\Leftrightarrow \quad & \operatorname{det}\left(M^{-1}\right)=\frac{1}{\lambda_{1} \lambda_{2} \lambda_{3}}=r_{1}^{2} r_{2}^{2} r_{3}^{2}
\end{align*}
$$

The problem 2.75 can be restated as:

$$
\begin{cases}\min _{M, \mathrm{c}} \ln \left(\operatorname{det}\left(M^{-1}\right)\right)  \tag{2.79}\\ & M \succ 0, \text { symmetric } \\ \text { s.t. } & \mathcal{E} \supseteq\left\{\mathcal{E}_{1}, \ldots \mathcal{E}_{m}\right\}\end{cases}
$$

Covering criterion. In order to determine if an ellipsoid $\mathcal{E}$ is covering another ellipsoid $\mathcal{E}_{i}, i \in\{1, \ldots, m\}$, E.A. Yildirim suggests to use the following two propositions:

Proposition 2.3. (Proposition 2.7 in E.A. Yildirim [185])
Let's $\mathcal{E} \subset \mathcal{R}^{n}$ and $\mathcal{E}_{i} \subset \mathcal{R}^{n}$ denote two full-dimensional ellipsoids, then $\mathcal{E}_{i} \subseteq \mathcal{E}$ if and only if the exists $\tau>0$ such that:

$$
\tau\left(\begin{array}{cc}
M_{i} & -M_{i} \mathbf{c}_{i}  \tag{2.80}\\
-\mathbf{c}_{i}^{t} M_{i} & \mathbf{c}_{i}^{t} M_{i} \mathbf{c}_{i}-1
\end{array}\right) \succeq\left(\begin{array}{cc}
M & -M \mathbf{c} \\
-\mathbf{c}^{t} M & \mathbf{c}^{t} M \mathbf{c}-1
\end{array}\right)
$$

Where the symbol " $\succeq$ " in an expression of type " $A \succeq B$ " stands for $A-B \succeq 0$, meaning that the matrix $A-B$ is positive semi-definite.

Proposition 2.4. (Lemma 2.8 in E.A. Yildirim [185])
Condition 2.80 is equivalent to:

$$
\tau\left(\begin{array}{ccc}
M_{i} & -M_{i} \mathbf{c}_{i} & 0  \tag{2.81}\\
-\mathbf{c}_{i}^{t} M_{i} & \mathbf{c}_{i}^{t} M_{i} \mathbf{c}_{i}-1 & 0 \\
0 & 0 & 0
\end{array}\right) \succeq\left(\begin{array}{ccc}
M & -M \mathbf{c} & 0 \\
-\mathbf{c}^{t} M & -1 & \mathbf{c}^{t} M \\
0 & M \mathbf{c} & -M
\end{array}\right)
$$

Using condition 2.81 for all ellipsoids $\mathcal{E}_{i}, i=1, \ldots, m$, the problem 2.79 can be restated as:

$$
\left\{\begin{array}{l}
\min _{M, \mathbf{c}} \ln \left(\operatorname{det}\left(M^{-1}\right)\right)  \tag{2.82}\\
M \succ 0, \text { symmetric } \\
\quad \exists \tau_{1}>0, \ldots, \tau_{m}>0 \\
\text { s.t. } \\
\quad\left(\begin{array}{ccc}
M & -M \mathbf{c} & 0 \\
-\mathbf{c}^{t} M & -1 & \mathbf{c}^{t} M \\
0 & M \mathbf{c} & -M
\end{array}\right)-\tau_{i}\left(\begin{array}{ccc}
M_{i} & -M_{i} \mathbf{c}_{i} & 0 \\
-\mathbf{c}_{i}^{t} M_{i} & \mathbf{c}_{i}^{t} M_{i} \mathbf{c}_{i}-1 & 0 \\
0 & 0 & 0
\end{array}\right) \preceq 0
\end{array}\right.
$$

Finally, by letting $\mathbf{z}=M \mathbf{c}$ the problem 2.82 reads:

$$
\left\{\begin{array}{l}
\min _{M, \mathbf{z}} \ln \left(\operatorname{det}\left(M^{-1}\right)\right)  \tag{2.83}\\
\quad M \succ 0, \text { symmetric } \\
\quad \exists \tau_{1}>0, \ldots, \tau_{m}>0 \\
\text { s.t. } \\
\quad\left(\begin{array}{ccc}
M & -\mathbf{z} & 0 \\
-\mathbf{z}^{t} & -1 & \mathbf{z}^{t} \\
0 & \mathbf{z} & -M
\end{array}\right)-\tau_{i}\left(\begin{array}{ccc}
M_{i} & -M_{i} \mathbf{c}_{i} & 0 \\
-\mathbf{c}_{i}^{t} M_{i} & \mathbf{c}_{i}^{t} M_{i} \mathbf{c}_{i}-1 & 0 \\
0 & 0 & 0
\end{array}\right) \preceq 0
\end{array}\right.
$$

Which is (almost) a semi-definite program.
As pointed-out by E.A. Yildirim, the problem 2.83 may be solved by interior-point algorithm. However, the computational cost of these algorithms becomes quickly prohibitive as the dimension of the problem grows. Instead, E.A. Yildirim suggests the algorithm 29 for solving approximatively the problem 2.83.

```
Algorithm 29 Algorithm for solving problem 2.83 (E.A. Yildirim [185])
Require: Set of ellipsoids \(\mathcal{E}_{1}, \ldots, \mathcal{E}_{m} \subset \mathcal{R}^{n}\).
Require: \(\epsilon>0\).
 procedure \(\operatorname{MVCEE}\left(\mathcal{E}_{1}, \ldots, \mathcal{E}_{m}, \epsilon\right)\)
 \(\chi_{0}=\left\{\mathbf{x}^{1}, \ldots \mathbf{x}^{2 n}\right\} \leftarrow \operatorname{MVCEEINITIALISE}\left(\mathcal{E}_{1}, \ldots, \mathcal{E}_{m}\right) \quad \triangleright\) Algorithm 30
 \(\mathbf{u}^{0} \leftarrow(1 /(2 n)) \mathbf{e} \in \mathcal{R}^{2 n} \quad \triangleright \mathbf{e}\) : vector of ones.
 \(\mathbf{w}^{0} \leftarrow \sum_{j=1}^{2 n} \mathbf{x}^{j} u_{j}^{0}\)
 \(\left(M^{0}\right)^{-1} \leftarrow n \sum_{j=1}^{2 n} u_{j}^{0}\left(\mathbf{x}^{j}-\mathbf{w}^{0}\right)\left(\mathbf{x}^{j}-\mathbf{w}^{0}\right)^{t}\)
 \(\mathcal{F}^{0} \leftarrow\left\{\mathbf{x} \in \mathcal{R}^{n} \mid\left(\mathbf{x}-\mathbf{w}^{0}\right)^{t} M^{0}\left(\mathbf{x}-\mathbf{w}^{0}\right) \leq 1\right\}\)
 \(\mathbf{x}^{2 n+1} \leftarrow \operatorname{argmax}_{i=1, \ldots, m}\left\{\left(\mathbf{x}-\mathbf{w}^{0}\right)^{t} M^{0}\left(\mathbf{x}-\mathbf{w}^{0}\right) \mid \mathbf{x} \in \mathcal{E}_{i}\right\}\)
 \(\epsilon_{0} \leftarrow\left(\mathbf{x}^{2 n+1}-\mathbf{w}^{0}\right)^{t} M^{0}\left(\mathbf{x}^{2 n+1}-\mathbf{w}^{0}\right)-1\)
 \(k \leftarrow 0\)
 while \(\epsilon_{k}>(1+\epsilon)^{2 / n}-1\) do
 \(\beta_{k} \leftarrow \frac{\epsilon_{k}}{(n+1)\left(1+\epsilon_{k}\right)}\)
 \(k \leftarrow k+1\)
 \(\mathbf{u}^{k} \leftarrow\binom{\left(1-\beta_{k-1}\right) \mathbf{u}^{k-1}}{\beta_{k-1}}\)
 \(\mathbf{w}^{k} \leftarrow \sum_{j=1}^{2 n+k} \mathbf{x}^{k} u_{j}^{k}\)
 \(\left(M^{k}\right)^{-1} \leftarrow n \sum_{j=1}^{2 n+k} u_{j}^{k}\left(\mathbf{x}^{j}-\mathbf{w}^{k}\right)\left(\mathbf{x}^{j}-\mathbf{w}^{k}\right)^{t}\)
 \(\mathcal{F}_{k} \leftarrow\left\{\mathbf{x} \in \mathcal{R}^{n} \mid\left(\mathbf{x}-\mathbf{w}^{k}\right)^{t} M^{k}\left(\mathbf{x}-\mathbf{w}^{k}\right) \leq 1\right\}\)
 \(\chi_{k} \leftarrow \chi_{k-1} \cup\left\{\mathbf{x}^{2 n+k}\right\}\)
 \(\mathbf{x}^{2 n+k+1} \leftarrow \operatorname{argmax}_{i=1, \ldots, m}\left\{\left(\mathbf{x}-\mathbf{w}^{k}\right)^{t} M^{k}\left(\mathbf{x}-\mathbf{w}^{k}\right) \mid \mathbf{x} \in \mathcal{E}_{i}\right\}\)
 \(\epsilon_{k} \leftarrow\left(\mathbf{x}^{2 n+k+1}-\mathbf{w}^{k}\right)^{t} M^{k}\left(\mathbf{x}^{2 n+k+1}-\mathbf{w}^{k}\right)-1\)
 end while
 return \(\sqrt{1+\epsilon_{k}} \mathcal{F}_{k}, \chi_{k}\)
 end procedure
```

```
Algorithm 30 Initialisation for algorithm 29 (E.A. Yildirim [185])
Require: Set of ellipsoids \(\mathcal{E}_{1}, \ldots, \mathcal{E}_{m} \subset\) mathcal \({ }^{n}\).
 procedure MVCEEINITIALISE \(\left(\mathcal{E}_{1}, \ldots, \mathcal{E}_{m}\right)\)
 \(\psi \leftarrow\{0\}, \chi_{0} \leftarrow \varnothing, k \leftarrow 0\)
 while \(\mathcal{R}^{n} \backslash \psi \neq \varnothing\) do
 \(k \leftarrow k+1\)
 Pick an arbitrary unit vector \(\mathbf{b}^{k} \in \mathcal{R}^{n}\) in the orthogonal complement of \(\psi\)
 \(\mathbf{x}^{2 k-1} \leftarrow \operatorname{argmax}_{1=1, \ldots, m}\left\{\left(\mathbf{b}^{k}\right)^{t} \mathbf{x} \mid \mathbf{x} \in \mathcal{E}_{i}\right\}, \chi_{0} \leftarrow \chi_{0} \cup\left\{\mathbf{x}^{2 k-1}\right\}\)
 \(\mathbf{x}^{2 k} \leftarrow \operatorname{argmin}_{i=1, \ldots, m}\left\{\left(\mathbf{b}^{k}\right)^{t} \mathbf{x} \mid \mathbf{x} \in \mathcal{\mathcal { E } _ { i } \} , \chi _ { 0 } \leftarrow \chi _ { 0 } \cup \{ \mathbf { x } ^ { 2 k } \}}\right.\)
 \(\psi \leftarrow \operatorname{span}\left(\psi,\left\{\mathbf{x}^{2 k-1}-\mathbf{x}^{2 k}\right\}\right)\)
 end while
 return \(\chi_{0}\)
 end procedure
```


## Remarks about algorithm 29 MVCEE.

1. From line 2 to line 6 , the algorithm computes from algorithm 30 a first estimate $\mathcal{F}^{0}$ of the $\operatorname{MVCEE}\left(\mathcal{E}_{1}, \ldots, \mathcal{E}_{m}\right)$. This first ellipsoid $\mathcal{F}^{0}$ is simply centred on the centre of mass of points provided by $\chi_{0}$ (line 4) while its shape matrix $M^{0}$ is simply (up to a scaling factor) the inverse covariance matrix of those points (line 5).
2. On line $3, \mathbf{u}^{0}$ simply contains the weights for computing the (weighted) centre of mass and will be iteratively updated for computing the final MVCEE centre.
3. Once the first ellipsoid $\mathcal{F}^{0}$ constructed, the furthest point $\mathbf{x}^{2 n+1}$ from $\mathcal{F}^{0}$ belonging to $\left\{\mathcal{E}_{1}, \ldots \mathcal{E}_{m}\right\}$ is computed on line 7 . This quadratic constrained quadratic problem is solved using the Minpack-2 package [9].
4. On line $8, \epsilon_{0}$ "measure" how far from ellipsoid $\mathcal{F}^{0}$ is the furthest point $\mathbf{x}^{2 n+1}$ computed on line 7 .
5. Next, the loop on line 10 will repeat the above steps for iteratively updating the ellipsoid $\mathcal{F}^{0}$. The centre of ellipsoid $\mathcal{F}^{0}$ is iteratively updated by computing new (weighted) centres (line 14) based of the updated set of points $\chi_{k}$ (line 17); where $\chi_{k}$ is iteratively enriched with the furthest point $\mathbf{x}^{2 n+k+1}$ from the current ellipsoid $\mathcal{F}^{0}$ belonging to the set $\left\{\mathcal{E}_{1}, \ldots, \mathcal{E}_{m}\right\}$. The shape matrix $M^{0}$ of ellipsoid $\mathcal{F}^{0}$ is also iteratively updated by computing the (scaled) inverse covariance matrix of the points in $\chi_{k}$ (line 15).
6. Lines 11 to 13 update the weights used in the computations of the current centre $\mathbf{w}^{k}$ and current shape matrix $M^{k}$ of the current ellipsoid $\mathcal{F}^{k}$. These updates are based on the "measures" of distances from the current farthest point $\mathbf{x}^{2 n+k}$ of the current ellipsoid $\mathcal{F}^{k}$.
7. Line 18 requires to solve a quadratic problem subjects to quadratic constraints. As this problem is identical to the problem on line 7, it is also solved using the Minpack-2 package [9].
8. Finally, algorithm 29 returns a dilated version of the found ellipsoid around its centre (line 21). For an ellipsoid $\mathcal{E} \subset \mathcal{R}^{3}$ of shape matrix $M$, its semi-axis lengths $r_{i}, 1=1,2,3$ can be uniformely scaled by a factor $|a|$ if the shape matrix $M$ is multiplied by a factor $\alpha=1 / a^{2}$. Indeed, as the shape matrix $M$ is real symmetric definite positive, its eigen decomposition is given by:

$$
M=U \Sigma^{2} U^{t}
$$

Where $U$ is unitary and $\Sigma$ is a diagonal matrix holding the eigenvalues $\lambda_{i}, i=$ 1,2,3.

Multiplying $M$ by $\alpha=1 / a^{2}$ leads to:

$$
\alpha M=\alpha U \Sigma^{2} U^{t}=U(\sqrt{\alpha} \Sigma)^{2} U^{t}=U \tilde{\Sigma}^{2} U^{t}
$$

Where $\tilde{\Sigma}$ now contains the eigenvalues $\tilde{\lambda}_{i}=\sqrt{\alpha} \lambda_{i}=\lambda_{i}| | a \mid, i=1,2,3$.

As the following relation between the semi-axes lengths $r_{i}, 1=1,2,3$ and the corresponding eigenvalues $\lambda_{i}, 1=1,2,3$ holds:

$$
r_{i}=\frac{1}{\lambda_{i}}, i=1,2,3
$$

One obtain:

$$
\tilde{r}_{i}=\frac{1}{\tilde{\lambda}_{i}}=\frac{|a|}{\lambda_{i}}=|a| r_{i}, i=1,2,3
$$

i.e., the ellipsoid $\mathcal{E}$ is indeed dilated uniformly by a factor $|a|$ around its centre.

## Remarks about algorithm 30 MVCEEInitialise.

1. The idea of algorithm 30 is to pick arbitrary linearly independent lines and projects the ellipsoids $\mathcal{E}_{i}, i=1, \ldots, m$ on them (see Figure 2.43). For a given line, these projections form a set of segments. In this set of segments, lines 6 and 7 aim to find the two furthest points from each other. These points are then added to the set $\chi_{0}$ such that the $\operatorname{MVCE}\left(\chi_{0}\right)$ will be a first rough approximation of of $\operatorname{MVCEE}\left(\mathcal{E}_{1}, \ldots, \mathcal{E}_{m}\right)$.
2. Each segment coming from the projection of ellipsoid $\mathcal{E}_{i}$ on line of direction $\mathbf{b}^{k}$ has extremities given by

$$
\tilde{\mathbf{x}}_{\text {max }, \text { min }}^{i, k}=\mathbf{c}^{i} \pm\left(1 /\left\|\left(U^{i}\right)^{-t} \mathbf{b}^{k}\right\|\right)\left(U^{i}\right)^{-1}\left(U^{i}\right)^{-t} \mathbf{b}^{k}
$$

with corresponding values [185]:

$$
\left(\mathbf{b}^{k}\right)^{t} \mathbf{c}^{i} \pm\left(1 /\left\|\left(U^{i}\right)^{-t} \mathbf{b}^{k}\right\|\right)\left(\mathbf{b}^{k}\right)^{t}\left(U^{i}\right)^{-1}\left(U^{i}\right)^{-t} \mathbf{b}^{k}
$$

Where $M^{i}=\left(U^{i}\right)^{t} U^{i}, i=1, \ldots, m$ denotes the upper Cholesky factorisation of $M^{i}, i=1, \ldots, m$. An exhaustive search among a list of $m$ values allows to solve optimisation problems of lines 6 and 7 .


FIgURE 2.43: Sketch of the MVCEEInitialise algorithm 30 in two dimensions. Ellipsoids are projected along two arbitrary orthogonal directions $\mathbf{b}^{1}$ and $\mathbf{b}^{2}$. Minimum and maximum ellipsoid projections $\mathbf{x}_{\text {min }}^{\mathbf{i}}$ and $\mathbf{x}_{\text {max }}^{i}, i=1,2$ along these two directions are computed.


Figure 2.44: (a): Artificially generated honeycomb foam with groups of spurious voxels. (b): Obtained ellipsoids without merging. (c): Obtained ellipsoids with merging. It can be seen that merging of ellipsoids helps to obtain a univocal correspondence between cells and ellipsoids.

Usefulness of clustering and merging ellipsoids. One may ask if clustering and merging the ellipsoids is really useful, especially when using auxiliary ellipsoids (see Section 2.3.11). Indeed, auxiliary ellipsoids will grow in all cells and reproduce the same microstructure regardless if they are several parent ellipsoids or a single parent ellipsoid in a given cell. The reason for merging parent ellipsoids is twofold:

1. One may want to know some statistics about the cell in the considered foam. Among them, some important statistic are the number of cells, their mean number of neighbours and the presence of a preferred cell orientation, which can be estimated from the ellipsoids only after merging.
2. At this stage of the processing chain, spurious voxels may still be present, despite the use "cleaning" filters such as the Box filter (see Section 2.3.5), or any other image processing filter available in the ITK library (such as the BinaryMorphologicalOpeningImageFilter filter) that a user may take advantage of. This is particularly true if spurious voxels form groups that are hard to erase without discarding useful voxels. Clustering and merging of ellipsoids may help to dispose of such groups of spurious voxels by merging parent ellipsoids neighbouring these groups. Figure 2.44 illustrates this on the case of an artificially generated honeycomb foam.

## Discussion: GDBSCAN and merging quality assessment

The GDBSCAN algorithm depends on the four following parameters:

- MinCard the cluster volume threshold which has been set to the volume of one voxel. This means that any cluster whose volume is smaller than one voxel will be discarded.
- $\tau \in[0,1]$ the overlapping volume ratio given in condition 2.64. When the relative intersection volume of two intersecting ellipsoids is above $\tau$, these two ellipsoids are considered as belonging to the same cluster.
- $M_{\text {max }}$ the maximum number of integration point used by the Monte-Carlo method for computing the intersection volume between two ellipsoids (see algorithm 28). This parameters has been set to $M_{\max }=2^{15}=32768$ integration points.
- tol the convergence tolerance used by the Monte-Carlo method for computing the intersection volume between two ellipsoids (see algorithm 28). This parameter has been set to tol $=0.1$.

Among the above four parameters, the only non-trivial one is the overlapping volume ratio $\tau$. As $\tau$ is the main parameter for controlling the merging of ellipsoids, it is important to assess which values are suitable for it. In order to determine a suitable range of values for $\tau$, the following criterion has been used.

Criterion for overlapping volume ratio $\tau$. In the GDBSCAN algorithm take $\tau$ such that the Minimum Volume Covering Ellipsoid of Ellipsoids (MVCEE) belonging to a same cluster satisfies criterion 2.84 when $\tau$ is slightly varied.

$$
\begin{equation*}
\text { MatchPixels }(\tau) / \operatorname{MismatchPixels}(\tau) \approx \text { constant } \tag{2.84}
\end{equation*}
$$

Where MatchPixels $(\tau)$ is the number of pixels belonging to the MVCEEs of the computed clusters and identified as non-feature pixels (i.e. not belonging to cellboundaries), and MismatchPixels ( $\tau$ ) are pixels also belonging to the MVCEEs of the computed clusters but identified as feature pixels (i.e. belonging to cell boundaries). Note that, in general tomographic images, some non-feature pixels may be identified as feature ones and vice-versa. Here, these pixels are referenced as noisy pixels. However, it has been observed that the GDBSCAN algorithm 43 is rather tolerant to it.

It is believed that criterion 2.84 provides suitable values of $\tau$ for obtaining satisfactory clusterings. Indeed, for $\tau=1$ the GDBSCAN algorithm only cluster ellipsoids containing other ellipsoids (the volume overlapping ratio has to be $100 \%$ ), and for $\tau=0$ this algorithm clusters any intersecting ellipsoids (the volume overlapping ratio is $0 \%$ ). More generally, a value of $\tau$ close to one will prevents the clustering of two ellipsoids associated to two different cells, while it will also prevents the clustering of intersecting ellipsoids belonging to the same cell. Conversely, a value of $\tau$ close to zero will allow the clustering of intersecting ellipsoids belonging to the same cell, but will also allow the clustering of intersecting ellipsoids belonging to different cells. This may happen if the wall separating the two considered cells contains openings ${ }^{33}$.

[^21]Starting from $\tau=0$ (see Figure 2.45, box region 1) and increasing it, clustered ellipsoids belonging to well separated cells will be isolated (because their intersection volume ratios should be inexistent), while ellipsoids belonging to the same cell will remain clustered (since their intersection volume ratios should be positive, see Figure 2.46 c ). With $\tau$ increasing from 0 , this will cause the MatchPixels $(\tau)$ to decrease slower than the MismatchPixels $(\tau)$ function because MVCEEs will contain less pixels wrongly identified as non-feature. As outcome, the ratio given in criterion 2.84 will slightly raise.

At intermediate values of $\tau$ (figure 2.45, box region 2) the ratio given in criterion 2.84 will stay approximatively constant (or will slightly increase) as clusters of ellipsoids will remain approximatively stable (or will slightly raise).

An intermediate value of $\tau$ should thus trigger the algorithm GDBSCAN to cluster only intersecting ellipsoids belonging to the same cell in order to obtain the final purpose of this section: achieve a one-to-one correspondence between ellipsoids and cells (see Figure 2.46d).

At $\tau \approx 1$ (Figure 2.45, box region 3), intersecting ellipsoids belonging to a same cell will not be clustered. The resulting MVCEEs will contain some noisy feature pixels (pixels wrongly identified as belonging to cell boundaries) that were separating the initial ellipsoids (see Figure 2.46e). This will cause the MatchPixels $(\tau)$ function to stay approximatively constant, while the $\operatorname{MismatchPixels}(\tau)$ function will quickly decrease. As a consequence, the ratio in criterion 2.84 will rapidly raise. In general, the curve giving the ratio $\operatorname{Match} \operatorname{Pixel}(\tau) / \operatorname{MismatchPixel}(\tau)$ versus $\tau$ will have the general shape given in schematic 2.45.

It should be noted that, at this stage, intersecting ellipsoids belonging to different cells should, in principle, not be clustered. Indeed, if a cell wall (even with openings) separates the two considered ellipsoids, their intersection volume ratios should be small and not satisfying criterion 2.84 . However, cell walls with big openings may accidentally satisfy this criterion and trigger the clustering of the two considered ellipsoids; though it may then be questionable to see these considered cells as two separated cells (at least for closed foams).

In order to illustrate the criterion 2.84, a dataset $D$ of ellipsoids has been generated from the set of 3D-image provided by E. Plougonven (department of Applied Chemistry, University of Liège). Several values of the intersecting volume ratios $\tau$ between zero and one with a step of 0.05 have been tested and plotted against the ratio MatchPixels $(\tau) / \operatorname{MismatchPixels}(\tau)$ in Figure 2.47. It can be seen that the graph of this figure is very similar to the one given in schematic 2.45 . From figure 2.47 it can be inferred that a value of $\tau \in[0.1,0.4]$ is suitable for giving a satisfactory clustering. For $\tau=0.1$, the ratio MatchPixels(0.1)/total number of pixels $=0.77$ and MismathcPixels(0.1)/total number of pixels $=0.37$, with 1664 clusters found.


Figure 2.45: Schematic of the general behaviour of the ratio MatchPixels $(\tau) /$ MismatchPixels $(\tau)$ with respect to the intersection volume ratio $\tau$ (see criterion 2.64). MatchPixels $(\tau)$ is the number of non-feature pixels contained in the MVCEEs (see section 2.3.10) of the clustering computed with parameter $\tau$, while MismatchPixels $(\tau)$ is the number of feature pixels contained in the same MVCEEs. See text for comments about the different regions shown.


FIGURE 2.46: Schematics illustrating the general behaviour of the ratio MatchPixels $(\tau) /$ MismatchPixels $(\tau)$ (see text). Empty pixels represent feature pixels (walls), greyed pixels represent mismatched pixels, pixels with a line represent non-feature/noisy pixels. Black lines represent ellipsoids.

Figure 2.47: Behaviour of the ratio MatchPixels $(\tau) / \operatorname{Mismatch} \operatorname{Pixels}(\tau)$ with respect to the intersection volume ratio $\tau$ (see criterion 2.64) for the 3D-image provided by E. Plougonven (department of Applied Chemistry, University of Liège). MatchPixels $(\tau)$ is the number of non-feature pixels contained in the MVCEEs of the clustering computed with parameter $\tau$, while MismatchPixels $(\tau)$ is the number of feature pixels contained in the same MVCEEs.

### 2.3.11 Step 6: Auxiliary ellipsoids

Auxiliary ellipsoids are grown using the previously expanded ellipsoids for generating new seeds. These auxiliary ellipsoids are constructed as follows (see Figure 2.48): each previously grew ellipsoid is uniformly discretised into a set of points and serves as parent to its associated auxiliary ellipsoids. This discretisation is parametrised by an azimuthal angle increment $\Delta \theta$, which drives, in turn, the polar angle increment

$$
\begin{equation*}
\Delta \phi_{i}=\frac{2 \pi}{\left\lfloor 2 \pi \sin \left(\theta_{i}\right) / \theta_{i}\right\rfloor+1} \tag{2.85}
\end{equation*}
$$

Where $\theta_{i}=\theta_{i-1}+\Delta \theta$ is the $i$ th increment in angle $\theta$, and $\lfloor$.$\rfloor returns the closest$ lower integer of its argument.

In practice, the discretisation is computed as follows: by using (Equation 2.86), the discretisation is computed as given by algorithm 31. In practice the factor $\alpha$ is chosen to a value slightly lower than 1 (e.g. $\alpha=0.99$ ), in order to avoid having the seldom case of a point located on a feature pixel (in which case, the associated auxiliary ellipsoid could never be grown).

$$
\begin{equation*}
\mathcal{E}_{\alpha}=\left\{\mathbf{x} \in \mathcal{R}^{3} \mid \mathbf{x}=\mathbf{c}+G^{-t} \mathbf{y},\|\mathbf{y}\| \leq \alpha\right\} \tag{2.86}
\end{equation*}
$$

```
Algorithm 31 Given a parent ellipsoid \(\mathcal{E}\), an azimuthal angle increment \(\Delta \theta\), and a
factor \(\alpha\), uniformly discretises the iso-surface of value \(\alpha\) of \(\mathcal{E}\) in a set of points.
Require: Ellipsoid \(\mathcal{E}=\left\{\mathbf{x} \in \mathcal{R}^{3} \mid \mathbf{x}=\mathbf{c}+G^{-t} \mathbf{y},\|\mathbf{y}\| \leq 1\right\}\), angle increment \(\Delta \theta\), fac-
 tor \(\alpha\).
 procedure DiscretizeEllipsoid \((\mathcal{E}, \Delta \theta, \alpha)\)
 Set of points \(P \leftarrow \varnothing\).
 for \(\theta_{i}=0 ; \theta_{i} \leq \pi ; \theta_{i} \leftarrow \theta_{i}+\Delta \theta\) do
 Compute \(\Delta \phi_{i}\) as given by eq. 2.85.
 for \(\phi_{i j}=0 ; \phi_{i j} \leq 2 \pi ; \phi_{i j}=\phi_{i j}+\Delta \phi_{i}\) do
 Compute \(\mathbf{y}=\left(y_{0}, y_{1}, y_{2}\right)\) as:
 \(\left\{\begin{array}{l}y_{0}=\alpha \sin \theta_{i} \cos \phi_{i j} \\ y_{1}=\alpha \sin \theta_{i} \sin \phi_{i j} . \\ y_{2}=\alpha \cos \theta_{i}\end{array}\right.\).
 \(P \leftarrow P \cup\left\{\mathbf{c}+G^{-t} \mathbf{y}\right\}\).
 end for
 end for
 return \(P\).
 end procedure
```



Figure 2.48: Schematic sequence illustrating the growth of auxiliary ellipsoids into a cell. The last step $f$. is obtained by taking the zero iso-surface (iso-line) of the distance field to the ellipsoids.

Once the discretisation computed, each of the associated point is attached to an auxiliary ellipsoid. Initially, these auxiliary ellipsoids are simply spheres the radii of which are one voxel wide. Then, between each sphere and the centre of the parent ellipsoids an "artificial" obstacle is added. These obstacles are simply the closest points of each sphere to the centre of the parent ellipsoid. The aim of these "artificial" obstacles is to avoid the auxiliary ellipsoids to all decay into their parent ellipsoids. Once initialised by unit spheres and their associated artificial obstacles set, the auxiliary ellipsoids are then grown using the same algorithm as their parent ellipsoids [39], taking into account for each auxiliary ellipsoid the same obstacles as for its associated parent ellipsoid and the artificial ones generated from it and the spheres. The result shown in Figure 2.48 f is obtained by extracting the zero isosurface of the distance field to the ellipsoids. Algorithm 32 details the whole process. The result of this process is illustrated in Figure 2.49 where it can be seen that auxiliary ellipsoids match the cell walls much closer than the associated parent ellipsoids.

```
Algorithm 32 Given a parent ellipsoid, compute the associated auxiliary ellipsoids
and their associated obstacles.
Require: Image \(I\) of domain \(D_{I}\).
Require: Pixel value \(p \in \operatorname{Im}(I)\) figuring the value associated to the cell walls.
Require: Parent ellipsoid \(\mathcal{E}\), angle increment \(\Delta \theta\), factor \(\alpha\).
 procedure AuxiliaryEllipsoids \((I, p, \mathcal{E}, \Delta \theta, \alpha)\)
 \(E_{a u x} \leftarrow \operatorname{InitialAUXILIARYELLIPSOIDS}(\mathcal{E}, \Delta \theta, \alpha) \quad \triangleright\) Algo. 33.
 for \(\mathcal{E}_{a u x, i} \in E_{a u x}\) do
 \(\mathcal{O}_{\text {artif }} \leftarrow\) ComputeArtificialObstacle \(\left(\mathcal{E}, \mathcal{E}_{\text {aux }, i}\right) \quad \triangleright\) Algo. 34 .
 \(\mathcal{E}_{a u x, i} \leftarrow \operatorname{ElLIPSOIDEXPAND}\left(I, p, \mathcal{E}_{a u x, i}, \mathcal{O}_{a r t i f}\right) \quad \triangleright\) Algo. 13.
 end for
 return \(E_{\text {aux }}\).
 end procedure
```

```
Algorithm 33 Constructs initial auxiliary ellipsoids from a parent ellipsoid \(\mathcal{E}\).
Require: Parent ellipsoid \(\mathcal{E}\), angle increment \(\Delta \theta\), factor \(\alpha\).
 procedure Initialauxiliary \(\operatorname{LLIPSOIDS}(\mathcal{E}, \Delta \theta, \alpha)\)
 Set au auxiliary ellipsoids \(E_{\text {aux }} \leftarrow \varnothing\)
 \(P \leftarrow \operatorname{DisCRETZIZEELLIPSOID}(\mathcal{E}, \Delta \theta, \alpha) \quad \triangleright\) Algo. 31 .
 for \(P_{i} \in P\) do
 \(\mathcal{E}_{\text {aux }, i}=\left\{\mathbf{x} \in \mathcal{R}^{3} \mid \mathbf{x}=P_{i}+I d \mathbf{y},\|\mathbf{y}\| \leq 1\right\} \quad \triangleright I d \in \mathcal{R}^{3 \times 3}\), identity matrix.
 \(E_{a u x} \leftarrow E_{a u x} \cup\left\{\mathcal{E}_{a u x, i}\right\}\).
 end for
 return \(E_{a u x}\).
 end procedure
```

```
Algorithm 34 Given a parent ellipsoid and an auxiliary ellipsoid, compute an artifi cial obstacle.
Require: Parent ellipsoid \(\mathcal{E}=\left\{\mathbf{x} \in \mathcal{R}^{3} \mid \mathbf{x}=\mathbf{c}+G^{-t} \mathbf{y},\|\mathbf{y}\| \leq 1\right\}\).
Require: Auxiliary ellipsoid \(\mathcal{E}_{\text {aux }}=\left\{\mathbf{x} \in \mathcal{R}^{3} \mid \mathbf{x}=\mathbf{c}_{a u x}+G_{a u x}^{-\bar{t}} \mathbf{y},\|\mathbf{y}\| \leq 1\right\}\).
procedure ComputeArtificialObstacle \(\left(\mathcal{E}, \mathcal{E}_{\text {aux }}\right)\)
\(\mathbf{v}=\left(\mathbf{c}-\mathbf{c}_{a u x}\right) /\left\|\mathbf{c}-\mathbf{c}_{a u x}\right\|\).
\(\mathcal{O} \leftarrow\left\{\mathbf{c}_{\text {aux }}+G_{\text {aux }}^{-t} \mathbf{v}\right\}\).
return \(\mathcal{O}\).
end procedure
```

From all the above described steps, an approximation of a CT-scan image of foam in terms of a set of ellipsoids (and associated polyhedra) can be obtained. This set can then be used to reconstruct the geometry of the foam; geometry that can be subsequently used into a FEM simulation as it will be demonstrated later on in this thesis. These steps avoid the memory expensive watershed and H-maxima transforms, replacing them by the clustering and merging of overlapping ellipsoids. Depending on the number of auxiliary ellipsoids associated to each parent ellipsoid, the obtained set of ellipsoids allows a rather precise fitting of the struts structure present in the CT-scan images, including local defects such as partially missing or deformed struts, as it will be shown further in this thesis.


FIGURE 2.49: Parent ellipsoids and surface obtained by the auxiliary ellipsoids using an angle increment $\Delta \theta=10^{\circ}$. 3D-image (in red) provided by E. Plougonven (department of Applied Chemistry, University of Liège).

## Chapter 3

## Streaming



- Aim: shows how to adapt the filters presented in the preceding chapters for processing data slice by slice.
- Input: depends on algorithm that has been streamed.
- Output: depends on algorithm that has been streamed.

Streaming is the ability to process an image by slices. It offers the advantage to be able to process large amounts of data that are not manageable otherwise (e.g. that do not fit the RAM of a computer, and/or parallelise the processing). Indeed, 3dimensional $\mu$-CT imaging systems may easily generate datasets of the order of 10 giga-bytes of more (typically $1024 \times 1024 \times 1024$ images with 64 -bits voxels). The Insight Toolkit framework [69] offers such streaming capabilities [194]. All the steps described in Section 2.3 have been implemented as ITK filters which are streamable along slices (see Figure 3.2).

### 3.1 Summary

The following chapter is structured as follow:

- Section 3.2 gives the framework used for implementing streaming.
- Sections from 3.3 to 3.10 describe how the different steps of the image analysis procedure given in chapter 2 have been adapted to support streaming.
- Section 3.10.1 quantitatively show that ellipsoids found using the "normal" processing steps and the streamed ones are identical to numerical precision.
- Section 3.12 finally shows that streaming indeed allows the processing of 3D CT-scans that do not fit into the available RAM.


FIGURE 3.2: Extraction of a slice from a 3D image.

### 3.2 The itk::StreamingFilter

The itk::StreamingFilter filter is a customised version of the itk::StreamingImageFilter in the sense that is requests specials regions to the upstream filters in order to accommodate the requirements of the itk::MaurerDistanceMapFilter

These special regions take the form of slabs (see Figure 3.2) that traverses the whole output region requested by the downstream filter in one given direction. When the streaming gets the output requested region, it partitions the given output region into these slabs. Then, the upstream filters are called on each subregions through an overridden version of the UpdateOutputdata() method. More details on how the ITK library implements streaming can be found in Appendix A

### 3.3 Streaming of the RGB to luminance filter (step 0)

$$
0 \rightarrow 0
$$

- Aim: convert a RGB (Red, Green, Blue) image to a gray-level image.
- Input: RGB image.
- Output: gray-level image.
- Original filter: see Section 2.3.2.

The original RGB to luminance filter converts RGB images to gray-level images. As this filter operates on images voxel by voxel, it is trivially streamable without any modification.

### 3.4 Streaming of the spacing filter (step 0bis)



- Aim: add spacing information at the voxels of an image.
- Input: RGB or gray-level image.
- Output: RGB or gray-level image with spacing information.
- Original filter: see Section 2.3.3.

The spacing filter sets the lengths of the sides of each voxel in an image. It allows for taking into account acquired images with anisotropic resolutions ${ }^{1}$ along the $x$, $y$ and $z$ direction. As this filter only update meta information about an image, it is trivially streamable without any modification.

### 3.5 Streaming of the threshold filter (step 1)



- Aim: convert a gray-level image into a binary (black and white) image.
- Input: gray-level image.
- Output: binary image.
- Original filter: see Section 2.3.4.

Usually, threshold filters process image voxel by voxel, and are therefore trivially streamable. However, the algorithm of Ridler and Calvard algorithm [139] used in this thesis needs the computation of an histogram over the whole image, which may not fit the RAM (see procedure ComputeHistogram at line 24 of algorithm 3). This problem is solved by setting up two pipelines, and performing streaming on both of them. The first pipeline (hereafter called "temporary" pipeline) is used to accumulate the histogram. This is done by calling several times the inner loop of procedure ComputeHistogram (Algorithm 3) during the streaming. Once the temporary pipeline has been updated and the histogram computed, the second pipeline (hereafter called "main" pipeline) is updated and the thresholding process can be applied slice by slice (streamed) on the image, knowing the previously computed exact histogram on the whole image. Figure 3.6 sketches the whole process.

[^22]

Figure 3.6: Temporary and main pipeline for computing a histogram-driven threshold of an image while streaming.

The above procedure is implemented using the Orfeo Toolbox (OTB [66]). The Orfeo Toolbox extends the capabilities of ITK, particularly with regards to the processing of huge data set (of the order of the terabyte). The above procedure can be easily set up thanks to the OTB persistent filters ${ }^{2}$.

More precisely, the otb::PersistentImageFilter allows to compute some global feature of an image (as its mean, histogram...) and uses that information for a downstream filter while streaming. The otb::PersistentImageFilter behaves as a classical ITK filter. It contains however two additional pure virtual methods Reset() and Synthetize(). These two methods have to be implemented by the user via a class inheriting from otb::PersistentImageFilter. The Reset() method sets the intermediate result members of the inheriting class in order to start a fresh processing. The Synthetize() method, in turn, processes the final result once the intermediate results have been computed.

Any class derived from the otb::PersistentImageFilter is intended to work with the otb::PersistentFilterStreamingDecorator and a class named otb::StreamingImageVirtualWriter. The otb::PersistentFilterStreamingDecorator creates a temporary pipeline implying the derived class of otb::PersistentImageFilter and the otb::StreamingImageVirtualWriter. The later is then updated in order to simulate a writer filter but discards immediately the passed data without writing anything on the disk. Once the temporary pipeline has been updated, the intermediate results accumulated are gathered thanks to a call of the Synthetize() method. Finally, the main pipeline can be updated, using the final result obtained during the updating of the temporary pipeline.

[^23]
### 3.6 Streaming of the box filter (step 1bis)

## $\boldsymbol{B} \rightarrow \boldsymbol{\square}$

- Aim: remove small groups of isolated voxels from a binary image.
- Input: binary image.
- Output: processed binary image with small groups of voxel removed.
- Original filter: see Section 2.3.5.

The Box filter removes groups of connected feature pixels that are connected and smaller than a given box. However, taking only a slice of the data may cut such groups into two subsets and made them appear smaller than they really are. As a consequence, some such subgroups may be removed by this filter when they should not. The following section describes how such event can be prevented when using streaming.

During the streaming the Box filter takes advantage of the ITK negotiation process between filters. Indeed, in order to accommodate the streaming process, the input requested image region received by the downstream filter is padded by the user's parallelepipedic box size. The Box filter then requests, via the GenerateInpu$t$ RequestedRegion() method, the padded image region ${ }^{3}$ as input region and returns the unpadded corresponding image region after processing (see Figure 3.8).

This negotiation process guarantees that, during the streaming process, the Box filter will output the same results as the normal (i.e. non-streaming) process. Actually, the Box filter algorithm will cluster the foreground pixels in a different ways following if the streaming is used or not. For instance, if a set of connected of foreground pixels crosses two streamed parts of the whole image, the set will be divided into two clusters instead of one for the non-streaming process. From here, two cases may arise:

1. The connected set of foreground pixels $S$ fits into the user's parallelepipedic box and is discarded.
2. The connected set of foreground pixels $S$ does not fit into this box and should be kept.

[^24]

FIGURE 3.8: Image region negotiation process for the box filter.

