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“Poets say sciences takes away from the beauty of the stars... but far more marvellous is the
truth than any artist imagined it.”

Richard Feynman

“I have always wished for my computer to be as easy to use as my telephone; my wish has
come true because I can no longer figure out how to use my telephone.”

Bjarne Stroustrup
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Abstract

Christophe LEBLANC

Finite element computations on foam geometry reconstructed
from tomographic images

The present thesis introduces an automated procedure for constructing geometrical
representative volume elements of cellular materials from computerised tomogra-
phy, with an emphasis on open foams. The final aim of this procedure is to generate
meshable geometries that can be used in some finite element method in order to
analyse their mechanical behaviour. The methodology consists in growing and fit-
ting a set of ellipsoids to each cell foam. These ellipsoids are seeded by local maxima
of the distance to the struts/walls obtained from computerised tomography images.
Then, auxiliary ellipsoids are constructed in order to better fit local struts’ geome-
tries. From ellipsoids’ surfaces, a set of “exterior” points and associated normals is
extracted. Finally, from this set, a geometry is obtained using a Poisson surface re-
construction. This methodology is thus fully voxel-based and does not depends on
any assumption about the statistical distributions of the foam cells. Therefore, it is
able to reproduce an accurate geometric model of the foams’ microstructure and its
possible irregularities. Moreover, this procedure allows the processing of large 3D
data sets that do not fit the random access memory by slicing it into smaller indepen-
dent chunks. The minimal thickness of each chunk is only limited by the maximum
cell size lying inside this chunk. The effectiveness of the proposed approach is il-
lustrated by comparing it to finite element simulations with experimental results of
uniaxial compressions of an open foam.
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Abstract

Christophe LEBLANC

Finite element computations on foam geometry reconstructed
from tomographic images

Cette thèse présente une procédure automatisée pour construire des volumes re-
présentatifs à partir d’images tomographiques de matériaux cellulaires, en consid-
érant tout particulièrement le cas des mousses. L’objectif final de cette procédure
est de produire des géométries qui peuvent être maillées à des fins d’utilisations
dans des solveurs éléments finis; avec l’objectif d’analyser les comportements mé-
caniques de mousses ouvertes. La méthode proposée consiste à dilater et ajuster
un ensemble d’ellipsoïdes à chaque cellule de la mousse considérée. Ces ellipsoïdes
sont initialement déterminés en calculant les maxima locaux du champ des distances
aux entretoises/parois des cellules obtenues à partir d’images tomographiques. En-
suite, des ellipsoïdes auxiliaires sont construits afin de mieux coller à la géométrie
de la mousse. A partir des surfaces des ellipsoïdes est extrait un ensemble de points
“extérieurs” associés à des normales locales. Finalement, à partir de cet ensemble
de points et normales associées, une représentation de la surface de la mousse est
obtenue au moyen de l’algorithme de reconstruction de surface de Poisson. La procé-
dure proposée dépend donc entièrement des voxels de l’image tomographique et
est indépendante de toute distribution statistique que pourraient adopter les cel-
lules de la mousse. En conséquence, cette procédure est capable de reproduire de
manière précise un modèle géométrique fidèle de la microstructure d’une mousse
et ses éventuelles irrégularités. De plus, cette procédure est capable de traiter de
grandes quantités de données qui dépasseraient la RAM disponible en découpant
celles-ci en tranches indépendantes plus petites. L’épaisseur minimale de chaque
tranche est uniquement limitée par la taille maximale des cellules occupant cette
tranche. L’efficacité de cette méthode est illustrée en comparant un modèle éléments
finis utilisant un maillage généré à partir d’une géométrie obtenue par cette procé-
dure, à des résultats expérimentaux d’une mousse d’aluminium ouverte soumise à
une compression uniaxiale.
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Foreword

This thesis is divided in three main parts: an image analysis
(chapters 2 and 3), geometry reconstruction (chapter 4), and fi-
nite element simulations (chapter 5). Many of these parts require
some knowledge in different fields that the reader may not be
familiar with. In order to ease the reading of this thesis, some
used concepts that may be unfamiliar to the reader are further
explained in the appendices. The appendices contain explana-
tions which have been rewritten, condensed and adapted with
homogenised notations from external sources by the author of
this thesis. As such, the contents of the appendices are already
existing works produced by other authors. They are mentioned
in this thesis for the sake of completeness and to avoid the in-
terested reader to have to search for external sources and algo-
rithms each have their own sets of notations.
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Chapter 1

Introduction, state of the art, and
summary of contributions

Nowadays, cellular materials represent promising approach for obtaining simulta-
neously strength, stiffness, dissipation, and weight reduction, and are increasingly
used in numerous engineering applications. Among other things, they are used as
insulators, filters and crash absorbers [56, 88], see Figures 1.1 and 1.2. In particular,
the class of open–foam materials has found countless applications in many domains
such as energy absorbers [71], vibration dampening [186] (see Figure 1.3), hydro-
gen production [174] and aerospace [40], for instance. As a matter of fact, cellular
materials also exist in nature such as in bones [41] (see Figure 1.4) or wood.

FIGURE 1.1: Scanning electron microscopy images of a closed
foam [100].

1.1 Foam manufacturing

Manufacturing of foams can be achieved via several processes. For instance, one ap-
proach for producing metallic open–cell foams is to turn to the technique of electro–
deposition onto a sacrificial polymer foam with open–cells. The polymer phase is
then etched away, resulting in an open foam with hollow struts [12] (see Figure 1.5).
Foams can also be manufactured by direct blowing agent injection (such as CO2 gas)
into melt, the viscosity of which is controlled by temperature and by adding ceram-
ics powder (see Figure 1.6). This technique is extensively used to obtain aluminium
alloy foams. For an extensive survey of metallic foam manufacturing techniques,
the interested reader may refer to Reference [154].
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FIGURE 1.2: Scanning electron microscopy image of an open
foam [65], and Longitudinal crash absorber with cellular internal

structure [172].

FIGURE 1.3: From right to left: silicon rubber specimen, silicon
rubber/aluminum foam composite, aluminum foam only, room-
temperature–vulcanising silicone/aluminum foam composite, room-

temperature-vulcanising silicone only [186].

The microstructure of foams is complex and consists in an interconnected net-
work of ligaments located along the edges of random packed cells. Cells can be
open and closed or partially closed by walls. Foam’s struts can themselves adopt
various cross sections, from sharp edged cross sections, to smooth ones and can be
hollow [74, 192] (see Figure 1.7). In regards of their manufacturing processes, foams
share structural similarities with equilibrated liquid foams, such as dry foam and
soap froth, where the cells originated from bubbles separated by tensioned liquid
films adopt the shapes of near-polyhedral volumes. Under conditions of mechani-
cal equilibrium where the surface free energy is minimised, these latter foams obey
locally Plateau’s laws [132, 87]. Under these conditions, each face adopts a constant
mean curvature and each face meets at each cell edge at equal dihedral angles of
120◦; while each vertex is adjacent to four joining edges ate equal tetrahedral angles
of cos−1 (−1/3) = 109.47◦.

1.2 Microstructure representations

In the current context, there is a need to develop foam models able to predict the
homogenised or apparent behaviour based on the microstructural features. The im-
provements of computer tomography during the last decade made the direct ob-
servation of the foam internal microstructure easier [157], and this approach has
been used extensively for building geometrical foam models [57, 187, 193, 117].
Though very detailed, images obtained from computer tomography need to be pre-
processed in order to allow their use as a geometrical basis in FEM models. Gen-
erally, the pre-processing involves, among other steps depending on the acquisi-
tion process and quality of the obtained images, a watershed and, optionally, a H-
maxima transform [57, 71, 138, 73], both of which can be computationally expensive.
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FIGURE 1.4: Variability in foam–like trabecular bone. On the left is
the trabecular bone of the bighorn sheep’s horn core and on the right

is the trabecular bone in the proximal femur of a black bear [41].

FIGURE 1.5: Schematic drawing of the electro–deposition process to
produce gradually coated foams. Outlined are six different electrolyte

levels, which occur successively over the plating time. [71].

Some efforts have been made to asses this difficulty, by either designing new algo-
rithms with improved complexity [176, 155, 159], or by parallelising them [21, 82].
Notwithstanding, computing a watershed still remains to this day a memory expen-
sive algorithm for large 3D images.

1.2.1 Direct discretisation

One strategy to avoid these computationally expensive steps is to resort to direct
image discretisation [3, 193] (see Figure 1.8). However, obtaining FEM models from
discretised images [173, 48] remains a daunting task since characterising large data
samples requires both time and computational capacity, as well as frequent user in-
put; currently restricting this method to smaller samples [113]. An interesting strat-
egy, though, has been proposed in Reference [91]. It consists in coupling extended
finite element methods (XFEM) with level sets on non-conforming meshes. The use
of non-conforming meshes allows to alleviate near zero or negative Jacobian mesh
element issues. Indeed, the complex geometry of the microstructure is implicitly
encoded by the level sets. Elements of the non-conforming mesh intersecting the
level sets are then locally enriched within the XFEM framework in order to take into
account the presence of physical interfaces.
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FIGURE 1.6: Direct foaming of melts with blowing agents
(“Alporas”–process) [12].

FIGURE 1.7: SEM image of the cross section of a typical strut [74].

1.2.2 Idealised geometries

Another possibility is to turn to idealised microstructural geometries. One advan-
tage of this approach is to allow exploring the basic mechanism linking the mi-
crostructure of the considered material to its mechanical behaviour. A simple model
using rectangular prisms, as proposed in Reference [56], can already provide some
insights. However, a better idealised microstructure has been proposed by Kelvin
[163] whose model tessellates space with a minimum partitional area using tetra-
kaidecahedra cells (see Figure 1.9). Kelvin’s model has been later improved by the
Weaire-Phelan foam model [181] (see Figure 1.10). As these models show a highly
periodic geometry, they are unable to capture the randomness of real microstruc-
tures, and, consequently, are poorly effective for capturing the mechanical properties
of real foams.

In order to tackle this randomness issue, various strategies are proposed in the
literature (see, e.g., References [61, 27, 191] to mention a few). A straightforward
strategy is to start from a periodic cell structure and add some imperfections to it.
This method has been studied in Reference [177], leading to a better agreement with
experimental data for the elastic response and the plateau stage of the strain-stress
curve for a foam sample undergoing uniaxial compression. A common strategy con-
sists in using Voronoï tessellations that are based on the distribution of nuclei [166];
and their generalisations, especially the Laguerre tessellations [89, 88, 95] (see Fig-
ure 1.11). The Laguerre tessellation is a form of weighted Voronoï tessellation in
which the space is partitioned using (possibly) random packings of spheres of dif-
ferent radii instead of pointwise nuclei. Though versatile and leading to more real-
istic geometric representation of foam’s microstructures, Laguerre tessellations are



1.2. Microstructure representations 5

FIGURE 1.8: Voxellisation and segmentation of a closed foam sample
obtained from a 3D CT-scan. [91].

FIGURE 1.9: (a) Single Kelvin cell, and (b) 2× 2 Kelvin cell array [105].

not of straightforward use. Indeed, the question arise of how to randomly pack
the spheres (loosely or densely), following which distribution (normal, log-normal,
gamma, Poisson. . . ) and how to choose the sphere radii. The link between these
model parameters and geometric characteristics of the foams (such as the porosity,
the average pore size and the pore size variation) is also far from being trivial and has
been subject of numerous studies [136, 135, 169, 96, 107, 106]. However, Laguerre tes-
sellation are not able, by construction, to capture non-convex cells, cells with curved
boundaries, and suffer from inconsistency of presenting seedless cells [90] (see Fig-
ure 1.12). Also, when available, a Laguerre tessellation does not fully exploit the
voxel informations present in CT-images. These issues have motivated the develop-
ment of more generalised models exploiting voxel informations and/or generalised
metrics such as in References [22, 148, 4, 157, 150, 151, 25], and the present thesis.

Another approach for trying to generate realistic foam geometries consists in ran-
domly packing spheres. Numerous packing algorithms can be found in the liter-
ature and can be classified under collective rearrangement, sequential addition, or
sedimentation methods [19]. For instance, the random sequential addition consists
in adding one by one spheres with randomly chosen diameters under the action of
some “gravitational” field. In order to obtain a packing as tight as possible, simu-
lated annealing can be used subsequently for randomly perturbing the locations of
the spheres and improve the tightness of the packing. An alternative option is to



6 Chapter 1. Introduction, state of the art, and summary of contributions

FIGURE 1.10: Dodecahedral cell of the Weaire-Phelan foam [149].

FIGURE 1.11: Example of a Laguerre tessellation of a foam. Left: Sec-
tion of a tomographic image of a polymer foam (pixel size: 10.21 µm,
Source: Fraunhofer IWM). Right: Visualisation of a Laguerre tessel-
lation generated by a dense packing of spheres. The spheres are in-

scribed in their cells [135].

start with a very dense configuration of large overlapping spheres and then reduce
stepwise their diameters and location in order to reduce the overlapping [20].

However, in order to reproduce accurately the morphological parameters of the
considered foam, some minimisation criterion has to be designed; which is a task far
from being trivial. To this aim, strategies using surface minimisation principles by
evolving tessellations thanks to the Surface Evolver Software have been studied [86,
85, 170]. Moreover, in the case of poly-dispersed spheres, some statistical distribu-
tion for the sphere diameters must be chosen (e.g., Poisson, log-normal, gamma,
or Gaussian) [87]. Finally, from these algorithms it is only possible to reconstruct
convex cells and tessellation of the obtained packing only provides infinitely thin
struts/walls that need to be “dressed”. Despite all these issues and difficulties, ran-
dom packing algorithms have been extensively used in conjunction with Voronoï
tessellations [114], as well as Laguerre tessellations [137, 184].
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FIGURE 1.12: A Poisson–Voronoï tessellation in R2 (left) and the La-
guerre tessellation of the same set of points with radii chosen from
a two-atom distribution (right). Note how the cell geometry is al-
tered by the introduction of weights, that some Laguerre cells are
empty (around position (0.3, 0.6) or (0.9, 0.3)), and that some cells
do not contain the nucleus (for instance, the almost triangular cell at

(0.1, 0.1)) [90].

1.2.3 “Dressed” idealised geometries

All in all, the above idealised models are able to reproduce accurately some foam
morphological parameters such as the cell-size distribution, face-by-cell count, and
edge-by-cell count; provided that the considered sample is large enough to be sta-
tistically representative of the overall foam [141]. However, they fail to account for
local morphological variations as, for instance, struts cross-section shapes, variation
of cell-wall curvatures, local defects (such as damaged or partially missing struts) or
the existence of partially reticulated foams (presenting an intermediate state between
closed and open microstructures). Such instances of local morphological changes
require further construction [67]. In order to introduce these microstructural fea-
tures, the Distance Neighbour based Random Sequential Addition (DN-RSA) was
developed in Reference [156] and further improved and enriched in Reference [79]
to represent complex struts morphologies through level set functions.

An alternative model was also developed in References [13, 51] in order to over-
come some issues and limitations of random packing algorithms. This model con-
sists in generating a “skeletal” foam using a Voronoï tessellation constructed from
randomly packed mono-dispersed spheres. The constructed ligaments are then
“dressed” with circular cross-sections (see Figure 1.13), the areas of which vary along
the length of the ligaments; based on empirical expressions developed from in-situ
measurements. Nevertheless, though theses models are able to produce faithful ge-
ometries (at least statistically1) and quality meshes for FEM simulations, they still
require some input parameters that are difficult to assess.

1In the sense that the main statistical geometric features of the considered foam, such as the cell-size
distribution, the mean number of faces per cell, etc., are reproduced
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FIGURE 1.13: (a) 3D rendering of random soap froth with 12× 8× 8
cells and (b) slice from the same model after ligaments are dressed

with beam elements [51].

1.3 Motivation and present contributions

As geometrical features have a considerable impact on the mechanical behaviour
of foams [58, 70], manufacturing cellular materials with the desired mechanical be-
haviour is a challenging task. Indeed, on the one hand, foams exhibit a large versa-
tility in their physical characteristics (mechanical, thermic and/or electromagnetic);
allowing a large field of applications. On the other hand, obtaining a specific phys-
ical property can be complex and cumbersome as the link between a given prop-
erty and a foam’s microstructure is far from being trivial. For instance, inside a
same sample different pores may have variable mechanical properties [62]. More-
over, ensuring the production of foams with nominal and stable microstructural and
mechanical properties is still a challenging task in the research and industrial do-
main [117, 154]. As a consequence, there is a significant demand for quality control
and characterisation of new foam products in the industry. In this context, reliable
computerised foam models that require minimum user input and reasonable com-
puter means are of potential use [113]. Such numerical model may need to exploit
the geometrical information of Representative Volume Elements (RVEs) obtained
from Computer Tomography scans (CT-scans) of foams; while requiring affordable
computer resources.

The current work proposes a new model, hereafter called Ellipsoidal Model, to ob-
tain a geometric representation of foams from CT-scan images. This model relies
on the Poisson surface reconstruction [76] from points and normals associated to
the exterior surfaces of ellipsoids. It allows obtaining a closed surface representa-
tion of the considered foam. The surface provided by the Ellipsoidal Model can be
subsequently meshed for based finite element methods simulations. Providing a ge-
ometric model with the properties of a Boundary REPresentation (B-REP) instead of
a mesh offers the possibility to “tune” to some extent the mesh generated from that
B-REP (for instance different levels of mesh refinements can be generated from the
same geometric surface). In the present thesis, the three-dimensional mesh genera-
tor used is Gmsh [54].
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Last be not least, the image analysis procedure has been designed to support the
processing or large CT-scan images, i.e. image data that can not be fitted entirely into
the Random Access Memory (RAM). This feature is achieved by using the Insight
ToolKit (ITK) framework [69] and its streaming capabilities [194]: large CT-scan im-
ages can be processed slice-by-slice by loading only one image slice at a time into
the RAM. This specific feature allows even standard consumer computers to process
large CT-scan images, at a cost of a larger computational time and with a limitation
on the minimum allowed slice thickness in the CT-scan images. This feature and
associated costs and limitations are described in Section 3.

The remainder of the present thesis is organised as follows. Chapter 2 describes
the proposed image analysis steps, along with the corresponding streaming capabil-
ities (Chapter 3) and its impact in peak memory usage (Section 3.12). Section 3.13
shows how ellipsoids (parents and auxiliaries) are fitted to the cells of a foam. Chap-
ter 4 describes how a B-REP is extracted from these ellipsoids. Finally, Chapter 5
compares FEM simulations of a real-world foam, which geometry has been recon-
structed from CT-scan images, with respect to experimental data taken from [62].

The novelties presented in this thesis for the reconstruction of the geometry from
3–dimensional CT–scan images of foams are the following:

• Geometric reconstruction using ellipsoids from identifying cells and “auxil-
iary” ellipsoids for reproducing faithfully the microstructure, including im-
perfections such as missing or deformed struts.

• Avoid computationally expensive algorithms such as watershed and H-maxima
transform, commonly used to prevent oversegmentation, by clustering and
merging overlapping ellipsoids.

• Geometric surface representations generation of foams microstructures from
which different meshes can be constructed or merged with user-supplied ge-
ometries.

• Streamed image-analysis procedure which allows either to process 3-dimensional
CT-scan images that can not fit into the available RAM and, possibility, to par-
allelise it among several processing units.

• Possibility to “feed” other reconstruction models as demonstrated in Section 4.1.
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In order to keep a global insight of the entire proposed procedure, Algorithm 1
summarises it.

Algorithm 1 Ellipsoidal Model summarising algorithm

Input: 3D CT-scan image of a foam.
Output: Surface geometric model of the foam.

1. Identification of cells.

a: Threshold the image (Section 2.3.4) and clean it from spurious pixels (Sec-
tion 2.3.5).

b: Replace each pixel value by its distance value from the closest pixel representing
a wall/strut (Section 2.3.6).

c: Identify cell centre candidates by computing local maxima (Section 2.3.8) of the
previously computed distances.

d: From each cell centre candidates, grow “parent” ellipsoids (Section 2.3.9).
e: Merge overlapping “parent” ellipsoids in order to avoid oversegmentation (Sec-

tion 2.3.10).
f: Identify the microstructure by growing “auxiliary” ellipsoids from the “parents”

(Section 2.3.11).

2. Reconstruction of the microstructure.

a: Discretise all ellipsoids into a set of points and keep all “exterior” points (Sec-
tion 4.2.1).

b: Get a geometric representation of the microstructure using a Poisson surface re-
construction (Section 4.2.3).
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1.5 Summary of the thesis

1.5.1 Contribution

The contribution presented in this thesis is two-fold: First a new generic image anal-
ysis procedure is proposed were computationally expensive morphological algo-
rithms such as the watershed and the H-maxima transforms are replaced by merg-
ing of overlapping ellipsoids. Moreover, the image analysis procedure is streamable,
allowing the processing of huge CT-scan images with commercial personal comput-
ers. Second, the reconstruction of the geometry of the microstructure is performed
by using growth of ellipsoids, instead of spheres as in the Laguerre-Voronoï models,
allowing to better take into account cell anisotropies. Moreover, from these “par-
ent” ellipsoids, “auxiliary” ellipsoids are grown such to accurately reproduce the
microstructure. From these ellipsoids, a suitable geometric model can be extracted
and meshed for FEM models.

1.5.2 Chapter 2

This chapter presents the ITK framework used for implementing the different pro-
posed steps; as well as those steps for identifying cells from CT-scan images of
foams. The use of the ITK framework adds flexibility to the image analysis pro-
cedure, allowing the user to add/remove/replace some steps by other as he or she
sees fit for its own needs.

Step 1 in Section 2.3.4 is the threshold of gray-level images. In this thesis the algo-
rithm of Ridler and Calvard [139] was used. This algorithm analyses the histogram
of the CT-scan image to process and determines automatically a suitable threshold
value. Thanks to the ITK framework, it is possible to use more advanced threshold-
ing techniques, such as the popular Otsu algorithm [126], if deemed necessary by
the user.

As threshold algorithms may still classify background pixels as foreground pixels,
step 1 is completed in Section 2.3.5 by a Box filter which aims to remove noisy pixel.
The Box filter simply removes chunks of connected pixels which fit inside a given
box. Although usually the binary opening is used for such situations, it has been
found that this morphological operation (see Appendix C) is not suitable in the con-
text of foam. Indeed, as demonstrated in Figure 2.13, a simple binary opening with
a spherical stencil tends to remove noisy pixels along to legit ones, creating artifi-
cial holes in thin cell walls or removing thin struts. It should be possible to reduce
this effect by choosing a better structuring element, but this choice is not obvious
and require user’s input. Instead, the Box filter is simpler to use and leads to better
results.

Step 2 in Section 2.3.6 is devoted to compute the distance transform (see Ap-
pendix B). Given that cell centres are usually the pixels located the furthest from
the cell walls/struts, the local maxima of the distance transform can be a good indi-
cator of these cell centres. Usually, in the context of foams, the Euclidean distance
is used for computing the distance transform. Several algorithms for computing the
Euclidean distance transform exist. In this thesis, the algorithm of Maurer et al [111].
has been chosen. This algorithm is indeed reasonably fast (linear with the number
of pixel in an image), and easily adaptable for streaming (see Appendix A).
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Step 3 in Section 2.3.7 is an optional step for post-processing the Euclidean dis-
tance transform. Here, no such post-processing has been used. However, on some
occasions, a smoothing step may be useful and can be applied here.

Step 4 in Section 2.3.8 describes how local maxima of the distance transform can
be computed. Again, several algorithms exist for computing local maxima. The
native algorithm proposed in the ITK library was not used because not stream-
able. Instead, an adapted and customised version for 3D images of the algorithm
of T.Q. Pham [130] was designed and used. The fact that this algorithm scans for lo-
cal maxima candidates along lines, and then determine the “true” local maxima by
inspecting the neighbourhood of each candidate, makes it easy to adapt for stream-
ing images by slices: it is enough for the slices to contain the scanning lines and have
a thickness equal to the extent of the inspection neighbourhoods.

Unfortunately, if local maxima usually represent suitable identifiers for the cell
centres, some of them may not. It may happen that some local maxima are not “true”
maxima, but rather saddle points of the distance transform. Algorithms computing
local maxima usually can not discriminate genuine maxima from saddle points. It is
the case of the algorithm of T.Q. Pham. In order to remove saddle points, a proce-
dure proposed by Lopez-Reina [99] in her master-thesis has been applied. For each
detected local maxima (genuine and saddle), this procedure remove saddle points
by considering the eigenvalues of the local Hessians at each detected local maxi-
mum. However, computing local Hessians in discrete images is an ill-conditioned
problem. This ill-conditioning issue was solved by locally computing a discretised
scale-space representation of the distance transform at each local maximum, which
has the property of smoothing local Hessians.

Step 5 in Section 2.3.9 discusses how genuine local maxima are used to “seed”
parent ellipsoids in cells. From the genuine local maxima, parent ellipsoids are ini-
tialised as unit spheres. They are then grown using the algorithm of R. Deits et
al [39]. which consists in growing iteratively each ellipsoid independently inside a
polyhedron (see Appendix E). This polyhedron is itself iteratively updated using its
associated ellipsoid and the surrounding pixels which are seen as obstacles limiting
the growth of the ellipsoid (see Figure 2.28). Contrary to other spheres/ellipsoids
growing algorithms such the ones developed by, e.g., A. Alpers and O. Sedivy [4,
150, 151], the algorithm of R. Deits et al. has been designed to be fast2 and highly
parallelisable. These characteristics allow to process rapidly a large number of el-
lipsoids. As a matter of fact, the algorithm of R. Deits et al. is of several orders of
magnitudes faster than the algorithm of A. Alpers and O. Sedivy. The only draw-
back, though, is that there is no guarantee that grown ellipsoids will not overlap with
each other, as it is the case for A. Alpers and O. Sedivy. However, this drawback is
not an issue in this thesis.

Actually, it is even an advantage. Indeed, in Step 4 several local maxima can
be associated to a same cell. Classically, this issue is tackled using the (expensive)
watershed transform (and, possibly, the H-maxima transform (see Appendix C) in
order to guarantee a univocally correspondence between local maxima and cells.
Here, grown ellipsoids by the algorithm of R. Deits et al. associated to local maxima

2It has been initially designed to determine in real time a safe region around a moving robot sur-
rounded by obstacles.
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located in a common cell will likely more overlap with each other rather than overlap
with ellipsoids associated to a neighbouring cell. This is the subject of Section 2.3.10
which explains how this overlapping criterion is computed using a Monte-Carlo
method for evaluating intersection volumes between ellipsoids.

As obtaining an accurate volume estimation of a given region using a Monte-Carlo
method (see Appendix H) can be computationally expensive, three “cheap” tests are
carried out, previously to maybe requiring the computation using the Monte-Carlo
method. The first test checks if two neighbouring ellipsoids are colliding. If not,
there intersection volume is zero and no further computation is needed. The second
test consist in computing an upper bound of the intersection volume, while the third
test calculates a lower bound of the intersection volume. If the overlapping criterion
falls outside these bounds, a Monte-Carlo computation is not needed.

This section also describes how the ellipsoids belonging to a common cell are clus-
tered together following this overlapping criterion using the GDBSCAN algorithm
(see Appendix F). Although numerous other clustering algorithms exists, the GDB-
SCAN algorithm has been chosen mainly because it designed to cluster objects based
on a density criterion. In the context of clustering ellipsoids which overlap the most
(thus which are the most densely packed) this is a highly desirable feature.

Finally, each cluster of ellipsoids should univocally corresponds to a given cell
of the considered foam. Ellipsoids belonging to a common cluster are then merged
into one MVCEE using the algorithm of E.A. Yildirim [185]. The advantage of this
algorithm, is that it given sets of ellipsoids, it still outputs ellipsoids that can be used
in the next step (step 6 auxiliary ellipsoids).

It should be noted that clustering and merging ellipsoids is not mandatory for
this next step. However, as discussed in Section 2.3.9 and illustrated in Figure 2.44,
clustering and merging ellipsoids can be useful in the case of sets of undesirable
connected voxels that the previous steps did not remove. Moreover, clustering and
merging ellipsoids is also useful if one would like to obtain some statistics such as
the presence of a preferred cell orientation/anisotropy.

Step 6 in Section 2.3.11 shows how auxiliary ellipsoids are computed. They are
seeded from discrete points evaluated from the surface of the parent ellipsoids and
then grown using again the algorithm of R. Deits et al. The only difference with the
growth of the parent ellipsoids, is that artificial obstacles are added for the auxil-
iary ellipsoids in order for them to “decay” to their respective parent ellipsoids. As
illustrated in Figures 2.49 and 4.12, auxiliary ellipsoids are highly effective for re-
producing small features and defect present in a given microstructure. Section 3.13
shows qualitative results of the reconstructions of the microstructures of two real-
world foams, one with open cells and the other with closed cells. It can be seen in
Figures 3.32 and 3.35 that auxiliary ellipsoids closely reproduce the microstructure.
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1.5.3 Chapter 3

This chapter discuss how the algorithms chosen in steps 1 to 6 can be used for
streaming. Streaming is performed by extracting slices of a 3D CT-scan image and
processing each slices independently through steps 1 to 6. If needed, the thickness
of given slice can be increased for accommodating the needs of one or another al-
gorithm through the negotiation process between filters in the ITK framework. For
instance, the algorithm of T.Q. Pham may require a neighbourhood around a given
local maximum candidate that falls outside the current slice3. In this case, a slightly
thicker slice can be returned through the negotiation process for accommodating the
neighbourhood.

The situation for the distance transform is however different and is discussed thor-
oughly in Section 3.7: A first wrong distance transform is first computed on the cur-
rent slice. Then, an extended region strategy is applied for determining the amount by
which the thickness of the current slice should be increased so that for the distance
transform to become exact on this slice.

The growth of ellipsoids while streaming is discussed in Section 3.10. The strategy
used is similar to the one used for algorithms requiring a given neighbourhood, such
as the algorithm of T.Q. Pham. The difference, is that the required neighbourhood
around a given ellipsoid is not known in advance. This neighbourhood is therefore
iteratively computed as the ellipsoid grows: while the ellipsoid grows outside the
current slice, a thicker slice is requested through the negotiation process of ITK, until
the ellipsoid has reached its final volume.

Section 3.11 discusses the fact that the applied above strategies for streaming have
one major limitation: it is useless if a cell traverses the whole foam. However, this
case can be considered quite exceptional, especially for large CT-scan images where
the streaming can be useful.

Section 3.12 shows the effectiveness of the strategies used for streaming on three
different datasets, where two were artificially generated and one was obtained from
a real-world foam sample. For each of the three datasets, Figure 3.28 shows that
indeed peak memory usage using the proposed image analysis steps are lower than
a classic image analysis steps involving the watershed transform. Besides, the usage
of streaming (here with ten slices) allowed to reduce the peak memory usage further
by approximately a factor of ten. It even allowed to generate the geometry of an
artificial honeycomb foam containing 34, 410 cells, while this was not possible with
the classical image analysis steps and the available computation resources.

Finally, Section 3.13 shows qualitatively that the proposed algorithms in steps 1 to
6 are indeed able to faithfully reproduce the complex geometry of real-world foam.
More precisely parent ellipsoids were able to correctly and uniquely identify cell
pores, while auxiliary ellipsoids were able to closely fit cell struts.

3The neighbourhood, not the local maximum candidate.
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1.5.4 Chapter 4

In this chapter, two models for the reconstruction of the geometry of foams from 3D
CT-scan images were presented: the DN-CT-SCAN model and the Ellipsoidal Model.

Both models rely on a first step consisting into an image analysis of 3D CT-scan
images. The image analysis stage provides the models with uniquely fitted ellip-
soids and associated polyhedra to identified cells.

Section 4.1 gives a brief description of the DN-CT-SCAN model, as well as recon-
struction results by this model using parent ellipsoids and their associated polyhe-
dra. In Figure 4.6, it can be seen that the reconstruction using polyhedra gives better
results in terms of the Hausdorff distances between the reconstructed geometry and
the (thresholded) CT-scan images of a real-world open foam provided by A. Jung
from the Saarland University, Germany. This is an expected result, as each ellipsoid
is circumscribed by its corresponding polyhedron. Polyhedron thus closer matches
the geometry of the cells.

Section 4.2 describes how a geometric model is obtained from parent and auxil-
iary ellipsoids: All ellipsoids are discretised in a set of points and associated normals.
Points and associated normals strictly inside at least one ellipsoid are discarded and
the other are kept and used via the Poisson surface reconstruction to obtain a sur-
face of the microstructure of the foam. Again, Figure 4.11 shows a good agreement
in terms of Hausdorff distances between the geometric model obtained by the El-
lipsoidal Model and the (thresholded) CT-scan image of a real-world open foam pro-
vided by A. Jung.

Geometric models generated by the Ellipsoidal Model are output in *.geo file format
that can be subsequently used by the software Gmsh. This allows to generate several
meshes from one file. This feature can be useful for generating meshes at differ-
ent refinement levels from the same geometry, or combining the geometric model
with other geometric elements. For instance for adding some external geometries
using boolean operations for the aim of satisfying any specific needs or study. This
feature was actually exploited in this thesis for generating from a unique geometric
model the four meshes used for computing by FEM the strain-stress curves shown
in Figure 5.10.
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1.5.5 Chapter 5

This chapter is devoted to assess the usefulness of both the DN-CT-SCAN model and
Ellipsoidal Model for generating suitable geometries for FEM simulations from CT-
scan images of a real-world open foam provided by A. Jung [62], using the above
proposed image analysis steps.

Section 5.2 introduces the main computational approaches for simulating the me-
chanical behaviour of a cellular or composite material. A popular and standard ap-
proach, is the so-called multi-scale approach which needs RVEs of the body to sim-
ulate. The ability to provide accurate geometric model of RVEs for the multi-scale
approach is one of the main contribution of this thesis; another being the ability to
provide identifications of cells in cellular materials using ellipsoids and polyhedra
for the use in other models. This was demonstrated in this thesis with the use of the
DN-CT-SCAN model.

The next sections discuss simulations using the geometries generated by both the
DN-CT-SCAN model and the Ellipsoidal Model with the J2-elasto-plastic material law,
and for three different sets of boundary conditions. It has been concluded that the
so-called mixed boundary conditions leads to the better simulated strain-stress re-
sults for both models compared to experimental strain-stress curves. In particular,
the initial strain-stress slope is reproduced, as well as the plateau stage. The den-
sification stage was however not reproduced due to the fact that contacts between
struts were ignored in the FEM model.
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Chapter 2

Image analysis

2.1 Summary

The present chapter details all the steps of part 1 (“Identification of cells”) of the sum-
marising algorithm 1 and discuss the differences with the standard analysis pro-
cedure generally performed when identifying cells form 3D CT-scan images (Sec-
tion 2.2).

Figure 2.1 illustrates both standard and proposed image analysis procedures. Steps
1 to 4 are similar in both procedures, up to the minor details in steps 2 and 4. Their
aims are the following:

1. Thresholding: provide a gray–level image for the distance transform to be per-
formed on; and, possibly, remove spurious voxels.

2. (Inverse) Euclidean distance transform: use the fact that voxels located at cell
centres should, ideally, have lower/higher associated distance values than
their neighbouring voxels.

3. Smoothing (optional): smooth the distance transform in order to reduce the
number of spurious local minima/maxima to be identified.

4. Identification of local minima/maxima: provide a first guess for cell centres
and seed, respectively, the watershed transform or the initial “parent” ellip-
soids to be grown.

5. Watershed transform/“parent” ellipsoids: identify cells univocally.

6. “Auxiliary” ellipsoids: reproduce the local geometric features of each identi-
fied cell.

For steps 2 and 4, respectively, the Euclidean distance transform instead of its
inverse is computed, and local maxima instead of local minima are searched for.
Moreover, step 4 includes a small difference where spurious local maxima located
on missing cell walls are discarded.

The main differences between both procedures appear from step 5 where the wa-
tershed transform (and, possibly, the H-maxima transform) of the standard proce-
dure is replaced by the growing and merging of so–called “parent” ellipsoids. The
main advantages of this replacement are:

• Growing and merging ellipsoids is computationally cheaper than a watershed
transform (see Section 3.12 for an assessment).
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• Over–segmentation is controlled through merging of ellipsoids (see Section 2.3.9).

Last but not least, the growth of “auxiliary” ellipsoids from their respective “par-
ents” allows to reproduce faithfully small features captured in the 3D CT–scan im-
ages (see Section 4.2 for an assessment).

Finally, all the proposed steps have their “streamed” counter-part (see Section 3)
allowing the processing of data that does not fit into the RAM.

2.2 Standard image analysis procedure

The microstructure of a foam sample is described in terms of geometric characteris-
tics of its cells. For algorithms based on the image analysis of CT-scan images, iden-
tifying these cells and extracting the associated geometric characteristics, requires
the use of a chain of image processing algorithms [88]. The aim of this processing
chain is to unequivocally identify the cells and their shapes. A typical processing
chain is given in References [138, 88] and outlined in Figure 2.1a.

In principle, identifying the cells is easy: once a black and white image obtained
via thresholding (step 1), it is only necessary to identify where the inverse distance
transform (step 2) presents local minima which identify cell centres. However, in
practice, the (inverse) distance transform may present several local minima for a
given cell. As a consequence, superfluous local minima have to be removed. Typi-
cally, this is achieved using morphological transforms such as the watershed trans-
form, optionally preceded by a (possibly adaptive) H-maxima transform [88, 125, 33,
57], or even gray-scale reconstruction [176], in order to avoid cell oversegmentation.
Figure 2.2 illustrates this procedure.

FIGURE 2.1: (a) Standard image processing steps. (b) Proposed image
processing steps.
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FIGURE 2.2: Foam reconstruction: (a) sections of the original 3D im-
age, (b) thresholding, (c) the inverted distance image, (d) and the re-

constructed foam cells [138].

2.3 Proposed image analysis procedure

The following section is structured as follow:

• Description of the proposed image analysis procedure and the framework used
(Section 2.3.1) and the different steps involved, namely (see Figure 2.1b):

– Section 2.3.2 (step 0) shows of to convert an RGB image to a gray-level
image. This step is optional if a gray-level image is already available.

– Section 2.3.3 (step 0bis) describes how to take into account CT-scan im-
ages with non-cubic voxels. This step is also optional.

– Section 2.3.4 (step 1) explains how to identify struts and/or walls bound-
aries in a gray-scale image by applying a threshold.

– Section 2.3.5 (step 1bis) describes how to remove spurious voxels in a
noisy image.

– Section 2.3.6 (step 2) shows how to compute the distance transform from
a thresholded image; with the aim of identifying the centres of cell pores
by locating local maxima of the distance transform.

– Section 2.3.7 (step 3) mentions the possibility to add an optional smooth-
ing filter to the distance transform in order to reduce the number of spu-
rious local maxima.

– Section 2.3.8 (step 4) describes how to compute these local maxima, how
to remove local maxima located on saddle points using Hessians-based
maxima selection, how these Hessians are locally computed on a given
neighbourhood, and how this neighbourhood are themselves determined.



22 Chapter 2. Image analysis

– Section 2.3.9 (step 5) explains how cell pores sizes and orientations are
determined based on the growths of “parent” ellipsoids. The detection,
clustering and merging of parent ellipsoids belonging to a single pore are
explained in Section 2.3.10.

– Section 2.3.11 (step 6) shows how the “auxiliary” ellipsoids are constructed.
Their aim is to faithfully describe the microstructure of a foam, defects
and missing features included.

The standard image analysis steps usually require the use of morphological algo-
rithms, such as the watershed transform, for unequivocally identifying cells. These
algorithms are often computationally heavy, despite efforts for tackling the issue
(see, e.g., References [176, 21, 159, 82] for the watershed transform). The present
contribution presents an altenative processing chain for identifying cells as outlined
in Figure 2.1b.

This alternative processing chain replaces the watershed transform (and, option-
ally, the H-maxima transform or other smoothing algorithms) by a stage of grow-
ing and clustering ellipsoids. This, as it will be shown later, is memory-wise much
cheaper than morphological algorithms since it does not operate at the voxel level.
Figure 2.3 shows an example of the proposed processing steps applied on a 3D CT-
scan image of an open aluminium foam.

(a) Initial CT-scan image. (b) Threshold image. (c) Distance transform im-
age. Low values represented
in blue, high values repre-

sented in yellow and red.

(d) Local maxima (red balls),
exaggerated for visualisation

purposes.

(e) Parent ellipsoids (gray sur-
faces) in their respective cells.

(f) Surface reconstruction ob-
tained with the auxiliary ellip-

soids.

FIGURE 2.3: Example of the proposed processing steps of Figure 2.1b
applied on a 3D CT-scan image of an open aluminium foam.
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2.3.1 Framework used

The proposed processing chain illustrated in Figure 2.1b and steps 1 to 6 of Algo-
rithm 1 has been implemented using the Insight ToolKit (ITK) library as a back-
bone [69]. The ITK library is handful and versatile: it allows the user to construct
its own processing chain using a large choice of pre-implemented algorithms. This
library also allows the user to implement customised algorithms which can be inte-
grated in any processing chain. The capabilities of the ITK library can be handful if
some CT-scan images need extra processing steps due to some particular character-
istics.

The ITK’s paradigm lies in the use of processing objects (called hereafter filters),
and multi–dimensional image data objects. Filters process the image data and can
be connected together. Filters then can pass their processed images to each other.
A set of connected filters passing data objects to each other is called a pipeline, see
Figure 2.4.

Image

  File

Reader

Image Image

ImageGaussian

   Filter
Thresholding

Renderer

Display

Writer

Image

  File

FIGURE 2.4: Example of pipeline. (Image source: ITK Software
Guide [69], pp. 198).

Once set, a pipeline is executed backward through the Update() method and a
negotiation process takes place with the filters that define the pipeline. Once the re-
quested amount of data for each filter has been determined, the pipeline is executed
forward. Each upstream filter generates the requested data to the downstream filters
via the GenerateData() method. Indeed, some filters may require images of different
dimensions on input and/or on output. For example, an erosion filter requires an
extra input (boundary padding) given the size of the requested output. On the con-
trary, a shrink filter will output a smaller image than the input. This negotiation pro-
cess presents the appreciable advantage that a given (multi–dimensional) image can
be processed into sub–regions. ITK provides a special filter for it: the StreamingIm-
ageFilter. It is therefore possible to process (multi-dimensional) images that can not
fit the memory, into smaller pieces. Figure 2.5 shows an example of negotiation be-
tween filters.
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Reader

Image Image

ImageGaussian

   Filter
Thresholding

Update()

Update()

Update()

GenerateData()

GenerateData()

GenerateData()

FIGURE 2.5: Example of negotiation between filters in ITK. (Image
source: ITK Software Guide [69], pp. 199).

2.3.2 Step 0: RGB to luminance filter

• Aim: convert a RGB (Red, Green, Blue) image to a gray–level image.

• Input: RGB image.

• Output: gray–level image.

• Streaming: see Section 3.3.

The filters used for the proposed image processing steps only process gray–level
images. However, it may happens that some images contain red, green and blue
components (R, G and B components). In that case, an RGB image can be converted
in a gray-level image by computing its luminance L. Within ITK, the luminance is
computed as follows:

L = 0.3R + 0.59G + 0.11B (2.1)

Nevertheless, it should be emphasised that equation 2.1 may not be well-suited for
getting the wanted features from an RGB image. However, it is believed that most,if
not all, X–ray image scan are intensity image and therefore gray–level images. In
the extraordinary contrary case, the user can build its own filter pipeline from filters
provided by the ITK toolbox for obtaining a satisfactory gray–level image from an
RGB image. Then, this filter pipeline can directly be connected to the rest of the
pipeline.



2.3. Proposed image analysis procedure 25

TABLE 2.1: Parameters of the Spacing filter.

Parameter Value Description

Nx 1 Voxel physical length along the x-direction.
Ny 1 Voxel physical length along the y-direction.
Nz 1 Voxel physical length along the z-direction.

2.3.3 Step 0bis: Spacing filter

• Aim: add spacing information at the voxels of an image.

• Input: RGB or gray–level image.

• Output: RGB or gray–level image with spacing information.

• Streaming: see Section 3.4.

During image acquisition form a sample (by CT-scans or other means), the spatial
resolution may not be isotropic. For instance, in the used datasets for this thesis, the
resolution1 in the depth direction (i.e. parallel to the ray emission direction of the
scanner) of the sample can be smaller than the resolution in the other perpendicular
directions.

Moreover, taking into account the physical spacing between the voxels of a 3D-
image is crucial for assessing the mechanical properties of a foam. Indeed, these
properties strongly depends on the geometric features of a given foam [56]. Work-
ing with a wrong spacing may modify the geometric features of the considered foam
(e.g. by reducing the strut length in a given direction) and thus impact the results
given by any model using this geometry. Fortunately, ITK provides an automatic
mechanism for taking into account inhomogeneous spacing through the ChangeIn-
formationImageFilter2. Table 2.1 shows the list of expected parameters by the Spacing
filter.

1The resolution in a given direction is defined as the number of voxels in this direction per unit of
physical length.

2See the ITK Software Guide [69] pp. 46 for more details.
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2.3.4 Step 1: Threshold filter

• Aim: convert a gray–level image into a binary (black and white) image.

• Input: gray–level image.

• Output: binary image.

• Streaming: see Section 3.5.

Thresholding is a basic image transformation method consisting in isolating in a
gray-scale image a given foreground object from its background. This is done by
checking each pixel value Pi and setting it to 0 if it is below a given threshold T
(Pi < T) and to 1 otherwise (hence the name of the method). Although simple, the
whole difficulty of the method resides in the choice of the threshold T. A simple
thersholding procedure with a known threshold T is given as Algorithm 2.

Algorithm 2 Simple thresholding

Require: gray–scale Image I of domain DI .
Require: T ∈ range of pixel values.

1: procedure SIMPLETHRESHOLDING(I, T)
2: i← 0
3: for xi ∈ DI do

4: if I(xi) < T then

5: I(xi)← 0
6: else

7: I(xi)← 1
8: end if

9: i← i + 1
10: end for

11: end procedure

Though, algorithm 2 reaches quickly its limits and proves to be most of the time
unsatisfactory for more complex images (for instance when the illumination varies
spatially inside the image [28]). Therefore, considerable efforts have been invested in
the so–called automatic thresholding methods, where the threshold T is computed
following some criteria. A comprehensive survey of thresholding methods has been
conducted by Sezgin and Sankur in 2004 [152]. They categorised the thresholding
methods as follow, according to the information they are using:
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1. Histogram shape-based methods: maxima, minima and curvatures of a (possi-
bly smoothed) histogram are analysed. For example, Raju and Neelima method
[134] belongs to this category. Several histogram shape–based functions have
been implemented in ITK by Beare [15].

2. Clustering–based methods: gray-level samples are clustered into two groups
(background and foreground). For instance the Otsu’s method [126] imple-
mented in ITK by Mosaliganti et al. [115] belongs to this category.

3. Entropy-based methods: entropy of sub–regions of the image are used. An
entropy-based function has been implemented in ITK by Beare [15]. More re-
cently, Liang and Cuevas used an entropy measure together with meta-heuristic
algorithms for computing multilevel thresholding3 [94].

4. Object attribute-based methods: shape similarities between objects and coinci-
dence between geometric entities are used.

5. Spatial methods: higher probability distribution functions and sometimes cor-
relation between pixels are used.

6. Locally adaptive methods: the threshold value T is locally adapted at each
pixel given some image characteristics. For example, the method developed
by Bradley and Roth [28] belongs to this category.

For the foam images considered, it has been noticed that the thresholding method
of Ridler and Calvard [139], using the image histogram computed by the ITK class
for the switching function, gave all satisfaction. The algorithm developed by Ridler
and Calvard can be categorised as an iterative clustering–based method. The algo-
rithm 3 is described here below4. Table 2.2 describes its unique parameter and a
typical value range for it which depends on the bit depth of the considered image.

The idea behind algorithm 3 is as follow:

1. Construct the histogram of the gray–level image (line 6).

2. Compute a first threshold thresh as the average histogram value (lines 7 and 8).

3. Compute two thresholds mat and mbt as the average histogram values below
and above the value of thresh (lines 9 to 12).

4. Compute a new threshold value as the average of mat and mbt, and set tresh
as this new threshold value (line 13).

5. Repeat from step 3 until the new threshold value does not significantly change
from the old one (lines 14 to 21).

It should be emphasised that any of the above thresholding methods can be used
if one of them is to be found more accurate and/or convenient to use. Some of
them are already implemented inside ITK and can be readily used, the others can be
implemented and added to ITK with minimal effort5.

3Multilevel thresholding outputs a grayscale image where not only the foreground plane and the
background plane of an image are segmented, but also intermediate planes.

4This algorithm comes from ❤tt♣✿✴✴✇✇✇✳♠❛t❤✇♦r❦s✳❝♦♠✴♠❛t❧❛❜❝❡♥tr❛❧✴❢✐❧❡❡①❝❤❛♥❣❡✴✸✶✾✺✲

❛✉t♦♠❛t✐❝✲t❤r❡s❤♦❧❞✐♥❣
5Depending on the complexity of the chosen method...
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Algorithm 3 Ridler & Calvard thresholding

Require: gray-scale Image I of domain DI .
Require: Nb_Bins: number of histogram bins.
Require: Bin_min: minimum histogram bin value.
Require: Bin_max: maximum histogram bin value.

1: procedure RIDLERCALVARD(Image)
2: T ← COMPUTETHRESH(I)
3: SIMPLETHRESHOLDING(I, T) ⊲ See algorithm 2.
4: end procedure

5: procedure COMPUTETHRESH(I)
6: Hist← COMPUTEHISTOGRAM(I).
7: µ← COMPUTECUMSUM(Hist,0,Nb_Bins)
8: thresh← COMPUTETHRESHSUB(Hist,0,Nb_Bins,µ)
9: µ2 ← COMPUTECUMSUM(Hist,0,round(thresh))

10: mbt← COMPUTETHRESHSUB(Hist, 0, round(thresh), µ2)
11: µ3 ← COMPUTECUMSUM(Hist, round(thresh), Nb_Bins)
12: mat← COMPUTETHRESHSUB(Hist, round(thresh), Nb_Bins, µ3)
13: newThresh← (mat + mbt)/2

14: while abs(thresh− newThresh) ≥ 1 do

15: thresh← newThresh
16: µ2 ← COMPUTECUMSUM(Hist, 0, round(thresh))
17: mbt← COMPUTETHRESHSUB(Hist, 0, round(thresh), µ2)
18: µ3 ← COMPUTECUMSUM(Hist, round(thresh), Nb_Bins)
19: mat← COMPUTETHRESHSUB(Hist, round(thresh), Nb_Bins, µ3)
20: newThresh← (mat + mbt)/2
21: end while

22: return thresh
23: end procedure

TABLE 2.2: Parameter of the Threshold filter.

Parameter Typical value range Description

Nb_Bins [256, 65536] Number of bins in histogram.
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24: procedure COMPUTEHISTOGRAM(I)
25: interval ← Bin_max−Bin_min

Nb_Bins−1
26: Hist← zero vector of length Nb_Bins
27: for xi ∈ DI do

28: histIndex ← I(xi)/interval
29: Hist[histIndex]← Hist[histIndex] + 1
30: end for

31: return Hist
32: end procedure

33: procedure COMPUTECUMSUM(Hist, begin, end)
34: sum← 0
35: for begin ≤ i < end do

36: sum← sum + Hist[i]
37: end for

38: return sum
39: end procedure

40: procedure COMPUTETHRESHSUB(Hist, begin, end, µ)
41: thresh← 0
42: step← Bin_max−Bin_min

Nb_Bins−1
43: for begin ≤ i < end do

44: thresh← thresh + i× step× Hist[i]
45: end for

46: return thresh/µ
47: end procedure
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2.3.5 Step 1bis: Box filter

• Aim: remove small groups of isolated voxels from a binary image.

• Input: binary image.

• Output: processed binary image with small groups of voxel removed.

• Streaming: see Section 3.6.

Origin of the noise in tomographic images

Foam images obtained by X-ray tomography are naturally noisy. The origin of this
noise is two-fold. One contribution comes from the electrical noise and round-off
error of the detector. The other contribution comes from the X-ray itself which is
not strictly monochromatic [72, 165]. Moreover, for foam thin cell walls may appear
transparent to the X-rays, especially for polymeric foam which consist in lighter ele-
ments than metallic foams.

Indeed, for a narrow beam of mono-energetic photons of incident intensity I0
passing through a material of mass thickness τ and density ρ, the output intensity I
is given by (see Reference [124]):

I = I0 exp (−(µ/ρ)τ) (2.2)

Where the ratio (µ/ρ) is the attenuation coefficient.

The typical wavelength of a X-ray beam is of the order of λ ∼ 1nm, which gives a
typical energy of E = hc/λ ∼ 3.10−2MeV. Where, h ≈ 6, 626.10−34 J.s is the Planck
constant, c = 299, 792, 458 m/s is the light speed in vacuum, and 1MeV = 106eV ≈
1, 602.10−13 J.

For this energy of 3.10−2 MeV, NIST tables (see Table 2.3) give the values for
the attenuation coefficient for different materials. From this table, it is possible to
infer that foam constituted from light elements (hydrogen, oxygen and carbon) will
present an attenuation coefficient one order (or more) of magnitude smaller than
nickel and aluminium foams. Consequently, X-ray photons are more susceptible to
be absorbed by metallic foams, and, therefore, longer scan times are necessary for
these type of foams in order to gather enough photons for getting an usable image.

Consequences on foam tomographic images.

The small attenuation coefficients for polymeric foams and the fact that these foams
have thin walls produce tomographic images where walls are often missing. More-
over, noisy features have the same gray level intensity of the wanted geometric fea-
tures [165]; making noise filtering challenging.

For metallic foams, large attenuation coefficients imply longer scanning times in
order to obtain an acceptable signal-to-noise ratio for the CT-scan images.
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TABLE 2.3: NIST table of the mass attenuation coefficients µ/ρ for
a monochromatic photon beam of 3.10−2 MeV (typical X-ray energy)

for different materials [124].

Material (µ/ρ (cm2/g)

Hydrogen 3, 57.10−1

Oxygen 3, 779.10−1

Carbon 2, 562.10−1

Aluminium 1, 126.100

Nickel 1, 034.101

Noise removal

A noise removal technique: binary opening The most commonly used tool for
noise filtering is the opening procedure [125]. A binary opening is a morphological
operation that can be used to remove noisy pixels from a black and white image,
without disturbing it too much. In consists in a binary erosion, followed by a binary
dilation.

The aim of the erosion step is to get rid of the noisy pixels, while the dilation tries
to recover as much as possible relevant geometric features erased by the erosion step
(see Reference [155], pp.105).

Binary erosion In order to perform an erosion, a structuring element is needed. A
structuring element is a small connected set of pixels used to probe the considered
image [155]. Last but not least, in order to completely define a structuring element,
an origin has to be associated to it. Usually, this origin is taken as the centre of the
structuring element. Finally, the size and shape of the structuring element have to
be chosen accordingly to the geometries of the image objects to be processed.

The technique of binary erosion deals with binary images, i.e. images in which
pixels can take only two values (often referred as black and white pixels or background
and foreground pixels). For an image I, a structuring element B and a connected
subset of foreground pixels X, the erosion E(X, B) of set X by the structuring element
B can be defined as “the locus of points x such that B is included in X when its origin is
placed at x” (P. Soille [155], pp.65):

E(X, B) = {x | Bx ⊆ X} (2.3)

More intuitively, only subsets of connected pixels X in which the structuring ele-
ment B can fit are kept. The other subsets are discarded (their foreground pixels are
set to the value of the background pixels). Figure 2.10b shows a simple example of
erosion. Note that the operation of erosion can be generalised to gray-scale images
(see Reference [155]) or in term of geodesic distances (see Reference [176]).

Binary dilation As for the binary erosion, the binary dilation deals with binary
images and uses a structuring element. For an image I, a structuring element B and
a connected subset of foreground pixels X in DI , the dilation D(X, B) of set X by the
structuring element B can be defined as “the locus of points x such that B hits X when
its origin coincides with x” (P. Soille [155], pp.68):
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D(X, B) = {x | Bx ∩ X 6= ∅} (2.4)

More intuitively, any set hitting the structuring element are expanded by the struc-
turing element. Figure 2.10c shows a simple example of dilation. Note that the op-
eration of dilation can be generalised to gray-scale images (see Reference [155]) or in
term of geodesic distances (see Reference [176]).

Binary opening The technique of binary opening combines an erosion followed
by a dilation. An opening O(X, B) on a connected subset X belonging to an image I
with a structuring element B can be defined by equation 2.5.

O(X, B) = D (E(X, B), B) (2.5)

The aim of binary opening is thus to try to keep the wanted features of an image
while discarding the unwanted ones (often smaller than the wanted features) and
is widely used in image processing (as in the Insight Toolbox [92], or in Mavi [171]).
However, erosion and dilation are not inverse of each other. In fact, there is no
inverse to both transformations (see Reference [155], pp. 70). As a consequence, even
if opening seems to be able to keep quite accurately the wanted geometric feature
of an image as it the case for Figure 2.10d, it may fails in other cases (depending
on the choice of the structuring element) as discussed later for thin cell walls in
Figures 2.13e and 2.13f where thin cell walls are partially lost.

(a) Initial image. (b) Eroded image.

(c) Dilated image. (d) Opening.

FIGURE 2.10: Effect of different morphological operations on an ini-
tial binary image (a).
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An alternative noise removal technique: box filter

As noted in the previous paragraph, the classic opening is not well suited for de-
noising tomographic images of foams. Though, adaptive techniques exists for com-
puting the opening of a noisy image (see Reference [36] for a survey of the field),
which may be suitable; a simpler filtering technique through a box has been pre-
ferred here. This technique has been chosen because its simplicity to implement and
also its streaming capabilities, i.e. its ability to process images by parts.

The idea of the box filter is as follows: A parallelepipedic box, which size is set
by the user, scans each foreground pixel of the image. If a cluster of connected fore-
ground pixels is found to fit entirely inside the box, this cluster is discarded (i.e. its
belonging foreground pixels are set as background pixels), otherwise the cluster is
kept (figure 2.11).

(a) A cluster of foreground pixels fits into
the scanning box and is therefore dis-

carded.

(b) A cluster of foreground pixels does
not fit into the scanning box and is there-

fore kept.

FIGURE 2.11: Intuitive idea of the box filter. A box scans the image
pixel by pixel and discards any cluster of foreground (white) con-

nected pixels that fits into the box.

The implementation of this idea is as follow: each time the current scanned pixel
turns out to be a foreground pixel, it is marked and, all its connected neighbours
are also marked and inserted into a FIFO queue (First In, First Out), provided they
are foreground pixels and not already marked. The first element in the FIFO queue
is marked and then erased, and all unmarked foreground neighbours pixels of the
next element (which become the first after the erasure) are marked and inserted at
the end of queue. The first (a.k.a. old second element) element is again erased and
the process of inserting unmarked foreground neighbours pixels continues until the
FIFO queue becomes empty. Step by step a cluster of marked pixels is constructed.
Figure 2.12 illustrates the process. Table 2.4 shows the parameters needed by the
filter with a typical value range. These values have to be chosen with respect to the
maximum size of connected sets of pixels to be discarded.
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TABLE 2.4: Parameters of the Box filter.

Parameter Typical value range Description

Bx [5, 20] Box size along the x-direction.
By [5, 20] Box size along the y-direction.
Bz [5, 20] Box size along the z-direction.

During this process, an axis-aligned circumscribing box of the cluster is computed
on the fly (the box grows each time a new pixel is added to the FIFO queue). Eventu-
ally, the axis-aligned circumscribing box of the cluster is then compared to the user’s
parallelepipedic box. If the circumscribing box fits inside the parallelepipedic one,
the current cluster of pixels is discarded (i.e. all pixels are marked as background
pixels), otherwise it is kept. Once the current cluster has been processed, the process
continues with the next foreground pixel until no more foreground pixels are to be
found or the end of the image is reached. Algorithm 4 describes the process in more
details.

Figure 2.13 compares the opening process using a spherical structuring element
(two-bottom left images) with the above process of box filter (two-bottom right im-
ages). It can be seen that the opening tends to smooth and even discard cell walls,
while the box filter keep the walls intact provided they are not fragmented into small
disconnected pieces. The unwanted effect of discarding cell walls by the opening
process may perhaps be mitigated by using a more suitable structuring element.
However, it is not clear which could be such structuring element. Instead, the box
filter is simpler to use (no structuring element to choose) and leads to better results.
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x

(a) Foreground pixel found. (b) The set of connected foreground pix-
els is clustered (red color).

(c) The axis-aligned circumscribing box of
the current cluster (in red) is compared to
the user’s box (in green). If the former fits
inside the later, the cluster is discarded.

(d) The process then continues then with
the next set of connected foreground pix-

els.

FIGURE 2.12: Illustration of the box filter process.
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(a) Original image of foam slice. (b) Threshold applied to image (a).

(c) Opening applied to thresholded im-
age (b) with a flat ball structuring element

of radius two pixels.

(d) Box filter applied to thresholded im-
age (b) with a box of side ten pixels.

(e) Difference between thresholded im-
age (b) and opening (c).

(f) Difference between thresholded image
(b) and box filter (d).

FIGURE 2.13: Noise filtering: opening versus box filter. Opening
leads in discarding some thin cell walls (Figure (e)) while they are

more preserved with the box filter (Figure (f)).
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Algorithm 4 Box filter

Require: Binary (black & white) image I of domain DI .
Require: Axis–aligned Box.
Require: Foreground & Background pixel values.

1: procedure BOXFILTER(I, Box, Foreground, Background)
2: i← 0
3: clusterNb← max (Foreground, Background) + 1
4: for xi ∈ DI do

5: if I(xi) == Foreground then

6: queue← xi’s position. (xi,1, xi,2, . . .)
7: I(xi)← clusterNb
8: clusterBox ← [xi,1, xi,1, xi,2, xi,2, . . .] ⊲ Degenerated box.

⊲ Box described by: [xmin, xmax, ymin, ymax, . . .]

9: while queue 6= ∅ do ⊲ NI(...): neighbourhood of...
10: for xj ∈ NI(queue. f ront()) ∧ I(xj) == Foreground do

11: queue← xj.
12: I(xj)← clusterNb
13: for µ = 0, 1, . . . , n do ⊲ n: number of dimensions.
14: if clusterBox(2µ) > xj,µ then

15: clusterBox(2µ)← xj,µ
16: end if

17: if clusterBox(2µ + 1) < xj,µ then

18: clusterBox(2µ + 1)← xj,µ
19: end if

20: end for

21: end for

22: queue.pop() ⊲ Erase position of first pixel in queue.
23: end while

24: if clusterBox ⊂ Box then

25: for xk that was in queue do

26: I(xk)← Background
27: end for

28: end if

29: clusterNb← clusterNb + 1
30: end if

31: end for

32: return I
33: end procedure
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2.3.6 Step 2: Distance filter

• Aim: compute the Euclidean distance transform of a binary image, where
white (feature) voxels represent cell walls/struts and are assigned distance
zero.

• Input: binary image with black and white (feature) voxels.

• Output: gray–level image6 with each voxel value equal to the Euclidean dis-
tance to the closest feature voxel.

• Streaming: see Section 3.7

In the field of image analysis, the notion of distance between pixels plays a major
role [155]. A distance carries with him the notions of balls7 which themselves pro-
vides important topological notions, such as the interior8, adherence9 and bound-
ary10 of a given domain.

Moreover, a distance provides a notion of separations between points and is inti-
mately linked to binary erosion, binary dilation, opening and closing through thresh-
olding (see References [35] and [155], section 3.5.1 pp. 75 for more details). In the
modelling of cellular materials, the distance transform of an image (see Appendix B)
is widely used (often as input for a watershed transform, see for instance References
[149, 165, 138, 33, 38, 103, 95, 169, 32, 156]). Indeed, the maxima of the distance
transform are (generally) located at the cell centres, while the zeros of the distance
transform allow to identify (partially) cell walls. The Ellipsoidal Model (described in
Section 4.2) takes advantage of the distance transform for having a first insight about
cell centres and cell walls and uses it for initialising an ellipsoid-based algorithm for
identifying the cells.

Distance transform algorithms

The first reference sequential algorithm for computing the d1 and d∞ distance trans-
forms (DT) is due to A. Rosenfeld and J. L. Pfaltz [143]. This algorithm performs
one forward scan and one backward scan for computing the d1 (or d∞) distance. It
is thus linear in term of number of pixels. The algorithm uses one forward and one
backward scan of the image as well as forward and backward neighbourhoods of
the current scanned pixel11. Although it is not used in this thesis, the algorithm of
A. Rosenfeld and J. L. Pfaltz is given by algorithm 5.

6Note: here, for visualisation purposes, this gray–level image is coded using a blue-to-red conven-
tion instead of a black-to-white one.

7For a space E, a closed ball B[x; r] of radius r > 0 centred in x ∈ E is defined as:
B[x; r] = {y ∈ E | d(x, y) ≤ r}

8For a domain D, x ∈ D is in the interior int(D) of D if, and only if ∃r > 0 | B[x; r] ⊂ D.
9For a domain D, x ∈ D is in the adherence adh(D) of D if, and only if, ∀r > 0, B[x; r] ∩ D 6= ∅.

10The boundary f r(D) of a domain D is defined as f r(D) = adh(D) \ int(D).
11The forward (resp. backward) neighbourhood of a current pixel, are its neighbouring pixels com-

ing before (resp. after) him in raster scan order.
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Algorithm 5 DT Rosenfeld and Pfalts [143]

Require: Binary image I of domain DI .
Require: Background pixels to 0.
Require: Foreground pixels to 1.

1: procedure DTROSENFELD(I)
2: for forward scan of all pixels xi ∈ DI do

3: if I(xi) = 1 then

4: I(xi)← 1 + min {I(y) | y ∈ N←I (x)}
5: end if

6: end for

7: for backward scan of all pixels xi ∈ DI do

8: if I(xi) 6= 0 then

9: I(xi)← min {I(xi), 1 + min {I(y) | y ∈ N→I (xi)}}
10: end if

11: end for

12: end procedure

However, for reconstructions of cellular materials (especially foams), an Euclidean
distance measure is often preferred. Indeed, reconstruction algorithms are consid-
erably affected by the distance used in distance transforms (see Reference [125], pp.
27). In the field of reconstruction of cellular materials, the most natural and most
used distance is the Euclidean distance, through the use of Voronoï diagrams (see,
e.g., References [140, 55, 149, 93]). Moreover, the Euclidean distance is the simplest
one (its associated metric is the identity) and derives from a norm as well from a
scalar product. Nevertheless, it should be noted that the power distance distance is
increasingly used through the Laguerre tessellation (see, e.g., References [149, 138, 182,
95, 169]). Though, the computation of the Euclidean distance remains mandatory, as
the power distance relies on the Euclidean distance by its very definition. Finally,
more “esoteric” distances have been introduced by Sonon et al. [156], with the pur-
pose of using them for describing more precisely foam microstructures. However,
the properties of the distances introduced by Sonon et al. are not fully understood
yet and need to be further investigated.
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(a) General network. (b) 4–connected network. (c) 8–connected network.

FIGURE 2.15: Examples of 2–dimensional digitalisation networks.

Algorithms for the Euclidean distance.

Several efforts have been made for computing approximate or exact Euclidean
distances in images. Among them can be found:

• Danielsson’s algorithm [37]. This algorithm computes two integers L1 and L2
given, respectively the horizontal and vertical path lengths separating two
pixels. The Euclidean distance between those two pixels is then given by
√

L2
1 + L2

2.

• The chamfer transformations proposed by Borgerfors [24] measure the mini-
mal length of all possible paths between two pixels p and q using a weighted
version of the digitalisation network of the image.

For instance, for 2-dimensional images, by measuring the number L1 of hor-
izontal and the numbver L2 of vertical pixels separating p from q, their Eu-

clidean distance is given by
√

L2
1 + L2

2. If the digitalisation network is a 8-
connected network (see Figure 2.15c) weighted by w1 for its horizontal and
vertical edges and by w2 for its diagonal edges, the chamfer distances become
(see Figure 2.16):

dw1,w2 = L2w2 + (L1 − L2)w1

For this case, the optimal weights are w1 = 1, w2 = 1/
√

2 +
√√

2− 1. With
respect to the exact Euclidean distance, the error ‖de(p, q)− dw1,w2(p, q)‖ of this
optimal chamfer distance amounts to approximatively 0.06L1. Thus, the error
grows when the distance between pixels p and q increases.

It is possible to reduce this error by complexifying the weighting of the dig-
italisation networks thanks to masks. However, larger masks do not lead to
significant accuracy gain [23] and slow down the computation of the chamfer
distance (see Reference [125], pp. 27).

• Many other algorithms as Vincent’s algorithms based on chain propagations [175]
or Saito and Toriwaki based on manipulations of squared distance [145]. A
more comprehensive description and comparisons between different Euclidean
DT algorithms has been conducted by Fabbri et al. [46].
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FIGURE 2.16: Schematic example for computing a chamfer distance:
weighted shortest path between two pixels along the digitalisation

network. Figure inspired from Figure 7 of [24].

Maurer et al. algorithm For the Euclidean distance transform, it has been chosen
here to use an algorithm developed by Maurer et al. [111] and for which a paral-
lelised version has been implemented in ITK by Staubs et al. [158]. This algorithm
computes efficiently the exact Euclidean distance transform and is linear with re-
spect to the number of pixels in the image. It relies on dimensional reduction and
partial Voronoï diagram constructions. The algorithm consists in scanning the im-
age along each of its directions and finding the closest feature pixel for a given pixel.
This particularity make the algorithm suitable for streaming a 3D image by slices.
Details on how this algorithm works can be found in Appendix B. Figure 2.17 illus-
trates an Euclidean distance transform computed on a 2D binary image of a foam.
It can be seen that local maxima of the distance transform roughly correspond to
the centres of cells. In general, unfortunately, local maxima only give a rough first
guess of cell centres, and more post-processing is needed for accurately identifying
cell centres. This is the topic of the next sections.

FIGURE 2.17: Original 2D binary image of a foam (left) and Euclidean
distance transform using Maurer et al. algorithm [111]. Warmers

colours stand for larger distances.
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2.3.7 Step 3: Distance post-processing

• Aim: smooth a distance transform or perform other post-processing tasks.

• Input: gray–level image representing a distance transform.

• Output: gray–level image representing the corresponding smoothed distance
transform.

• Streaming: see Section 3.8

This step is optional. If some post-processing of the distance transform is needed,
it can be added here. For instance, a smoothing step may be desirable for avoiding
superfluous maxima and oversegmentation [138]. For the datasets used in this the-
sis, such an optional processing step was not proven necessary and none was used.
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2.3.8 Step 4: Local maxima

• Aim: given a gray–level image representing the distance transform of a bi-
nary foam image, identify local maxima that will be used as seeds for growing
ellipsoids.

• Input: gray–level image.

• Output: gray–level image marked with local maxima.

• Streaming: see Section 3.9.

Finding local maxima in a gray–scale image is a important basic operation in image
analysis for mainly two reasons. Firstly, local maxima (and local minima) often mark
relevant distinct objects [18, 155, 33]. Secondly, the ability of finding local maxima
(and local minima) can be useful for the development of more advanced algorithms
such as queue-based reconstructions [142, 162]. Conversely, the presence of superflu-
ous local maxima (or minima) in noisy images can lead to oversegmentation for the
watershed transform [155, 149, 138]; which can have been a motivating reason for
the development of H–maxima (and H–minima) transforms [155, 149].

The basic idea of the watershed transformation is the following: let’s be a gray-
scale image to be seen as the topographical representation of a landscape. Let’s drop
a water fall on this “landscape”. The water will flow towards local minima (a.k.a.
“valleys”) of the landscape which will constitute “catchment basins”. Catchment
basins are progressively flooded and, when two different basins reach each-other, a
“dam” at their meeting points is “constructed”. Figure 2.20 illustrates the concept of
watershed transformation seen as a flooding process.

FIGURE 2.20: Gray–scale image seen as the topographic representa-
tion of a landscape. The local minima are progressively flooded and
constitute “catchment basins”. When two catchment basins meet,
“dams” separating them are constructed. (Image from P. Soille [155],

Figure 9.2).

For the interested reader, some notions related to mathematical morphology, and
more formal definitions of the watershed and H-maxima transforms are given in
Appendix C.
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Non-maximum suppression

The technique of non-maximum suppression for gray-scale images was first used
in the context of edge-thinning in digitalised images [144]. It was then developed
and generalised to edge-corner detection and localisation of two–dimensional fea-
tures [80]. The algorithm used here for the detection of local maxima is a modified
version of the algorithm developed by T.Q. Pham [130].

The ITK library [69] provides mainly two filters for finding maxima, namely the
itk::HConvexImageFilter and the itk::ValuedRegionalMaximaImageFilter. The last one
from R. Beare and G. Lehman [16] is currently the fastest12. Nevertheless, the current
implementation of these filters13 does not allow streaming. For instance, the algo-
rithm of R. Beare and G. Lehman (see Algorithm 6) relies on a flooding approach,
where the flooding region cannot be predicted a priori, while the itk::HConvexImageFilter
relies on a H-convex transformation.

Algorithm 6 R. Beare and G. Lehman algorithm [16] for finding regional maxima
inside a grayscale image I.

Require: gray-scale image I.
1: procedure BEARELEHMANREGIONALMAXIMA(I)
2: Copy the input image I to an output image J.
3: Visit each pixel of the input image I.
4: if The corresponding output value is not maximal (meaning this pixel has

not already been visited) then check all the neighbours. then

5: if Any of the neighbouring gray level are bigger than the current pixel
value, then this pixel can not be a regional maxima. then

6: Flood fill the region, in the output image, with the same gray level as
the current pixel that contains the current pixel, with the minimal
value for the pixel type [sic].

7: end if

8: end if

9: Goto to next input pixel, if any.
10: return Output image J.
11: end procedure

12For ITK version 4.10.1.
13Note, though, that the algorithms of R. Beare and G. Lehman computes local maxima, while the

itk::HConvexImageFilter actually computes regional maxima and, therefore, may miss some local max-
ima.
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(a) Original image. (b) Local maxima com-
puted with the original

algorithm.

(c) Local maxima com-
puted with the modified

algorithm.

FIGURE 2.21: Comparison of detections of local maxima in a simple
gray–scale image (a). Local maxima detected by the original algo-
rithm of T.Q. Pham (b), and by its modified version (c). Note that the

original algorithm does not detect plateaus.

Algorithm of T.Q. Pham

The idea of the scan-line algorithm of T.Q. Pham is to scan a gray-scale image I of
dimension n along a 1D-direction and find local peaks along this direction. Then, the
pixels located in the neighbourhoods of the local peaks are scanned and compared
against the local peaks in order to determine local maxima.

The scan-line algorithm proposed by T.Q. Pham allows streaming using slices that
are aligned with the chosen 1D-direction, and then requests only a constant neigh-
bourhood around the peaks. This latest request can easily be handled using the
image region negotiation process between filters, in a similar fashion that has been
done for the box filter.

The original algorithm of T.Q. Pham was initially designed for processing 2-dimensional
images and was written in Matlab (see Reference [130]). A modified C++ version of
this algorithm for n-dimensional images has been written for the needs of this thesis.
The core of the algorithm of T.Q. Pham consisting in scanning lines in 2-dimensional
images, the modification for n-dimensional images is straightforward: it only needs
to apply the original algorithm to a given 2D slice and then repeat it on the other
slices. The modified C++ version has been implemented as a standard streamable
ITK filter and, in addition to streaming, plateau detection and the ability to discard
saddle points by computing discrete Hessians have been added.

All-in-all, the core of the algorithm of T.Q. Pham remains untouched, while some
improvements for getting a streamable C++ version on n-dimensional images and
plateaus and saddle points detections were added to it. As a result, the modified
version of the algorithm of T.Q. Pham is not faster than the original one (as it per-
forms some additional checks for plateaus and saddle points detections) but it is
more general as shown in Figure 2.21.
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Description of the modified version of the algorithm of T.Q. Pham. The algo-

rithm searches for local maxima over (2R + 1)n =

n
︷ ︸︸ ︷

(2R + 1)× . . .× (2R + 1) neigh-
bourhoods of radius R. Given a grayscale image I of parallelepipedic domain DI =
[0, D1]× . . .× [0, Dn], a one-dimensional scan-line of I is performed. Let’s, without
loss of generality, the scan direction be the x-direction (first leading direction).

In order to set notations, let’s, for a pixel x ∈ DI , write:

• Ĩ0(x) = I(x1, 0, 0, . . . , 0).

• Ĩ1(x) = I(x1, 1, 0, . . . , 0).

• Ĩ2(x) = I(x1, 2, 0, . . . , 0).

• . . .

• ĨD1(x) = I(x1, D1, 0, . . . , 0).

• ĨD1+1(x) = I(x1, 0, 1, . . . , 0).

• . . .

• ĨD1+D2(x) = I(x1, 0, D2, . . . , 0).

• . . .

• ĨD1D2+D2(x) = I(x1, D1, D2, . . . , 0)

• . . .

• . . .

• ĨD1 ...Dn+D2 ...Dn+...+Dn(x) = I(x1, D1, D2, . . . , Dn).

For d ∈ [0, D1 . . . Dn + D2 . . . Dn + . . . + Dn] fixed and two consecutive pixels x(i)

and x(i−1) along the scan line d, let’s g be the sign of the finite difference of Ĩd:

g : DI → {−1, 0, 1} ; x(i) 7→ g(x(i)) = sgn
(

Ĩd(x
(i))− Ĩd(x

(i−1))
)

. (2.6)

Moreover, let’s h be the finite difference of g:

h : DI → {−2,−1, 0, 1, 2} ; x(i) 7→ h(x(i)) = g(x(i))− g(x(i−1)). (2.7)

Where:

• h(x(i)) = −2 at local peaks with their corresponding neighbourhood NI inside
DI (NI ⊂ DI).

• h(x(i)) = −1 at other local peaks.

• h(x(i)) = +2 at other local throughs with their corresponding neighbourhood
NI inside DI (NI ⊂ DI).

• h(x(i)) = +1 at other local throughs.

• h(x(i)) = 0 elsewhere.
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Figure 2.22a sketches an example of the result obtained with functions g and h
along a scan line. A first set S1 of maxima candidates is computed by scanning the
image I along the x-directions and taking pixels x with strictly negative correspond-
ing Hessian (h(x) < 0). Then a second set S2 of maxima candidates is obtained
by decimating the set S1. Figure 2.22b illustrates the decimation process where the
maxima candidates of set S1 are selected against their 2(2R + 1) neighbours along
the current scan line. Pixels on a downward slope (hollow pixels) can be immedi-
ately ruled out as maxima candidates. Red star–shaped pixels, on the other hand,
need to be compared against the circled pixels as they appear after a slope change in
their 2(2R + 1) neighbourhood.

(a) Computation of the sign of the discrete
derivative and its Hessian along a line of pix-

els.

(b) Comparison of the maxima candidates
against their (2R + 1) (R = 1) neighbours
along the scan direction. Hollow pixels does
not need to be compared to maxima candi-
dates (circled pixels) as they are located on a

downward slope.

FIGURE 2.22: Sketch of the scan-line algorithm of T.Q. Pham along a
one–dimensional line of pixels. (Images from Figure 3 of the article of

T.Q. Pham [130].)

Eventually, the maxima candidates of set S2 are compared against their n-dimensional
neighbourhoods NI(x) = [x1 − (2R + 1), x1 + (2R + 1)]× . . .× [xn − (2R + 1), xn +
(2R + 1)] (see Algorithm 10).

Note on boundaries If the pixel x lies on a boundary of the image I, part of its
neighbourhood NI(x) does not exist anymore. In order to detect maxima located on
the image boundaries, the image is padded over a radius (2R + 1) with zeros (the
minimum possible value for an unsigned distance).

Hessian-based maxima selection

The local maxima found by the algorithm of T.Q. Pham may not all be genuine local
maxima. Some of these maxima may be saddle points14. As the aim is to locate cell
centres thanks to the maxima of the image I obtained by an Euclidean distance trans-
form (definition B.2), these saddle points have to be avoided. Indeed, saddle points
are located at missing cell wall regions and not at cell centres (see Figure 2.23a).

Therefore, it is needed to detect and discard saddle points. This can be done by
looking at the eigenvalues of the Hessian of image I evaluated at each maximum.

14For a function f : R → R; x 7→ f (x), a point y ∈ dom( f ) is a saddle point if at least one eigenvalue
of the Hessian of f evaluated at y has a sign opposite to another, different, non-zero eigenvalue.
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(a) maxima (represented as white disks)
and saddle points (represented as white
disks circled with red) computed on a 2–
dimensional thresholded image of a cel-

lular material.

(b) maxima (represented as white disks)
filtered from saddle points and computed
on a 2-dimensional thresholded image of
a cellular material. Parameters used in al-
gorithm 7: Ruser = 5, σ = 3, eigenTol =

10−5, tol = 10−4.

FIGURE 2.23: Filtering of saddle points by computing the eigenvalues
of the Hessian evaluated at the maxima candidates.

If all the eigenvalues are negative, then the considered maximum is a genuine one,
otherwise it is a saddle point and it should be discarded.

In practice, for noisy images, some tolerance tol > 0 should be added on the cri-
terion of the negativity of the eigenvalues of the Hessian. In her master–thesis [99],
A. Lopez-Reina suggest to use the following criteria:

1. If all eigenvalues < −tol, then accept the associated maximum.

2. If −tol < some eigenvalues < tol, and the other < −tol, then accept the asso-
ciated maximum.

3. If there is some eigenvalues λi > tol, and if λmin is the smallest eigenvalue
such that λmin < 0, then accept the associated maximum if:

λi ≤ tol |λmin| (2.8)

Reject it otherwise.

The above criteria can be summarised as follow: if λmax is the highest positive
eigenvalue (if any) and λmin is the smallest eigenvalue, then:

1. If there is no λmax: accept the associated maximum.

2. Elsewhere, if !(λmax > tol|λmin|) && (λmin < 0) accept the associated maxi-
mum, else reject it.
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Algorithm 11 describes the procedure for discarding saddle-points within a given
tolerance. Figure 2.23b shows filtered maxima found from the same image as Fig-
ure 2.23a.

Computation of the Hessians

The selection algorithm 11 of A. Lopez-Reina of the local maxima requires the com-
putation of the corresponding Hessians. Computing these Hessians requires the
computations of derivatives in discrete images, which is an ill-posed problem [101].
Derivatives in discrete images are usually computed as convolutions of the consid-
ered discrete image with a given predefined operator which performs a prior smooth-
ing on the image. One method to compute such prior smoothing is to resort to a
scale-space representation of the considered image.

The truncated discrete scale-space representation and its Hessian - amongs other
discrete derivatives of the scale-space representation - have been implemented by
I. Macia [101] in the ITK library and its used in the Ellipsoidal Model for computing
the local Hessians à maxima’s locations. The following describes in details how
scale-space representations are defined, how to compute them in the continuous
and discrete case, and, in particular, how to truncate their discrete developments
by computing a correct neighbourhood radius RHessian around each local maxima in
order to ensure a correct calculation of the local Hessian within a given tolerance.

Preliminary definitions

Definition 2.1. The modified Bessel function of integer order In : R → R; x 7→ In(x)
can be defined as:

In(x) = (−1)n Jn(ix). (2.9)

Where n ∈ Z , i ∈ C is the imaginary number such that i2 = −1 and Jn =
1
π

∫ π
0 cos(nt− x sin(t)) dt is the Bessel function of the first kind.

Definition 2.2. Given two integrable functions f : Rn → Rp and g : Rn → Rp, their
convolution over a range [a, b], with a ∈ R and b ∈ R, is:

( f ∗ g) (x) =
∫ b

a
f (y) g(x− y) dy =

∫ b

a
g(y) f (x− y) dy. (2.10)

Definition 2.3. A scale–space kernel is a function g : Rn ×R+\{0} → Rp; (x; t) 7→
g(x; t) satisfying the following axioms [10]:

1. ∀x ∈ Rn and ∀t > 0, there exists a function h : Rn → Rp such that g(x; t) =
t h(xt).

2. ∀x ∈ R, the kernel g is symmetrical : g(−x; t) = g(x; t).

3. ∀t > 0,
∫ +∞

−∞
g(x; t) dx = 1.

4. ∃p ∈ Z such that ∂2ph(x)

∂x
p
i x

p
j

6= 0; i, j = 1, . . . , n.

5. Given an admissible function f : Rn → Rp, the number of maxima (re-
spectively minima) of the convolution g(x; t) ∗ f (x) increases (respectively de-
creases) monotonically with t.
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J.Badaud et al. [10] showed that, for the above set of axioms, the scale-space
kernel is unique and is the Gaussian kernel:

g(x; t) =
1

(2πt)n/2 exp

(

−‖x‖
2

2t

)

.

Definition 2.4. A scale-space representation of a function f : Rn → Rp is a function
L : Rn ×R+\{0} → Rp; (x; t) 7→ L(x; t) of the form:

L(x; t) = (g ∗ f )(x; t). (2.11)

Where the function g : Rn × R+\{0} → Rp; (x; t) 7→ g(x; t) is a scale-space
kernel.

Explicitly, the scale–space representation of an integrable function f : Rn → Rp

is:

L(x; t) = (g ∗ f )(x; t) =
∫ +∞

−∞

1

(2πt)n/2 exp

(

−‖x− y‖2

2t

)

f (y) dy. (2.12)

Intuitively, L(x; t) corresponds to a “blurred” version of the function f (x), where
t is a “blurring” parameter. For t → 0, the “blur” disappears and limt→0 L(x; t) =
f (x), while the “blur” increases with increasing values of t.

If the derivatives of the function f are numerically ill-conditioned (i.e. ∃x ∈
dom( f ′), ∃M > 0 | ∀ǫ > 0, ∃y ∈ dom( f ′), | f ′(x + ǫy)− f ′(x)| ≥ M) or not con-
tinuous, the derivatives of its scale–space representation L(x; t) present a better be-
haviour, depending on the value of the parameter t.

Moreover, thanks to the properties of the Gaussian kernel, it is possible to precom-
pute the Hessian of a scale-space representation [101]:

∂2L(x; t)

∂xi∂xj
=

∂2

∂xi∂xj
(g ∗ f ) (x; t)

=

(
∂2g(x; t)

∂xi∂xj

)

∗ f (x)

= g(x; t) ∗
(

∂2 f (x)

∂xi∂xj

)

; i, j = 1, . . . , n

(2.13)

As a consequence, computing the Hessian of the scale-space representation L(x; t)
of the function f (x) amounts to compute a “blurred” version of the original Hessian
∂2 f (x)
∂xi∂xj

; i, j = 1, . . . , n.
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Hessian of a discrete image If the above considered function f (x) is a discrete
image I(x), a discrete version of the Gaussian kernel is needed. However, as pointed
by T. Lindeberg [97], a naïve discretisation of the Gaussian kernel will not, in general,
satisfy the scale-space axioms. Furthermore, the interesting property (2.13) will in
general be lost.

However, T. Lindeberg [97] proved that a discretisation of the Gaussian kernel pre-
serving the scale-space and the property (2.13) exists for any dimension n ∈ N\{0}.
For the one-dimensional case, he suggested to use the following discretisation:

T(m; t) = exp(−t) Im(t). (2.14)

Where the Im(t) are the modified Bessel function of integer order.