The first case is trivial: during the streaming process, this set $S$ will be divided into two smaller sets $S_{1}$ and $S_{2}$, with $S_{1} \cup S_{2}=S$. As the initial bigger set $S$ fits into the user's box, so will do the two smaller sets. The two smaller sets $S_{1}$ and $S_{2}$ will then be discarded. This is thus equivalent to discard the initial set $S$.

The second case is more ambiguous. If the initial bigger set $S$ does not fit into the user's box and should be kept, there is no guarantee that the sets $S_{1}$ and $S_{2}$ will still be bigger than the user's box. As a result, $S_{1}$ or $S_{2}$, or both may be discarded instead of being kept. It is here that the negotiation process between filters intervenes. As the output requested region by the downstream filter is padded by the user's box size, the Box filter can determine if the set $S$ is bigger or not than the user's box. Indeed, if $S$ is entirely contained in the padded image region, this means that $S_{1}=S$ and $S_{2}=\varnothing$, and there is no more ambiguity. If $S$ is possibly not entirely contained in the padded image region (foreground pixels of $S$ are located on the boundary of the padded region), this means that $S$ extends inside the output requested region and, at least, through all its padding. As the padding is of the size of the user's box, this means that the visible part of $S$ in the padded region is bigger than the user's box. As a result, $S$ is correctly kept. Figure 3.9 illustrates how this ambiguity is resolved.

Note that in the padded image region, new sets of foreground connected pixels may be visible for the box filter. Again, theses sets may or may not extend beyond the padded image region and, consequently may or may not fit into the user's box. Therefore, there is a risk that they may wrongly discarded by the Box filter. However, this does not impact the output result of the Box filter. As a matter of fact, only the output requested region is returned to the downstream filter. Wrongly discarded sets of foreground pixels belonging to the padded region and not to the output requested region are not returned to the downstream filter. The involved pixels will (respectively have been) simply and correctly be processed into the next (respectively previous) region of the image during the streaming process. Figure 3.10 compares the results of the Box filter with the streaming and non-streaming case on the same input image.

(a) Without image region padding, the visible part of set $B$ (inside the red box on the right) will be discarded because it fits the parallelippipedic user's box.

(b) With image region padding, a bigger part of set $B$ is visible. As this set crosses the padding it will not fit inside the user's box and will be kept, as it should. The set A is now entirely visible and will be discarded.

(c) Result: part of set A in returned region is discarded, while set B is kept. Set C is simply ignored and will be processed later on within region 2.

Figure 3.9: Scheme showing how the Box filter discards or keep sets of connected foreground pixels during the streaming process.


Figure 3.10: Results of the box filter for the streaming (10 slices) and non-streaming case for the same input image.

### 3.7 Streaming of the distance transform (step 2)



- Aim: compute the Euclidean distance transform of a binary image, where white (feature) voxels represent cell walls/struts and are assigned distance zero.
- Input: binary image with black and white (feature) voxels.
- Output: gray-level image ${ }^{4}$ with each voxel value equal to the Euclidean distance to the closest feature voxel.
- Original filter: see Section 2.3.6

For computing the Euclidean distance transform, Section 2.3.6 uses the algorithm of Maurer et al. [111]. The aim of the distance transform is to find voxel candidates that can be located at the centres of the cells. These candidates are found as local maxima of the distance transform. The algorithm of Maurer et al. relies on a dimensional reduction paradigm and the construction of partial Voronoï diagrams (see Appendix B for details). Here, this dimensional reduction paradigm is exploited in order to obtain a streamed version of the algorithm of Maurer et al.

Thanks to its dimensional reduction paradigm, Maurer et al. algorithm [111] is quite well-suited for streaming. Indeed, as this algorithm performs scans along lines in each direction, the use the slice-shaped subregions during streaming appears as a natural choice. For 3-dimensional images, the streaming filter uses slices perpendicular to the z-direction (see Figure 3.2). This choice is further motivated by the fact that the parallel algorithm implemented in ITK already distributes among the threads contiguous slice-shaped subregions perpendicular to the z-direction [158]. Thus, this streaming choice is the most likely to minimise cache misses during computations.

However, during the streaming process, distance transforms are computed independently on each slice leading to inaccurate results, especially on boundary faces between two slices. Indeed, the Closest Feature Pixel (CFP) of a given pixel in a slice may be located outside that slice. As the distance transform does not have data from outside the current slice, it will take as CFP a Feature Pixel (FP) located inside the slice. This will lead the distance transform to underestimate certain distances. This remark is important as it ensures that the below extended region strategy will work.

[^25]

FIGURE 3.12: Computation of the correct distance transform on slice $R g$, by computing an incorrect distance transform on slice $R g_{\text {ext }}$. See text for details.

### 3.7.1 Extended region strategy

The aim of computing the distance transform on an extended region is to be able to retrieve the exact distance transform of an image (as there was no streaming at all) while performing streaming and, thus, never have to load all the image data in memory at once. This can be achieved by computing inexact distance transforms on extended image regions. As a matter of fact, the distance transforms will be mostly inexact on the faces of the considered slices. On the contrary, they should be almost (if not entirely) exact for pixels located in the "bulk" (inside) of the slice. Naturally, this assumption depends on the distribution of feature pixels inside the considered image. If feature pixels are rare and/or unevenly distributed inside the image, this assumption is more likely to be wrong.

Though, in the context of image analysis of cellular materials, feature pixels can generally be considered as homogeneously distributed at the scale of several typical cell size. This is a common assumption done in the context of computational homogenisation [84]. For slices with thickness of the order of several (three or four) typical cell size, "bulk" pixels should have their corresponding CFP located in the same slice. The idea of the extended region strategy is thus the following: given a input requested region, compute an inexact distance transform on a extended region containing the input requested region. The extended region is computed such that the distance transform over the contained input requested region will be exact.

More precisely, the extended region strategy consists in computing an incorrect distance transform on a thicker slice $R g_{\text {ext }}$ so as to ensure a correct distance transform inside the initial slice $R g$. The thicker slice $R g_{\text {ext }}$ is computed as follows (see Figure 3.12): first, an incorrect distance transform is computed on the initial slice Rg . Second, voxels $x^{\max -}$ and $x^{\max +}$ on the boundaries of $R g$ with maximum associated (incorrect) distances $l_{d}$ and $h_{d}$ are searched for. Third, the slice Rg is extended to $R g_{e x t}$ along both directions by, respectively, $l_{d}$ and $h_{d}$ voxels. Finally, an incorrect distance transform is computed on $R g_{\text {ext }}$, with the guarantee to be correct on slice Rg . The correct distance transform is then returned on slice Rg .

### 3.7.2 Discussion

1. The extended region strategy is similar to the one applied for computing the histogram needed by the algorithm of Ridler \& Calvard and takes some ideas of the extended-region strategy used for the Box-filter.
2. If a cell traverses the whole image or if the feature pixels are rare and/or unevenly distributed inside the image, the returned extended region can be the largest possible region (i.e., in general the whole image) or, at least, a large part of it. For that case, the above strategy is pointless as (almost) the whole image has to be loaded into memory. Nevertheless, it is believed that such a case is extreme and seldom arise in the context of image analysis of cellular materials (and especially foams). Actually, having a foam sample with one cell traversing most of the sample is an almost certain sign that the sample is not well suited for any study of any kind ${ }^{5}$.
3. The extended region $R g_{\text {ext }}$ is bigger than necessary, as upper bounds are used for computing the extension in each direction. In general, the distance transform is therefore exact over a bigger region than $R g$. These bounds may be tighten if the full positions of the CFPs of $\mathbf{x}^{\max \pm}$ are taken into account. For the moment, only their distances to their corresponding points are considered here.

### 3.7.3 Distance transform of a subregion of an image

This section demonstrates that the above heuristic extended region strategy is actually mathematically correct and accurate.

In order to ensure an exact distance transform on the input requested region, a first inexact distance transform is computed on this region. Then, the below propositions and definitions are used.

Proposition 3.1. Given a binary image $I$ of domain $D_{I}$ and two image regions $R g_{1}$ and $R g_{2}$ such that $R g_{1} \subseteq R g_{2} \subseteq D_{I}$, and a distance transform $\mathcal{D}$, then:
$\forall \mathbf{x} \in R g_{1},\left[\mathcal{D}_{\mid R g_{1}}(I)\right](\mathbf{x}) \geq\left[\mathcal{D}_{\mid R g_{2}}(I)\right](\mathbf{x})$
Where $\mathcal{D}_{\mid R g_{i}}, i=1,2$ denotes the distance transform restricted to regions $R g_{i}, i=$ $1,2$.
i.e., the pixel values of the distance transform over region $R g_{1}$ are bigger or equal to pixel values of the distance transform over region $R g_{2}$.

Proof. If the CFP $\mathbf{u}$ of a point $\mathbf{x} \in R g_{1}$ is located outside $R g_{1}$ (i.e. $\mathbf{u} \in R g_{2} \backslash R g_{1}$ ), the distance transform will look for the closest FP $\mathbf{v} \in R g_{1}$ of $\mathbf{x}$. Therefore $d(\mathbf{x}, \mathbf{v}) \geq$ $d(\mathbf{x}, \mathbf{u})$, where $d$ is the distance associated to the distance transform. If it is not the case, this would mean that $\mathbf{u}$ is not the CFP of $\mathbf{x}$, which is a contradiction.

If $\mathbf{u} \in R g_{1}$, then $\mathbf{u}=\mathbf{v}$ and $\left[\mathcal{D}_{\mid R g_{1}}(I)\right](\mathbf{x})=\left[\mathcal{D}_{\mid R g_{2}}(I)\right](\mathbf{x})$.

[^26]Corollary 3.1. From proposition 3.1 and its hypothesises it follows:
$\forall \mathbf{x} \in R g_{1}$, if $\mathbf{u} \in R g_{2}$ is the CFP of $\mathbf{x}$, then $d(\mathbf{x}, \mathbf{u}) \leq\left[\mathcal{D}_{\mid R g_{1}}(I)\right](\mathbf{x})$
i.e. $\mathbf{u}$ is located somewhere in a ball of radius $\left[\mathcal{D}_{\mid R g_{1}}(I)\right](\mathbf{x})$ centred on $\mathbf{x}$.

Proof. Let's suppose the above corollary is false:
$\exists \mathbf{x} \in R g_{1}$ such that $d(\mathbf{x}, \mathbf{u})>\left[\mathcal{D}_{\mid R g_{1}}(I)\right](\mathbf{x})$.
Then, by proposition 3.1, $d(\mathbf{x}, \mathbf{u})>\left[\mathcal{D}_{\mid \mathrm{Rg}_{2}}(I)\right](\mathbf{x})$.
This means that $\mathbf{u}$ is not the CFP of $\mathbf{x}$ inside the region $R g_{2}$, which is a contradiction.

## Interior boundaries of image

Definition 3.1. Given an image $I$ of domain $D_{I}$, and a region $R g \subseteq D_{I}, \mathbf{x} \in R g$ is said to belong to an interior boundary of $R g$ if $\exists \mathbf{y} \in N_{I}(\mathbf{x}) \mid \mathbf{y} \notin R g$.

Where $N_{I}(\mathbf{x})$ designates the neighbouring pixels of $\mathbf{x}$. See Figure 3.13b.
Definition 3.2. Given an image $I$ of domain $D_{I}, \mathbf{x}, \mathbf{y} \in D_{I}$ are said to be linked if $\mathbf{x} \in N_{I}(\mathbf{y})$ or $\mathbf{y} \in N_{I}(\mathbf{x})$. See Figure 3.13c.

Definition 3.3. Given an image $I$ of domain $D_{I}$, a set of pixels $\left\{\mathbf{z}_{i}\right\}_{1 \leq i \leq N} \subseteq D_{I}$, is said to be chained if $\mathbf{z}_{\mathbf{i}}$ is linked to $\mathbf{z}_{\mathbf{i}+\mathbf{1}}, i=1, \ldots, N-1$.

Such a set forms a chain of linked pixels. See Figure 3.13d.
Definition 3.4. Given an image $I$ of domain $D_{I}$ and a region $R g \subseteq D_{I}, \mathbf{x}, \mathbf{y} \in R g$ are said to be chained inside $R g$ if it exists a chain $C=\left\{\mathbf{z}_{i}\right\}_{1 \leq i \leq N} \subseteq R g$ such that $\mathbf{x}, \mathbf{y} \in C$. See Figure 3.13d.

Definition 3.5. Given an image $I$ of domain $D_{I}$, a region $R g \subseteq D_{I}$ and a pixel $\mathbf{x}$ located on an interior boundary of $R g$, the interior boundary $F r_{R g}(\mathbf{x})$ of $R g$ relatively to x is:
$F r_{R g}(\mathbf{x})=\{\mathbf{y} \in$ interior boundary of $R g \mid \mathbf{y}$ and $\mathbf{x}$ are chained inside $R g\}$. See Figure 3.13e.

Definition 3.6. Given an image $I$ of domain $D_{I}$, the interior boundaries of a region $R g \subseteq D_{I}$ are:

$$
F r_{R g}=\left\{\mathbf{y} \in F r_{R g}(\mathbf{x}) \mid \mathbf{x} \in \text { interior boundary of } R g\right\} \text {. See Figure 3.13e. }
$$

Definition 3.7. Given an image $I$ of domain $D_{I}$, a region $R g \subseteq D_{I}$ and $\mathbf{x}$ belonging to an interior boundary of $R g$, the interior boundary $F r_{R g}(\mathbf{x})$ is said to be $f l a t$ for the direction $R_{d}$ if:
$\forall \mathbf{y}, \mathbf{z} \in F r_{R g}(\mathbf{x}), y_{d}=z_{d}$.
Where the subscript $d$ indicates the d-th component of a vector. See Figures 3.13f, 3.13 g and 3.13 h .

Definition 3.8. Given an image domain $D_{I}$ of dimension $n$, a region $R g \subseteq D_{I}$ is said to be parallelepipedic if it is of the form $\operatorname{Rg}=\left[b_{1}, t_{1}\right] \times \ldots \times\left[b_{n}, t_{n}\right] ; b_{i}, t_{i} \in \mathcal{R}, i=$ $1, \ldots, n$. See Figure 3.14.

(a) Two pixels $\mathbf{x}$ and $\mathbf{y}$ inside a region $R_{g}$ of an image of domain $D_{I}$.

(c) Pixels $\mathbf{x}$ and $\mathbf{y}$ are linked because their respective neighbouring regions are overlapping, while it is not the case for pixel $\mathbf{z}$.

(e) Interior boundary of $R_{g}$ w.r.t pixel $\mathbf{x}$ (dark-gray pixels).

(g) Flat interior boundary of $R_{g}$ w.r.t pixel y along direction $d=1$ (dark-gray pixels).

(b) Pixel $\mathbf{x} \in R_{g}$ belongs to the interior boundary of $R_{g}$ because at least one of its neighbouring pixels (in dark-gray colour) do not belong to $R_{g}$, while it is not the case for pixel $\mathbf{z}$.

(d) Pixels $\mathbf{z}_{1}=\mathbf{x}, \mathbf{z}_{2}, \mathbf{z}_{3}$ and $\mathbf{z}_{4}=\mathbf{y}$ are chained inside $R_{g}$.

(f) Flat interior boundary of $R_{g}$ w.r.t pixel $\mathbf{x}$ along direction $d=1$ (dark-gray pixels).

(h) Flat interior boundary of $R_{g}$ w.r.t pixel $\mathbf{z}$ along direction $d=2$ (dark-gray pixels).

Figure 3.13: Schematics illustrating definitions 3.1 to 3.8 (see text). $D_{I}$ : whole image domain (white and light-gray pixels), $R_{g}$ : considered region inside $D_{I}$ (light-gray pixels). Vectors $\vec{e}_{1}$ and $\vec{e}_{2}$ indicate directions $d=1$ and $d=2$ respectively.


Figure 3.14: Schematic illustrating definition 3.8 (see text). $D_{I}$ : whole image domain (white and light-gray pixels), $R_{g}$ an $Q_{g}$ : considered regions inside $D_{I}$ (light-gray pixels), which are, respectively, parallelipipedic and non-parallelipipedic.

## Useful lemmas

Lemma 3.1. (Inspired from property 4 of Maurer et al. [111]). Given an image $I$ of dimension $n$ and domain $D_{I}$, a region $R g \subseteq D_{I}, \mathbf{y} \in R g$ and $\mathbf{x}$ belonging to a flat interior boundary of $R g$ for the direction $R_{d}$. Moreover, $\mathbf{u}$ is the CFP of $\mathbf{x}$ and $\mathbf{v}$ is the CFP of $\mathbf{y}$ such that:

1. $x_{i}=y_{i}, \forall i \neq d ; i=1, \ldots, n$.
2. $x_{d}<y_{d}$ (resp. $x_{d}>y_{d}$ ).
3. $u_{i}=v_{i}, \forall i \neq d ; i=1, \ldots, n$.
4. $u_{d}, v_{d} \leq y_{d}$ (resp. $\left.u_{d}, v_{d} \geq y_{d}\right)$.

Then $u_{d} \leq v_{d}$ (resp. $u_{d} \geq v_{d}$ ) (see Figure 3.15).
Proof. The proof is given for the ' $<$ ' case. It is similar for the converse case. If the lemma is false, then $v_{d}<u_{d} \leq x_{d}<y_{d}$ and if $d$ is the distance associated to the distance transform: $d(\mathbf{y}, \mathbf{u})<d(\mathbf{y}, \mathbf{v})$.

However, $\mathbf{v}$ is the CFP of $\mathbf{y}$. This implies: $d(\mathbf{y}, \mathbf{v}) \leq d(\mathbf{y}, \mathbf{u})$, which is a contradiction.

Lemma 3.2. (Inspired from property 4 of Maurer et al. [111]). Given an image $I$ of dimension $n$ and domain $D_{I}$, a region $R g \subseteq D_{I}, \mathbf{y} \in R g$ and $\mathbf{x}$ belonging to a flat interior boundary of $R g$ for the direction $R_{d}$. Moreover, for the Euclidean distance transform $\mathbf{u}$ is the CFP of $\mathbf{x}$ and $\mathbf{v}$ is the CFP of $\mathbf{y}$ such that:

1. $x_{i}=y_{i}, \forall i \neq d ; i=1, \ldots, d$.
2. $x_{d}<y_{d}\left(\right.$ resp. $\left.x_{d}>y_{d}\right)$.
3. $u_{d}, v_{d} \leq y_{d}$ (resp. $u_{d}, v_{d} \geq y_{d}$ ).

Then $u_{d} \leq v_{d}$ (resp. $u_{d} \geq v_{d}$ ) (see Figure 3.16).


Figure 3.15: For an image of domain $D_{I}$, a region $R g \subseteq D_{I}$ and pixels $\mathbf{x} \in$ interior boundary of $R g\left(F r_{R g}(\mathbf{x})\right)$ and $\mathbf{y} \in R g$ located along the direction $R_{d}$ such that $x_{d}<y_{d}$ : if their respective CFP (closest feature pixels) $\mathbf{u}$ and $\mathbf{v}$ are also aligned along $R_{d}$, then $u_{d} \leq v_{d}$.

Proof. The proof is given for the ' $<$ ' case. It is similar for the converse case. In that case, let's denote $\hat{\mathbf{e}}_{d}=(0, \ldots, 0,1,0, \ldots, 0)$ the d-th canonical vector of $\mathcal{R}^{n}$ which consists on an all zeros tuple except on the d-th position which is a one.

Let's $\tilde{\mathbf{u}}$ and $\tilde{\mathbf{v}}$ be the following projections of respectively $\mathbf{u}$ and $\mathbf{v}$ on the line $R_{d}$ :

$$
\begin{aligned}
\tilde{\mathbf{u}} & =<\hat{\mathbf{e}}_{d} \mid \mathbf{u}>\hat{\mathbf{e}}_{d}+\mathbf{t}
\end{aligned}=u_{d} \hat{\mathbf{e}}_{d}+\mathbf{t},{ }_{t}, \hat{\mathbf{e}}_{d} \mid \mathbf{v}>\hat{\mathbf{e}}_{d}+\mathbf{t}=v_{d} \hat{\mathbf{e}}_{d}+\mathbf{t}
$$

Where: $\mathbf{t}=\left(t_{1}, \ldots, t_{n}\right)$ with $t_{i}= \begin{cases}x_{i} & i \neq d \\ 0 & i=d\end{cases}$
Then, $\tilde{\mathbf{u}}$ and $\tilde{\mathbf{v}}$ satisfy hypothesis 3 of lemma 3.1 and therefore $u_{d} \leq v_{d}$.

Lemma 3.3. Given an image $I$ of domain $D_{I}$, a region $R g \subseteq D_{I}$, a pixel a belonging to a flat interior boundary of $R g$ for the direction $R_{d}$ and the distance transform $\mathcal{D}$.
$\forall \mathbf{x} \in F r_{R g}(\mathbf{a})$ such that $\mathbf{u}$ is CFP of $\mathbf{x}$ and $u_{d} \leq x_{d}$ (resp. $\left.u_{d} \geq x_{d}\right)$ :
$u_{d} \geq x_{d}-[\mathcal{D}(I)]\left(\mathbf{x}^{\max }\right)\left(\right.$ resp. $\left.u_{d} \leq x_{d}+[\mathcal{D}(I)]\left(\mathbf{x}^{\max }\right)\right)$.
Where $\mathbf{x}^{\max }=\arg \max _{\left(\mathbf{z} \in \operatorname{Fr}_{R g}(\mathbf{a})\right)}\{[D(I)](\mathbf{z})\}$ and $[\mathcal{D}(I)](\mathbf{z})=\min _{\mathbf{y} \in D_{I}}\{d(\mathbf{z}, \mathbf{y}) \mid I(\mathbf{y})=0\}$ is the distance transform of pixel $\mathbf{z}$ (see Appendix B).

Proof. Given an $\mathbf{x} \in \operatorname{Fr} r_{g}(\mathbf{a})$ of CFP $\mathbf{u}$ such that $u_{d}<x_{d}$ or $u_{d}>x_{d}$. Then, for the distance $d$ associated to the distance transform $\mathcal{D}$ and the dth canonical vector $\hat{\mathbf{e}}_{d}$ of $\mathcal{R}^{n}$ :

$$
\begin{aligned}
\left|u_{d}-x_{d}\right| & =d\left(u_{d} \hat{\mathbf{e}}_{d}, x_{d} \hat{\mathbf{e}}_{d}\right) \\
& \leq d\left(u_{d} \hat{\mathbf{e}}_{d}+\tilde{\mathbf{u}}, x_{d} \hat{\mathbf{e}}_{d}+\tilde{\mathbf{x}}\right) \text { (Triangular inequality and symmetry) } \\
& =d(\mathbf{u}, \mathbf{x}) \\
& =[\mathcal{D}(I)](\mathbf{x}) \\
& \leq[\mathcal{D}(I)]\left(\mathbf{x}^{\max }\right)
\end{aligned}
$$

Where: $\tilde{\mathbf{u}}=\mathbf{u}-u_{d} \hat{\mathbf{e}}_{d}$ and $\tilde{\mathbf{x}}=\mathbf{x}-x_{d} \hat{\mathbf{e}}_{d}$.

$$
\begin{aligned}
& \text { If } u_{d} \leq x_{d}:-u_{d}+x_{d} \leq[\mathcal{D}(I)]\left(\mathbf{x}^{\max }\right) \rightarrow u_{d} \geq x_{d}-[\mathcal{D}(I)]\left(\mathbf{x}^{\max }\right) \\
& \text { If } u_{d} \geq x_{d}: u_{d}-x_{d} \leq[\mathcal{D}(I)]\left(\mathbf{x}^{\max }\right) \rightarrow u_{d} \leq x_{d}+[\mathcal{D}(I)]\left(\mathbf{x}^{\max }\right)
\end{aligned}
$$



Figure 3.16: For an image of domain $D_{I}$, a region $R g \subseteq D_{I}$ and pixels $\mathbf{x} \in$ interior boundary of $R g\left(F r_{R g}(\mathbf{x})\right)$ and $\mathbf{y} \in R g$ located along the direction $R_{d}$ such that $x_{d}<y_{d}$ : if their respective CFP (closest feature pixels) are $\mathbf{u}$ and $\mathbf{v}$, then $u_{d} \leq v_{d}$.

## Lemma 3.4. Given:

1. An image $I$ of dimension $n$ and domain $D_{I}$.
2. A parallelepipedic region $R g \subseteq D_{I}$.
3. The Euclidean distance transform $\mathcal{E D}$.
4. A pixel a belonging to a flat interior region of Rg for the direction Rd .
5. A pixel $\mathbf{y} \in R g$ such that $a_{d} \leq y_{d}$ (resp. $a_{d} \geq y_{d}$ ).
6. $\mathbf{v}$ the CFP of $\mathbf{y}$ such that $v_{d} \leq y_{d}$ (resp. $v_{d} \geq y_{d}$ ).

Then: $v_{d} \geq x_{d}^{\max }-[\mathcal{E D}(I)]\left(\mathbf{x}^{\max }\right)\left(\right.$ resp. $\left.v_{d} \leq x_{d}^{\max }+[\mathcal{E D}(I)]\left(\mathbf{x}^{\max }\right)\right)$.
Where: $\mathbf{x}^{\max }=\arg \max _{\left(\mathbf{z} \in E r_{\mathrm{r}_{g}}(\mathbf{a})\right)}\{[\mathcal{E D}(I)](\mathbf{z})\}$.
Proof. The proof is given for the ' $\leq$ ' case. It is similar for the converse case.
Let's $\mathbf{x} \in F r_{R g}(\mathbf{a})$ be such that $x_{i}=y_{i}, \forall i \neq d ; i=1, \ldots, n$. Such a $\mathbf{x}$ exists because $F r_{R g}(\mathbf{a})$ is flat and Rg is parallelepipedic.

Let's $\mathbf{u}$ be the CFP of $\mathbf{x}$ such that $u_{d} \leq x_{d}$.
By lemma $3.3 u_{d} \geq x_{d}-[\mathcal{E D}(I)]\left(\mathbf{x}^{\max }\right)$.
As $F r_{R g}(\mathbf{a})$ is flat for the direction $R_{d}$ and, $\mathbf{x}, \mathbf{x}^{\max } \in F r_{R g}(\mathbf{a})$, it follows that $x_{d}=x_{d}^{\max }$ and $u_{d} \geq x_{d}^{\max }-[\mathcal{E D}(I)]\left(\mathbf{x}^{\max }\right)$

If $y_{d}=x_{d}$, then $v_{d}=u_{d}$ and the proof is finished.
If $x_{d}<y_{d}$, then $u_{d} \leq x_{d}<y_{d}$ and the conditions of lemma 3.2 are satisfied. Hence: $v_{d} \geq u_{d} \geq x_{d}^{\max }-[\mathcal{E D}(I)]\left(\mathbf{x}^{\max }\right)$.

## Propositions

Proposition 3.2. Given:

1. An image $I$ of dimension $n$ and domain $D_{I}$.
2. A parallelepipedic region $R g \subseteq D_{I}$.
3. The Euclidean distance transform $\mathcal{E D}$.
4. A pixel a belonging to a flat interior region of Rg for the direction Rd .
5. A pixel $\mathbf{y} \in R g$ such that $a_{d} \leq y_{d}\left(\right.$ resp. $\left.a_{d} \geq y_{d}\right)$.
6. $\mathbf{v}$ the CFP of $\mathbf{y}$ such that $v_{d} \leq y_{d}$ (resp. $v_{d} \geq y_{d}$ ).

Then: $v_{d} \geq a_{d}-\left[\mathcal{E} \mathcal{D}_{\mid R g}(I)\right]\left(\mathbf{x}_{\mid R g}^{m a x}\right)\left(\right.$ resp. $\left.v_{d} \leq a_{d}+\left[\mathcal{E} \mathcal{D}_{\mid R g}(I)\right]\left(\mathbf{x}_{\mid R g}^{\max }\right)\right)$.
Where: $\mathbf{x}_{\mid R g}^{\max }=\arg \max _{\left(\mathbf{z} \in \operatorname{Fr}_{R g}(\mathbf{a})\right)}\left\{\left[\mathcal{E D}_{\mid R g}(I)\right](\mathbf{z})\right\}$.
This proposition means that any pixel in a parallelepipedic region Rg has its CFP located below a given distance in a given direction from the boundaries of Rg . Moreover, this distance can be computed only by knowing the distance transform on Rg . This proposition is at the core of the extended region strategy.
Proof. On the one hand, lemma 3.4 ensures that exists $\mathbf{x}^{\max }$ such that $v_{d} \geq x_{d}^{\max }-$ $[\mathcal{E D}(I)]\left(\mathbf{x}^{\max }\right)\left(\right.$ resp. $\left.v_{d} \leq x_{d}^{\max }+[\mathcal{E D}(I)]\left(\mathbf{x}^{\max }\right)\right)$.

On the other hand, with $R g_{1}=R g$ and $R g_{2}=D_{I}$, proposition 3.1 states that: $\forall \mathbf{x} \in R g,\left[\mathcal{E D} \mathcal{D R g}_{\mid R}(I)\right](\mathbf{x}) \geq[\mathcal{E D}(I)](\mathbf{x})$.

Moreover, as $F r_{R g}(\mathbf{a})$ is flat for direction $R_{d}: a_{d}=x_{d}^{\max }$.
Hence: $v_{d} \geq a_{d}-\left[\mathcal{E} \mathcal{D}_{\mid R g}(I)\right]\left(\mathbf{x}_{\mid R g}^{\max }\right)\left(\right.$ resp. $\left.v_{d} \leq a_{d}+\left[\mathcal{E} \mathcal{D}_{\mid R g}(I)\right]\left(\mathbf{x}_{\mid R g}^{\max }\right)\right)$.

Definition 3.9. Given an image $I$ of dimension $n$ and domain $D_{I}$, the Euclidean distance transform $\mathcal{E D}$, and a parallelepipedic region $\mathrm{Rg}=\left[b_{1}, t_{1}\right] \times \ldots \times\left[b_{n}, t_{n}\right] \subseteq$ $D_{I}$, the extended region $R g_{\text {ext }}^{d}$ in a given direction $d,(1 \leq d \leq n)$ is:

$$
R g_{e x t}^{d}=\left[b_{1}, t_{1}\right] \times \ldots \times\left[b_{d-1}, t_{d-1}\right] \times\left[b_{d}-l_{d}, t_{d}+h_{d}\right] \times\left[b_{d+1}, t_{d+1}\right] \times \ldots \times\left[b_{n}, t_{n}\right] .
$$

Where: $l_{d}=\left[\mathcal{E D} \mathcal{D}_{\mid R g}(I)\right]\left(\mathbf{x}^{\text {max- }}\right)$ and $h_{d}=\left[\mathcal{E} \mathcal{D}_{\mid R g}(I)\right]\left(\mathbf{x}^{\text {max }+}\right)$.
With: $\mathbf{x}^{\max \pm}=\arg \max _{\left(\mathbf{z} \in F r_{\left.r_{g}\left(\mathbf{a}^{ \pm}\right)\right)}\left\{\left[\mathcal{E} \mathcal{D}_{\mid R g}(I)\right](\mathbf{z})\right\} \text { and } \mathbf{a}^{+}, \mathbf{a}^{-} \text {two tuples of } \mathcal{R}^{n}, ~(I)\right.}$ such that, respectively, $a_{d}^{-}=b_{d}$ and $a_{d}^{+}=t_{d}$.

It should be noted that it is not necessary to compute $\mathbf{x}^{\max \pm}$ itself, only the Euclidean distance transform is needed.

Definition 3.10. Given an image $I$ of dimension $n$ and domain $D_{I}$, the Euclidean distance transform $\mathcal{E D}$, and a parallelepipedic region $\mathrm{Rg}=\left[b_{1}, t_{1}\right] \times \ldots \times\left[b_{n}, t_{n}\right] \subseteq$ $D_{I}$, the extended region $R g_{\text {ext }}$ is the union of the extended regions in all directions cropped by $D_{I}: R g_{\text {ext }}=\left(\cup_{d=1}^{n} R g_{\text {ext }}^{d}\right) \cap D_{I}$.


Figure 3.17: For an image of domain $D_{I}$, a region $R g \subseteq D_{I}$ an extended region $R g_{\text {ext }}$ is computed such that $\forall \mathbf{y} \in R g$ with CFP (closest feature point) $\mathbf{v}$, then $\mathbf{v} \in R g_{\text {ext }}$. The extended region $R g_{\text {ext }}$ is determined by computing the maxima $l_{d}$ and $h_{d}$ of the inexact Euclidean distance transform over $R g$ on the boundaries $F r_{R g}\left(\mathbf{a}^{ \pm}\right)$. Computing the inexact Euclidean distance transform over $R g_{\text {ext }}$ then ensures that this transform is exact on $R g . \mathbf{y} \in R g$ is an arbitrary pixel and $\mathbf{v}$ is its feature pixel. $\mathbf{x}^{\max \pm}$ are the boundary pixels where the maxima are located, and $\mathbf{u}^{\max -}$ is the CFP of $\mathbf{x}^{\max -} . R_{d}$ is the direction of the extension (only one direction for the sketched case).

Corollary 3.2. Given an image $I$ of domain $D_{I}$ and a parallelepipedic region $\mathrm{Rg} \subseteq$ $D_{I}: \forall \mathbf{y} \in R g$, if $\mathbf{v}$ is the CFP of $\mathbf{y}$ for the Euclidean distance transform, then $\mathbf{v} \in R g_{\text {ext }}$.

This corollary means that the inexact Euclidean distance transform computed over the extended region $R g_{\text {ext }}$ is guaranteed to be exact over the initial region Rg (see Figure 3.17).

Proof. This follows immediately from proposition 3.2.

The extended region strategy is thus the following: given a parallelepipedic subregion Rg of an image $I$ of domain $D_{I}$, the maxima of the Euclidean distance transform are computed over each interior boundary of $R g$ using only the pixels of $R g$ (the rest of the image is not loaded into the memory at this stage). Then, a new extended region $R g_{\text {ext }}$ is computed accordingly to definition 3.10 and a new Euclidean distance transform is computed over $R g_{\text {ext }}$. Corollary 3.2 ensures that the Euclidean distance transform is then exact over Rg .


Figure 3.18: Temporary and main pipeline for computing the exact distance transform of an image while streaming.

### 3.7.4 Implementation of the strategy

In order to compute the needed extended regions, a temporary pipeline is set thanks to the otb::PersistentFilterStreamingDecorator ${ }^{6}$ and the class otb::PersistentDistanceCorrectionFilter deriving from the otb::PersistentImageFilter. When the temporary pipeline is updated, this derived class updates the distance filter on each slice and computes the needed extended regions. It then passes the extended regions to the ResizeRegion filter. The ResizeRegion filter updates the main pipeline by calling-back the distance filter (see Figure 3.18). The ResizeRegion filter does not process the data. All it does, is to query upstream the extended regions computed by the temporary pipeline during the negotiation process, and to return downstream the required output regions. By this mean, the ResizeRegion filter receive from the distance filter an inaccurate distance transform on an extended region, and returns downstream the exact distance transform on the initial required region. Figure 3.19 compares what happens with the euclidean distance transform of a 2-dimensional image while streaming with ten slices without and with the extended region strategy. Table 3.1 shows by how much each input requested region $R g$ has been extended on the left and right-hand sides and the sizes of the extended regions $R g_{\text {ext }}$. It can be seen that each extended region $R g_{e x t}$ is on average $\approx 4.72$ times thinner than the original $(670 \times 670)$ image.

[^27]
(a) Original binary image before the euclidean distance transform.

(c) Euclidean distance transform of the original image by naïve streaming (10 slices).

(e) Difference between the original Euclidean distance transform 3.19b and its naïve streamed version 3.19c. Differences appear especially at the boundaries of each slice.

(b) Direct euclidean distance transform of the whole original image.

Arbitrary scale.

(d) Euclidean distance transform of the original image by streaming ( 10 slices) using the extended region strategy.

(f) Difference between the original euclidean distance transform 3.19b and streamed version with extended region strategy 3.19d. No difference appears.

Figure 3.19: Example of Euclidean distance transforms on a $(670 \times$ 670) 2-dimensional image without and with the extended region strategy.

Table 3.1: Left and right extensions and final sizes of extended regions $\mathrm{Rg}_{\text {ext }}$ needed for computing the exact Euclidean distance transform over ten $(670 \times 67)$ slices of the $(670 \times 670)$ 2-dimensional image shown in figure 3.19a.

| Slice | Left extension | Right extension | $R g_{\text {ext }}$ |
| :--- | :---: | :---: | :---: |
| 1 | 0 | 42 | $670 \times 109$ |
| 2 | 42 | 40 | $670 \times 149$ |
| 3 | 40 | 39 | $670 \times 146$ |
| 4 | 47 | 45 | $670 \times 159$ |
| 5 | 52 | 41 | $670 \times 160$ |
| 6 | 39 | 38 | $670 \times 144$ |
| 7 | 38 | 30 | $670 \times 135$ |
| 8 | 49 | 32 | $670 \times 148$ |
| 9 | 59 | 36 | $670 \times 162$ |
| 10 | 39 | 0 | $670 \times 106$ |
| Average | $\mathbf{4 0 . 5}$ | $\mathbf{3 4 . 3}$ | $\mathbf{6 7 0} \times \mathbf{1 4 1 . 8}$ |

### 3.8 Streaming of distance post-processing (step 3)



- Aim: smooth a distance transform or perform other post-processing tasks.
- Input: gray-level image representing a distance transform.
- Output: gray-level image representing the corresponding smoothed distance transform.
- Original filter: see Section 2.3.7

If some additional filters are added in step 3, such as a smoothing step for the distance transform, the user must ensure that they are streamable in order to benefit from this feature.

### 3.9 Streaming of local maxima (step 4)



- Aim: given a gray-level image representing the distance transform of a binary foam image, identify local maxima that will be used as seeds for growing ellipsoids.
- Input: gray-level image.
- Output: gray-level image marked with local maxima.
- Original filter: see Section 2.3.8.

The procedure for finding local maxima of the distance transform described in Section 2.3.8 uses the algorithm of Pham [130]. This algorithm first find maxima candidates by only considering slope changes along scanned lines (see Figure 2.22). It then select the genuine local maxima among the candidates by looking at the neighbours around each candidate and computing local Hessians on each one.

The computation of local maxima from the distance transform in section 2.3.8 requires modifications to the original algorithm of Pham [130]: it needs to "scan" along voxel lines for local maxima candidates. The algorithm has been implemented such that these voxel lines are always located inside a given slice.

More precisely, given a requested region $R_{g} \subset D_{I}$ of a grayscale image $I$ of domain $D_{I}$, the modified algorithm of T.Q. Pham (7) requires a neighbourhood around the region $R_{g}$. This request is handled using the image region negotiation process between filters, in a similar fashion that has been done for the Box filter. Moreover, in order to find all local peaks along a given 1D-restriction line of the considered image in the modified algorithm of T.Q. Pham, the 1D-restriction lines $\tilde{I}_{d}$ are oriented along the x -axis, while the streaming is performed along slice-shaped regions oriented perpendicularly to the $z$-axis (see Figure 3.2).

Computation of local maxima candidates by this algorithm is thus exact. Local maxima are then selected from candidates by analysing the values associated to their neighbouring voxels in a region of radius $R$. In order to ensure a correct computation of the local maxima inside the current slice $R g$, the same procedure as described earlier for step 2 is used: the current slice $R g$ is extended to a thicker slice $R g_{\text {ext }}$ where the (incorrect) maxima are looked for, and the (guaranteed correct) maxima inside slice Rg are returned.

The computation of the thicker slice $R g_{e x t}$ is, however, simpler than in step 2: extension distances $l_{d}$ and $h_{d}$ are simply equal $R$; where $R$ is computed as:

$$
\begin{equation*}
R=\max \left(R_{\text {user }}, R_{\text {Hessian }}\right) \tag{3.1}
\end{equation*}
$$

With:

- $R_{\text {user }}$ is the radius of the neighbourhood requested by the user for testing each maximum candidate against its neighbouring pixels.
- $R_{\text {Hessian }}$ is the radius of the neighbourhood requested for computing an accurate Hessian around each maximum candidate (see Section 2.3.8 on page 52 and following).


### 3.9.1 Note on boundaries

In order to detect local maxima at the boundaries $\partial D_{I}$ of domain $D_{I}$, pixels y belonging to the neighbourhood of $N_{I}(\mathbf{x})$ and located outside the domain $D_{I}\left(\mathbf{y} \notin D_{I}\right)$ are set to their minimal possible value (i.e. for a grayscale image $I$ this minimal possible value is 0 ).

Figure 3.22 shows a comparison example of maxima found on a $670 \times 670$ 2dimensional image when streaming it into ten slices using the extended region strategy and without the extended region strategy.

(a) Original binary image before the non-maxima suppression.

(c) Non-maxima suppression of the distance transform of the original image by naïve streaming ( 10 slices).

(e) Difference between the original non-maxima suppression 3.22 b and its naïve streamed version 3.22c. Differences appear.

(b) Non-maxima suppression computed from the distance transform 3.19b of image 3.22a.

(d) Non-maxima suppression of the distance transform of the original image by streaming ( 10 slices) using
the extended region strategy.

(f) Difference between the original non-maxima suppression 3.22 b and its streamed version 3.22 d with extended region strategy. No difference appears.

Figure 3.22: Example of non-maxima suppression on a $(670 \times 670)$ 2-dimensional image with $\sigma=1.5$, eigenTol $=10^{-5}$, and tol $=10^{-5}$ and $R_{\text {user }}=5$ (see algorithm 7 and/or table 2.5). Maxima are artificially highlighted as red squares for visualization purposes. Cell walls appear in light gray.


FIGURE 3.24: Growth of ellipsoids inside a slice $R_{g}$. If some ellipsoids grew outside $R g$ (red ellipsoids), their growths are recomputed in a thicker slice $R g_{\text {ext }}$ until no more ellipsoids grow outside the last considered slice.

### 3.10 Streaming of ellipsoid growth and merge (steps 5 and 6)



- Aim: from found local maxima, fit ellipsoids to cells. Cluster and merge overlapping ellipsoids so to obtain one fitted ellipsoid per cell.
- Input: local maxima and threshold image.
- Output: parent ellipsoids, each fitted to one particular cell.
- Original filter: see Section 2.3.9.