The corresponding one-dimensional discrete scale-space representation Ld : Z ×
R+\{0}; (x; t) 7→ Ld(x; t) for a one-dimensional discrete image I(x) is given by:

Ld(x; t) =
+∞

∑
m=−∞

T(m; t) I(x−m). (2.15)

For higher dimensions, the corresponding discrete scale-space representation Ld :
Zn ×R+\{0}; (x; t) 7→ Ld(x; t) for a n-dimensional discrete image I(x) of infinite
domain DI = Zn is given by:

Ld(x; t) =
+∞

∑
m1=−∞

T(m1; t) . . .
+∞

∑
mn=−∞

T(mn; t) I(x1 −m1, . . . , xn −mn). (2.16)

The discretisation of the Hessian of the scale-space representation L(x; t) is, in
turn, given by:

∂2L(x; t)

∂xi∂xj
=

(
∂2g(x; t)

∂xi∂xj

)

∗ I(x) (Property 2.13).

=

(
xixj − δijt

t2 g(x; t)

)

∗ I(x)

↓ discretise

=
+∞

∑
m1=−∞

. . .
+∞

∑
mn=−∞

mimj − δijt

t2 T(m1; t) . . . T(mn; t)I(x1 −m1, . . . , xn −mn)

=
∂2Ld(x; t)

∂xi∂xj

(i, j = 1, . . . , n)
(2.17)

Where δij =

{
1 if i = j
0 elsewhere

, is the Kronecker delta.
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In practice, the domain DI of the discrete image I is not infinite. Also, the sum-
mations given for the discrete scale-space representation Ld(x; t) 2.16 and for the

discrete Hessian of the scale-space representation ∂2Ld(x;t)
∂xi∂xj

; i, j = 1, . . . , n 2.17 are
truncated.

Ltrunc
d (x; t) =

M1

∑
m1=−M1

T(m1; t) . . .
Mn

∑
mn=−MN

T(mn; t)I(x1 −m1, . . . , xn −mn). (2.18)

And

∂Ltrunc
d (x; t)

∂xi∂xj
=

M1

∑
m1=−M1

. . .
Mn

∑
mn=−Mn

mimj − δijt

t2 T(m1; t) . . . T(mn; t)

× I(x1 −m1) . . . I(xn −mn); i, j = 1, . . . , n.

(2.19)

The bounds M1, . . . , Mn are computed such that the discretisation error, defined
as the “difference between the area under the discrete Gaussian and the area under
the continuous Gaussian”, is below a prescribed value15.

Remark: boundary condition The truncated discrete Hessian of the scale space
representation given in equation 2.19 requires for each pixel x in the domain DI of
the image I, the values of the surrounding pixels in a neighbourhood NI(x) centred
on x and of size [−M1, M1]× . . .× [−Mn, Mn]. If x is located near a boundary of DI ,
some pixels y ∈ NI(x) of the requested neighbourhood may overflow the domain DI :
i.e. ∃y ∈ NI(x) | y /∈ DI . For such overflowing pixels y, their values are simply set
to zero, so they do not contribute to the computation of the convolution.

Neighbourhood computation for the Hessians The selection algorithm 11 of
A. Lopez–Reina of the local maxima requires the computation of corresponding Hes-
sians. The computations of these Hessians require themselves the knowledge of
pixel values around given neighbourhoods of the local maxima candidates. The ex-
tent of these neighbourhood is an integer constant and depends on a Gaussian and
its first and second derivatives:

g : R+ → R+; r 7→ g(r; σ) =
1

(2πσ2)n/2 exp

(

− r2

2σ2

)

. (2.20)

∂g

∂r
: R+ → R; r 7→ ∂g

∂r
(r; σ) =

−r

σ2 g(r; σ). (2.21)

∂2g

∂r2 : R+ → R; r 7→ ∂2g

∂r2 (r; σ) =
r2 − σ2

σ4 g(r; σ). (2.22)

Where n is the image dimension, r = ‖x − y‖ is the distance between the con-
sidered local maximum candidate x ∈ Rn and a pixel y ∈ Rn in its neighbourhood,
and σ =

√
t > 0 is a given standard deviation.

15Citation from ITK’s documentation [69], pp. 103.



2.3. Proposed image analysis procedure 53

Note Given the truncated discrete Hessian of the scale-space representation 2.19,
the class itk::DiscreteHessianGaussianImageFunction of the ITK library computes the
convolution region [−M1, M1]× . . .× [−Mn, Mn]. However, this class does not offer
a public access to these values, but only a default threshold value through its public
function GetMaximumKernelWidth() which is pessimistic16. It is in principle possible
compute some optimal values M1, . . . , Mn by running the algorithm used by the
class itk::DiscreteHessianGaussianImageFunction several times and minimising some
error criterion. However, this algorithm is relatively complex and running it several
times requires a fair computational effort.

Instead, the method suggested in this thesis is fast (logarithmic in time) and sim-
ple. It consists in computing a radius bound R ≥ max(M1, . . . , Mn) as small as
possible for the needed neighbourhood such that the contribution to the truncated
discrete Hessian of the scale–space function 2.19 of pixels located outside the neigh-
bourhood of radius R is negligible. Then, the algorithm used by the class itk::Discrete-
HessianGaussianImageFunction is only required to be run once with the found radius
R as threshold.

From a given pixel x, pixels in the neighbourhood of x are convolved with the sec-

ond derivative of the Gaussian ∂2g
∂r2 . This second derivative tends towards zero for

r → ∞, as the term g(r; σ) tends exponentially towards zero by positive values for
r → ∞, while the term r2−σ2

σ4 tends only quadratically towards infinity for r → ∞.
As a consequence, neighbourhood pixels y far enough from the considered pixel x

do not contribute significantly to the convolution and may be discarded. Mathemat-
ically speaking:

∀ǫ > 0, ∃R > 0 | ∀x ∈ DI ,
∣
∣
∣
∣

∫

Ω={y∈DI | (x±y)∈DI}
I(y)

∂2g

∂r2 (‖x− y‖; σ) dy

−
∫

ΩR−={y∈DI | ‖x−y‖≤R}
I(y)

∂2g

∂r2 (‖x− y‖; σ) dy

∣
∣
∣
∣
≤ ǫ (2.23)

Where I is an image, DI its associated domain, and R is the radius of the neigh-
bourhood to consider.

As:

Ω = {y ∈ DI | (x± y) ∈ DI} =
{y ∈ DI | ‖x− y‖ ≤ R} ∪ {y ∈ DI | ‖x− y‖ > R} = ΩR− ∪ΩR+ (2.24)

And, trivially:

ΩR− ∩ΩR+ = ∅ (2.25)

16In ITK 4.10.1 this value is set by default to 30 pixels.
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One have:

∫

Ω
I(y)

∂2g

∂r2 (‖x−y‖; σ) dy =
∫

ΩR−
I(y)

∂2g

∂r2 (‖x−y‖; σ) dy+
∫

ΩR+

I(y)
∂2g

∂r2 (‖x−y‖; σ) dy

(2.26)
And the inequality 2.23 becomes:

∀ǫ > 0, ∃R > 0 | ∀x ∈ DI ,
∣
∣
∣
∣

∫

ΩR+

I(y)
∂2g

∂r2 (‖x− y‖; σ) dy

∣
∣
∣
∣
≤ ǫ (2.27)

The problem to solve here, is thus to find a neighbourhood radius R > 0 such that
the inequality 2.27 is satisfied. Moreover, a value of R as small as possible should be
preferred. Indeed, a high value of R implies the request of a large neighbourhood
during the ITK’s pipeline execution, which should be avoided in order to save RAM
memory usage. For a given ǫ > 0, the problem to solve is thus:

{
minR>0 R

s.t.
∣
∣
∣

∫

ΩR+
I(y) ∂2g

∂r2 (‖x− y‖; σ) dy
∣
∣
∣ ≤ ǫ, ∀x ∈ DI

(2.28)

In the special case where I is an image obtained from a distance transform, I is
bounded:

∃M > 0 | ∀y ∈ DI , I(y) ≤ M. (2.29)

For a parallelepipedic domain and an Euclidean distance transform, M is, at worst,
the length of the largest diagonal of the domain (this is the maximum possible Eu-
clidean distance between two pixels in the image). Here M is simply approximated
by a simple analytical upper bound.

In that case, the problem 2.28 becomes:
{

minR>0 R

s.t.
∣
∣
∣

∫

ΩR+

∂2g
∂r2 (‖x− y‖; σ) dy

∣
∣
∣ ≤ ǫ

M , ∀x ∈ DI
(2.30)

Which is equivalent to the problem:
{

minR>0R

s.t.
∣
∣
∣

∫ +∞

R
∂2g
∂r2 (r; σ) dr

∣
∣
∣ ≤ ǫ

M

(2.31)

Using the definition of function g(r; σ) (2.20) and ∂g
∂r (r; σ) (2.21):

∫ +∞

R

∂2g

∂r2 (r; σ) dr =

[
∂g

∂r
(r; σ)

]+∞

R

=
R

σ2 g(R; σ) (2.32)

For R ∈ R+, the integral
∫ +∞

R
∂2g
∂r2 (r; σ) dr is always positive, because exp

(

− R2

2σ2

)

>

0. Furthermore, this integral is strictly decreasing for R > σ.
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FIGURE 2.24: Values on the interval [0, 6] of G(R; σ) =
∫ +∞

R
∂2g

∂r2 (r; σ) dr for some values of σ, where g(r; σ) =
1

(2πσ2)3/2 exp
(

− r2

2σ2

)

is the 3–dimensional Gaussian of zero mean.

For a radius of R = 4 pixels, one has: G(4; 0.75) ≈ 5.34 10−7,
G(4; 1) ≈ 8.52 10−5 and G(4; 1.25) ≈ 6.22 10−4.

Figure 2.24 illustrates the behaviour of this integral for some values of σ, and
qualitatively shows that the values of this integral can be neglected for sufficient big
values of R with respect to any finite (strictly positive) value of σ. Quantitatively,
using equation 2.22, it may observed that its derivative with respect to R is strictly
negative for R > σ:

∂

∂R

∫ +∞

R

∂2g

∂r2 (r; σ) dr =
∂

∂R

(
R

σ2 g(R; σ)

)

=
σ2 − R2

σ4 g(R; σ) (2.33)

As a consequence:
∣
∣
∣
∣

∫ +∞

R

∂2g

∂r2 (r; σ) dr

∣
∣
∣
∣
=
∫ +∞

R

∂2g

∂r2 (r; σ) dr = G(R; σ) (2.34)

Where the primitive G(R; σ) is explicitly given by the right–hand side of equa-
tion 2.32.

Furthermore, as limz→+∞ exp(−z2) = 0:

limR→+∞ G(R; σ) = 0 (2.35)

Thus, the problem 2.31 can be stated as:
{

minR>0 R
s.t. G(R; σ) ≤ ǫ

M

(2.36)
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TABLE 2.5: Parameters of the Local maxima filter.

Parameter Typical value range Description

Ruser [3, 10] Search radius for genuine maxima.
σ [1, 5] Width of the Gaussian kernel for the Hessian.
eigenTol [10−5, 10−2] Tolerance for criterion on eigenvalues (algo. 11).
tol [10−5, 10−2] Tolerance for the Hessian radius search (algo. 12).

The problem 2.36 can be solved using a simple bisection method on the function:

G(R; σ)− ǫ

M
(2.37)

Indeed, this function is continuous (combination of continuous functions) and its
limit at infinity is

(
− ǫ

M

)
(consequence of 2.35). The bisection method can thus be

applied on the interval [0, b] provided that G(0; σ) =
√

2π
(2π)n/2σn+1 >

ǫ
M and G(b; σ) <

ǫ
M .

For reasonable values of σ, the interval [0, D], where D is the length of the larger
diagonal of the parallelepipedic domain DI , is a suitable interval. Indeed, G(0; σ)
is the global maximum17 of the function G(R; σ) over R+, while the ball B(x; R)
contains the whole image domain ID for all x ∈ ID. The largest possible interval
to consider is thus [0, D]. Algorithm 12 shows the procedure for solving the prob-
lem 2.36.

Remark about the algorithm 12 The stopping condition at line 14 in algorithm 12
is not the usual stopping condition used for a classic bisection algorithm. This is due
by the fact that the aim is not to find precisely the root of the function G(R; σ)− ǫ

M ,
but rather to find an integer radius value R ∈ N such that the function G(R; σ) is
smaller than the quantity tol = ǫ

M . As a consequence, if the difference between two
consecutive radii values Ri−1 and Ri is smaller than one - a.k.a |Ri−1 − Ri| < 1 - and
are such that G(Ri−1; σ)− tol > 0 and G(Ri; σ)− tol < 0, then ceil(Ri)

18 is a suitable
integer radius value. Indeed, ceil(Ri) is large enough for the function G(Ri; σ) to be
negligible, while minimising the extent of the neighbourhood regions over which
the Hessians have to be computed. Table 2.5 shows the parameters needed by the
modified version of the algorithm 7 of T.Q. Pham.

17The functions exp(−z2) and er f c(z) are strictly decreasing overR+.
18The function ceil : R → Z ; x 7→ ceil(x) maps a real number to its nearest upper integer.
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Algorithm 7 Modified version of the algorithm of T.Q. Pham [130]. Given a gray-
scale image I of parallelepipedic domain DI and a provided radius Ruser, computes
the local maxima of I over a neighbourhood of radius Ruser. Optionally, selects the
local maxima based on the eigenvalues of their respective Hessians.

Require: I gray-scale image.
Require: Ruser radius of the neighbourhood.
Require: σ (optional) width of the Gaussian kernel (see eq. 2.20).
Require: eigenTol (optional) tolerance for the eigenvalues (see algo. 11).
Require: tol (optional) tolerance for Hessian radius search (see algo. 12).

1: procedure LOCALMAXIMA(I, Ruser, σ, eigenTol, tol)
2: if sigma, eigenTol and tol exists then

3: D ← biggest diagonal length of DI .
4: RHessian ← INTEGRALOFGAUSSIANSECONDDERIVATIVEBISECTION(0, D,

σ, tol) ⊲ See algo 12.
5: end if

6: Maxima← ∅.
7: ⊲ Compute sign of first derivative.
8: G ← ∅

9: for pixel line Ĩd, 1D–restriction of I along the x–direction do

10: for x(k) ∈ dom( Ĩd) do

11: G ← G ∪
{

g(x(k))
}

⊲ See equ. 2.6.

12: ⊲ If x(k−1) /∈ dom( Ĩd), then Ĩd(x
(k−1)) = min. pixel value.

13: end for

14: ⊲ Find 1D-peaks by computing discrete Hessian h from g.
15: Peaks← ∅, H ← ∅, j← 0.
16: for x(k) ∈ dom( Ĩd) do

17: H ← H ∪
{

h(x(k))
}

⊲ See equ. 2.7.

18: if h(x(k)) == −2 || h(x(k)) == −1 then

19: Peaks← Peaks ∪
{(

j, x
(k)
2 , . . . , x

(k)
n

)}

.
20: end if

21: j← j + 1
22: end for

23: ⊲ Loop over peaks.
24: l ← number of pixels along x–direction.

25: skip←
l

︷ ︸︸ ︷

( f alse, . . . , f alse).
26: for p(k) ∈ Peaks do

27: if skip(k) then continue ⊲ Go to the next peak.
28: end if
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Algorithm 8 Modified algorithm of T.Q. Pham (continued).

29: ⊲ Test the current peak against its (2Ruser + 1) neighbourhood.
30: ⊲ Right side.
31: not1DMaximum← f alse.
32: for j1 = k, . . . , k + Ruser do

33: if H(j1) == 0 then break ⊲ We are on a slope.
34: end if

35: end for

36: ⊲ Test if the slope is going upwards.
37: y← p(k), y1 ← j1.
38: for j2 = j1, . . . , k + Ruser do

39: if Ĩd(p
(k)) < Ĩd(y) then ⊲ Current peak not a 1D-local maximum.

40: not1DMaximum← true.
41: break.
42: end if

43: skip[j2]← true ⊲ Skip future smaller pixel values.
44: end for

45: if not1DMaximum then continue ⊲ Go to the next peak.
46: end if

47: ⊲ Left side.
48: for j1 = k− 1, . . . , k− Ruser do

49: if H(j1) == 0 then break ⊲ We are on a slope.
50: end if

51: end for

52: ⊲ Test if the slope is going upwards.
53: y← p(k), y1 ← j1.
54: for j2 = j1, . . . , k− Ruser do

55: if Ĩd(p
(k)) < Ĩd(y) then ⊲ Current peak not a 1D–local maximum.

56: not1DMaximum← true.
57: break.
58: end if

59: ⊲ No skip here, as previous pixels already scanned.
60: end for

61: if not1DMaximum then continue ⊲ Go to the next peak.
62: end if
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Algorithm 9 Modified algorithm of T.Q. Pham (continued).

63: ⊲ Test if selected 1D–maxima are true nD–maxima.
64: NI(p

(k))← [p
(k)
1 − Ruser, p

(k)
1 + Ruser]× . . .× [p

(k)
n − Ruser, p

(k)
n + Ruser].

65: if ISMAXIMUM(I, p(k), NI(p
(k))) then ⊲ Algo. 10.

66: if RHessian exists then

67: Hk ← Hessian of the discrete scale–space representation of I

evaluated at p(k) with t = σ2 and M1, . . . , Mn = RHessian ⊲

See equ. 2.19.
68: Λk ← eigenvalues of the Hessian Hk.
69: if SELECTMAXIMUMONHESSIANEIGENVALUES(Λk, eigenTol)

then ⊲ See algo. 11.

70: Maxima← Maxima ∪
{

p(k)
}

.
71: end if

72: else

73: Maxima← Maxima ∪
{

p(k)
}

.
74: end if

75: ⊲ Check for plateau in the (2Ruser + 1) neighbourhood.
76: y← p(k).
77: for j = k, . . . , l do

78: y1 ← j.
79: if Ĩd(p

(k)) == Ĩ(y) then ⊲ Plateau found.
80: NI(y) ← [y1 − Ruser, y1 + Ruser] × . . . × [yn − Ruser, yn +

Ruser].
81: if ISMAXIMUM(I, y, NI(y)) then ⊲ See algo. 10.
82: if RHessian exists then

83: Hy ← Hessian of the discrete scale–space repre-
sentation of I evaluated at y with t = σ2 and
M1, . . . , Mn = RHessian ⊲ See equ. 2.19.

84: Λy ← eigenvalues of the Hessian Hy.
85: if SELECTMAXIMUMONHESSIANEIGENVALUES(Λy,

eigenTol) then ⊲ See algo. 11.

86: Maxima← Maxima ∪
{

p(k)
}

.
87: end if

88: else

89: Maxima← Maxima ∪ {y}.
90: end if ⊲ Compute Hessian option.
91: end if ⊲ Plateau pixel is maximum check.
92: end if ⊲ Plateau check.
93: end for ⊲ Loop for plateau check.
94: end if ⊲ nD-maximum check.
95: end for ⊲ Loop on peaks.
96: end for ⊲ Loop on pixel lines.
97: return Maxima.
98: end procedure
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Algorithm 10 Given a maximum pixel candidate x in a gray-scale image I and a
neighbourhood NI(x) around x, tests x is a local maximum for the neighbourhood
NI(x).

Require: I grayscale image of domain DI .
Require: x ∈ DI maximum candidate.
Require: NI(x) neighbourhood around x.

1: procedure ISMAXIMUM(I, x, NI(x))
2: for y ∈ NI(x) do

3: if I(y) > I(x) then

4: ⊲ If y /∈ DI , then I(y) = minimum pixel value.
5: return false.
6: end if

7: end for

8: return true.
9: end procedure

Algorithm 11 Accept or reject a given maximum pixel candidate based on the eigen-
values of the Hessian evaluated at this maximum candidate.
Require: tol tolerance for the eigenvalues.
Require: Λ = {λi}i=1,...,n, the eigenvalues of the Hessian evaluated at the consid-

ered maximum.
1: procedure SELECTMAXIMUMONHESSIANEIGENVALUES(Λ, tol)
2: λmin ← λ1, λmax_pos ← 0.
3: for i = 1, . . . , n do

4: if (λi > 0) && (λmax_pos < λi) then

5: λmax_pos = λi.
6: end if

7: if λmin > λi then

8: λmin = λi.
9: end if

10: end for

11: return !(λmax_pos > tol |λmin|) && (λmin < 0).
12: end procedure
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Algorithm 12 Algorithm for solving problem 2.36 for determining the minimal inte-
ger radius of the convolution region needed for the computation of the Hessians so
that the error stays below a given tolerance.

Require: tol error tolerance and σ, standard deviation for the Gaussian.
Require: Interval [a0, b0] such that (G(a0; σ)− tol)(G(b0; σ)− tol) < 0

1: procedure INTEGRALOFGAUSSIANSECONDDERIVATIVEBISECTION(a0, b0, σ,
tol)

2: i← 0.
3: Ri ← ai+bi

2 .
4: repeat

5: if G(Ri; σ)− tol > 0 then

6: ai+1 ← Ri.
7: bi+1 ← bi.
8: else

9: ai+1 ← ai.
10: bi+1 ← Ri.
11: end if

12: Ri+1 ← ai+1+bi+1
2 .

13: i← i + 1.
14: until |Ri−1 − Ri| < 1
15: return RHessian ← ceil(Ri).
16: end procedure
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2.3.9 Step 5: Parent ellipsoids

• Aim: from found local maxima, fit ellipsoids to cells. Cluster and merge over-
lapping ellipsoids so to obtain one fitted ellipsoid per cell.

• Input: local maxima and threshold image.

• Output: parent ellipsoids, each fitted to one particular cell.

• Streaming: see Section 3.10.

The oversegmentation problem

As the watershed transformation is a key and extensively used transformation, many
efforts have been invested in designing fast (parallel) and accurate watershed algo-
rithms ([21, 155, 159, 82, 162]. In this thesis, the watershed transformation is avoided
and its flooding basins philosophy is replaced by growing ellipsoids. The advantage is
that the input image can be locally referenced (i.e., only a small part of the image
needs to be loaded into memory) and ellipsoids can be grown in parallel.

The watershed transform is often subject to oversegmentation: irrelevant small
local minima (often generated by the noise in the image) generate catchment basins
and induce the segmentation of the considered image in too many small zones (see,
e.g., Figure 2.26). As a consequence, relevant features (as cells) may be fractured into
subcomponents. Avoiding oversegmentation for the watershed transformation is a
hard task. Several solutions may be used, depending on the nature of the considered
image: simple smoothing [138], pre-processing by a H-maxima/minima transforma-
tion [176, 155], pre-identifying markers [155], etc. It should be noted that seemingly
even the H-maxima/minima transformation appears to be insufficient for certain
cases. Indeed, adaptive H-maxima transformations techniques have emerged [57,
125, 149, 33] and added to image analysis softwares such as MAVI [171].

Clearly, even if some superfluous local maxima are discarded on the basis of the
eigenvalues of their associated Hessians, most of them are still present at this stage
(Figure 2.27b). From local maxima, even superfluous ones, ellipsoids are associated.
As is, this will lead to an oversegmentation problem. This oversegmentation prob-
lem is tackled here by merging overlapping ellipsoids above a given intersection
volume ratio. Ellipsoids are associated to local maxima as follows: The ellipsoids
are initially set as unit spheres centred at the local maxima positions (Figure 2.27c).
They are then grown by an optimisation procedure described in Reference [39] (Fig-
ure 2.27d). This optimisation procedure iteratively grows ellipsoids inside associ-
ated polyhedra. At each iteration, the associated polyhedra are constructed from
their current associated ellipsoids and the surrounding obstacles (here, the voxels
corresponding to the cells boundaries in the considered CT image). Once the poly-
hedra are constructed, the ellipsoids are grown by one more increment. This process
is repeated until the relative volume variation of each ellipsoid drops below a pre-
scribed threshold. Figure 2.28 sketches in two dimensions how the algorithm works.
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(a) Original image to be
segmented (identification

of the rings).

(b) Oversegmented image
after watershed transfor-

mation.

(c) Segmented image after
pre-filtering and the water-

shed transformation.

FIGURE 2.26: Example of a 2–dimensional image oversegmentation
by the watershed transformation and its watershed transformation
after pre–filtering. (Images for P. Soille [155], Figure 9.9, sub-figures

a, c and f).

Once the ellipsoids are fully grown, overlapping volumes between pairs of inter-
secting ellipsoids are computed. If a given overlapping volume is bigger than a pre-
scribed percentage of both ellipsoids volumes, both ellipsoids are clustered together
(Figure 2.27e). Clustered ellipsoids are then merged inside a minimum volume cov-
ering ellipsoid (Figure 2.27f). These clustering and merging stages allow to tackle
the oversegmentation problem without using the expensive H–maxima transform.

(a) Schematic representing
cells by their walls (black

lines).

(b) Local maxima. Red stars:
local maxima discarded on the
basis of their associated Hes-
sians. Blue points: local max-

ima kept.

(c) Initial ellipsoids as unit
spheres centred at local max-

ima positions.

(d) Grown ellipsoids using al-
gorithm in Reference [39].

(e) Clustering of overlapping
ellipsoids.

(f) Merging of clustered ellip-
soids into a minimum volume
covering ellipsoid (dashed

blue curves).

FIGURE 2.27: Schematic representing the process of growing ellip-
soids and clustering and merging groups of overlapping ellipsoids.



64 Chapter 2. Image analysis

Step 5 (part 1) of the proposed image analysis procedure depicted in Figure 2.1b is
organized into two parts:

1. Growing of parent ellipsoids.

2. Clustering and merging of overlapping parent ellipsoids.

Part 1 is structured as follows:

Step 5 (part 1)

Algorithms for growing ellipsoids surrounded by obstacles (page 64)

Preliminary definitions (page 66)

Ellipsoid dilation (page 66)

Uniform shrinking stage (page 70)

Fast dilation stage (page 71)

Full dilation stage (page 74)

Generating the separating planes (page 76)

Removing redundant planes (page 77)

Computing the maximum volume ellipsoid (page 79)

Closest polyhedron point to an ellipsoid (page 79)

Discussion and results (page 80)

Step 5 (part 1): Algorithms for growing ellipsoids surrounded by obstacles.

This section describes more precisely how the algorithm of R. Deits et al. [39] oper-
ates for dilating ellipsoids. It should be noted that the algorithm of R. Deits et al. is
preceded by a “fast dilatation stage”. This stage also grows ellipsoids given some
surrounding obstacles. It is however far less optimal than the algorithm of R. Deits
et al. in the sense that it provides ellipsoids of lower volumes, but it is designed to
be fast. The aim of the “fast dilatation stage” is to initialise the algorithm of R. Deits
et al. with pre-grown ellipsoids and reduce the number of iterations necessary for it
to converge.
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FIGURE 2.28: A demonstration of the algorithm for growing ellipses
in a planar environment consisting of 20 uniformly randomly placed
convex obstacles and a square boundary. Each row above shows one
complete iteration of the algorithm: on the left, the hyperplanes are
generated, and their polyhedra intersection is computed. On the
right, the ellipse is inflated inside the polyhedra. After three iter-
ations, the ellipse has ceased to grow, and the algorithm has con-

verged. (Figure from [39]).
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Preliminary definitions. Ellipsoids inRn can be represented as follows:

Definition 2.5. An ellipsoid E in a n-dimensional affine Euclidean space can be rep-
resented as:

E =
{

x ∈ Rn | (x− c)t M(x− c) ≤ 1
}

=
{

x ∈ Rn | (x− c)tGGt(x− c) ≤ 1
}

=
{

x ∈ Rn | x = c + G−ty, ‖y‖ ≤ 1
}

= {x ∈ Rn | x = c + Ey, ‖y‖ ≤ 1}
Where c ∈ Rn is the centre of the ellipsoid and M ∈ Rn×n, M = GtG is a sym-

metric definite positive matrix (see Reference [133] for more details).

G ∈ Rn×n is the lower Cholesky decomposition of M.

Often, M is called the shape matrix of the ellipsoid E and E = G−t is referred as
the scaling matrix of the ellipsoid E .

Definition 2.6. Given definition 2.5, the surface ∂E of an ellipsoid E in an n-dimensional
affine Euclidean space can be represented as:

∂E =
{

x ∈ Rn | (x− c)tGGt(x− c) = 1
}

Definition 2.7. Given definition 2.5, the interior intE of an ellipsoid E in an n-dimensional
affine Euclidean space can be represented as:

intE =
{

x ∈ Rn | (x− c)tGGt(x− c) < 1
}

Definition 2.8. Given definition 2.5, the uniform scaling of factor α of an ellipsoid E is
an ellipsoid Eα that can be represented as:

Eα =
{

x ∈ Rn | x = c + G−ty, ‖y‖ ≤ α
}

Where α ∈ R+\{0} is the scaling factor.

If α < 1, the uniform scaling will be referred as a uniform shrink.
If α > 1, the uniform scaling will be referred as a uniform dilation.

Ellipsoid dilation. The aim of ellipsoid dilation is, given an initial ellipsoid E0

located inside a given cell, to fit the ellipsoid to the cell. More precisely, the aim is to
find the maximum volume ellipsoid inside a given cell where the wall’s pixels are
seen as obstacles for the ellipsoid (see Figure 2.29). Dilated ellipsoids will model the
cell shapes and anisotropies.

The dilation of an initial ellipsoid E0 is performed in a two-fold fashion. Firstly,
a fast dilation, possibly preceded by a uniform shrink, is performed. Secondly, a full
dilation computes the final, fitted, ellipsoid E ∗. The initial ellipsoid E0 is a sphere
centred at the position of its associated maximum with radius value of the value
of the distance transform at that maximum. Algorithm 13 describes the whole pro-
cess. Note that algorithm 13 calls other algorithms which will be described in details
hereafter.
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Algorithm 13 Given an initial ellipsoid E0 and an image I, iteratively fits the ellip-
soid to its corresponding cell.

Require: Discrete digitalised image I of domain DI .
Require: Pixel value p ∈ Im(I) figuring the value associated to the cell walls.
Require: Ellipsoid E0 ⊂ Rn.
Require: Oarti f a set of artificial obstacles (may be empty).

1: procedure ELLIPSOIDEXPAND(I, p, E0, Oarti f )
2: k← 0.
3: B̃k ← AXISALIGNEDBOX(E k) ⊲ Bounding box, algo. 27.
4: f ← 2. ⊲ Box dilation factor.
5: Bk ← DILATEAXISALIGNEDBOX(B̃k, f ) ⊲ Dilate box by a factor f , algo. 14.
6: Bk ← Bk ∩ DI ⊲ Crop box by the image domain.

7: Scan for feature pixels in Bk: O ←
{

v ∈ Bk | I(v) = p
}

.
8: O ← O ∪Oarti f . ⊲ Add artificial obstacles (if any).
9: Get scaling matrix Ek and centre ck from ellipsoid E k.

10: (v∗, is_inside)←CLOSESTPIXELTOELLIPSOID(Ek, ck, O) ⊲ Algo. 15.

11: if is_inside then

12: E k ← SHRINKELLIPSOID(E k, v∗) ⊲ Algo. 16.
13: end if

14: Ẽ k ← FASTELLIPSOIDEXPAND(O, E k) ⊲ Algo. 17.
15: E k+1 ← FULLELLIPSOIDEXPAND(O, Ẽ k) ⊲ Algo. 18.

16: B̃k+1 ← AXISALIGNEDBOX(E k+1) ⊲ Algo. 27.
17: Bk+1 ← DILATEAXISALIGNEDBOX(B̃k+1, f ) ⊲ Algo. 14.
18: Bk+1 ← Bk+1 ∩ DI .

19: if Bk ⊂ Bk+1 or
∣
∣Vol

(
E k+1

)
−Vol

(
E k
)∣
∣ ≤ Vol

(
E k
)

. tol then

20: return E k+1

21: else

22: k← k + 1
23: Go back to line 7
24: end if

25: end procedure
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0

(a) Initial ellipsoid E0.

*

(b) Final ellipsoid E∗
after fitting.

FIGURE 2.29: 2–dimensional sketch of the fitting of an ellipsoid inside
a cell. Black squares represent pixel belonging to the cell walls.

Remark about algorithm 13. At lines 3 and 16 this algorithm uses axis–aligned
boxes that surround ellipsoids19. Ellipsoids can not grow outside theses boxes. The
aim of theses boxes is two-fold.

First, their role is to avoid that ellipsoids at located near the image boundaries
grow to an infinite volume because the lack of obstacles (absence of feature voxels
in the image on its boundaries). As illustrated in Figure 2.30, if an ellipsoid reaches
one or more side of a box, the said box is dilated by a factor two (lines 5 and 17 in
the algorithm) in order to allow the ellipsoid to continue its growth. However, the
box is always cropped to the size of the image (lines 6 and 18), effectively forbidding
any ellipsoid to grow outside the image.

Second, in case of streaming (see Section 3.10), if a surrounding box is dilated
outside the boundaries of the current considered image slice, and if that boundary is
not also a boundary of the whole image, the ITK filter implementing this algorithm
can request a bigger slice through the ITK pipeline in order to have more available
data for growing the ellipsoid associated to the corresponding box.

Algorithm 14 Dilates around its centre an axis-aligned box B by a dilation factor f .

Require: Axis-aligned box B ⊂ Rn.
Require: Dilation factor f ∈ R.

1: procedure DILATEAXISALIGNEDBOX(B, f )
2: for i = 1, . . . , n do

3: temp← 1
2

(
s+i (1 + f ) + s−i (1− f )

)
.

4: s−i ← 1
2

(
s−i (1 + f ) + s+i (1− f )

)
.

5: s+i ← temp.
6: end for

7: return B = [s−1 , s+1 ]× . . .× [s−n , s+n ].
8: end procedure

19The construction of such axis–aligned boxes from ellipsoids is described on page 94.
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(a) Initial ellipsoid within its
surrounding box with red
lines in the upper–left corner

of an image.

(b) Ellipsoid grown inside its
cell and surrounding box.

(c) Surrounding box is dilated
(Algorithm 14).

(d) Surrounding box is
cropped by the image bound-

aries.

(e) Ellipsoid is grown again in-
side its cell and dilated sur-

rounding box.

FIGURE 2.30: Schematic of the growth of an ellipsoid near the bound-
aries of an image. Image boundaries represented with black lines, el-
lipsoid represented with a blue line and its surrounding axis–aligned

box with red lines.

Algorithm 15 Given an ellipsoid E and a set of pixels O, computes the closest pixel
to the ellipsoid E .

Require: Ellipsoid E = E(E, c) ⊂ Rn.
Require: Set of point–wise obstacles O =

{
vj

}

j=1,...,m.
1: procedure CLOSESTPIXELTOELLIPSOID(E, c, O)
2: distances← ∅.
3: for vj ∈ O do

4: ṽj ← E−1(vj − c).
5: distances← distances ∪ ‖ṽj‖.
6: end for

7: min_distance← min(distances).
8: closest_point← v ∈ O associated to the minimal distance min_distance.
9: is_inside← (min_distance < 1) ? true : f alse.

10: return closest_point, is_inside.
11: end procedure
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Remark about algorithm 15. Among a set of pixels O, algorithm 15 simply finds
the closest one to a given ellipsoid E = E(E, c) and determines if this pixel lies inside
the ellipsoid. This computation is performed by using the transform:

TE : Rn → Rn; x 7→ TE (x) = E−1(x− c) (2.38)

This transform reduces the ellipsoid E to the unit sphere centred at the origin.
Algorithm 15 simply apply this transform to the pixels of the set O and look for the
closest one to the origin. If the Euclidean distance of this closest pixel to the origin is
less than one, then the considered pixel lies inside the ellipsoid.

Uniform shrinking stage. Before any dilation, it is already possible that an initial
ellipsoid E0 overlaps an obstacle (pixel belonging to a cell wall, see Figure 2.31).
Though improbable20, this occurrence can not be ruled-out.

Let’s be E = E(E, c) ⊂ Rn an ellipsoid represented by a centre c ∈ Rn and a
scaling matrix E ∈ Rn×n, and a point v ∈ E . Then, a uniformly shrunk ellipsoid
Eα = Eα(Ẽ, c) that does not overlap the point v is such that:

v = c + Ẽy = c + αEy. (2.39)

With ‖y‖ = 1.
The segment joining the centre c to the point v is intersecting the surface of Eα at:

y =
v− c

‖v− c‖ . (2.40)

Then, it is possible to find the shrinking factor α such that v will lie on the surface
of Eα:

v = c + αE v−c
‖v−c‖

⇔ (v− c) = αE v−c
‖v−c‖

⇔ E−1(v− c)‖v− c‖ = (v− c)α

⇒
(
E−t(v− c)

)t
(v− c)‖v− c‖ = ‖v− c‖2α

⇔ α =
(E−t(v−c))

t
(v−c)

‖v−c‖

(2.41)

In the computation of the shrinking factor α, it is needed to compute the denom-
inator ‖v− c‖ which gives the distance between the cell wall pixel v and the ellip-
soid’s centre c. This denominator is unlikely to be zero (in practice, this case never
occurs) because, by construction, the centre of an initial ellipsoid E0 is located as far
as possible from any cell wall pixel.

20Ellipsoid centres are located at the maxima of the distance transform of the considered image. I.e.,
ellipsoid centres are located as far as possible from cell walls.
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c.

(a) Initial ellipsoid E (black line).

c.

~

(b) Uniformly shrinked ellipsoid Ẽ (black
line).

FIGURE 2.31: Uniform shrinking of an ellipsoid E containing a pixel
(black square) so that the new ellipsoid Ẽ does not contain the pixel

anymore.

Algorithm 16 Given an ellipsoid E and a point v ∈ intE , computes an uniform
shrunk ellipsoid Eα such that v ∈ ∂Eα.

Require: Ellipsoid E = E(E, c) ⊂ Rn.
Require: Point v ∈ intE .

1: procedure SHRINKELLIPSOID(E , v)
2: if ‖v− c‖ ≤ ǫ then

3: return Error. ⊲ Division by (almost) zero. Unlikely to occurs.
4: else

5: α← (E−t(v−c))
t
(v−c)

‖v−c‖ .
6: Eα ← αE.
7: return Ellipsoid Eα = {xRn | x = c + Eαy, ‖y‖ ≤ 1}.
8: end if

9: end procedure

Fast dilation stage. The fast dilation stage consists only in lengthen the semi-axes
of the considered ellipsoid, till it is no more possible to increase the ellipsoid volume
without hitting the surrounding obstacles. This stage will not find the maximum
volume ellipsoid possible, but is faster than the full dilation stage and it will be used
as an initialisation for the latter.

In practice, during the first iterations the semi-axis lengths {ri}i,...,n are uniformly
increased by a factor α till the current ellipsoid E k hits a cell wall pixel v (i.e. v ∈
E k). In that case, the last iteration k is cancelled and a penalisation factor temp fi

for each semi-axis length ri, i = 1, . . . , n is computed. The penalisation factors are
simply given as (the absolute values of) the projections of the vector connecting the
ellipsoid’s centre c to the hit point v on each semi-axis ui, i = 1, . . . , n; where ui is
the ith eigenvector of the shape matrix M0 of the initial ellipsoid21 E0.

temp fi(v) =
∥
∥ri (v− c)tui

∥
∥ , i = 1, . . . , n (2.42)

The penalisation factor 2.42 is then weighted by the penalisation factors over all
the semi-axes ui, i = 1, . . . , n:

fi(v) =
temp fi(v)

∑
n
j=1 temp f j(v)

, i = 1, . . . , n (2.43)

21As the fast dilation stage only changes the radii of the semi-axes and not their orientations, their
corresponding eigenvectors are constant throughout the iterations.



72 Chapter 2. Image analysis

At iteration k, if the ellipsoid E k hits a cell wall pixel vm, while having already
hit (m− 1) cell wall pixels v1, . . . , vm−1 during the preceding iterations, its weighted
penalisation factor for all the m cell wall pixels is given as:

f m
i = f m−1

i +
temp fi(v

m)

∑
n
j=1 temp f j(vm)

, i = 1, . . . , n (2.44)

Where f m−1
i is defined recursively by equation 2.44 and f 1

i is defined by equa-
tion 2.43 with v = v1.

A non-recursive definition of f m
i is given by:

f m
i =

m

∑
k=1

temp fi(v
k)

∑
n
j=1 temp f j(vk)

, i = 1, . . . , n (2.45)

Finally, at iteration k, the semi-axis lengths {ri}1,...,n are updated as follow:

rk+1
i = rk

i + αm

(

1− f m
i

m

)

rk
i (2.46)

Where αm is a rate factor and
(

1− f m
i
m

)

is the final penalisation term.

By construction, f m
i
m is bounded by the interval [0, 1]. Each time a cell wall pixel

v is hit by the growing ellipsoid, its projections relatively to the ellipsoid’s centre
c on the semi-axes are computed. These projections are added to the weighted pe-

nalisation factors f m
i which increase towards one. Conversely, the term

(

1− f m
i
m

)

will decrease towards zero. The more the vector (v− c) is aligned with a semi-axis
uj, the more its corresponding radius rj will be penalised. Similarly, the more cell
wall pixels are hit, the more the radii {ri}1,...,n will be penalised. Figure 2.32 sketches
the effect of the penalisation terms over the semi-axis lengths {ri}1,...,n for a simple
2-dimensional case.

0

c.

v2

v1
u
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(a) Initial ellipsoid E0
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and r2u2.
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r
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(b) Semi-axes r1u1 and
r2u2. are uniformly in-
creased in length till
the ellipsoid hits the
first cell wall pixel v1.
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v2
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2
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2

(c) Only the semi–axis
r2u2 is lengthened, as
the semi–axis r1u1 is
entirely penalised by

v1.

FIGURE 2.32: 2–dimensional sketch example of a fast ellipsoid dila-
tion. Cell wall pixels are represented by black squares.
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Algorithm 17 Given a initial ellipsoid E0 and a list of cell wall pixels O, increases as
much as possible the semi–axes lengths of E0 such that E0 ∩O = ∅.

Require: Ellipsoid E0 ⊂ Rn.
Require: List of obstacles O =

{
vj

}

j=1,...,m.

1: procedure FASTELLIPSOIDEXPAND(O, E0)
2: m← 1, k← 0.
3: αm ← 0.5. ⊲ Rate parameter.
4: f m

i ← 0, i = 1, . . . , n. ⊲ Penalisation factors.
5: repeat

6: Get the semi–axis lengths {ri}i=1,...,n and eigenvectors {ui}i=1,...,n of E k.

7: rk+1
i ← rk

i + αm
(

1− f m
i
m

)

rk
i , i = 1, . . . , n ⊲ dilation step.

8: ∆rk = maxi=1,...,n

(

rk+1
i − rk

i

)

.

9: Set E k+1 as E k with radii rk+1
i , i = 1, . . . , n.

10: Extract scaling matrix Ek+1 and ellipsoid centre c from ellipsoid E k+1

11: (v∗, is_inside)← CLOSESTPIXELTOELLIPSOID(Ek+1, c, O) ⊲ Algo. 15.
12:

13: if is_inside then

14: αm+1 ← αm/2.
15: temp fi(v

∗) =
∥
∥rk

i (v
∗ − c)tui

∥
∥ , i = 1, . . . , n.

16: f m+1
i ← f m

i + temp fi(v
∗)

∑
n
j=1 temp f j(v∗)

, i = 1, . . . , n.

17: m← m + 1.
18: Continue. ⊲ Go back at the beginning of the loop.
19: end if

20: k← k + 1.
21: until ∆rk ≤ 1 ⊲ Stop when the radius increment is less or equal to one pixel.
22: return Ellipsoid E k.
23: end procedure
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Full dilation stage. This stage is the one which really fits the considered initial
ellipsoid E0 to its corresponding cell. Starting from the initial ellipsoid E0 and a
set of cell wall pixels O, it computes the maximum volume ellipsoid E ∗ such that
E ∗ ∩O = ∅. To this end, it uses the algorithm of R. Deits and R. Tedrake [39] which
iteratively dilates the ellipsoid inside a growing set of polyhedra Pk, k = 1, . . .. The
polyhedra Pk, k = 1, . . . are themselves constructed from the current considered
ellipsoid at a given iteration and from the set of cell wall pixels O.

Algorithm 18 Given a initial ellipsoid E0 and a list of cell wall pixels O, finds the
maximum volume ellipsoid E ∗ such that E ∗ ∩O = ∅.

Require: Ellipsoid E0 ⊂ Rn.
Require: List of obstacles O =

{
vj

}

j=1,...,m.

1: procedure FULLELLIPSOIDEXPAND(O, E0)
2: Extract scaling matrix E0 and ellipsoid centre c from ellipsoid E0

3: return DEITSMAXVOLELLIPSOID(E0, c, O) ⊲ Algo. 21.
4: end procedure

Ellipsoid dilations inside a given cell is performed thanks to the algorithm of
R. Deits and R. Tedrake [39]. This algorithm was originally designed for determin-
ing large, obstacle-free, convex (ellipsoidal) regions where a bipedal robot can safely
step and move. As pointed by R. Deits and R. Tedrake themselves, it has been found
that this algorithm could be used for a totally different context: namely here deter-
mining a maximum volume ellipsoid located inside a given cell.

Here, the list of obstacles O is simply a list of feature pixels {vk}1,...,K (i.e., pixels
identified as cell struts/walls) lying in a given neighbourhood V of an initial ellip-
soid E0.

The algorithm of R. Deits and R. Tedrake first consists in generating separating
planes between the obstacles and the initial ellipsoid E0. Then, “redundant” separat-
ing planes are discarded. The remaining planes define a polyhedron P1 containing
the initial ellipsoid E0. From this initial ellipsoid E0, a maximum volume inscribed
ellipsoid E1 ⊂ P1 is computed. Given this new ellipsoid E1, a new set of separat-
ing planes is generated from it. Then redundant separating planes are discarded
from this set and a new polyhedron P2 is determined from the remaining separating
planes. From E1, a new maximum volume inscribed ellipsoid E2 ⊂ P2 is computed.
This process is repeated until the relative volume difference between two consecu-
tive ellipsoids E i and E i+1 is below a given threshold. Figure 2.33 gives a sketch of
the algorithm of R. Deits and R. Tedrake in two dimensions.

The main advantage of the algorithm of R. Deits and R. Tedrake lies in the fact
that redundant planes are removed. Indeed, the problem of computing a maxi-
mum volume ellipsoid inscribed in a given polyhedron P defined by planes is a
constrained convex optimisation problem, where each plane corresponds to a con-
straint. Complexity bounds for the optimisation algorithms solving this kind of op-
timisation problems are mainly driven by the number of constraints. Typically, the
complexity bounds with respect to the number of constraints m for these algorithm
are of the order O

(
m3.5 ln

(
m
e

))
, where e ∈]0, 1[ is a constant [189]. Therefore, the

less constraints (a.k.a. the less separating planes) the better.
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FIGURE 2.33: Sketch of the algorithm of R. Deits and R. Tedrake ap-
plied to a two–dimensional image of a cell. Pixels representing the
cell walls are shown as black squares, separating planes and polyhe-

dra as black lines.

As cell walls may be constituted by a large number of pixels, each representing
one obstacle and each associated to a separating plane, the number of constraints
may rapidly become overwhelming for the considered optimisation algorithms. But,
since most of the separating planes in the algorithm of R. Deits and R. Tedrake are
redundant, this dramatically improves the efficiency of the stage where maximum
volumes inscribed ellipsoids are computed.

Given an initial ellipsoid E0 and a list of convex obstacles
{

ζ j

}

j=1,...,K, the algo-
rithm of R. Deits and R. Tedrake finds a polyhedron P∗ whose boundaries are touch-
ing the obstacles and a maximum volume inscribed ellipsoid E ∗ ⊂ P∗.
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Generating the separating planes. Given an ellipsoid E and a convex obstacle ζ j,
the aim is to find a separating plane Hj which touches the obstacle ζ j and separates
the ellipsoid E from the obstacle.

The plane Hj can be represented as:

Hj = Hj(n̂j, bj) =
{

x ∈ Rn | n̂t
jx− bj = 0

}

(2.47)

Where n̂j ∈ Rn is the normal vector and bj ∈ R a shift term.

The ellipsoid E = E(E, c) can be represented as:

E(E, c) =
{

x ∈ Rn | (x− c)tE−tE−1(x− c) ≤ 1
}

(2.48)

Where E = G−t ∈ Rn×n is the scaling matrix and c ∈ Rn its centre.

The algorithm of R. Deits and R. Tedrake aims to solve the following optimisation
problem:

maximiseE,c,{nj,bj}j=1,...,K
log det E

s.t. nt
jvk ≥ bj ∀vk ∈ ζ j, j = 1, . . . , K

sup‖y‖≤1 nt
i(c + E)y ≤ bi, ∀i = 1, . . . , K

(2.49)

Given the closest point x∗ ∈ ζ j to E(E, c), R. Deits and R. Tedrake take the normal
vector n̂j of the separating plane Hj as the gradient vector of the ellipsoid’s barrier
function at x∗:

nj = ∇x

[
(x− c)tE−tE−1(x− c)

]

x=x∗
= 2E−tE−1(x∗ − c)

(2.50)

n̂j =
nj

‖nj‖
(2.51)

The closest point x∗ ∈ ζ j is found by solving an optimisation problem, using the
algorithm of Mattingley et al. [110]. See Appendix D for more details. Note that if the
considered obstacle ζ j is reduced to a point, there is no need to solve an optimisation
problem.

Finally, the separating plane Hj is imposed to pass through x∗:

bj = n̂t
jx
∗ (2.52)

Algorithm 19 describes the procedure.
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Algorithm 19 Compute a separating plane Hj = Hj(n̂j, bj) between an ellipsoid E
and a convex polyhedral obstacle ζ j. R. Deits and R. Tedrake ([39]).

Require: Ellipsoid E(E, c) ⊂ Rn.
Require: Convex polyhedral obstacle ζ j ⊂ Rn.

1: procedure DEITSTANGENTPLANE(E, c, ζ j)
2: if ζ j not a point then

3: Find the closest point x∗ ∈ ζ j to E : x∗ ← CVX(E, c, ζ j). ⊲ Algorithm 41.
4: else

5: x∗ ← ζ j.
6: end if

7: nj ← 2E−tE−1(x∗ − c).
8: n̂j ← nj

‖nj‖ .

9: bj ← n̂t
jx
∗.

10: return n̂j, bj. ⊲ Quantities defining the plane Hj.
11: end procedure

Removing redundant planes. As already stated, iterating over all the obstacles
will generate a large number of separating planes. For already mentioned algorith-
mic efficiency reasons, it is preferable to keep the number of separating planes as
small as possible. To this aim, redundant planes are removed.

Given an obstacle ζ j, it is possible to compute its corresponding separating plane
Hj = Hj(n̂j, bj) relatively to a given ellipsoid E . If, for another obstacle ζk, k 6= j, it
holds:

n̂t
jy− bj ≥ 0, ∀y ∈ ζk (2.53)

Then, the computation of the separating plane corresponding to ζk can be skipped,
as the obstacle ζk is already separated from ellipsoid E by the separating plane Hj.
In that case, the separating plane Hk associated to the obstacle ζk is called redundant.

In practice, as the considered obstacles are convex polyhedra, equation 2.53 need
only to be checked on the vertices of ζk. Algorithm 20 describes the procedure for
computing the non-redundant separating planes.

Remark about algorithm 20. This algorithm computes the separating planes be-
tween obstacles and an ellipsoid E . The next step, involves computing a maximum
volume ellipsoid belonging to the intersection of the half-spaces

{
HSj

}

j=1,...,m de-
fined by the separating planes. Namely:

P = ∩m
j=1HSj = {x ∈ Rn | Ax ≤ b} (2.54)

Where the matrix A ∈ Rm×m and the vector b ∈ Rm are computed by algo-
rithm 20; while the half–spaces

{
HSj

}

j=1,...,m are defined by:

HSj =
{

x ∈ Rn | n̂t
jx ≤ bj

}

, j = 1, . . . , m (2.55)
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Algorithm 20 Compute the non-redundant separating planes between a given el-
lipsoid E and a list of convex polyhedral obstacles O =

{
ζ j

}

j=1,...,K. R. Deits and
R. Tedrake ([39]).

Require: Ellipsoid E(E, c) ⊂ Rn.
Require: List of convex polyhedral obstacles O.

1: procedure DEITSSEPARATINGPLANES(E, c, O)
2: Oexcluded ← ∅.
3: Oremaining ← O.
4: i← 1.
5: while Oremaining 6= ∅ do

6: ζ∗ ← closest obstacle in O to ellipsoid E .
7: (n̂i, bi)← DEITSTANGENTPLANE(E, c, ζ∗) ⊲ Algorithm 19.
8: for ζk ∈ Oremaining do

9: if n̂t
i xj − bi ≥ 0, ∀xj ∈ ζk then

10: Oremaining ← Oremaining\ζk.
11: Oexcluded ← Oexcluded ∪ ζk.
12: end if

13: end for

14: i← i + 1.
15: end while

16: A←






n̂t
1

n̂t
2
...




 , b←






b1
b2
...




. ⊲ Non-redundant plane parameters associated

to obstacles O\Oexcluded.
17: return A, b.
18: end procedure
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However, there is no guarantee that the polyhedron P is bounded22. If the polyhe-
dron P is unbounded, so can also be the corresponding maximum volume ellipsoid
and the algorithm of R. Deits et al. will never converge. In order to avoid this
unbounded case, a bounding box is added to the constraints computed by the algo-
rithm 20. In practice, this bounding box is, at most, of the size of the largest possible
region of the considered image.

Computing the maximum volume ellipsoid Given the algorithm 20, computing
a bounded polyhedron given a set of polyhedral convex obstacles O = {ζ j}j=1,...,K
and an initial ellipsoid E0, it is now possible possible to iteratively find a maximum
volume ellipsoid E ∗ which is constrained by the set of obstaclesO. Algorithm 21 de-
scribes how such a maximum volume ellipsoid E ∗ is computed. Figure 2.33 sketches
the algorithm for a 2-dimensional case.

Algorithm 21 Given a set of polyhedral convex obstacles O =
{

ζ j

}

j=1,...,K and an

initial ellipsoid E0, computes iteratively a maximum volume ellipsoid constrained
by the obstacles. R. Deits and R. Tedrake ([39]).

Require: Ellipsoid E0(E0, c0) ⊂ Rn.
Require: Set of convex polyhedral obstacles O.

1: procedure DEITSMAXVOLELLIPSOID(E0, c0, O)
2: i← 0.
3: repeat

4: (Ai+1, bi+1)← DEITSSEPARATINGPLANES(Ei, ci, O) ⊲ Compute
polyhedron Pi, algorithm 20.

5: (Ei+1, ci+1)← MAXVOLELLIPSOIDINPOLYHEDRON(Ai+1, bi+1, ci) ⊲

Compute the maximum volume ellipsoid inside polyhedron Pi+1, al-
gorithm 42.

6: i← i + 1.
7: until (detEi − detEi−1)/detEi−1 < tol
8: return Ai, bi, Ei, ci.
9: end procedure

Closest polyhedron point to an ellipsoid. The algorithm of R. Deits and R. Tedrake
requires to find the closest point belonging to a convex polyhedron to a given ellip-
soid. The present section describes how such a point can be found.

Let’s ζ j be a convex obstacle with vertices
{

vj,i
}

i=1,...,m such that ζ j is the convex
hull of

{
vj,i
}

i=1,...,m. Let’s also E ⊂ Rn be an ellipsoid of centre c ∈ Rn and non–
singular scaling matrix E = G−t ∈ Rn×n represented by:

E(E, c) = {x ∈ Rn | x = c + Ey, ‖y‖ ≤ 1} (2.56)

22For instance, this case may occur if there is not enough separating planes, or if all the obstacle are
located to “one side” of the ellipsoid.
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In order to find the closest point x∗ ∈ ζ j to the ellipsoid E , it is convenient to
construct the transform that maps the ellipsoid E to the unit ball centred at the origin:

Ẽ = {x̃ ∈ Rn | ‖x̃‖ ≤ 1} (2.57)

In that case, the transformed obstacle is:

ζ̃ j = ConvexHull
{

ṽj,1, . . . , ṽj,m
}

(2.58)

ṽj,k = E−1(vj,k − c), k = 1, . . . , m (2.59)

Indeed, from the definition 2.56 of an ellipsoid, one can see that:

x = c + Ey, ‖y‖ ≤ 1 (2.60)

⇔ y = E−1(x− c) (2.61)

Thus, the transform:

TE : Rn → Rn, x 7→ TE (x) = E−1(x− c) (2.62)

maps an ellipsoid E to a unit ball centred at the origin.

The closest point x̃∗ of ζ̃ j to the unit ball Ẽ is then simply the closest point of ζ̃ j to
the origin. Mathematically, this problem can be expressed as [39]:







arg minx̃∈Rn,w∈Rm ‖x̃‖2 = x̃tx̃

s.t.
∑

m
k=1 ṽj,kwk = x̃

∑
m
k=1 wk = 1

w � 0

(2.63)

An algorithm for solving the problem 2.63 is given in appendix D, while the
mean of computing the maximum volume ellipsoid inside a polyhedron is given in
appendix E.

Discussion

It should be emphasised that the idea of modelling the geometry of a foam as the
result of a growth process, as presented here, is not new. The Voronoï and La-
guerre tessellations can be defined as the result of a growth process of spheres [136].
For growth of spheres, the idea has been explicitly exploited by, e.g., K. Mader et
al. ([103]). However, their approach only deals with spheres, ignoring thus the pos-
sible effects of anisotropy of foams on their mechanical behaviours. Ellipsoids are
indeed able to capture cell anisotropies, which is considered as a necessity for as-
sessing the mechanical behaviour of foams [56, 164, 30, 6]. Although sets of growing
spheres are able to capture some foam anisotropies [103], it is believed that ellip-
soids lead to better results by capturing more precisely local cell features [160, 150,
151]. Growth of ellipsoids has been proposed in Reference [8], and, in the context of
polycrystalline microstructures reconstruction in Reference [160].
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More recently, algorithms implementing ellipsoid growths for fitting cell have
been presented by A. Alpers et al. [4] and improved by O. Sedivy et al. [150, 151].
These algorithms try to optimise an objective function encoding the positions and
shape factors of all ellipsoids. The objective function is designed so to try to max-
imise ellipsoids volumes while avoiding voxels representing boundaries between
crystal grains. Obviously, the optimisation problem becomes rapidly high-dimensional
as the number of parameters to consider grows linearly with the number of ellip-
soids. This issue has been tackled in Reference [151] with an heuristic approach.
In this approach, only a subset of the parameters are optimised at each step, using
simulated annealing.

Though faster, the algorithm proposed in Reference [151] still requires on the order
of several million of iterations to converge. On the contrary, the optimisation pro-
cedure used in this thesis for the Ellipsoidal Model relies on the algorithm proposed
by R. Deits et al. [39]. This algorithm maximises the volumes of the considered
ellipsoids independently. As a consequence, it breaks down the high-dimensional
optimisation problem of A. Alpers in a set of independent low-dimensional optimi-
sation problems. Indeed, since each ellipsoid volume is independently maximised,
only nine parameters (three for the position of the centre and six for the shape fac-
tors) need to be optimised. Therefore, the number of ellipsoids (and thus cells) that
can be processed can be much higher than with the approaches of A. Alpers. and O.
Sedivy. Moreover, the algorithm presented by R. Deits can be trivially parallelised.
A drawback, though, of the approach of R. Deits. is that there is no guarantee that
ellipsoids will not overlap. However, this drawback is not a concern here as subse-
quent steps do not depends on this peculiarity. Therefore, the approach proposed by
R. Deits for growing ellipsoids has been chosen as it can process a large number of
ellipsoids while being less computationally expensive than the approach proposed
by O. Sedivy.

Results

Figure 2.34 illustrates the obtained ellipsoids for a 3D CT-scan image of size 670×
670 × 670 voxels obtained from a closed polypropylene foam provided by Erwan
Plougonven (Department of Chemical Engineering / PEPs - Products, Environment,
and Processes at University of Liège). It can been seen that indeed some cells contain
several ellipsoids. This issue is tackled in the next section.
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FIGURE 2.34: Red: walls of a 670× 670× 670 3D CT–scan image of
a polypropylene foam provided by E. Plougonven, Department of
Chemical Engineering at University of Liège. Gray: computed el-
lipsoids using the algorithm of R. Deits et al. [39]. It can be noticed

that some cells contain several ellipsoids.

2.3.10 Step 5 (part 2): Clustering and merging of ellipsoids

For the purpose of identifying unequivocally each cell by one ellipsoid, it is needed
to determine superfluous ellipsoids associated to superfluous local maxima. In order
to merge them correctly, it is required to cluster together ellipsoids belonging to a
same cell. Once clusters of ellipsoids identified, it is then possible to merge ellipsoids
belonging to a same cluster and identify cells.

The criterion for deciding if two ellipsoids belong to a same cluster (and thus a
same cell) is as follows: if two ellipsoids “significanly” overlap, then they are clus-
tered together. Otherwise, they are identify as belonging to two different clusters.
The idea behind is that, since ellipsoids were growth inside cells, ellipsoids belong-
ing to a same cell (even from different starting local maxima) are more likely to
overlap than ellipsoids grown in two different cells. Thus the criterion for associ-
ated two ellipsoids to the same cluster is based on their relative intersection volume.
More precisely, two ellipsoids E1 and E2 potentially associated to the same cell, are
clustered together if their associated volume satisfy one of the relations 2.64.

Vol (E1 ∩ E2)

Vol (E1)
≥ τ or

Vol (E1 ∩ E2)

Vol (E2)
≥ τ (2.64)

Where τ ∈ [0, 1] is the relative intersection volume threshold. When τ is set close
to zero, any slightly intersecting pair of ellipsoids will be clustered together; while
for τ set close to one, only pair of almost overlapping ellipsoids will be clustered
together. In general, a suitable guess value for this parameter will be τ ≈ 0.5.
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Step 5 (part 2) of the proposed image analysis procedure depicted in Figure 2.1b is
organized in two main branches:

1. Clustering of ellipsoids identified as belonging to a common cell thanks to
criterion 2.64.

2. Merging of ellipsoids belonging to a same cluster.

Step 5 (part 2)

Clustering with GDBSCAN (page 83)

The R*-tree data structure (page 85)

Overlapping criterion (page 87)

Cheap tests (page 89)

Test 1: oriented enclosing boxes (page 89)

Test 2: characteristic equation (page 91)

Test 3: enclosed spheres (page 93)

Intersection volume (page 94)

Axis–aligned box (page 94)

The VEGAS algorithm (page 96)

Merging with MVCEE (page 97)

Link between volume and shape matrix (page 100)

Covering criterion (page 100)

Algorithm MVCEE (page 103)

Initialisation of the algorithm MVCEE (page 104)

Usefulness of clustering and merging (page 105)

Discussion (page 106)

The GDBSCAN algorithm

The Generalised Density Based SCAN algorithm (GDBSCAN) of J. Sander et al. [147]
is a generalisation of the Density Based SCAN algorithm (DBSCAN) of M. Ester et
al. [45]. Its aim is to cluster a set of spatially distributed objects (here ellipsoids). The
final purpose is to obtain a one-to-one correspondence between ellipsoids and cells
by merging together ellipsoids identified as belonging to the same cluster.

Naturally, the GDBSCAN algorithm is not the only existing algorithm for per-
forming clustering. As a matter of fact, there exists a huge variety of algorithms
for performing this task. Two main classes of clustering algorithm can be distin-
guished [75]: partitioning and hierarchical algorithms. Partitioning algorithms, as
the well-known KNN (K-Nearest Neighbours) algorithm [102], their weighted vari-
ants [11] and CLARANS (Clustering Large Application based on RANdomized Search
[98]), try to optimise an objective function from an initial partition by determining
cluster centres.

Hierarchical algorithms, such as the GDBSCAN algorithm of J. Sander et al. [147]
or the BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) algo-
rithm of T. Zhang et al. [188], try to create a hierarchical tree of the objects to cluster
by grouping them for a given criterion. Then, each level of the constructed tree gives
a clustering of the objects.
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Among all the above algorithms (and many others), the GDBSCAN algorithm has
been chosen here for the following reasons23:

• It deals with spatially extended objects.

• It is versatile on its neighbourhood criterion, accepting as well spatial criteria
(e.g. separation distance), as binary predicates (e.g. overlapping versus non-
overlapping), and non-spatial criteria (e.g. colour).

• It has been designed to cluster “dense” (in some sense) sets of objects. This
behaviour is desired, as ellipsoids covering the same cell will appear “denser”
than their surrounding.

• Finally, it take into account “noise”24.

On input, the GDBSCAN algorithm takes the grown ellipsoids obtained from pre-
vious section. In order to perform clustering, the GDBSCAN algorithm needs a neigh-
bourhood criterion. The chosen neighbourhood criterion is here given by an over-
lapping threshold as specified by condition 2.64. Eventually, the data storage and
query of the ellipsoids is provided by a R*-tree data structure [17].

At first sight, it may sound odd to use an algorithm such as GDBSCAN along a
R*-tree data structure for performing clustering. Indeed, a R*-tree data structure
already performs some kind of clustering by hierarchically sorting objects in a tree
following an overlapping of enclosing boxes criterion (see Appendix G for details).
Therefore one may ask what is the point of using an algorithm such as GDBSCAN. A
first difference is that the neighbourhood criterion of a R*-tree data structure is fixed:
ellipsoids (or any other objects) are clustered following the distances separating their
enclosing boxes. The GDBSCAN algorithm may accept other clustering criteria. A
second difference is that a R*-tree data structure will classify all the objects it gets as
input, while the GDSCAN algorithm may exclude some of them (the “noisy” ones).
In this respect the GDBSCAN algorithm is much more versatile and tunable than a
simple R*-tree data structure and is able to achieve better classification results.

The GDBSCAN algorithm mechanism is as follows: it chooses the first unclassi-
fied object (i.e. an object not yet belonging to any cluster) and look at is neighbouring
objects25. Neighbours satisfying the overlapping criterion 2.64 are set into the same
cluster as the object. Then, neighbours are in their turn inspected to see if there is any
of their neighbours satisfying the criterion 2.64. This is repeated until no neighbours
to inspect remains. Then, the next unclassified object is selected for constructing
the next cluster by inspecting its neighbours, until no unclassified object remains.
The interested reader can find a more detailed description of the algorithm in Ap-
pendix F.

23Disclaimer: it does not mean that other algorithms than GDBSCAN are not suitable for the per-
forming clustering of ellipsoids with noise, or even that the GDBSCAN algorithm is the best at this
task. It just means that the GDBSCAN algorithm does the job well enough.

24The concept of noise in the context of clustering is given in Appendix F.
25As mentioned, neighbour querying is efficiently performed by sorting the objects in a R*-tree data

structure.
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The R*-tree data structure The R*-tree data structure used by the GDBSCAN algo-
rithm26 is a generalisation of the R–tree data structure of A. Guttman [59]. It is used in
order to efficiently perform neighbour queries needed by the GDBSCAN algorithm.
The following describes the R*-tree data structure as presented by N. Beckmann et al.
in their article [17]. Figure 2.35 shows a schematic of how a tree data structure can
be constructed from axis–aligned boxes containing objects (either ellipsoids, either
other axis-aligned boxes).

The R*-tree algorithm of N. Beckmann et al. [17] builds a tree of axis-aligned boxes
which combines optimisation (minimisation) of volume, overlap and margin. The
R*-tree algorithm generalises the R-tree algorithm of A. Guttman [59] in the sense
that the latter only optimises the volume of the axis-aligned boxes in the tree.

“Child nodes” axis-aligned boxes are constructed by the algorithm 27 and con-
tain each one ellipsoid E . Other “non–child nodes” axis-aligned boxes contain other
axis-aligned boxes.

The R*-tree algorithm tries to minimise the following quantities:

1. Volume of a “non–child” axis-aligned box: allows to decide which paths in the tree
should be traversed at a higher node.

2. Overlap between axis-aligned boxes: allows to decrease the number of paths to be
traverses.

3. Margin of a “non–child” axis-aligned box. The margin of an axis-aligned box is the
sum of the length of its edges. For a given volume, the optimal axis-aligned
box is a cube. Minimising the margin will improves the structure of the tree by
generating parent nodes with smaller volumes.

Moreover, as for R-trees, the shape of a R*-tree is driven by two other parameters
M and m, with 2 ≤ m ≤ M/2, and where:

1. M is the maximum number of child nodes that a node can have, except the
root.

2. m is the minimum number of child nodes that a node can have, except the root.

Here, the following values have been chosen: m = 2 and M = 8. It has been
indeed observed that, for each cell in average, there is between 1 and 10 associated
ellipsoids.

Finally, a R*-tree satisfies the following properties [17]:

• The root has at least two children unless it is a child.

• Every non-child node has between m and M children unless it is the root.

• Every leaf node contains between m and M entries unless it is the root.

• All leaves appear on the same level.

26Note: other data structures can also be used by the GDBSCAN algorithm.
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FIGURE 2.35: Schematic of a tree data-structure obtained from some
ellipses in two dimensions.

The most important two sub-algorithms of the R*-tree algorithm when inserting a
new entry are:

1. ChooseSubTree: find on every level the best subtree to accomodate the new en-
try.

2. Split: if ChooseSubTree ends in a node filled with the maximum M of allowed
children, Split distributes M + 1 child nodes over two new parent nodes.

The Split algorithm 48 computes volume-values, overlap-values and margin-values
over M− 2m + 2 distributions of the M + 1 entries. For k = 1, . . . , M− 2m + 2, the
first group contains the first (m− 1) + k entries and the second group the remaining
entries. The associated values to the kth distribution is then computed as follow:

• volume-value = volume[bb(first group)] + volume[bb(second group)].

• overlap-value = volume[bb(first group) ∩ bb(second group)].

• margin-value = margin[bb(first group)] + margin[bb(second group)].

Where bb denotes the bounding box of a set of boxes.

Detailed algorithms for handling a R*-tree data structure can be found in Ap-
pendix G.
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Computation of the overlapping criterion (2.64)

In order to evaluate the overlapping criterion 2.64, the GDBSCAN algorithms needs
to evaluate two quantities. Namely the volume of an ellipsoid Vol(Ei) and the vol-
ume of the intersection of two ellipsoids Vol

(
Ei ∩ Ej

)
. While the volume of an ellip-

soid can be computed analytically27, the intersection volume of two ellipsoids can
only be evaluated numerically.

As computing the intersection volume of two ellipsoids is rather expensive, the al-
gorithm evaluating the criterion 2.64 (referenced hereafter as algorithm 22) first per-
forms three “cheap” tests consisting in testing if the two ellipsoids are intersecting,
and, if applicable, computing some upper and lower bounds for the criterion 2.64. If
none of these “cheap” tests are passed, then a more expensive volume intersection
algorithm is used. It should be noted that using the intersection volume between
objects as (partial) criterion for determining whether they belong to the same cell or
not is not a new idea. For instance, this criterion has been exploited by K. Mader et
al [103], for removing what they call “artificial seeds” (roughly corresponding to our
ellipsoids in this thesis).

The first “cheap” test is testing if the two ellipsoids are colliding or not. If not,
there is no intersection volume and the criterion 2.64 is not satisfied (except if τ =
0). The collision test is based on Reference [180] which is based of the signs of the
roots of a “characteristic equation” constructed in homogeneous coordinates from
the centres and shape matrices of the two considered ellipsoids. Details on how this
“characteristic equation” is computed are given hereafter.

The second “cheap” test consists in computing the volume intersection VolBoxInter
of the boxes enclosing the two considered ellipsoids E1 and E2. As the volume
VolBoxInter is bigger or equal to the intersection volume of the ellipsoids, there
is no chance for the inequalities 2.64 to be satisfied if both ratios:

Ri = VolBoxInter/Vol(Ei), i = 1, 2 (2.65)

are smaller than τ: Ri < τ, i = 1, 2.

The third “cheap” test resides in calculating the intersection volume of two en-
closed spheres S1 ⊂ E1 and S2 ⊂ E2. As the intersection volume Vol (S1 ∩ S2) of the
spheres S1 and S2 is smaller than the intersection volume Vol (E1 ∩ E2) of ellipsoids
E1 and E2, it is possible to infer a sufficient condition to satisfy criterion 2.64.

Finally, if all “cheap” tests fail, an expensive test is performed. The expensive
test directly evaluates the intersection volume of two ellipsoids using a Monte-Carlo
method. Algorithm 22 shows how these tests are used to determine if criterion 2.64
is satisfied.

27Vol (Ei) = 4π/3 abc, where a, b and c are the lengths of the semi-axes of the ellipsoid. These
lengths can be computed from the eigenvalues of the shape matrix of the ellipsoid.
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Algorithm 22 Predicate NPred for determining if two objects (ellipsoids) belong to
the same cluster.
Require: E1 first ellipsoid belonging to the current cluster.
Require: E2 candidate ellipsoid for belonging to the same cluster as E1.
Require: τ overlapping volume ratio criterion as given in condition 2.64.
Require: Mmax maximum number of integration points for estimating the overlap-

ping volume.
Require: tol convergence tolerance for algorithm 28.

1: procedure NPRED(E1, E2, τ, Mmax, tol)
2: ⊲ Cheap test 1.
3: if Not COLLISIONTEST(E1, E2) then ⊲ Algorithm 25.
4: return false.
5: end if

6: ⊲ Cheap test 2.
7: B1 = AXISALIGNEDBOX(E1) ⊲ Algorithm 27.
8: B2 = AXISALIGNEDBOX(E2) ⊲ Algorithm 27.
9: VolBoxInter = Vol (B1 ∩ B2)

10: R1 = VolBoxInter/Vol(E1)
11: R2 = VolBoxInter/Vol(E2) ⊲ Upper bounds for inequalities 2.64.
12: if R1 < τ and R2 < τ then return false
13: end if

14: ⊲ Cheap test 3.
15: Extract r1, r2 the smallest semi–axes lengths of, respectively, E1 and E2.
16: Extract c1, c2 the centres of, respectively, E1 and E2.
17: Construct the spheres S1, S2 of respective centres c1 and c2 and radii r1 and

r2.
18: d = ‖c1 − c2‖2
19: if (r1 + r2) > d then ⊲ Spheres S1, S2 are intersecting.
20: if r1 ≥ d + r2 or r2 ≥ d + r1 then ⊲ One sphere contains the other.
21: return true
22: else

23: VolSphereInter = π
12d (r1 + r2 − d)2

(

d2 + 2d (r1 + r2)− 3 (r1− r2)2
)

24: R1 = VolSphereInter/Vol(E1)
25: R2 = VolSphereInter/Vol(E2) ⊲ Lower bounds for inequalities 2.64.
26: if R1 ≥ τ or R2 ≥ τ then return true
27: end if

28: end if

29: end if

30: ⊲ Expensive test.
31: {R1, R2} = ELLIPSOIDOVERLAPPINGRATIOS(E1, E2, Mmax, tol) ⊲

Algorithm 28.
32: return R1 ≥ τ or R2 ≥ τ
33: end procedure
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First “cheap” tests: collision detection between two ellipsoids. Given two ellip-
soids E1 and E2 their collision detection is performed in two steps. A first test in-
volving enclosing boxes is achieved. This test is cheap from a computational point
of view but it may fail as it represents only a necessary condition. If the first test
fails, a second test, more computationally expensive, is performed. This test involves
computing the roots of a so called “characteristic equation”.

Test 1: oriented enclosing boxes. The two considered ellipsoids E1 and E2 are
enclosed in oriented boxes: OBi such that Ei ⊂ OBi, i = 1, 2. If the two boxes do not
intersect (OB1 ∩OB2 = ∅), then there is no possible collision between E1 and E2. If
the two boxes overlaps (OB1 ∩OB2 6= ∅), then the two ellipsoids E1 and E2 may or
may not collide and a second test is necessary.

An oriented enclosing box is computed using the semi-axes lengths ri; i = 1, . . . , n
and directions vi; i = 1, . . . , n of the considered ellipsoid. These semi-axis lengths
and vectors can be computed for the singular value decomposition (SVD) of the ma-
trix G used in definition 2.5. Indeed, the semi-axis lengths {ri}i=1,...,n and directions
{vi}i=1,...,n can be extracted from the shape matrix M of the considered ellipsoid
through eigenvalue decomposition:

M = UΣ2Ut (2.66)

Where:

• U ∈ Rn×n is an orthonormal matrix containing along its columns the semi-axis
directions {vi}i=1,...,n.

• Σ ∈ Rn×n is a diagonal matrix such that Σii = λi = 1/ri > 0; i = 1, . . . , n,
gives the semi-axis lengths.

As GGt = M and if G = UGΣGVt
G is the SVD of G, then:

GGt =
(
UGΣGVt

G

) (
UGΣGVt

G

)t

=
(
UGΣGVt

G

) (
VGΣGUt

G

)

= UGΣ2
GUt

G

(
VT

G VG = Id
)

= M
= UΣ2Ut

⇔ UG = U and ΣG = Σ (because the eigenvalues are all positives).

Therefore, the semi-axis directions can be obtained from the left singular vectors
of G and their corresponding lengths from the singular values of G.

Construction of an oriented box. Thanks to the directions vectors {vi}i=1,...,n
and lengths {ri}i=1,...,n, it is then possible to construct an oriented box enclosing the
considered ellipsoid E . Indeed, in the reference frame defined by point c and or-
thonormal vectors {vi}i=1,...,n, such a box is axis-aligned with the vectors {vi}i=1,...,n
and can be defined as OB(E) = [−r1, r1]× . . .× [−rn, rn] in the eigenspace of the as-
sociated ellipsoid (see Figure 2.36 for a 2D example). Such an oriented enclosing box
is constructed using the GeometricTools toolbox developed by P. J. Schneider and D
H. Eberly [131].
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FIGURE 2.36: Oriented enclosing box of an ellipse.

In the framework of the GeometricTools toolbox, oriented boxes in Rn are defined
by a centre C ∈ Rn, n right-handed orthonormal axes A1, . . . , An ∈ Rn, and three
corresponding extents a1, . . . , an > 0. Then, an oriented box inRn can be represented
as:

OB =

{

x ∈ Rn | C +
n

∑
i=1

yiAi; |yi| < |ai|, i = 1, . . . , n

}

(2.67)

Algorithm 23 Oriented enclosing box for ellipsoid

Require: Ellipsoid E =
{

x ∈ Rn | (x− c)tGGt(x− c) ≤ 1
}

1: procedure ENCLOSINGBOX(E )
2: Compute SVD of G = UGΣGVt

G.
3: Extract left singular vectors {v}i=1,...,n from the columns of UG.
4: Extract radii {ri = 1/λi}i=1,...,n from ΣG.
5: Define oriented box in the eigenspace as OB(E) = [−r1, r1]× . . .× [−rn, rn].
6: Alternatively, define oriented box by its centre C = c, axes

Ai = vi, i = 1, . . . , n, and extents ai = ri, i = 1, . . . , n.
7: end procedure

Separation of two oriented boxes inR3. In order to determine if two oriented
boxes intersect or not, the procedure detailed in the documentation of GeometricTools
toolbox [131] is applied, and is only given in Algorithm 24 for the sake of complete-
ness.



2.3. Proposed image analysis procedure 91

Algorithm 24 Oriented box separation test [131]

Require: Two oriented boxes OB1 and OB2 inR3 defined by their respective centres
C1 and C2, axes A1, A2, A3 and B1, B2, B3, and corresponding extents a1, a2, a3 >

0 and b1, b2, b3 > 0.
1: procedure ORIENTEDBOXSEPARATIONTEST(OB1, OB2)
2: D← C2 − C1
3: for L is one of Ai, Bi, (i = 1, 2, 3) or Ai ∧ Bj, (i, j = 1, 2, 3) do

4: R← |< L|D >|
5: R1 ← ∑

3
i=1 ai sgn (< L|Ai >) < L|Ai >

6: R2 ← ∑
3
i=1 bi sgn (< L|Bi >) < L|Bi >

7: if R > R1 + R2 then

8: return True. ⊲ Separation found. Boxes do not intersect.
9: end if

10: end for

11: return False. ⊲ Boxes are intersecting.
12: end procedure

13: Where:
14: ∧ : R3 ×R3 → R3, (A, B) 7→ A ∧ B is the cross product.

15: sgn : R → {−1, 0, 1}, x 7→ sgn(x) =







−1 if x < 0
0 if x = 0
1 elsewhere

16: < . . . | . . . >: R3 ×R3 → R, (A, B) 7→< A|B > is the Euclidean dot product.

Test 2: characteristic equation If the first test fails, to determine if the two el-
lipsoids do not collide, the following test is used. Before stating it, some definitions
and properties about homogeneous coordinates are needed.

Ellipsoid in homogeneous coordinates Proposition 2.1 allows to define an el-
lipsoid in homogeneous coordinates and links it to definition 2.5.

Proposition 2.1. Given the representation of an ellipsoid
E =

{
x ∈ Rn | (x− c)t M(x− c) ≤ 1

}
in the n-dimensional Euclidean affine space,

its representation in homogeneous coordinates is E =
{

xh | xt
h Ahxh ≤ 0

}
.

Where: Ah =

(
M −Mc

−ct M ct Mc− 1

)

and xh = (xt, 1)t.

Proof.
xt

h Ahxh ≤ 0

⇔
(
xt 1

)
(

M −Mc

−ct M ct Mc− 1

)(
x

1

)

≤ 0

⇔
(
xt M− ct M − xt Mc + ct Mc− 1

)
(

x

1

)

≤ 0

⇔ xt Mx− ct Mx− xt Mc + ct Mc− 1 ≤ 0
⇔ (x− c)t Mx− (x− c)t Mc ≤ 1
⇔ (x− c)t M (x− c) ≤ 1

Which is definition 2.5.
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It is therefore possible to define the representation of an ellipsoid in homogeneous
coordinates using definition 2.9.

Definition 2.9. The representation of a n-dimensional ellipsoid E in the homoge-
neous coordinates is:
E =

{
xh ∈ Rn+1 | xt

h Ahxh ≤ 0
}

Where xh = (x, w)t is written in homogeneous coordinates and Ah ∈ R(n+1)×(n+1)

is a symmetric matrix.

Definition 2.10. (From W. Wang et al. [180])
Given two ellipsoids with homogeneous representation E1 =

{
xh | xt

h Ahx ≤ 0
}

and
E2 =

{
xh | xt

hBhx ≤ 0
}

, their characteristic polynomial is defined as:

f (λ) = det(λAh + Bh),
and f (λ) = 0 is called the characteristic equation.

The following property is the base of the second test for testing if two ellipsoids
collide or not. Its complete proof can be found in [180].

Proposition 2.2. (From W. Wang et al. [180])
Let’s Ah and Bh be two matrices representing respectively two ellipsoids E1 and E2

in homogeneous coordinates. Then:

1. E1 and E2 are disjoint if and only if f (λ) = 0 has two distinct positive roots.

2. E1 and E2 touch each other externally if and only if f (λ) = 0 has a positive
double root.

The test involving the characteristic equation f (λ) = 0 is thus the following: The
homogeneous matrices Ah and Bh from ellipsoids E1 and E2 are computed. The
root of the characteristic equation f (λ) = 0 are then found as the eigenvalues of
the real eigenvalue problem −A−1

h Bhzh = λz28. Indeed, if Ah is non–singular (i.e.
ellipsoid E1 is non–degenerated), det(λAh + Bh) = 0 ⇔ det(Ah)det(A−1

h Bh + λI) =

0 ⇔ det(−A−1
h Bh − λI) = 029. Then, if two roots are positive and distinct, the

two ellipsoids do not collide. Otherwise they collide (possibly in only one point).
Algorithm 25 summarises all the steps used for determining if two ellipsoids collide
or not.

28The corresponding eigenvalues can be computed thanks to the routine dgeev of Lapack [5].
29It should be noted that, although Ah and Bh are symmetric matrices, −A−1

h Bh is generally not,
because matrix–matrix multiplication is generally not commutative.
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Algorithm 25 Two ellipsoids collision

Require: Two ellipsoids E1, E2 ⊂ R3.
1: procedure COLLISIONTEST(E1, E2)

⊲ Test 1: enclosing boxes
2: Compute enclosing boxes OB1 ⊃ E1 and OB2 ⊃ E2. ⊲ Algorithm 23
3: if OB1 ∩OB2 = ∅ then ⊲ Algorithm 24
4: return false.
5: else

6: ⊲ Test 2: characteristic equation
7: Compute the homogeneous matrices Ah and Bh of E1 and E2. ⊲ Prop. 2.1
8: Compute the four eigenvalues λ1, λ2, λ3, λ4 ∈ C of the eigenvalue prob-

lem −A−1
h Bhz = λz

9: if ∃λi, λj ∈ R and λi, λj > 0 then ⊲ Prop. 2.2.
10: return false.
11: else

12: return true.
13: end if

14: end if

15: end procedure

(a) Initial ellipsoids. (b) Enclosed corresponding
spheres.

(c) Computation of the inter-
section volume of the enclosed

spheres.

FIGURE 2.37: Schematics illustrating test 3 (see text).

Test 3: volume intersection of enclosed spheres If the two first tests fail, this
third “cheap” test resides in calculating the intersection volume of two enclosed
spheres S1 ⊂ E1 and S2 ⊂ E2 (see Figure 2.37). These two spheres S1 and S2 are
centred at their corresponding ellipsoid centres c1 and c2 and have radii equal to
the smallest semi–axes lengths r1 and r2 of their corresponding ellipsoids (see Fig-
ure 2.37b). The intersection volume of S1 with S2 (see Figure 2.37c) is then given by
the formula30 2.68.

VolSphereInter =
π

12d
(r1 + r2 − d)2

(

d2 + 2d (r1 + r2)− 3 (r1− r2)2
)

(2.68)

Where d = ‖c1 − c2‖2 is the Euclidean distance separating the two spheres cen-
tres c1 and c2.

As VolSphereInter is smaller or equal than the intersection volume of the ellip-
soids E1 and E2, at least one of the inequalities 2.64 is satisfied if VolSphereInter/Vol(E1) ≥
τ or VolSphereInter/Vol(E2) ≥ τ is satisfied.

30Source: ❤tt♣✿✴✴♠❛t❤✇♦r❧❞✳✇♦❧❢r❛♠✳❝♦♠✴❙♣❤❡r❡✲❙♣❤❡r❡■♥t❡rs❡❝t✐♦♥✳❤t♠❧.
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FIGURE 2.38: Schematic illustrating the principle of the Monte-Carlo
method, see text (images from Wikipedia

).

Computation of the intersection volume of two ellipsoids. Criterion 2.64 requires
the computation of the intersection volume of two ellipsoids. In general, this volume
is not an ellipsoid and can not be readily computed (i.e. with an analytical formula).
Instead, a Monte-Carlo technique is here used in order to estimate this volume.

The principle of the Monte-Carlo for estimating an area/volume/hyper-volume
of a geometrically non-trivial object is as follows (see Figure 2.38): given a non-
trivial object Ocomplex (in blue in the figure) and an enclosing object Oenclosing (in green
in the figure) whose area/volume can be computed analytically; sample N random
points over the enclosing object. Count the number X of points inside the non-trivial
object. Then the an estimation of the area/volume of the non-trivial object is given
in equation 2.69.

Area
(
Ocomplex

)
≈ N − X

X
Area

(
Oenclosing

)
(2.69)

Construction of an enclosing axis-aligned box. In order to compute the inter-
section volume between two ellipsoids, the so-called VEGAS algorithm of G.P. Lep-
age [129] is used here. This algorithm has been implemented by M. Booth in the
GNU Scientific Library (GSL) [52]. Like any Monte-Carlo algorithm, the algorithm
of G.P. Lepage requires an integration domain separable along each dimension for
which the volume is easily (i.e. analytically) computable. This requirement is indeed
mandatory for estimating the volume of two intersecting ellipsoids using an equa-
tion of the form 2.6931. It is therefore necessary to construct such a domain from two
ellipsoids.

This domain is obtained as the intersection of two axis-aligned boxes32 from two
colliding ellipsoids. An axis-aligned box B(E) containing an ellipsoid E is con-
structed from the orthogonal projections of the ellipsoids on the axes of the canonical
frame of reference. These projections are computed as suggested by S. Pope and the
following paragraphs are essentially a rewriting of the section 12 of its report [133].