Regarding the growth of parent and auxiliary ellipsoids (Sections 2.3.9 and 2.3.11), a similar strategy as in Sections 3.7 and 3.9 is used. Ellipsoids with centres located inside the current slice $R g$ are grown. If some of the ellipsoids grew outside of the current slice $R g$, their growths are recomputed within a thicker slice $R g_{\text {ext }}$ (see Figure 3.24). If the slice $R g_{\text {ext }}$ is not thick enough (meaning that there are still some ellipsoids which grew outside this slice) then, the slice $R g_{\text {ext }}$ is extended further until no more ellipsoid grows outside it or if a boundary of the CT-scan images is reached (meaning that there are no more voxel data available beyond the extended region $\left.R g_{\text {ext }}\right)$. Figure 3.25 compare qualitatively parent ellipsoids obtained on a 3D-image taken in a whole, and parent ellipsoids obtained on the same 3D-image streamed using 10 slices. Algorithm 35 describes how to expand correctly ellipsoids while using streaming.


Figure 3.25: Ellipsoids generated from the 3D-image in (a) "normal" and (b) streaming (10 slices) modes. No differences can be seen. 3D foam image provided by E. Plougonven (department of Applied Chemistry, University of Liège). Note: no ellipsoid merging were performed.

```
Algorithm 35 Given a set of ellipsoids \(E=\left\{\mathcal{E}_{i}\right\}_{1 \leq i<M}\) and a box \(B_{\text {slice }}\) defining the
current considered image slice, expands the ellipsoids as much as possible.
Require: Set of ellipsoids \(E=\left\{\mathcal{E}_{1}, \ldots, \mathcal{E}_{\mathcal{M}}\right\}\), box slice \(B_{\text {slice }}\) of image \(I\), image do-
 main \(D_{I}\).
Require: Pixel value \(p \in \operatorname{Im}\left(B_{\text {slice }}\right)\) figuring the value associated to the cell walls
 (feature pixel).
 procedure GROWTHELLIPSOIDSINSIDESLICE \(\left(E, B_{\text {slice }}, D_{I}\right)\)
 repeat
 need_extension \(\leftarrow\) false.
 for \(1 \leq i \leq M\) do
 \(\mathcal{E}_{i} \leftarrow\) ELLIPSOIDEXPAND \(\left(B_{\text {slice }}, p, \mathcal{E}_{i}\right) \quad \triangleright\) Algo. 13
 \(B_{i} \leftarrow \operatorname{AxISALIGNEDBOX}\left(\mathcal{E}_{i}\right) \quad \triangleright\) algorithm 27.
 if left side of \(B_{i}<\) left side of \(B_{\text {slice }}\) then
 need_extension \(\leftarrow\) true.
 left side of \(B_{\text {slice }}=\) left side of \(B_{i}\).
 end if
 if right side of \(B_{i}>\) right side of \(B_{\text {slice }}\) then
 need_extension \(\leftarrow\) true.
 right side of \(B_{\text {slice }}=\) right side of \(B_{i}\).
 end if
 end for
 if need_extension then
 \(B_{\text {slice }} \leftarrow B_{\text {slice }} \cap D_{I}\).
 Load into memory image data inside slice \(B_{\text {slice }}\). \(\triangleright\) This is easily done
 with ITK by setting the RequestedImageRegion to \(B_{\text {slice }}\).
 end if
 until !need_extension
 end procedure
```


### 3.10.1 Quantitative analysis

In order to check if the above strategy sketched in figure 3.24 and given in algorithm 35 is effective, a comparison test has been conducted on a $670 \times 670 \times 670$ 3D-image, involving 4250 (non-merged) ellipsoids. Ellipsoids obtained by the "normal " process (i.e. by loading the whole 3D-image in memory) and by streaming (with 10 slices) were compared in Figure 3.25. Furthermore, a quantitative analysis comparing two-by-two the ellipsoids obtained by the "normal" and streaming modes has also been conducted. Definition 3.11 provides the quantitative criterion for measuring dissimilarities between ellipsoids.

Definition 3.11. Let's $\mathcal{E}_{1}\left(\mathbf{c}_{1}, M_{1}\right)$ and $\mathcal{E}_{2}\left(\mathbf{c}_{2}, M_{2}\right)$ be two ellipsoids in an Euclidean affine space $\mathrm{Y}_{n}$, then their difference is given by the application 3.2.

$$
\begin{equation*}
\Delta_{\mathrm{Y}_{n}}: \mathrm{Y}_{n} \times \mathrm{Y}_{n} \rightarrow \mathcal{R}^{+},\left(\mathcal{E}_{1}, \mathcal{E}_{2}\right) \mapsto \Delta_{\mathrm{Y}_{n}}\left(\mathcal{E}_{1}, \mathcal{E}_{2}\right)=\left\|\mathbf{c}_{1}-\mathbf{c}_{2}\right\|_{2}+\left\|M_{1}-M_{2}\right\|_{2} \tag{3.2}
\end{equation*}
$$

The first term in the expression of the difference $\Delta_{Y_{n}}$, which is the simple Euclidean norm of a vector, tells if there is a translation between the two considered ellipsoids, while the second term, which is the 2 matrix-norm ${ }^{7}$, measures the shape dissimilarity between them.

## Computation of the difference

The total difference diff $f_{\text {total }}$, mean difference diff $f_{\text {mean }}$, and maximum difference diff $f_{\max }$ between the two sets of ellipsoids - obtained from the 3D-image using the "normal" and streamed modes - have been computed as follows:

$$
\begin{array}{r}
\operatorname{diff}_{\text {total }}=\sum_{i=1}^{m} \Delta_{\mathrm{Y}_{n}}\left(\mathcal{E}_{\text {normal }, i}, \mathcal{E}_{\text {streaming }, i}\right) \\
\text { diff }_{\text {mean }}=\left(\frac{1}{m} \sum_{i=1}^{m} \Delta_{\mathrm{Y}_{n}}^{2}\left(\mathcal{E}_{\text {normal }, i}, \mathcal{E}_{\text {streaming }, i}\right)\right)^{1 / 2} \\
\text { diff }_{\text {max }}=\max _{i=1, \ldots, m} \Delta_{\mathrm{Y}_{n}}\left(\mathcal{E}_{\text {normal }, i}, \mathcal{E}_{\text {streaming }, i}\right) \tag{3.5}
\end{array}
$$

Where $m$ is the number of ellipsoids, $\mathcal{E}_{\text {normal, }, i}$ is the ith ellipsoid computed in "normal" mode, and $\mathcal{E}_{\text {streaming, } i}$ is the corresponding ellipsoid computed in streaming mode.

The three above differences have been numerically computed on the data shown in Figure 3.25 for $2,10,20, \ldots, 80$ slices. For all cases, no difference (up to numerical precision) has been observed with respect to the ellipsoids obtained using the "normal" mode.

It should be emphasised that the computation of the ellipsoids, both in "normal" and streaming modes, depends on the output of the filters described in the previous chapters. Particularly, the above observation indirectly shows that the different strategies used for handling the streaming for each former filter is indeed effective.

[^28]
### 3.11 Discussion

With the adaptations described above, it is possible to use the proposed image analysis procedure within a streaming framework, provided that each optional added filter (step 3) is also streamable. As shown in Section 3.12 this allows processing CTscan data of foams that would normally not fit in the available RAM. Nonetheless, there is one downside and one limitation when using streaming. The downside is that the computational time for processing the whole considered image will increase compared to a normal image analysis procedure (where the whole CT-scan data is fitted into the RAM). This is caused by the fact that some algorithms used for the image analysis procedure have to be called twice. That fact can be seen as "communication costs" between slices. The scalability will therefore not be what one would expect from a parallelised setting. Regarding the limitation, there is no strict guarantee that the extended regions $R g_{\text {ext }}$ will not cover the entire CT-scan data set (and thus obliterating the whole point of doing streaming). As a matter of fact, the biggest extended region $R g_{\text {ext }}$ will approximatively be of the size of the biggest cell present in the foam. In general, cells seldom span an entire foam sample, especially for large samples. Thus, the memory benefits obtained by streaming can be significant.

### 3.12 Memory usage

## ตпாกாா

Memory usage can be considered as an issue regarding the techniques of geometric reconstructions of foams. Indeed, storing in the RAM the CT-scan data alone may already be an impossible task for standard computers (such as consumer market computers), even less regarding the processing of those data. The above proposed image analysis procedure aims to overcome this limitation by trying to use less RAM than a standard image analysis procedure (and, especially, the watershed). Moreover, its streaming ability offers the possibility for standard computers to process CT-scan data that would not even fit their RAM.

In order to determine the ability of the proposed image analysis procedure, an investigation has been conducted on three types of data sets. Namely:

- Six sets of artificially generated honeycomb foams of different sizes, ranging from a cube of $150 \times 150 \times 150$ voxels to a cube of $1800 \times 1800 \times 1800$ voxels (see left of Figure 3.27).
- Two sets of artificially generated random foams using the DN-CT-SCAN model [79]. One set being a cube of $200 \times 200 \times 200$ voxels and the other a cube of $400 \times$ $400 \times 400$ voxels (see right of Figure 3.27).
- One set of a real-world foam presented in Section 3.13.1, and of size $600 \times$ $600 \times 600$ voxels.

Table 3.2 reports the sizes of the different generated artificial honeycomb foams along with their corresponding number of cells. The cell sizes are kept constant for all honeycomb foams. Table 3.2 also reports the theoretical minimum amount of RAM needed for storing the corresponding data, assuming 8 bytes per voxel. The last three columns display the measured peak memory usages ${ }^{8}$ for the watershed algorithm (as implemented in the ITK library [69]) and the proposed image analysis procedure without and with using the streaming ability (using 10 slices). The " $>64.0$ " entry in the table corresponds to a peak memory usage exceeding the maximum of 32 GB RAM available (extended to 64 GB RAM thanks to the RAM compression utility $Z R A M^{9}$ ) of the computer on which this investigation was conducted. It was, therefore, not possible to measure the peak memory usage for this entry of the table.

From Table 3.2 it can be seen that the proposed image analysis procedure is indeed less memory demanding than the watershed algorithm (as implemented in the ITK library [69]) for the considered artificial honeycomb data sets. Especially, the usage of streaming allowed reducing the peak memory usage by a large amount. Thanks to streaming, it was possible to process an artificially generated foam of $1800 \times 1800 \times$ $1800 \approx 5.810^{9}$ voxels; which, due to RAM limitations, was possible neither using the watershed nor using the proposed image analysis procedure without using the RAM compression utility ZRAM.

[^29]

Figure 3.27: Left: artificially generated honeycomb foam of size $600 \times 600 \times 600$ voxels and containing 1430 cells. Right: artificial foam generated using the DN-CT-SCAN model [79] with 616 random inclusions.

It should be noted that, technically, only one bit per voxel is required for storing a thresholded image such as the ones shown in figure 3.27. However, some filters, such as the (inverse) euclidean distance transform, require at least 4 bytes per voxel in order to perform their calculations. Distance calculations indeed require a floating type, or at least a sufficiently "big" integer type (such as "int" encoded on 32 bits) if one whishes to compute squared distances. Thus, the real storage cost of voxel data is not 1 bit, but at least 4 bytes per voxel. Here, Table 3.2 considers a worst case scenario were a filter might require 8 bytes per voxel.

Figure 3.28 displays the peak memory usages for the watershed and the proposed image analysis procedure, with and without streaming (points). It can be noted that, for the generated artificial honeycomb foam, the proposed image analysis has always a lower peak memory usage than the watershed, and that the streaming increases this trend. Roughly, by using ten slices, the streaming was able to use ten times less memory than the watershed. This ability can be an advantage when it comes to process large data sets with limited capabilities, or can authorise the processing of bigger data sets which were not processable earlier.

Diamonds in Figure 3.28 show the peak memory usages measured for the realworld foam data set that will be presented in Section 3.13.1. Circles show, for their part, the peak memory usages on artificial foams generated using the DN-CT-SCAN model [79], described in Section 4.1, with random inclusions following a statistical distribution similar to that of the cells of the real-world foam (right of Figure 3.27). It can be seen that the trends are the same as for the artificially generated foam, indicating that the streaming strategy is likely also effective on real-world foam data.

TABLE 3.2: Sizes in pixels, number of cells and minimum RAM (assuming 8 bytes per voxel) needed for storing data for artificially generated honeycomb 3D foams images. Note: Last three columns: measured peak memory usages for watershed and the proposed image analysis procedure with and without streaming. Bold values identify minimum peak memory usages.

| Cube side (voxels.) | Nb. cells | Min. RAM (GB) | Watershed (GB) | Proposed (GB) | Streaming (GB) |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 150 | 120 | 0.03 | 0.1 | $\mathbf{0 . 0 5}$ | 0.07 |
| 300 | 390 | 0.2 | 0.7 | 0.27 | $\mathbf{0 . 1 7}$ |
| 600 | 1430 | 1.6 | 5.7 | 2.2 | $\mathbf{0 . 8}$ |
| 800 | 3094 | 3.8 | 13.4 | 5.3 | $\mathbf{2 . 0}$ |
| 1200 | 10,500 | 12.9 | 45.1 | 16.4 | $\mathbf{4 . 3}$ |
| 1800 | 34,410 | 43.5 | $>64.0$ | 59.9 | $\mathbf{1 4 . 9}$ |

It should be noted, though, that the earlier mentioned limitation of the streaming capability of the proposed image analysis with respect to the maximum cell size drives the peak memory usage. For instance, if a cell extends across the entire foam sample, the proposed streaming capability will be of no use for reducing the peak memory usage. However, for the purpose of reconstructing foam geometries, the cases of cells extending across the whole foam sample can be considered quite exceptional. Especially, this case should arise less frequently with larger foam samples, for which the usage of streaming can be useful.


Figure 3.28: Peak memory usages in GB on a set of artificially generated honeycomb foams with constant cell size. In blue: watershed (as implemented in the ITK library [69]). In red and black: proposed image analysis with and without streaming, respectively. Discontinuous lines show the global trends for each method. Diamonds show the peak memory usages for each method on the real-world data set presented in Section 3.13.1. Circles show the peak memory usages on artificial foam data sets generated by random inclusions using the DN-CT-SCAN model [79] described in section 4.1.

### 3.13 Application to foam reconstruction



- Aim: qualitatively visualise the fits of ellipsoids using the proposed processing image analysis procedure applied to two real-world foams (one open, and one closed); starting from their respective two 3D CT-scan images.
- Input: 3D raw CT-scan image of a foam.
- Output: set of fitted ellipsoids to the foam's cells and their associated polyhedra.


### 3.13.1 Open foam

## Data acquisition

A cubic aluminium foam $\left(\mathrm{AlSi}_{7} \mathrm{Mg}_{0.3}\right)$ with an edge length of $15 \times 15 \times 15 \mathrm{~mm}^{3}$ and a pore size of 20 pores per inch (ppi) was purchased from Celltec Material GmbH, Dresden, Germany. X-ray computed tomography - performed at the Fraunhofer Institute for Non-destructive Testing (IZFP), Saarbrücken, Germany - was used to determine the real microstructure of the foam. The scans were performed with a resolution of $1984 \times 1984$ pixels per layer and a voxel size of $12 \mu \mathrm{~m}$. From the raw scanned images, a set of 673 2D-images with a resolution of $711 \times 711$ pixels each has been extracted (see Figure 3.30).

## Image analysis step

The above set of described images contains void boundary regions with no struts at all. Therefore a subsample made of $613 \times 598 \times 621$ voxels was extracted in order to keep only the relevant data. From this subsample, ellipsoids were generated with the procedure presented in Section 2.3. Table 3.3 gives the parameters that were used. In this subsample each voxel is of length $\approx 24 \mu \mathrm{~m}$ in all the directions. Figure $3.31^{10}$ shows the ellipsoids obtained in a sub-region cropped, for visualisation purposes, between the 127th and the 484th voxels in each direction. From the images, it can be noticed that one cell corresponds unequivocally to one ellipsoid. Quantitatively, if feature voxels represent the struts (in red in the images), $69 \%$ of the non-feature voxels (respectively only $0.3 \%$ of the feature voxels) are located inside the ellipsoids; indicating that the ellipsoids indeed fit the cells and do not cross the struts.

Growing auxiliary ellipsoids allows obtaining a much better fit of the cells as shown in Figure 3.32. Indeed, $96 \%$ of the non-feature voxels are now located inside at least one ellipsoid, while still only $0.3 \%$ of the feature voxels are located inside an ellipsoid. However, this better fit comes at the expense of optimising a much larger number of ellipsoids (the number of auxiliary ellipsoids grows linearly with the number of parent ellipsoids). Nevertheless, this is not an issue for the algorithm of R. Deits et al. [39] as only the number of associated optimisation problems will linearly grow and not their dimensions.


Figure 3.30: 3D-image extracted from raw CT-scans of a cubic aluminium foam.

TAble 3.3: Parameters used in the image analysis of the CT-scan data presented in Section 3.13.1.

| Parameter | Value | Description |
| :--- | :--- | :--- |
| $N r$ | 10 | Radius of the neighbouring region for testing local maxima candidates. |
| $\epsilon$ | $10^{-5}$ | Hessian threshold for selecting local maxima. |
| $\sigma$ | 1.5 | Gaussian standard deviation used for the convolution kernel. |
| $\tau$ | 0.45 | Relative intersection volume threshold. |
| $\Delta \theta$ | $10^{\circ}$ | Azimuthal angle increment for discretising ellipsoids. |

[^30]

FIGURE 3.31: Surfaces of the parent ellipsoids (gray) obtained by the proposed image analysis steps and "struts" voxels extracted from the raw CT-scans showed for visual comparison (red). Cropped views of the $613 \times 598 \times 621$ set for visualisation purposes.

### 3.13.2 Closed foam

In order to demonstrate the versatility of the presented reconstruction process, it has been applied to the case of a closed foam. The image analysis steps and the reconstruction of the geometry are the same as described in the previous sections.

## Data acquisition

A cubic polypropylene foam with $4 \%$ embedded carbon nanotubes with an edge length of $750 \times 750 \times 750 \mu \mathrm{~m}^{3}$ was manufactured by F. Wan [177] at the University of Liège, Belgium. X-ray computed tomography scans where performed at the same location with a resolution of $670 \times 670$ pixels per layer and a voxel size of $1.12 \mu \mathrm{~m}$, with a total of 670 layers. Figure 3.33 reports the obtained data set as well as the different image analysis steps applied to this foam.

## Image analysis step

The proposed image processing steps described in Figure 2.3 have been applied to the above data set with the parameters given in Table 3.4. Figure 3.34 reports the generated ellipsoids, while Figure 3.35 gives some views of the surface generated by the auxiliary ellipsoids. In this later figure, it may be noticed some holes in the reconstructed surface, despite the foam being closed. This is due to the fact that some cell walls were locally to thin to be resolved by the CT-scan. As a result, some cells may appear as artificially partially open.


Figure 3.32: Surfaces of the auxiliary ellipsoids (gray) obtained by the proposed image analysis steps and "struts" voxels extracted from the raw CT-scans showed for visual comparison (red). Cropped views of the $613 \times 598 \times 621$ set for visualisation purposes.

TABLE 3.4: Parameters used in the image analysis of the CT-scan data presented in Section 3.13.2.

| Parameter | Value | Description |
| :--- | :--- | :--- |
| $N_{r}$ | 5 | Radius of the neighbouring region for testing local maxima candidates. |
| $\epsilon$ | $10^{-1}$ | Hessian threshold for selecting local maxima. |
| $\sigma$ | 1.5 | Gaussian standard deviation used for the convolution kernel. |
| $\tau$ | 0.1 | Relative intersection volume threshold. |
| $\Delta \theta$ | $10^{\circ}$ | Azimuthal angle increment for discretising ellipsoids. |



Figure 3.33: Example of the proposed processing steps on a 3D CTscan image of a closed polypropylene foam with $4 \%$ embedded carbon nanotubes manufactured by F. Wan [177].


Figure 3.34: Surfaces of the parent ellipsoids (gray) obtained by the proposed image analysis steps and "walls" voxels (red). Cropped views of the $670 \times 670 \times 670$ set for visualisation purposes.


FIGURE 3.35: Surfaces of the auxiliary ellipsoids (gray) obtained by the proposed image analysis steps and "walls" voxels (red). Cropped views of the $670 \times 670 \times 670$ set for visualisation purposes.

## Chapter 4

## Reconstruction of the geometry



- Aim: obtaining a geometric representation of the microstructure of a foam that can be used for finite element simulations (see Section 5).
- Input: set of ellipsoids fitted to the cells of a foam.
- Output: geometric surface representation of the microstructure of the foam.

In what follows two different geometrical models (namely the DN-CT-SCAN model and the Ellipsoidal Model) are used for reconstructing the geometry of a foam and are compared against the experimental image data. Both of these models use, as starting point, the ellipsoids and/or their associated polyhedra obtained from the proposed image analysis procedure given in Section 2.3.

The DN-CT-SCAN model is initialised with the parent ellipsoids or associated parent polyhedra ${ }^{1}$. The philosophy of this model is then to reproduce an approximation of the geometry of a given foam using level sets. These level sets are described as the zeros of combination of distance functions. It is possible to adjust the obtained approximation of the geometry by considering different distance functions and the combination thereof. However, it is still not clear, even if there are some guidelines from Reference [79], how these distance functions should be chosen and how to combine them. Finally, a tetrahedral mesh is generated from the level sets.

The Ellipsoidal Model relies on the parent and auxiliary ellipsoids. These ellipsoids are discretised in a set of points and associated normals. As the parent and auxiliary ellipsoids may overlap, points and associated normals located strictly inside any given ellipsoid are discarded. The other points and associated normals are located on the so-called "exterior" surface of the set of ellipsoids. Then, a closed surface is reconstructed using a Poisson surface reconstruction. Eventually this surface is output to the "geo" file format used by the software GMSH [54] which ultimately generates a tetrahedral mesh of the geometry.

[^31]As it can be noticed, these two models are rather different. On one hand, the $D N-$ CT-SCAN model relies on distance functions that can be tuned in order to control wall thicknesses or struts sections. It can be used to obtain a idealised Representative Volume Element (RVE), similarly as other earlier models using, e.g., Laguerre tessellations (see Section 1.2.2), but with refinements regarding the control of local geometric features (see Section 1.2.3). On the other hand, the Ellipsoidal Model is rather oriented direct discretisation (see Section 1.2.1) and tries to avoid, or at least alleviates, issues common to direct discretisation models such as memory limitations when handing large data sets. At the same time it tries the faithfully reproduce local geometric features, including defects such as incomplete struts or wholes in cell walls; defects that can not be reproduced (at least trivially) by idealised models such as the DN-CT-SCAN model. It is worth noting that the shapes of the walls and struts are automatically reproduced based on the CT-scan image used for computing the ellipsoids. Thus, contrary to the DN-CT-SCAN model, the Ellipsoidal Model does not require any parameter tuning in order to insure a faithful reproduction of the microstructure of a foam.

### 4.1 Reconstruction using the DN-CT-SCAN model

In Reference [79], the authors have developed a method to extract open foam morphologies from inclusions packings using distance functions as described in Reference [156]. In this first model, the reconstruction of the geometry uses the set of ellipsoids that have been generated previously. The ellipsoids can then be used as the initial packing to extract distance functions that can then be treated to obtain open foam RVEs. This method presents the advantage of using experimental information to improve the fidelity.

As described in Reference [156], nearest neighbour distance functions, $D N_{k}(\mathbf{x})$ in a point $\mathbf{x}$, are defined as the distance from the considered point to the $k$-th nearest inclusion. Figure 4.2 illustrates some nearest neighbour distance functions on a spherical packing. This step ensures that the distance functions are not affected by the boundary inclusions. The distance functions are then used to extract the modified "Plateau" function,

$$
\begin{equation*}
O_{P}(\mathbf{x})=\frac{\left(D N_{3}(\mathbf{x})+D N_{2}(\mathbf{x})\right)}{2}-D N_{1}(\mathbf{x}) \tag{4.1}
\end{equation*}
$$

as described in Reference [79], where $D N_{1}(\mathbf{x}), D N_{2}(\mathbf{x})$ and $D N_{3}(\mathbf{x})$ are the 1st, 2nd and 3rd neighbour distance functions respectively. The "Plateau" function enables the extraction of the 3 -sided struts.

The evaluation of the nearest distance field did not bring particular difficulty when starting from a sphere packing as in Reference [79]. However, in the present case, it is possible that the ellipsoids used as reference and their associated polyhedra intersect (see Figure 4.3a). In that case, this distance field $D N_{k}$ is not monotonically evolving in the intersection region. This problem can be avoided by introducing an offset to the ellipsoid surface. In Reference [183], the authors have built ad-hoc level set functions using previously computed distance fields. Similar ad-hoc level set functions can be built around the ellipsoids that can then be manipulated to remove residual interpenetrations by introducing a gap between two selected ellipsoid based inclusions (see Figure 4.4).


Figure 4.2: Functions (a) $D N_{1}$, (b) $D N_{2}$, and (c) $D N_{3}$. Image from Figure 3.5 in Reference [116].

The distance field associated to an inclusion $i$, denoted as $D S_{i}$, is defined as the signed distance field which is negative inside the inclusion and positive outside. The distance fields, $D S_{i}$ and $D S_{j}$, resulting from two inclusions $i$ and $j$, can be used to determine their mutual intersection volume as

$$
\begin{equation*}
\max \left(D S_{i}(\mathbf{x}), D S_{j}(\mathbf{x})\right)<0, \quad \forall i \neq j \tag{4.2}
\end{equation*}
$$

The minimum distance to every inclusion other than inclusion $i, D O_{i}(\mathbf{x})$, is given by:

$$
\begin{equation*}
D O_{i}(\mathbf{x})=\min \left(D S_{j}(\mathbf{x}): \forall i \neq j\right) \tag{4.3}
\end{equation*}
$$

And an ad-hoc level set function , $O_{i}(\mathbf{x})$, can be then extracted as follows:

$$
\begin{equation*}
O_{i}(\mathbf{x})=\max \left(D S_{i}(\mathbf{x}),\left(D S_{i}(\mathbf{x})-D O_{i}(\mathbf{x})\right)\right) . \tag{4.4}
\end{equation*}
$$

The zero level associated to the above function gives the ellipsoids in contact as shown in Figure 4.3b.

The necessary gap can be introduced as an offset $c$ such that:

$$
\begin{equation*}
O_{i}^{g}(\mathbf{x})=\max \left(D S_{i}(\mathbf{x}),\left(D S_{i}(\mathbf{x})-D O_{i}(\mathbf{x})\right)+c\right), \tag{4.5}
\end{equation*}
$$




(a)

(b)

(c)

Figure 4.3: Distance fields and treatment of inclusions for the DN-CT-SCAN model. (a) Intersecting ellipsoids. The interpenetration can be seen by the sectional plot. (b) Post-processing of ellipsoids to avoid residual inter- penetrations, the ellipsoids now share a common face. (c) Ellipsoids after post-processing and introduction of a gap, the ellipsoids do no longer share a common face. Image from Figure 3.13 in Reference [116].

With the zero level of $O_{i}^{g}(\mathbf{x})$ resulting in the necessary inclusion surface of the inclusion $i$, as depicted in Figure 4.3c.

The function $O_{i}^{g}(\mathbf{x})$ is then used instead of the $D S_{i}(\mathbf{x})$ for refreshing the previously computed functions $D N_{k}$ :

$$
\begin{equation*}
D N_{k}(\mathbf{x})=\min _{j}\left(O_{j}^{g}(\mathbf{x})\right), j \in J_{k}(\mathbf{x}) \tag{4.6}
\end{equation*}
$$

Where $J_{k}(\mathbf{x})$ denotes the set of k -th neighbours from position $\mathbf{x}$.


Figure 4.4: (a) Ellipsoids obtained by processing the CT-scan; (b) Post-processing of ellipsoids to avoid residual interpenetration using the method described in Reference [183].


FIGURE 4.5: (a) Polyhedra obtained by processing the CT-scan; (b) Post-processing of polyhedra to avoid residual interpenetration using the method described in Reference [183].

The ellipsoids can also be replaced by the polyhedra as the basis inclusion considering that the polyhedra are closer to the foam geometry (see Figure 4.5). Indeed, as described in Reference [39], polyhedra are defined by the interior region delimited by oriented planes. These planes are determined via the surfaces of the struts and tangents to the surfaces of the associated ellipsoids. Given that the polyhedra always contain their associated ellipsoid but not any strut, they are closer to the foam geometry than ellipsoids. The distance fields for the polyhedra can be similarly generated as for the ellipsoids.

The ellipsoids and polyhedra obtained from the CT-scan in Section 2.3 have the problem of boundary effect due to insufficient information at the boundaries to extract statistically representative inclusions. In order to analyse RVEs that are similar in size to those that were tested experimentally, it is possible to continue the process of adding inclusions using random sequential addition (RSA), as described in Reference [43]. The distance fields obtained previously ensure that the new spherical inclusions are statistically valid to extract open foam morphologies [79]. Once the RSA process is complete, an open foam morphology can be extracted using the computed distance fields.


Figure 4.6: Visual representation of the Hausdorff distance in mm between the CT-scan image and the meshes extracted using DN-CTSCAN. (a) Use of ellipsoidal packing. (b) Use of polyhedral packing.

Finally, a finite element mesh is generated using the tool developed in Reference [43]; where dynamic node repositioning based on level set functions is used to build high quality conforming meshes using the strategy developed in Reference [128].

For both packings (ellipsoids and polyhedra), the obtained porosity is around $93.5 \%$ which is very similar to that of the original foam of $93 \%$. Thus, the relative densities of the two samples are considered close enough. The obtained RVE mesh was refined as explained in Reference [43] and a tetrahedral mesh was extracted using the Tetgen software [153]. Figure 4.6 shows the Hausdorff distances, computed using the software Meshlab [34] with 500.000 sample points, between the extracted RVEs and the thresholded CT-scan image for both ellipsoid and polyhedral packing. It can be seen, that the polyhedral packing leads to a better representation for the DN-CT-SCAN model. The maximum Hausdorff distance between the reconstructed geometry and the struts is 1.48 mm (corresponding to a relative maximum error of $9.9 \%$ ) when using the ellipsoid packing, while it reduces to 0.89 mm (corresponding to a relative maximum error of $5.9 \%$ ) with the polyhedral packing. For the polyhedral packing, it can be seen that for a statistically validated representation of the actual foam, the extracted RVE is very close in the reproduction of the various morphological features.

Discussion It should be noted that the DN-CT-SCAN model has also been used without using the provided ellipsoids and polyhedra by the proposed image analysis procedure in Section 2.3. For instance, in Reference [79], the methodology for obtaining an RVE from a given foam sample is based on the extraction of random tessellations from inclusion packings, following predetermined statistical packing distribution criteria. Then, in order to ensure obtaining a representative model, various distance fields need to be combined; which is not a trivial task. The above results show that the proposed image analysis procedure can efficiently "feed" the DN-CT-SCAN model. This allows the DN-CT-SCAN model to avoid the use of a random packing model and offers two main advantages: First there is no need to perform the challenging task of determining a statistical packing distribution criteria [1]. Second, the provided distribution of ellipsoids/polyhedra is guaranteed to be the correct one for obtaining a satisfactory matching model to the data, as shown in Figure 4.6.

### 4.2 Reconstruction using the Ellipsoidal Model

In this second model, the reconstruction of the geometry uses the set of parent and auxiliary ellipsoids that have been generated previously in Section 2.3. The procedure for reconstructing the geometry from the set of ellipsoids is conceptually simple. First, all ellipsoids (parent and auxiliary) are discretised to a set of points and associated normals. Then this set of points and normals is used for generating a closed triangulated surface using a Poisson surface reconstruction. Finally, this triangulated surface is meshed using the GMSH software [54]. What follows describes the process in details.

### 4.2.1 Discretisation of ellipsoids

First the iso-surfaces of the parent and auxiliary ellipsoids are discretised into a set of points and associated normals using the same discretisation technique as in step 6 of Section 2.3. The angle increment $\Delta \theta$ is the azimuthal angle increment for discretising ellipsoids and depicted in Figures 4.7a and 4.7b. Using this technique ensures that the set of points is approximatively homogeneous. Moreover, the ellipsoid's isosurfaces $I S O_{\text {param }}$ on which the points lie can be chosen so that the porosity of the final reconstructed geometry matches as much as possible the measured porosity of the foam. It may be noticed that the auxiliary ellipsoids already closely fit the real foam geometry. As a consequence, this parameter usually does not need to be fine tuned and can generally be kept at its default value $I S O_{\text {param }}=1.0$; which corresponds to the ellipsoid's surfaces. Algorithm 36 describes how to implement this in practice.


```
uniformly discretise the iso-surface of value \(\alpha\) of \(\mathcal{E}\) in a set of points with associated
normals.
Require: Ellipsoid \(\mathcal{E}=\left\{\mathbf{x} \in \mathcal{R}^{3} \mid(\mathbf{x}-\mathbf{c})^{t} G G^{t}(\mathbf{x}-\mathbf{c}) \leq 1\right\}\), angle increment \(\Delta \theta\),
 factor \(\alpha=I S O_{\text {param }}\).
 procedure DiscretizeEllipsoidWithNormals \((\mathcal{E}, \Delta \theta, \alpha)\)
 Set of points \(P \leftarrow \varnothing\)
 Set of normals \(N \leftarrow \varnothing\)
 for \(\theta_{i}=0 ; \theta_{i} \leq \pi ; \theta_{i} \leftarrow \theta_{i}+\Delta \theta\) do
 Compute \(\Delta \phi_{i}\) as given by eq. 2.85.
 for \(\phi_{i j}=0 ; \phi_{i j} \leq 2 \pi ; \phi_{i j}=\phi_{i j}+\Delta \phi_{i}\) do
 Compute \(\mathbf{y}=\left(y_{0}, y_{1}, y_{2}\right)\) as:
 \(\left\{\begin{array}{l}y_{0}=\alpha \sin \theta_{i} \cos \phi_{i j} \\ y_{1}=\alpha \sin \theta_{i} \sin \phi_{i j} \\ y_{2}=\alpha \cos \theta_{i}\end{array}\right\}\)
 \(P \leftarrow P \cup\left\{\mathbf{c}+G^{-t} \mathbf{y}\right\}\).
 \(N \leftarrow N \cup\left\{\left(G G^{t}(\mathbf{y}-\mathbf{c})\right) /\left\|G G^{t}(\mathbf{y}-\mathbf{c})\right\|\right\}\)
 end for
 end for
 return \(P, N\)
 end procedure
```

Then, points associated to a given ellipsoid $E_{i}$, but located strictly inside a different ellipsoid $E_{j}$ (w.r.t. the considered iso-surface) are discarded. This ensures only surface points and associated normals are kept, even if the ellipsoids are intersecting (see Figure 4.7c). These remaining points and associated normals are hereafter called exterior points. Algorithm 37 describes how these points are obtained.

```
Algorithm 37 Given a set of points \(\mathcal{P}\), a factor \(\alpha\) and a set of ellipsoids \(\mathcal{E}\) arranged
inside a \(\mathrm{R}^{*}\)-tree data structure, returns exterior points. Note: boundaries are NOT
taken into account here. See algorithm 38 for that.
Require: \(\mathcal{E}=\{\mathcal{E}\}_{1 \leq i \leq m}\) a set of ellipsoids arranged in a \(\mathrm{R}^{*}\)-tree data structure.
Require: \(\mathcal{P}=\left\{P_{j}\right\}_{1 \leq j \leq n}\) a set of points.
Require: \(\alpha=I S O_{\text {param }}\) an iso-surface value. \(\triangleright\) Must have the same value os the one
 used in algo. 36 .
 procedure ExtractPointsOutsideEllipoids \((\mathcal{E}, \mathcal{P}, \alpha)\)
 \(\mathcal{P}_{\text {out }}=\varnothing\)
 for \(P \in \mathcal{P}\) do
 \(\mathcal{E}^{*} \leftarrow \mathcal{E}\). QUERYNEIGHBOURHOOD \((P) \quad \triangleright\) Queries ellipsoids in the
 neighbourhood of \(\mathcal{P}\)
 if \(\# \mathcal{E}^{*} \leq 1\) then \(\quad \triangleright\) Point inside at most one ellipsoid
 if \(\# \mathcal{E}^{*}=0\) then
 \(\mathcal{P}_{\text {out }} \leftarrow \mathcal{P}_{\text {out }} \cup P\)
 else \(\quad \triangleright\) Check if \(P\) strictly inside ellipsoid
 \(\mathcal{E}=\mathcal{E}_{1}^{*}\)
 \(\left(c, M=G G^{t}\right) \leftarrow \mathcal{E} \quad \triangleright\) Get ellipsoid's centre and metric
 if \((\mathbf{c}-P)^{t} M(\mathbf{c}-P) \geq \alpha\) then \(\triangleright P\) not inside the \(\alpha\) iso-surface of
 ellipsoid \(\mathcal{E}\)
 \(\mathcal{P}_{\text {out }} \leftarrow \mathcal{P}_{\text {out }} \cup P\)
 end if
 end if
 end if
 end for
 return \(\mathcal{P}_{\text {out }}\)
 end procedure
```


### 4.2.2 Boundary management

However, at the boundaries there is insufficient information to extract statistically representative ellipsoids. In order to avoid spurious reconstruction effects a subset of suitable surface points is determined from the set of surface points as follows. First, clipping planes are applied in order to discard points too close to the boundaries (Figure 4.7d). Second, "holes" created by the clipping planes in the set of points are filled by adding new points with a similar density as the density of the whole set of surface points (Figures 4.7e and 4.7f). Associated normals to the new points are simply set as the corresponding normals of each clipping plane. Algorithm 38 is an improvement of algorithm 37 that takes into account the boundaries. Thus, in practice, algorithm 37 is not used and is only mentioned here for pedagogic purposes.

```
Algorithm 38 Given a set of points \(\mathcal{P}\) and associated normals \(\mathcal{N}\), a set of planes
\(\mathcal{Q}\), a factor \(\alpha\) and a set of ellipsoids \(\mathcal{E}\) arranged inside a \(\mathrm{R}^{*}\)-tree data structure, re-
turns exterior points. Note: improved version of algorithm 37 that takes into account
boundaries.
Require: \(\mathcal{E}=\{\mathcal{E}\}_{1<i \leq m}\) a set of ellipsoids arranged in a \(\mathrm{R}^{*}\)-tree data structure.
Require: \(\boldsymbol{\mathcal { P }}=\left\{P_{j}\right\}_{1 \leq j \leq n}\) a set of points, and \(\mathcal{N}=\left\{N_{j}\right\}_{1 \leq j \leq n}\) a set of associated
 normals.
Require: \(\mathcal{Q}=\left\{Q_{k}\right\}_{1 \leq k \leq 0}\) a set of planes, and \(\alpha=I S O_{\text {param }}\) an iso-surface value. \(\triangleright\)
 Must have the same value as the one used in algo. 36 .
 procedure ExtractPointsOutsideEllipoidsWithPlanes \((\mathcal{E}, \mathcal{P}, \mathcal{N}, \mathcal{Q}, \alpha)\)
 \(\mathcal{P}_{\text {out }}=\varnothing\)
 \(\mathcal{N}_{\text {out }}=\varnothing\)
 \(\operatorname{avg} \leftarrow\) average point distance in \(\mathcal{P}\)
 for \(Q \in \mathcal{Q}\) do
 \(\left\{\mathcal{P}_{Q}, \mathcal{N}_{Q}\right\} \leftarrow\) discretise \(Q\) as a grid of points of average dist. avg
 \(\mathcal{P} \leftarrow \mathcal{P} \cup \mathcal{P}_{Q} . \mathcal{N} \leftarrow \mathcal{N} \cup \boldsymbol{\mathcal { N }}_{\mathrm{Q}} . \quad \triangleright\) Add points and normals of \(Q\).
 end for
 for \(P \in \mathcal{P}\) and \(N\) associated to \(P\) do
 pointInsidePlanes \(\leftarrow\) true
 for \(Q \in \mathcal{Q}\) do \(\quad \triangleright\) Loop on planes to see if the current point is on the
 "inside" side of all planes.
 \((\mathbf{q}, \mathbf{n}) \leftarrow\) point and normal of plane \(Q\).
 \(\mathbf{v}=P-\mathbf{q}\).
 if \(\mathbf{n} . \mathbf{v}>0\) then \(\triangleright\) Point not in the "inside" side of the current plane.
 Stop here.
 pointInsidePlanes \(\leftarrow\) false. Break.
 end if
 end for
 if NOT pointsInsidePlanes then \(\triangleright\) Point not on the "inside" sides of all
 planes, test the next point.
 Continue
 end if
 \(\mathcal{E}^{*} \leftarrow \mathcal{E}\). QUERYNEIGHBOURHOOD \((P) \quad \triangleright\) Queries ellipsoids in the
 neighbourhood of \(\mathcal{P}\)
 if \(\# \mathcal{E}^{*} \leq 1\) then \(\quad \triangleright\) Point inside at most one ellipsoid
 if \(\# \mathcal{E}^{*}=0\) then
 \(\mathcal{P}_{\text {out }} \leftarrow \mathcal{P}_{\text {out }} \cup P . \mathcal{N}_{\text {out }} \leftarrow \mathcal{N}_{\text {out }} \cup N\)
 else \(\quad \triangleright\) Check if \(P\) strictly inside ellipsoid
 \(\left(c, M=G G^{t}\right) \leftarrow \mathcal{E}_{1}^{*} \quad \triangleright\) Get ellipsoid's centre and metric
 if \((\mathbf{c}-P)^{t} M(\mathbf{c}-P) \geq \alpha\) then \(\triangleright P\) not inside the \(\alpha\) iso-surface of
 ellipsoid \(\mathcal{E}\)
 \(\mathcal{P}_{\text {out }} \leftarrow \mathcal{P}_{\text {out }} \cup P . \mathcal{N}_{\text {out }} \leftarrow \mathcal{N}_{\text {out }} \cup N\)
 end if
 end if
 end if
 end for
 return \(\left\{\boldsymbol{\mathcal { P }}_{\text {out }}, \boldsymbol{\mathcal { N }}_{\text {out }}\right\}\)
 end procedure
```


(a)

(d)

(b)

(e)

(c)

(f)

Figure 4.7: Schematics of the reconstruction of the geometry from the ellipsoids obtained in Section 2.3. (a) Obtained ellipsoids from Section 2.3. (b) Discretised ellipsoids. (c) Only points strictly not inside ellipsoids are kept. (d) Application of clipping planes for discarding points too close from boundaries. (e) Set of points with "holes". (f) "Holes" filled.