31Typically, it is only needed to replace the word Area by the word Volume.
32Which is itself an axis-aligned box.
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FIGURE 2.39: Schematic example of an orthogonal projection of an
ellipse E on a line L. (Figure taken from S. Pope [133] and slightly

modified).

Definition 2.11. A line L ⊂ Rn parametrised by t ∈ R and defined as:

L = {x ∈ Rn | x = x0 + tv} (2.70)

Where x0 ∈ Rn is a point on the line L and v ∈ Rn is a unit–length vector.

Definition 2.12. For any point x ∈ Rn, its orthogonal projection on the line L is a point
on L with associated parameter t such that:

t = vt (x− x0) (2.71)

Considering now an ellipsoid E = E(c, G) ⊂ Rn of centre c ∈ Rn and its associ-
ated matrix G ∈ Rn×n as given by definition 2.5, the orthogonal projections of the
points of ellipsoid E on the line L can be obtained through the parameter t, with:

t = vt
(
c + G−ty− x0

)
, ‖y‖ ≤ 1 (2.72)

= t0 + wty, ‖y‖ ≤ 1 (2.73)

Where t0 = vt (c− x0) and w = G−1v.

Given equation 2.73, it can be found that the orthogonal projection of ellipsoid E
on the line L corresponds to parameters:

t± = t0 ± ‖w‖ (2.74)

Figure 2.39 illustrates the above equations, while algorithm 26 implements them.
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Algorithm 26 Orthogonal projection of an ellipsoid on a line (S. Pope [133]).

Require: Line L = L(x0, v) = {x ∈ Rn | x = x0 + tv, ‖v‖ = 1}.
Require: Ellipsoid E = E(c, G) =

{
x ∈ Rn | x = c + G−ty, ‖y‖ ≤ 1

}
.

1: procedure ELLIPSOIDONLINEPROJECTION(L, E )
2: t0 = vt (c− x0).
3: w = G−1v.
4: t± = t0 ± ‖w‖.
5: return x± = x0 + t±v.
6: end procedure

From the orthogonal projections of an ellipsoid E on the axis of the canonical ref-
erence frame, it is then possible to construct an enclosing axis-aligned box of the
ellipsoid, as described by the algorithm 27. From algorithm 27 it should be noted
that the returned box is indeed centred at the centre of the enclosed ellipsoid, even
if this centre is not the origin.

Algorithm 27 Axis-aligned bounding box for an ellipsoid.

Require: Ellipsoid E = E(c, G) =
{

x ∈ Rn | x = c + G−ty, ‖y‖ ≤ 1
}

.
1: procedure AXISALIGNEDBOX(E )
2: for i = 1, . . . , n do

3: Construct ei, the ith canonical vector which is zero everywhere, except in
the ith position where it is one.

4: Construct the line Li = Li(c, ei) passing through the ellipsoid’s centre c

and oriented following ei.
5: x±i = ELLIPSOIDONLINEPROJECTION(Li, E ) ⊲ Algorithm 26.
6: end for

7: return box as B(E) = [x−1 , x+1 ]× . . .× [x−n , x+n ].
8: end procedure

Computation of the volume intersection Thanks to the VEGAS algorithm 56
(see Appendix H for details) it is now possible to compute the volume intersection
Vol(E1 ∩ E2) of two colliding ellipsoids E1 and E2. As the VEGAS algorithm only es-
timates the integral of a given function, the following algorithm 28 uses repeatedly
the VEGAS algorithm with an increasing number of integration points until conver-
gence. On convergence, the algorithm 28 returns the overlapping ratios R1 and R2
as defined in equations 2.64.
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Algorithm 28 Overlapping ratios of two colliding ellipsoids.

Require: Two colliding ellipsoids E1 and E2.
Require: Number of initial integration points Minit.
Require: Convergence tolerance tol.

1: procedure ELLIPSOIDOVERLAPPINGRATIOS(E1, E2, Minit, tol)
2: M← Minit

3: f inter
E1,E2

as defined in equation H.1
4: AAB(Ei)← AXISALIGNEDBOX(Ei) i = 1, 2 ⊲ Algoritm 27.
5: Ω← AAB(E1) ∩ AAB(E2) ⊲ Integration domain.
6: N ← M/n3.
7: Vol(E1 ∩ E1)← VEGAS( f inter

E1,E2
, M, Ω, N) ⊲ Algorithm 56.

8: Ri ← Vol(E1 ∩ E1)/Vol(Ei), i = 1, 2
9: repeat

10: Rold,i ← Ri, i = 1, 2
11: M← 2M
12: N ← M/n3

13: Vol(E1 ∩ E1)← VEGAS( f inter
E1,E2

, M, Ω, N) ⊲ Algorithm 56.
14: Ri ← Vol(E1 ∩ E1)/Vol(Ei), i = 1, 2
15: until |Ri − Rold,i| ≤ tol|Ri|, i = 1, 2
16: return {R1, R2}
17: end procedure

Merging of clustered ellipsoids

From here, the GDBSCAN algorithm has clustered (hopefully correctly) “sufficiently”
overlapping ellipsoids, so that there is an unequivocally correspondence between
clusters of ellipsoids and the cells of the considered foam. Ellipsoids clustered to-
gether are merged into one ellipsoid using the Minimum Volume Covering Ellipsoid of
Ellipsoids (MVCEE) algorithm given in Reference [185].

Essentially, the MVCEE algorithm works as follows:

1. Given a set of ellipsoids {Ei}1≤i≤n and an initial covering ellipsoid Ẽ
(
c̃, M̃

)
of

centre c̃ and shape matrix M̃ (Figure 2.40a), the furthest point x1 belonging to
{Ei}1≤i≤n from the centre c̃ is computed (Figure 2.40b).

2. Then, the centre c̃ and the shape matrix M̃ of the covering ellipsoid Ẽ are up-
dated so to minimise the distance of x1 to the boundary of Ẽ (Figure 2.40c).

3. Afterwards, a new furthest point x2 in {Ei}1≤i≤n from centre c̃ is computed
(Figure 2.40d).

4. A new update of the centre c̃ and the shape matrix M̃ is performed by minimis-
ing the distances to x1 and x2 to the boundary of Ẽ . This process is repeated
by adding new furthest points x3, . . . , xm until the ellipsoid does not vary any
more (within given threshold) when adding new furthest points.
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(a) (b) (c)

(d)

FIGURE 2.40: Schematic sketching how the MVCEE algorithm [185]
is operating. See text for details.

Figure 2.41 shows a three-dimensional example of the MVCEE of three ellipsoids,
while Figure 2.42 shows the obtained ellipsoids for a 3D CT-scan image of size 670×
670 × 670 voxels obtained from a closed polypropylene foam provided by Erwan
Plougonven (Department of Chemical Engineering / PEPs - Products, Environment,
and Processes at University of Liège). Compared to Figure 2.34, it can be seen that
ellipsoids belonging to common cells have been merged into single ellipsoids.

From here, it is assumed that clustered ellipsoids are provided in a form of a search
tree, such an R*-tree. Sets of ellipsoids belonging to a same cluster are then merged
together into a single Minimum Volume Covering Ellipsoid of Ellipsoids (MVCEE), thank
to an algorithm developed by E.A. Yildirim [185].

Given a set of m full-dimensional (i.e. non–degenerated) ellipsoids E1, . . . Em ∈
Rn, let’s S denotes their convex hull. The merging of the m ellipsoids E1, . . . Em

will be performed by searching (an approximation to) the Minimum Volume Covering
Ellipsoid (MVCE) of S, denoted by MVCE(S). If S has a non-empty interior, the
MVCE is guaranteed to exists and is unique [50].

Given a finite set of ellipsoids S = {E1, . . . , Em}, the problem is here to find the
minimum volume covering ellipsoid of these ellipsoids (MVCEE) as stated by prob-
lem 2.75.

{
minM,cVol(E)
s.t. E ⊇ {E1, . . . , Em} (2.75)

Where E , with representation given by definition 2.5, is the MVCEE of ellipsoids
Ei,< i = 1, . . . , m.
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(a) MVCEE at iteration 1. (b) MVCEE at iteration 5.

(c) MVCEE at iteration 10. (d) MVCEE at iteration 20.

FIGURE 2.41: MVCEE algorithm 29 used on a three-dimensional
set of three ellipsoids (solids) at different iterations. The MVCEEs
are showed in semi-transparent blue. (Images generated using POV-

Ray [29]).

FIGURE 2.42: Red: walls of a 670× 670× 670 3D CT-scan image of
a polypropylene foam provided by E. Plougonven, Department of
Chemical Engineering at University of Liège. gray: clustered and
merged ellipsoids by MVCEE. It can be noticed, by comparing to Fig-
ure 2.34, that some cells that used to contain several ellipsoids, now

contain only one ellipsoid.
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Link between Vol(E) and its shape matrix M. Problem 2.75 can be restated in
terms of the matrix M as follows:

The volume Vol(E) of an ellipsoid E ⊆ R3 is given by:

Vol(E) = 4π

3
r1r2r3 (2.76)

Where the ri, i = 1, 2, 3 are the semi-axis lengths of the considered ellipsoid.

These semi-axis lengths ri, i = 1, 2, 3 are related to the eigenvalues λi, i = 1, 2, 3
of the corresponding shape matrix M as follow:

ri =
1√
λi

, i = 1, 2, 3 (2.77)

Leading, for a fully dimensional ellipsoid (i.e. positive definite shape matrix M ≻
0), to the result:

det(M) = λ1λ2λ3 = 1
r2

1r2
2r2

3

⇔ det(M−1) = 1
λ1λ2λ3

= r2
1r2

2r2
3

(2.78)

The problem 2.75 can be restated as:






minM,c ln
(
det
(

M−1
))

s.t.
M ≻ 0, symmetric
E ⊇ {E1, . . . Em}

(2.79)

Covering criterion. In order to determine if an ellipsoid E is covering another ellip-
soid Ei, i ∈ {1, . . . , m}, E.A. Yildirim suggests to use the following two propositions:

Proposition 2.3. (Proposition 2.7 in E.A. Yildirim [185])
Let’s E ⊂ Rn and Ei ⊂ Rn denote two full-dimensional ellipsoids, then Ei ⊆ E if
and only if the exists τ > 0 such that:

τ

(
Mi −Mici

−ct
i Mi ct

i Mici − 1

)

�
(

M −Mc

−ct M ct Mc− 1

)

(2.80)

Where the symbol “�” in an expression of type “A � B” stands for A− B � 0,
meaning that the matrix A− B is positive semi–definite.

Proposition 2.4. (Lemma 2.8 in E.A. Yildirim [185])
Condition 2.80 is equivalent to:

τ





Mi −Mici 0
−ct

i Mi ct
i Mici − 1 0

0 0 0



 �




M −Mc 0
−ct M −1 ct M

0 Mc −M



 (2.81)
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Using condition 2.81 for all ellipsoids Ei, i = 1, . . . , m, the problem 2.79 can be
restated as:







minM,c ln
(
det
(

M−1
))

s.t.

M ≻ 0, symmetric
∃ τ1 > 0, . . . , τm > 0




M −Mc 0
−ct M −1 ct M

0 Mc −M



− τi





Mi −Mici 0
−ct

i Mi ct
i Mici − 1 0

0 0 0



 � 0

(2.82)

Finally, by letting z = Mc the problem 2.82 reads:







minM,z ln
(
det
(

M−1
))

s.t.

M ≻ 0, symmetric
∃ τ1 > 0, . . . , τm > 0




M −z 0
−zt −1 zt

0 z −M



− τi





Mi −Mici 0
−ct

i Mi ct
i Mici − 1 0

0 0 0



 � 0

(2.83)

Which is (almost) a semi-definite program.

As pointed-out by E.A. Yildirim, the problem 2.83 may be solved by interior-point
algorithm. However, the computational cost of these algorithms becomes quickly
prohibitive as the dimension of the problem grows. Instead, E.A. Yildirim suggests
the algorithm 29 for solving approximatively the problem 2.83.
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Algorithm 29 Algorithm for solving problem 2.83 (E.A. Yildirim [185])

Require: Set of ellipsoids E1, . . . , Em ⊂ Rn.
Require: ǫ > 0.

1: procedure MVCEE(E1, . . . , Em, ǫ)
2: χ0 = {x1, . . . x2n} ← MVCEEINITIALISE(E1, . . . , Em) ⊲ Algorithm 30
3: u0 ← (1/(2n))e ∈ R2n ⊲ e: vector of ones.
4: w0 ← ∑

2n
j=1 xju0

j

5: (M0)−1 ← n ∑
2n
j=1 u0

j (x
j −w0)(xj −w0)t

6: F 0 ←
{

x ∈ Rn | (x−w0)t M0(x−w0) ≤ 1
}

7: x2n+1 ← argmaxi=1,...,m
{
(x−w0)t M0(x−w0) | x ∈ Ei

}

8: ǫ0 ← (x2n+1 −w0)t M0(x2n+1 −w0)− 1
9: k← 0

10: while ǫk > (1 + ǫ)2/n − 1 do

11: βk ← ǫk

(n+1)(1+ǫk)

12: k← k + 1

13: uk ←
(

(1− βk−1)u
k−1

βk−1

)

14: wk ← ∑
2n+k
j=1 xkuk

j

15: (Mk)−1 ← n ∑
2n+k
j=1 uk

j (x
j −wk)(xj −wk)t

16: Fk ←
{

x ∈ Rn | (x−wk)t Mk(x−wk) ≤ 1
}

17: χk ← χk−1 ∪ {x2n+k}
18: x2n+k+1 ← argmaxi=1,...,m

{
(x−wk)t Mk(x−wk) | x ∈ Ei

}

19: ǫk ← (x2n+k+1 −wk)t Mk(x2n+k+1 −wk)− 1
20: end while

21: return
√

1 + ǫkFk, χk

22: end procedure

Algorithm 30 Initialisation for algorithm 29 (E.A. Yildirim [185])

Require: Set of ellipsoids E1, . . . , Em ⊂ mathcalRn.
1: procedure MVCEEINITIALISE(E1, . . . , Em)
2: ψ← {0}, χ0 ← ∅, k← 0
3: whileRn\ψ 6= ∅ do

4: k← k + 1
5: Pick an arbitrary unit vector bk ∈ Rn in the orthogonal complement of ψ
6: x2k−1 ← argmax1=1,...,m

{
(bk)tx | x ∈ Ei

}
, χ0 ← χ0 ∪ {x2k−1}

7: x2k ← argmini=1,...,m
{
(bk)tx | x ∈ Ei

}
, χ0 ← χ0 ∪ {x2k}

8: ψ← span
(
ψ, {x2k−1 − x2k}

)

9: end while

10: return χ0
11: end procedure
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Remarks about algorithm 29 MVCEE.

1. From line 2 to line 6, the algorithm computes from algorithm 30 a first estimate
F 0 of the MVCEE(E1, . . . , Em). This first ellipsoid F 0 is simply centred on the
centre of mass of points provided by χ0 (line 4) while its shape matrix M0 is
simply (up to a scaling factor) the inverse covariance matrix of those points
(line 5).

2. On line 3, u0 simply contains the weights for computing the (weighted) centre
of mass and will be iteratively updated for computing the final MVCEE centre.

3. Once the first ellipsoid F 0 constructed, the furthest point x2n+1 from F 0 be-
longing to {E1, . . . Em} is computed on line 7. This quadratic constrained quadratic
problem is solved using the Minpack-2 package [9].

4. On line 8, ǫ0 “measure” how far from ellipsoid F 0 is the furthest point x2n+1

computed on line 7.

5. Next, the loop on line 10 will repeat the above steps for iteratively updating
the ellipsoid F 0. The centre of ellipsoid F 0 is iteratively updated by com-
puting new (weighted) centres (line 14) based of the updated set of points χk

(line 17); where χk is iteratively enriched with the furthest point x2n+k+1 from
the current ellipsoid F 0 belonging to the set {E1, . . . , Em}. The shape matrix
M0 of ellipsoid F 0 is also iteratively updated by computing the (scaled) in-
verse covariance matrix of the points in χk (line 15).

6. Lines 11 to 13 update the weights used in the computations of the current cen-
tre wk and current shape matrix Mk of the current ellipsoid F k. These updates
are based on the “measures” of distances from the current farthest point x2n+k

of the current ellipsoid F k.

7. Line 18 requires to solve a quadratic problem subjects to quadratic constraints.
As this problem is identical to the problem on line 7, it is also solved using the
Minpack-2 package [9].

8. Finally, algorithm 29 returns a dilated version of the found ellipsoid around
its centre (line 21). For an ellipsoid E ⊂ R3 of shape matrix M, its semi-axis
lengths ri, 1 = 1, 2, 3 can be uniformely scaled by a factor |a| if the shape
matrix M is multiplied by a factor α = 1/a2. Indeed, as the shape matrix M is
real symmetric definite positive, its eigen decomposition is given by:

M = UΣ2Ut

Where U is unitary and Σ is a diagonal matrix holding the eigenvalues λi, i =
1, 2, 3.

Multiplying M by α = 1/a2 leads to:

αM = αUΣ2Ut = U(
√

αΣ)2Ut = UΣ̃2Ut

Where Σ̃ now contains the eigenvalues λ̃i =
√

αλi = λi/|a|, i = 1, 2, 3.
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As the following relation between the semi–axes lengths ri, 1 = 1, 2, 3 and the
corresponding eigenvalues λi, 1 = 1, 2, 3 holds:

ri =
1
λi

, i = 1, 2, 3

One obtain:

r̃i =
1
λ̃i

=
|a|
λi

= |a|ri, i = 1, 2, 3

i.e., the ellipsoid E is indeed dilated uniformly by a factor |a| around its centre.

Remarks about algorithm 30 MVCEEInitialise.

1. The idea of algorithm 30 is to pick arbitrary linearly independent lines and
projects the ellipsoids Ei, i = 1, . . . , m on them (see Figure 2.43). For a given
line, these projections form a set of segments. In this set of segments, lines 6
and 7 aim to find the two furthest points from each other. These points are
then added to the set χ0 such that the MVCE(χ0) will be a first rough approx-
imation of of MVCEE(E1, . . . , Em).

2. Each segment coming from the projection of ellipsoid Ei on line of direction bk

has extremities given by

x̃i,k
max,min = ci ±

(

1/
∥
∥
∥(Ui)−tbk

∥
∥
∥

)

(Ui)−1(Ui)−tbk

with corresponding values [185]:

(bk)tci ±
(

1/
∥
∥
∥(Ui)−tbk

∥
∥
∥

)

(bk)t(Ui)−1(Ui)−tbk

Where Mi = (Ui)tUi, i = 1, . . . , m denotes the upper Cholesky factorisation
of Mi, i = 1, . . . , m. An exhaustive search among a list of m values allows to
solve optimisation problems of lines 6 and 7.

b
1

2x

min

max b
2

x2
xmax
1

minx1

.
.

.

.

FIGURE 2.43: Sketch of the MVCEEInitialise algorithm 30 in two di-
mensions. Ellipsoids are projected along two arbitrary orthogonal
directions b1 and b2. Minimum and maximum ellipsoid projections

xi
min and xi

max, i = 1, 2 along these two directions are computed.
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(a) (b)

(c)

FIGURE 2.44: (a): Artificially generated honeycomb foam with
groups of spurious voxels. (b): Obtained ellipsoids without merging.
(c): Obtained ellipsoids with merging. It can be seen that merging
of ellipsoids helps to obtain a univocal correspondence between cells

and ellipsoids.

Usefulness of clustering and merging ellipsoids. One may ask if clustering and
merging the ellipsoids is really useful, especially when using auxiliary ellipsoids
(see Section 2.3.11). Indeed, auxiliary ellipsoids will grow in all cells and reproduce
the same microstructure regardless if they are several parent ellipsoids or a single
parent ellipsoid in a given cell. The reason for merging parent ellipsoids is twofold:

1. One may want to know some statistics about the cell in the considered foam.
Among them, some important statistic are the number of cells, their mean
number of neighbours and the presence of a preferred cell orientation, which
can be estimated from the ellipsoids only after merging.

2. At this stage of the processing chain, spurious voxels may still be present, de-
spite the use “cleaning” filters such as the Box filter (see Section 2.3.5), or any
other image processing filter available in the ITK library (such as the Binary-
MorphologicalOpeningImageFilter filter) that a user may take advantage of. This
is particularly true if spurious voxels form groups that are hard to erase with-
out discarding useful voxels. Clustering and merging of ellipsoids may help to
dispose of such groups of spurious voxels by merging parent ellipsoids neigh-
bouring these groups. Figure 2.44 illustrates this on the case of an artificially
generated honeycomb foam.
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Discussion: GDBSCAN and merging quality assessment

The GDBSCAN algorithm depends on the four following parameters:

• MinCard the cluster volume threshold which has been set to the volume of one
voxel. This means that any cluster whose volume is smaller than one voxel will
be discarded.

• τ ∈ [0, 1] the overlapping volume ratio given in condition 2.64. When the
relative intersection volume of two intersecting ellipsoids is above τ, these two
ellipsoids are considered as belonging to the same cluster.

• Mmax the maximum number of integration point used by the Monte–Carlo
method for computing the intersection volume between two ellipsoids (see al-
gorithm 28). This parameters has been set to Mmax = 215 = 32768 integration
points.

• tol the convergence tolerance used by the Monte–Carlo method for comput-
ing the intersection volume between two ellipsoids (see algorithm 28). This
parameter has been set to tol = 0.1.

Among the above four parameters, the only non-trivial one is the overlapping
volume ratio τ. As τ is the main parameter for controlling the merging of ellipsoids,
it is important to assess which values are suitable for it. In order to determine a
suitable range of values for τ, the following criterion has been used.

Criterion for overlapping volume ratio τ. In the GDBSCAN algorithm take τ such
that the Minimum Volume Covering Ellipsoid of Ellipsoids (MVCEE) belonging to a
same cluster satisfies criterion 2.84 when τ is slightly varied.

MatchPixels(τ)/MismatchPixels(τ) ≈ constant (2.84)

Where MatchPixels(τ) is the number of pixels belonging to the MVCEEs of the
computed clusters and identified as non-feature pixels (i.e. not belonging to cell-
boundaries), and MismatchPixels(τ) are pixels also belonging to the MVCEEs of the
computed clusters but identified as feature pixels (i.e. belonging to cell boundaries).
Note that, in general tomographic images, some non–feature pixels may be identi-
fied as feature ones and vice-versa. Here, these pixels are referenced as noisy pixels.
However, it has been observed that the GDBSCAN algorithm 43 is rather tolerant to
it.

It is believed that criterion 2.84 provides suitable values of τ for obtaining satisfac-
tory clusterings. Indeed, for τ = 1 the GDBSCAN algorithm only cluster ellipsoids
containing other ellipsoids (the volume overlapping ratio has to be 100%), and for
τ = 0 this algorithm clusters any intersecting ellipsoids (the volume overlapping
ratio is 0%). More generally, a value of τ close to one will prevents the clustering of
two ellipsoids associated to two different cells, while it will also prevents the clus-
tering of intersecting ellipsoids belonging to the same cell. Conversely, a value of τ
close to zero will allow the clustering of intersecting ellipsoids belonging to the same
cell, but will also allow the clustering of intersecting ellipsoids belonging to differ-
ent cells. This may happen if the wall separating the two considered cells contains
openings33.

33At least on the provided tomographic images. This may occurs for closed but very thin walls.
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Starting from τ = 0 (see Figure 2.45, box region 1) and increasing it, clustered el-
lipsoids belonging to well separated cells will be isolated (because their intersection
volume ratios should be inexistent), while ellipsoids belonging to the same cell will
remain clustered (since their intersection volume ratios should be positive, see Fig-
ure 2.46c). With τ increasing from 0, this will cause the MatchPixels(τ) to decrease
slower than the MismatchPixels(τ) function because MVCEEs will contain less pix-
els wrongly identified as non–feature. As outcome, the ratio given in criterion 2.84
will slightly raise.

At intermediate values of τ (figure 2.45, box region 2) the ratio given in crite-
rion 2.84 will stay approximatively constant (or will slightly increase) as clusters of
ellipsoids will remain approximatively stable (or will slightly raise).

An intermediate value of τ should thus trigger the algorithm GDBSCAN to clus-
ter only intersecting ellipsoids belonging to the same cell in order to obtain the final
purpose of this section: achieve a one-to-one correspondence between ellipsoids and
cells (see Figure 2.46d).

At τ ≈ 1 (Figure 2.45, box region 3), intersecting ellipsoids belonging to a same cell
will not be clustered. The resulting MVCEEs will contain some noisy feature pixels
(pixels wrongly identified as belonging to cell boundaries) that were separating the
initial ellipsoids (see Figure 2.46e). This will cause the MatchPixels(τ) function to
stay approximatively constant, while the MismatchPixels(τ) function will quickly
decrease. As a consequence, the ratio in criterion 2.84 will rapidly raise. In general,
the curve giving the ratio MatchPixel(τ)/MismatchPixel(τ) versus τ will have the
general shape given in schematic 2.45.

It should be noted that, at this stage, intersecting ellipsoids belonging to different
cells should, in principle, not be clustered. Indeed, if a cell wall (even with openings)
separates the two considered ellipsoids, their intersection volume ratios should be
small and not satisfying criterion 2.84. However, cell walls with big openings may
accidentally satisfy this criterion and trigger the clustering of the two considered
ellipsoids; though it may then be questionable to see these considered cells as two
separated cells (at least for closed foams).

In order to illustrate the criterion 2.84, a dataset D of ellipsoids has been gener-
ated from the set of 3D–image provided by E. Plougonven (department of Applied
Chemistry, University of Liège). Several values of the intersecting volume ratios τ
between zero and one with a step of 0.05 have been tested and plotted against the ra-
tio MatchPixels(τ)/MismatchPixels(τ) in Figure 2.47. It can be seen that the graph
of this figure is very similar to the one given in schematic 2.45. From figure 2.47 it
can be inferred that a value of τ ∈ [0.1, 0.4] is suitable for giving a satisfactory clus-
tering. For τ = 0.1, the ratio MatchPixels(0.1)/total number of pixels = 0.77 and
MismathcPixels(0.1)/total number of pixels = 0.37, with 1664 clusters found.



108 Chapter 2. Image analysis

MatchPixels(�)/MismatchPixels( )
(arbitrary scale)

0 1

3

FIGURE 2.45: Schematic of the general behaviour of the ratio
MatchPixels(τ)/MismatchPixels(τ) with respect to the intersection
volume ratio τ (see criterion 2.64). MatchPixels(τ) is the number of
non-feature pixels contained in the MVCEEs (see section 2.3.10) of
the clustering computed with parameter τ, while MismatchPixels(τ)
is the number of feature pixels contained in the same MVCEEs. See

text for comments about the different regions shown.

(a) Two
cells with
incomplete
separating

wall.

(b) Grown el-
lipsoids inside
cells before

merging.

(c) Merged
ellipsoids
with τ = 0.
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5
14 ≈ 0.35.

(d) Merged
ellipsoids
with τ = 0.5.
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5
4 ≈ 1.25.

(e) Merged
ellipsoids
with τ = 1.0.
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2
0 = ∞.

FIGURE 2.46: Schematics illustrating the general behaviour of the ra-
tio MatchPixels(τ)/MismatchPixels(τ) (see text). Empty pixels rep-
resent feature pixels (walls), greyed pixels represent mismatched pix-
els, pixels with a line represent non–feature/noisy pixels. Black lines

represent ellipsoids.
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FIGURE 2.47: Behaviour of the ratio
MatchPixels(τ)/MismatchPixels(τ) with respect to the inter-
section volume ratio τ (see criterion 2.64) for the 3D–image provided
by E. Plougonven (department of Applied Chemistry, University of
Liège). MatchPixels(τ) is the number of non-feature pixels contained
in the MVCEEs of the clustering computed with parameter τ, while
MismatchPixels(τ) is the number of feature pixels contained in the

same MVCEEs.
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2.3.11 Step 6: Auxiliary ellipsoids

Auxiliary ellipsoids are grown using the previously expanded ellipsoids for generat-
ing new seeds. These auxiliary ellipsoids are constructed as follows (see Figure 2.48):
each previously grew ellipsoid is uniformly discretised into a set of points and serves
as parent to its associated auxiliary ellipsoids. This discretisation is parametrised by
an azimuthal angle increment ∆θ, which drives, in turn, the polar angle increment

∆φi =
2π

⌊2πsin(θi)/θi⌋+ 1
(2.85)

Where θi = θi−1 + ∆θ is the ith increment in angle θ, and ⌊.⌋ returns the closest
lower integer of its argument.

In practice, the discretisation is computed as follows: by using (Equation 2.86),
the discretisation is computed as given by algorithm 31. In practice the factor α is
chosen to a value slightly lower than 1 (e.g. α = 0.99), in order to avoid having
the seldom case of a point located on a feature pixel (in which case, the associated
auxiliary ellipsoid could never be grown).

Eα =
{

x ∈ R3 | x = c + G−ty, ‖y‖ ≤ α
}

(2.86)

Algorithm 31 Given a parent ellipsoid E , an azimuthal angle increment ∆θ, and a
factor α, uniformly discretises the iso-surface of value α of E in a set of points.

Require: Ellipsoid E =
{

x ∈ R3 | x = c + G−ty, ‖y‖ ≤ 1
}

, angle increment ∆θ, fac-
tor α.

1: procedure DISCRETIZEELLIPSOID(E , ∆θ, α)
2: Set of points P← ∅.
3: for θi = 0; θi ≤ π; θi ← θi + ∆θ do

4: Compute ∆φi as given by eq. 2.85.
5: for φij = 0; φij ≤ 2π; φij = φij + ∆φi do

6: Compute y = (y0, y1, y2) as:

7:







y0 = α sin θi cos φij

y1 = α sin θi sin φij

y2 = α cos θi

.

8: P← P ∪
{

c + G−ty
}

.
9: end for

10: end for

11: return P.
12: end procedure
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FIGURE 2.48: Schematic sequence illustrating the growth of auxiliary
ellipsoids into a cell. The last step f. is obtained by taking the zero

iso-surface (iso-line) of the distance field to the ellipsoids.

Once the discretisation computed, each of the associated point is attached to an
auxiliary ellipsoid. Initially, these auxiliary ellipsoids are simply spheres the radii of
which are one voxel wide. Then, between each sphere and the centre of the parent
ellipsoids an “artificial” obstacle is added. These obstacles are simply the closest
points of each sphere to the centre of the parent ellipsoid. The aim of these “ar-
tificial” obstacles is to avoid the auxiliary ellipsoids to all decay into their parent
ellipsoids. Once initialised by unit spheres and their associated artificial obstacles
set, the auxiliary ellipsoids are then grown using the same algorithm as their parent
ellipsoids [39], taking into account for each auxiliary ellipsoid the same obstacles
as for its associated parent ellipsoid and the artificial ones generated from it and
the spheres. The result shown in Figure 2.48f is obtained by extracting the zero iso-
surface of the distance field to the ellipsoids. Algorithm 32 details the whole process.
The result of this process is illustrated in Figure 2.49 where it can be seen that auxil-
iary ellipsoids match the cell walls much closer than the associated parent ellipsoids.

Algorithm 32 Given a parent ellipsoid, compute the associated auxiliary ellipsoids
and their associated obstacles.
Require: Image I of domain DI .
Require: Pixel value p ∈ Im(I) figuring the value associated to the cell walls.
Require: Parent ellipsoid E , angle increment ∆θ, factor α.

1: procedure AUXILIARYELLIPSOIDS(I, p, E , ∆θ, α)
2: Eaux ← INITIALAUXILIARYELLIPSOIDS(E , ∆θ, α) ⊲ Algo. 33.
3: for Eaux,i ∈ Eaux do

4: Oarti f ← COMPUTEARTIFICIALOBSTACLE(E , Eaux,i) ⊲ Algo. 34.
5: Eaux,i ← ELLIPSOIDEXPAND(I, p, Eaux,i, Oarti f ) ⊲ Algo. 13.
6: end for

7: return Eaux.
8: end procedure
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Algorithm 33 Constructs initial auxiliary ellipsoids from a parent ellipsoid E .

Require: Parent ellipsoid E , angle increment ∆θ, factor α.
1: procedure INITIALAUXILIARYELLIPSOIDS(E , ∆θ, α)
2: Set au auxiliary ellipsoids Eaux ← ∅

3: P← DISCRETZIZEELLIPSOID(E , ∆θ, α) ⊲ Algo. 31.
4: for Pi ∈ P do

5: Eaux,i =
{

x ∈ R3 | x = Pi + Id y, ‖y‖ ≤ 1
}

⊲ Id ∈ R3×3, identity matrix.
6: Eaux ← Eaux ∪ {Eaux,i}.
7: end for

8: return Eaux.
9: end procedure

Algorithm 34 Given a parent ellipsoid and an auxiliary ellipsoid, compute an artifi-
cial obstacle.
Require: Parent ellipsoid E =

{
x ∈ R3 | x = c + G−ty, ‖y‖ ≤ 1

}
.

Require: Auxiliary ellipsoid Eaux =
{

x ∈ R3 | x = caux + G−t
auxy, ‖y‖ ≤ 1

}
.

1: procedure COMPUTEARTIFICIALOBSTACLE(E , Eaux)
2: v = (c− caux) / ‖c− caux‖.
3: O ←

{
caux + G−t

auxv
}

.
4: return O.
5: end procedure

From all the above described steps, an approximation of a CT-scan image of foam
in terms of a set of ellipsoids (and associated polyhedra) can be obtained. This set
can then be used to reconstruct the geometry of the foam; geometry that can be sub-
sequently used into a FEM simulation as it will be demonstrated later on in this the-
sis. These steps avoid the memory expensive watershed and H-maxima transforms,
replacing them by the clustering and merging of overlapping ellipsoids. Depending
on the number of auxiliary ellipsoids associated to each parent ellipsoid, the ob-
tained set of ellipsoids allows a rather precise fitting of the struts structure present
in the CT-scan images, including local defects such as partially missing or deformed
struts, as it will be shown further in this thesis.
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(a) Parent ellipsoids. (b) Auxiliary ellipsoids.

FIGURE 2.49: Parent ellipsoids and surface obtained by the auxiliary
ellipsoids using an angle increment ∆θ = 10◦. 3D-image (in red) pro-
vided by E. Plougonven (department of Applied Chemistry, Univer-

sity of Liège).
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Chapter 3

Streaming

• Aim: shows how to adapt the filters presented in the preceding chapters for
processing data slice by slice.

• Input: depends on algorithm that has been streamed.

• Output: depends on algorithm that has been streamed.

Streaming is the ability to process an image by slices. It offers the advantage to be
able to process large amounts of data that are not manageable otherwise (e.g. that
do not fit the RAM of a computer, and/or parallelise the processing). Indeed, 3–
dimensional µ-CT imaging systems may easily generate datasets of the order of 10
giga–bytes of more (typically 1024× 1024× 1024 images with 64–bits voxels). The
Insight Toolkit framework [69] offers such streaming capabilities [194]. All the steps
described in Section 2.3 have been implemented as ITK filters which are streamable
along slices (see Figure 3.2).

3.1 Summary

The following chapter is structured as follow:

• Section 3.2 gives the framework used for implementing streaming.

• Sections from 3.3 to 3.10 describe how the different steps of the image analysis
procedure given in chapter 2 have been adapted to support streaming.

• Section 3.10.1 quantitatively show that ellipsoids found using the “normal”
processing steps and the streamed ones are identical to numerical precision.

• Section 3.12 finally shows that streaming indeed allows the processing of 3D
CT-scans that do not fit into the available RAM.
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FIGURE 3.2: Extraction of a slice from a 3D image.

3.2 The itk::StreamingFilter

The itk::StreamingFilter filter is a customised version of the itk::StreamingImageFilter
in the sense that is requests specials regions to the upstream filters in order to ac-
commodate the requirements of the itk::MaurerDistanceMapFilter

These special regions take the form of slabs (see Figure 3.2) that traverses the
whole output region requested by the downstream filter in one given direction.
When the streaming gets the output requested region, it partitions the given out-
put region into these slabs. Then, the upstream filters are called on each subregions
through an overridden version of the UpdateOutputdata() method. More details on
how the ITK library implements streaming can be found in Appendix A

3.3 Streaming of the RGB to luminance filter (step 0)

• Aim: convert a RGB (Red, Green, Blue) image to a gray–level image.

• Input: RGB image.

• Output: gray–level image.

• Original filter: see Section 2.3.2.

The original RGB to luminance filter converts RGB images to gray–level images.
As this filter operates on images voxel by voxel, it is trivially streamable without any
modification.
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3.4 Streaming of the spacing filter (step 0bis)

• Aim: add spacing information at the voxels of an image.

• Input: RGB or gray–level image.

• Output: RGB or gray–level image with spacing information.

• Original filter: see Section 2.3.3.

The spacing filter sets the lengths of the sides of each voxel in an image. It allows
for taking into account acquired images with anisotropic resolutions1 along the x,
y and z direction. As this filter only update meta information about an image, it is
trivially streamable without any modification.

3.5 Streaming of the threshold filter (step 1)

• Aim: convert a gray–level image into a binary (black and white) image.

• Input: gray–level image.

• Output: binary image.

• Original filter: see Section 2.3.4.

Usually, threshold filters process image voxel by voxel, and are therefore trivially
streamable. However, the algorithm of Ridler and Calvard algorithm [139] used
in this thesis needs the computation of an histogram over the whole image, which
may not fit the RAM (see procedure ComputeHistogram at line 24 of algorithm 3).
This problem is solved by setting up two pipelines, and performing streaming on
both of them. The first pipeline (hereafter called “temporary” pipeline) is used to
accumulate the histogram. This is done by calling several times the inner loop of
procedure ComputeHistogram (Algorithm 3) during the streaming. Once the tempo-
rary pipeline has been updated and the histogram computed, the second pipeline
(hereafter called “main” pipeline) is updated and the thresholding process can be
applied slice by slice (streamed) on the image, knowing the previously computed
exact histogram on the whole image. Figure 3.6 sketches the whole process.

1The resolution in a given direction is defined as the number of voxels in this direction per unit of
physical length.
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FIGURE 3.6: Temporary and main pipeline for computing a
histogram-driven threshold of an image while streaming.

The above procedure is implemented using the Orfeo Toolbox (OTB [66]). The Orfeo
Toolbox extends the capabilities of ITK, particularly with regards to the processing
of huge data set (of the order of the terabyte). The above procedure can be easily set
up thanks to the OTB persistent filters2.

More precisely, the otb::PersistentImageFilter allows to compute some global feature
of an image (as its mean, histogram...) and uses that information for a downstream
filter while streaming. The otb::PersistentImageFilter behaves as a classical ITK filter.
It contains however two additional pure virtual methods Reset() and Synthetize().
These two methods have to be implemented by the user via a class inheriting from
otb::PersistentImageFilter. The Reset() method sets the intermediate result members of
the inheriting class in order to start a fresh processing. The Synthetize() method, in
turn, processes the final result once the intermediate results have been computed.

Any class derived from the otb::PersistentImageFilter is intended to work with the
otb::PersistentFilterStreamingDecorator and a class named otb::StreamingImageVirtualWriter.
The otb::PersistentFilterStreamingDecorator creates a temporary pipeline implying the
derived class of otb::PersistentImageFilter and the otb::StreamingImageVirtualWriter. The
later is then updated in order to simulate a writer filter but discards immediately the
passed data without writing anything on the disk. Once the temporary pipeline has
been updated, the intermediate results accumulated are gathered thanks to a call of
the Synthetize() method. Finally, the main pipeline can be updated, using the final
result obtained during the updating of the temporary pipeline.

2See for a more
comprehensive description of this feature.
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3.6 Streaming of the box filter (step 1bis)

• Aim: remove small groups of isolated voxels from a binary image.

• Input: binary image.

• Output: processed binary image with small groups of voxel removed.

• Original filter: see Section 2.3.5.

The Box filter removes groups of connected feature pixels that are connected and
smaller than a given box. However, taking only a slice of the data may cut such
groups into two subsets and made them appear smaller than they really are. As a
consequence, some such subgroups may be removed by this filter when they should
not. The following section describes how such event can be prevented when using
streaming.

During the streaming the Box filter takes advantage of the ITK negotiation pro-
cess between filters. Indeed, in order to accommodate the streaming process, the
input requested image region received by the downstream filter is padded by the
user’s parallelepipedic box size. The Box filter then requests, via the GenerateInpu-
tRequestedRegion() method, the padded image region3 as input region and returns
the unpadded corresponding image region after processing (see Figure 3.8).

This negotiation process guarantees that, during the streaming process, the Box fil-
ter will output the same results as the normal (i.e. non-streaming) process. Actually,
the Box filter algorithm will cluster the foreground pixels in a different ways follow-
ing if the streaming is used or not. For instance, if a set of connected of foreground
pixels crosses two streamed parts of the whole image, the set will be divided into
two clusters instead of one for the non-streaming process. From here, two cases may
arise:

1. The connected set of foreground pixels S fits into the user’s parallelepipedic
box and is discarded.

2. The connected set of foreground pixels S does not fit into this box and should
be kept.

3Possibly cropped by the largest possible region.
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FIGURE 3.8: Image region negotiation process for the box filter.

The first case is trivial: during the streaming process, this set S will be divided
into two smaller sets S1 and S2, with S1 ∪ S2 = S. As the initial bigger set S fits into
the user’s box, so will do the two smaller sets. The two smaller sets S1 and S2 will
then be discarded. This is thus equivalent to discard the initial set S.

The second case is more ambiguous. If the initial bigger set S does not fit into the
user’s box and should be kept, there is no guarantee that the sets S1 and S2 will still
be bigger than the user’s box. As a result, S1 or S2, or both may be discarded instead
of being kept. It is here that the negotiation process between filters intervenes. As
the output requested region by the downstream filter is padded by the user’s box
size, the Box filter can determine if the set S is bigger or not than the user’s box. In-
deed, if S is entirely contained in the padded image region, this means that S1 = S
and S2 = ∅, and there is no more ambiguity. If S is possibly not entirely contained in
the padded image region (foreground pixels of S are located on the boundary of the
padded region), this means that S extends inside the output requested region and,
at least, through all its padding. As the padding is of the size of the user’s box, this
means that the visible part of S in the padded region is bigger than the user’s box.
As a result, S is correctly kept. Figure 3.9 illustrates how this ambiguity is resolved.

Note that in the padded image region, new sets of foreground connected pixels
may be visible for the box filter. Again, theses sets may or may not extend beyond
the padded image region and, consequently may or may not fit into the user’s box.
Therefore, there is a risk that they may wrongly discarded by the Box filter. How-
ever, this does not impact the output result of the Box filter. As a matter of fact, only
the output requested region is returned to the downstream filter. Wrongly discarded
sets of foreground pixels belonging to the padded region and not to the output re-
quested region are not returned to the downstream filter. The involved pixels will
(respectively have been) simply and correctly be processed into the next (respec-
tively previous) region of the image during the streaming process. Figure 3.10 com-
pares the results of the Box filter with the streaming and non-streaming case on the
same input image.
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(a) Without image region padding, the visi-
ble part of set B (inside the red box on the
right) will be discarded because it fits the par-

allelippipedic user’s box.
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(b) With image region padding, a bigger part
of set B is visible. As this set crosses the
padding it will not fit inside the user’s box
and will be kept, as it should. The set A is

now entirely visible and will be discarded.

Returned
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Region 2

A

B

C

(c) Result: part of set A in returned region is
discarded, while set B is kept. Set C is simply
ignored and will be processed later on within

region 2.

FIGURE 3.9: Scheme showing how the Box filter discards or keep sets
of connected foreground pixels during the streaming process.

(a) Box filter of a whole image. (b) Box filter of image by
streaming (10 slices).

(c) Difference between the
two previous images.

FIGURE 3.10: Results of the box filter for the streaming (10 slices) and
non–streaming case for the same input image.
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3.7 Streaming of the distance transform (step 2)

• Aim: compute the Euclidean distance transform of a binary image, where
white (feature) voxels represent cell walls/struts and are assigned distance
zero.

• Input: binary image with black and white (feature) voxels.