Figure 4.8: Poisson surface reconstruction: from a discrete set of oriented points belonging to a closed volume $M$ (a), reconstruct its corresponding indicator function (b). Images from https: //www. cs e.iitb.ac.in/~cs749/spr2016/lecs/07_reconst.pdf.

### 4.2.3 Poisson surface reconstruction

Finally, in order to obtain the reconstructed geometry of the foam from the set of suitable points and normals $\vec{V}$, a Poisson surface reconstruction is performed [77] using the eponymous CGAL package ${ }^{2}$. The Poisson surface reconstruction is the process consisting in finding the indicator function $\chi_{M}$ best approximating a closed volume $M$ for which only a discrete set of oriented points is available (see Figure 4.8). Once the indicator function found, it is then possible to extract an approximated surface corresponding to the set of oriented points.

[^32]

Figure 4.9: Relationship between a set of oriented points and the (smoothed) gradient of the indicator function. (a) Discrete set of oriented points. (b) Indicator gradient $\vec{\nabla} \chi_{M}$. Note: $\vec{\nabla} \chi_{M}$ is zero almost everywhere except on the boundaries. Image from https: //www.cse.iitb.ac.in/~cs749/spr2016/lecs/07_reconst.pdf.

In order to obtain the indicator function $\chi_{M}$ from the set of oriented points $\vec{V}$, the Poisson surface reconstruction exploits a relationship between the set of points and the gradient of the (smoothed) indicator function $\vec{\nabla} \chi_{M}{ }^{3}$ (see Figure 4.9). More precisely, this relationship is simply (see Reference [77] for a proof):

$$
\begin{equation*}
\vec{\nabla} \tilde{\chi}_{M}=\vec{V} \tag{4.7}
\end{equation*}
$$

Where $\tilde{\chi}_{M}$ is $\chi_{M}$ smoothed.

However, in general, equation 4.7 does not admit an exact solution. Instead the best least-square approximate solution can be found by applying the divergence operator to form the Poisson equation (hence the name of the method):

$$
\begin{equation*}
\Delta \tilde{\chi}_{M}=\vec{\nabla} \cdot \vec{V} \tag{4.8}
\end{equation*}
$$

Equation 4.8 is then solved numerically using a method similar to finite elements on an octree mesh (see Reference [77] for details).

At each point the Poisson surface reconstruction method requires an associated normal. For a given point its normal is obtained as the local normal of its associated ellipsoid at that point position. Figure 4.10 shows the set of suitable points extracted from the data described in Section 3.13.1, using an azimuthal angle increment $\Delta \theta=$ $10^{\circ}$. The Poisson surface reconstruction algorithm provided in the CGAL package can be tuned via three parameters (see Table 4.1). These three parameters, denoted $\alpha$, $T_{s}$ and, $S_{a}$ control the quality and refinement of the faceted surface which is obtained from the discretised ellipsoids. They are directly related to the parameters of the CGAL function poisson_surface_reconstruction_delaunay.

[^33]The parameter $\alpha$ controls the bound for the minimum facet angle in degrees. It gives a guarantee that the to-be-computed finite-element mesh obtained from the reconstructed surface will not contains tetrahedra with triangular faces less than $\alpha$ degrees. $T_{s}$ controls the maximum facet size with respect to the average point set spacing. It puts an upper bound to the sizes of the future tetrahedra in the to-be-computed finite-element mesh. Finally, $S_{a}$ controls the surface approximation error with respect to the point set average spacing. Indeed, in general a Poisson reconstruction only approximates a given set of points and associated normals. So the obtained reconstructed surface may not interpolate all the points.

It should be noted that a Poisson surface reconstruction is not the only option for reconstructing a surface from an unorganised set of points. For instance, one may also consider the work of H. Hoppe et al (see References [64], [63], and [42]) ${ }^{4}$.

Ultimately, a B-REP of the surface geometry is then obtained as a "geo" file describing vertices positions, edges and faces relations that can be used by the GMSH software [54]. The advantage of having a meshable B-REP is that the 3D generated mesh can be, to some extent, "tuned" for satisfying some precise needs. For instance, the 3D generated mesh can be locally refined where needed. Moreover, the GSMH software easily allows associating several geometries together via boolean operations. For instance, one may consider to unite the surface geometry with a rectangular plate and conduct some simulations with a dedicated solver.

## Open foam

Figure 4.11 shows an extracted mesh compared to the threshold CT-scan images for the open foam described in Section 3.13.1. It can be seen that the 3D mesh closely reproduces the different morphological characteristics of the foam, although the obtained porosity of $90.2 \%$ is slightly different from the experimental $93 \%$ porosity. For the Ellipsoidal Model this difference, as suggested by the Hausdorff distance in Figure 4.11, is due to the fact that the ellipsoidal model seems to accumulate more matter than needed at struts intersections. This problem could probably be alleviated by discretising the circumscribing auxiliary polyhedra instead of theirs associated auxiliary ellipsoids. Indeed, as each polyhedron contains its corresponding ellipsoid, the obtained porosity can only increase and sharp features should be better reconstructed. However, in any case, it should be noted that, despite the fact that the DN-CT-SCAN model using polyhedral packing presents a better porosity value than the Ellipsoidal model, both models present very similar structures and Hausdorff distances as it can observed in Figures 4.6b and 4.11. However, the maximum Hausdorff distance for the Ellipsoidal Modal is smaller with 0.58 mm (corresponding to a relative maximum error of $3.3 \%$ ).

It is worth noting that the Ellipsoidal Model is also able to reconstruct local features of the microstructure such as the typical tendency of struts to be thicker near their vertices than at their centre [138]. But this has also the capability to reproduce small defects as illustrated in Figure 4.12 without the need of some dedicated parametrisation.

[^34]

Figure 4.10: View inside the set of points extracted from the data described in Section 3.13.1.


Figure 4.11: Visual representation of the Hausdorff distance in mm between the CT-scan image and the meshes extracted using Ellipsoidal Model for the open foam described in Section 3.13.1.


Figure 4.12: (a) Presence of a defect (spike) visible on the upper left-hand side of a 3D CT-scan image of a strut. (b) Reproduction of this defect by the Ellipsoidal Model for the open foam described in Section 3.13.1.

Table 4.1: Parameters used in the geometric reconstruction of the CT-scan data of the open foam presented in Section 3.13.1 for the Ellipsoidal Model.

| Parameter | Value | Description |
| :--- | :--- | :--- |
| $\alpha$ | $30^{\circ}$ | Minimum facet angle. |
| $T_{S}$ | 600.0 | Maximum facet size w.r.t. point set average spacing. |
| $S_{a}$ | 0.75 | Surface approximation error w.r.t. point set average spacing. |
| $I S O_{\text {param }}$ | 1.0 | Iso-surface parameter on which lie the extracted points. |
| $\Delta \theta$ | $10^{\circ}$ | Azimuthal angle increment for discretising ellipsoids. |

TABLE 4.2: Parameters used in the geometric reconstruction of the CT-scan data data of the closed foam presented in Section 3.13.2 for the Ellipsoidal Model.

| Parameter | Value | Description |
| :--- | :--- | :--- |
| $\alpha$ | $30^{\circ}$ | Minimum triangle angle. |
| $T_{s}$ | 600.0 | Maximum triangle size w.r.t. point set average spacing. |
| $S_{a}$ | 0.75 | Surface approximation error w.r.t. point set average spacing. |
| $I S O_{\text {param }}$ | 1.0 | Iso-surface parameter on which lie the extracted points. |
| $\Delta \theta$ | $2.5^{\circ}$ | Azimuthal angle increment for discretising ellipsoids. |

## Closed foam

Figure 4.13 shows an extracted mesh compared to the threshold CT-scan images for the closed foam described in Section 3.13.2, using the parameters stated in Table 4.2. It can also be seen that the 3D mesh closely reproduces the different morphological characteristics of the foam. The maximum Hausdorff distance (computed using 5,000,000 sample points) between the reconstructed geometry and the struts is 0.053 mm (corresponding to a relative maximum error of $4.1 \%$ ).


Figure 4.13: Visual representation of the Hausdorff distance in mm between the CT-scan image and the meshes extracted using Ellipsoidal Model for the closed foam described in Section 3.13.2.

## Chapter 5

## FEM simulations: uniaxial compression test on open foam sample



- Aim: given a tetrahedral mesh describing the microstructure of a real-world foam and suitable boundary and loading conditions, match by FEM simulation the strain-stress curves obtained experimentally.
- Input: mesh corresponding to a real-world foam and set of boundary and loading conditions.
- Output: stress-strain curves.


### 5.1 Summary

This chapter is structured as follow:

- Section 5.2 briefly describes some main computational approaches that exist for studying numerically the behaviours of cellular materials.
- Section 5.2.5 describes how the image analysis steps of chapter 2 and the geometric reconstructions (chapter 4) can be used to "feed" FEM simulations of foams.
- Sections 5.3, 5.4, and 5.5 explains how experimental data and material parameters were acquired for a real-world foam undergoing an uniaxial compression.
- Section 5.6 shows simulation results for the uniaxial compression of a realworld foam using different boundary conditions, using both the DN-CT-SCAN model and the Ellipsoidal Model described in chapter 4. These simulation results are compared against the acquired experimental data.
- Section 5.6.4 finally discusses the numerical convergence for both the DN-CTSCAN and Ellipsoidal Models with respect to the number of elements used for the meshes.
- Section 5.6 .5 finally briefly discuss a simulation result using the Gurson-TvergaardNeedleman model.


FIgURE 5.2: Computational homogenisation scheme. See text for details (Figure from Reference [84]).

### 5.2 Introduction

In experimental studies, cellular materials exhibit a wide variety of complex mechanical behaviours that are difficult to predict. This is due to several effects such as size effect [7], and localisation phenomena due to micro-buckling of thin components such as struts or walls $[68,14,190,127]$. Three main computational approaches exist for studying numerically the behaviours of cellular materials such as foams.

1. The microscopic approach.
2. The macroscopic approach.
3. The multi-scale computational approach.

The first approach consists in fully discretising a full foam sample using standard finite element methods $[56,31,104]$. However, this approach rapidly requires to deal with an enormous amount of unknowns and is thus limited to relatively small samples. Dealing with larger foam samples with this approach is still a computational challenge for modern computers.

The second approach consists in replacing the cellular material by an equivalent continuous phenomenological material [60,49]. Although more computationally efficient than the first approach, with this second approach, the material model and its parameters are difficult to identify. Moreover, this approach does not provide any insight about the evolution of the microstructure while a macroscopic loading is applied.

The last approach, also called the multiscale approach, is a combination of the first two above approaches. This technique lies in to the definition of two separate Boundary Value Problems (BVPs) at two separate scales. At the macroscopic level, the studied sample is considered as a continuum medium; but at each macroscopic material point a microscopic BVP is associated in order to take into account the effect of the microstructure. Each microscopic BVP is associated to a Representative Volume Element (RVE) which undergoes different microscopic boundary conditions associated to macroscopic quantities. This allows to incorporate both geometrical and
material non-linearites [84] into the numerical model. Tough this procedure does not provide a closed-form of the macroscopic material law, the stress-strain relation is always obtainable through the resolution of the BVPs. For a given macroscopic deformation gradient tensor $\mathbf{F}_{M}$, the stress $\mathbf{P}_{M}$, and the associated material tangent are estimated from the response of the microstructure (see Figure 5.2)

The multiscale approach (also called first-order approach) makes the assumption of separation of scales, which can be expressed as a set of inequalities:

$$
\begin{equation*}
l_{\text {micro }} \ll l_{R V E} \ll l_{\text {macro }} \tag{5.1}
\end{equation*}
$$

Where $l_{\text {micro }}$ represents the average pore size of the cellular material, $l_{\text {RVE }}$ denotes the size of the domain on which local deformations occurs in the material, and $l_{\text {macro }}$ represents the characteristics length over which the prescribed mechanical loading is varying.

The inequality:

$$
\begin{equation*}
l_{\text {micro }} \ll l_{R V E} \tag{5.2}
\end{equation*}
$$

denotes the scale condition for an RVE to be valid, while the inequality:

$$
\begin{equation*}
l_{\text {RVE }} \ll l_{\text {macro }} \tag{5.3}
\end{equation*}
$$

denotes the condition for the multiscale to be valid.

It may occur that the separation of scales assumptions 5.1 is no longer satisfied, e.g., when localisation and/or failure phenomena takes place. Enhanced schemes have been designed for tackling this issue. For instance, second-order $F E^{2}$ scheme were designed in References [47, 83], while continuous-discontinuous $F E^{2}$ schemes were developed in References [108, 123]. However, in most situations, a first order scheme proves to be sufficient and is a standard tool in computational homogenisation [109, 112, 161].

### 5.2.1 Macroscopic formulation

The macro-scale kinematics can be defined by:

$$
\begin{equation*}
\mathbf{F}_{M}=\mathbf{I}+\mathbf{u}_{M} \otimes \nabla_{0} \tag{5.4}
\end{equation*}
$$

Where:

- $\mathbf{F}_{M}$ is the macroscopic deformation gradient.
- I is the identity matrix.
- $\mathbf{u}_{M}$ is the macroscopic displacement field in the reference configuration.
- $\nabla_{0}$ is the gradient operator with respect to the reference configuration.
- $\otimes$ denotes the outer product.

If one considers a body $\Omega$, viewed as continuous, then continuum equilibrium equations read as:

$$
\begin{array}{lll}
\mathbf{P}_{M}\left(\mathbf{X}_{M}\right) \cdot \nabla_{0} & =0, & \forall \mathbf{X}_{M} \in \Omega \\
\mathbf{P}_{M}\left(\mathbf{X}_{M}\right) \cdot \mathbf{N}_{M}=\mathbf{T}_{M}, & \forall \mathbf{X}_{M} \in \partial_{N} \Omega \tag{5.5}
\end{array}
$$

With $\mathbf{X}_{M}$ a material point in the body $\Omega, \mathbf{P}_{M}$ the first Piola-Kirchhoff tensor, and $\mathbf{N}_{M}$ the local macroscopic unit normal to the surface $\partial_{N} \Omega$.

The associated boundary conditions are:

$$
\begin{align*}
& \mathbf{u}_{M}\left(\mathbf{X}_{M}\right)=\mathbf{u}_{M}^{0}, \forall \mathbf{X}_{M} \in \partial_{D} \Omega  \tag{5.6}\\
& \mathbf{T}_{M}\left(\mathbf{X}_{M}\right)=\mathbf{T}_{M}^{0}, \forall \mathbf{X}_{M} \in \partial_{N} \Omega \tag{5.7}
\end{align*}
$$

With the displacements $\mathbf{u}_{M}$ are constrained on the Dirichlet boundary $\partial_{D} \Omega$ and tractions $\mathbf{T}_{M}$ on reference unit surfaces are prescribed on Neumann boundary $\partial_{N} \Omega$.

Problem 5.5 along with the boundary conditions $5.6,5.7$ is completed by the stressstrain relationship at time $t$ :

$$
\begin{equation*}
\mathbf{P}_{M}(t)=\mathcal{P}_{M}\left\{\mathbf{F}_{M}(t), \mathbf{Z}_{M}(t)\right\} \tag{5.8}
\end{equation*}
$$

With $\mathbf{Z}_{m}(t)$ an internal state variable representing the state of the material following the evolution laws of the internal state. Relation 5.8 is computed by solving the microscopic BVP as explained in Section 5.2.2.

The weak form corresponding to the system defined by equations $5.5,5.6,5.7$, and 5.8 can be expressed by defining an admissible kinematic vector field $\mathbf{U}(\Omega)$ :

$$
\begin{equation*}
\mathbf{U}(\Omega)=\left\{\delta \mathbf{u}_{M} \in \mathcal{H}(\Omega) \mid \delta \mathbf{u}_{M \mid \partial_{D} \Omega}=0\right\} \tag{5.9}
\end{equation*}
$$

With $\mathbf{H}(\Omega)$ a Hilbert space on $\Omega$, and $\delta \mathbf{u}_{M}$ a test function.

Then, the corresponding weak form can be written as:

$$
\begin{equation*}
\int_{\Omega} \mathbf{P}_{M}\left(\mathbf{u}_{M}\right): \mathbf{P}_{M}\left(\delta \mathbf{u}_{M}\right) d \Omega=\int_{\partial_{N} \Omega} \mathbf{T}_{M}^{0} \cdot \delta \mathbf{u}_{M} d \partial \Omega, \forall \delta \mathbf{u}_{M} \in \mathbf{U}(\Omega) \tag{5.10}
\end{equation*}
$$

### 5.2.2 Microscopic formulation

By the separation of scales hypothesis, the characteristic length of the microscopic BVP is assumed much smaller than the characteristic length of the macroscopic loading. The micro-scale kinematics in the reference configuration of an RVE $\omega$ is defined similarly to its macroscopic counter-part 5.4:

$$
\begin{equation*}
\mathbf{F}=\mathbf{I}+\mathbf{u} \bigotimes \nabla_{0} \tag{5.11}
\end{equation*}
$$

Similarly, its continuum equilibrium equations read:

$$
\begin{align*}
& \mathbf{P}(\mathbf{x}) \cdot \nabla_{0}=0, \quad \forall \mathbf{x} \in \omega \\
& \mathbf{P}(\mathbf{x}) \cdot \mathbf{N}=\mathbf{T}, \quad \forall \mathbf{x} \in \partial \omega \tag{5.12}
\end{align*}
$$

With $\mathbf{x}$ a material point of the RVE $\omega$ in the reference configuration, and $N$ a microscopic unit normal to the surface $\partial \omega$.

The boundary conditions are computed from the macroscopic variables and the microscopic fluctuation field $\mathbf{w}$ defined as:

$$
\begin{equation*}
\mathbf{w}=\mathbf{u}-\left(\mathbf{F}_{M}-\mathbf{I}\right) . \mathbf{x} \tag{5.13}
\end{equation*}
$$

Finally, the microscopic stress-strain relationship at time $t$ is driven by a constitutive material law which can be written, similarly to its macroscopic counter-part 5.8, as:

$$
\begin{equation*}
\mathbf{P}(t)=\mathcal{P}\{\mathbf{F}(t), \mathbf{Z}(t)\} \tag{5.14}
\end{equation*}
$$

With $\mathbf{Z}(t)$ a history-dependent vector.

The system of equations 5.12 can be expressed in the weak form as finding $\mathbf{w} \in$ $\mathbf{U}(\omega)$ such that:

$$
\begin{equation*}
\int_{\omega} \mathbf{P}:\left(\delta \mathbf{w} \bigotimes \nabla_{0}\right) d \omega=\mathbf{0}, \forall \delta \mathbf{w} \in \mathbf{U}(\omega) \tag{5.15}
\end{equation*}
$$

With $\delta \mathbf{w}$ a test function, and $\mathbf{U}(\omega) \subset \mathcal{H}(\omega)$ a kinematic vector field or whose vectors satisfies the kinematic constraints detailed in Section 5.2.3.

### 5.2.3 Scale transition

In order for the $F E^{2}$ scheme to be complete, a transition is needed between the microscopic variables $\mathbf{F}, \mathbf{P}$ and the macroscopic variables $\mathbf{F}_{M}, \mathbf{P}_{M}$.

This is performed through the averaging operator $<.\rangle=\frac{1}{\# \omega} \int_{\omega} \cdot d \omega$ :

$$
\begin{align*}
& F_{M}=\langle F\rangle=\frac{1}{\# \omega} \int_{\omega} F d \omega  \tag{5.16}\\
& P_{M}=\langle P\rangle=\frac{1}{\# \omega} \int_{\omega} P d \omega \tag{5.17}
\end{align*}
$$

With $\# \omega=\int_{\omega} 1 d \omega$ the volume of the $\operatorname{RVE} \omega$.

In order to ensure that the modelling is energetically consistent, the Hill-Mandel condition, or volume averaging of the virtual work, has to be fulfilled:

$$
\begin{equation*}
\mathbf{P}_{M}: \delta \mathbf{F}_{M}=<\mathbf{P}: \delta \mathbf{F}> \tag{5.18}
\end{equation*}
$$

To guarantee that the Hill-Mandel condition is satisfied, a proper kinematic vector field $\mathbf{U}(\omega)$ has to be chosen. Using equation 5.13 in the Hill-Mandel condition 5.18, it can be obtained:

$$
\begin{equation*}
\mathbf{P}_{M}: \mathbf{F}_{M}=\mathbf{P}_{M}: \mathbf{F}_{M}+<P:\left(\delta \mathbf{w} \bigotimes \nabla_{0}\right)> \tag{5.19}
\end{equation*}
$$

Using the Gauss theorem on equation 5.13, a constraint on the fluctuation field $\mathbf{w}$ can be introduced using equation 5.16:

$$
\begin{equation*}
\int_{\partial \omega} \mathbf{w} \bigotimes \mathbf{N} d \partial \omega=\int_{\omega} \mathbf{w} \bigotimes \nabla_{0} d \omega=\mathbf{0} \tag{5.20}
\end{equation*}
$$

The kinematic vector field $\mathbf{U}(\omega)$ is thus defined by equation 5.20 with the consequence that all $\delta \mathbf{w} \in \mathbf{U}(\omega)$ satisfying equation 5.15 also automatically satisfy the Hill-Mandel condition 5.19.

### 5.2.4 Enforcing boundary conditions at the microscopic level

Neumann boundary conditions at the microscopic level can be prescribed in terms of the macroscopic stress as:

$$
\begin{equation*}
\mathbf{T}=\mathbf{P}_{M} \cdot \mathbf{N}, \forall \mathbf{x} \in \partial \omega \tag{5.21}
\end{equation*}
$$

Regarding Dirichlet boundary conditions, these can be expressed in terms of the macroscopic strain:

$$
\begin{equation*}
\mathbf{w}=\mathbf{u}-\left(\mathbf{F}_{M}-\mathbf{I}\right) \cdot \mathbf{x}=0, \forall \mathbf{x} \in \partial \omega \tag{5.22}
\end{equation*}
$$

Both conditions satisfy 5.19. However, condition 5.21 is known to be too compliant, while condition 5.22 is too stiff. Imposing periodic boundary conditions has been found to be able to provide better estimation [120].

In order to enforce periodicity, the fluctuation field 5.13 can be constrained by:

$$
\begin{equation*}
\mathbf{w}\left(\mathbf{x}^{+}\right)=\mathbf{w}\left(\mathbf{x}^{-}\right), \forall \mathbf{x}^{-} \in \partial \omega^{-} \text {and matching } \mathbf{x}^{+} \in \partial \omega^{+} \tag{5.23}
\end{equation*}
$$

With $\partial \omega^{-}$and $\partial \omega^{+}$being, respectively, the negative and positive part of the boundary $\partial \omega$ and partitioning it:

$$
\begin{align*}
& \partial \omega^{-} \cup \omega^{+}=\partial \omega  \tag{5.24}\\
& \partial \omega^{-} \cap \omega^{+}=\varnothing \tag{5.25}
\end{align*}
$$

### 5.2.5 Contribution

The multi-scale computational approach thus combines both advantages of the former two approaches: a scheme which is computationally moderate and which provides insights on the strains and stress undergone by the microstructure. Nonetheless, it needs as input an RVE of the microstructure. The present work in this thesis aims to provide such RVE from CT-scan images of foam samples.

In order to demonstrate the ability of the CT scan-based RVE generation to reproduce the structural properties of open foams by both the DN-CT-SCAN and the Ellipsoidal Model, finite element simulations have been conducted using the generated meshes obtained from the industrial aluminium open foam sample presented in section 3.13.1. More precisely, three meshes have been considered: two using the DN-CT-SCAN model, respectively obtained from the parent ellipsoids and associated polyhedra (see Figure s5.3a and 5.3b), and one using the Ellipsoidal Model (see Figure 5.3c). In all cases, the considered RVEs have sizes of approximatively $10 \times 10 \times 10 \mathrm{~mm}^{3}$ and contain around 25 pores.

Simulations using these three RVEs were conducted using the finite element procedures proposed in $[119,122]$ and have been qualitatively compared against experimental measurements of an uniaxial compression reported in Reference [62].


Figure 5.3: Meshed RVEs used for the simulations and generated from: (a) DN-CT-SCAN model using ellipsoids, (b) DN-CT-SCAN model using polyhedra, (c) Ellipsoidal Model. Around $\sim 100.000$ nodes and $\sim 70.000$ tetrahedral elements were used.


Figure 5.4: Experimental setup for the uniaxial compression test: top and bottom extremities molded into a small casting to ensure a stiff and stable fixture. Sides were left free.

### 5.3 Experimental data

The mechanical behaviour of the cubic sample of aluminium foam described in Section 3.13.1 is investigated by uniaxial compression tests using an ElectroPulsTM E10000 universal testing machine of Instron Ltd., Pfungstadt, Germany. A displacement control using a quasi-static strain rate of $5.10^{-3} \mathrm{~s}^{-1}$ was applied for each test. The top and bottom extremities of the studied sample were molded into a small casting to generate plane parallel plates as force transmission points for the compression tests (see Figure 5.4). The Wood's alloy guarantees a gentle molding and demolding, providing a stiff and stable fixture at the same time. These requirements cannot be adequately met by polymer resins. The boundaries orthogonal to the compression directions were left free.

TABLE 5.1: Averaged struts material properties identified for the isotropic hardening law used for the simulations.

| Material property | Value | Description |
| :--- | :--- | :--- |
| $E$ | 3968.12 MPa | Young's modulus. |
| $\sigma^{0}$ | 46.35 MPa | Initial yield stress. |
| $H_{\text {iso }}$ | 214.61 MPa | Hardening modulus. |
| $v$ | 0.33 | Poisson's ratio. |

### 5.4 Material properties

Simulations were carried out using for the struts a linear hardening hyperelasticbased $J_{2}$-elasto-plastic material law applied for large strains (see Appendix A in Nguyen et al. [119] for details), with the isotropic hardening law given in equation 5.26.

$$
\begin{equation*}
\sigma_{y}^{0}\left(\bar{\epsilon}^{p l}\right)=\sigma_{0}+H_{i s o} \bar{\epsilon}^{p l} \tag{5.26}
\end{equation*}
$$

Where $\bar{\epsilon}^{p l}$ is the equivalent plastic strain.

Struts material properties required to parametrise the material law were identified in [62], using an inverse identification procedure based on compression tests of single pores. As the provided values tend to vary from one pore to another, averaged material properties have been considered. Table 5.1 reports the material properties used for the simulations.

### 5.5 Boundary conditions

In order to understand the numerical response of the RVEs, several boundary conditions were tested. This was required by the fact that the three RVEs extracted from the CT-scan data are rather small compared to the samples on which experimental measurements were conducted. Namely, for each RVE, three sets of boundary conditions were considered (see Figure 5.5): enforcement of free boundary conditions which are a simple uniaxial compression, mixed boundary conditions which are obtained by imposing a uniaxial load while constraining struts extremities to lie in common planes, and periodic boundary conditions using a 5th-order Lagrangian polynomial based interpolation [120].

More precisely, struts nodes in contact with the top plane were constrained to vertically follow its displacement, while they were free to move in the horizontal directions. Similarly, struts nodes in contact with the bottom plane were vertically constrained by it, while free to move in the horizontal directions. However, in order to avoid rigid body motion, two nodes in contact with the bottom plane were constrained as follows. The first one had also its $x$ and $y$ coordinates fixed, while the second one has its $x$ coordinate fixed.


Figure 5.5: Tested boundary conditions for a simple uniaxial compression: (a) free boundary conditions, (b) mixed boundary conditions (uniaxial load while ensuring struts extremities lie in common planes), (c) periodic boundary conditions using Lagrangian polynomial interpolation [120].

The free boundary conditions had no other imposed conditions, and struts extremities not in contact with the planes were free to move. For the mixed boundary conditions, struts extremities located on a given lateral side were constrained to move within the same vertical plane.

Finally, for the periodic boundary conditions, displacements of struts extremities from one lateral side were constrained in terms of the displacement of the struts extremities located on the corresponding opposite side following an interpolation method as described in Reference [122] to constrain periodic boundary conditions for non-periodic meshes. For these different kinds of boundary conditions, uniaxial tension can be obtained by selecting the components of the macroscopic scale deformation gradient which are enforced during the constrained resolution of the RVE, see details in Section 3.5 of Reference [121].


Figure 5.6: Simulations of a uniaxial compression test on an open cubic sample of aluminium foam (see Section 3.13.1) with periodic boundary conditions (red curves), free boundary conditions (blue curves) and mixed boundary conditions (magenta curves); using $\approx 70.000$ tetrahedra in all the cases. Obtained (relative) strainstress curves using the three generated RVEs presented in Figure 5.3, against experimental measurements (gray area).

### 5.6 Comparison of simulations against experimental data

### 5.6.1 Periodic boundary conditions

Simulations of uniaxial compression were conducted on the three considered RVEs showed in Figure 5.3 using periodic boundary conditions with a 5th-order Lagrangian polynomial based interpolation [120]. Figures 5.6, and 5.7 report on the red curves the (relative) strain-stress curves obtained from the simulations for each RVE along the compression direction. From this figure, some over-stiffness can be observed with respect to the experimental data in the obtained curves. As shown in [120], the obtained strain-stress curves using Lagrangian polynomial enforced periodic boundary conditions show a convergence behaviour with higher degrees of interpolation. In order to investigate if the origin of the observed over-stiffness is due to the use of a too small interpolation degree, a convergence study of the strain-stress curves with respect to the interpolation degree was conducted. From this study it has been observed that the choice of the interpolation degree cannot explain the observed discrepancies between the simulations and the experimental data (see Figure 5.8). Especially, the obtained initial slopes in the linear deformation regime are very similar for all the tested interpolation degrees and does not comply with the experimental measurements. Therefore, it has been concluded that the enforcement of periodic boundary conditions adds extra constraints on the deformation of the struts and cannot be realistic for the considered RVEs because of their reduced sizes and the non-periodicity of their geometry.


Figure 5.7: Zoom of Figure 5.6.


FIGURE 5.8: Simulations of a uniaxial compression test on an open cubic sample of aluminium foam (see Section 3.13.1) with periodic boundary conditions using increasing degrees of interpolation for Lagrangian polynomials at the boundaries [120].


Figure 5.9: Simulations of uniaxial compression tests on an open cubic aluminium foam (see Section 3.13.1) using the RVE generated by the Ellipsoidal Model for different boundary conditions. (a) Free, (b) mixed and (c) periodic. The von Mises stresses are plotted on the 30 \% deformed RVE.

### 5.6.2 Free boundary conditions

As the enforcement of periodic boundary conditions discussed in section 5.6.1 leads to an over-stiffness behaviour, one can release them and just consider the three RVEs with free lateral boundaries. Figures 5.6, and 5.7 report on the blue curves the obtained strain-stress curves for the three considered RVEs when imposing a simple uniaxial compression. It can be observed that, for this case, the result presents some over-softness with respect to experimental data.

### 5.6.3 Mixed boundary conditions

From the previous Sections 5.6 .1 and 5.6 .2 , the periodic and free boundary conditions induce, respectively, over-stiffness and over-softness in the simulated behaviour of all three considered RVEs. Figure 5.7 reports on the magenta curves the strain-stress curves obtained with the considered RVEs. It can be seen that the mixed boundary conditions avoid imposing artificial constraints on the struts and that the computed strain-stress curves exhibit a comparable behaviour as observed experimentally.

TABLE 5.2: Relative differences between the computed strain-stress curves obtained at a relative strain of $20 \%$ using different meshes computed from the geometry provided from the Ellipsoidal Model. The differences were computed using a reference mesh consisting in 430.001 tetrahedra.

| Boundary conditions | 42.740 tets. | 70.704 tets. | 150.304 tets. |
| :--- | :--- | :--- | :--- |
| Free | $11.43 \%$ | $5.45 \%$ | $3.3 \%$ |
| Mixed | $10.4 \%$ | $6.5 \%$ | $2.9 \%$ |
| Periodic | $13.0 \%$ | $7.8 \%$ | $4.1 \%$ |

Indeed, the initial slope in the linear deformation regime is rather well reproduced for the polyhedra-based DN-CT-SCAN model and the Ellipsoidal Model (which present very similar geometrical features, contrary to the quite different ellipsoidbased DN-CT-SCAN model), though they display plastic deformation quite early compared to the experimental results. Moreover, as can be seen in Figure 5.6, the plateau regime is rather well reproduced by polyhedra-based DN-CT-SCAN model and the Ellipsoidal Model (magenta curves). At high relative strains, around $60 \%$ and beyond, struts begins to pile-up against each other and a so-called densification regime is experimentally observed as a fast stress increase occurs for small deformation increments. Here, the densification regime was not reproduced by the FEM model as this one allowed the struts to interpenetrate, thus preventing any struts stacking.

It should be noted that the RVEs generated by the DN-CT-SCAN model did in general not allow to compute deformations beyond $30 \%$, since the presence of narrow and/or high curvature regions cause the presence of bad-shaped mesh elements, which, in turn, prevented the FEM simulations to continue due to these elements exhibiting negative Jacobians when deformed. A solution to this issue was proposed in Reference [43] by optimising meshes using the Persson-Strang analogy, and might be considered in the future for improving the meshing of the DN-CT-SCAN model.

### 5.6.4 Discussion: numerical convergence

Strain-stress simulations results presented in Figure 5.6 were produced using order2 tetrahedral meshes containing approximately 70.000 tetrahedra. In order to ensure that convergence was indeed obtained, additional simulations with an increasing number of tetrahedra were conducted.

As the Ellipsoidal Model is able to provide a surface geometry, it was easy to extract several meshes with an increasing number of tetrahedra from it by using the Gmsh [54] software. Figure 5.10 shows the obtained strain-stress curves for four different meshes containing 42.740 up to 430.001 tetrahedra. It can be observed from Figure 5.10 and Table 5.2 that the differences between the strain-stress curves from the mesh using 70.704 tetrahedra to the finest mesh and for all three boundary conditions can be considered low (i.e. under $10 \%$ relative difference at a relative strain of $20 \%$ ).


FIGURE 5.10: Simulations of a uniaxial compression test on an open cubic sample of aluminium foam (see Section 3.13.1), using the geometry provided by the Ellipsoidal Model, with the three considered boundary conditions, using order-2 meshes with different numbers of tetrahedra.

### 5.6.5 Discussion: the Gurson-Tvergaard-Needleman model

One may ask if the Gurson-Tvergaard-Needleman model [81] may lead to similar results as their presented here (i.e. $J_{2}$-elasto plastic material law 5.26). Indeed, despite the fact that the fracture mechanics is quite different in both models, the Gurson-Tvergaard-Needleman model with an increasing number of voids could result in a metallic foam.

In order to investigate this, simulations using the Gurson-Tvergaard-Needleman model with $93 \%$ porosity were conducted on a aluminium matrix using the same material properties as the $J_{2}$-elasto plastic model (see Table 5.1). However, the Gurson-Tvergaard-Needleman model was not able to capture the experimental strain-stress slope in the elastic region (see Figure 5.11). To the knowledge of the author of this thesis, the literature (see, e.g., Reference [44]) suggests that no suitable Gurson-Tvergaard-Needleman models for porosities above $50 \%$ are currently available.


FIGURE 5.11: Simulation of an uniaxial compression test using the Gurson-Tvergaard-Needleman metal porosity model for aluminium at $93 \%$ porosity.

## Chapter 6

## Conclusion and perspectives



### 6.1 Recall of the motivation

In the introduction (chapter 1), it has been discussed how obtaining accurate numerical models of cellular materials is a challenging but necessary task in numerous engineering fields. Challenging because of the complexity of the microstructure of such materials, inducing highly complex mechanical behaviours; and necessary because of their usefulness in countless applications. Moreover, fabrication of cellular materials with specific mechanical behaviour is nowadays too dependent to costly trial-errors tests. Furthermore, ensuring constant quality during the fabrication process is also a difficult task. In this context, the ability developed this last decade to obtain precise CT-scan images of the microstructure of cellular materials, and in particular foams, as offered a precious insight for characterising the microstructures of such materials.

### 6.2 Contribution

This thesis aims to bridge the main two approaches for extracting suitable geometric descriptions of the microstructures of foams. These two approaches are the direct discretisation (see Section 1.2.1) and the use of idealised geometries (see Sections 1.2.2 and 1.2.3). Both these approaches have their own advantages and drawbacks. For instance, on the one hand the direct approaches bring precise geometric models of foams, but to the expense of computationally heavy models that may be difficult to handle. On the other hand, idealised approaches bring lightweight, but often imprecise, geometric models; which usually require the tuning of non-trivial parameters when handling complex (i.e. non-cell periodic) foams.

This thesis proposes an approach using the growth parent ellipsoids for identifying (possibly anisotropic) cells (see Section 2.3.9). This growth is computed using an efficient and highly parallelised algorithm provided by R. Deits et al. [39]. Oversegmentation (see Sections 2.3.9 and 2.3.10) is avoided by clustering and merging of the parent ellipsoids. This allows no to use the computationally expensive watershed and H-maxima transforms usually dedicated to this task.

Once the cells uniquely identified by a corresponding parent ellipsoids, auxiliary ellipsoids are grown in order to obtain a fit of the considered microstructure. This fit may be more or less precise depending angle increment parameter (see Section 2.3.11); allowing to obtain more or less detailed geometries of the microstructures of foams. It is worth noting that, contrary to other models, the fit is performed automatically and does not require the tuning any non-trivial parameter. The proposed model also allows to reproduce local defects such as partial or missing struts.

Then, the set of parent and auxiliary ellipsoids is discretised (see Section 4.2) and a closed surface is reconstructed using a Poisson surface reconstruction algorithm (see Section 4). The density of the discretisation can be controlled in order to get either a lightweight but less precise geometric representation, or a more precise but heavier geometric representation.

Alternatively, the set of ellipsoids (and associated polyhedra) may be used to "feed" other models as demonstrated with the DN-CT-SCAN model in Section 4.1.

Next, from the obtained geometry, it is possible to generate several meshes (from coarse to thin) according to the needs of the user. It is even possible to add userdefined geometries (e.g. using boolean operations) to the obtained geometry for, for instance, simulating the mechanical behaviour of a foam in a given environment (for example an insulating foam glued to a metallic surface).

Finally, the proposed processing steps have been implemented using the "filter" paradigm proposed by the library Insight Toolkit [69]. This allows more flexibility and gives the user the possibility to design and add its own "filters"/algorithms for fitting its own specific needs.

Last but not least, the proposed model offers the possibility to stream the data to be processed (see Section 3). This allows to handle CT-scan image data that do not fit into the RAM of the computer of the user. It is then possible to obtain the same reconstructed geometry as if there were enough RAM to process the data.

### 6.3 Perspectives and limitations

As for any work, here are some possible improvements for this thesis.

- The streaming part of the image analysis step can be further improved by considering blocks instead of slices in 3D CT-scan images. This should further reduce the peak memory usage for especially huge foam samples. However, it should be investigated if the efforts needed to adapt the implemented algorithms are worth the expected gain. Indeed, some algorithms are not trivially streamable by block. For instance, algorithm of Maurer et al. computing the distance transform, needs to scan for local maximum candidates along lines that extend along the whole CT-scan image in a given direction. Streaming by blocks would mean that these lines would be truncated, which imply a special treatment at their truncated extremities.
- The Ellipsoidal Model currently uses auxiliary ellipsoids for reconstructing the microstructure of a foam. Using the associated polyhedra to those auxiliary ellipsoids may improve the reconstruction of the microstructure, as polyhedra fit
more closely than ellipsoids the cell structures. Such a Polyhedral Model would use a Poisson surface reconstruction based on points and normals extracted from these polyhedra. Such an improvement was indeed noticed in terms of the Hausdorff distance when using associated polyhedra to parent ellipsoids for the DN-CT-SCAN model in Figure 4.6.
- When generating auxiliary ellipsoids from an associated parent ellipsoid, those are distributed evenly on the surface of the parent ellipsoid. Resolving small features in a microstructure, as illustrated in Figure 4.12, may require a large amount of auxiliary ellipsoids per parent ellipsoid. However, small features are usually localised and it is thus not useful to have a large number of auxiliary ellipsoid in regions of the microstructure where only a few is sufficient in order to obtain an acceptable fit. Generating adaptively more auxiliary ellipsoids in regions with small features and less in regions with big features can lead on some significant improvements in terms of the Hausdorff distance to the original microstructure and in terms of computational time (less auxiliary ellipsoids to be grown). A criterion for identifying where to increase the density of auxiliary ellipsoids and associated polyhedra may be the distance to these ellipsoids/polyhedra to the closest feature pixel.
- In the thesis, only parent and auxiliary ellipsoids (and associated polyhedra to parent ellipsoids) were used in both the DN-CT-SCAN model and the Ellipsoid Model. It may be interesting to investigate whether or not auxiliary ellipsoids should in their turn be used as parent for so-called level-2 auxiliary ellipsoids (the original auxiliary ellipsoids being the level-1 auxiliary ellipsoids). From there, one can imagine level- $3, \ldots$, level-n auxiliary ellipsoids. However, this would increase exponentially the number of ellipsoids to be grown, and, accordingly, increase exponentially the computational time for growing them. Using the above described strategy to adaptively distribute level- $n$ auxiliary ellipsoids on the surface of their level-( $n-1$ ) parent ellipsoid, may help to mitigate this effect.
- In this thesis, auxiliary ellipsoids were seeded from there associated parent ellipsoids by using points on a given iso-surface of these parent ellipsoids. An ellipsoid iso-surface can be described through a parameter $I S O_{\text {param }}=\alpha$, with the iso-surface $S_{\mathcal{E}}$ of an ellipsoid $\mathcal{E}$ being:

$$
\begin{equation*}
S_{\mathcal{E}}(\alpha)=\left\{\mathbf{x} \in \mathcal{R}^{n} \mid(\mathbf{x}-\mathbf{c})^{t} M(\mathbf{x}-\mathbf{c})=\alpha\right\} \tag{6.1}
\end{equation*}
$$

With, $\mathbf{c} \in \mathcal{R}^{n}$ is the centre of the ellipsoid $\mathcal{E}, M \in \mathcal{R}^{n \times n}$ is its shape matrix, and $\alpha>0$ is the iso-surface parameter. When $\alpha=1, S_{\mathcal{E}}(\alpha)$ is simply the surface of the ellipsoid $\mathcal{E}$.

In this thesis, $\alpha$ is a global parameter for all ellipsoids. Its aim is to allow the user to tune it in order to obtain a foam with a given porosity. However, $\alpha$ being global did not allow to precisely reached the experimental porosity of $93 \%$ for the open foam data used in the thesis while keeping a sensible reconstructed microstructure. Along with the above suggested improvements, the ability to tune this parameter $\alpha$ locally for each ellipsoid ,in order to reach a porosity for the reconstructed microstructure closer to the experimental one, may be worth investigating.

- The Ellipsoidal Model uses for the moment a standard Poisson surface reconstruction technique for generating a surface from a set of points and normals. However, this technique is known to only approximate points and unable to accurately reproduce sharp features. More advanced surface reconstruction techniques should be considered such as the screened Poisson surface reconstruction [78] which better approximate data points and sharp features, or reconstruction techniques explicitly detecting and labelling points located on (or near) sharp features such as described in References [146, 178, 179].
- With little adaptation ${ }^{1}$, the proposed image analysis steps and the Ellipsoidal Model may be applied in other context than foam, e.g., for composite materials or in the context of crystal microstructures.
- It has been shown in this thesis that the generated ellipsoids and associated polyhedra can be used in other models than the Ellipsoidal Model (namely in the DN-CT-SCAN model). It may be worthwhile to use these ellipsoids or associated polyhedra into other models, such an improved version of the $D N$ -CT-SCAN model described in Reference [43].
- Finally, it should be also possible, instead of streaming, to parallelise ${ }^{2}$ the proposed image analysis steps among multiple cores, each with a limited amount of available memory.

[^35]
## Appendix A

## Streaming

Streaming is the ability to process image by parts. This can be useful when memory is low or data to process are huge. Moreover, as free benefit, streaming allows parallel computations.

## A. 1 ITK's pipeline execution

The following is mostly a rewritten text taken from the ITK's documentation ${ }^{1}$. However, it is given here for the sake of completeness, but more importantly, this text is also given and for helping the understanding of the user. Indeed, the Ellipsoidal Model uses streaming intensively and streaming can not be properly understood without a good insight of the ITK's pipeline execution.

## A.1.1 ITK's image meta-data

Inside the ITK toolbox, an image is associated to the following meta-data: the size of the image, the origin of the image, the spacing, the directions and the physical extent (see Figure A.1). Moreover, three regions are associated to each image: the LargestPossibleRegion, the RequestedRegion and the BufferedRegion. A region is defined by its index (starting coordinates into the image) and a size (see Figure A.2).

- The LargestPossibleRegion generally corresponds to the whole image, unless a filter sets it otherwise by overriding the GenerateOutputInformation() method.
- The RequestedRegion is a subregion of the LargestPossibleRegion allowing a filter to request only some data instead of all of them. This is for instance useful for the streaming process, when only a part of the LargestPossibleRegion needs to be update through the pipeline.
- The BufferedRegion is also a subregion of the LargestPossibleRegion. It sets the actual amount of data allocated by the current data object for storing (part of) the image. The BufferedRegion is useful if a given filter has several outputs to feed with different output RequestedRegion (that may overlap). This region contains the union of all output requested regions. It gives the filter the ability to provide the needed data to each output without invoking too often the upstream filters (less than the number of requested outputs).

[^36]

Figure A.1: Meta-data associated to an ITK image (scheme from [69], Figure 4.1, pp. 46).

## A.1.2 ITK's pipeline execution

When a filter receive the Update() method invocation, the filter delegates the method to its input, invoking the DataObject::Update() method. In this way, the data request is propagated upstream in the pipeline (see Figure 2.5). The DataObject::Update() method calls itself three other methods:

1. DataObject::UpdateOutputInformation().
2. DataObject::PropagateRequetedRegion().
3. DataObject::UpdateOutputData().

## A.1.2.1 DataObject::UpdateOutputInformation()

This method sets a timer telling when the pipeline has been modified at the point of the corresponding calling object. This method set the image region needed at this point in the pipeline. As the image region depends on the calling object, the UpdateOutputInformation() method propagates upstream into the pipeline (by calling itself the UpdateOutputInformation() method of the upstream filter) and terminates at the source of the pipeline. During a call to the UpdateOutputInformation() method, a filter has the ability to set what he can provides as output to his calling object. This can be done through the overriding of the GenerateOutputInformation() method (which is invoked by UpdateOutputInformation()). The provided informations by the GenerateOutputInformation() method are the meta-data associated to the output image the current filter can provide. For instance, the itk::ShrinkImageFilter overrides this method in order to inform the downstream filter that it can only provides a maximum image size (largest possible region) which is a fraction of the original image size. If not overridden, the GenerateOutputInformation() method simply copy the meta-data generated by the GenerateOutputInformation() method of the upstream filter to the downstream filter.


Figure A.2: Example of largest possible region, requested regions and buffered region.

## A.1.2.2 DataObject::PropagateRequestedRegion()

This method propagates upstream the different data request of the filters. By default, the method requests the LargestPossibleRegion, but, if necessary, it can request any valid subregion of the LargestPossibleRegion. The PropagateRequestedRegion() method calls itself the following methods:

- EnlargeOutputRequestedRegion(DataObject output) allows the filter to tell downstream that it will provide more data than requested.
- GenerateOutputRequestedRegion(DataObject output) allows the filter to define separately different regions for each of its output (if more than one). By default, each output requested region are the same.
- GenerateInputRequestedRegion() allows the filter to inform the upstream objects that it will need a different input region than the current output requested region from the downstream filters. This is useful for filters needing a padding such as filters computing erosion or dilation.


## A.1.2.3 DataObject::UpdateOutputData()

This is the last method called by the Update() method. The UpdateOutputData() method ensures that the current filter is up-to-date within the pipeline. If not, this methods execute the filter through a call to the GenerateData() method, triggering the update of all downstream filters. Filters need to be executed in the following cases:

- An instance variable of a filter has been modified.
- The input of a filter has been changed.
- The input data has been released.
- An invalid RequestedRegion has been set and the filter did not output data.

The UpdateOutputData() method of a given filter invokes recursively the UpdateOutputData() of the upstream filters., until a source object is met or the encountered upstream filter is determined to be up-to-date and valid. Then, the recursion is unrolled by calling the GenerateData() method of each filter in the recursion stack.

## Appendix B

## Notion of distance

## B. 1 Distance transforms

Definition B.1. Given a binary image $I$ of domain $D_{I}$ and a distance $d$, the distance transform $\mathcal{D}(I)$ of image $I$, in the sense of the associated distance $d$, is the image to image transformation $\mathcal{D}: I \rightarrow J,(\mathbf{x}, p) \mapsto(\mathbf{x},[\mathcal{D}(I)](\mathbf{x}))$, with:

$$
\begin{equation*}
[\mathcal{D}(I)](\mathbf{x})=\min _{\mathbf{y} \in D_{I}}\{d(\mathbf{x}, \mathbf{y}) \mid I(\mathbf{y})=0\} \tag{B.1}
\end{equation*}
$$

The distance transform replaces the value of each non-zero pixel (called foreground pixel) by the value of the distance from its closer zero-valued pixel (called background or feature pixel). Note that the distance transform of a binary image is no more a binary image.
Definition B.2. The Euclidean distance transform $\mathcal{E D}$ is a distance transform where the associated distance $d$, is the euclidean distance $d: E \times E \rightarrow \mathcal{R}^{+},(u, v) \mapsto d(u, v)=$ $d_{2}(u, v)=\|u-v\|_{2}^{2}=\langle u-v \mid u-v\rangle$.

## B. 2 Maurer et al. algorithm

The algorithm of Maurer et al. [111] perform the Euclidean distance tranform of a binary image. Here are the details of how it works.

## B.2.1 Preliminary definitions.

Before describing the algorithm of Maurer et al., some definitions and properties are needed. The following definitions and properties are extracted from the article of Maurer et al. [111]. Figure are inspired from figures of the same article.

Definition B.3. In a binary image $I$, a feature pixel ( FP ) is a non-zero pixel.
Definition B.4. In a binary image $I$, the closest feature pixel (CFP) y of a given pixel $\mathbf{x}$ is the closest (in the sense of a given distance) non-zero pixel from $\mathbf{x}$ (which may be itself if $I(\mathbf{x}) \neq 0$ ). If two or more pixels are equally distant to $\mathbf{x}$ the CFP is chosen arbitrary among them.
Definition B.5. The closest feature transform (FT) of an image I of domain $D_{I}$ is: $F T$ : $I \rightarrow D_{I} \times D_{I} ;(\mathbf{x}, p) \mapsto(\mathbf{x}, F(\mathbf{x}, p))=(\mathbf{x}, \mathbf{y})$.

Where $\mathbf{y}=F(\mathbf{x}, p)$ is the position of the CFP of pixel $p$.
If the closest feature transform (FT) of an image is known, computing its distance transform (DT) is easy an can be done in linear time. Therefore, Maurer et al. algorithm focus on the computation of the FT in a linear time (with respect to the number of pixels).

Definition B.6. The $d$-dimensional subimage $I_{d, x}$ of image $I$ is the restriction of $I$ to the subspace for which the last $n-d$ coordinates of are identical to whose of $\mathbf{x}$. Obviously, $I_{n, \mathbf{x}}=I$.

Definition B.7. $F_{d}$ denotes the function $F$ given in definition B. 5 applied to the $d$ th dimension level $d>0$. More precisely:
$F_{d}: \mathbf{x} \mapsto F_{d}(\mathbf{x})$ is the CFP of $\mathbf{x}$ in $D_{I_{d, x}}$.
Naturally, $F_{n}=F$.
For $d=0, F_{0}: \mathbf{x} \mapsto F_{0}(\mathbf{x})$ is defined as follow:
$F_{0}(\mathbf{x})=\left\{\begin{array}{l}\mathbf{x} \text { if } I(\mathbf{x})=1 \\ \varnothing \text { elsewhere }\end{array}\right.$
Where $\varnothing$ denotes an undefined CFP.
Example B.1. $\forall \mathbf{x} \in D_{I}$ :

- $F_{1}(\mathbf{x})$ is the CFP of $\mathbf{x}$ in $I_{1, \mathbf{x}}$, which is the image line containing $\mathbf{x}$ along the first image's direction.
- $F_{2}(\mathbf{x})$ is the CFP of $\mathbf{x}$ in $I_{2, \mathbf{x}}$, which is the image plane containing $\mathbf{x}$ along the first and second image's directions.
- $F_{3}(\mathbf{x})$ is the CFP of $\mathbf{x}$ in $I_{3, \mathbf{x}}$, which is the image hyperplane containing $\mathbf{x}$ along the first three image's directions.

Definition B.8. $X_{d}=\left\{\mathbf{x}_{i}\right\}$ is the set of pixels in $D_{I}$ containing $\mathbf{x}_{i}$ and obtained by fixing all coordinates except the dth one which varies over the allowed image domain $D_{I}$.

Definition B.9. $R_{d}$ is the continuous line running through a particular set $X_{d}$.
Definition B.10. $S_{d}$ denotes the set of FP in the binary subimage $I_{d, x}$.
Definition B.11. $V_{S_{d}}$ denotes the Voronoï diagram which seeds are the points of $S_{d}$.
Definition B.12. $V_{d}^{*}=V_{S_{d}} \cap R_{d}$ is the intersection of the above Voronoï diagram with a line $R_{d}$.

Definition B.13. $S_{d}^{*}$ is the set of seeds from which the Voronoï diagram $V_{d}^{*}$ can be generated.

Definition B.14. $S_{d}^{\prime}=\left\{F_{d-1}\left(\mathbf{x}_{i}\right)\right\}$ is the set of CFP in the next lower dimension for the set $X_{d}=\left\{\mathbf{x}_{i}\right\}$. Clearly, $S_{d}^{\prime} \subseteq S_{d}$ (see Figure B.1).


Figure B.1: Points of the sets $S_{d}^{\prime}$ (green dots) and $S_{d}$ (all dots) along a particular line $R_{d}$. The open circles represents points from $X_{d}=\left\{\mathbf{x}_{i}\right\}$. The dots of $S_{d}$ represent the feature points (FP). The green dots of $S_{d}^{\prime}$ represent the closest feature points (CFP) of the points in $X_{d}$ for the next lower dimension. Example for a 2-dimensional image. Figure inspired from figure 1 of Maurer et al. [111].

## B.2.2 Properties

The following propositions describe the very heart of Maurer et al. algorithm.
Proposition B.1. (Property 4 of Maurer et al. [111]). Let's $\mathbf{x}$ and $\mathbf{y}$ two n-tuples that differ only in the values of the dth coordinate (i.e., $x_{i}=y_{i}, i \neq d$ ). For concreteness, assume that $x_{d}<y_{d}$. For any $\mathbf{u}$ and $\mathbf{v}$ such that one of the following two conditions is satisfied:

1. $d(\mathbf{x}, \mathbf{u}) \leq d(\mathbf{x}, \mathbf{v})$ and $d(\mathbf{y}, \mathbf{v})<d(\mathbf{y}, \mathbf{u})$
2. $d(\mathbf{x}, \mathbf{u})<d(\mathbf{x}, \mathbf{v})$ and $d(\mathbf{y}, \mathbf{v}) \leq d(\mathbf{y}, \mathbf{u})$

Then: $u_{d}<v_{d}$.
Where $d: D_{I} \times D_{I} \rightarrow \mathcal{R}^{+},(\mathbf{x}, \mathbf{y}) \mapsto d(\mathbf{x}, \mathbf{y})$ is a distance.
Proposition B.2. (Property 5 of Maurer et al. [111]). Let's $\mathbf{x}$ and $\mathbf{y}$ be two n-tuples that differ only in the values of the dth coordinate (i.e. $x_{i}=y_{i}, i \neq d$ ). Let's $\mathbf{u}$ and $\mathbf{v}$ be two n -tuples with identical values of the dth coordinates (i.e. $u_{d}=v_{d}$ ). If $d(\mathbf{x}, \mathbf{u}) \leq d(\mathbf{x}, \mathbf{v})$, then $d(\mathbf{y}, \mathbf{u}) \leq d(\mathbf{y}, \mathbf{v})$

Proposition B.3. (Remark 1 of Maurer et al. [111]).
Given:

- $\mathbf{f}=F_{d-1}(\mathbf{x})$ where $\mathbf{x}$ is a pixel position on $R_{d}$. It comes that $\mathbf{f} \in S_{d}$ as $\mathbf{f}$ is a CFP and, thus, a FP.
- $\mathbf{g} \neq \mathbf{f}$ another FP such that $\mathbf{g} \in S_{d}$ and $g_{d}=f_{d}$. By the definition of $F_{d-1}$, $d(\mathbf{x}, \mathbf{f}) \leq d(\mathbf{x}, \mathbf{g})$.
- $\mathbf{y} \neq \mathbf{x}$ another point on $R_{d}$. By proposition B.2: $d(\mathbf{y}, \mathbf{f}) \leq d(\mathbf{y}, \mathbf{g})$. Therefore, all points belonging to $R_{d}$ are at least as close to f than g .

As a consequence, the Voronoï cell associated to $\mathbf{g}$ either does not intersect $R_{d}$, or the Voronoï cells of seeds $\mathbf{f}$ and $\mathbf{g}$ both intersect $R_{d}$ along a common boundary. Hence, for any $\mathbf{g} \in S_{d}$, either $\mathbf{g} \in S_{d}^{\prime}$ or $\mathbf{g}$ shares a same dth coordinate of a point in $S_{d}^{\prime}$. mathematically speaking this translates as: $V_{d}^{*}=V_{S_{d}} \cap R_{d}=V_{S_{d}^{\prime}} \cap R_{d}$.

As a result, it is possible to construct the partial Voronoï diagram $V_{d}^{*}$ knowing only the CFP of $S_{d}^{\prime}$ obtained from the next lower dimension. This is the core of the idea of dimensional reduction used by the algorithm. Figure B. 2 illustrates this fact with an example.


Figure b.2: Comparison of Voronoï diagrams constructed from sets $S_{d}^{\prime}$ (green dots) and $S_{d}$ (all dots) along a particular line $R_{d}$. The open circles represents points from $X_{d}=\left\{\mathbf{x}_{i}\right\}$. The dots of $S_{d}$ represent the feature points (FP). The green dots of $S_{d}^{\prime}$ represent the closest feature points (CFP) of the points in $X_{d}$ for the next lower dimension. It can be seen that the intersections of the two Voronoï diagrams with $R^{d}$ are the same. The seeds computed in $S_{d}^{\prime}$ are thus sufficient for computing the CFP of points in $R_{d}$ for the next upper dimension. Example for a 2-dimensional image. Figures inspired from Figure 1 of Maurer et al. [111].

Proposition B.4. (Remark 2 of Maurer et al. [111]). Let's $\mathbf{f}, \mathbf{g} \in S_{d}^{*}$ and $\mathbf{x}, \mathbf{y}$ pixel coordinates on a line $R_{d}$. By proposition B.1, if $x_{d}<y_{d}$, then $f_{d}<g_{d}$. Reciprocally, if $f_{d}<g_{d}$, then $x_{d}<y_{d}$.

Thus, for knowing to which seed in $S_{d}^{*}$ a particular $\mathbf{x}$ on $R_{d}$ is associated to, it is sufficient to sort the points in $S_{d}^{*}$ by their d-th coordinate. Indeed, in that case, $V_{d}^{*}$ is a set of disjoint segments. Sweeping through this set of segments in the d-th coordinate order allows to retrieve the seed in $S_{d}^{*}$ associated to $\mathbf{x}$. Therefore, constructing explicitly $V_{d}^{*}$ is not needed.

Proposition B.5. (Remark 3 of Maurer et al. [111]). Let's:

- $\mathbf{u}, \mathbf{v}, \mathbf{w} \in S_{d}^{\prime}$ such that $u_{d}<v_{d}<w_{d}$.
- $\mathbf{x}_{\overline{\mathrm{uv}}}$ such that $d\left(\mathbf{u}, \mathbf{x}_{\overline{\mathrm{uv}}}\right)=d\left(\mathbf{v}, \mathbf{x}_{\overline{\mathrm{uv}}}\right)$.
- $\mathbf{x}_{\overline{\mathrm{vw}}}$ such that $d\left(\mathbf{v}, \mathbf{x}_{\overline{\mathrm{vw}}}\right)=d\left(\mathbf{w}, \mathbf{x}_{\overline{\mathrm{vw}}}\right)$.

By propositions B. 1 and B. 4 if $\left(\mathbf{x}_{\overline{\mathrm{uv}}}\right)_{d}>\left(\mathbf{x}_{\overline{\mathrm{vw}}}\right)_{d}$ then the Voronoï cell associated to $\mathbf{v}$ does not intersect $R_{d}$.

As $S_{d}^{*} \subseteq S_{d}^{\prime}$, this proposition is useful for constructing $S_{d}^{*}$ from $S_{d}^{\prime}$ by discarding points in $S_{d}^{\prime}$ whose associated Voronoî cells do not intersect $R_{d}$.

## B.2.3 Computation of the FT

Maurer's et al. algorithm is sketched in algorithm 39. A more complete and precise version can be found in the article of Maurer et al. [111].

```
Algorithm 39 Maurer et al. algorithm.
Require: Binary image \(I\) of dimension \(n\).
 procedure MAURERFT(I)
 for Traverse the pixel coordinates \(\mathbf{x}\) do
 Compute the set \(S_{1}^{\prime} \leftarrow\left\{F_{0}(\mathbf{x})\right\}\)
 end for
 \(S_{1}^{*} \leftarrow S_{1}^{\prime}\)
 \(\triangleright\) Recursion
 for \(d=1, \ldots, n\) do
 for Each line \(R_{d}\) along direction \(d\) do
 for Each pixel coordinate \(\mathbf{x}\) along the current line do
 Knowing \(S_{d}^{*}\) containing the seeds of \(V_{d}^{*}\),
 update \(S_{d+1}^{\prime} \leftarrow S_{d+1}^{\prime} \cup\left\{F_{d}(\mathbf{x})\right\}\)
 by querying to which Voronoi cell of \(V_{d}^{*}, \mathbf{x}\) belongs.
 end for
 end for
 From \(S_{d+1}^{\prime}\) construct \(S_{d+1}^{*}\) using proposition B.5.
 end for
 end procedure
```


## Appendix C

## Mathematical morphology

The present appendix is devoted to the definition of some basic concepts of mathematical morphology and some popular algorithms (watershed transform, H-maxima transform, etc.) T

Definition C.1. Following P. Soille [155], "mathematical morphology can be defined as a theory for the analysis of spatial structures. [...] it aims at analysing the shape and forms of objects".

## C. 1 Grayscale reconstruction

Grayscale reconstruction is a major concept in the context of mathematical morphology, as it is at the origin of some important image to image transformations as, e.g. the h-maxima transform, h-convex transform, regional maxima and watershed transformation (see References [176] or [155] for more informations).

## C.1.1 Binary reconstruction

Definition C.2. (L. Vincent [176].)
If $I, J$ are two binary images sharing the same discrete domain $D$ such that:

$$
\forall \mathbf{x} \in D, J(\mathbf{x})=1 \Rightarrow I(\mathbf{x})=1
$$

then, $J$ is called the marker, while $I$ is called the mask.
Definition C.3. (L. Vincent [176].)
Let's $I, J$ be two binary images where $I$ is the mask and $J$ the marker. Given connected components $I_{1}, \ldots, I_{k}$ of $I$ the reconstruction $\rho_{I}(J)$ is the union of the connected components of $I$ which contain at least one pixel of $J$ :

$$
\begin{equation*}
\rho_{I}(J)=\cup_{J \cap I_{k} \neq \varnothing} I_{k} \tag{C.1}
\end{equation*}
$$

Figure C. 1 illustrates a reconstruction of a binary image $I$ from its marker $J$.


FIgURE C.1: Binary image reconstruction of a mask I (gray objects) from a marker $J$ (black objects).

## C.1.2 Geodesic distance

Definition C.4. (P. Soille [155])
For a binary image $I$ of domain $D_{I}$, let's $X \subset D_{I}$. The geodesic distance $d_{X}(\mathbf{x}, \mathbf{y})$ between two pixels $\mathbf{x}, \mathbf{y} \in X$ is the minimal length $L\left(P_{\mathbf{x}, \mathbf{y}}\right)$ of a path $P_{\mathbf{x}, \mathbf{y}}$ joining $\mathbf{x}$ to y such that $P_{\mathrm{x}, \mathrm{y}} \subset X$ :

$$
d_{X}(\mathbf{x}, \mathbf{y})=\min \left\{L\left(P_{\mathbf{x}, \mathbf{y}}\right) \mid P_{\mathbf{x}, \mathbf{y}} \subset X\right\}
$$

Figure C.2a illustrates the concept of geodesic distance between two pixels. Note that the geodesic distance depends on how the pixel of the image $I$ are connected to their neighbours. Indeed the length $L\left(P_{\mathbf{x}, \mathbf{y}}\right)$ of a path $P_{\mathbf{x}, \mathbf{y}}$ between two pixels $\mathbf{x}$ and $\mathbf{y}$ depends on the digitalisation network that allows to reach $\mathbf{y}$ from $\mathbf{x}$.

Definition C.5. (P. Soille [155])
For a binary image $I$ of domain $D_{I}$, let's $X \subset D_{I}$ and $Y \subset X$. Then, the geodesic distance $d_{X}(\mathbf{x}, Y)$ between a pixel $\mathbf{x} \in X$ and $Y$ is:

$$
d_{X}(\mathbf{x}, Y)=\min _{\mathbf{y} \in Y} d_{X}(\mathbf{x}, \mathbf{y})
$$

Where $d_{X}(\mathbf{x}, \mathbf{y})$ is the geodesic distance between $\mathbf{x}$ and $\mathbf{y}$.
Figure C.2b illustrates the concept of geodesic distance between a pixel and a connected set.

(a) Geodesic distance $d_{X}(\mathbf{x}, \mathbf{y})$ between two pixels $\mathbf{x}$ and $\mathbf{y}$ in a connected set $X$.

(b) Geodesic distance $d_{X}(\mathbf{x}, Y)$ between a pixel $\mathbf{x}$ and a connected set $\mathbf{Y}$ in a connected set $X$.

Figure C.2: Geodesic distance between a pixel and a connected set.

Definition C.6. (P. Soille [155])
Let's considerer an image $I$ of domain $D_{I}$, a set $X=\cup_{i=1}^{k} K_{i}$, where the $K_{i} \subset A$ are disjoints connected components and $A \subset D_{I}$ is a larger connected component.

The geodesic influence zone $I Z_{A}\left(K_{i}\right)$ of a connected component $K_{i}$ of $X$ in $A$ is the locus of points of $A$ whose geodesic distance (see definition C.5) is smaller than any other component of $X$ :

$$
I Z_{A}\left(K_{i}\right)=\left\{\mathbf{x} \in A \mid \forall j=1, \ldots, k, j \neq i, d_{A}\left(\mathbf{x}, K_{i}\right) \leq d_{A}\left(\mathbf{x}, K_{j}\right)\right\} .
$$

Definition C.7. (L. Vincent [176].)
Under the conditions of definition C.5, the geodesic dilation $\delta_{X}^{(n)}(Y)$ of size $n \geq 0$ of $Y$ within $X$ is the set of pixels in $X$ whose distance from $Y$ is smaller or equal to $n$ :

$$
\delta_{X}^{(n)}(Y)=\left\{\mathbf{x} \in X \mid d_{X}(\mathbf{x}, Y) \leq n\right\} .
$$

The following proposition allows to express a binary reconstruction in terms of geodesic distance.

Proposition C.1. (L. Vincent [176].)
For a binary image $I$ of domain $D_{I}$ and two sets $X$ and $Y$ such that $Y \subset X \subset D_{I}$, the reconstruction of $X$ from $Y$ is obtained from:

$$
\rho_{X}(Y)=\cup_{n \geq 1} \delta_{X}^{(n)}(Y)
$$

## C.1.3 Grayscale reconstruction

Grayscale reconstruction extend the above concept of binary reconstruction to grayscale image. Basically, grayscale reconstruction is obtained from several binary reconstructions applied to the threshold decomposition of the considered image (see definition C.8).

Definition C.8. (L. Vincent [176].)
For a grayscale image $I$ of domain $D_{I}$, its threshold at level $k$, is the image transformation $T_{k}: I \rightarrow J ; I \mapsto T_{k}(I)$, with $k \in\left\{0,1, \ldots, t_{\mu}\right\}$, defined as:

$$
\begin{equation*}
T_{k}(I)=\left\{\mathbf{x} \in D_{I} \mid I(\mathbf{x}) \geq k\right\} . \tag{C.2}
\end{equation*}
$$

The set of binary images $\left\{T_{k}(I)\right\}_{k=0, \ldots, t_{m} u}$ is called the threshold decomposition of $I$.

## Definition C.9. (L. Vincent [176].)

Given $I$ and $J$ two grayscale images defined on the same domain $D_{I}$, taking their values in the discrete set $\{0,1, \ldots, N-1\}$ and such that:

$$
\forall \mathbf{x} \in D_{I}, J(\mathbf{x}) \leq I(\mathbf{x}) .
$$

The grayscale reconstruction $\rho_{I}(J)$ of $I$ from $J$ is given by:

$$
\forall \mathbf{x} \in D_{I}, \rho_{I}(J)(\mathbf{x})=\max \left\{k \in[0, N-1] \mid \mathbf{x} \in \rho_{T_{k}(I)}\left(T_{k}(J)\right)\right\} .
$$

Figure C. 3 sketches a grayscale reconstruction.

Definition C.10. A queue-based reconstruction of a grayscale image I from a grayscale image $J$ of same domain $D_{I}$, is the grayscale reconstruction of $I$ from $J$ obtained from a grayscale reconstruction algorithm using a queue of pixels, such as described in [176] or [53].


Figure C.3: Example of a grayscale reconstruction of a mask $I$ from a marker J. (Image from L.Vincent [176], Figure 8).

## C. 2 Local maxima of an image

Obtaining local (or regional) maxima of an image is a useful morphological operation for identifying and marking image features such as cell centres or dark/bright features. For instance, these identified features may subsequently be used for markercontrolled segmentation processes, such as the marker-controlled watershed transformation (see Reference [155]).

Definition C.11. (L. Vincent [176].)
For a grayscale image $I$ of domain $D_{I}, \mathbf{x} \in D_{I}$ is a discrete local maximum over a given neighbourhood $N_{I}(\mathbf{x})$ if:

$$
\begin{equation*}
\forall \mathbf{y} \in N_{I}(\mathbf{x}), I(\mathbf{y}) \leq I(\mathbf{x}) . \tag{C.3}
\end{equation*}
$$

Definition C.12. (L. Vincent [176].)
For a grayscale image $I$ of domain $D_{I}$, a regional maximum at altitude $h$ of $I$ is a connected component $C$ of $T_{h}(I)$ such that $C \cap T_{h+1}(I)=\varnothing$.

Definition C.13. For a discrete grayscale digitalised image $I$ of domain $D_{I}$, a plateau is a connected component $C \subset D_{I}$ such that $\forall \mathbf{x} \in C, I(\mathbf{x})=c s t$.

Proposition C.2. (L. Vincent [176].)
Given a grayscale image $I$, the (binary) image $R M A X(I)$ of the regional maxima of I is given by:

$$
\begin{equation*}
\operatorname{RMAX}(I)=I-\rho_{I}(I-1) . \tag{С.4}
\end{equation*}
$$

Where $\rho_{I}(I-1)$ is the grayscale reconstruction of $I$ from $I-1$.

## C. 3 H-maxima/minima transformation

For a given image $I$, local/regional maxima mark relevant as well as irrelevant features. The H -maxima transformation acts as a filter for discarding irrelevant maxima. More precisely, the H-maxima transformation discards maxima whose depth is lower than the value $h$.

Definition C.14. Given a grayscale image $I$ of domain $D_{I}$ and global maximum $h_{\max }=\max _{\mathbf{x} \in D_{I}} I(\mathbf{x})$, its inverse $\operatorname{INV}(I)$ is:

$$
\begin{equation*}
\forall \mathbf{x} \in D_{I}, I N V(I)(\mathbf{x})=h_{\max }-I(\mathbf{x}) \tag{C.5}
\end{equation*}
$$

Definition C.15. (P. Soille [155])
Given a grayscale image $I$, its h-maxima transformation $\operatorname{HMAX}_{h}(I)$ is defined by:

$$
\begin{equation*}
\operatorname{HMAX}_{h}(I)=\rho_{I}(I-h) \tag{C.6}
\end{equation*}
$$

Where $\rho_{I}(I-h)$ is the grayscale reconstruction of $I$ by $(I-h)$ (see definition C.9). Figure C. 4 illustrates a h-maxima transform of an image.

Definition C.16. Given a grayscale image $I$, its h-minima transformation $\operatorname{HMIN}_{h}(I)$ is defined by:

$$
\begin{equation*}
\operatorname{HMIN}_{h}(J)=\rho_{J+h}(J), J=I N V(I) \tag{C.7}
\end{equation*}
$$

Where $\rho_{J+h}(J)$ is the grayscale reconstruction of $(J+h)$ by $J$ (see definition C.9) and $\operatorname{INV}(I)$ is the "inverse" of image $I$ (see definition C.14).


Figure C.4: H-maxima transformation of a 1-dimensional image using a depth $h=4$. (Image inspired from P. Soille [155], Figure 6.16).

## C. 4 H-convex/concave transformation

The H -convex transformation of an image $I$ extracts relevant regional maxima thanks to a H-maxima transform (see definition C.15).

Definition C.17. (P. Soille [155])
Given a grayscale image $I$, its H-convex transformation $\operatorname{HCONVEX}_{h}(I)$ is defined by:

$$
\begin{equation*}
\operatorname{HCONVEX}_{h}(I)=I-\operatorname{HMAX}_{h}(I) . \tag{C.8}
\end{equation*}
$$

Where $\operatorname{HMAX}_{h}(I)$ is the H -maxima transformation of image $I$ (see definition C.15). Figure C. 5 illustrates a H-convex transform of an image.

Definition C.18. (P. Soille [155])
Given a grayscale image $I$, its h-concave transformation $\operatorname{HCONCAVE}_{h}(I)$ is defined by:

$$
\begin{equation*}
\operatorname{HCONCAVE}_{h}(I)=\operatorname{HMIN}_{h}(I)-I . \tag{C.9}
\end{equation*}
$$

Where $\mathrm{HMIN}_{h}(I)$ is the H -minima transformation of image $I$ (see definition C.16).


Figure C.5: H-convex transformation of a 1 -dimensional image using a depth $h=1$. (Image from L.Vincent [176], figure 11).

## C. 5 Watershed transform

Watershed transformation is a key morphological transformation for segmenting images (P.Soille [155]). In the context of cellular materials, porous materials and microscopy images, the watershed transformation is extensively used, often together with the H-maxima transform, for identifying features as cell and cell walls (e.g. in References [ $3,149,165,33,137,38,95,169,73,117]$ to name a few).

## C.5.1 Formal definition (P. Soille [155])

As suggested by the above basic idea, The watershed transformation can be defined formally in terms of flooding simulation (P. Soille [155]), where one can imagine that pinholes have been open at the regional minima. Then the topographic "landscape" represented by the grayscale image $I$ is progressively immersed into water. The water will progressively flood the "landscape" through the pinholes, creating
catchment basins. Before defining the watershed transformation, some notation are needed:

- A grayscale image $I$ of domain $D_{I}$ is considered.
- $h_{\text {min }}$ is the smallest image value of $I: h_{\text {min }}=\min _{\mathbf{x} \in D_{I}} I(\mathbf{x})$.
- $h_{\max }$ is the largest image value of $I: h_{\max }=\max _{\mathbf{x} \in D_{I}} I(\mathbf{x})$.
- $C B(M)$ is the catchment basin associated to a minimum $M$.
- $C B_{h}(M)$ are the set of pixels of catchment basin $C B(M)$ which have an altitude less than or equal to $h$ : $C B_{h}(M)=\{\mathbf{x} \in C B(M) \mid I(\mathbf{x}) \leq h\}$.
- $\forall \mathbf{x} \in D_{I}, \tau_{t}(I)(\mathbf{x})=\left\{\begin{array}{l}I(\mathbf{x}) \text { if } I(\mathbf{x}) \leq t \\ 0 \text { elsewhere. }\end{array}\right.$
- $\tau_{t \leq h}(I)=\cup_{t \leq h} \tau_{t}(I)$.
- $X_{h}$ is the subset of pixels of all catchment basins with gray value less than or equal to $h$ : $X_{h}=\cup_{i} C B_{h}\left(M_{i}\right)$.

The catchment basins are then constructed recursively as:

$$
\begin{align*}
& \cdot X_{h_{\text {min }}}=R M I N_{h_{\text {min }}}(I)  \tag{С.10}\\
& \cdot \forall h \in\left[h_{\min }, h_{\max }-1\right], X_{h+1}=R M I N_{h+1}(I) \cup I Z_{T_{h+1}(I N V(I))}\left(X_{h}\right) \tag{C.11}
\end{align*}
$$

Where RMIN is the regional minima transformations (see definition C.16), INV (I) is the image "inverse" of $I$ (see definition C.14) and $I Z$ is the influence zone (see definition C.6), and $X_{h_{\text {max }}}$ is the set of catchment basins.

Definition C.19. (P. Soille [155])
The watershed transformation of an image I corresponds to the boundaries of the catchment basins $X_{h_{\text {max }}}$ of $I$.

## Appendix D

## Closest point of a polyhedra to an ellipsoid

This appendix describes how to solve the problem of finding the closest point belonging to a polyhedra to an ellipsoid.

Note: if the reader is not familiar with the notions of constrained convex optimisation, it is recommend to refer to the excellent book of Boyd and Vandenberghe [26] before continuing.

## D. 1 Problem to solve

The following convex constrained problem is considered:

$$
\left\{\begin{align*}
\arg & \min _{\tilde{\mathbf{x}} \in \mathcal{R}^{n}, \mathbf{w} \in \mathcal{R}^{m}}\|\tilde{\mathbf{x}}\|^{2}=\tilde{\mathbf{x}}^{+} \tilde{\mathbf{x}}  \tag{D.1}\\
& \sum_{k=1}^{m} \tilde{\mathbf{v}}_{j, k} w_{k} \tilde{\mathbf{x}} \\
\text { s.t. } & \sum_{k=1}^{m} w_{k}=1 \\
& \mathbf{w} \succeq \mathbf{0}
\end{align*}\right.
$$

## D. 2 KKT constraint qualifications

In the problem D.1, it is possible to reduce the number of variables by injecting the first constraint in the objective function. Then problem D. 1 can be expressed as:

$$
\left\{\begin{array}{cl}
\arg & \min _{\mathbf{w} \in \mathcal{R}^{m}} \mathbf{w}^{t} \tilde{V}^{t} \tilde{V} \mathbf{w}  \tag{D.2}\\
\text { s.t. } & \sum_{k=1}^{m} w_{k}=1 \\
\mathbf{w} \succeq \mathbf{0}
\end{array}\right.
$$

Where, $\tilde{\mathbf{x}}=\tilde{V} \mathbf{w}$, and $\tilde{V}=\left(\tilde{\mathbf{v}}_{j, 1}, \ldots, \tilde{\mathbf{v}}_{j, m}\right) \in \mathcal{R}^{n \times m}$.
The restated problem D. 2 is fo the form:

$$
\left\{\begin{array}{cl}
\arg & \min _{\mathbf{w} \in \mathcal{R}^{m}} \frac{1}{2} \mathbf{w}^{t} Q \mathbf{w}  \tag{D.3}\\
\text { s.t. } & G \mathbf{w} \preceq \mathbf{0} \\
& A \mathbf{w}=b
\end{array}\right.
$$

Where, $Q=2 \tilde{V}^{t} \tilde{V} \in \mathcal{R}^{m \times m}$ is a symmetric definite positive matrix, $G=-I \in$ $\mathcal{R}^{m \times m}$ ( $I$ is the identity matrix), $b=1 \in \mathcal{R}$ and $A=(1, \ldots, 1) \in \mathcal{R}^{1 \times m}$.

Problems of the type of problem D. 3 has been considered and solved by J. Mattingley and S. Boyd [110] in a more general form. By introducing a slack variable $\mathbf{s} \in \mathcal{R}^{m}$, J. Mattingley and S. Boyd transform the problem D. 3 to:

$$
\left\{\begin{array}{cl}
\arg & \min _{\mathbf{w}, \mathbf{s} \in \mathcal{R}^{m}} \frac{1}{2} \mathbf{w}^{t} Q \mathbf{w}  \tag{D.4}\\
& G \mathbf{w}+\mathbf{s}=\mathbf{0} \\
\text { s.t. } & A \mathbf{w}=b \\
& \mathbf{s} \succeq \mathbf{0}
\end{array}\right.
$$

With the associated Lagrangian:
$L: \mathcal{R}^{m} \times \mathcal{R}^{m} \times \mathcal{R}^{m} \times \mathcal{R} \rightarrow \mathcal{R} ;(\mathbf{w}, \mathbf{s}, \boldsymbol{\lambda}, \mu) \mapsto L(\mathbf{w}, \mathbf{s}, \boldsymbol{\lambda}, \mu)=\frac{1}{2} \mathbf{w}^{t} Q \mathbf{w}+\lambda^{t} G \mathbf{w}+\mu(A \mathbf{w}-b)$
Where $\lambda$ are the dual variables associated with the inequality constraints, and $\mu$ the variable associated with the equality constraint.

And the associated KKT constraint qualifications are given by:

1. $\mathbf{s} \succeq \mathbf{0}, G \mathbf{w}+\mathbf{s}=\mathbf{0}, A \mathbf{w}=b$ (primal feasibility).
2. $\lambda \succeq 0$ (dual feasibility).
3. $\lambda^{t} \mathbf{s}=0$ (complementary slackness).
4. $\frac{\partial L}{\partial \mathbf{w}}=\mathbf{0}=Q \mathbf{w}+G^{t} \boldsymbol{\lambda}+A^{t} \mu$ (stationarity).