• Output: gray–level image4 with each voxel value equal to the Euclidean dis-
tance to the closest feature voxel.

• Original filter: see Section 2.3.6

For computing the Euclidean distance transform, Section 2.3.6 uses the algorithm
of Maurer et al. [111]. The aim of the distance transform is to find voxel candidates
that can be located at the centres of the cells. These candidates are found as local
maxima of the distance transform. The algorithm of Maurer et al. relies on a dimen-
sional reduction paradigm and the construction of partial Voronoï diagrams (see
Appendix B for details). Here, this dimensional reduction paradigm is exploited in
order to obtain a streamed version of the algorithm of Maurer et al.

Thanks to its dimensional reduction paradigm, Maurer et al. algorithm [111] is
quite well-suited for streaming. Indeed, as this algorithm performs scans along lines
in each direction, the use the slice-shaped subregions during streaming appears as
a natural choice. For 3-dimensional images, the streaming filter uses slices perpen-
dicular to the z-direction (see Figure 3.2). This choice is further motivated by the
fact that the parallel algorithm implemented in ITK already distributes among the
threads contiguous slice-shaped subregions perpendicular to the z-direction [158].
Thus, this streaming choice is the most likely to minimise cache misses during com-
putations.

However, during the streaming process, distance transforms are computed inde-
pendently on each slice leading to inaccurate results, especially on boundary faces
between two slices. Indeed, the Closest Feature Pixel (CFP) of a given pixel in a slice
may be located outside that slice. As the distance transform does not have data from
outside the current slice, it will take as CFP a Feature Pixel (FP) located inside the
slice. This will lead the distance transform to underestimate certain distances. This
remark is important as it ensures that the below extended region strategy will work.

4Note: here, for visualisation purposes, this gray–level image is coded using a blue-to-red conven-
tion instead of a black-to-white one.
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FIGURE 3.12: Computation of the correct distance transform on slice
Rg, by computing an incorrect distance transform on slice Rgext. See

text for details.

3.7.1 Extended region strategy

The aim of computing the distance transform on an extended region is to be able
to retrieve the exact distance transform of an image (as there was no streaming at
all) while performing streaming and, thus, never have to load all the image data in
memory at once. This can be achieved by computing inexact distance transforms on
extended image regions. As a matter of fact, the distance transforms will be mostly
inexact on the faces of the considered slices. On the contrary, they should be almost
(if not entirely) exact for pixels located in the “bulk” (inside) of the slice. Naturally,
this assumption depends on the distribution of feature pixels inside the considered
image. If feature pixels are rare and/or unevenly distributed inside the image, this
assumption is more likely to be wrong.

Though, in the context of image analysis of cellular materials, feature pixels can
generally be considered as homogeneously distributed at the scale of several typical
cell size. This is a common assumption done in the context of computational ho-
mogenisation [84]. For slices with thickness of the order of several (three or four)
typical cell size, “bulk” pixels should have their corresponding CFP located in the
same slice. The idea of the extended region strategy is thus the following: given a
input requested region, compute an inexact distance transform on a extended region
containing the input requested region. The extended region is computed such that
the distance transform over the contained input requested region will be exact.

More precisely, the extended region strategy consists in computing an incorrect
distance transform on a thicker slice Rgext so as to ensure a correct distance trans-
form inside the initial slice Rg. The thicker slice Rgext is computed as follows (see
Figure 3.12): first, an incorrect distance transform is computed on the initial slice Rg.
Second, voxels xmax− and xmax+ on the boundaries of Rg with maximum associated
(incorrect) distances ld and hd are searched for. Third, the slice Rg is extended to
Rgext along both directions by, respectively, ld and hd voxels. Finally, an incorrect
distance transform is computed on Rgext, with the guarantee to be correct on slice
Rg. The correct distance transform is then returned on slice Rg.
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3.7.2 Discussion

1. The extended region strategy is similar to the one applied for computing the
histogram needed by the algorithm of Ridler & Calvard and takes some ideas
of the extended-region strategy used for the Box-filter.

2. If a cell traverses the whole image or if the feature pixels are rare and/or un-
evenly distributed inside the image, the returned extended region can be the
largest possible region (i.e., in general the whole image) or, at least, a large part
of it. For that case, the above strategy is pointless as (almost) the whole image
has to be loaded into memory. Nevertheless, it is believed that such a case is
extreme and seldom arise in the context of image analysis of cellular materials
(and especially foams). Actually, having a foam sample with one cell travers-
ing most of the sample is an almost certain sign that the sample is not well
suited for any study of any kind5.

3. The extended region Rgext is bigger than necessary, as upper bounds are used
for computing the extension in each direction. In general, the distance trans-
form is therefore exact over a bigger region than Rg. These bounds may be
tighten if the full positions of the CFPs of xmax± are taken into account. For
the moment, only their distances to their corresponding points are considered
here.

3.7.3 Distance transform of a subregion of an image

This section demonstrates that the above heuristic extended region strategy is actu-
ally mathematically correct and accurate.

In order to ensure an exact distance transform on the input requested region, a first
inexact distance transform is computed on this region. Then, the below propositions
and definitions are used.

Proposition 3.1. Given a binary image I of domain DI and two image regions Rg1
and Rg2 such that Rg1 ⊆ Rg2 ⊆ DI , and a distance transform D, then:

∀x ∈ Rg1,
[

D|Rg1
(I)
]

(x) ≥
[

D|Rg2
(I)
]

(x)

WhereD|Rgi
, i = 1, 2 denotes the distance transform restricted to regions Rgi, i =

1, 2.

i.e., the pixel values of the distance transform over region Rg1 are bigger or equal
to pixel values of the distance transform over region Rg2.

Proof. If the CFP u of a point x ∈ Rg1 is located outside Rg1 (i.e. u ∈ Rg2 \ Rg1),
the distance transform will look for the closest FP v ∈ Rg1 of x. Therefore d(x, v) ≥
d(x, u), where d is the distance associated to the distance transform. If it is not the
case, this would mean that u is not the CFP of x, which is a contradiction.

If u ∈ Rg1, then u = v and
[

D|Rg1
(I)
]

(x) =
[

D|Rg2
(I)
]

(x).

5Excepted if the aim is precisely to study such samples. . .
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Corollary 3.1. From proposition 3.1 and its hypothesises it follows:

∀x ∈ Rg1, if u ∈ Rg2 is the CFP of x, then d(x, u) ≤
[

D|Rg1
(I)
]

(x)

i.e. u is located somewhere in a ball of radius
[

D|Rg1
(I)
]

(x) centred on x.

Proof. Let’s suppose the above corollary is false:

∃x ∈ Rg1 such that d(x, u) >
[

D|Rg1
(I)
]

(x).

Then, by proposition 3.1, d(x, u) >
[

D|Rg2
(I)
]

(x).
This means that u is not the CFP of x inside the region Rg2, which is a contradic-

tion.

Interior boundaries of image

Definition 3.1. Given an image I of domain DI , and a region Rg ⊆ DI , x ∈ Rg is
said to belong to an interior boundary of Rg if ∃y ∈ NI(x) | y /∈ Rg.

Where NI(x) designates the neighbouring pixels of x. See Figure 3.13b.

Definition 3.2. Given an image I of domain DI , x, y ∈ DI are said to be linked if
x ∈ NI(y) or y ∈ NI(x). See Figure 3.13c.

Definition 3.3. Given an image I of domain DI , a set of pixels {zi}1≤i≤N ⊆ DI , is
said to be chained if zi is linked to zi+1, i = 1, . . . , N − 1.

Such a set forms a chain of linked pixels. See Figure 3.13d.

Definition 3.4. Given an image I of domain DI and a region Rg ⊆ DI , x, y ∈ Rg are
said to be chained inside Rg if it exists a chain C = {zi}1≤i≤N ⊆ Rg such that x, y ∈ C.
See Figure 3.13d.

Definition 3.5. Given an image I of domain DI , a region Rg ⊆ DI and a pixel x

located on an interior boundary of Rg, the interior boundary FrRg(x) of Rg relatively
to x is:

FrRg(x) = {y ∈ interior boundary of Rg | y and x are chained inside Rg}. See
Figure 3.13e.

Definition 3.6. Given an image I of domain DI , the interior boundaries of a region
Rg ⊆ DI are:

FrRg =
{

y ∈ FrRg(x) | x ∈ interior boundary of Rg
}

. See Figure 3.13e.

Definition 3.7. Given an image I of domain DI , a region Rg ⊆ DI and x belonging
to an interior boundary of Rg, the interior boundary FrRg(x) is said to be flat for the
direction Rd if:
∀y, z ∈ FrRg(x), yd = zd.

Where the subscript d indicates the d–th component of a vector. See Figures 3.13f,
3.13g and 3.13h.

Definition 3.8. Given an image domain DI of dimension n, a region Rg ⊆ DI is said
to be parallelepipedic if it is of the form Rg = [b1, t1] × . . . × [bn, tn]; bi, ti ∈ R, i =
1, . . . , n. See Figure 3.14.
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(a) Two pixels x and y inside a region Rg of an
image of domain DI .

(b) Pixel x ∈ Rg belongs to the interior bound-
ary of Rg because at least one of its neighbouring
pixels (in dark–gray colour) do not belong to Rg,

while it is not the case for pixel z.

(c) Pixels x and y are linked because their respec-
tive neighbouring regions are overlapping, while

it is not the case for pixel z.

(d) Pixels z1 = x, z2, z3 and z4 = y are chained
inside Rg.

(e) Interior boundary of Rg w.r.t pixel x (dark–gray
pixels).

(f) Flat interior boundary of Rg w.r.t pixel x along
direction d = 1 (dark–gray pixels).

(g) Flat interior boundary of Rg w.r.t pixel y along
direction d = 1 (dark–gray pixels).

(h) Flat interior boundary of Rg w.r.t pixel z along
direction d = 2 (dark–gray pixels).

FIGURE 3.13: Schematics illustrating definitions 3.1 to 3.8 (see text).
DI : whole image domain (white and light–gray pixels), Rg: consid-
ered region inside DI (light–gray pixels). Vectors ~e1 and ~e2 indicate

directions d = 1 and d = 2 respectively.
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FIGURE 3.14: Schematic illustrating definition 3.8 (see text). DI :
whole image domain (white and light–gray pixels), Rg an Qg: con-
sidered regions inside DI (light–gray pixels), which are, respectively,

parallelipipedic and non–parallelipipedic.

Useful lemmas

Lemma 3.1. (Inspired from property 4 of Maurer et al. [111]). Given an image I of
dimension n and domain DI , a region Rg ⊆ DI , y ∈ Rg and x belonging to a flat
interior boundary of Rg for the direction Rd. Moreover, u is the CFP of x and v is the
CFP of y such that:

1. xi = yi, ∀i 6= d; i = 1, . . . , n.

2. xd < yd (resp. xd > yd).

3. ui = vi, ∀i 6= d; i = 1, . . . , n.

4. ud, vd ≤ yd (resp. ud, vd ≥ yd).

Then ud ≤ vd (resp. ud ≥ vd) (see Figure 3.15).

Proof. The proof is given for the ’<’ case. It is similar for the converse case. If the
lemma is false, then vd < ud ≤ xd < yd and if d is the distance associated to the
distance transform: d(y, u) < d(y, v).

However, v is the CFP of y. This implies: d(y, v) ≤ d(y, u), which is a contradic-
tion.

Lemma 3.2. (Inspired from property 4 of Maurer et al. [111]). Given an image I of
dimension n and domain DI , a region Rg ⊆ DI , y ∈ Rg and x belonging to a flat
interior boundary of Rg for the direction Rd. Moreover, for the Euclidean distance
transform u is the CFP of x and v is the CFP of y such that:

1. xi = yi, ∀i 6= d; i = 1, . . . , d.

2. xd < yd (resp. xd > yd).

3. ud, vd ≤ yd (resp. ud, vd ≥ yd).

Then ud ≤ vd (resp. ud ≥ vd) (see Figure 3.16).
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FIGURE 3.15: For an image of domain DI , a region Rg ⊆ DI and
pixels x ∈ interior boundary of Rg (FrRg(x)) and y ∈ Rg located along
the direction Rd such that xd < yd: if their respective CFP (closest

feature pixels) u and v are also aligned along Rd, then ud ≤ vd.

Proof. The proof is given for the ’<’ case. It is similar for the converse case. In that
case, let’s denote êd = (0, . . . , 0, 1, 0, . . . , 0) the d-th canonical vector of Rn which
consists on an all zeros tuple except on the d-th position which is a one.

Let’s ũ and ṽ be the following projections of respectively u and v on the line Rd:
ũ = < êd|u > êd + t = udêd + t

ṽ = < êd|v > êd + t = vdêd + t

Where: t = (t1, . . . , tn) with ti =

{
xi i 6= d
0 i = d

Then, ũ and ṽ satisfy hypothesis 3 of lemma 3.1 and therefore ud ≤ vd.

Lemma 3.3. Given an image I of domain DI , a region Rg ⊆ DI , a pixel a belonging
to a flat interior boundary of Rg for the direction Rd and the distance transform D.
∀x ∈ FrRg(a) such that u is CFP of x and ud ≤ xd (resp. ud ≥ xd):

ud ≥ xd − [D(I)] (xmax) (resp. ud ≤ xd + [D(I)] (xmax)).

Where xmax = arg max(z∈FrRg(a)) {[D(I)] (z)} and [D(I)] (z) = miny∈DI {d(z, y) | I(y) = 0}
is the distance transform of pixel z (see Appendix B).

Proof. Given an x ∈ FrRg(a) of CFP u such that ud < xd or ud > xd. Then, for the
distance d associated to the distance transform D and the dth canonical vector êd of
Rn:

|ud − xd| = d(udêd, xdêd)
≤ d(udêd + ũ, xdêd + x̃) (Triangular inequality and symmetry)
= d(u, x)
= [D(I)] (x)
≤ [D(I)] (xmax)

Where: ũ = u− udêd and x̃ = x− xdêd.

If ud ≤ xd: −ud + xd ≤ [D(I)] (xmax)→ ud ≥ xd − [D(I)] (xmax).
If ud ≥ xd: ud − xd ≤ [D(I)] (xmax)→ ud ≤ xd + [D(I)] (xmax).
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FIGURE 3.16: For an image of domain DI , a region Rg ⊆ DI and
pixels x ∈ interior boundary of Rg (FrRg(x)) and y ∈ Rg located along
the direction Rd such that xd < yd: if their respective CFP (closest

feature pixels) are u and v, then ud ≤ vd.

Lemma 3.4. Given:

1. An image I of dimension n and domain DI .

2. A parallelepipedic region Rg ⊆ DI .

3. The Euclidean distance transform ED.

4. A pixel a belonging to a flat interior region of Rg for the direction Rd.

5. A pixel y ∈ Rg such that ad ≤ yd (resp. ad ≥ yd).

6. v the CFP of y such that vd ≤ yd (resp. vd ≥ yd).

Then: vd ≥ xmax
d − [ED(I)] (xmax) (resp. vd ≤ xmax

d + [ED(I)] (xmax)).

Where: xmax = arg max(z∈FrRg(a)) {[ED(I)] (z)}.

Proof. The proof is given for the ’≤’ case. It is similar for the converse case.
Let’s x ∈ FrRg(a) be such that xi = yi, ∀i 6= d; i = 1, . . . , n. Such a x exists

because FrRg(a) is flat and Rg is parallelepipedic.

Let’s u be the CFP of x such that ud ≤ xd.
By lemma 3.3 ud ≥ xd − [ED(I)] (xmax).

As FrRg(a) is flat for the direction Rd and, x, xmax ∈ FrRg(a), it follows that
xd = xmax

d and ud ≥ xmax
d − [ED(I)] (xmax)

If yd = xd, then vd = ud and the proof is finished.
If xd < yd, then ud ≤ xd < yd and the conditions of lemma 3.2 are satisfied.

Hence: vd ≥ ud ≥ xmax
d − [ED(I)] (xmax).
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Propositions

Proposition 3.2. Given:

1. An image I of dimension n and domain DI .

2. A parallelepipedic region Rg ⊆ DI .

3. The Euclidean distance transform ED.

4. A pixel a belonging to a flat interior region of Rg for the direction Rd.

5. A pixel y ∈ Rg such that ad ≤ yd (resp. ad ≥ yd).

6. v the CFP of y such that vd ≤ yd (resp. vd ≥ yd).

Then: vd ≥ ad −
[

ED|Rg(I)
]

(xmax
|Rg

) (resp. vd ≤ ad +
[

ED|Rg(I)
]

(xmax
|Rg

)).

Where: xmax
|Rg

= arg max(z∈FrRg(a))

{[

ED|Rg(I)
]

(z)
}

.

This proposition means that any pixel in a parallelepipedic region Rg has its CFP
located below a given distance in a given direction from the boundaries of Rg. More-
over, this distance can be computed only by knowing the distance transform on Rg.
This proposition is at the core of the extended region strategy.

Proof. On the one hand, lemma 3.4 ensures that exists xmax such that vd ≥ xmax
d −

[ED(I)] (xmax) (resp. vd ≤ xmax
d + [ED(I)] (xmax)).

On the other hand, with Rg1 = Rg and Rg2 = DI , proposition 3.1 states that:

∀x ∈ Rg,
[

ED|Rg(I)
]

(x) ≥ [ED(I)] (x).

Moreover, as FrRg(a) is flat for direction Rd: ad = xmax
d .

Hence: vd ≥ ad −
[

ED|Rg(I)
]

(xmax
|Rg

) (resp. vd ≤ ad +
[

ED|Rg(I)
]

(xmax
|Rg

)).

Definition 3.9. Given an image I of dimension n and domain DI , the Euclidean
distance transform ED, and a parallelepipedic region Rg = [b1, t1]× . . .× [bn, tn] ⊆
DI , the extended region Rgd

ext in a given direction d, (1 ≤ d ≤ n) is:
Rgd

ext = [b1, t1]× . . .× [bd−1, td−1]× [bd − ld, td + hd]× [bd+1, td+1]× . . .× [bn, tn].

Where: ld =
[

ED|Rg(I)
]

(xmax−) and hd =
[

ED|Rg(I)
]

(xmax+).

With: xmax± = arg max(z∈FrRg(a±))

{[

ED|Rg(I)
]

(z)
}

and a+, a− two tuples ofRn

such that, respectively, a−d = bd and a+d = td.

It should be noted that it is not necessary to compute xmax± itself, only the Eu-
clidean distance transform is needed.

Definition 3.10. Given an image I of dimension n and domain DI , the Euclidean
distance transform ED, and a parallelepipedic region Rg = [b1, t1]× . . .× [bn, tn] ⊆
DI , the extended region Rgext is the union of the extended regions in all directions
cropped by DI : Rgext =

(
∪n

d=1Rgd
ext

)
∩ DI .
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FIGURE 3.17: For an image of domain DI , a region Rg ⊆ DI an ex-
tended region Rgext is computed such that ∀y ∈ Rg with CFP (closest
feature point) v, then v ∈ Rgext. The extended region Rgext is deter-
mined by computing the maxima ld and hd of the inexact Euclidean
distance transform over Rg on the boundaries FrRg(a

±). Computing
the inexact Euclidean distance transform over Rgext then ensures that
this transform is exact on Rg. y ∈ Rg is an arbitrary pixel and v is
its feature pixel. xmax± are the boundary pixels where the maxima
are located, and umax− is the CFP of xmax−. Rd is the direction of the

extension (only one direction for the sketched case).

Corollary 3.2. Given an image I of domain DI and a parallelepipedic region Rg ⊆
DI : ∀y ∈ Rg, if v is the CFP of y for the Euclidean distance transform, then v ∈ Rgext.

This corollary means that the inexact Euclidean distance transform computed
over the extended region Rgext is guaranteed to be exact over the initial region Rg
(see Figure 3.17).

Proof. This follows immediately from proposition 3.2.

The extended region strategy is thus the following: given a parallelepipedic subre-
gion Rg of an image I of domain DI , the maxima of the Euclidean distance transform
are computed over each interior boundary of Rg using only the pixels of Rg (the rest
of the image is not loaded into the memory at this stage). Then, a new extended re-
gion Rgext is computed accordingly to definition 3.10 and a new Euclidean distance
transform is computed over Rgext. Corollary 3.2 ensures that the Euclidean distance
transform is then exact over Rg.
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FIGURE 3.18: Temporary and main pipeline for computing the exact
distance transform of an image while streaming.

3.7.4 Implementation of the strategy

In order to compute the needed extended regions, a temporary pipeline is set thanks
to the otb::PersistentFilterStreamingDecorator6 and the class otb::PersistentDistanceCorrection-
Filter deriving from the otb::PersistentImageFilter. When the temporary pipeline is
updated, this derived class updates the distance filter on each slice and computes the
needed extended regions. It then passes the extended regions to the ResizeRegion
filter. The ResizeRegion filter updates the main pipeline by calling-back the distance
filter (see Figure 3.18). The ResizeRegion filter does not process the data. All it does, is
to query upstream the extended regions computed by the temporary pipeline dur-
ing the negotiation process, and to return downstream the required output regions.
By this mean, the ResizeRegion filter receive from the distance filter an inaccurate dis-
tance transform on an extended region, and returns downstream the exact distance
transform on the initial required region. Figure 3.19 compares what happens with
the euclidean distance transform of a 2-dimensional image while streaming with ten
slices without and with the extended region strategy. Table 3.1 shows by how much
each input requested region Rg has been extended on the left and right-hand sides
and the sizes of the extended regions Rgext. It can be seen that each extended region
Rgext is on average ≈ 4.72 times thinner than the original (670× 670) image.

6See the website
for a more comprehensive description of this feature.
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(a) Original binary image before the
euclidean distance transform.

(b) Direct euclidean distance trans-
form of the whole original image.

Arbitrary scale.

(c) Euclidean distance transform of
the original image by naïve stream-

ing (10 slices).

(d) Euclidean distance transform of
the original image by streaming (10
slices) using the extended region

strategy.

(e) Difference between the original
Euclidean distance transform 3.19b
and its naïve streamed version 3.19c.
Differences appear especially at the

boundaries of each slice.

(f) Difference between the original
euclidean distance transform 3.19b
and streamed version with extended
region strategy 3.19d. No difference

appears.

FIGURE 3.19: Example of Euclidean distance transforms on a (670×
670) 2–dimensional image without and with the extended region

strategy.
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TABLE 3.1: Left and right extensions and final sizes of extended re-
gions Rgext needed for computing the exact Euclidean distance trans-
form over ten (670× 67) slices of the (670× 670) 2-dimensional image

shown in figure 3.19a.

Slice Left extension Right extension Rgext

1 0 42 670× 109
2 42 40 670× 149
3 40 39 670× 146
4 47 45 670× 159
5 52 41 670× 160
6 39 38 670× 144
7 38 30 670× 135
8 49 32 670× 148
9 59 36 670× 162
10 39 0 670× 106
Average 40.5 34.3 670× 141.8

3.8 Streaming of distance post-processing (step 3)

• Aim: smooth a distance transform or perform other post-processing tasks.

• Input: gray–level image representing a distance transform.

• Output: gray–level image representing the corresponding smoothed distance
transform.

• Original filter: see Section 2.3.7

If some additional filters are added in step 3, such as a smoothing step for the
distance transform, the user must ensure that they are streamable in order to benefit
from this feature.
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3.9 Streaming of local maxima (step 4)

• Aim: given a gray–level image representing the distance transform of a bi-
nary foam image, identify local maxima that will be used as seeds for growing
ellipsoids.

• Input: gray–level image.

• Output: gray–level image marked with local maxima.

• Original filter: see Section 2.3.8.

The procedure for finding local maxima of the distance transform described in
Section 2.3.8 uses the algorithm of Pham [130]. This algorithm first find maxima can-
didates by only considering slope changes along scanned lines (see Figure 2.22). It
then select the genuine local maxima among the candidates by looking at the neigh-
bours around each candidate and computing local Hessians on each one.

The computation of local maxima from the distance transform in section 2.3.8 re-
quires modifications to the original algorithm of Pham [130]: it needs to “scan” along
voxel lines for local maxima candidates. The algorithm has been implemented such
that these voxel lines are always located inside a given slice.

More precisely, given a requested region Rg ⊂ DI of a grayscale image I of do-
main DI , the modified algorithm of T.Q. Pham (7) requires a neighbourhood around
the region Rg. This request is handled using the image region negotiation process
between filters, in a similar fashion that has been done for the Box filter. Moreover,
in order to find all local peaks along a given 1D-restriction line of the considered
image in the modified algorithm of T.Q. Pham, the 1D-restriction lines Ĩd are ori-
ented along the x-axis, while the streaming is performed along slice-shaped regions
oriented perpendicularly to the z-axis (see Figure 3.2).

Computation of local maxima candidates by this algorithm is thus exact. Local
maxima are then selected from candidates by analysing the values associated to their
neighbouring voxels in a region of radius R. In order to ensure a correct computation
of the local maxima inside the current slice Rg, the same procedure as described
earlier for step 2 is used: the current slice Rg is extended to a thicker slice Rgext

where the (incorrect) maxima are looked for, and the (guaranteed correct) maxima
inside slice Rg are returned.
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The computation of the thicker slice Rgext is, however, simpler than in step 2:
extension distances ld and hd are simply equal R; where R is computed as:

R = max (Ruser, RHessian) (3.1)

With:

• Ruser is the radius of the neighbourhood requested by the user for testing each
maximum candidate against its neighbouring pixels.

• RHessian is the radius of the neighbourhood requested for computing an accu-
rate Hessian around each maximum candidate (see Section 2.3.8 on page 52
and following).

3.9.1 Note on boundaries

In order to detect local maxima at the boundaries ∂DI of domain DI , pixels y belong-
ing to the neighbourhood of NI(x) and located outside the domain DI (y /∈ DI) are
set to their minimal possible value (i.e. for a grayscale image I this minimal possible
value is 0).

Figure 3.22 shows a comparison example of maxima found on a 670 × 670 2-
dimensional image when streaming it into ten slices using the extended region strat-
egy and without the extended region strategy.
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(a) Original binary image before the
non-maxima suppression.

(b) Non-maxima suppression
computed from the distance

transform 3.19b of image 3.22a.

(c) Non-maxima suppression of the
distance transform of the original
image by naïve streaming (10 slices).

(d) Non-maxima suppression of the
distance transform of the original
image by streaming (10 slices) using

the extended region strategy.

(e) Difference between the original
non-maxima suppression 3.22b and
its naïve streamed version 3.22c. Dif-

ferences appear.

(f) Difference between the original
non-maxima suppression 3.22b and
its streamed version 3.22d with ex-
tended region strategy. No differ-

ence appears.

FIGURE 3.22: Example of non–maxima suppression on a (670× 670)
2–dimensional image with σ = 1.5, eigenTol = 10−5, and tol = 10−5

and Ruser = 5 (see algorithm 7 and/or table 2.5). Maxima are ar-
tificially highlighted as red squares for visualization purposes. Cell

walls appear in light gray.
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FIGURE 3.24: Growth of ellipsoids inside a slice Rg. If some ellip-
soids grew outside Rg (red ellipsoids), their growths are recomputed
in a thicker slice Rgext until no more ellipsoids grow outside the last

considered slice.

3.10 Streaming of ellipsoid growth and merge (steps 5 and 6)

• Aim: from found local maxima, fit ellipsoids to cells. Cluster and merge over-
lapping ellipsoids so to obtain one fitted ellipsoid per cell.

• Input: local maxima and threshold image.

• Output: parent ellipsoids, each fitted to one particular cell.

• Original filter: see Section 2.3.9.

Regarding the growth of parent and auxiliary ellipsoids (Sections 2.3.9 and 2.3.11),
a similar strategy as in Sections 3.7 and 3.9 is used. Ellipsoids with centres located
inside the current slice Rg are grown. If some of the ellipsoids grew outside of the
current slice Rg, their growths are recomputed within a thicker slice Rgext (see Fig-
ure 3.24). If the slice Rgext is not thick enough (meaning that there are still some el-
lipsoids which grew outside this slice) then, the slice Rgext is extended further until
no more ellipsoid grows outside it or if a boundary of the CT-scan images is reached
(meaning that there are no more voxel data available beyond the extended region
Rgext). Figure 3.25 compare qualitatively parent ellipsoids obtained on a 3D-image
taken in a whole, and parent ellipsoids obtained on the same 3D-image streamed us-
ing 10 slices. Algorithm 35 describes how to expand correctly ellipsoids while using
streaming.
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(a) (b)

FIGURE 3.25: Ellipsoids generated from the 3D-image in (a) “nor-
mal” and (b) streaming (10 slices) modes. No differences can be seen.
3D foam image provided by E. Plougonven (department of Applied
Chemistry, University of Liège). Note: no ellipsoid merging were

performed.

Algorithm 35 Given a set of ellipsoids E = {Ei}1≤i≤M and a box Bslice defining the
current considered image slice, expands the ellipsoids as much as possible.

Require: Set of ellipsoids E = {E1, . . . , EM}, box slice Bslice of image I, image do-
main DI .

Require: Pixel value p ∈ Im(Bslice) figuring the value associated to the cell walls
(feature pixel).

1: procedure GROWTHELLIPSOIDSINSIDESLICE(E, Bslice, DI)
2: repeat

3: need_extension← f alse.
4: for 1 ≤ i ≤ M do

5: Ei ← ELLIPSOIDEXPAND(Bslice, p, Ei) ⊲ Algo. 13
6: Bi ← AXISALIGNEDBOX(Ei) ⊲ algorithm 27.
7: if left side of Bi < left side of Bslice then

8: need_extension← true.
9: left side of Bslice = left side of Bi.

10: end if

11: if right side of Bi > right side of Bslice then

12: need_extension← true.
13: right side of Bslice = right side of Bi.
14: end if

15: end for

16: if need_extension then

17: Bslice ← Bslice ∩ DI .
18: Load into memory image data inside slice Bslice. ⊲ This is easily done

with ITK by setting the RequestedImageRegion to Bslice.
19: end if

20: until !need_extension
21: end procedure
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3.10.1 Quantitative analysis

In order to check if the above strategy sketched in figure 3.24 and given in algo-
rithm 35 is effective, a comparison test has been conducted on a 670 × 670 × 670
3D-image, involving 4250 (non-merged) ellipsoids. Ellipsoids obtained by the “nor-
mal” process (i.e. by loading the whole 3D-image in memory) and by streaming
(with 10 slices) were compared in Figure 3.25. Furthermore, a quantitative analy-
sis comparing two-by-two the ellipsoids obtained by the “normal” and streaming
modes has also been conducted. Definition 3.11 provides the quantitative criterion
for measuring dissimilarities between ellipsoids.

Definition 3.11. Let’s E1 (c1, M1) and E2 (c2, M2) be two ellipsoids in an Euclidean
affine space Υn, then their difference is given by the application 3.2.

∆Υn
: Υn × Υn → R+, (E1, E2) 7→ ∆Υn (E1, E2) = ‖c1 − c2‖2 + ‖M1 −M2‖2 (3.2)

The first term in the expression of the difference ∆Υn
, which is the simple Euclidean

norm of a vector, tells if there is a translation between the two considered ellipsoids,
while the second term, which is the 2 matrix-norm7, measures the shape dissimilar-
ity between them.

Computation of the difference

The total difference di f ftotal , mean difference di f fmean, and maximum difference di f fmax

between the two sets of ellipsoids – obtained from the 3D-image using the “normal”
and streamed modes – have been computed as follows:

di f ftotal =
m

∑
i=1

∆Υn

(
Enormal,i, Estreaming,i

)
(3.3)

di f fmean =

(

1
m

m

∑
i=1

∆2
Υn

(
Enormal,i, Estreaming,i

)

)1/2

(3.4)

di f fmax = maxi=1,...,m ∆Υn

(
Enormal,i, Estreaming,i

)
(3.5)

Where m is the number of ellipsoids, Enormal,i is the ith ellipsoid computed in
“normal” mode, and Estreaming,i is the corresponding ellipsoid computed in streaming
mode.

The three above differences have been numerically computed on the data shown
in Figure 3.25 for 2, 10, 20, . . . , 80 slices. For all cases, no difference (up to numer-
ical precision) has been observed with respect to the ellipsoids obtained using the
“normal” mode.

It should be emphasised that the computation of the ellipsoids, both in “normal”
and streaming modes, depends on the output of the filters described in the previ-
ous chapters. Particularly, the above observation indirectly shows that the different
strategies used for handling the streaming for each former filter is indeed effective.

7The 2 matrix-norm of a matrix A can be computed as
√

λ1, where λ1 is the highest eigenvalue of
At A.
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3.11 Discussion

With the adaptations described above, it is possible to use the proposed image anal-
ysis procedure within a streaming framework, provided that each optional added
filter (step 3) is also streamable. As shown in Section 3.12 this allows processing CT-
scan data of foams that would normally not fit in the available RAM. Nonetheless,
there is one downside and one limitation when using streaming. The downside is
that the computational time for processing the whole considered image will increase
compared to a normal image analysis procedure (where the whole CT-scan data is
fitted into the RAM). This is caused by the fact that some algorithms used for the
image analysis procedure have to be called twice. That fact can be seen as “commu-
nication costs” between slices. The scalability will therefore not be what one would
expect from a parallelised setting. Regarding the limitation, there is no strict guar-
antee that the extended regions Rgext will not cover the entire CT-scan data set (and
thus obliterating the whole point of doing streaming). As a matter of fact, the biggest
extended region Rgext will approximatively be of the size of the biggest cell present
in the foam. In general, cells seldom span an entire foam sample, especially for large
samples. Thus, the memory benefits obtained by streaming can be significant.
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3.12 Memory usage

Memory usage can be considered as an issue regarding the techniques of geo-
metric reconstructions of foams. Indeed, storing in the RAM the CT-scan data alone
may already be an impossible task for standard computers (such as consumer mar-
ket computers), even less regarding the processing of those data. The above pro-
posed image analysis procedure aims to overcome this limitation by trying to use
less RAM than a standard image analysis procedure (and, especially, the watershed).
Moreover, its streaming ability offers the possibility for standard computers to pro-
cess CT-scan data that would not even fit their RAM.

In order to determine the ability of the proposed image analysis procedure, an
investigation has been conducted on three types of data sets. Namely:

• Six sets of artificially generated honeycomb foams of different sizes, ranging
from a cube of 150× 150× 150 voxels to a cube of 1800× 1800× 1800 voxels
(see left of Figure 3.27).

• Two sets of artificially generated random foams using the DN-CT-SCAN model [79].
One set being a cube of 200× 200× 200 voxels and the other a cube of 400×
400× 400 voxels (see right of Figure 3.27).

• One set of a real–world foam presented in Section 3.13.1, and of size 600 ×
600× 600 voxels.

Table 3.2 reports the sizes of the different generated artificial honeycomb foams
along with their corresponding number of cells. The cell sizes are kept constant for
all honeycomb foams. Table 3.2 also reports the theoretical minimum amount of
RAM needed for storing the corresponding data, assuming 8 bytes per voxel. The
last three columns display the measured peak memory usages8 for the watershed
algorithm (as implemented in the ITK library [69]) and the proposed image analy-
sis procedure without and with using the streaming ability (using 10 slices). The
“> 64.0” entry in the table corresponds to a peak memory usage exceeding the max-
imum of 32 GB RAM available (extended to 64 GB RAM thanks to the RAM com-
pression utility ZRAM9) of the computer on which this investigation was conducted.
It was, therefore, not possible to measure the peak memory usage for this entry of
the table.

From Table 3.2 it can be seen that the proposed image analysis procedure is indeed
less memory demanding than the watershed algorithm (as implemented in the ITK
library [69]) for the considered artificial honeycomb data sets. Especially, the usage
of streaming allowed reducing the peak memory usage by a large amount. Thanks to
streaming, it was possible to process an artificially generated foam of 1800× 1800×
1800 ≈ 5.8 109 voxels; which, due to RAM limitations, was possible neither using
the watershed nor using the proposed image analysis procedure without using the
RAM compression utility ZRAM.

8Peak memory usages were measured using the software valgrind [118].
9❤tt♣s✿✴✴❦❡r♥❡❧♥❡✇❜✐❡s✳♦r❣✴▲✐♥✉①❴✸✳✶✹
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FIGURE 3.27: Left: artificially generated honeycomb foam of size
600 × 600 × 600 voxels and containing 1430 cells. Right: artificial
foam generated using the DN-CT-SCAN model [79] with 616 random

inclusions.

It should be noted that, technically, only one bit per voxel is required for storing
a thresholded image such as the ones shown in figure 3.27. However, some filters,
such as the (inverse) euclidean distance transform, require at least 4 bytes per voxel
in order to perform their calculations. Distance calculations indeed require a floating
type, or at least a sufficiently “big” integer type (such as “int” encoded on 32 bits)
if one whishes to compute squared distances. Thus, the real storage cost of voxel
data is not 1 bit, but at least 4 bytes per voxel. Here, Table 3.2 considers a worst case
scenario were a filter might require 8 bytes per voxel.

Figure 3.28 displays the peak memory usages for the watershed and the proposed
image analysis procedure, with and without streaming (points). It can be noted
that, for the generated artificial honeycomb foam, the proposed image analysis has
always a lower peak memory usage than the watershed, and that the streaming
increases this trend. Roughly, by using ten slices, the streaming was able to use
ten times less memory than the watershed. This ability can be an advantage when
it comes to process large data sets with limited capabilities, or can authorise the
processing of bigger data sets which were not processable earlier.

Diamonds in Figure 3.28 show the peak memory usages measured for the real–
world foam data set that will be presented in Section 3.13.1. Circles show, for their
part, the peak memory usages on artificial foams generated using the DN-CT-SCAN
model [79], described in Section 4.1, with random inclusions following a statistical
distribution similar to that of the cells of the real-world foam (right of Figure 3.27).
It can be seen that the trends are the same as for the artificially generated foam,
indicating that the streaming strategy is likely also effective on real-world foam data.
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TABLE 3.2: Sizes in pixels, number of cells and minimum RAM (as-
suming 8 bytes per voxel) needed for storing data for artificially gen-
erated honeycomb 3D foams images. Note: Last three columns: mea-
sured peak memory usages for watershed and the proposed image
analysis procedure with and without streaming. Bold values identify

minimum peak memory usages.

Cube side (voxels.) Nb. cells Min. RAM (GB) Watershed (GB) Proposed (GB) Streaming (GB)

150 120 0.03 0.1 0.05 0.07
300 390 0.2 0.7 0.27 0.17

600 1430 1.6 5.7 2.2 0.8

800 3094 3.8 13.4 5.3 2.0

1200 10,500 12.9 45.1 16.4 4.3

1800 34,410 43.5 > 64.0 59.9 14.9

It should be noted, though, that the earlier mentioned limitation of the stream-
ing capability of the proposed image analysis with respect to the maximum cell size
drives the peak memory usage. For instance, if a cell extends across the entire foam
sample, the proposed streaming capability will be of no use for reducing the peak
memory usage. However, for the purpose of reconstructing foam geometries, the
cases of cells extending across the whole foam sample can be considered quite ex-
ceptional. Especially, this case should arise less frequently with larger foam samples,
for which the usage of streaming can be useful.
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FIGURE 3.28: Peak memory usages in GB on a set of artificially gen-
erated honeycomb foams with constant cell size. In blue: watershed
(as implemented in the ITK library [69]). In red and black: proposed
image analysis with and without streaming, respectively. Discontin-
uous lines show the global trends for each method. Diamonds show
the peak memory usages for each method on the real-world data set
presented in Section 3.13.1. Circles show the peak memory usages
on artificial foam data sets generated by random inclusions using the

DN-CT-SCAN model [79] described in section 4.1.
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3.13 Application to foam reconstruction

• Aim: qualitatively visualise the fits of ellipsoids using the proposed processing
image analysis procedure applied to two real–world foams (one open, and one
closed); starting from their respective two 3D CT-scan images.

• Input: 3D raw CT-scan image of a foam.

• Output: set of fitted ellipsoids to the foam’s cells and their associated polyhe-
dra.

3.13.1 Open foam

Data acquisition

A cubic aluminium foam (AlSi7Mg0.3) with an edge length of 15× 15× 15 mm3 and
a pore size of 20 pores per inch (ppi) was purchased from Celltec Material GmbH,
Dresden, Germany. X–ray computed tomography – performed at the Fraunhofer
Institute for Non-destructive Testing (IZFP), Saarbrücken, Germany – was used to
determine the real microstructure of the foam. The scans were performed with a
resolution of 1984× 1984 pixels per layer and a voxel size of 12 µm. From the raw
scanned images, a set of 673 2D-images with a resolution of 711× 711 pixels each
has been extracted (see Figure 3.30).

Image analysis step

The above set of described images contains void boundary regions with no struts at
all. Therefore a subsample made of 613× 598× 621 voxels was extracted in order to
keep only the relevant data. From this subsample, ellipsoids were generated with the
procedure presented in Section 2.3. Table 3.3 gives the parameters that were used.
In this subsample each voxel is of length ≈ 24 µm in all the directions. Figure 3.3110

shows the ellipsoids obtained in a sub-region cropped, for visualisation purposes,
between the 127th and the 484th voxels in each direction. From the images, it can
be noticed that one cell corresponds unequivocally to one ellipsoid. Quantitatively,
if feature voxels represent the struts (in red in the images), 69% of the non-feature
voxels (respectively only 0.3% of the feature voxels) are located inside the ellipsoids;
indicating that the ellipsoids indeed fit the cells and do not cross the struts.

Growing auxiliary ellipsoids allows obtaining a much better fit of the cells as
shown in Figure 3.32. Indeed, 96% of the non-feature voxels are now located inside
at least one ellipsoid, while still only 0.3% of the feature voxels are located inside
an ellipsoid. However, this better fit comes at the expense of optimising a much
larger number of ellipsoids (the number of auxiliary ellipsoids grows linearly with
the number of parent ellipsoids). Nevertheless, this is not an issue for the algorithm
of R. Deits et al. [39] as only the number of associated optimisation problems will
linearly grow and not their dimensions.
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FIGURE 3.30: 3D–image extracted from raw CT-scans of a cubic alu-
minium foam.

TABLE 3.3: Parameters used in the image analysis of the CT–scan data
presented in Section 3.13.1.

Parameter Value Description

Nr 10 Radius of the neighbouring region for testing local maxima candidates.
ǫ 10−5 Hessian threshold for selecting local maxima.
σ 1.5 Gaussian standard deviation used for the convolution kernel.
τ 0.45 Relative intersection volume threshold.
∆θ 10◦ Azimuthal angle increment for discretising ellipsoids.

10Note: All figures in this section were generated using the Paraview software [2]. Surfaces of ellip-
soids were obtained using the tool “contour” of Paraview.
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FIGURE 3.31: Surfaces of the parent ellipsoids (gray) obtained by the
proposed image analysis steps and “struts” voxels extracted from the
raw CT-scans showed for visual comparison (red). Cropped views of

the 613× 598× 621 set for visualisation purposes.

3.13.2 Closed foam

In order to demonstrate the versatility of the presented reconstruction process, it
has been applied to the case of a closed foam. The image analysis steps and the
reconstruction of the geometry are the same as described in the previous sections.

Data acquisition

A cubic polypropylene foam with 4% embedded carbon nanotubes with an edge
length of 750× 750× 750 µm3 was manufactured by F. Wan [177] at the University
of Liège, Belgium. X-ray computed tomography scans where performed at the same
location with a resolution of 670× 670 pixels per layer and a voxel size of 1.12µm,
with a total of 670 layers. Figure 3.33 reports the obtained data set as well as the
different image analysis steps applied to this foam.

Image analysis step

The proposed image processing steps described in Figure 2.3 have been applied to
the above data set with the parameters given in Table 3.4. Figure 3.34 reports the
generated ellipsoids, while Figure 3.35 gives some views of the surface generated
by the auxiliary ellipsoids. In this later figure, it may be noticed some holes in the
reconstructed surface, despite the foam being closed. This is due to the fact that
some cell walls were locally to thin to be resolved by the CT-scan. As a result, some
cells may appear as artificially partially open.
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FIGURE 3.32: Surfaces of the auxiliary ellipsoids (gray) obtained
by the proposed image analysis steps and “struts” voxels extracted
from the raw CT-scans showed for visual comparison (red). Cropped

views of the 613× 598× 621 set for visualisation purposes.