## D. 3 Algorithm solving the optimisation problem D. 1

J. Mattingley and S. Boyd use a primal-dual iterative procedure for solving problem D. 4 using the above KKT constraint qualifications. This iterative procedure requires initial values for primal and dual variables $\mathbf{w}, \mathbf{s} \boldsymbol{\lambda}, \mu$. These initial values are found by solving analytically the two problems D. 6 and D.7. For details about the computations, see References [110] and [167].

$$
\begin{gather*}
\left\{\begin{array}{c}
\arg \min _{\mathbf{s}, \mathbf{w} \in \mathcal{R}^{m}} \frac{1}{2} \mathbf{w} Q \mathbf{w}+\frac{1}{2}\|\mathbf{s}\|^{2} \\
\text { s.t. } \quad \begin{array}{l}
\mathrm{w}+\mathbf{s}=\mathbf{0}
\end{array} \\
A \mathbf{w}=1
\end{array}\right.  \tag{D.6}\\
\left\{\begin{array}{l}
\arg \max _{v, \lambda \in \mathcal{R}^{m}, \mu \in \mathcal{R}}-\frac{1}{2} v^{t} Q v-b \mu-\frac{1}{2}\|\lambda\|^{2} \\
\text { s.t. } Q v+G^{t} \boldsymbol{\lambda}+A^{t} \mu=\mathbf{0}
\end{array}\right. \tag{D.7}
\end{gather*}
$$

The procedure for solving problem D. 4 is given by algorithm 41.

```
Algorithm 40 Initialisation algorithm for algorithm 41
Require: Convex polyhedral obstacle \(\tilde{\zeta}_{j}\).
 : procedure CVXINIT(\(\left.\tilde{\zeta}_{j}\right)\)
 2: \(\quad\) Solve \(\left(\begin{array}{ccc}Q & G^{t} & A^{t} \\ G & -I & 0 \\ A & 0 & 0\end{array}\right)\left(\begin{array}{c}\mathbf{w} \\ \lambda \\ \mu\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ b\end{array}\right)\).
 \(\mathbf{w}^{(0)} \leftarrow \mathbf{w}, \mu^{(0)} \leftarrow \mu, \lambda \leftarrow G \mathbf{w}\).
 \(\alpha_{p} \leftarrow \inf \{\alpha \mid-\lambda+\alpha \mathbf{1} \succeq \mathbf{0}\}\).
 \(\mathbf{s}^{(0)} \leftarrow\left\{\begin{array}{l}\boldsymbol{\lambda} \text { if } \alpha_{p}<0 \\ -\lambda+(1+\end{array}\right.\)
 \(\alpha_{d} \leftarrow \inf \{\alpha \mid \lambda+\alpha \mathbf{1} \succeq \mathbf{0}\}\).
 \(\lambda^{(0)} \leftarrow\left\{\begin{array}{l}\lambda \text { if } \alpha_{d}<0 \\ \lambda+\left(1+\alpha_{d}\right)\end{array}\right.\)
 return \(\mathbf{w}^{(0)}, \mathbf{s}^{(0)}, \lambda^{(0)}, \mu^{(0)}\).
 end procedure
```

Algorithm 41 Simplified version of the algorithm of J. Mattingley and S. Boyd
([110]). Find the closest point belonging to a convex polyhedral obstacle $\zeta_{j}$ from
an ellipsoid $\mathcal{E}$.
Require: Ellipsoid $\mathcal{E}(E, \mathbf{c})$.
Require: Convex polyhedral obstacle $\zeta_{j}$.
procedure $\operatorname{CVX}\left(E, \mathbf{c}, \zeta_{j}\right)$

$$
\begin{array}{lr}
\tilde{\zeta}_{j} \leftarrow E^{-1}\left(\zeta_{j}-\mathbf{c}\right) & \triangleright \text { Step } 0 . \\
\mathbf{w}^{(0)}, \mathbf{s}^{(0)}, \lambda^{(0)}, \mu^{(0)} \leftarrow \operatorname{CVXINIT}\left(\tilde{\zeta}_{j}\right) . & \triangleright \text { Algorithm } 40 .
\end{array}
$$

Compute affine scaling directions by solving: $\triangleright$ Step 1 .

$$
\left(\begin{array}{cccc}
Q & 0 & G^{t} & A^{t} \\
0 & \Lambda & S & 0 \\
G & I & 0 & 0 \\
A & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
\Delta \mathbf{w}^{a f f} \\
\Delta \mathbf{s}^{a f f} \\
\Delta \lambda^{a f f} \\
\Delta \mu^{a f f}
\end{array}\right)=\left(\begin{array}{c}
-\left(A^{t} \mu+G^{t} \boldsymbol{\lambda}+Q \mathbf{w}\right) \\
-S \lambda \\
-(G \mathbf{w}+\mathbf{s}) \\
-(A \mathbf{w}-b)
\end{array}\right)
$$

$$
\text { Where } S=\left(\begin{array}{ccc}
s_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & s_{m}
\end{array}\right) \text { and } \Lambda=\left(\begin{array}{ccc}
\lambda_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \lambda_{m}
\end{array}\right)
$$

$$
\left(\begin{array}{cccc}
Q & 0 & G^{t} & A^{t} \\
0 & \Lambda & S & 0 \\
G & I & 0 & 0 \\
A & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
\Delta \mathbf{w}^{c c} \\
\Delta \mathbf{s}^{c c} \\
\Delta \lambda^{c c} \\
\Delta \mu^{c c}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\sigma \beta \mathbf{1}-\Delta S^{a f f} \Delta \lambda^{a f f} \\
0 \\
0
\end{array}\right)
$$

Where

$$
\Delta S^{a f f}=\left(\begin{array}{ccc}
\Delta s_{1}^{a f f} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \Delta s_{m}^{a f f}
\end{array}\right)
$$

$\beta=\frac{\mathbf{s}^{t} \lambda}{m} \quad$ and $\quad \sigma=\left(\frac{\left(\mathbf{s}+\alpha \Delta \mathbf{s}^{a f f}\right)^{t}\left(\lambda+\alpha \Delta \lambda^{a f f}\right)}{\mathbf{s}^{t} \lambda}\right)^{3} \quad$ with
$\alpha=\sup \left\{\tilde{\alpha} \in[0,1] \mid \mathbf{s}+\tilde{\alpha} \Delta \mathbf{s}^{a f f} \succeq \mathbf{0}, \lambda+\tilde{\alpha} \Delta \lambda^{a f f} \succeq \mathbf{0}\right\}$.
$\alpha \leftarrow \min \{1,0.99 \sup \{\tilde{\alpha} \geq 0 \mid \mathbf{s}+\tilde{\alpha} \Delta \mathbf{s} \succeq \mathbf{0}, \lambda+\tilde{\alpha} \Delta \lambda \succeq \mathbf{0}\}\}$.
Update the primal and dual variables:
$\triangleright$ Step 3.
$\mathbf{w} \leftarrow \mathbf{w}+\alpha\left(\Delta \mathbf{w}^{a f f}+\Delta \mathbf{w}^{c c}\right)$.
$\mathbf{s} \leftarrow \mathbf{s}+\alpha\left(\Delta \mathbf{s}^{a f f}+\Delta \mathbf{s}^{c c}\right)$.
$\lambda \leftarrow \lambda+\alpha\left(\Delta \lambda^{a f f}+\Delta \lambda^{c c}\right)$.
$\mu \leftarrow \mu+\alpha\left(\Delta \mu^{a f f}+\Delta \mu^{c c}\right)$.
if residual $\leq \epsilon$ then

$$
\tilde{\mathbf{x}}^{*} \leftarrow \sum_{k=1}^{m} \tilde{\mathbf{v}}_{j, k} w_{k} . \quad \triangleright\left\{\tilde{\mathbf{v}}_{j, k}\right\}_{k=1, \ldots, m}: \text { vertices of } \tilde{\widetilde{\zeta}}_{j}
$$

$$
\text { return } \mathbf{x}^{*}=E \tilde{\mathbf{x}}^{*}+\mathbf{c}
$$

else
Go to step 1.
end if
end procedure

## Appendix E

## Maximum volume ellipsoid inside a polyhedron

The algorithm of R. Deits and R. Tedrake also requires to find the maximum volume ellipsoid contained in a polyhedron. This problem has been tackle by numerous authors (see, e.g., [168] for a few references). The proposed solution here relies on the article of Y. Zhang and L. Gao ([189]). The following is merely a detailed explanation of the algorithm developed by Y. Zhang and L. Gao and taken from their own article [189].

Note: if the reader is not familiar with the notions of constrained convex optimisation, it is recommend to refer to the excellent book of Boyd and Vandenberghe [26] before continuing.

## E. 1 Mathematical expression of the problem.

Let's, on the one hand, $P \in \mathcal{R}^{n}$ be a polyhedron represented by:

$$
\begin{equation*}
P=P(A, \mathbf{b})=\left\{\mathbf{x} \in \mathcal{R}^{n} \mid A \mathbf{x} \leq \mathbf{b}\right\} \tag{E.1}
\end{equation*}
$$

Where $\mathbf{b} \in \mathcal{R}^{m}$ and $A \in \mathcal{R}^{m \times n}, m>n$ has full rank $n$ and contains no zero rows. Moreover, it is assumed that $\exists \overline{\mathbf{x}} \in \operatorname{int}(P)$ such that $A \overline{\mathbf{x}}<\mathbf{b}$. (int $(P)$ refers to the interior of set $P$ ).

On the other hand, let's $\mathcal{E} \subset \mathcal{R}^{n}$ be an ellipsoid of centre $\mathbf{c} \in \mathcal{R}^{n}$ with a nonsingular scaling matrix $E=G^{-t}$. $\mathcal{E}$ can be represented as:

$$
\begin{equation*}
\mathcal{E}(\mathbf{c}, E)=\left\{\mathbf{x} \in \mathcal{R}^{n} \mid \mathbf{x}=\mathbf{c}+E \mathbf{y},\|\mathbf{y}\| \leq 1\right\} \tag{E.2}
\end{equation*}
$$

Ellipsoid $\mathcal{E}(\mathbf{c}, E) \subset P$ if, and only if:

$$
\begin{equation*}
\sup _{\|\mathbf{y}\|=1} \mathbf{a}_{i}^{t}(\mathbf{c}+E \mathbf{y}) \leq b_{i}, i=1, \ldots, m \tag{E.3}
\end{equation*}
$$

Where $\mathbf{a}_{i}$ is the ith row of $A$.

Equivalently, condition E. 3 can be rewritten:

$$
\begin{equation*}
\mathbf{a}_{i}^{t} \mathbf{c}+\left\|E \mathbf{a}_{i}\right\| \leq b_{i}, i=1, \ldots, m \tag{E.4}
\end{equation*}
$$

Let's introduce the notation:

$$
\begin{equation*}
\mathbf{h}(E)=\left(\left\|E \mathbf{a}_{1}\right\|, \ldots,\left\|E \mathbf{a}_{m}\right\|\right)^{t} \in \mathcal{R}^{m} \tag{E.5}
\end{equation*}
$$

Then:

$$
\begin{equation*}
\mathcal{E}(\mathbf{c}, E) \subset P \Leftrightarrow \mathbf{b}-A \mathbf{c}-\mathbf{h}(E) \succeq 0 \tag{E.6}
\end{equation*}
$$

The volume $\operatorname{Vol}(\mathcal{E})$ of ellipsoid $\mathcal{E}$ is given by:

$$
\begin{equation*}
\operatorname{Vol}(\mathcal{E})=V_{0} \prod_{i=1}^{n} r_{i} \propto \prod_{i=1}^{n} r_{i} \tag{E.7}
\end{equation*}
$$

Where $V_{0}=\frac{2 \pi^{n / 2}}{n \Gamma\left(\frac{1}{2} n\right)}$ is the volume of the unit sphere in $\mathcal{R}^{n 1}$ and the $\left\{r_{i}\right\}_{i=1, \ldots, n}$ are the semi-axis lengths of the ellipsoid.

The semi-axis lengths $\left\{r_{i}\right\}_{i=1, \ldots, n}$ are related to the singular values $\left\{\mu_{i}\right\}_{i=1, \ldots, n}$ of the scaling matrix $E$ as follow:

$$
r_{i}=\mu_{i}, i=1, \ldots, n
$$

Therefore:

$$
\begin{equation*}
\frac{1}{\operatorname{Vol}(\mathcal{E})} \propto \operatorname{det}\left(E^{-1}\right)=(\operatorname{det}(E))^{-1} \tag{E.8}
\end{equation*}
$$

Maximising the ellipsoid volume $\operatorname{Vol}(\mathcal{E})$ is thus equivalent to minimising

$$
\begin{equation*}
\ln \left((\operatorname{det}(E))^{-1}\right)=-\ln \operatorname{det}(E) \tag{E.9}
\end{equation*}
$$

as the logarithmic function $\ln$ is bijective over $\mathcal{R}_{+} \backslash\{0\}$.

Finding the maximum volume ellipsoid $\mathcal{E}(\mathbf{c}, E) \subset P$ amounts to solve the following optimisation problem:

$$
\left\{\begin{array}{l}
\min _{\mathbf{c}, E}-\ln \operatorname{det}(E)  \tag{E.10}\\
\quad \mathbf{b}-A \mathbf{c}-\mathbf{h}(E) \succeq 0 \\
\text { s.t. } \\
\quad E \succ 0
\end{array}\right.
$$

The Lagrangian and dual function associated to the optimisation problem E. 10 are respectively:

$$
\begin{aligned}
& L(\mathbf{c}, E, \boldsymbol{\lambda})=-\ln \operatorname{det}(E)-\lambda^{t}(\mathbf{b}-A \mathbf{c}-\mathbf{h}(E)) \\
& g(\boldsymbol{\lambda})=i n f_{\mathbf{c}, E} L(\mathbf{c}, E, \boldsymbol{\lambda})
\end{aligned}
$$

[^37]
## E.1.1 KKT constraint qualifications

The optimisation problem E. 10 is solved using the Karush-Kuhn-Tucker (KКT) constraint qualifications (see Section 5.5 .3 of the book [26]), where the following two differentiation formulae are used ${ }^{2}$ :

$$
\begin{gather*}
\nabla_{E}(\ln \operatorname{det}(E))=E^{-1}  \tag{E.11}\\
\nabla_{E} h_{i}(E)=\frac{E \mathbf{a}_{i} \mathbf{a}_{i}^{t}+\mathbf{a}_{i} \mathbf{a}_{i}^{t} E}{2 h_{i}(E)}, i=1, \ldots, m \tag{E.12}
\end{gather*}
$$

With these differentiation formulae and introducing the notations:

$$
\begin{array}{lll}
\Lambda & =\left(\begin{array}{ccc}
\lambda_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \lambda_{m}
\end{array}\right) & \in \mathcal{R}^{m \times m} \\
Y & =Y(E, \boldsymbol{\lambda})=\left(\begin{array}{ccc}
\frac{1}{h_{1}(E)} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \frac{1}{h_{m}(E)}
\end{array}\right) \Lambda & \in \mathcal{R}^{m \times m} \\
\mathbf{y}=\left(\frac{\lambda_{1}}{h_{1}(E)}, \cdots, \frac{\lambda_{m}}{h_{m}(E)}\right)^{t} & \in \mathcal{R}^{m} \tag{E.15}
\end{array}
$$

The KKT constraint qualifications are (Y. Zhang and L. Gao [189]):

$$
\begin{align*}
A^{t} \boldsymbol{\lambda} & =\mathbf{0}  \tag{E.16}\\
E^{-1}-\left(E\left(A^{t} \curlyvee A\right)+\left(A^{t} Y A\right) E\right) / 2 & =0  \tag{E.17}\\
\mathbf{z}-(\mathbf{b}-A \mathbf{c}-\mathbf{h}(E)) & =\mathbf{0}  \tag{E.18}\\
\Lambda \mathbf{z} & =\mathbf{0}  \tag{E.19}\\
\lambda, \mathbf{z} & \succeq 0 \tag{E.20}
\end{align*}
$$

Where $\mathbf{z} \in \mathcal{R}^{m}$ is a slack variable.

## Indeed

- Condition E. 16 comes from the KKT stationarity condition with respect to variable c:

$$
\nabla_{\mathbf{c}} L=\mathbf{0}=A^{t} \boldsymbol{\lambda}
$$

- Condition E. 17 comes from the KKT stationarity condition with respect to variable $E$ and by making use of the differentiation formulae E. 11 and E.12:

$$
\begin{aligned}
& \nabla_{E} L=0=-E^{-1}+\sum_{i=1}^{n} \lambda_{i}\left(\frac{E_{\mathbf{a}_{i}} \mathbf{a}_{i}^{t}+\mathbf{a}_{i} \mathbf{a}_{i}^{t} E}{2 h_{i}}\right) \\
& \Leftrightarrow \quad 0=E^{-1}-\left(E\left(A^{t} Y A\right)+\left(A^{t} Y A\right) E\right) / 2
\end{aligned}
$$

[^38]- For conditions E. 18 and E.20, the constraint $\mathbf{b}-A \mathbf{c}-\mathbf{h}(E) \succeq 0$ is considered. By introducing the slack variable $\mathbf{z} \in \mathcal{R}^{m}$ such that $\mathbf{b}-A \mathbf{c}-\mathbf{h}(E)=\mathbf{z} \succeq 0$, this constraint can be rewritten as:

$$
\mathbf{z}-(\mathbf{b}-A \mathbf{c}-\mathbf{h}(E))=\mathbf{0}
$$

Which is condition E.18.

And, with the KKT dual feasibility condition $\lambda \succeq 0$, one obtain:

$$
\lambda, \mathbf{z} \succeq 0
$$

Which is condition E. 20 .

- Finally, the KKT complementary slackness condition $\lambda^{t}(\mathbf{b}-A \mathbf{c}-\mathbf{h}(E))=\mathbf{0}$ can be expressed as

$$
\Lambda \mathbf{z}=\mathbf{0}
$$

Which is condition E.19.

## E.1.2 Simplification of the KKT constraint qualifications

The above KKT conditions can be further simplified by eliminating the matrix variable $E$ by solving equation E.17. The solution ${ }^{3}$ to equation $E .17$ is indeed ${ }^{4}$ :

$$
\begin{equation*}
E(\mathbf{y})=\left(A^{t} Y A\right)^{-1 / 2} \tag{E.21}
\end{equation*}
$$

As, by definition, $\mathbf{h}(E)=\left(\left\|E \mathbf{a}_{1}\right\|, \ldots,\left\|E \mathbf{a}_{m}\right\|\right)^{t}$; with solution E. $21 \mathbf{h}(E)$ can be re-expressed as:

$$
\begin{equation*}
\tilde{\mathbf{h}}(\mathbf{y})=\mathbf{h}(E(\mathbf{y})) \tag{E.22}
\end{equation*}
$$

Moreover, by equation E. 14 one can obtain:

$$
\begin{equation*}
\lambda=\mathbf{g}(\mathbf{y})=Y \tilde{\mathbf{h}}(\mathbf{y}) \tag{E.23}
\end{equation*}
$$

Using the above results, the KKT constraint qualifications can then be expressed as:

$$
\begin{align*}
A^{t} \lambda & =\mathbf{0}  \tag{E.24}\\
\mathbf{z}-\mathbf{b}+A \mathbf{c}+\tilde{\mathbf{h}}(\mathbf{y}) & =\mathbf{0}  \tag{E.25}\\
\Lambda \mathbf{z} & =\mathbf{0}  \tag{E.26}\\
\mathbf{y}, \lambda, \mathbf{z} & \succeq \mathbf{0}  \tag{E.27}\\
\lambda-\mathbf{g}(\mathbf{y}) & =\mathbf{0} \tag{E.28}
\end{align*}
$$

[^39]Or, in a more condensed form (Y. Zhang and L. Gao [189]):

$$
\begin{gather*}
\mathbf{F}_{0}(\mathbf{c}, \mathbf{y}, \lambda, \mathbf{z})=\mathbf{0}, \mathbf{y}, \lambda, \mathbf{z} \succeq \mathbf{0}  \tag{E.29}\\
\mathbf{F}_{0}: \mathcal{R}^{n+3 m} \rightarrow \mathcal{R}^{n+3 m} ;(\mathbf{c}, \mathbf{y}, \lambda, \mathbf{z}) \mapsto \mathbf{F}_{0}(\mathbf{c}, \mathbf{y}, \lambda, \mathbf{z})=\left(\begin{array}{c}
A^{t} \lambda \\
A \mathbf{c}+\tilde{\mathbf{h}}(\mathbf{y})+\mathbf{z}-\mathbf{b} \\
\lambda-\mathbf{g}(\mathbf{y}) \\
\Lambda \mathbf{z}
\end{array}\right) \tag{E.30}
\end{gather*}
$$

The system E. 29 can be further simplified by eliminating the variable $\boldsymbol{\lambda}$ by using equation E. 23 (Y. Zhang and L. Gao [189]):

$$
\begin{gather*}
\mathbf{F}_{1}(\mathbf{c}, \mathbf{y}, \mathbf{z})=\mathbf{0}, \mathbf{y}, \mathbf{z} \succeq \mathbf{0}  \tag{E.31}\\
\mathbf{F}_{1}: \mathcal{R}^{n+2 m} \rightarrow \mathcal{R}^{n+2 m} ;(\mathbf{c}, \mathbf{y}, \mathbf{z}) \mapsto \mathbf{F}_{1}(\mathbf{c}, \mathbf{y}, \mathbf{z})=\left(\begin{array}{c}
A^{t} \mathbf{g}(\mathbf{y}) \\
A \mathbf{c}+\underset{\mathbf{h}}{ }(\mathbf{y})+\mathbf{z}-\mathbf{b} \\
\mathrm{Z} \mathrm{\mathbf{g}}(\mathbf{y})
\end{array}\right) \tag{E.32}
\end{gather*}
$$

And:

$$
Z=\left(\begin{array}{ccc}
z_{1} & \ldots & 0  \tag{E.33}\\
\vdots & \ddots & \vdots \\
0 & \ldots & z_{m}
\end{array}\right) \in \mathcal{R}^{m \times m}
$$

## E.1.3 Algorithm solving the optimisation problem E. 10

The algorithm of Y. Zhang and L. Gao (see algorithm $42^{5}$ ) can be viewed as a damped Newton's method applied to a perturbed version of the system E.31. The perturbed version is the following:

$$
F_{1}(\mathbf{c}, \mathrm{y}, \mathrm{z})=\left(\begin{array}{c}
\mathbf{0}  \tag{E.34}\\
\mathbf{0} \\
\mathbf{w}
\end{array}\right), \mathbf{y}, \mathbf{z} \succ \mathbf{0}
$$

Where $\mathbf{w}=\mu \mathbf{w}^{0}$ for some $\mathbf{w}^{0} \in \mathcal{R}_{++}^{m}$. Usually, one chooses $\mathbf{w}^{0}=\mathbf{e}$, with $\mathbf{e}$ a vector of all ones.

The perturbed system E. 34 admits a unique solution for every $\mu>0$ and, as $\mu \rightarrow 0$, its solution converges to the solution of the original system E. 31 (see Reference [189] for a proof).

[^40]```
Algorithm 42 Algorithm of Y. Zhang and L. Gao [189]
Require: Bounded non-empty polyhedron \(P=P(A, \mathbf{b})\).
Require: \(\mathbf{c}^{0} \in \operatorname{int}(P)\).
    procedure MAXVOLELLIPSOIDINPOLYHEDRON \(\left(A, \mathbf{b}, \mathbf{c}^{0}\right)\)
        \(k \leftarrow 0\).
        \(\mathbf{y}^{0} \leftarrow(1, \ldots, 1)^{t}\).
        \(E\left(\mathbf{y}^{0}\right) \leftarrow\left(A^{t} Y^{0} A\right)^{-1 / 2}\).
        \(\tilde{\mathbf{h}}\left(\mathbf{y}^{0}\right) \leftarrow\left(\left\|E\left(\mathbf{y}^{0}\right) \mathbf{a}_{1}\right\|, \ldots,\left\|E\left(\mathbf{y}^{0}\right) \mathbf{a}_{m}\right\|\right)^{t}\).
        \(\mathbf{z}^{0} \leftarrow \mathbf{b}-A \mathbf{c}^{0}-\tilde{\mathbf{h}}\left(\mathbf{y}^{0}\right)\).
        Choose \(\left.\sigma_{k} \in\right] 0,1[\).
        \(\mu_{k} \leftarrow \sigma_{k} \frac{\mathbf{g}\left(\mathbf{y}^{k}\right)^{t} \mathbf{z}^{k}}{m}\).
                                    \(\triangleright\) Step 2
        Solve for \((d \mathbf{c}, d \mathbf{y}, d \mathbf{z})\) from:
        \(F_{1}^{\prime}\left(\mathbf{c}^{k}, \mathbf{y}^{k}, \mathbf{z}^{k}\right)\left(\begin{array}{l}d \mathbf{c} \\ d \mathbf{y} \\ d \mathbf{z}\end{array}\right)=\mu_{k}\left(\begin{array}{l}\mathbf{0} \\ \mathbf{0} \\ \mathbf{e}\end{array}\right)-\mathbf{F}_{1}\left(\mathbf{c}^{k}, \mathbf{y}^{k}, \mathbf{z}^{k}\right)\).
                                    \(\triangleright\) Step 3
        Choose a step length \(\left.\left.\alpha_{k} \in\right] 0,1\right]\) and update:
        \(\left(\mathbf{c}^{k+1}, \mathbf{y}^{k+1}, \mathbf{z}^{k+1}\right) \leftarrow\left(\mathbf{c}^{k}, \mathbf{y}^{k}, \mathbf{z}^{k}\right)+\alpha_{k}(d \mathbf{c}, d \mathbf{y}, d \mathbf{z})\) such that \(\mathbf{c}^{k+1} \in P\) and
    \(\mathbf{y}^{k+1}, \mathbf{z}^{k+1} \succeq \mathbf{0}\).
                                    \(\triangleright\) Step 4
        if \(\left\|\mathbf{F}_{1}\left(\mathbf{c}^{k+1}, \mathbf{y}^{k+1}, \mathbf{z}^{k+1}\right)\right\| \leq \epsilon\) then
        \(\mathbf{c}^{*} \leftarrow \mathbf{c}^{k+1}\).
        \(E^{*} \leftarrow E\left(\mathbf{y}^{\dot{k}+1}\right)=\left(A^{t} Y^{k+1} A\right)^{-1 / 2}\).
        return \(\mathbf{c}^{*}, E^{*}\).
        else
            \(k \leftarrow k+1\) and goto Step 1.
        end if
    end procedure
```

In algorithm 42, the following quantities are used:

$$
\begin{align*}
F_{1}^{\prime}(\mathbf{c}, \mathbf{y}, \mathbf{z}) & =\left(\begin{array}{ccc}
0 & A^{t} g^{\prime}(\mathbf{y}) & 0 \\
A & \tilde{h}^{\prime}(\mathbf{y}) & I \\
0 & Z g^{\prime}(\mathbf{y}) & G(\mathbf{y})
\end{array}\right) \tag{E.35}\\
G(\mathbf{y}) & =\left(\begin{array}{ccc}
g_{1}(\mathbf{y}) & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & g_{m}(\mathbf{y})
\end{array}\right) \tag{E.36}
\end{align*}
$$

and $g^{\prime}(\mathbf{y})$ and $\tilde{h}^{\prime}(\mathbf{y})$ are the Jacobian matrices of $\mathbf{g}(\mathbf{y})$ and $\tilde{\mathbf{h}}(\mathbf{y})$, respectively.
For the sake of completeness, these Jacobian matrices are given by (Y. Zhang and L. Gao [189]):

$$
\begin{equation*}
g^{\prime}(\mathbf{y})=H(\mathbf{y})+Y h^{\prime}(\mathbf{y}) \tag{E.37}
\end{equation*}
$$

And:

$$
\begin{equation*}
h^{\prime}(\mathbf{y})=-\frac{1}{2} H(\mathbf{y})^{-1}(Q(\mathbf{y}) \circ Q(\mathbf{y})) \tag{E.38}
\end{equation*}
$$

Where:

$$
\begin{equation*}
Q(\mathbf{y})=A\left(A^{t} Y A\right)^{-1} A^{t} \tag{E.39}
\end{equation*}
$$

With " \circ " referring to the Hadamard product between matrices.
And:

$$
H(\mathbf{y})=\left(\begin{array}{ccc}
\tilde{h}_{1}(\mathbf{y}) & \ldots & 0 \tag{E.40}\\
\vdots & \ddots & \vdots \\
0 & \ldots & \tilde{h}_{m}(\mathbf{y})
\end{array}\right)
$$

Appendix F

The GDBSCAN algorithm

F. 1 Preliminary definitions

Let's D be a spatial database of objects (here ellipsoids) with spatial attributes (here the semi-axes of the ellipsoids and their associated lengths) and non-spatial attributes (here the value of the maximum associated to each ellipsoid). It is assumed here that:

1. The objects of D lie in an affine euclidean space $E: \forall o \in D, o \subset E$.
2. D has finite cardinality $(\# D<\infty)$.
3. D is bounded (for any point O in the space E containing the objects of D, there exist a radius $R>0$ such that, for a given distance d, the closed ball ${ }^{1}$ centred in O of radius R contains all objects of $D: \forall o \in D, o \subset B[O ; R])$.

Definition F.1. (From http://mathworld.wolfram.com/PowerSet.html) Given a set D, its powerset, noted 2^{D} or $\mathcal{P}(D)$, is the set of all subsets of D. For D of cardinality $\# D$, the cardinality of its powerset 2^{D} is $\#\left(2^{D}\right)=2^{\# D}$.
Definition F.2. (J. Sander et al. [147])
Let's NPred be a binary predicate on D which is reflexive and symmetric, i.e., $\forall p, q \in$ $D: \operatorname{NPred}(p, p)$ and, if $\operatorname{NPred}(p, q)$ then $\operatorname{NPred}(q, p)$. Then the NPred-neighbourhood of an object $o \in D$ is defined as:

$$
\begin{equation*}
N_{N P r e d}(o)=\left\{o^{\prime} \in D \mid \operatorname{NPred}\left(o, o^{\prime}\right)\right\} \tag{F.1}
\end{equation*}
$$

Definition F.3. (J. Sander et al. [147])
Let's w Card be a function from the powerset of the database D (see definition F.1) into the nonnegative Real numbers, wCard: $2^{D} \rightarrow \mathcal{R}^{+}$and MinCard be a positive real number. Then, the predicate MinWeight for a set S of objects is defined to be true if and only if $w \operatorname{Card} \geq$ MinCard.

Definition F.4. (J. Sander et al. [147])
An object p is directly density-reachable from an object q with respect to NPred and MinWeight if:

1. $p \in N_{N P r e d}(q)$.
2. $\operatorname{MinWeight}\left(N_{\text {NPred }}(q)\right)=$ true (core object condition).

Figure F. 1 illustrates a situation where an object p is directly density reachable from an object q, but where the converse is not true.

[^41]

Figure F.1: Core objects and border objects. [147].

Definition F.5. (J. Sander et al. [147])
An object p is density-reachable from an object q with respect to NPred and MinWeight if there is a chain of objects $p_{1}, \ldots, p_{n}, p_{1}=q, p_{n}=p$ such that $\forall i=1, \ldots, n-1$, p_{i+1} is directly density reachable from p_{i} with respect to NPred and MinWeight.

The left part of Figure F. 2 illustrates this concept.
Definition F.6. (J. Sander et al. [147])
An object p is density-connected to an object q with respect to NPred and MinWeight if there is an object o such that both, p and q are density-reachable from o with respect to NPred and MinWeight.

The right part of Figure F. 2 illustrates this concept.

FIGURE F.2: Density-reachability and density-connectivity [147].

Definition F.7. (J. Sander et al. [147])
A density-connected set C with respect to NPred and MinWeight in D is nonempty subset of D satisfying the following conditions:

1. Maximality: $\forall p, q \in D$, if $p \in C$ and q is density-reachable from p with respect to NPred and MinWeight, then $q \in C$.
2. Connectivity: $\forall p, q \in C: p$ is density-connected to q with respect to NPred and MinWeight.

Definition F.8. (J. Sander et al. [147])
A clustering $C L$ of D with respect to NPred and MinWeight is a set of densityconnected sets with respect to NPred and MinWeight in $D, C L=\left\{C_{1}, \ldots, C_{k}\right\}$, such that for all C the following hold: if C is a density-connected set with respect to NPred and MinWeight in D, then $C \in C L$.

Definition F.9. (J. Sander et al. [147])
Let $C L=\left\{C_{1}, \ldots, C_{k}\right\}$ be a clustering of the database D with respect to N Pred and MinWeight. The the noise of D is defined here as the set of objects in the database D not belonging to any density-connected set C_{i}, i.e., noise $_{C L}=D \backslash\left(C_{1} \cup \ldots \cup C_{k}\right)$.

F. 2 Algorithm

The GDBSCAN algorithm starts with a set of objects marked as unclassified. It takes then the first unclassified object p of the set and marks it with a cluster number (e.g. starting from 1). Then, it tries to add to this first cluster candidate and mark all density connected objects p_{1}, \ldots, p_{n} with respect to NPred and MinWeight by scanning the neighbourhood of the first object and the subsequent neighbourhoods of the possibly added objects in the cluster (constructing a queue of objects). It adds objects to the current cluster candidate while the queue is not empty.

If the MinWeight predicate for the first object q is false, then q is classified as noise and the next unclassified object is tested against NPred and MinWeight for constructing the next cluster candidate. The algorithm repeats the above steps while there are unclassified objects in the set.

```
Algorithm 43 Generalised Density-Based SCAN (GDBSCAN) algorithm for cluster-
ing spatial objects (J. Sander et al. [147]). Algorithm particularised for the case of
ellipsoids.
Require: \(D\) set of spatial objects with \(\mathrm{R}^{*}\)-tree structure (insert objects using algo-
    rithm 51).
Require: MinCard cluster volume threshold.
Require: \(\tau\) overlapping volume ratio criterion as given in condition 2.64.
Require: \(M_{\max }\) maximum number points for estimating the overlapping volume.
Require: tol convergence tolerance for algorithm 28.
    procedure GDBSCAN( \(D\), MinCard, tau, \(M_{\text {max }}\), tol)
        ClusterId \(=\) nextId(NOISE) \(\quad \triangleright\) Objects in set \(D\) are UNCLASSIFIED.
        for \(i=1, \ldots, D . \operatorname{size}()\) do
            Object \(=\) D.get \((i)\)
            if Object.ClusterId \(=\) UNCLASSIFIED then
                    if ExpandCluster(D, Object, ClusterId, MinCard, \(\tau, M_{\text {max }}\), tol) then
    \(\triangleright\) See algorithm 44
                ClusterId \(=\) nextId \((\) ClusterId \()\)
                    end if
            end if
        end for
    end procedure
```

```
Algorithm 44 Expand a cluster for the GDBSCAN algorithm 43 (J. Sander et
al. [147]). Algorithm particularised for the case of ellipsoids.
Require: \(D\) set of spatial objects.
Require: Object considered object in \(D\).
Require: ClusterId current cluster identifier (number in \(\mathcal{Z}\) ).
Require: MinCard cluster volume threshold.
Require: \(\tau\) overlapping volume ratio criterion as given in condition 2.64.
Require: \(M_{\max }\) maximum number of integration points for estimating the overlap-
    ping volume.
Require: tol convergence tolerance for algorithm 28.
    procedure ExpandCluster( \(D\), Object, ClusterId, MinCard, \(\tau, M_{\text {max }}\), tol \()\)
        if \(\operatorname{WCARD}(\{\) Object \(\}) \leq 0\) then \(\quad \triangleright\) Object not in selection. Algorithm 46 .
            D.changeClusterId(Object, UNCLASSIFIED)
            return false
        end if
        seeds \(=\) D.NPREDNEIGHBOURHOOD \(\left(\right.\) Object \(, \tau, M_{\text {max }}\), tol \() \quad \triangleright\) Algorithm 45
        if WCARD \((\) seeds \()<\) MinCard then \(\quad \triangleright\) No core object. Algorithm 46.
            D.changeClusterId(Object, NOISE)
            return false
        end if
                                    \(\triangleright\) Still here ? Object is a core object.
        D.changeClusterId(seeds, ClusterId)
        seeds.delete(Object)
        while seeds \(\neq\) empty do
            currentObject \(=\) seeds.first()
            result \(=\) D.NPREDNEIGHBOURHOOD \(\left(\right.\) currentObject, \(\tau, M_{\max }\), tol \() \quad \triangleright\)
                Algorithm 45
            if \(\operatorname{WCARD}(\) result \() \geq\) MinCard then \(\quad \triangleright\) Algorithm 46.
                for \(i=1, \ldots\),result.size () do
                    \(P=\) result.get \((i)\)
                if \(\operatorname{WCARD}(\{P\})>0\) and P.clusterId \(\in\)
    \(\{U N C L A S S I F I E D, N O I S E\}\) then \(\quad \triangleright\) Algorithm 46.
                    if P.clusterId \(=\) UNCLASSIFIED then
                        seeds.append \((P)\)
                        end if
                            D.changeClusterId ( \(\mathrm{P}, \mathrm{ClusterId}\) )
                    end if \(\quad \square \mathrm{WCARD}(\ldots)>0\) and UNCLASSIFIED or NOISE
                end for
            end if \(\quad \triangleright \operatorname{WCARD}(\ldots) \geq\) MinCard
            seeds.delete(currentObject)
        end while \(\triangleright\) seeds \(\neq\) empty
        return true
    end procedure
```


F.2.1 Remarks

- The GDBSCAN algorithm 43 assumes that the lowest non-negative object identifier (Id) is the "unclassified" Id, followed by the "noise" Id. The function nextId simply increase the input Id by one: nextId : $\mathcal{Z} \rightarrow \mathcal{Z}, x \mapsto \operatorname{nextId}(x)=$ $x+1$.
- the ExpandCluster algorithm 44 only consider object that are "selected", i.e. with a non-negative identifier, this allows to perform clustering on a subset of the database D.
- The D.get (i) function returns the ith object from set D.

The NPred-neighbourhood of an object p in dataset D queries all intersecting objects q with p, using the above predicate NPred. It takes advantage of the R^{*}-tree structure of the dataset D, testing p with the predicate NPred only for objects q belonging to the same parent node as object p. For instance, in the simplified example given in Figure 2.35, if p is the object 1 , only objects 2 and 3 are tested against p with the predicate NPred. The R^{*}-tree data structure allows to reduce the complexity of one query from $O(n)$ to $O(\log (n))$, where $n=\# D$ is the number of objects in the dataset. The NPred-neighbourhood procedure is given in algorithm 45.

```
Algorithm 45 Given an object (ellipsoid) belonging to a R*-tree data structure, return
its neighbourhood satisfying the predicate NPred (see algorithm 22).
Require: Object considered object in a \(\mathrm{R}^{*}\)-tree data structure.
Require: \(\tau\) overlapping volume ratio criterion as given in condition 2.64.
Require: \(M_{\max }\) maximum number of integration points for estimating the overlap-
    ping volume.
Require: tol convergence tolerance for algorithm 28.
    procedure NPREDNEIGHBOURHOOD(Object, \(\tau, M_{\text {max }}\), tol)
        neighbours \(=\{\) Object \(\}\)
        candidateNeighbours = QUERYNEIGHBOURHOOD(Object) \(\quad \triangleright\) Algorithm 55.
        for candidate \(\in\) candidateNeighbours do
            if \(\operatorname{NPRED}\left(\right.\) Object, candidate, \(\tau, M_{\text {max }}\), tol \()\) then \(\quad \triangleright\) Algorithm 22
                    neighbours \(=\) neighbours \(\cup\) \{candidate \(\}\)
            end if
        end for
        return neighbours
    end procedure
```

The ward function used here is simply the volume of the objects it receive as arguments. The MinCard volume threshold is simply set by the user, and can be seen as a minimum volume threshold. Algorithm 46 describes the wCard function.

```
Algorithm 46 wCard function used in this thesis. Simply computes the volume of
ellipsoids it gets as arguments
Require: \(\left\{\mathcal{E}_{i}\right\}_{i=1, \ldots, m}\) finite set of ellipsoids.
    procedure WCARD \(\left(\left\{\mathcal{E}_{i}\right\}_{i=1, \ldots, m}\right)\)
        volume \(=0\)
        for \(i=1, \ldots, m\) do
            Extract the semi-axes lengths \(r_{1}, r_{2}\) and \(r_{3}\) of the current ellipsoid \(\mathcal{E}_{i}\).
            volume \(=\) volume \(+\frac{4 \pi}{3} r_{1} r_{2} r_{3}\)
        end for
        return volume
    end procedure
```


Appendix G

Algorithms for a R^{*}-tree data structure

This appendix contains algorithms for handling a R^{*}-tree data structure as they are given in the article of N . Beckmann et al. [17].

```
Algorithm 47 Subtree choice for the insertion of a new entry in a \(R^{*}\)-tree (N. Beck-
mann et al. [17]).
Require: \(N\) the root of a \(R^{*}\)-tree.
    procedure ChooseSubtree( \(N\) )
        if \(N\) is a leaf then
            return \(N\)
        else
            if Childpointers in \(N\) point to leaves then
                    Choose the entry in \(N\) whose box needs least overlap enlargement to
                    include the new data box.
                    Resolve ties by choosing the entry whose box needs least volume en-
                    largement, then the entry with the box of smallest volume.
            end if
            if Childpointers in \(N\) do not point to leaves then
                    Choose the entry in \(N\) whose box needs least volume enlargement to
                                    include the new data box. Resolve ties by choosing the entry with
                                    the box of smallest volume.
        end if
        end if
        Set \(N\) to be the child node pointed to by the childpointer of the chosen entry
        and repeat from beginning.
    end procedure
```

```
Algorithm 48 Node split if maximum number of child \(M\) is reached (N. Beckmann
et al. [17]).
    procedure Split
    Invoke ChooseSplitaxis to determine the axis, perpendicular to which the
        split is performed.
                                    \(\triangleright\) Algorithm 49
        Invoke ChooseSplitindex to determine the best distribution into two
        groups along that axis.
                            \(\triangleright\) Algorithm 50
    Distribute the entries into two groups.
    end procedure
```

```
Algorithm 49 Choose the split axis for the Split algorithm (N. Beckmann et al. [17]).
    procedure CHOOSESPLITAXIS
        for Each axis do
            Sort the entries by the lower then by the upper volume-value, overlap-
                value and margin-value of their boxes and determine all distributions.
            Compute \(S\), the sum of all margin-values of the different distributions.
        end for
        Choose the axis with the minimum \(S\) as split axis.
    end procedure
```

```
Algorithm 50 Choose the split index along a given split axis (N. Beckmann et
al. [17]).
    procedure CHOOSESPLITINDEX
        Along the chosen split axis, choose the distribution with the minimum
        overlap-value.
        Resolve ties by choosing the distribution with minimum volume-value.
    end procedure
```

```
Algorithm 51 Insert a new entry in a \(R^{*}\)-tree (N. Beckmann et al. [17]).
    procedure INSERTDATA
        Invoke INSERT(level) starting with the leaf level as a parameter, to insert a
        new data box.
        \(\triangleright\) Algorithm 52
    end procedure
```

```
Algorithm 52 Insert a new entry in a \(R^{*}\)-tree (N. Beckmann et al. [17]).
Require: level: leaf level.
    procedure INSERT(level)
        Invoke Choosesubtree \((N)\), with the level as a parameter, to find an appro-
            priate node \(N\), in which to place the new entry \(E\).
            Algorithm 47
        if \(N\) has less than \(M\) entries then
            Accommodate \(E\) in \(N\).
        end if
        if \(N\) has \(M\) entries then
            Invoke OVERFLOWTREATMENT( \(N\), level) with the level of \(N\) as
                parameter.
    \(\triangleright\) Algorithm 53
        end if
        if OverflowTreatment was called and split occured then
            Propagate OverflowTreatment upwards if necessary.
        end if
        if OverflowTreatment caused a split of the root then
            Create a new root.
        end if
        Adjust all covering boxes in the insertion path such that they are minimum
            bonding boxes enclosing the children boxes.
    end procedure
```

```
Algorithm 53 Split a node which has to contains more that \(M\) children (N. Beckmann
et al. [17]).
Require: \(N\) : the node to split.
Require: level: the node level.
    procedure OverflowTreatment( \(N\), level)
        if level is not the root level and this is the first call of OverflowTreatment for
    the given level then
            Invoke REINSERT(N). \(\triangleright\) Algorithm 54
        else
            Invoke Split. \(\triangleright\) Algorithm 48
        end if
    end procedure
```

```
Algorithm 54 Reorganise boxes for node \(N\) (N. Beckmann et al. [17]).
Require: N: a node.
    procedure ReInsert( \(N\) )
        For all \(M+1\) entries of node \(N\), compute the distance between the centres of
            their boxes and the centre of the bounding box of \(N\).
        Sort the entries in decreasing order of their distances computed here above.
        Remove the first \(p=30 \%\) of the entries from \(N\) and adjust the bounding box
            of \(N\).
        In the above sort, starting with the maximum distance (= far reinsert) or min-
            imum distance (= close reinsert), invoke INSERT(level) to reinsert the en-
            tries at the level of \(N\).
            Algorithm 52
    end procedure
```

```
Algorithm 55 Perform a neighbourhood query for a given \(\mathrm{R}^{*}\)-tree.
Require: Object an object in the \(\mathrm{R}^{*}\)-tree.
    procedure QUERYNEIGHBOURHOOD(Object)
        Compute the bounding box \(B\) of Object.
        Starting from the root node of the tree, select the sub-node from the root
            whose associated bounding box contains \(B\).
        If the current sub-node is not a leaf node, select the next sub-node from the
            current one whose associated bounding box contains \(B\).
        Go back to line 4 while the last selected sub-node is not a leaf node.
        return Objects in current leaf node.
    end procedure
```


Appendix H

Intersection volume between two colliding ellipsoids

This section is devoted to the numerical computation of the intersection volume $\operatorname{Vol}\left(\mathcal{E}_{1} \cap \mathcal{E}_{2}\right)$ of two ellipsoids \mathcal{E}_{1} and \mathcal{E}_{2}. This intersection volume is used from the evaluation of the overlapping criterion 2.64.

H. 1 Monte Carlo integration and the VEGAS algorithm

With an integration domain separable along each dimension taken as the intersection of axis-aligned box of the two considered ellipsoids \mathcal{E}_{1} and \mathcal{E}_{2}, the VEGAS algorithm of G.P. Lepage [129] can be used for estimating the intersection volume $\operatorname{Vol}\left(\mathcal{E}_{1} \cap \mathcal{E}_{2}\right)$ with the integrand given in equation H.1.

$$
f_{\mathcal{E}_{1}, \mathcal{L}_{2}}^{\text {inter }}: \mathcal{R}^{3} \rightarrow\{0,1\} ; \mathbf{x} \mapsto f_{\mathcal{E}_{1}, \mathcal{L}_{2}}^{\text {inter }}(\mathbf{x})=\left\{\begin{array}{l}
1 \text { if } \mathbf{x} \in \mathcal{E}_{1} \cap \mathcal{E}_{2} \tag{H.1}\\
0 \text { elsewhere }
\end{array}\right.
$$

H.1.1 Description of the VEGAS algorithm

The following section describes how G.P. Lepage's algorithm works and is mainly extracted from G.P. Lepage's article [129]. It is given here for the sake of completeness. The complete procedure is given in algorithm 56.

H.1.1.1 Classic Monte Carlo integration

Given an integrable function $f: \mathcal{R}^{n} \rightarrow \mathcal{R} ; \mathbf{x} \mapsto f(\mathbf{x})$ over a domain $\Omega \subset \mathcal{R}^{n}$, the integral $I=\int_{\Omega} f(\mathbf{x}) d \mathbf{x}$ is to be calculated. If a primitive of f is not known and if f and/or the integration domain Ω are not well-suited for classic integration methods (as the Gauss-Legendre quadrature rule), Monte Carlo methods may be effective alternatives for computing the integral I.

The classic Monte Carlo integration method is the following. Given a set $\{\mathbf{x}\}$ of M point chosen randomly in the integration domain Ω following a probability density function $p: \mathcal{R}^{n} \rightarrow \mathcal{R}^{+} ; \mathbf{x} \mapsto p(\mathbf{x})$, the integral I can be approximated by equation H. 2 .

$$
\begin{equation*}
S^{(1)}=\frac{\operatorname{Vol}(\Omega)}{M} \sum_{\mathbf{x}} \frac{f(\mathbf{x})}{p(\mathbf{x})} \text { (G.P. Lepage [129], eq. 1.) } \tag{H.2}
\end{equation*}
$$

Where $\operatorname{Vol}(\Omega)=\int_{\Omega} 1 d \mathbf{x}$ and $\int_{\Omega} p(\mathbf{x}) d \mathbf{x}=1$. In that case, we have:

$$
\begin{equation*}
\lim _{M \rightarrow \infty} S^{(1)}=I \tag{H.3}
\end{equation*}
$$

For different sets of M points, $S^{(1)}$ in equation H .2 will fluctuate with a variance σ^{2} estimated by equation $H .4$ for M big.

$$
\begin{equation*}
\sigma^{2} \approx \frac{S^{(2)}-\left(S^{(1)}\right)^{2}}{M-1}(\text { G.P. Lepage [129], eq. 2) } \tag{H.4}
\end{equation*}
$$

Where $S^{(2)}=\frac{(V o l(\Omega))^{2}}{M} \sum_{\mathbf{x}}\left(\frac{f(\mathbf{x})}{p(\mathbf{x})}\right)^{2}$.
Integration method of G.P. Lepage. In general, Monte Carlo integration methods require a high number of evaluation points M in order to obtain an accurate result, i.e. a small variance σ^{2}. However, evaluating numerous time a function may be computationally expensive. G.P. Lepage's methods consist in avoiding a to high number of evaluation points M, while minimising the variance σ^{2}.

This aim is achieved iteratively adapting the probability density function $p(\mathbf{x})$. The idea, known as importance sampling consist in adapting the probability density function $p(\mathbf{x})$ such that the chosen random points $\{\mathbf{x}\}$ concentrate where the function $|f(\mathbf{x})|$ is larger. As probability density function $p(\mathbf{x})$ G.P. Lepage suggests to use the piecewise constant function given in equation H.5.

$$
\begin{align*}
& p(\mathbf{x})=p^{(1)}\left(x^{(1)}\right) \ldots p^{(n)}\left(x^{(n)}\right), \\
& p^{(\mu)}\left(x^{(\mu)}\right)=\frac{1}{N \Delta x_{i}^{(\mu)}}, x_{i}^{(\mu)}-\Delta x_{i}^{(\mu)} \leq x^{(\mu)} \leq x_{i}^{(\mu)}, \tag{H.5}\\
& i=1, \ldots, N, \mu=1, \ldots, n
\end{align*}
$$

Where N is the number of piece along each direction $\mu=1, \ldots, n$ and the $\Delta x_{i}^{(\mu)}$ are intervals along each direction $\mu=1, \ldots, n$ such that $\sum_{i=1}^{N} \Delta x_{i}^{(\mu)}=1, \mu=1, \ldots n$.

The procedure consists now into adapting the different intervals $\Delta x_{i}^{(\mu)}$ such that the variance σ^{2} is minimised. To this aim, G.P. Lepage suggests to subdivide each interval $\delta x_{i}^{(\mu)}$ into $\left(m_{i}^{(\mu)}+1\right)$ subintervals given by equation H.6.

$$
\begin{equation*}
m_{i}^{(\mu)}=K \frac{\bar{f}_{i}^{(\mu)} \Delta x_{i}^{(\mu)}}{\sum_{j=1}^{N} \bar{f}_{j}^{(\mu)} \Delta x_{j}^{(\mu)}}, i=1, \ldots, N, \mu=1, \ldots, n \tag{H.6}
\end{equation*}
$$

Where K is a constant and $\bar{f}_{i}^{(\mu)}=\sum_{x^{(1)}} \ldots \sum_{x^{(\mu-1)}} \sum_{x^{(\mu)} \in x_{i}^{(\mu)}-\Delta x_{i}^{(\mu)}} \sum_{x^{(\mu+1)}} \cdots \sum_{x^{(n)}}$ $\frac{|f(\mathbf{x})|}{p^{(1)}\left(x^{(1)}\right) \ldots p^{(\mu-1)}\left(x^{(\mu-1)}\right) p^{(\mu+1)}\left(x^{(\mu+1)}\right) \ldots p^{(n)}\left(x^{(n)}\right)}$

Note that in practice, and in order to ensure algorithmic stability, a damped version of the expression of $m_{i}^{(\mu)}$, involving a kind of "learning parameter" α, is used (see algorithm 56 line 34).

Once the subintervals along each direction μ are computed, these subintervals are amalgamated into N new intervals along each direction μ. Neighbouring intervals where evaluations of $|f(\mathbf{x})|$ are low are merged, while intervals with high evaluations of $|f(\mathbf{x})|$ are kept. The change of these intervals directly impact the probability density function $p(\mathbf{x})$ which is updated. This process is then repeated with a new set of M randomly distributed points $\{\mathbf{x}\}$ according to the new probability density function $p(\mathbf{x})$ until convergence is met. Figure H. 1 shows a sketch of this process.

(d)

Figure H.1: One-dimensional sketch of the process dividing interval into subintervals and merging the obtained subintervals according to the evaluations of a function $|f(\mathbf{x})|$. a) Initial intervals. b) Sampling of the function $|f(\mathbf{x})|$. c) Division of the intervals into subintervals. d) Amalgamation of the subintervals.

H.1.1.2 Error estimation

At each iteration involving a new set of M random points $\{\mathbf{x}\}$, the quantities given in equations H .7 are computed.

$$
\begin{align*}
& \bar{I}=\sigma_{\bar{I}}^{2} \sum_{j} \frac{I_{j}}{\sigma_{j}^{2}} \\
& \sigma_{\bar{I}}=\left(\sum_{j} \frac{1}{\sigma_{\bar{j}}^{2}}\right)^{-1 / 2} \quad \text { (G.P. Lepage [129], eq. 5.) } \tag{H.7}
\end{align*}
$$

Where I_{j} and σ_{j} are the integral and standard deviation estimated at iteration j.
The error at a given iteration can then be estimated as given by the sum H .8 which follows a χ^{2} distribution ${ }^{1}$.

$$
\begin{equation*}
\chi^{2} \approx \sum_{j} \frac{\left(I_{i}-\bar{I}\right)^{2}}{\sigma_{j}^{2}} \text { (G.P. Lepage [129], eq. 7.) } \tag{H.8}
\end{equation*}
$$

If the sum H. 8 greatly exceeds the number of carried iterations, the integral estimation should not be trusted.