TABLE 3.4: Parameters used in the image analysis of the CT–scan data
presented in Section 3.13.2.

Parameter Value Description

Nr 5 Radius of the neighbouring region for testing local maxima candidates.
ǫ 10−1 Hessian threshold for selecting local maxima.
σ 1.5 Gaussian standard deviation used for the convolution kernel.
τ 0.1 Relative intersection volume threshold.
∆θ 10◦ Azimuthal angle increment for discretising ellipsoids.
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(a) Original CT-scan image. (b) Threshold image. (c) Distance transform image.
Low values represented in
blue, high values represented

in yellow and red.

(d) Local maxima (red balls),
exaggerated for visualisation

purposes.

(e) Parent ellipsoids (gray sur-
faces) in their respective cell.

(f) Surface reconstruction ob-
tained with the auxiliary ellip-

soids.

FIGURE 3.33: Example of the proposed processing steps on a 3D CT–
scan image of a closed polypropylene foam with 4% embedded car-

bon nanotubes manufactured by F. Wan [177].

(a) X-view. (b) Y-view.

(c) Z-view. (d) 3D-view. .

FIGURE 3.34: Surfaces of the parent ellipsoids (gray) obtained by the
proposed image analysis steps and “walls” voxels (red). Cropped

views of the 670× 670× 670 set for visualisation purposes.
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(a) X-view. (b) Y-view.

(c) Z-view. (d) 3D-view.

FIGURE 3.35: Surfaces of the auxiliary ellipsoids (gray) obtained by
the proposed image analysis steps and “walls” voxels (red). Cropped

views of the 670× 670× 670 set for visualisation purposes.





153

Chapter 4

Reconstruction of the geometry

• Aim: obtaining a geometric representation of the microstructure of a foam that
can be used for finite element simulations (see Section 5).

• Input: set of ellipsoids fitted to the cells of a foam.

• Output: geometric surface representation of the microstructure of the foam.

In what follows two different geometrical models (namely the DN-CT-SCAN model
and the Ellipsoidal Model) are used for reconstructing the geometry of a foam and are
compared against the experimental image data. Both of these models use, as starting
point, the ellipsoids and/or their associated polyhedra obtained from the proposed
image analysis procedure given in Section 2.3.

The DN-CT-SCAN model is initialised with the parent ellipsoids or associated par-
ent polyhedra1. The philosophy of this model is then to reproduce an approximation
of the geometry of a given foam using level sets. These level sets are described as
the zeros of combination of distance functions. It is possible to adjust the obtained
approximation of the geometry by considering different distance functions and the
combination thereof. However, it is still not clear, even if there are some guide-
lines from Reference [79], how these distance functions should be chosen and how
to combine them. Finally, a tetrahedral mesh is generated from the level sets.

The Ellipsoidal Model relies on the parent and auxiliary ellipsoids. These ellipsoids
are discretised in a set of points and associated normals. As the parent and auxiliary
ellipsoids may overlap, points and associated normals located strictly inside any
given ellipsoid are discarded. The other points and associated normals are located
on the so–called “exterior” surface of the set of ellipsoids. Then, a closed surface
is reconstructed using a Poisson surface reconstruction. Eventually this surface is
output to the “geo” file format used by the software GMSH [54] which ultimately
generates a tetrahedral mesh of the geometry.

1A parent polyhedron is simply the polyhedron associated to its corresponding parent ellipsoid.
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As it can be noticed, these two models are rather different. On one hand, the DN-
CT-SCAN model relies on distance functions that can be tuned in order to control
wall thicknesses or struts sections. It can be used to obtain a idealised Representa-
tive Volume Element (RVE), similarly as other earlier models using, e.g., Laguerre
tessellations (see Section 1.2.2), but with refinements regarding the control of local
geometric features (see Section 1.2.3). On the other hand, the Ellipsoidal Model is
rather oriented direct discretisation (see Section 1.2.1) and tries to avoid, or at least
alleviates, issues common to direct discretisation models such as memory limita-
tions when handing large data sets. At the same time it tries the faithfully reproduce
local geometric features, including defects such as incomplete struts or wholes in
cell walls; defects that can not be reproduced (at least trivially) by idealised models
such as the DN-CT-SCAN model. It is worth noting that the shapes of the walls and
struts are automatically reproduced based on the CT-scan image used for computing
the ellipsoids. Thus, contrary to the DN-CT-SCAN model, the Ellipsoidal Model does
not require any parameter tuning in order to insure a faithful reproduction of the
microstructure of a foam.

4.1 Reconstruction using the DN-CT-SCAN model

In Reference [79], the authors have developed a method to extract open foam mor-
phologies from inclusions packings using distance functions as described in Refer-
ence [156]. In this first model, the reconstruction of the geometry uses the set of el-
lipsoids that have been generated previously. The ellipsoids can then be used as the
initial packing to extract distance functions that can then be treated to obtain open
foam RVEs. This method presents the advantage of using experimental information
to improve the fidelity.

As described in Reference [156], nearest neighbour distance functions, DNk(x) in
a point x, are defined as the distance from the considered point to the k-th near-
est inclusion. Figure 4.2 illustrates some nearest neighbour distance functions on a
spherical packing. This step ensures that the distance functions are not affected by
the boundary inclusions. The distance functions are then used to extract the modi-
fied “Plateau" function,

OP(x) =
(DN3(x) + DN2(x))

2
− DN1(x) (4.1)

as described in Reference [79], where DN1(x), DN2(x) and DN3(x) are the 1st, 2nd
and 3rd neighbour distance functions respectively. The “Plateau" function enables
the extraction of the 3-sided struts.

The evaluation of the nearest distance field did not bring particular difficulty
when starting from a sphere packing as in Reference [79]. However, in the present
case, it is possible that the ellipsoids used as reference and their associated polyhedra
intersect (see Figure 4.3a). In that case, this distance field DNk is not monotonically
evolving in the intersection region. This problem can be avoided by introducing
an offset to the ellipsoid surface. In Reference [183], the authors have built ad-hoc
level set functions using previously computed distance fields. Similar ad-hoc level
set functions can be built around the ellipsoids that can then be manipulated to re-
move residual interpenetrations by introducing a gap between two selected ellipsoid
based inclusions (see Figure 4.4).
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(a) (b)

(c)

FIGURE 4.2: Functions (a) DN1, (b) DN2, and (c) DN3. Image from
Figure 3.5 in Reference [116].

The distance field associated to an inclusion i, denoted as DSi, is defined as the
signed distance field which is negative inside the inclusion and positive outside.
The distance fields, DSi and DSj, resulting from two inclusions i and j, can be used
to determine their mutual intersection volume as

max(DSi(x), DSj(x)) < 0, ∀i 6= j. (4.2)

The minimum distance to every inclusion other than inclusion i, DOi(x), is given
by:

DOi(x) = min(DSj(x) : ∀i 6= j), (4.3)

And an ad-hoc level set function , Oi(x), can be then extracted as follows:

Oi(x) = max(DSi(x), (DSi(x)− DOi(x))). (4.4)

The zero level associated to the above function gives the ellipsoids in contact as
shown in Figure 4.3b.

The necessary gap can be introduced as an offset c such that:

O
g
i (x) = max(DSi(x), (DSi(x)− DOi(x)) + c), (4.5)
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(a)

(b) (c)

FIGURE 4.3: Distance fields and treatment of inclusions for the DN-
CT-SCAN model. (a) Intersecting ellipsoids. The interpenetration can
be seen by the sectional plot. (b) Post-processing of ellipsoids to avoid
residual inter- penetrations, the ellipsoids now share a common face.
(c) Ellipsoids after post-processing and introduction of a gap, the el-
lipsoids do no longer share a common face. Image from Figure 3.13

in Reference [116].

With the zero level of O
g
i (x) resulting in the necessary inclusion surface of the

inclusion i, as depicted in Figure 4.3c.

The function O
g
i (x) is then used instead of the DSi(x) for refreshing the previously

computed functions DNk:

DNk(x) = min
j
(O

g
j (x)), j ∈ Jk(x) (4.6)

Where Jk(x) denotes the set of k–th neighbours from position x.
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(a) (b)

FIGURE 4.4: (a) Ellipsoids obtained by processing the CT–scan; (b)
Post–processing of ellipsoids to avoid residual interpenetration using

the method described in Reference [183].

(a) (b)

FIGURE 4.5: (a) Polyhedra obtained by processing the CT-scan; (b)
Post–processing of polyhedra to avoid residual interpenetration us-

ing the method described in Reference [183].

The ellipsoids can also be replaced by the polyhedra as the basis inclusion consid-
ering that the polyhedra are closer to the foam geometry (see Figure 4.5). Indeed, as
described in Reference [39], polyhedra are defined by the interior region delimited
by oriented planes. These planes are determined via the surfaces of the struts and
tangents to the surfaces of the associated ellipsoids. Given that the polyhedra always
contain their associated ellipsoid but not any strut, they are closer to the foam geom-
etry than ellipsoids. The distance fields for the polyhedra can be similarly generated
as for the ellipsoids.

The ellipsoids and polyhedra obtained from the CT-scan in Section 2.3 have the
problem of boundary effect due to insufficient information at the boundaries to ex-
tract statistically representative inclusions. In order to analyse RVEs that are similar
in size to those that were tested experimentally, it is possible to continue the pro-
cess of adding inclusions using random sequential addition (RSA), as described in
Reference [43]. The distance fields obtained previously ensure that the new spher-
ical inclusions are statistically valid to extract open foam morphologies [79]. Once
the RSA process is complete, an open foam morphology can be extracted using the
computed distance fields.



158 Chapter 4. Reconstruction of the geometry

1.90

1.43

0.95

0.47

0.00

(a)

1.90

1.43

0.95

0.47

0.00

(b)

FIGURE 4.6: Visual representation of the Hausdorff distance in mm
between the CT-scan image and the meshes extracted using DN-CT-
SCAN. (a) Use of ellipsoidal packing. (b) Use of polyhedral packing.

Finally, a finite element mesh is generated using the tool developed in Refer-
ence [43]; where dynamic node repositioning based on level set functions is used
to build high quality conforming meshes using the strategy developed in Refer-
ence [128].

For both packings (ellipsoids and polyhedra), the obtained porosity is around
93.5% which is very similar to that of the original foam of 93%. Thus, the relative
densities of the two samples are considered close enough. The obtained RVE mesh
was refined as explained in Reference [43] and a tetrahedral mesh was extracted us-
ing the Tetgen software [153]. Figure 4.6 shows the Hausdorff distances, computed
using the software Meshlab [34] with 500.000 sample points, between the extracted
RVEs and the thresholded CT-scan image for both ellipsoid and polyhedral packing.
It can be seen, that the polyhedral packing leads to a better representation for the
DN-CT-SCAN model. The maximum Hausdorff distance between the reconstructed
geometry and the struts is 1.48 mm (corresponding to a relative maximum error of
9.9 %) when using the ellipsoid packing, while it reduces to 0.89 mm (corresponding
to a relative maximum error of 5.9 %) with the polyhedral packing. For the poly-
hedral packing, it can be seen that for a statistically validated representation of the
actual foam, the extracted RVE is very close in the reproduction of the various mor-
phological features.

Discussion It should be noted that the DN-CT-SCAN model has also been used
without using the provided ellipsoids and polyhedra by the proposed image anal-
ysis procedure in Section 2.3. For instance, in Reference [79], the methodology for
obtaining an RVE from a given foam sample is based on the extraction of random
tessellations from inclusion packings, following predetermined statistical packing
distribution criteria. Then, in order to ensure obtaining a representative model, var-
ious distance fields need to be combined; which is not a trivial task. The above
results show that the proposed image analysis procedure can efficiently “feed” the
DN-CT-SCAN model. This allows the DN-CT-SCAN model to avoid the use of a
random packing model and offers two main advantages: First there is no need to
perform the challenging task of determining a statistical packing distribution crite-
ria [1]. Second, the provided distribution of ellipsoids/polyhedra is guaranteed to
be the correct one for obtaining a satisfactory matching model to the data, as shown
in Figure 4.6.
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4.2 Reconstruction using the Ellipsoidal Model

In this second model, the reconstruction of the geometry uses the set of parent and
auxiliary ellipsoids that have been generated previously in Section 2.3. The proce-
dure for reconstructing the geometry from the set of ellipsoids is conceptually sim-
ple. First, all ellipsoids (parent and auxiliary) are discretised to a set of points and
associated normals. Then this set of points and normals is used for generating a
closed triangulated surface using a Poisson surface reconstruction. Finally, this tri-
angulated surface is meshed using the GMSH software [54]. What follows describes
the process in details.

4.2.1 Discretisation of ellipsoids

First the iso-surfaces of the parent and auxiliary ellipsoids are discretised into a set of
points and associated normals using the same discretisation technique as in step 6 of
Section 2.3. The angle increment ∆θ is the azimuthal angle increment for discretising
ellipsoids and depicted in Figures 4.7a and 4.7b. Using this technique ensures that
the set of points is approximatively homogeneous. Moreover, the ellipsoid’s iso–
surfaces ISOparam on which the points lie can be chosen so that the porosity of the
final reconstructed geometry matches as much as possible the measured porosity
of the foam. It may be noticed that the auxiliary ellipsoids already closely fit the
real foam geometry. As a consequence, this parameter usually does not need to
be fine tuned and can generally be kept at its default value ISOparam = 1.0; which
corresponds to the ellipsoid’s surfaces. Algorithm 36 describes how to implement
this in practice.

Algorithm 36 Given an ellipsoid E , an azimuthal angle increment ∆θ, and a factor α,
uniformly discretise the iso–surface of value α of E in a set of points with associated
normals.

Require: Ellipsoid E =
{

x ∈ R3 | (x− c)t GGt (x− c) ≤ 1
}

, angle increment ∆θ,
factor α = ISOparam.

1: procedure DISCRETIZEELLIPSOIDWITHNORMALS(E , ∆θ, α)
2: Set of points P← ∅

3: Set of normals N ← ∅

4: for θi = 0; θi ≤ π; θi ← θi + ∆θ do

5: Compute ∆φi as given by eq. 2.85.
6: for φij = 0; φij ≤ 2π; φij = φij + ∆φi do

7: Compute y = (y0, y1, y2) as:

8:







y0 = α sin θi cos φij

y1 = α sin θi sin φij

y2 = α cos θi

9: P← P ∪
{

c + G−ty
}

.
10: N ← N ∪

{(
GGt(y− c)

)
/
∥
∥GGt(y− c)

∥
∥
}

11: end for

12: end for

13: return P, N
14: end procedure
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Then, points associated to a given ellipsoid Ei, but located strictly inside a differ-
ent ellipsoid Ej (w.r.t. the considered iso–surface) are discarded. This ensures only
surface points and associated normals are kept, even if the ellipsoids are intersecting
(see Figure 4.7c). These remaining points and associated normals are hereafter called
exterior points. Algorithm 37 describes how these points are obtained.

Algorithm 37 Given a set of points P , a factor α and a set of ellipsoids E arranged
inside a R*-tree data structure, returns exterior points. Note: boundaries are NOT
taken into account here. See algorithm 38 for that.

Require: E = {E}1≤i≤m a set of ellipsoids arranged in a R*-tree data structure.
Require: P =

{
Pj

}

1≤j≤n
a set of points.

Require: α = ISOparam an iso-surface value. ⊲ Must have the same value os the one
used in algo. 36.

1: procedure EXTRACTPOINTSOUTSIDEELLIPOIDS(E , P , α)
2: Pout = ∅

3: for P ∈ P do

4: E∗ ← E . QUERYNEIGHBOURHOOD(P) ⊲ Queries ellipsoids in the
neighbourhood of P

5: if #E∗ ≤ 1 then ⊲ Point inside at most one ellipsoid
6: if #E∗ = 0 then

7: Pout ← Pout ∪ P
8: else ⊲ Check if P strictly inside ellipsoid
9: E = E∗1

10:
(
c, M = GGt

)
← E ⊲ Get ellipsoid’s centre and metric

11: if (c− P)t M (c− P) ≥ α then ⊲ P not inside the α iso-surface of
ellipsoid E

12: Pout ← Pout ∪ P
13: end if

14: end if

15: end if

16: end for

17: return Pout

18: end procedure

4.2.2 Boundary management

However, at the boundaries there is insufficient information to extract statistically
representative ellipsoids. In order to avoid spurious reconstruction effects a subset
of suitable surface points is determined from the set of surface points as follows.
First, clipping planes are applied in order to discard points too close to the bound-
aries (Figure 4.7d). Second, “holes” created by the clipping planes in the set of points
are filled by adding new points with a similar density as the density of the whole set
of surface points (Figures 4.7e and 4.7f). Associated normals to the new points are
simply set as the corresponding normals of each clipping plane. Algorithm 38 is an
improvement of algorithm 37 that takes into account the boundaries. Thus, in prac-
tice, algorithm 37 is not used and is only mentioned here for pedagogic purposes.
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Algorithm 38 Given a set of points P and associated normals N , a set of planes
Q, a factor α and a set of ellipsoids E arranged inside a R*-tree data structure, re-
turns exterior points. Note: improved version of algorithm 37 that takes into account
boundaries.
Require: E = {E}1≤i≤m a set of ellipsoids arranged in a R*-tree data structure.
Require: P =

{
Pj

}

1≤j≤n
a set of points, and N =

{
Nj

}

1≤j≤n
a set of associated

normals.
Require: Q = {Qk}1≤k≤o a set of planes, and α = ISOparam an iso-surface value. ⊲

Must have the same value as the one used in algo. 36.
1: procedure EXTRACTPOINTSOUTSIDEELLIPOIDSWITHPLANES(E , P , N , Q, α)
2: Pout = ∅

3: Nout = ∅

4: avg← average point distance in P

5: for Q ∈ Q do

6: {PQ,NQ} ← discretise Q as a grid of points of average dist. avg
7: P ← P ∪PQ. N ← N ∪NQ. ⊲ Add points and normals of Q.
8: end for

9: for P ∈ P and N associated to P do

10: pointInsidePlanes← true
11: for Q ∈ Q do ⊲ Loop on planes to see if the current point is on the

“inside” side of all planes.
12: (q, n)← point and normal of plane Q.
13: v = P− q.
14: if n.v > 0 then ⊲ Point not in the “inside” side of the current plane.

Stop here.
15: pointInsidePlanes← f alse. Break.
16: end if

17: end for

18: if NOT pointsInsidePlanes then ⊲ Point not on the “inside” sides of all
planes, test the next point.

19: Continue
20: end if

21: E∗ ← E . QUERYNEIGHBOURHOOD(P) ⊲ Queries ellipsoids in the
neighbourhood of P

22: if #E∗ ≤ 1 then ⊲ Point inside at most one ellipsoid
23: if #E∗ = 0 then

24: Pout ← Pout ∪ P. Nout ← Nout ∪ N
25: else ⊲ Check if P strictly inside ellipsoid
26:

(
c, M = GGt

)
← E∗1 ⊲ Get ellipsoid’s centre and metric

27: if (c− P)t M (c− P) ≥ α then ⊲ P not inside the α iso-surface of
ellipsoid E

28: Pout ← Pout ∪ P. Nout ← Nout ∪ N
29: end if

30: end if

31: end if

32: end for

33: return {Pout,Nout}
34: end procedure
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(a) (b) (c)

(d) (e) (f)

FIGURE 4.7: Schematics of the reconstruction of the geometry from
the ellipsoids obtained in Section 2.3. (a) Obtained ellipsoids from
Section 2.3. (b) Discretised ellipsoids. (c) Only points strictly not
inside ellipsoids are kept. (d) Application of clipping planes for
discarding points too close from boundaries. (e) Set of points with

“holes”. (f) “Holes” filled.

(a) (b)

FIGURE 4.8: Poisson surface reconstruction: from a discrete set of
oriented points belonging to a closed volume M (a), reconstruct its
corresponding indicator function (b). Images from

.

4.2.3 Poisson surface reconstruction

Finally, in order to obtain the reconstructed geometry of the foam from the set of
suitable points and normals ~V, a Poisson surface reconstruction is performed [77]
using the eponymous CGAL package2. The Poisson surface reconstruction is the
process consisting in finding the indicator function χM best approximating a closed
volume M for which only a discrete set of oriented points is available (see Figure 4.8).
Once the indicator function found, it is then possible to extract an approximated
surface corresponding to the set of oriented points.

2
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(a) (b)

FIGURE 4.9: Relationship between a set of oriented points and the
(smoothed) gradient of the indicator function. (a) Discrete set of ori-
ented points. (b) Indicator gradient ~∇χM. Note: ~∇χM is zero al-
most everywhere except on the boundaries. Image from

.

In order to obtain the indicator function χM from the set of oriented points ~V,
the Poisson surface reconstruction exploits a relationship between the set of points
and the gradient of the (smoothed) indicator function ~∇χM

3 (see Figure 4.9). More
precisely, this relationship is simply (see Reference [77] for a proof):

~∇χ̃M = ~V (4.7)

Where χ̃M is χM smoothed.

However, in general, equation 4.7 does not admit an exact solution. Instead the
best least–square approximate solution can be found by applying the divergence
operator to form the Poisson equation (hence the name of the method):

∆χ̃M = ~∇ . ~V (4.8)

Equation 4.8 is then solved numerically using a method similar to finite elements
on an octree mesh (see Reference [77] for details).

At each point the Poisson surface reconstruction method requires an associated
normal. For a given point its normal is obtained as the local normal of its associated
ellipsoid at that point position. Figure 4.10 shows the set of suitable points extracted
from the data described in Section 3.13.1, using an azimuthal angle increment ∆θ =
10◦. The Poisson surface reconstruction algorithm provided in the CGAL package
can be tuned via three parameters (see Table 4.1). These three parameters, denoted α,
Ts and, Sa control the quality and refinement of the faceted surface which is obtained
from the discretised ellipsoids. They are directly related to the parameters of the
CGAL function poisson_surface_reconstruction_delaunay.

3Note that ~∇χM is zero almost everywhere, except on the boundaries of the closed volume M.
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The parameter α controls the bound for the minimum facet angle in degrees. It
gives a guarantee that the to-be-computed finite–element mesh obtained from the
reconstructed surface will not contains tetrahedra with triangular faces less than
α degrees. Ts controls the maximum facet size with respect to the average point
set spacing. It puts an upper bound to the sizes of the future tetrahedra in the to-
be-computed finite–element mesh. Finally, Sa controls the surface approximation
error with respect to the point set average spacing. Indeed, in general a Poisson
reconstruction only approximates a given set of points and associated normals. So
the obtained reconstructed surface may not interpolate all the points.

It should be noted that a Poisson surface reconstruction is not the only option for
reconstructing a surface from an unorganised set of points. For instance, one may
also consider the work of H. Hoppe et al (see References [64], [63], and [42])4.

Ultimately, a B–REP of the surface geometry is then obtained as a “geo” file de-
scribing vertices positions, edges and faces relations that can be used by the GMSH
software [54]. The advantage of having a meshable B-REP is that the 3D generated
mesh can be, to some extent, “tuned” for satisfying some precise needs. For in-
stance, the 3D generated mesh can be locally refined where needed. Moreover, the
GSMH software easily allows associating several geometries together via boolean
operations. For instance, one may consider to unite the surface geometry with a
rectangular plate and conduct some simulations with a dedicated solver.

Open foam

Figure 4.11 shows an extracted mesh compared to the threshold CT-scan images for
the open foam described in Section 3.13.1. It can be seen that the 3D mesh closely
reproduces the different morphological characteristics of the foam, although the ob-
tained porosity of 90.2% is slightly different from the experimental 93% porosity.
For the Ellipsoidal Model this difference, as suggested by the Hausdorff distance in
Figure 4.11, is due to the fact that the ellipsoidal model seems to accumulate more
matter than needed at struts intersections. This problem could probably be allevi-
ated by discretising the circumscribing auxiliary polyhedra instead of theirs asso-
ciated auxiliary ellipsoids. Indeed, as each polyhedron contains its corresponding
ellipsoid, the obtained porosity can only increase and sharp features should be bet-
ter reconstructed. However, in any case, it should be noted that, despite the fact that
the DN-CT-SCAN model using polyhedral packing presents a better porosity value
than the Ellipsoidal model, both models present very similar structures and Haus-
dorff distances as it can observed in Figures 4.6b and 4.11. However, the maximum
Hausdorff distance for the Ellipsoidal Modal is smaller with 0.58 mm (corresponding
to a relative maximum error of 3.3 %).

It is worth noting that the Ellipsoidal Model is also able to reconstruct local features
of the microstructure such as the typical tendency of struts to be thicker near their
vertices than at their centre [138]. But this has also the capability to reproduce small
defects as illustrated in Figure 4.12 without the need of some dedicated parametri-
sation.

4A C++ library is also available at ❤tt♣s✿✴✴❣✐t❤✉❜✳❝♦♠✴❤❤♦♣♣❡✴▼❡s❤✲♣r♦❝❡ss✐♥❣✲❧✐❜r❛r②
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FIGURE 4.10: View inside the set of points extracted from the data
described in Section 3.13.1.

1.90

1.43

0.95

0.47

0.00

FIGURE 4.11: Visual representation of the Hausdorff distance in mm
between the CT–scan image and the meshes extracted using Ellip-

soidal Model for the open foam described in Section 3.13.1.

FIGURE 4.12: (a) Presence of a defect (spike) visible on the upper
left-hand side of a 3D CT–scan image of a strut. (b) Reproduction
of this defect by the Ellipsoidal Model for the open foam described in

Section 3.13.1.
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TABLE 4.1: Parameters used in the geometric reconstruction of the
CT–scan data of the open foam presented in Section 3.13.1 for the El-

lipsoidal Model.

Parameter Value Description

α 30◦ Minimum facet angle.
Ts 600.0 Maximum facet size w.r.t. point set average spacing.
Sa 0.75 Surface approximation error w.r.t. point set average spacing.
ISOparam 1.0 Iso–surface parameter on which lie the extracted points.
∆θ 10◦ Azimuthal angle increment for discretising ellipsoids.

TABLE 4.2: Parameters used in the geometric reconstruction of the
CT-scan data data of the closed foam presented in Section 3.13.2 for

the Ellipsoidal Model.

Parameter Value Description

α 30◦ Minimum triangle angle.
Ts 600.0 Maximum triangle size w.r.t. point set average spacing.
Sa 0.75 Surface approximation error w.r.t. point set average spacing.
ISOparam 1.0 Iso-surface parameter on which lie the extracted points.
∆θ 2.5◦ Azimuthal angle increment for discretising ellipsoids.

Closed foam

Figure 4.13 shows an extracted mesh compared to the threshold CT-scan images for
the closed foam described in Section 3.13.2, using the parameters stated in Table 4.2.
It can also be seen that the 3D mesh closely reproduces the different morpholog-
ical characteristics of the foam. The maximum Hausdorff distance (computed us-
ing 5, 000, 000 sample points) between the reconstructed geometry and the struts is
0.053 mm (corresponding to a relative maximum error of 4.1 %).

FIGURE 4.13: Visual representation of the Hausdorff distance in mm
between the CT–scan image and the meshes extracted using Ellip-

soidal Model for the closed foam described in Section 3.13.2.
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Chapter 5

FEM simulations: uniaxial
compression test on open foam
sample

• Aim: given a tetrahedral mesh describing the microstructure of a real–world
foam and suitable boundary and loading conditions, match by FEM simulation
the strain–stress curves obtained experimentally.

• Input: mesh corresponding to a real–world foam and set of boundary and
loading conditions.

• Output: stress–strain curves.

5.1 Summary

This chapter is structured as follow:

• Section 5.2 briefly describes some main computational approaches that exist
for studying numerically the behaviours of cellular materials.

• Section 5.2.5 describes how the image analysis steps of chapter 2 and the ge-
ometric reconstructions (chapter 4) can be used to “feed” FEM simulations of
foams.

• Sections 5.3, 5.4, and 5.5 explains how experimental data and material parame-
ters were acquired for a real-world foam undergoing an uniaxial compression.

• Section 5.6 shows simulation results for the uniaxial compression of a real-
world foam using different boundary conditions, using both the DN-CT-SCAN
model and the Ellipsoidal Model described in chapter 4. These simulation
results are compared against the acquired experimental data.

• Section 5.6.4 finally discusses the numerical convergence for both the DN-CT-
SCAN and Ellipsoidal Models with respect to the number of elements used for
the meshes.

• Section 5.6.5 finally briefly discuss a simulation result using the Gurson-Tvergaard-
Needleman model.
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FIGURE 5.2: Computational homogenisation scheme. See text for de-
tails (Figure from Reference [84]).

5.2 Introduction

In experimental studies, cellular materials exhibit a wide variety of complex me-
chanical behaviours that are difficult to predict. This is due to several effects such
as size effect [7], and localisation phenomena due to micro-buckling of thin compo-
nents such as struts or walls [68, 14, 190, 127]. Three main computational approaches
exist for studying numerically the behaviours of cellular materials such as foams.

1. The microscopic approach.

2. The macroscopic approach.

3. The multi-scale computational approach.

The first approach consists in fully discretising a full foam sample using standard
finite element methods [56, 31, 104]. However, this approach rapidly requires to deal
with an enormous amount of unknowns and is thus limited to relatively small sam-
ples. Dealing with larger foam samples with this approach is still a computational
challenge for modern computers.

The second approach consists in replacing the cellular material by an equivalent
continuous phenomenological material [60, 49]. Although more computationally
efficient than the first approach, with this second approach, the material model and
its parameters are difficult to identify. Moreover, this approach does not provide
any insight about the evolution of the microstructure while a macroscopic loading is
applied.

The last approach, also called the multiscale approach, is a combination of the
first two above approaches. This technique lies in to the definition of two separate
Boundary Value Problems (BVPs) at two separate scales. At the macroscopic level,
the studied sample is considered as a continuum medium; but at each macroscopic
material point a microscopic BVP is associated in order to take into account the effect
of the microstructure. Each microscopic BVP is associated to a Representative Vol-
ume Element (RVE) which undergoes different microscopic boundary conditions as-
sociated to macroscopic quantities. This allows to incorporate both geometrical and



5.2. Introduction 169

material non-linearites [84] into the numerical model. Tough this procedure does
not provide a closed-form of the macroscopic material law, the stress-strain relation
is always obtainable through the resolution of the BVPs. For a given macroscopic
deformation gradient tensor FM, the stress PM, and the associated material tangent
are estimated from the response of the microstructure (see Figure 5.2)

The multiscale approach (also called first–order approach) makes the assumption
of separation of scales, which can be expressed as a set of inequalities:

lmicro << lRVE << lmacro (5.1)

Where lmicro represents the average pore size of the cellular material, lRVE denotes
the size of the domain on which local deformations occurs in the material, and lmacro

represents the characteristics length over which the prescribed mechanical loading
is varying.

The inequality:

lmicro << lRVE (5.2)

denotes the scale condition for an RVE to be valid, while the inequality:

lRVE << lmacro (5.3)

denotes the condition for the multiscale to be valid.

It may occur that the separation of scales assumptions 5.1 is no longer satisfied,
e.g., when localisation and/or failure phenomena takes place. Enhanced schemes
have been designed for tackling this issue. For instance, second-order FE2 scheme
were designed in References [47, 83], while continuous-discontinuous FE2 schemes
were developed in References [108, 123]. However, in most situations, a first order
scheme proves to be sufficient and is a standard tool in computational homogenisa-
tion [109, 112, 161].

5.2.1 Macroscopic formulation

The macro-scale kinematics can be defined by:

FM = I + uM

⊗

∇0 (5.4)

Where:

• FM is the macroscopic deformation gradient.

• I is the identity matrix.

• uM is the macroscopic displacement field in the reference configuration.

• ∇0 is the gradient operator with respect to the reference configuration.

•
⊗

denotes the outer product.
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If one considers a body Ω, viewed as continuous, then continuum equilibrium
equations read as:

PM (XM) .∇0 = 0, ∀XM ∈ Ω

PM (XM) . NM = TM, ∀XM ∈ ∂NΩ
(5.5)

With XM a material point in the body Ω, PM the first Piola-Kirchhoff tensor, and
NM the local macroscopic unit normal to the surface ∂NΩ.

The associated boundary conditions are:

uM (XM) = u0
M, ∀XM ∈ ∂DΩ (5.6)

TM (XM) = T0
M, ∀XM ∈ ∂NΩ (5.7)

With the displacements uM are constrained on the Dirichlet boundary ∂DΩ and
tractions TM on reference unit surfaces are prescribed on Neumann boundary ∂NΩ.

Problem 5.5 along with the boundary conditions 5.6, 5.7 is completed by the stress-
strain relationship at time t:

PM (t) = PM {FM(t), ZM(t)} (5.8)

With Zm(t) an internal state variable representing the state of the material follow-
ing the evolution laws of the internal state. Relation 5.8 is computed by solving the
microscopic BVP as explained in Section 5.2.2.

The weak form corresponding to the system defined by equations 5.5, 5.6, 5.7,
and 5.8 can be expressed by defining an admissible kinematic vector field U (Ω):

U (Ω) =
{

δuM ∈ H (Ω) | δuM|∂DΩ = 0
}

(5.9)

With H (Ω) a Hilbert space on Ω, and δuM a test function.

Then, the corresponding weak form can be written as:

∫

Ω
PM (uM) : PM (δuM) dΩ =

∫

∂NΩ
T0

M . δuMd∂Ω, ∀δuM ∈ U (Ω) (5.10)
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5.2.2 Microscopic formulation

By the separation of scales hypothesis, the characteristic length of the microscopic
BVP is assumed much smaller than the characteristic length of the macroscopic load-
ing. The micro-scale kinematics in the reference configuration of an RVE ω is defined
similarly to its macroscopic counter-part 5.4:

F = I + u
⊗

∇0 (5.11)

Similarly, its continuum equilibrium equations read:

P (x) .∇0 = 0, ∀x ∈ ω
P (x) . N = T, ∀x ∈ ∂ω

(5.12)

With x a material point of the RVE ω in the reference configuration, and N a mi-
croscopic unit normal to the surface ∂ω.

The boundary conditions are computed from the macroscopic variables and the
microscopic fluctuation field w defined as:

w = u− (FM − I) . x (5.13)

Finally, the microscopic stress-strain relationship at time t is driven by a constitu-
tive material law which can be written, similarly to its macroscopic counter-part 5.8,
as:

P(t) = P {F(t), Z(t)} (5.14)

With Z(t) a history–dependent vector.

The system of equations 5.12 can be expressed in the weak form as finding w ∈
U(ω) such that:

∫

ω
P :
(

δw
⊗

∇0

)

dω = 0, ∀δw ∈ U(ω) (5.15)

With δw a test function, and U(ω) ⊂ H(ω) a kinematic vector field or whose
vectors satisfies the kinematic constraints detailed in Section 5.2.3.
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5.2.3 Scale transition

In order for the FE2 scheme to be complete, a transition is needed between the
microscopic variables F, P and the macroscopic variables FM, PM.

This is performed through the averaging operator < . >= 1
#ω

∫

ω . dω:

FM =< F >=
1

#ω

∫

ω
F dω (5.16)

PM =< P >=
1

#ω

∫

ω
P dω (5.17)

With #ω =
∫

ω 1 dω the volume of the RVE ω.

In order to ensure that the modelling is energetically consistent, the Hill-Mandel
condition, or volume averaging of the virtual work, has to be fulfilled:

PM : δFM =< P : δF > (5.18)

To guarantee that the Hill-Mandel condition is satisfied, a proper kinematic vector
field U(ω) has to be chosen. Using equation 5.13 in the Hill-Mandel condition 5.18,
it can be obtained:

PM : FM = PM : FM+ < P :
(

δw
⊗

∇0

)

> (5.19)

Using the Gauss theorem on equation 5.13, a constraint on the fluctuation field w

can be introduced using equation 5.16:
∫

∂ω
w
⊗

N d∂ω =
∫

ω
w
⊗

∇0 dω = 0 (5.20)

The kinematic vector field U(ω) is thus defined by equation 5.20 with the conse-
quence that all δw ∈ U(ω) satisfying equation 5.15 also automatically satisfy the
Hill-Mandel condition 5.19.
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5.2.4 Enforcing boundary conditions at the microscopic level

Neumann boundary conditions at the microscopic level can be prescribed in terms
of the macroscopic stress as:

T = PM . N, ∀x ∈ ∂ω. (5.21)

Regarding Dirichlet boundary conditions, these can be expressed in terms of the
macroscopic strain:

w = u− (FM − I) . x = 0, ∀x ∈ ∂ω (5.22)

Both conditions satisfy 5.19. However, condition 5.21 is known to be too com-
pliant, while condition 5.22 is too stiff. Imposing periodic boundary conditions has
been found to be able to provide better estimation [120].

In order to enforce periodicity, the fluctuation field 5.13 can be constrained by:

w(x+) = w(x−), ∀x− ∈ ∂ω− and matching x+ ∈ ∂ω+ (5.23)

With ∂ω− and ∂ω+ being, respectively, the negative and positive part of the bound-
ary ∂ω and partitioning it:

∂ω− ∪ω+ = ∂ω (5.24)

∂ω− ∩ω+ = ∅ (5.25)

5.2.5 Contribution

The multi-scale computational approach thus combines both advantages of the for-
mer two approaches: a scheme which is computationally moderate and which pro-
vides insights on the strains and stress undergone by the microstructure. Nonethe-
less, it needs as input an RVE of the microstructure. The present work in this thesis
aims to provide such RVE from CT-scan images of foam samples.

In order to demonstrate the ability of the CT scan-based RVE generation to re-
produce the structural properties of open foams by both the DN-CT-SCAN and the
Ellipsoidal Model, finite element simulations have been conducted using the gener-
ated meshes obtained from the industrial aluminium open foam sample presented
in section 3.13.1. More precisely, three meshes have been considered: two using
the DN-CT-SCAN model, respectively obtained from the parent ellipsoids and as-
sociated polyhedra (see Figure s5.3a and 5.3b), and one using the Ellipsoidal Model
(see Figure 5.3c). In all cases, the considered RVEs have sizes of approximatively
10× 10× 10 mm3 and contain around 25 pores.

Simulations using these three RVEs were conducted using the finite element pro-
cedures proposed in [119, 122] and have been qualitatively compared against exper-
imental measurements of an uniaxial compression reported in Reference [62].
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(a) (b) (c)

FIGURE 5.3: Meshed RVEs used for the simulations and generated
from: (a) DN-CT-SCAN model using ellipsoids, (b) DN-CT-SCAN
model using polyhedra, (c) Ellipsoidal Model. Around ∽ 100.000

nodes and ∽ 70.000 tetrahedral elements were used.

FIGURE 5.4: Experimental setup for the uniaxial compression test:
top and bottom extremities molded into a small casting to ensure a

stiff and stable fixture. Sides were left free.

5.3 Experimental data

The mechanical behaviour of the cubic sample of aluminium foam described in Sec-
tion 3.13.1 is investigated by uniaxial compression tests using an ElectroPulsTM
E10000 universal testing machine of Instron Ltd., Pfungstadt, Germany. A displace-
ment control using a quasi-static strain rate of 5.10−3 s−1 was applied for each test.
The top and bottom extremities of the studied sample were molded into a small cast-
ing to generate plane parallel plates as force transmission points for the compression
tests (see Figure 5.4). The Wood’s alloy guarantees a gentle molding and demolding,
providing a stiff and stable fixture at the same time. These requirements cannot be
adequately met by polymer resins. The boundaries orthogonal to the compression
directions were left free.
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TABLE 5.1: Averaged struts material properties identified for the
isotropic hardening law used for the simulations.

Material property Value Description

E 3968.12 MPa Young’s modulus.
σ0 46.35 MPa Initial yield stress.
Hiso 214.61 MPa Hardening modulus.
ν 0.33 Poisson’s ratio.

5.4 Material properties

Simulations were carried out using for the struts a linear hardening hyperelastic-
based J2-elasto-plastic material law applied for large strains (see Appendix A in
Nguyen et al. [119] for details), with the isotropic hardening law given in equa-
tion 5.26.

σ0
y

(

ǭpl
)

= σ0 + Hiso ǭpl (5.26)

Where ǭpl is the equivalent plastic strain.

Struts material properties required to parametrise the material law were identified
in [62], using an inverse identification procedure based on compression tests of sin-
gle pores. As the provided values tend to vary from one pore to another, averaged
material properties have been considered. Table 5.1 reports the material properties
used for the simulations.

5.5 Boundary conditions

In order to understand the numerical response of the RVEs, several boundary con-
ditions were tested. This was required by the fact that the three RVEs extracted from
the CT-scan data are rather small compared to the samples on which experimen-
tal measurements were conducted. Namely, for each RVE, three sets of boundary
conditions were considered (see Figure 5.5): enforcement of free boundary condi-
tions which are a simple uniaxial compression, mixed boundary conditions which
are obtained by imposing a uniaxial load while constraining struts extremities to lie
in common planes, and periodic boundary conditions using a 5th-order Lagrangian
polynomial based interpolation [120].

More precisely, struts nodes in contact with the top plane were constrained to
vertically follow its displacement, while they were free to move in the horizontal
directions. Similarly, struts nodes in contact with the bottom plane were vertically
constrained by it, while free to move in the horizontal directions. However, in order
to avoid rigid body motion, two nodes in contact with the bottom plane were con-
strained as follows. The first one had also its x and y coordinates fixed, while the
second one has its x coordinate fixed.
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(a)

(b) (c)

FIGURE 5.5: Tested boundary conditions for a simple uniaxial com-
pression: (a) free boundary conditions, (b) mixed boundary condi-
tions (uniaxial load while ensuring struts extremities lie in common
planes), (c) periodic boundary conditions using Lagrangian polyno-

mial interpolation [120].

The free boundary conditions had no other imposed conditions, and struts ex-
tremities not in contact with the planes were free to move. For the mixed bound-
ary conditions, struts extremities located on a given lateral side were constrained to
move within the same vertical plane.

Finally, for the periodic boundary conditions, displacements of struts extremities
from one lateral side were constrained in terms of the displacement of the struts
extremities located on the corresponding opposite side following an interpolation
method as described in Reference [122] to constrain periodic boundary conditions
for non-periodic meshes. For these different kinds of boundary conditions, uniaxial
tension can be obtained by selecting the components of the macroscopic scale defor-
mation gradient which are enforced during the constrained resolution of the RVE,
see details in Section 3.5 of Reference [121].
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FIGURE 5.6: Simulations of a uniaxial compression test on an open
cubic sample of aluminium foam (see Section 3.13.1) with periodic
boundary conditions (red curves), free boundary conditions (blue
curves) and mixed boundary conditions (magenta curves); using
≈ 70.000 tetrahedra in all the cases. Obtained (relative) strain-
stress curves using the three generated RVEs presented in Figure 5.3,

against experimental measurements (gray area).

5.6 Comparison of simulations against experimental data

5.6.1 Periodic boundary conditions

Simulations of uniaxial compression were conducted on the three considered RVEs
showed in Figure 5.3 using periodic boundary conditions with a 5th-order Lagrangian
polynomial based interpolation [120]. Figures 5.6, and 5.7 report on the red curves
the (relative) strain-stress curves obtained from the simulations for each RVE along
the compression direction. From this figure, some over-stiffness can be observed
with respect to the experimental data in the obtained curves. As shown in [120],
the obtained strain-stress curves using Lagrangian polynomial enforced periodic
boundary conditions show a convergence behaviour with higher degrees of inter-
polation. In order to investigate if the origin of the observed over-stiffness is due to
the use of a too small interpolation degree, a convergence study of the strain-stress
curves with respect to the interpolation degree was conducted. From this study
it has been observed that the choice of the interpolation degree cannot explain the
observed discrepancies between the simulations and the experimental data (see Fig-
ure 5.8). Especially, the obtained initial slopes in the linear deformation regime are
very similar for all the tested interpolation degrees and does not comply with the
experimental measurements. Therefore, it has been concluded that the enforcement
of periodic boundary conditions adds extra constraints on the deformation of the
struts and cannot be realistic for the considered RVEs because of their reduced sizes
and the non-periodicity of their geometry.
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FIGURE 5.7: Zoom of Figure 5.6.