```
Algorithm 56 G.P. Lepage's VEGAS algorithm [129]
Require: Integrand function \(f_{\mathcal{E}_{1}, \mathcal{E}_{2}}^{\text {intr }}: \mathcal{R}^{n} \rightarrow \mathcal{R}\).
Require: Number of integration points \(M\).
Require: Integration domain \(\Omega=\left[d_{\min , 1}, d_{\max , 1}\right] \times \ldots \times\left[d_{\min , n}, d_{\max , n}\right]\).
Require: Number of subdivisions along each axis \(N\).
    procedure \(\operatorname{VEGAS}\left(f_{\mathcal{E}_{1}, \mathcal{E}_{2}}^{\text {inter }}, M, \Omega, N\right)\)
        \(\alpha \leftarrow 1.5 \quad \triangleright\) GSL default value for convergence parameter.
        \(K \leftarrow 1000 \quad \triangleright\) Typical value according to G.P. Lepage [129].
        trial \(\leftarrow 1\)
        for each subdivision \(i=1, \ldots, N\) do
            \(\Delta x_{i}^{(\mu)} \leftarrow \frac{d_{\text {max } i}-d_{\text {min }, i}}{N}, \mu=1, \ldots, n\)
            \(p^{(\mu)}\left(x^{(\mu)}\right) \leftarrow \frac{1}{\Delta x_{i}^{(\mu)}}, \mu=1, \ldots, n\)
        end for
        \(p(\mathbf{x}) \leftarrow p^{(1)}\left(x^{(1)}\right) \ldots p^{(n)}\left(x^{(n)}\right)\)
        \(B_{j_{1}, \ldots, j_{n}} \leftarrow\left[d_{m i n, 1}+j_{1} \Delta x_{j_{1}}^{(1)}, d_{m i n, 1}+\left(j_{1}+1\right) \Delta x_{j_{1}}^{(1)}\right] \times \ldots \times\)
        \(\left[d_{m i n, n}+j_{n} \Delta x_{j_{n}}^{(n)}, d_{m i n, n}+\left(j_{n}+1\right) \Delta x_{j_{n}}^{(n)}\right], j_{1}, \ldots, j_{n}=0, \ldots, N-1\)
        \(\mathbf{x} \leftarrow\left\{\right.\) set of two uniform random points in each box \(\left.B_{j_{1}, \ldots, j_{n}}\right\}\)
        \(\operatorname{Vol}(\Omega) \leftarrow \prod_{\mu=1}^{n}\left(d_{\text {max }, \mu}-d_{\text {min }, \mu}\right)\)
        \(\frac{\tilde{\chi}^{2}}{\text { trial }} \leftarrow \operatorname{VEGASLOOP}\left(p(\mathbf{x}), f_{\mathcal{E}_{1}, \mathcal{E}_{2}}^{\text {inter }} \mathbf{x}, \Omega, \operatorname{Vol}(\Omega), M, N\right.\), trial \()\)
        while \(\left(\frac{\tilde{\chi}^{2}}{\text { trial }}-1\right)>0.1\) do
            \(\left\{\frac{\tilde{\chi}^{2}}{\text { trial }}, \bar{I}\right\} \leftarrow \operatorname{VEGASLoop}\left(p(\mathbf{x}), f_{\mathcal{E}_{1}, \mathcal{E}_{2}}^{\text {inter }}, \mathbf{x}, \Omega, \operatorname{Vol}(\Omega), M, N\right.\), trial \()\)
            trial \(\leftarrow\) trial +1
        end while
        return \(\bar{I}\)
    end procedure
```

[^42]procedure $\operatorname{VEGASLOOP}\left(p(\mathbf{x}), f_{\mathcal{E}_{1}, \mathcal{E}_{2}}^{\text {inter }} \mathbf{x}, \Omega, \operatorname{Vol}(\Omega), M, N\right.$, trial $)$
$s_{\text {trial }}^{(1)} \leftarrow \frac{\text { Vol } \Omega}{M} \sum_{\mathbf{x}} \frac{f_{\mathcal{L}_{1}, \mathcal{E}_{2}}^{\text {inter }}(\mathbf{x})}{p((x))}$
$S_{\text {trial }}^{(2)} \leftarrow \frac{V_{o l} l^{2}(\Omega)}{M} \sum_{\mathbf{x}}\left(\frac{f_{f_{1}}^{\text {inter }}\left(\mathcal{L}_{\mathbf{2}}(\mathbf{x})\right.}{p(\mathbf{x})}\right)^{2}$
$\tilde{\sigma}_{\text {trial }}^{2} \leftarrow \frac{S_{\text {trrall }}^{(2)}-\left(s_{\text {trial }}^{(1)}\right)^{2}}{M-1}$
$\sigma_{\bar{I}} \leftarrow\left(\sum_{j=1}^{\text {trial }} \frac{1}{\tilde{\sigma}_{j}^{2}}\right)^{-1 / 2}$
$\bar{I} \leftarrow \sigma_{\bar{I}}^{2} \sum_{j=1}^{\text {trial }} \frac{s_{\bar{J}}^{(1)}}{\tilde{\sigma}_{j}^{2}}$
$\frac{\tilde{\chi}^{2}}{\text { trial }} \leftarrow \sum_{j=1}^{\text {trial }} \frac{\left(s_{j}^{(1)}-\bar{I}\right)^{2}}{\tilde{\sigma}_{j}^{2}}$
for each axis $\mu=1, \ldots, n$ do
for each subinterval $i=1, \ldots, N$ do
$$
\bar{f}_{i}^{(\mu)} \quad \leftarrow \quad \sum_{x^{(1)}} \cdots \sum_{x^{(\mu-1)}} \sum_{x^{(\mu)} \in x_{i}^{(\mu)}-\Delta x_{i}^{(\mu)}} \sum_{x^{(\mu+1)}} \cdots \sum_{x^{(n)}}
$$
end for
$$
\frac{f_{\mathcal{E}_{1}, \mathcal{E}_{2}}^{\text {inter }}(\mathbf{x})}{p^{(1)}\left(x^{(1)}\right) \ldots p^{(\mu-1)}\left(x^{(\mu-1)}\right) p^{(\mu+1)}\left(x^{(\mu+1)}\right) \ldots p^{(n)}\left(x^{(n)}\right)}
$$
end for
for each axis $\mu=1, \ldots, n$ do
for each subinterval $i=1, \ldots, N$ do
end for
end for
for each axis $\mu=1, \ldots, n$ do
Subdivide each interval increment $\Delta x_{i}^{(\mu)}$ in $\left(m_{i}^{(\mu)}+1\right)$ subintervals.
Amalgamate all the new subintervals along axis μ into N bigger intervals according to the weight of $\left|f_{\mathcal{E}_{1}, \mathcal{E}_{2}}^{\text {inter }}(\mathbf{x})\right|$.
end for
return $\left\{\frac{\tilde{\chi}^{2}}{\text { trial }}, \bar{I}\right\}$
end procedure

Bibliography

[1] Hamza Sulayman Abdullahi, Yicheng Liang, and Shuming Gao. "Predicting the elastic properties of closed-cell aluminum foams: a mesoscopic geometric modeling approach". In: SN Applied Sciences 1.4 (2019), pp. 1-13. ISSN: 25233971. DOI: 10.1007/s42452-019-0382-y. URL: https://doi.org/10.10 07/s42452-019-0382-y.
[2] James Ahrens, Berk Geveci, and Charles Law. "ParaView: An End-User Tool for Large Data Visualization". In: Visualization Handbook. ISBN 978-0123875822. Elsevier, 2005.
[3] Riyadh Al-Raoush and Khalid A. Alshibli. "Distribution of local void ratio in porous media systems from 3D X-ray microtomography images". In: Physica A: Statistical Mechanics and its Applications 361.2 (2006), pp. 441-456. ISSN: 03784371. DOI: $10.1016 / \mathrm{j}$.physa.2005.05.043. URL: http://linkinghub.el sevier.com/retrieve/pii/S0378437105004905.
[4] Andreas Alpers et al. "Generalized balanced power diagrams for 3D representations of polycrystals". In: Philosophical Magazine 95.9 (2015), pp. 10161028. ISSN: 14786443. DOI: $10.1080 / 14786435.2015$.1015469. arXiv: /arxiv .org/abs/1411.4535 [http:]. URL: http://dx.doi.org/10.1080/14786435 .2015.1015469.
[5] E Anderson et al. Lapack User's Guide. Third. Philadelphia, PA: Society for Industrial and Applied Mathematics, 1999. ISBN: 0-89871-447-8.
[6] J Andersons et al. "Anisotropy of the stiffness and strength of rigid lowdensity closed-cell polyisocyanurate foams". In: Materials and Design 92 (2016), pp. 836-845. ISSN: 18734197. DOI: $10.1016 / \mathrm{j}$.matdes.2015.12.122. URL: htt p://linkinghub.elsevier.com/retrieve/pii/S0264127515309813.
[7] E. W. Andrews et al. "Size effects in ductile cellular solids. Part II: Experimental results". In: International Journal of Mechanical Sciences 43.3 (2001), pp. 701713. ISSN: 00207403. DOI: 10.1016/S0020-7403(00)00043-6.
[8] Frederick Arand and Jürgen Hesser. "Quantitative morphological analysis and digital modeling of polydisperse anisotropic carbon foam". In: Carbon 136 (2018), pp. 11-20. ISSN: 00086223. DOI: $10.1016 / \mathrm{j}$. carbon . 2018.04.049. URL: https://linkinghub.elsevier.com/retrieve/pii/S00086223183041 OX.
[9] Brett M Averick et al. "The MINPACK-2 Test Problem Collection". In: Performance Computing June (1992). DOI: 10. 2172/79972. URL: https://www. osti .gov/biblio/79972.
[10] Jean Babaud et al. "Uniqueness of the Gaussian Kernel for Scale-Space Filtering". In: IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI8.1 (1986), pp. 26-33. ISSN: 0162-8828. DOI: 10.1109/TPAMI . 1986. 4767749. URL: http://ieeexplore.ieee.org/document/4767749/.
[11] T Bailey and K Jain. "A Note on Distance-Weighted k-Nearest Neighbor Rules". In: IEEE Transactions on Systems, Man, and Cybernetics 8.4 (1978), pp. 311-313. ISSN: 0018-9472. DOI: 10.1109/TSMC.1978.4309958. URL: http://ieeexplor e.ieee.org/document/4309958/.
[12] John Banhart. "Manufacture, characterisation and application of cellular metals and metal foams". In: Progress in Materials Science 46.6 (2001), pp. 559-632. ISSN: 00796425. DOI: 10.1016/S0079-6425(00)00002-5. URL: https://linki nghub.elsevier.com/retrieve/pii/S0079642500000025.
[13] A. T. Barnes et al. "Dynamic crushing of aluminum foams: Part i - Experiments". In: International Journal of Solids and Structures 51.9 (2014), pp. 16311645. ISSN: 00207683. DOI: $10.1016 / \mathrm{j}$.ijsolstr.2013.11.019. URL: http: //dx.doi.org/10.1016/j.ijsolstr.2013.11.019.
[14] H. Bart-Smith et al. "Compressive deformation and yielding mechanisms in cellular Al alloys determined using X-ray tomography and surface strain mapping". In: Acta Materialia 46.10 (1998), pp. 3583-3592. ISSN: 13596454. DOI: 10.1016/S1359-6454(98)00025-1.
[15] Richard Beare. "Histogram-based thresholding - some missing methods". In: The Insight Journal (2011), pp. 1-5. DOI: $10.54294 / \mathrm{efycla}$. URL: http://hdl .handle.net/10380/.
[16] Richard Beare and Gaëtan Lehman. "Finding regional extrema - methods and performance". In: Insight Journal (2005), pp. 1-7. DOI: $10.54294 /$ hva3gz. URL: http://hdl.handle.net/1926/153.
[17] Norbert Beckmann et al. "The R*-tree: an efficient and robust access method for points and rectangles". In: ACM SIGMOD Record 19.2 (1990), pp. 322-331. ISSN: 01635808. DOI: 10.1145/93605.98741. URL: http://portal.acm.org/c itation.cfm?doid=93605.98741.
[18] S Beucher. "The Watershed Transformation Applied to Image Segmentation". In: Proceedings of the 10th Pfefferkorn Conference on Signal and Image Processing in Microscopy and Microanalysis (1992), pp. 299-314. ISSN: 0892953X. DOI: 10.1 .1.24.5229. URL: https://digitalcommons.usu.edu/cgi/viewcontent.cg i?article=1466\&context=microscopy.
[19] Alexander Bezrukov, Monika Bargieł, and Dietrich Stoyan. "Statistical Analysis of Simulated Random Packings of Spheres". en. In: Part. Part. Syst. Charact. 19.2 (May 2002), pp. 111-118. ISSN: 1521-4117. DOI: 10.1002/1521-4117 (200205) 19:2<111::AID-PPSC111>3.0.C0;2-M.
[20] Alexander Bezrukov, Dietrich Stoyan, and Monika Bargieł. "Spatial Statistics for Simulated Packings of Spheres". In: Image Analysis \& Stereology 20.3 (2001), p. 203. ISSN: 1854-5165. DOI: $10.5566 /$ ias.v20.p203-206. URL: https ://www.ias-iss.org/ojs/IAS/article/view/680.
[21] Andreas Bieniek et al. "A parallel watershed algorithm". In: Proceedings of the 10th Scandinavian Conference on Image Analysis (SCIA'97). Proceedings of the 10th Scandinavian Conference on Image Analysis (SCIA'97), 1997, pp. 237244.
[22] Jean Daniel Boissonnat and Monique Teillaud. Effective Computational Geometry for Curves and Surfaces. Ed. by Jean-Daniel Boissonnat and Monique Teillaud. Springer Berlin Heidelberg, 2006, pp. 1-343. ISBN: 978-3-540-33258-9. DOI: 10.1007/978-3-540-33259-6. URL: http://link.springer.com/10.10 07/978-3-540-33259-6.
[23] Gunilla Borgefors. "Another comment on "a note on 'distance transformations in digital images""". In: CVGIP: Image Understanding 54.2 (1991), pp. 301306. ISSN: 10499660. DOI: 10.1016/1049-9660(91)90070-6. URL: http://lin kinghub.elsevier.com/retrieve/pii/S0734189X86800470.
[24] Gunilla Borgefors. "Distance transformations in arbitrary dimensions". In: Computer Vision, Graphics, and Image Processing 27.3 (1984), pp. 321-345. ISSN: 0734189X. DOI: 10.1016/0734-189X (84) 90035-5. URL: http://linkinghub .elsevier.com/retrieve/pii/0734189X84900355.
[25] D. P. Bourne et al. "Laguerre tessellations and polycrystalline microstructures: a fast algorithm for generating grains of given volumes". In: Philosophical Magazine 100.21 (2020), pp. 2677-2707. ISSN: 1478-6435. DOI: 10 . 1080/14 786435.2020.1790053. arXiv: 1912.07188. URL: https://www.tandfonline .com/doi/full/10.1080/14786435.2020.1790053.
[26] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge. Cambridge, 2004, pp. 1-730. ISBN: 9780521833783 . URL: https://web.stanfo rd.edu/~boyd/cvxbook/bv_cvxbook.pdf.
[27] Mauro Bracconi et al. "A systematic procedure for the virtual reconstruction of open-cell foams". In: Chemical Engineering Journal 315 (2017), pp. 608-620. ISSN: 13858947. DOI: 10.1016/j.cej.2017.01.069. URL: http://dx.doi.org /10.1016/j.cej.2017.01.069.
[28] Derek Bradley and Gerhard Roth. "Adaptive Thresholding using the Integral Image". In: Journal of Graphics Tools 12.2 (2007), pp. 13-21. ISSN: 1086-7651. DOI: 10.1080/2151237X. 2007.10129236. URL: https://www.tandfonline.c om/doi/full/10.1080/2151237X.2007.10129236.
[29] David K. Buck and Aarron A. Collin. POV-Ray - The Persistence of Vision Raytracer. 2004. URL: http://www povray .org.
[30] Mauricio Francisco Caliri Júnior et al. "Study of an anisotropic polymeric cellular material under compression loading". In: Materials Research 15.3 (2012), pp. 359-364. ISSN: 1516-1439. DOI: 10.1590/S1516-14392012005000034.
[31] C. Chen and N.A. Fleck. "Size effects in the constrained deformation of metallic foams". In: Journal of the Mechanics and Physics of Solids 50.5 (2002), pp. 955977. ISSN: 00225096. DOI: 10.1016/S0022-5096(01)00128-4. URL: https://1 inkinghub.elsevier.com/retrieve/pii/S0022509601001284.
[32] Youming Chen, Raj Das, and Mark Battley. "Effects of cell size and cell wall thickness variations on the stiffness of closed-cell foams". In: International Journal of Solids and Structures 52 (2015), pp. 150-164. ISSN: 00207683. DOI: 10.1016/j.ijsolstr.2014.09.022. URL: http://linkinghub.elsevier.co m/retrieve/pii/S0020768314003692.
[33] Jierong Cheng and Jagath C Rajapakse. "Segmentation of clustered nuclei with shape markers and marking function". In: IEEE Transactions on Biomedical Engineering 56.3 (2009), pp. 741-748. ISSN: 00189294. DOI: 10.1109/TBME. 2 008.2008635 . URL: http://www.ncbi.nlm.nih.gov/pubmed/19272880.
[34] P. Cignoni, C. Rocchini, and R. Scopigno. "Metro: Measuring Error on Simplified Surfaces". In: Computer Graphics Forum 17.2 (1998), pp. 167-174. ISSN: 0167-7055. DOI: 10.1111/1467-8659.00236. URL: https://onlinelibrary.w iley.com/doi/10.1111/1467-8659.00236.
[35] Olivier Cuisenaire. "Locally adaptable mathematical morphology using distance transformations". In: Pattern Recognition 39.3 (2006), pp. 405-416. ISSN: 00313203. DOI: 10.1016/j.patcog.2005.07.009. URL: http://linkinghub.e lsevier.com/retrieve/pii/S0031320305003006.
[36] Vladimir Curic et al. "Adaptive mathematical morphology - A survey of the field". In: Pattern Recognition Letters 47 (2014), pp. 18-28. ISSN: 01678655. DOI: 10.1016/j.patrec.2014.02.022. URL: http://linkinghub.elsevier.com /retrieve/pii/S0167865514000725.
[37] Per Erik Danielsson. "Euclidean distance mapping". In: Computer Graphics and Image Processing 14.3 (1980), pp. 227-248. ISSN: 0146664X. DOI: 10.1016/0 146-664X (80) 90054-4.
[38] P De Jaeger et al. "An experimentally validated and parameterized periodic unit-cell reconstruction of open-cell foams". In: Journal of Applied Physics 109.10 (2011), p. 103519. ISSN: 00218979. DOI: 10.1063/1. 3587159.
[39] Robin Deits and Russ Tedrake. "Computing Large Convex Regions of ObstacleFree Space Through Semidefinite Programming". In: Springer Tracts in Advanced Robotics. Ed. by H Levent Akin et al. Vol. 107. Springer Tracts in Advanced Robotics. Springer International Publishing, 2015, pp. 109-124. ISBN: 9783319165943. DOI: 10. 1007/978-3-319-16595-0.
[40] R. Destefanis et al. "Selecting Enhanced Space Debris Shields for Manned Spacecraft". en. In: International Journal of Impact Engineering 33.1-12 (Dec. 2006), pp. 219-230. ISSN: 0734743X. DOI: 10.1016/j.ijimpeng. 2006.09.065.
[41] Aaron Drake et al. "Horn and horn core trabecular bone of bighorn sheep rams absorbs impact energy and reduces brain cavity accelerations during high impact ramming of the skull". In: Acta Biomaterialia 44 (2016), pp. 41-50. ISSN: 18787568. DOI: $10.1016 /$ j. actbio.2016.08.019. URL: http://dx.doi . org/10.1016/j.actbio.2016.08.019.
[42] Matthias Eck et al. "Multiresolution analysis of arbitrary meshes". In: Proceedings of the ACM SIGGRAPH Conference on Computer Graphics 1 (1995), pp. 173180. DOI: 10.1145/218380. 218440.
[43] Karim Ehab Moustafa Kamel, Bernard Sonon, and Thierry Jacques Massart. "An integrated approach for the conformal discretization of complex inclusionbased microstructures". In: Computational Mechanics 64.4 (2019), pp. 10491071. ISSN: 1432-0924. DOI: 10.1007/s00466-019-01693-4.
[44] M.I. El Ghezal and I. Doghri. "Porous plasticity: Predictive second moment homogenization models coupled with Gurson's single cavity stress-strain solution". In: International Journal of Plasticity 108.October 2017 (2018), pp. 201221. ISSN: 07496419. DOI: 10.1016/j.ijplas.2018.05.006. URL: https://li nkinghub.elsevier.com/retrieve/pii/S0749641917305946.
[45] Martin Ester et al. "A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise". In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. KDD'96. Portland, Oregon: AAAI Press, 1996, 226-231. URL: https://www. aaai . org/Papers/KDD/1 996/KDD96-037.pdf.
[46] Ricardo Fabbri et al. "2D Euclidean distance transform algorithms". In: ACM Computing Surveys 40.1 (2008), pp. 1-44. ISSN: 03600300. DOI: 10.1145/13224 32.1322434.
[47] Frédéric Feyel. "A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua". In: Computer Methods in Applied Mechanics and Engineering 192.28-30 (2003), pp. 32333244. ISSN: 00457825. DOI: 10.1016/S0045-7825(03)00348-7.
[48] T. Fiedler et al. "Computed Tomography Based Finite Element Analysis of the Thermal Properties of Cellular Aluminium". en. In: Materialwissenschaft und Werkstofftechnik 40.3 (Mar. 2009), pp. 139-143. ISSN: 09335137, 15214052. DOI: 10.1002/mawe . 200900419.
[49] S. Forest et al. "Continuum modeling of strain localization phenomena in metallic foams". In: Journal of Materials Science 40.22 (2005), pp. 5903-5910. ISSN: 00222461. DOI: 10.1007/s10853-005-5041-6.
[50] J Fritz. "Extremum Problems with Inequalities as Side Conditions". In: Studies and Essays, Courant Anniversary Volume (K. O. Friedrichs, O. E. Neugebauer, and J. J. Stoker, eds.) Ed. by Wiley (Interscience). J. J. Stoker. Boston, 1984, p. 187204.
[51] S. Gaitanaros and S. Kyriakides. "Dynamic crushing of aluminum foams: Part II - Analysis". In: International Journal of Solids and Structures 51.9 (2014), pp. 1646-1661. ISSN: 00207683. DOI: $10.1016 / \mathrm{j}$.ijsolstr.2013.11.020. URL: https://linkinghub.elsevier.com/retrieve/pii/S0020768313004630.
[52] M Galassi et al. GNU Scientific Library Reference Manual. 3rd ed. Vol. 954161734. March. Network Theory Ltd, 2009, p. 592. ISBN: 0954161734. DOI: ISBN09546 12078. URL: http://www.gnu.org/software/gsl/.
[53] Thierry Géraud, Hugues Talbot, and Marc Van Droogenbroeck. "Algorithms for Mathematical Morphology". In: Mathematical Morphology: From Theory to Applications. Ed. by Laurent Najman and Hugues Talbot. Hoboken, NJ, USA: ISTE \{\&\} Wiley, 2013. Chap. 12, pp. 323-353. ISBN: 9781848212152. DOI: 10.1 002/9781118600788.ch12. URL: http://hdl.handle.net/2268/41515.
[54] Christophe Geuzaine and Jean-François Remacle. "Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities". In: International Journal for Numerical Methods in Engineering 79.11 (2009), pp. 13091331. ISSN: 00295981. DOI: $10.1002 / \mathrm{nme} .2579$.
[55] S Ghosh and S Moorthy. "Three dimensional Voronoi cell finite element model for microstructures with ellipsoidal heterogeneties". In: Computational Mechanics 34.6 (2004), pp. 510-531. ISSN: 01787675. DOI: 10.1007/s00466-004 -0598-5. URL: http://link.springer.com/10.1007/s00466-004-0598-5.
[56] Lorna J. Gibson and Michael F. Ashby. Cellular Solids: Structure and Properties. second. Cambridge: Cambridge University Press, 1997. ISBN: 978-1-139-87832-6. DOI: 10.1017/CB09781139878326.
[57] Michael Godehardt and Katja Schladitz. Geometric Characterisation of Light Weight Composites Using Computer Tomographic Images. ECNDT 2006 - We.1.6.3, 2006, pp. 1-8. URL: http://www.ndt.net/article/ecndt2006/doc/We.1.6 .3.pdf.
[58] L. Gong and S. Kyriakides. "Compressive Response of Open Cell Foams Part II: Initiation and Evolution of Crushing". en. In: International Journal of Solids and Structures 42.5-6 (Mar. 2005), pp. 1381-1399. ISSN: 00207683. DOI: 10.101 6/j.ijsolstr.2004.07.024.
[59] Antonin Guttman. "R-trees". In: ACM SIGMOD Record 14.2 (1984), p. 47. ISSN: 01635808. DOI: 10.1145/971697.602266. arXiv: ISBNO-89791-128-8. URL: http://portal.acm.org/citation.cfm?doid=971697.602266.
[60] A.G. Hanssen et al. "Validation of constitutive models applicable to aluminium foams". In: International Journal of Mechanical Sciences 44.2 (2002), pp. 359-406. ISSN: 00207403. DOI: 10.1016/S0020-7403(01)00091-1. URL: https://linki nghub.elsevier.com/retrieve/pii/S0020740301000911.
[61] Volker Hardenacke and Jrg Hohe. "Assessment of space division strategies for generation of adequate computational models for solid foams". In: International Journal of Mechanical Sciences 52.12 (2010), pp. 1772-1782. ISSN: 00207403. DOI: 10.1016/j.ijmecsci.2010.09.011.
[62] S. Heinze et al. "Experimental and Numerical Investigation of Single Pores for Identification of Effective Metal Foams Properties: Experimental and Numerical Investigation of Single Pores for Identification of Effective Metal Foams Properties". en. In: ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 98.5 (May 2018), pp. 682695. ISSN: 00442267. DOI: $10.1002 / \mathrm{zamm} .201700045$.
[63] Hugues Hoppe et al. "Mesh optimization". In: Proceedings of the 20th annual conference on Computer graphics and interactive techniques - SIGGRAPH '93. Vol. d. New York, New York, USA: ACM Press, 1993, pp. 19-26. ISBN: 0897916018. DOI: 10.1145/166117.166119. URL: http://portal.acm.org/citation.cfm ?doid=166117. 166119 .
[64] Hugues Hoppe et al. "Surface reconstruction from unorganized points". In: ACM SIGGRAPH Computer Graphics 26.2 (1992), pp. 71-78. ISSN: 0097-8930. DOI: 10.1145/142920.134011. URL: https://dl.acm.org/doi/10.1145/142 920.134011.
[65] A. T. Huber and L. J. Gibson. "Anisotropy of foams". In: Journal of Materials Science 23.8 (1988), pp. 3031-3040. ISSN: 0022-2461. DOI: $10.1007 /$ BF00547486. URL: http://link.springer.com/10.1007/BF00547486.
[66] J Inglada and E Christophe. "The orfeo toolbox remote sensing image processing software". In: Ieee Igarss. 2009, pp. 1-4.
[67] Wen-Yea Jang, Andrew M. Kraynik, and Stelios Kyriakides. "On the Microstructure of Open-Cell Foams and Its Effect on Elastic Properties". In: International Journal of Solids and Structures 45.7 (Apr. 2008), pp. 1845-1875. ISSN: 0020-7683. DOI: 10.1016/j.ijsolstr.2007.10.008.
[68] Wen Yea Jang and Stelios Kyriakides. "On the crushing of aluminum opencell foams: Part I. Experiments". In: International Journal of Solids and Structures 46.3-4 (2009), pp. 617-634. ISSN: 00207683. DOI: 10.1016/j.ijsolstr. 2008.0 9.008. URL: http://dx.doi.org/10.1016/j.ijsolstr.2008.09.008.
[69] Ibanez. Johnson McCormick. Fourth. Kitware, Inc., 2015. URL: https://itk . org/ItkSoftwareGuide.pdf.
[70] A. Jung and S. Diebels. "Microstructural Characterisation and Experimental Determination of a Multiaxial Yield Surface for Open-Cell Aluminium Foams". en. In: Materials \& Design 131 (Oct. 2017), pp. 252-264. ISSN: 02641275. DOI: 10.1016/j.matdes.2017.06.017.
[71] A. Jung et al. "Open-cell aluminium foams with graded coatings as passively controllable energy absorbers". In: Materials and Design 87 (2015), pp. 36-41. ISSN: 18734197. DOI: 10.1016/j.matdes.2015.07.165. URL: http://dx.doi .org/10.1016/j.matdes.2015.07.165.
[72] Avinash C Kak and Malcolm Slaney. Principles of Computerized Tomographic Imaging. Ed. by W R Crone et al. IEEE Press. New-York, 1987. ISBN: 0-87942-198-3. URL: http://www. slaney .org/pct/pct-toc.html.
[73] Jorgen Kampf et al. "Segmentation, statistical analysis, and modelling of the wall system in ceramic foams". In: Materials Characterization 99 (2015), pp. 3846. ISSN: 10445803. DOI: 10.1016/j .matchar.2014.11.008. URL: http://lin kinghub.elsevier.com/retrieve/pii/S1044580314003386.
[74] Sergey Kanaun and Oleksandr Tkachenko. "Representative volume element and effective elastic properties of open cell foam materials with random microstructures". In: Journal of Mechanics of Materials and Structures 2.8 (2007), pp. 1607-1628. ISSN: 1559-3959. DOI: $10.2140 /$ jomms 2007 . 2 . 1607. URL: http://msp.org/jomms/2007/2-8/p17.xhtml.
[75] L. Kaufman and P.J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster Analysis. Ed. by Leonard Kaufman and Peter J. Rousseeuw. Wiley Series in Probability and Statistics. Hoboken, NJ, USA: John Wiley \& Sons, Inc., 1990. ISBN: 9780470316801. DOI: 10.1002/9780470316801. URL: http://doi .wiley.com/10.1002/9780470316801.
[76] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. "Poisson Surface Reconstruction". In: Symposium on Geometry Processing. Ed. by Alla Sheffer and Konrad Polthier. The Eurographics Association, 2006. ISBN: 3-905673-24X. DOI: 10.2312/SGP/SGP06/061-070.
[77] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. "Poisson Surface Reconstruction". In: Proceedings of the Fourth Eurographics Symposium on Geometry Processing. SGP '06. Cagliari, Sardinia, Italy: Eurographics Association, 2006, 61-70. ISBN: 3905673363. URL: https://hhoppe . com/poissonrecon.pd f.
[78] Michael Kazhdan and Hugues Hoppe. "Screened poisson surface reconstruction". In: ACM Transactions on Graphics 32.3 (2013), pp. 1-13. ISSN: 0730-0301. DOI: 10.1145/2487228.2487237. URL: https://dl.acm.org/doi/10.1145/2 487228.2487237.
[79] N. G. Kilingar et al. "Computational generation of open-foam representative volume elements with morphological control using distance fields". In: European Journal of Mechanics, A/Solids 78 (2019). ISSN: 09977538. DOI: 10. 1016/j .euromechsol.2019.103847.
[80] Les Kitchen and Azriel Rosenfeld. "Gray-level corner detection". In: Pattern Recognition Letters 1.2 (1982), pp. 95-102. ISSN: 0167-8655. DOI: 10.1016/0167 -8655(82)90020-4. URL: https://www.sciencedirect.com/science/artic le/pii/0167865582900204.
[81] J. Koplik and A. Needleman. "Void growth and coalescence in porous plastic solids". In: International Journal of Solids and Structures 24.8 (1988), pp. 835853. ISSN: 00207683. DOI: 10.1016/0020-7683(88)90051-0. URL: https://li nkinghub.elsevier.com/retrieve/pii/0020768388900510.
[82] André Körbes et al. "A Proposal for a Parallel Watershed Transform Algorithm for Real-Time Segmentation". In: Proceedings of Workshop de Visao Computacional WVC. Proceedings of Workshop de Visao Computacional WVC, 2009.
[83] V. G. Kouznetsova, M. G.D. Geers, and W. A.M. Brekelmans. "Multi-scale second-order computational homogenization of multi-phase materials: A nested finite element solution strategy". In: Computer Methods in Applied Mechanics and Engineering 193.48-51 (2004), pp. 5525-5550. ISSN: 00457825. DOI: 10.101 6/j.cma.2003.12.073.
[84] V.G. Kouznetsova. "Computational homogenization for the multi-scale analysis of multi-phase materials". PhD thesis. 2002, pp. 1-134. DOI: 10.6100/IR5 60009. URL: https://pure.tue.nl/ws/files/3129502/200213807.pdf.
[85] Andrew M. Kraynik. "The Structure of Random Foam". en. In: Adv. Eng. Mater. 8.9 (Sept. 2006), pp. 900-906. ISSN: 1527-2648. DOI: 10.1002/adem . 2 00600167.
[86] Andrew M. Kraynik, Douglas Reinelt, and Frank van Swol. "Structure of Random Foam". en. In: Physical Review Letters 93.20 (Nov. 2004). ISSN: 00319007, 1079-7114. DOI: 10.1103/PhysRevLett.93.208301.
[87] Andrew M. Kraynik, Douglas A. Reinelt, and Frank van Swol. "Structure of Random Monodisperse Foam". en. In: Physical Review E 67.3 (Mar. 2003). ISSN: 1063-651X, 1095-3787. DOI: 10.1103/PhysRevE. 67.031403.
[88] Claudia Lautensack. "Fitting three-dimensional Laguerre tessellations to foam structures". In: Journal of Applied Statistics 35.9 (2008), pp. 985-995. ISSN: 02664763. DOI: 10.1080/02664760802188112.
[89] Claudia Lautensack and Tetyana Sych. "3D Image Analysis of Open Foams Using Random Tessellations". In: Image Analysis \& Stereology 25.2 (2006), pp. 8793. ISSN: 1854-5165. DOI: $10.5566 /$ ias.v25.p87-93. URL: https://www.iasiss.org/ojs/IAS/article/view/795.
[90] Claudia Lautensack and Sergei Zuyev. "Random Laguerre tessellations". In: Advances in Applied Probability 40.3 (2008), pp. 630-650. ISSN: 0001-8678. DOI: 10.1239/aap/1222868179. URL: https://www.cambridge.org/core/produc t/identifier/S000186780000272X/type/journal_article.
[91] G. Legrain et al. "An X-FEM and level set computational approach for imagebased modelling: Application to homogenization". In: International Journal for Numerical Methods in Engineering 86.7 (2011), pp. 915-934. ISSN: 00295981. DOI: $10.1002 /$ nme. 3085. URL: https://onlinelibrary. wiley.com/doi/10 .1002/nme. 3085.
[92] G Lehmann. "Binary morphological closing and opening image filters". In: Insight Journal (2005), pp. 1-6. DOI: 10.54294/bcwtvq. URL: https://www. ins ight-journal.org/browse/publication/58.
[93] Zhiqiang Li et al. "On crushing response of the three-dimensional closed-cell foam based on Voronoi model". In: Mechanics of Materials 68 (2014), pp. 85-94. ISSN: 01676636. DOI: 10.1016/j.mechmat.2013.08.009. URL: http://linkin ghub.elsevier.com/retrieve/pii/S0167663613001634.
[94] Yun-chia Liang and Josue Cuevas. "An Automatic Multilevel Image Thresholding Using Relative Entropy and Meta-Heuristic Algorithms". In: Entropy 15.6 (2013), pp. 2181-2209. ISSN: 1099-4300. DOI: 10 . 3390 / e15062181. URL: http://www.mdpi.com/1099-4300/15/6/2181/.
[95] A Liebscher et al. "Stochastic multiscale modeling of metal foams". In: Procedia IUTAM 6 (2013), pp. 87-96. ISSN: 22109838. DOI: 10.1016/j . piutam. 2013 .01.010.
[96] André Liebscher. "Laguerre approximation of random foams". In: Philosophical Magazine 95.25 (2015), pp. 2777-2792. ISSN: 14786443. DOI: 10.1080/1478 6435.2015.1078511.
[97] Tony Lindeberg. "Scale-space for discrete signals". In: IEEE Transactions on Pattern Analysis and Machine Intelligence 12.3 (1990).
[98] "CLARANS (Clustering Large Applications Based Upon Randomized Search)". In: Encyclopedia of Database Systems. Ed. by LING LIU and M. TAMER ÖZSU. Boston, MA: Springer US, 2009, pp. 330-330. ISBN: 978-0-387-39940-9. DOI: 10.1007/978-0-387-39940-9_2178.
[99] Alba Martinez Lopez-Reina. Conversion des images 2D obtenues par tomographie en vue de la modélisation par éléments finis. 2011.
[100] Dung D. Luong, Dinesh Pinisetty, and Nikhil Gupta. "Compressive properties of closed-cell polyvinyl chloride foams at low and high strain rates: Experimental investigation and critical review of state of the art". In: Composites Part B: Engineering 44.1 (2013), pp. 403-416. ISSN: 13598368. DOI: $10.1016 / \mathrm{j}$.compositesb.2012.04.060. URL: http://dx.doi.org/10.1016/j.composi tesb.2012.04.060.
[101] Ivan Macia. "Generalized computation of gaussian derivatives using itk". In: The Insight Journal (December 2007) (2007). DOI: $10.54294 / \mathrm{mrg} 5 \mathrm{is}$.
[102] J. B. MacQueen. "Some Methods for Classification and Analysis of MultiVariate Observations". In: 1 (1967). Ed. by L. M. Le Cam and J. Neyman, pp. 281297.
[103] Kevin Mader et al. "Quantitative 3D characterization of cellular materials: Segmentation and morphology of foam". In: Colloids and Surfaces A: Physicochemical and Engineering Aspects 415 (2012), pp. 230-238. ISSN: 09277757. DOI: 10.1016/j.colsurfa.2012.09.007. URL: http://linkinghub.elsevier.co m/retrieve/pii/S0927775712006188.
[104] K. R. Mangipudi and P. R. Onck. "Multiscale modelling of damage and failure in two-dimensional metallic foams". In: Journal of the Mechanics and Physics of Solids 59.7 (2011), pp. 1437-1461. ISSN: 00225096. DOI: $10.1016 / \mathrm{j} . j \mathrm{mps} .2011$.02.008. URL: http://dx.doi.org/10.1016/j.jmps.2011.02.008.
[105] Huina Mao, Romain Rumpler, and Peter Göransson. "An inverse method for characterisation of the static elastic Hooke's tensors of solid frame of anisotropic open-cell materials". In: International Journal of Engineering Science 147 (2020), p. 103198. ISSN: 00207225. DOI: 10.1016/j.ijengsci.2019.1 03198. URL: https://linkinghub.elsevier.com/retrieve/pii/S00207225 19322724.
[106] M. Marvi-Mashhadi, C.S. Lopes, and J. LLorca. "High fidelity simulation of the mechanical behavior of closed-cell polyurethane foams". In: Journal of the Mechanics and Physics of Solids 135 (2020), p. 103814. ISSN: 00225096. DOI: 10.1 016/j.jmps.2019.103814. arXiv: 1912.01083. URL: https://linkinghub.el sevier.com/retrieve/pii/S0022509619306477.
[107] M. Marvi-Mashhadi, C.S. Lopes, and J. LLorca. "Modelling of the mechanical behavior of polyurethane foams by means of micromechanical characterization and computational homogenization". In: International Journal of Solids and Structures 146 (2018), pp. 154-166. ISSN: 00207683. DOI: $10.1016 / \mathrm{j} . \mathrm{ij}$ solstr .2018.03.026. URL: https://linkinghub.elsevier.com/retrieve/pii/SO 020768318301343.
[108] T. J. Massart, R. H. J. Peerlings, and M. G. D. Geers. "An enhanced multi-scale approach for masonry wall computations with localization of damage". In: International Journal for Numerical Methods in Engineering 69.5 (2007), pp. 10221059. ISSN: 00295981. DOI: $10.1002 /$ nme.1799. URL: https://onlinelibrary .wiley.com/doi/10.1002/nme. 1799.
[109] Kazumi Matsui, Kenjiro Terada, and Kohei Yuge. "Two-scale finite element analysis of heterogeneous solids with periodic microstructures". In: Computers and Structures 82.7-8 (2004), pp. 593-606. ISSN: 00457949. DOI: $10.1016 / \mathrm{j}$. compstruc. 2004.01.004.
[110] Jacob Mattingley and Stephen Boyd. "CVXGEN: a code generator for embedded convex optimization". In: Optimization and Engineering 13.1 (2012), pp. 127. ISSN: 1389-4420. DOI: 10.1007/s11081-011-9176-9. URL: http://link.s pringer.com/10.1007/s11081-011-9176-9.
[111] C.R. Maurer, Rensheng Qi, and V. Raghavan. "A linear time algorithm for computing exact Euclidean distance transforms of binary images in arbitrary dimensions". In: IEEE Transactions on Pattern Analysis and Machine Intelligence 25.2 (2003), pp. 265-270. DOI: 10.1109/TPAMI . 2003.1177156.
[112] Cahal McVeigh et al. "Multiresolution analysis for material design". In: Computer Methods in Applied Mechanics and Engineering 195.37-40 (2006), pp. 50535076. ISSN: 00457825. DOI: 10.1016/j . cma.2005.07.027.
[113] Matthew D. Montminy, Allen R. Tannenbaum, and Christopher W. Macosko. "The 3D structure of real polymer foams". In: Journal of Colloid and Interface Science 280.1 (2004), pp. 202-211. ISSN: 00219797. DOI: 10.1016/j . jcis. 2004 .07.032. URL: https://linkinghub.elsevier.com/retrieve/pii/S002197 9704006824.
[114] S Moorthy and S Ghosh. "A model for analysis of arbitrary composite and porous microstructures with voronoi cell finite elements". In: International Journal for Numerical Methods in Engineering 39.14 (1996), pp. 2363-2398. ISSN: 0029-5981. DOI: 10 . 1002/(SICI) 1097-0207(19960730) $39: 14<2363$: : AID -NME958>3.0.CO;2-D.
[115] Kishore Mosaliganti, Arnaud Gelas, and Sean Megason. "An Adaptive Thresholding Image Filter". In: Insight Journal (2009), pp. 1-5. DOI: 10.54294/4vjov f. URL: http://hdl.handle.net/10380/3133.
[116] Kilingar Nanda. "Generation and data-driven upscaling of open foam representational volume elements". PhD thesis. University of Liège, 2020, pp. 1192.
[117] K Natesaiyer et al. "X-ray CT imaging and finite element computations of the elastic properties of a rigid organic foam compared to experimental measurements: insights into foam variability". In: Journal of Materials Science 50.11 (2015), pp. 4012-4024. ISSN: 0022-2461. DOI: 10.1007/s10853-015-8958-4. URL: http://link.springer.com/10.1007/s10853-015-8958-4.
[118] Nicholas Nethercote and Julian Seward. "Valgrind". In: ACM SIGPLAN Notices 42.6 (2007), p. 89. ISSN: 03621340. DOI: 10.1145/1273442.1250746. URL: http://portal.acm.org/citation.cfm?doid=1273442.1250746.
[119] V.-D. Nguyen and L Noels. "Computational homogenization of cellular materials". In: International Journal of Solids and Structures 51.11-12 (2014), pp. 21832203. ISSN: 00207683. DOI: $10.1016 / \mathrm{j} . \mathrm{ijsolstr}$.2014.02.029. URL: http : //linkinghub.elsevier.com/retrieve/pii/S0020768314000778.
[120] V.-D. Nguyen et al. "Imposing periodic boundary condition on arbitrary meshes by polynomial interpolation". In: Computational Materials Science 55 (2012), pp. 390-406. ISSN: 09270256. DOI: 10.1016/j. commatsci.2011.10.017. URL: http://linkinghub.elsevier.com/retrieve/pii/S0927025611005866.
[121] Van-Dung Nguyen, Ling Wu, and Ludovic Noels. "A micro-mechanical model of reinforced polymer failure with length scale effects and predictive capabilities. Validation on carbon fiber reinforced high-crosslinked RTM6 epoxy resin". en. In: Mechanics of Materials 133 (June 2019), pp. 193-213. ISSN: 01676636. DOI: 10.1016/j.mechmat.2019.02.017.
[122] Van-Dung Nguyen, Ling Wu, and Ludovic Noels. "Unified Treatment of Microscopic Boundary Conditions and Efficient Algorithms for Estimating Tangent Operators of the Homogenized Behavior in the Computational Homogenization Method". en. In: Computational Mechanics 59.3 (Mar. 2017), pp. 483505. ISSN: 0178-7675, 1432-0924. DOI: 10.1007/s00466-016-1358-z.
[123] Vinh Phu Nguyen, Martijn Stroeven, and Lambertus Johannes Sluys. "Multiscale Continuou and Discontinuous Modeling of Heterogeneous Materials: a Review on Recent developments". In: Journal of Multiscale Modelling 03.04 (2011), pp. 229-270. ISSN: 1756-9737. DOI: 10.1142/S1756973711000509. URL: https://www.worldscientific.com/doi/abs/10.1142/S1756973711000509
[124] NIST. X-Ray Mass Attenuation Coefficients. URL: http ://physics. nist. gov /PhysRefData/XrayMassCoef/chap2.html.
[125] J Ohser and K Schladitz. Image processing and analysis. Oxford: Clarendon Press, 2006. URL: https://pdfs. semanticscholar .org/d381/14f34c8866 57ca978b946d6da80f013d5787.pdf.
[126] Nobuyuki Otsu. "A Threshold Selection Method from Gray-Level Histograms". In: IEEE Transactions on Systems, Man, and Cybernetics 9.1 (1979), pp. 62-66. ISSN: 0018-9472. DOI: 10.1109/TSMC.1979.4310076. URL: http://ieeexplor e.ieee.org/document/4310076.
[127] S. D. Papka and S. Kyriakides. "Experiments and full-scale numerical simulations of in-plane crushing of a honeycomb". In: Acta Materialia 46.8 (1998), pp. 2765-2776. ISSN: 13596454. DOI: 10.1016/S1359-6454(97)00453-9.
[128] Per-olof Persson and Gilbert Strang. "A Simple Mesh Generator in MATLAB". In: SIAM Review 46.2 (2004), pp. 329-345. ISSN: 0036-1445. DOI: 10.113 7/S0036144503429121. URL: http://epubs.siam.org/doi/10.1137/S00361 44503429121.
[129] G Peter Lepage. "A new algorithm for adaptive multidimensional integration". In: Journal of Computational Physics 27.2 (1978), pp. 192-203. ISSN: 00219991. DOI: 10.1016/0021-9991(78)90004-9. URL: http://linkinghub .elsevier .com/retrieve/pii/0021999178900049.
[130] Tuan Q Pham. "Non-maximum Suppression Using Fewer than Two Comparisons per Pixel". In: Advanced Concepts for Intelligent Vision Systems. Vol. 6474. 1987. 2010, pp. 438-451. DOI: 10.1007/978-3-642-17688-3_41.
[131] Schneider Philip J. and David H Eberly. Geometric Tools for Computer Graphics. Elsevier Inc., 2003. ISBN: 978-1-55860-594-7. URL: http: //www. sciencedirec t.com/science/book/9781558605947https://www.geometrictools.com.
[132] Joseph Antoine Ferdinand Plateau. Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires. Gauthier-Villars, 1873.
[133] Stephen B Pope. "Algorithms for ellipsoids". In: Cornell University Report No. FDA-08-01 February (2008). URL: https://tcg.mae. cornell.edu/pubs/Pop e_FDA_08.pdf.
[134] P D Raju and G Neelima. "Image Segmentation by using Histogram Thresholding". In: Ijcset 2.1 (2012), pp. 776-779. URL: https://ijcset.net/docs/Vo lumes/volume2issue1/ijcset2012020103.pdf.
[135] C Redenbach, I Shklyar, and H Andrä. "Laguerre tessellations for elastic stiffness simulations of closed foams with strongly varying cell sizes". In: International Journal of Engineering Science 50.1 (2012), pp. 70-78. ISSN: 00207225. DOI: 10.1016/j.ijengsci.2011.09.002. URL: http://linkinghub.elsevie r.com/retrieve/pii/S0020722511001807.
[136] Claudia Redenbach. "Microstructure models for cellular materials". In: Computational Materials Science 44.4 (2009), pp. 1397-1407. ISSN: 09270256. DOI: 10.1016/j.commatsci.2008.09.018. URL: https://linkinghub.elsevier .com/retrieve/pii/S0927025608004266.
[137] Claudia Redenbach. "Microstructure models for cellular materials". In: Computational Materials Science 44.4 (2009), pp. 1397-1407. ISSN: 09270256. DOI: 10.1016/j.commatsci.2008.09.018. URL: http://dx.doi.org/10.1016/j . commatsci.2008.09.018.
[138] Claudia Redenbach. "Modelling foam structures using random tessellations". In: European Congress of Stereology and Image Analysis. Milan: ESCULAPIO Pub. Co., 2009. ISBN: 978-88-7488-310-3. URL: http : / / publica. fraunhofe r.de/dokumente/N-111433.html.
[139] S Ridler, T.W. Calvard. "Picture Thresholding Using an Iterative Selection Method". In: IEEE Transactions on Systems, Man and Cybernetics 8.8 (1978), pp. 630-632. ISSN: 00189472. DOI: 10.1109/TSMC.1978.4310039.
[140] A P Roberts and E J Garboczi. "Elastic moduli of model random three-dimensional closed-cell cellular solids". In: Acta materialia 49 (2001), pp. 189-197. DOI: 10 .1016/S1359-6454(00)00314-1. URL: http://www. sciencedirect.com/sci ence/article/pii/S1359645400003141.
[141] A.P. Roberts and E.J. Garboczi. "Elastic properties of model random threedimensional open-cell solids". In: Journal of the Mechanics and Physics of Solids 50.1 (2002), pp. 33-55. ISSN: 00225096. DOI: 10.1016/S0022-5096(01)000564. URL: https://linkinghub.elsevier.com/retrieve/pii/S002250960100 0564.
[142] Kevin Robinson and Paul F. Whelan. "Efficient morphological reconstruction: a downhill filter". In: Pattern Recognition Letters 25.15 (2004), pp. 1759-1767. ISSN: 0167-8655. DOI: https://doi.org/10.1016/j.patrec. 2004.07.002. URL: https://www.sciencedirect.com/science/article/pii/S016786550 4001692.
[143] A. Rosenfeld and J.L. Pfaltz. "Distance functions on digital pictures". In: Pattern Recognition 1.1 (1968), pp. 33-61. ISSN: 0031-3203. DOI: https://doi . org /10.1016/0031-3203(68) 90013-7. URL: https://www. sciencedirect.com /science/article/pii/0031320368900137.
[144] Azriel Rosenfeld and A. Kak. Digital Picture Processing. 2nd. London: Academic Press, 1976. ISBN: 978-0-12-597302-1. DOI: 10.1016/C2009-0-21955-6.
[145] Toyofumi Saito and Jun-Ichiro Toriwaki. "New algorithms for euclidean distance transformation of an n-dimensional digitized picture with applications". In: Pattern Recognition 27.11 (1994), pp. 1551-1565. ISSN: 0031-3203. DOI: http s://doi.org/10.1016/0031-3203(94) 90133-3. URL: https://www.science direct.com/science/article/pii/0031320394901333.
[146] Nader Salman, Mariette Yvinec, and Quentin Merigot. "Feature preserving mesh generation from 3D point clouds". In: Eurographics Symposium on Geometry Processing 29.5 (2010), pp. 1623-1632. ISSN: 17278384. URL: https ://h al.inria.fr/inria-00497632.
[147] J Sander et al. "Density-based clustering in spatial databases: The algorithm gdbscan and its applications". In: Data Mining and Knowledge Discovery 194 (1998), pp. 169-194. DOI: 10.1023/A:1009745219419. URL: http://link.spr inger.com/article/10.1023/A:1009745219419.
[148] Fabian M. Schaller et al. "Set Voronoi diagrams of 3D assemblies of aspherical particles". In: Philosophical Magazine 93.31-33 (2013), pp. 3993-4017. ISSN: 1478-6435. DOI: 10.1080/14786435.2013.834389. URL: http://www.tandfon line.com/doi/abs/10.1080/14786435.2013.834389.
[149] K Schladitz et al. "Microstructural characterisation of open foams using 3d images". In: 148.148 (2008). URL: https://kluedo .ub .uni-kl de/frontdoor /deliver/index/docId/2047/file/bericht148.pdf.
[150] Ondřej Šedivý et al. "3D reconstruction of grains in polycrystalline materials using a tessellation model with curved grain boundaries". In: Philosophical Magazine 96.18 (2016), pp. 1926-1949. ISSN: 1478-6435. DOI: 10.1080/1478643 5.2016.1183829. URL: http://www.tandfonline.com/doi/full/10.1080/1 4786435.2016.1183829.
[151] Ondřej Šedivý et al. "Description of the 3D morphology of grain boundaries in aluminum alloys using tessellation models generated by ellipsoids". In: Image Analysis and Stereology 36.1 (2017), pp. 5-13. ISSN: 18545165. DOI: 10.55 66/ias. 1656.
[152] Mehmet Sezgin and Bülent Sankur. "Survey over image thresholding techniques and quantitative performance evaluation". In: Journal of Electronic Imaging 13.1 (2004), pp. 146-165. ISSN: 1017-9909. DOI: 10.1117/1.1631316. URL: http://electronicimaging.spiedigitallibrary.org/article.aspx?doi $=10.1117 / 1.1631316$.
[153] Hang Si. "TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator". en. In: ACM Transactions on Mathematical Software 41.2 (Feb. 2015), pp. 1-36. ISSN: 00983500. DOI: 10.1145/2629697.
[154] Shweta Singh and Naresh Bhatnagar. "A survey of fabrication and application of metallic foams (1925-2017)". In: Journal of Porous Materials 25.2 (2018), pp. 537-554. ISSN: 1380-2224. DOI: 10.1007/s10934-017-0467-1. URL: http: //link.springer.com/10.1007/s10934-017-0467-1.
[155] Pierre Soille. Morphological Image Analysis. Vol. 24. 11. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 4512-4527. ISBN: 978-3-662-03941-0. DOI: 10.100 7/978-3-662-03939-7. arXiv: 1011.1669. URL: http://link.springer.com /10.1007/978-3-662-03939-7.
[156] B Sonon, B François, and T J Massart. "An advanced approach for the generation of complex cellular material representative volume elements using distance fields and level sets". In: Computational Mechanics 56.2 (2015), pp. 221242. ISSN: 0178-7675. DOI: 10.1007/s00466-015-1168-8. URL: http://link .springer.com/10.1007/s00466-015-1168-8.
[157] A. Spettl et al. "Fitting Laguerre tessellation approximations to tomographic image data". In: Philosophical Magazine 96.2 (2016), pp. 166-189. ISSN: 14786443. DOI: $10.1080 / 14786435$. 2015 . 1125540. arXiv: 1508.01341. URL: http: //dx .doi.org/10.1080/14786435.2015.1125540.
[158] Robert Staubs et al. "Parallel N-Dimensional Exact Signed Euclidean Distance Transform". In: Insight Journal 123 (2006), pp. 1-5. DOI: 10.54294 / og v879. URL: http://www.insight-journal.org/browse/publication/123.
[159] Han Sun, Jingyu Yang, and Mingwu Ren. "A fast watershed algorithm based on chain code and its application in image segmentation". In: Pattern Recognition Letters 26.9 (2005), pp. 1266-1274. ISSN: 01678655. DOI: 10.1016/j. pat rec.2004.11.007. URL: http://linkinghub.elsevier.com/retrieve/pii /S0167865504003617.
[160] Kirubel Teferra and Lori Graham-Brady. "Tessellation growth models for polycrystalline microstructures". In: Computational Materials Science 102 (2015), pp. 57-67. ISSN: 09270256. DOI: $10.1016 /$ j . commatsci.2015.02.006. URL: http://linkinghub.elsevier.com/retrieve/pii/S0927025615000671.
[161] I. Temizer and T. I. Zohdi. "A numerical method for homogenization in nonlinear elasticity". In: Computational Mechanics 40.2 (2007), pp. 281-298. ISSN: 01787675. DOI: 10.1007/s00466-006-0097-y.
[162] George Teodoro et al. "A fast parallel implementation of queue-based morphological reconstruction using gpus". In: Data- and Compute-Intensive Clinical and Translational Imaging Applications DCICTIA-MICCAI (2012). URL: http s://hgpu.org/?p=7089.
[163] William Thomson. "LXIII. On the Division of Space with Minimum Partitional Area". In: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 24.151 (1887), pp. 503-514.
[164] Volnei Tita et al. "Experimental analyses of the poly(vinyl chloride) foams' mechanical anisotropic behavior". In: Polymer Engineering \{E\} Science 52.12 (2012), pp. 2654-2663. ISSN: 00323888. DOI: $10.1002 /$ pen. 23222. URL: http : //doi.wiley.com/10.1002/pen. 23222.
[165] G Tondi et al. "X-ray microtomography studies of tannin-derived organic and carbon foams." In: Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada 15.5 (2009), pp. 384-394. ISSN: 1435-8115. DOI: 10.1017/S1431927609 990444. URL: http://www.ncbi.nlm.nih.gov/pubmed/19709464.
[166] M. W. D. Van Der Burg et al. "On the Linear Elastic Properties of Regular and Random Open-Cell Foam Models". en. In: Journal of Cellular Plastics 33.1 (Jan. 1997), pp. 31-54. ISSN: 0021-955X, 1530-7999. DOI: 10.1177/0021955X970330 0103.
[167] L Vandenberghe. The CVXOPT linear and quadratic cone program solvers. 2010. URL: https://www.seas.ucla.edu/~vandenbe/publications/coneprog.pd f.
[168] Lieven Vandenberghe, Stephen Boyd, and Shao-Po Wu. Determinant Maximization with Linear Matrix Inequality Constraints. Stanford, 1998. DOI: 10.113 7/S0895479896303430. URL: http://epubs.siam.org/doi/10.1137/S08954 79896303430.
[169] Irene Vecchio, Claudia Redenbach, and Katja Schladitz. "Angles in Laguerre tessellation models for solid foams". In: Computational Materials Science 83 (2014), pp. 171-184. ISSN: 09270256. DOI: 10.1016/j . commatsci.2013.11.01 7. URL: http://dx.doi.org/10.1016/j. commatsci. 2013.11.017.
[170] Irene Vecchio et al. "Improved Models of Solid Foams Based on Soap Froth". In: Computational Materials Science 120 (July 2016), pp. 60-69. ISSN: 0927-0256. DOI: 10.1016/j.commatsci.2016.03.029.
[171] Irene Vecchio et al. MAVI - Modular Algorithms for Volume Images. 2012. URL: https://www.itwm.fraunhofer.de/en/departments/bv/products-and-ser vices/mavi.html.
[172] Matej Vesenjak et al. "Behaviour of cellular structures with fluid fillers under impact loading". In: The International Journal of Multiphysics 1.1 (2007), pp. 101-122. ISSN: 1750-9548. DOI: $10.1260 / 175095407780130508$. URL: http ://www.journal.multiphysics.org/index.php/IJM/article/view/1-1-10 1.
[173] C. Veyhl et al. "Finite Element Analysis of the Mechanical Properties of Cellular Aluminium Based on Micro-Computed Tomography". en. In: Materials Science and Engineering: A 528.13-14 (May 2011), pp. 4550-4555. ISSN: 09215093. DOI: 10.1016/j.msea.2011.02.031.
[174] H.I. Villafán-Vidales et al. "Heat Transfer Simulation in a Thermochemical Solar Reactor Based on a Volumetric Porous Receiver". en. In: Applied Thermal Engineering 31.16 (Nov. 2011), pp. 3377-3386. ISSN: 13594311. DOI: 10.1016/j .applthermaleng.2011.06.022.
[175] Luc. Vincent. "Exact Euclidean distance function by chain propagations". In: Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 1991, pp. 520-525. DOI: 10.1109/CVPR.1991.139746.
[176] Luc Vincent. "Morphological grayscale reconstruction in image analysis: applications and efficient algorithms". In: IEEE Transactions on Image Processing 2.2 (1993), pp. 176-201. ISSN: 10577149. DOI: 10.1109/83.217222. URL: http: //ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=217222.
[177] F. Wan et al. "Experimental and computational micro-mechanical investigations of compressive properties of polypropylene/multi-walled carbon nanotubes nanocomposite foams". In: Mechanics of Materials 91.P1 (2015), pp. 95118. ISSN: 01676636. DOI: 10.1016/j.mechmat.2015.07.004. URL: http://dx .doi.org/10.1016/j.mechmat. 2015.07.004.
[178] J. Wang et al. "Feature-preserving surface reconstruction from unoriented, noisy point data". In: Computer Graphics Forum 32.1 (2013), pp. 164-176. ISSN: 14678659. DOI: 10.1111/cgf. 12006.
[179] Meili Wang et al. "3D Incomplete Point Cloud Surfaces Reconstruction With Segmentation and Feature-Enhancement". In: IEEE Access 7 (2019), pp. 1527215281. ISSN: 2169-3536. DOI: 10.1109/ACCESS 2019.2891959. URL: https://i eeexplore.ieee.org/document/8610208/.
[180] Wenping Wang, Jiaye Wang, and Myung-Soo Kim. "An algebraic condition for the separation of two ellipsoids". In: Computer Aided Geometric Design 18.6 (2001), pp. 531-539. ISSN: 01678396. DOI: 10.1016/S0167-8396(01) 00049-8. URL: http://linkinghub.elsevier.com/retrieve/pii/S016783960100049 8.
[181] D. Weaire and R. Phelan. "A Counter-Example to Kelvin's Conjecture on Minimal Surfaces". en. In: Philosophical Magazine Letters 69.2 (Feb. 1994), pp. 107110. ISSN: 0950-0839, 1362-3036. DOI: 10.1080/09500839408241577.
[182] T Wejrzanowski et al. "Structure of foams modeled by Laguerre-Voronoi tessellations". In: Computational Materials Science 67 (2013), pp. 216-221. ISSN: 09270256. DOI: $10.1016 / \mathrm{j}$. commatsci. 2012.08.046. URL: http://dx. doi. or g/10.1016/j.commatsci.2012.08.046.
[183] Badadjida Wintiba et al. "An Automated Procedure for the Generation and Conformal Discretization of 3D Woven Composites RVEs". en. In: Composite Structures 180 (Nov. 2017), pp. 955-971. ISSN: 02638223. DOI: $10.1016 / \mathrm{j}$.com pstruct.2017.08.010.
[184] Yugong Wu et al. "Modeling and characterization of two-phase composites by Voronoi diagram in the Laguerre geometry based on random close packing of spheres". In: Computational Materials Science 47.4 (2010), pp. 951-961. ISSN: 09270256. DOI: 10.1016/j.commatsci.2009.11.028. URL: https://lin kinghub.elsevier.com/retrieve/pii/S092702560900439X.
[185] E Alper Yildirim. "On the Minimum Volume Covering Ellipsoid of Ellipsoids". In: SIAM Journal on Optimization 17.3 (2006), pp. 621-641. ISSN: 10526234. DOI: 10.1137/050622560. URL: http://epubs.siam.org/doi/abs/10 .1137/050622560.
[186] Shunjie Yin and Nassif Rayess. "Characterization of Polymer-metal Foam Hybrids for Use in Vibration Dampening and Isolation". In: Procedia Materials Science 4 (2014), pp. 311-316. ISSN: 22118128. DOI: 10.1016/j.mspro. 20 14.07.564. URL: http://dx.doi.org/10.1016/j.mspro.2014.07.564.
[187] S Youssef, E Maire, and R Gaertner. "Finite element modelling of the actual structure of cellular materials determined by X-ray tomography". In: Acta Materialia 53.3 (2005), pp. 719-730. ISSN: 13596454. DOI: $10.1016 / \mathrm{j}$. actamat .2004.10.024. URL: http://linkinghub.elsevier.com/retrieve/pii/S13 59645404006330.
[188] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. "BIRCH". In: Proceedings of the 1996 ACM SIGMOD international conference on Management of data SIGMOD '96. Vol. 1. New York, New York, USA: ACM Press, 1996, pp. 103114. ISBN: 0897917944. DOI: 10.1145/233269.233324. URL: http://portal.a cm.org/citation.cfm?doid=233269.233324.
[189] Yin Zhang and Liyan Gao. "On Numerical Solution of the Maximum Volume Ellipsoid Problem". In: SIAM Journal on Optimization 14.1 (2003), pp. 53-76. ISSN: 1052-6234. DOI: 10.1137/S1052623401397230. URL: http://epubs.sia m.org/doi/abs/10.1137/S1052623401397230.
[190] H. X. Zhu and N. J. Mills. "The in-plane non-linear compression of regular honeycombs". In: International Journal of Solids and Structures 37.13 (2000), pp. 1931-1949. ISSN: 00207683. DOI: 10.1016/S0020-7683(98)00324-2.
[191] Wenqi Zhu et al. "Effective elastic properties of periodic irregular open-cell foams". In: International Journal of Solids and Structures 143 (2018), pp. 155-166. ISSN: 00207683. DOI: 10.1016/j.ijsolstr. 2018.03.003. URL: https://doi .org/10.1016/j.ijsolstr.2018.03.003.
[192] Wenqi Zhu et al. "Micromechanical modeling of effective elastic properties of open-cell foam"' In: International Journal of Solids and Structures 115-116 (2017), pp. 61-72. ISSN: 00207683. DOI: 10.1016/j.ijsolstr.2017.02.031. URL: htt ps://linkinghub.elsevier.com/retrieve/pii/S0020768317300859.
[193] Xiaolei Zhu et al. "A novel modeling approach of aluminum foam based on MATLAB image processing". In: Computational Materials Science 82 (2014), pp. 451-456. ISSN: 09270256. DOI: 10.1016/j. commatsci.2013.10.020. URL: http://linkinghub.elsevier.com/retrieve/pii/S092702561300637X.
[194] M A Zuluaga, L Ibañez, and F Peyrin. "Large Image Streaming using ITKv4". In: The Insight Journal January-Ju (2011), pp. 1-9. DOI: 10.54294/2djpwb. URL: http://hdl.handle.net/10380/3263.

[^0]: ${ }^{1}$ In the sense that the main statistical geometric features of the considered foam, such as the cell-size distribution, the mean number of faces per cell, etc., are reproduced

[^1]: ${ }^{2}$ It has been initially designed to determine in real time a safe region around a moving robot surrounded by obstacles.

[^2]: ${ }^{3}$ The neighbourhood, not the local maximum candidate.

[^3]: ${ }^{1}$ The resolution in a given direction is defined as the number of voxels in this direction per unit of physical length.
 ${ }^{2}$ See the ITK Software Guide [69] pp. 46 for more details.

[^4]: ${ }^{3}$ Multilevel thresholding outputs a grayscale image where not only the foreground plane and the background plane of an image are segmented, but also intermediate planes.
 ${ }^{4}$ This algorithm comes from http://www.mathworks.com/matlabcentral/fileexchange/3195-automatic-thresholding
 ${ }^{5}$ Depending on the complexity of the chosen method...

[^5]: ${ }^{6}$ Note: here, for visualisation purposes, this gray-level image is coded using a blue-to-red convention instead of a black-to-white one.
 ${ }^{7}$ For a space E, a closed ball $B[x ; r]$ of radius $r>0$ centred in $x \in E$ is defined as: $B[x ; r]=\{y \in E \mid d(x, y) \leq r\}$
 ${ }^{8}$ For a domain $D, x \in D$ is in the interior $\operatorname{int}(D)$ of D if, and only if $\exists r>0 \mid B[x ; r] \subset D$.
 ${ }^{9}$ For a domain $D, x \in D$ is in the adherence $\operatorname{adh}(D)$ of D if, and only if, $\forall r>0, B[x ; r] \cap D \neq \varnothing$.
 ${ }^{10}$ The boundary $f r(D)$ of a domain D is defined as $f r(D)=\operatorname{adh}(D) \backslash \operatorname{int}(D)$.
 ${ }^{11}$ The forward (resp. backward) neighbourhood of a current pixel, are its neighbouring pixels coming before (resp. after) him in raster scan order.

[^6]: ${ }^{12}$ For ITK version 4.10.1.
 ${ }^{13}$ Note, though, that the algorithms of R. Beare and G. Lehman computes local maxima, while the itk::HConvexImageFilter actually computes regional maxima and, therefore, may miss some local maxima.

[^7]: ${ }^{14}$ For a function $f: \mathcal{R} \rightarrow \mathcal{R} ; \mathbf{x} \mapsto f(\mathbf{x})$, a point $\mathbf{y} \in \operatorname{dom}(f)$ is a saddle point if at least one eigenvalue of the Hessian of f evaluated at \mathbf{y} has a sign opposite to another, different, non-zero eigenvalue.

[^8]: ${ }^{15}$ Citation from ITK's documentation [69], pp. 103.

[^9]: ${ }^{16}$ In ITK 4.10.1 this value is set by default to 30 pixels.

[^10]: ${ }^{17}$ The functions $\exp \left(-z^{2}\right)$ and $\operatorname{erfc}(z)$ are strictly decreasing over \mathcal{R}^{+}.
 ${ }^{18}$ The function ceil $: \mathcal{R} \rightarrow \mathcal{Z} ; x \mapsto \operatorname{ceil}(x)$ maps a real number to its nearest upper integer.

[^11]: ${ }^{19}$ The construction of such axis-aligned boxes from ellipsoids is described on page 94.

[^12]: ${ }^{20}$ Ellipsoid centres are located at the maxima of the distance transform of the considered image. I.e., ellipsoid centres are located as far as possible from cell walls.

[^13]: ${ }^{21}$ As the fast dilation stage only changes the radii of the semi-axes and not their orientations, their corresponding eigenvectors are constant throughout the iterations.

[^14]: ${ }^{22}$ For instance, this case may occur if there is not enough separating planes, or if all the obstacle are located to "one side" of the ellipsoid.

[^15]: ${ }^{23}$ Disclaimer: it does not mean that other algorithms than GDBSCAN are not suitable for the performing clustering of ellipsoids with noise, or even that the GDBSCAN algorithm is the best at this task. It just means that the GDBSCAN algorithm does the job well enough.
 ${ }^{24}$ The concept of noise in the context of clustering is given in Appendix F.
 ${ }^{25}$ As mentioned, neighbour querying is efficiently performed by sorting the objects in a R*-tree data structure.

[^16]: ${ }^{26}$ Note: other data structures can also be used by the GDBSCAN algorithm.

[^17]: ${ }^{27} \operatorname{Vol}\left(\mathcal{E}_{i}\right)=4 \pi / 3 a b c$, where a, b and c are the lengths of the semi-axes of the ellipsoid. These lengths can be computed from the eigenvalues of the shape matrix of the ellipsoid.

[^18]: ${ }^{28}$ The corresponding eigenvalues can be computed thanks to the routine dgeev of Lapack [5].
 ${ }^{29}$ It should be noted that, although A_{h} and B_{h} are symmetric matrices, $-A_{h}^{-1} B_{h}$ is generally not, because matrix-matrix multiplication is generally not commutative.

[^19]: ${ }^{30}$ Source: http://mathworld.wolfram.com/Sphere-SphereIntersection.html.

[^20]: ${ }^{31}$ Typically, it is only needed to replace the word Area by the word Volume.
 ${ }^{32}$ Which is itself an axis-aligned box.

[^21]: ${ }^{33} \mathrm{At}$ least on the provided tomographic images. This may occurs for closed but very thin walls.

[^22]: ${ }^{1}$ The resolution in a given direction is defined as the number of voxels in this direction per unit of physical length.

[^23]: ${ }^{2}$ See https://www.orfeo-toolbox.org/SoftwareGuide/SoftwareGuidech29.html for a more comprehensive description of this feature.

[^24]: ${ }^{3}$ Possibly cropped by the largest possible region.

[^25]: ${ }^{4}$ Note: here, for visualisation purposes, this gray-level image is coded using a blue-to-red convention instead of a black-to-white one.

[^26]: ${ }^{5}$ Excepted if the aim is precisely to study such samples...

[^27]: ${ }^{6}$ See the website https://www.orfeo-toolbox.org/SoftwareGuide/SoftwareGuidech29.html for a more comprehensive description of this feature.

[^28]: ${ }^{7}$ The 2 matrix-norm of a matrix A can be computed as $\sqrt{\lambda_{1}}$, where λ_{1} is the highest eigenvalue of $A^{t} A$.

[^29]: ${ }^{8}$ Peak memory usages were measured using the software valgrind [118].
 ${ }^{9}$ https://kernelnewbies.org/Linux_3.14

[^30]: ${ }^{10}$ Note: All figures in this section were generated using the Paraview software [2]. Surfaces of ellipsoids were obtained using the tool "contour" of Paraview.

[^31]: ${ }^{1}$ A parent polyhedron is simply the polyhedron associated to its corresponding parent ellipsoid.

[^32]: ${ }^{2}$ https://doc.cgal.org/latest/Poisson_surface_reconstruction_3

[^33]: ${ }^{3}$ Note that $\vec{\nabla} \chi_{M}$ is zero almost everywhere, except on the boundaries of the closed volume M.

[^34]: ${ }^{4}$ A C++ library is also available at https://github.com/hhoppe/Mesh-processing-library

[^35]: ${ }^{1}$ Such as using other ITK filters, depending on the context.
 ${ }^{2}$ The requirement for streaming a given dataset are indeed stricter than those for parallelising it.

[^36]: ${ }^{1}$ See the ITK software guide [69], pp. 195

[^37]: ${ }^{1} \Gamma(m)=\int_{0}^{\infty} e^{-r^{2}} r^{2 m-1} d r$ is the gamma function.

[^38]: ${ }^{2}$ See Reference [168], for details about how these formulae are derived.

[^39]: ${ }^{3}$ The uniqueness of the solution is proven in Reference [189].
 ${ }^{4}$ This is easy the check by plugging the solution into the equation.

[^40]: ${ }^{5}$ A Matlab implementation can be found at http: //www. caam.rice.edu/~ zhang/mve/index.html.

[^41]: ${ }^{1}$ For a space E, a closed ball $B[O ; R]$ of radius $R>0$ centred in $O \in E$ is defined as: $B[O ; R]=$ $\{y \in E \mid d(o, y) \leq R\}$.

[^42]: ${ }^{1}$ A random variable X follows a χ^{2} distribution if it is the sum of n normal independent random variables $\left\{Y_{i}\right\}_{i=1, \ldots, n}$ of mean 0 and variance 1 .