FIGURE 5.8: Simulations of a uniaxial compression test on an open
cubic sample of aluminium foam (see Section 3.13.1) with periodic
boundary conditions using increasing degrees of interpolation for La-

grangian polynomials at the boundaries [120].
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(a) (b)

(c)

FIGURE 5.9: Simulations of uniaxial compression tests on an open
cubic aluminium foam (see Section 3.13.1) using the RVE generated
by the Ellipsoidal Model for different boundary conditions. (a) Free,
(b) mixed and (c) periodic. The von Mises stresses are plotted on the

30 % deformed RVE.

5.6.2 Free boundary conditions

As the enforcement of periodic boundary conditions discussed in section 5.6.1 leads
to an over-stiffness behaviour, one can release them and just consider the three RVEs
with free lateral boundaries. Figures 5.6, and 5.7 report on the blue curves the ob-
tained strain-stress curves for the three considered RVEs when imposing a simple
uniaxial compression. It can be observed that, for this case, the result presents some
over-softness with respect to experimental data.

5.6.3 Mixed boundary conditions

From the previous Sections 5.6.1 and 5.6.2, the periodic and free boundary con-
ditions induce, respectively, over-stiffness and over-softness in the simulated be-
haviour of all three considered RVEs. Figure 5.7 reports on the magenta curves the
strain-stress curves obtained with the considered RVEs. It can be seen that the mixed
boundary conditions avoid imposing artificial constraints on the struts and that the
computed strain-stress curves exhibit a comparable behaviour as observed experi-
mentally.
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TABLE 5.2: Relative differences between the computed strain–stress
curves obtained at a relative strain of 20% using different meshes
computed from the geometry provided from the Ellipsoidal Model.
The differences were computed using a reference mesh consisting in

430.001 tetrahedra.

Boundary conditions 42.740 tets. 70.704 tets. 150.304 tets.

Free 11.43% 5.45% 3.3%
Mixed 10.4% 6.5% 2.9%
Periodic 13.0% 7.8% 4.1%

Indeed, the initial slope in the linear deformation regime is rather well reproduced
for the polyhedra-based DN-CT-SCAN model and the Ellipsoidal Model (which
present very similar geometrical features, contrary to the quite different ellipsoid-
based DN-CT-SCAN model), though they display plastic deformation quite early
compared to the experimental results. Moreover, as can be seen in Figure 5.6, the
plateau regime is rather well reproduced by polyhedra-based DN-CT-SCAN model
and the Ellipsoidal Model (magenta curves). At high relative strains, around 60 %
and beyond, struts begins to pile-up against each other and a so-called densification
regime is experimentally observed as a fast stress increase occurs for small defor-
mation increments. Here, the densification regime was not reproduced by the FEM
model as this one allowed the struts to interpenetrate, thus preventing any struts
stacking.

It should be noted that the RVEs generated by the DN-CT-SCAN model did in gen-
eral not allow to compute deformations beyond 30 %, since the presence of narrow
and/or high curvature regions cause the presence of bad-shaped mesh elements,
which, in turn, prevented the FEM simulations to continue due to these elements ex-
hibiting negative Jacobians when deformed. A solution to this issue was proposed
in Reference [43] by optimising meshes using the Persson-Strang analogy, and might
be considered in the future for improving the meshing of the DN-CT-SCAN model.

5.6.4 Discussion: numerical convergence

Strain-stress simulations results presented in Figure 5.6 were produced using order-
2 tetrahedral meshes containing approximately 70.000 tetrahedra. In order to ensure
that convergence was indeed obtained, additional simulations with an increasing
number of tetrahedra were conducted.

As the Ellipsoidal Model is able to provide a surface geometry, it was easy to ex-
tract several meshes with an increasing number of tetrahedra from it by using the
Gmsh [54] software. Figure 5.10 shows the obtained strain-stress curves for four dif-
ferent meshes containing 42.740 up to 430.001 tetrahedra. It can be observed from
Figure 5.10 and Table 5.2 that the differences between the strain-stress curves from
the mesh using 70.704 tetrahedra to the finest mesh and for all three boundary con-
ditions can be considered low (i.e. under 10% relative difference at a relative strain
of 20%).
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FIGURE 5.10: Simulations of a uniaxial compression test on an open
cubic sample of aluminium foam (see Section 3.13.1), using the ge-
ometry provided by the Ellipsoidal Model, with the three considered
boundary conditions, using order–2 meshes with different numbers

of tetrahedra.

5.6.5 Discussion: the Gurson-Tvergaard-Needleman model

One may ask if the Gurson-Tvergaard-Needleman model [81] may lead to similar re-
sults as their presented here (i.e. J2-elasto plastic material law 5.26). Indeed, despite
the fact that the fracture mechanics is quite different in both models, the Gurson-
Tvergaard-Needleman model with an increasing number of voids could result in a
metallic foam.

In order to investigate this, simulations using the Gurson-Tvergaard-Needleman
model with 93% porosity were conducted on a aluminium matrix using the same
material properties as the J2-elasto plastic model (see Table 5.1). However, the Gurson-
Tvergaard-Needleman model was not able to capture the experimental strain-stress
slope in the elastic region (see Figure 5.11). To the knowledge of the author of
this thesis, the literature (see, e.g., Reference [44]) suggests that no suitable Gurson-
Tvergaard-Needleman models for porosities above 50% are currently available.
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FIGURE 5.11: Simulation of an uniaxial compression test using the
Gurson-Tvergaard-Needleman metal porosity model for aluminium

at 93% porosity.
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Chapter 6

Conclusion and perspectives

6.1 Recall of the motivation

In the introduction (chapter 1), it has been discussed how obtaining accurate nu-
merical models of cellular materials is a challenging but necessary task in numerous
engineering fields. Challenging because of the complexity of the microstructure of
such materials, inducing highly complex mechanical behaviours; and necessary be-
cause of their usefulness in countless applications. Moreover, fabrication of cellular
materials with specific mechanical behaviour is nowadays too dependent to costly
trial-errors tests. Furthermore, ensuring constant quality during the fabrication pro-
cess is also a difficult task. In this context, the ability developed this last decade to
obtain precise CT-scan images of the microstructure of cellular materials, and in par-
ticular foams, as offered a precious insight for characterising the microstructures of
such materials.

6.2 Contribution

This thesis aims to bridge the main two approaches for extracting suitable geomet-
ric descriptions of the microstructures of foams. These two approaches are the di-
rect discretisation (see Section 1.2.1) and the use of idealised geometries (see Sec-
tions 1.2.2 and 1.2.3). Both these approaches have their own advantages and draw-
backs. For instance, on the one hand the direct approaches bring precise geometric
models of foams, but to the expense of computationally heavy models that may be
difficult to handle. On the other hand, idealised approaches bring lightweight, but
often imprecise, geometric models; which usually require the tuning of non–trivial
parameters when handling complex (i.e. non–cell periodic) foams.

This thesis proposes an approach using the growth parent ellipsoids for identify-
ing (possibly anisotropic) cells (see Section 2.3.9). This growth is computed using
an efficient and highly parallelised algorithm provided by R. Deits et al. [39]. Over–
segmentation (see Sections 2.3.9 and 2.3.10) is avoided by clustering and merging of
the parent ellipsoids. This allows no to use the computationally expensive water-
shed and H-maxima transforms usually dedicated to this task.
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Once the cells uniquely identified by a corresponding parent ellipsoids, auxil-
iary ellipsoids are grown in order to obtain a fit of the considered microstructure.
This fit may be more or less precise depending angle increment parameter (see Sec-
tion 2.3.11); allowing to obtain more or less detailed geometries of the microstruc-
tures of foams. It is worth noting that, contrary to other models, the fit is performed
automatically and does not require the tuning any non–trivial parameter. The pro-
posed model also allows to reproduce local defects such as partial or missing struts.

Then, the set of parent and auxiliary ellipsoids is discretised (see Section 4.2) and a
closed surface is reconstructed using a Poisson surface reconstruction algorithm (see
Section 4). The density of the discretisation can be controlled in order to get either a
lightweight but less precise geometric representation, or a more precise but heavier
geometric representation.

Alternatively, the set of ellipsoids (and associated polyhedra) may be used to
“feed” other models as demonstrated with the DN-CT-SCAN model in Section 4.1.

Next, from the obtained geometry, it is possible to generate several meshes (from
coarse to thin) according to the needs of the user. It is even possible to add user–
defined geometries (e.g. using boolean operations) to the obtained geometry for, for
instance, simulating the mechanical behaviour of a foam in a given environment (for
example an insulating foam glued to a metallic surface).

Finally, the proposed processing steps have been implemented using the “filter”
paradigm proposed by the library Insight Toolkit [69]. This allows more flexibility
and gives the user the possibility to design and add its own “filters”/algorithms for
fitting its own specific needs.

Last but not least, the proposed model offers the possibility to stream the data to
be processed (see Section 3). This allows to handle CT–scan image data that do not
fit into the RAM of the computer of the user. It is then possible to obtain the same
reconstructed geometry as if there were enough RAM to process the data.

6.3 Perspectives and limitations

As for any work, here are some possible improvements for this thesis.

• The streaming part of the image analysis step can be further improved by con-
sidering blocks instead of slices in 3D CT-scan images. This should further
reduce the peak memory usage for especially huge foam samples. However,
it should be investigated if the efforts needed to adapt the implemented algo-
rithms are worth the expected gain. Indeed, some algorithms are not trivially
streamable by block. For instance, algorithm of Maurer et al. computing the
distance transform, needs to scan for local maximum candidates along lines
that extend along the whole CT-scan image in a given direction. Streaming by
blocks would mean that these lines would be truncated, which imply a special
treatment at their truncated extremities.

• The Ellipsoidal Model currently uses auxiliary ellipsoids for reconstructing the
microstructure of a foam. Using the associated polyhedra to those auxiliary el-
lipsoids may improve the reconstruction of the microstructure, as polyhedra fit
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more closely than ellipsoids the cell structures. Such a Polyhedral Model would
use a Poisson surface reconstruction based on points and normals extracted
from these polyhedra. Such an improvement was indeed noticed in terms of
the Hausdorff distance when using associated polyhedra to parent ellipsoids
for the DN-CT-SCAN model in Figure 4.6.

• When generating auxiliary ellipsoids from an associated parent ellipsoid, those
are distributed evenly on the surface of the parent ellipsoid. Resolving small
features in a microstructure, as illustrated in Figure 4.12, may require a large
amount of auxiliary ellipsoids per parent ellipsoid. However, small features
are usually localised and it is thus not useful to have a large number of auxil-
iary ellipsoid in regions of the microstructure where only a few is sufficient in
order to obtain an acceptable fit. Generating adaptively more auxiliary ellip-
soids in regions with small features and less in regions with big features can
lead on some significant improvements in terms of the Hausdorff distance to
the original microstructure and in terms of computational time (less auxiliary
ellipsoids to be grown). A criterion for identifying where to increase the den-
sity of auxiliary ellipsoids and associated polyhedra may be the distance to
these ellipsoids/polyhedra to the closest feature pixel.

• In the thesis, only parent and auxiliary ellipsoids (and associated polyhedra to
parent ellipsoids) were used in both the DN-CT-SCAN model and the Ellipsoid
Model. It may be interesting to investigate whether or not auxiliary ellipsoids
should in their turn be used as parent for so-called level-2 auxiliary ellipsoids
(the original auxiliary ellipsoids being the level-1 auxiliary ellipsoids). From
there, one can imagine level-3, . . . , level-n auxiliary ellipsoids. However, this
would increase exponentially the number of ellipsoids to be grown, and, ac-
cordingly, increase exponentially the computational time for growing them.
Using the above described strategy to adaptively distribute level-n auxiliary el-
lipsoids on the surface of their level-(n-1) parent ellipsoid, may help to mitigate
this effect.

• In this thesis, auxiliary ellipsoids were seeded from there associated parent
ellipsoids by using points on a given iso-surface of these parent ellipsoids. An
ellipsoid iso-surface can be described through a parameter ISOparam = α, with
the iso-surface SE of an ellipsoid E being:

SE (α) =
{

x ∈ Rn | (x− c)t M(x− c) = α
}

(6.1)

With, c ∈ Rn is the centre of the ellipsoid E , M ∈ Rn×n is its shape matrix, and
α > 0 is the iso-surface parameter. When α = 1, SE (α) is simply the surface of
the ellipsoid E .

In this thesis, α is a global parameter for all ellipsoids. Its aim is to allow the
user to tune it in order to obtain a foam with a given porosity. However, α being
global did not allow to precisely reached the experimental porosity of 93% for
the open foam data used in the thesis while keeping a sensible reconstructed
microstructure. Along with the above suggested improvements, the ability to
tune this parameter α locally for each ellipsoid ,in order to reach a porosity for
the reconstructed microstructure closer to the experimental one, may be worth
investigating.
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• The Ellipsoidal Model uses for the moment a standard Poisson surface recon-
struction technique for generating a surface from a set of points and normals.
However, this technique is known to only approximate points and unable to
accurately reproduce sharp features. More advanced surface reconstruction
techniques should be considered such as the screened Poisson surface recon-
struction [78] which better approximate data points and sharp features, or re-
construction techniques explicitly detecting and labelling points located on (or
near) sharp features such as described in References [146, 178, 179].

• With little adaptation1, the proposed image analysis steps and the Ellipsoidal
Model may be applied in other context than foam, e.g., for composite materials
or in the context of crystal microstructures.

• It has been shown in this thesis that the generated ellipsoids and associated
polyhedra can be used in other models than the Ellipsoidal Model (namely in
the DN-CT-SCAN model). It may be worthwhile to use these ellipsoids or as-
sociated polyhedra into other models, such an improved version of the DN-
CT-SCAN model described in Reference [43].

• Finally, it should be also possible, instead of streaming, to parallelise2 the pro-
posed image analysis steps among multiple cores, each with a limited amount
of available memory.

1Such as using other ITK filters, depending on the context.
2The requirement for streaming a given dataset are indeed stricter than those for parallelising it.



187

Appendix A

Streaming

Streaming is the ability to process image by parts. This can be useful when mem-
ory is low or data to process are huge. Moreover, as free benefit, streaming allows
parallel computations.

A.1 ITK’s pipeline execution

The following is mostly a rewritten text taken from the ITK’s documentation1. How-
ever, it is given here for the sake of completeness, but more importantly, this text is
also given and for helping the understanding of the user. Indeed, the Ellipsoidal
Model uses streaming intensively and streaming can not be properly understood
without a good insight of the ITK’s pipeline execution.

A.1.1 ITK’s image meta-data

Inside the ITK toolbox, an image is associated to the following meta-data: the size
of the image, the origin of the image, the spacing, the directions and the physical
extent (see Figure A.1). Moreover, three regions are associated to each image: the
LargestPossibleRegion, the RequestedRegion and the BufferedRegion. A region is defined
by its index (starting coordinates into the image) and a size (see Figure A.2).

• The LargestPossibleRegion generally corresponds to the whole image, unless a
filter sets it otherwise by overriding the GenerateOutputInformation() method.

• The RequestedRegion is a subregion of the LargestPossibleRegion allowing a filter
to request only some data instead of all of them. This is for instance useful for
the streaming process, when only a part of the LargestPossibleRegion needs to
be update through the pipeline.

• The BufferedRegion is also a subregion of the LargestPossibleRegion. It sets the ac-
tual amount of data allocated by the current data object for storing (part of) the
image. The BufferedRegion is useful if a given filter has several outputs to feed
with different output RequestedRegion (that may overlap). This region contains
the union of all output requested regions. It gives the filter the ability to pro-
vide the needed data to each output without invoking too often the upstream
filters (less than the number of requested outputs).

1See the ITK software guide [69], pp. 195
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FIGURE A.1: Meta–data associated to an ITK image (scheme
from [69], Figure 4.1, pp. 46).

A.1.2 ITK’s pipeline execution

When a filter receive the Update() method invocation, the filter delegates the method
to its input, invoking the DataObject::Update() method. In this way, the data request
is propagated upstream in the pipeline (see Figure 2.5). The DataObject::Update()
method calls itself three other methods:

1. DataObject::UpdateOutputInformation().

2. DataObject::PropagateRequetedRegion().

3. DataObject::UpdateOutputData().

A.1.2.1 DataObject::UpdateOutputInformation()

This method sets a timer telling when the pipeline has been modified at the point of
the corresponding calling object. This method set the image region needed at this
point in the pipeline. As the image region depends on the calling object, the Up-
dateOutputInformation() method propagates upstream into the pipeline (by calling
itself the UpdateOutputInformation() method of the upstream filter) and terminates at
the source of the pipeline. During a call to the UpdateOutputInformation() method,
a filter has the ability to set what he can provides as output to his calling object.
This can be done through the overriding of the GenerateOutputInformation() method
(which is invoked by UpdateOutputInformation()). The provided informations by the
GenerateOutputInformation() method are the meta–data associated to the output im-
age the current filter can provide. For instance, the itk::ShrinkImageFilter overrides
this method in order to inform the downstream filter that it can only provides a
maximum image size (largest possible region) which is a fraction of the original im-
age size. If not overridden, the GenerateOutputInformation() method simply copy the
meta–data generated by the GenerateOutputInformation() method of the upstream fil-
ter to the downstream filter.
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FIGURE A.2: Example of largest possible region, requested regions
and buffered region.

A.1.2.2 DataObject::PropagateRequestedRegion()

This method propagates upstream the different data request of the filters. By default,
the method requests the LargestPossibleRegion, but, if necessary, it can request any
valid subregion of the LargestPossibleRegion. The PropagateRequestedRegion() method
calls itself the following methods:

• EnlargeOutputRequestedRegion(DataObject output) allows the filter to tell down-
stream that it will provide more data than requested.

• GenerateOutputRequestedRegion(DataObject output) allows the filter to define sep-
arately different regions for each of its output (if more than one). By default,
each output requested region are the same.

• GenerateInputRequestedRegion() allows the filter to inform the upstream objects
that it will need a different input region than the current output requested
region from the downstream filters. This is useful for filters needing a padding
such as filters computing erosion or dilation.

A.1.2.3 DataObject::UpdateOutputData()

This is the last method called by the Update() method. The UpdateOutputData()
method ensures that the current filter is up-to-date within the pipeline. If not, this
methods execute the filter through a call to the GenerateData() method, triggering the
update of all downstream filters. Filters need to be executed in the following cases:

• An instance variable of a filter has been modified.

• The input of a filter has been changed.

• The input data has been released.

• An invalid RequestedRegion has been set and the filter did not output data.
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The UpdateOutputData() method of a given filter invokes recursively the Update-
OutputData() of the upstream filters., until a source object is met or the encountered
upstream filter is determined to be up-to-date and valid. Then, the recursion is un-
rolled by calling the GenerateData() method of each filter in the recursion stack.
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Appendix B

Notion of distance

B.1 Distance transforms

Definition B.1. Given a binary image I of domain DI and a distance d, the distance
transform D(I) of image I, in the sense of the associated distance d, is the image to
image transformation D : I → J, (x, p) 7→ (x, [D(I)] (x)), with:

[D(I)] (x) = miny∈DI {d(x, y) | I(y) = 0} (B.1)

The distance transform replaces the value of each non–zero pixel (called fore-
ground pixel) by the value of the distance from its closer zero–valued pixel (called
background or feature pixel). Note that the distance transform of a binary image is no
more a binary image.

Definition B.2. The Euclidean distance transform ED is a distance transform where the
associated distance d, is the euclidean distance d : E× E → R+, (u, v) 7→ d(u, v) =

d2(u, v) = ‖u− v‖2
2 =< u− v|u− v >.

B.2 Maurer et al. algorithm

The algorithm of Maurer et al. [111] perform the Euclidean distance tranform of a
binary image. Here are the details of how it works.

B.2.1 Preliminary definitions.

Before describing the algorithm of Maurer et al., some definitions and properties are
needed. The following definitions and properties are extracted from the article of
Maurer et al. [111]. Figure are inspired from figures of the same article.

Definition B.3. In a binary image I, a feature pixel (FP) is a non–zero pixel.

Definition B.4. In a binary image I, the closest feature pixel (CFP) y of a given pixel
x is the closest (in the sense of a given distance) non–zero pixel from x (which may
be itself if I(x) 6= 0). If two or more pixels are equally distant to x the CFP is chosen
arbitrary among them.

Definition B.5. The closest feature transform (FT) of an image I of domain DI is: FT :
I → DI × DI ; (x, p) 7→ (x, F(x, p)) = (x, y).

Where y = F(x, p) is the position of the CFP of pixel p.

If the closest feature transform (FT) of an image is known, computing its distance
transform (DT) is easy an can be done in linear time. Therefore, Maurer et al. algo-
rithm focus on the computation of the FT in a linear time (with respect to the number
of pixels).
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Definition B.6. The d–dimensional subimage Id,x of image I is the restriction of I to
the subspace for which the last n − d coordinates of are identical to whose of x.
Obviously, In,x = I.

Definition B.7. Fd denotes the function F given in definition B.5 applied to the dth
dimension level d > 0. More precisely:

Fd : x 7→ Fd(x) is the CFP of x in DId,x .
Naturally, Fn = F.

For d = 0, F0 : x 7→ F0(x) is defined as follow:

F0(x) =

{
x if I(x) = 1
∅ elsewhere

Where ∅ denotes an undefined CFP.

Example B.1. ∀x ∈ DI :

• F1(x) is the CFP of x in I1,x, which is the image line containing x along the first
image’s direction.

• F2(x) is the CFP of x in I2,x, which is the image plane containing x along the
first and second image’s directions.

• F3(x) is the CFP of x in I3,x, which is the image hyperplane containing x along
the first three image’s directions.

Definition B.8. Xd = {xi} is the set of pixels in DI containing xi and obtained by fix-
ing all coordinates except the dth one which varies over the allowed image domain
DI .

Definition B.9. Rd is the continuous line running through a particular set Xd.

Definition B.10. Sd denotes the set of FP in the binary subimage Id,x.

Definition B.11. VSd
denotes the Voronoï diagram which seeds are the points of Sd.

Definition B.12. V∗d = VSd
∩ Rd is the intersection of the above Voronoï diagram

with a line Rd.

Definition B.13. S∗d is the set of seeds from which the Voronoï diagram V∗d can be
generated.

Definition B.14. S′d = {Fd−1(xi)} is the set of CFP in the next lower dimension for
the set Xd = {xi}. Clearly, S′d ⊆ Sd (see Figure B.1).
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FIGURE B.1: Points of the sets S′d (green dots) and Sd (all dots) along a
particular line Rd. The open circles represents points from Xd = {xi}.
The dots of Sd represent the feature points (FP). The green dots of S′d
represent the closest feature points (CFP) of the points in Xd for the
next lower dimension. Example for a 2–dimensional image. Figure

inspired from figure 1 of Maurer et al. [111].

B.2.2 Properties

The following propositions describe the very heart of Maurer et al. algorithm.

Proposition B.1. (Property 4 of Maurer et al. [111]). Let’s x and y two n–tuples that
differ only in the values of the dth coordinate (i.e., xi = yi, i 6= d). For concreteness,
assume that xd < yd. For any u and v such that one of the following two conditions
is satisfied:

1. d(x, u) ≤ d(x, v) and d(y, v) < d(y, u)

2. d(x, u) < d(x, v) and d(y, v) ≤ d(y, u)

Then: ud < vd.
Where d : DI × DI → R+, (x, y) 7→ d(x, y) is a distance.

Proposition B.2. (Property 5 of Maurer et al. [111]). Let’s x and y be two n–tuples
that differ only in the values of the dth coordinate (i.e. xi = yi, i 6= d). Let’s u

and v be two n–tuples with identical values of the dth coordinates (i.e. ud = vd). If
d(x, u) ≤ d(x, v), then d(y, u) ≤ d(y, v)

Proposition B.3. (Remark 1 of Maurer et al. [111]).

Given:

• f = Fd−1(x) where x is a pixel position on Rd. It comes that f ∈ Sd as f is a CFP
and, thus, a FP.

• g 6= f another FP such that g ∈ Sd and gd = fd. By the definition of Fd−1,
d(x, f) ≤ d(x, g).

• y 6= x another point on Rd. By proposition B.2: d(y, f) ≤ d(y, g). Therefore, all
points belonging to Rd are at least as close to f than g.
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As a consequence, the Voronoï cell associated to g either does not intersect Rd,
or the Voronoï cells of seeds f and g both intersect Rd along a common boundary.
Hence, for any g ∈ Sd, either g ∈ S′d or g shares a same dth coordinate of a point in
S′d. mathematically speaking this translates as: V∗d = VSd

∩ Rd = VS′d
∩ Rd.

As a result, it is possible to construct the partial Voronoï diagram V∗d knowing only
the CFP of S′d obtained from the next lower dimension. This is the core of the idea of
dimensional reduction used by the algorithm. Figure B.2 illustrates this fact with an
example.

(a) Voronoï diagram generated by Sd. (b) Voronoï diagram generated by S′d.

(c) Superposition of the Voronoï dia-
grams generated by Sd and S′d. Their in-

tersections with Rd are identical.

FIGURE B.2: Comparison of Voronoï diagrams constructed from sets
S′d (green dots) and Sd (all dots) along a particular line Rd. The open
circles represents points from Xd = {xi}. The dots of Sd represent the
feature points (FP). The green dots of S′d represent the closest feature
points (CFP) of the points in Xd for the next lower dimension. It can
be seen that the intersections of the two Voronoï diagrams with Rd are
the same. The seeds computed in S′d are thus sufficient for computing
the CFP of points in Rd for the next upper dimension. Example for
a 2–dimensional image. Figures inspired from Figure 1 of Maurer et

al. [111].

Proposition B.4. (Remark 2 of Maurer et al. [111]). Let’s f, g ∈ S∗d and x, y pixel
coordinates on a line Rd. By proposition B.1, if xd < yd, then fd < gd. Reciprocally, if
fd < gd, then xd < yd.

Thus, for knowing to which seed in S∗d a particular x on Rd is associated to, it is
sufficient to sort the points in S∗d by their d-th coordinate. Indeed, in that case, V∗d is
a set of disjoint segments. Sweeping through this set of segments in the d-th coordi-
nate order allows to retrieve the seed in S∗d associated to x. Therefore, constructing
explicitly V∗d is not needed.
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Proposition B.5. (Remark 3 of Maurer et al. [111]). Let’s:

• u, v, w ∈ S′d such that ud < vd < wd.

• xuv such that d(u, xuv) = d(v, xuv).

• xvw such that d(v, xvw) = d(w, xvw).

By propositions B.1 and B.4 if (xuv)d > (xvw)d then the Voronoï cell associated to
v does not intersect Rd.

As S∗d ⊆ S′d, this proposition is useful for constructing S∗d from S′d by discarding
points in S′d whose associated Voronoî cells do not intersect Rd.

B.2.3 Computation of the FT

Maurer’s et al. algorithm is sketched in algorithm 39. A more complete and precise
version can be found in the article of Maurer et al. [111].

Algorithm 39 Maurer et al. algorithm.

Require: Binary image I of dimension n.
1: procedure MAURERFT(I)

⊲ Initialisation
2: for Traverse the pixel coordinates x do

3: Compute the set S′1 ← {F0(x)}
4: end for

5: S∗1 ← S′1
⊲ Recursion

6: for d = 1, . . . , n do

7: for Each line Rd along direction d do

8: for Each pixel coordinate x along the current line do

9: Knowing S∗d containing the seeds of V∗d ,
10: update S′d+1 ← S′d+1 ∪ {Fd(x)}
11: by querying to which Voronoi cell of V∗d , x belongs.
12: end for

13: end for

14: From S′d+1 construct S∗d+1 using proposition B.5.
15: end for

16: end procedure
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Appendix C

Mathematical morphology

The present appendix is devoted to the definition of some basic concepts of mathe-
matical morphology and some popular algorithms (watershed transform, H-maxima
transform, etc.) T

Definition C.1. Following P. Soille [155], “mathematical morphology can be defined as
a theory for the analysis of spatial structures. [...] it aims at analysing the shape and
forms of objects”.

C.1 Grayscale reconstruction

Grayscale reconstruction is a major concept in the context of mathematical mor-
phology, as it is at the origin of some important image to image transformations as,
e.g. the h-maxima transform, h-convex transform, regional maxima and watershed
transformation (see References [176] or [155] for more informations).

C.1.1 Binary reconstruction

Definition C.2. (L. Vincent [176].)
If I, J are two binary images sharing the same discrete domain D such that:

∀x ∈ D, J(x) = 1⇒ I(x) = 1

then, J is called the marker, while I is called the mask.

Definition C.3. (L. Vincent [176].)
Let’s I, J be two binary images where I is the mask and J the marker. Given con-
nected components I1, . . . , Ik of I the reconstruction ρI(J) is the union of the connected
components of I which contain at least one pixel of J:

ρI(J) = ∪J∩Ik 6=∅ Ik (C.1)

Figure C.1 illustrates a reconstruction of a binary image I from its marker J.
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(a) Mask I and marker J before recon-
struction.

(b) Reconstructed image.

FIGURE C.1: Binary image reconstruction of a mask I (gray objects)
from a marker J (black objects).

C.1.2 Geodesic distance

Definition C.4. (P. Soille [155])
For a binary image I of domain DI , let’s X ⊂ DI . The geodesic distance dX(x, y)

between two pixels x, y ∈ X is the minimal length L(Px,y) of a path Px,y joining x to
y such that Px,y ⊂ X:

dX(x, y) = min
{

L(Px,y) | Px,y ⊂ X
}

.

Figure C.2a illustrates the concept of geodesic distance between two pixels. Note
that the geodesic distance depends on how the pixel of the image I are connected to
their neighbours. Indeed the length L(Px,y) of a path Px,y between two pixels x and
y depends on the digitalisation network that allows to reach y from x.

Definition C.5. (P. Soille [155])
For a binary image I of domain DI , let’s X ⊂ DI and Y ⊂ X. Then, the geodesic

distance dX(x, Y) between a pixel x ∈ X and Y is:

dX(x, Y) = miny∈Y dX(x, y).

Where dX(x, y) is the geodesic distance between x and y.

Figure C.2b illustrates the concept of geodesic distance between a pixel and a
connected set.

X

x

y

(a) Geodesic distance dX(x, y) between
two pixels x and y in a connected set X.

X

x

Y

(b) Geodesic distance dX(x, Y) between a
pixel x and a connected set Y in a con-

nected set X.

FIGURE C.2: Geodesic distance between a pixel and a connected set.
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Definition C.6. (P. Soille [155])
Let’s considerer an image I of domain DI , a set X = ∪k

i=1Ki, where the Ki ⊂ A are
disjoints connected components and A ⊂ DI is a larger connected component.

The geodesic influence zone IZA(Ki) of a connected component Ki of X in A is the
locus of points of A whose geodesic distance (see definition C.5) is smaller than any
other component of X:

IZA(Ki) =
{

x ∈ A | ∀j = 1, . . . , k, j 6= i, dA(x, Ki) ≤ dA(x, Kj)
}

.

Definition C.7. (L. Vincent [176].)
Under the conditions of definition C.5, the geodesic dilation δ

(n)
X (Y) of size n ≥ 0 of Y

within X is the set of pixels in X whose distance from Y is smaller or equal to n:

δ
(n)
X (Y) = {x ∈ X | dX(x, Y) ≤ n} .

The following proposition allows to express a binary reconstruction in terms of
geodesic distance.

Proposition C.1. (L. Vincent [176].)
For a binary image I of domain DI and two sets X and Y such that Y ⊂ X ⊂ DI , the
reconstruction of X from Y is obtained from:

ρX(Y) = ∪n≥1δ
(n)
X (Y).

C.1.3 Grayscale reconstruction

Grayscale reconstruction extend the above concept of binary reconstruction to grayscale
image. Basically, grayscale reconstruction is obtained from several binary recon-
structions applied to the threshold decomposition of the considered image (see defini-
tion C.8).

Definition C.8. (L. Vincent [176].)
For a grayscale image I of domain DI , its threshold at level k, is the image transfor-

mation Tk : I → J; I 7→ Tk(I), with k ∈ {0, 1, . . . , tµ}, defined as:

Tk(I) = {x ∈ DI | I(x) ≥ k} . (C.2)

The set of binary images {Tk(I)}k=0,...,tmu is called the threshold decomposition of I.

Definition C.9. (L. Vincent [176].)
Given I and J two grayscale images defined on the same domain DI , taking their

values in the discrete set {0, 1, . . . , N − 1} and such that:

∀x ∈ DI , J(x) ≤ I(x).

The grayscale reconstruction ρI(J) of I from J is given by:

∀x ∈ DI , ρI(J)(x) = max
{

k ∈ [0, N − 1] | x ∈ ρTk(I) (Tk(J))
}

.

Figure C.3 sketches a grayscale reconstruction.
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Definition C.10. A queue–based reconstruction of a grayscale image I from a grayscale
image J of same domain DI , is the grayscale reconstruction of I from J obtained
from a grayscale reconstruction algorithm using a queue of pixels, such as described
in [176] or [53].

FIGURE C.3: Example of a grayscale reconstruction of a mask I from
a marker J. (Image from L.Vincent [176], Figure 8).

C.2 Local maxima of an image

Obtaining local (or regional) maxima of an image is a useful morphological opera-
tion for identifying and marking image features such as cell centres or dark/bright
features. For instance, these identified features may subsequently be used for marker-
controlled segmentation processes, such as the marker-controlled watershed trans-
formation (see Reference [155]).

Definition C.11. (L. Vincent [176].)
For a grayscale image I of domain DI , x ∈ DI is a discrete local maximum over a given

neighbourhood NI(x) if:

∀y ∈ NI(x), I(y) ≤ I(x). (C.3)

Definition C.12. (L. Vincent [176].)
For a grayscale image I of domain DI , a regional maximum at altitude h of I is a

connected component C of Th(I) such that C ∩ Th+1(I) = ∅.

Definition C.13. For a discrete grayscale digitalised image I of domain DI , a plateau
is a connected component C ⊂ DI such that ∀x ∈ C, I(x) = cst.

Proposition C.2. (L. Vincent [176].)
Given a grayscale image I, the (binary) image RMAX(I) of the regional maxima of
I is given by:

RMAX(I) = I − ρI(I − 1). (C.4)

Where ρI(I − 1) is the grayscale reconstruction of I from I − 1.
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C.3 H-maxima/minima transformation

For a given image I, local/regional maxima mark relevant as well as irrelevant fea-
tures. The H-maxima transformation acts as a filter for discarding irrelevant max-
ima. More precisely, the H–maxima transformation discards maxima whose depth
is lower than the value h.

Definition C.14. Given a grayscale image I of domain DI and global maximum
hmax = maxx∈DI

I(x), its inverse INV(I) is:

∀x ∈ DI , INV(I)(x) = hmax − I(x) (C.5)

Definition C.15. (P. Soille [155])
Given a grayscale image I, its h-maxima transformation HMAXh(I) is defined by:

HMAXh(I) = ρI(I − h). (C.6)

Where ρI(I− h) is the grayscale reconstruction of I by (I− h) (see definition C.9).
Figure C.4 illustrates a h–maxima transform of an image.

Definition C.16. Given a grayscale image I, its h-minima transformation HMINh(I)
is defined by:

HMINh(J) = ρJ+h(J), J = INV(I). (C.7)

Where ρJ+h(J) is the grayscale reconstruction of (J + h) by J (see definition C.9)
and INV(I) is the “inverse” of image I (see definition C.14).

I

(I-4)
I

FIGURE C.4: H–maxima transformation of a 1–dimensional image
using a depth h = 4. (Image inspired from P. Soille [155], Figure

6.16).
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C.4 H-convex/concave transformation

The H-convex transformation of an image I extracts relevant regional maxima thanks
to a H-maxima transform (see definition C.15).

Definition C.17. (P. Soille [155])
Given a grayscale image I, its H-convex transformation HCONVEXh(I) is defined

by:

HCONVEXh(I) = I − HMAXh(I). (C.8)

Where HMAXh(I) is the H-maxima transformation of image I (see definition C.15).
Figure C.5 illustrates a H-convex transform of an image.

Definition C.18. (P. Soille [155])
Given a grayscale image I, its h–concave transformation HCONCAVEh(I) is de-

fined by:

HCONCAVEh(I) = HMINh(I)− I. (C.9)

Where HMINh(I) is the H-minima transformation of image I (see definition C.16).

FIGURE C.5: H–convex transformation of a 1–dimensional image us-
ing a depth h = 1. (Image from L.Vincent [176], figure 11).

C.5 Watershed transform

Watershed transformation is a key morphological transformation for segmenting im-
ages (P.Soille [155]). In the context of cellular materials, porous materials and mi-
croscopy images, the watershed transformation is extensively used, often together
with the H-maxima transform, for identifying features as cell and cell walls (e.g. in
References [3, 149, 165, 33, 137, 38, 95, 169, 73, 117] to name a few).

C.5.1 Formal definition (P. Soille [155])

As suggested by the above basic idea, The watershed transformation can be defined
formally in terms of flooding simulation (P. Soille [155]), where one can imagine
that pinholes have been open at the regional minima. Then the topographic “land-
scape” represented by the grayscale image I is progressively immersed into water.
The water will progressively flood the “landscape” through the pinholes, creating
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catchment basins. Before defining the watershed transformation, some notation are
needed:

• A grayscale image I of domain DI is considered.

• hmin is the smallest image value of I: hmin = minx∈DI
I(x).

• hmax is the largest image value of I: hmax = maxx∈DI
I(x).

• CB(M) is the catchment basin associated to a minimum M.

• CBh(M) are the set of pixels of catchment basin CB(M) which have an altitude
less than or equal to h: CBh(M) = {x ∈ CB(M) | I(x) ≤ h}.

• ∀x ∈ DI , τt(I)(x) =

{
I(x) if I(x) ≤ t
0 elsewhere.

• τt≤h(I) = ∪t≤hτt(I).

• Xh is the subset of pixels of all catchment basins with gray value less than or
equal to h: Xh = ∪iCBh(Mi).

The catchment basins are then constructed recursively as:

·Xhmin
= RMINhmin

(I) (C.10)

·∀h ∈ [hmin, hmax − 1], Xh+1 = RMINh+1(I) ∪ IZTh+1(INV(I))(Xh) (C.11)

Where RMIN is the regional minima transformations (see definition C.16), INV(I)
is the image “inverse” of I (see definition C.14) and IZ is the influence zone (see def-
inition C.6), and Xhmax

is the set of catchment basins.

Definition C.19. (P. Soille [155])
The watershed transformation of an image I corresponds to the boundaries of the

catchment basins Xhmax
of I.





205

Appendix D

Closest point of a polyhedra to an
ellipsoid

This appendix describes how to solve the problem of finding the closest point be-
longing to a polyhedra to an ellipsoid.

Note: if the reader is not familiar with the notions of constrained convex optimi-
sation, it is recommend to refer to the excellent book of Boyd and Vandenberghe [26]
before continuing.

D.1 Problem to solve

The following convex constrained problem is considered:






arg minx̃∈Rn,w∈Rm ‖x̃‖2 = x̃tx̃

s.t.
∑

m
k=1 ṽj,kwk = x̃

∑
m
k=1 wk = 1

w � 0

(D.1)

D.2 KKT constraint qualifications

In the problem D.1, it is possible to reduce the number of variables by injecting the
first constraint in the objective function. Then problem D.1 can be expressed as:







arg minw∈Rm wtṼtṼw

s.t. ∑
m
k=1 wk = 1

w � 0

(D.2)

Where, x̃ = Ṽw, and Ṽ =
(
ṽj,1, . . . , ṽj,m

)
∈ Rn×m.

The restated problem D.2 is fo the form:






arg minw∈Rm
1
2 wtQw

s.t.
Gw � 0

Aw = b
(D.3)

Where, Q = 2ṼtṼ ∈ Rm×m is a symmetric definite positive matrix, G = −I ∈
Rm×m (I is the identity matrix), b = 1 ∈ R and A = (1, . . . , 1) ∈ R1×m.
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Problems of the type of problem D.3 has been considered and solved by J. Mat-
tingley and S. Boyd [110] in a more general form. By introducing a slack variable
s ∈ Rm, J. Mattingley and S. Boyd transform the problem D.3 to:







arg minw,s∈Rm
1
2 wtQw

s.t.
Gw + s = 0

Aw = b
s � 0

(D.4)

With the associated Lagrangian:

L : Rm×Rm×Rm×R → R; (w, s, λ, µ) 7→ L(w, s, λ, µ) =
1
2

wtQw+λ
tGw+µ(Aw− b)

(D.5)
Where λ are the dual variables associated with the inequality constraints, and µ

the variable associated with the equality constraint.

And the associated KKT constraint qualifications are given by:

1. s � 0, Gw + s = 0, Aw = b (primal feasibility).

2. λ � 0 (dual feasibility).

3. λ
ts = 0 (complementary slackness).

4. ∂L
∂w = 0 = Qw + Gtλ + Atµ (stationarity).

D.3 Algorithm solving the optimisation problem D.1

J. Mattingley and S. Boyd use a primal-dual iterative procedure for solving prob-
lem D.4 using the above KKT constraint qualifications. This iterative procedure re-
quires initial values for primal and dual variables w, s λ, µ. These initial values are
found by solving analytically the two problems D.6 and D.7. For details about the
computations, see References [110] and [167].







arg mins,w∈Rm
1
2 wQw + 1

2‖s‖2

s.t.
Gw + s = 0

Aw = 1
(D.6)

{
arg maxν,λ∈Rm,µ∈R − 1

2 νtQν− bµ− 1
2‖λ‖2

s.t. Qν + Gtλ + Atµ = 0
(D.7)

The procedure for solving problem D.4 is given by algorithm 41.
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Algorithm 40 Initialisation algorithm for algorithm 41

Require: Convex polyhedral obstacle ζ̃ j.
1: procedure CVXINIT(ζ̃ j)

2: Solve





Q Gt At

G −I 0
A 0 0









w

λ

µ



 =





0
0
b



.

3: w(0) ← w, µ(0) ← µ, λ← Gw.
4: αp ← in f {α | − λ + α1 � 0}.
5: s(0) ←

{
λ if αp < 0
−λ + (1 + αp)1 elsewhere

6: αd ← in f {α | λ + α1 � 0}.
7: λ

(0) ←
{

λ if αd < 0
λ + (1 + αd)1 otherwise

8: return w(0), s(0), λ
(0), µ(0).

9: end procedure
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Algorithm 41 Simplified version of the algorithm of J. Mattingley and S. Boyd
([110]). Find the closest point belonging to a convex polyhedral obstacle ζ j from
an ellipsoid E .

Require: Ellipsoid E(E, c).
Require: Convex polyhedral obstacle ζ j.

1: procedure CVX(E, c, ζ j)
2: ζ̃ j ← E−1(ζ j − c) ⊲ Step 0.
3: w(0), s(0), λ

(0), µ(0) ← CVXINIT(ζ̃ j). ⊲ Algorithm 40.

4: Compute affine scaling directions by solving: ⊲ Step 1.







Q 0 Gt At

0 Λ S 0
G I 0 0
A 0 0 0













∆wa f f

∆sa f f

∆λ
a f f

∆µa f f







=







−
(

Atµ + Gtλ + Qw
)

−Sλ

− (Gw + s)
− (Aw− b)







Where S =






s1 . . . 0
...

. . .
...

0 . . . sm




 and Λ =






λ1 . . . 0
...

. . .
...

0 . . . λm




.

5: Compute centering–plus–correction directions by solving: ⊲ Step 2.







Q 0 Gt At

0 Λ S 0
G I 0 0
A 0 0 0













∆wcc

∆scc

∆λ
cc

∆µcc







=







0
σβ1− ∆Sa f f ∆λ

a f f

0
0







Where

∆Sa f f =







∆s
a f f
1 . . . 0
...

. . .
...

0 . . . ∆s
a f f
m







β = stλ

m and σ =

(

(s+α∆sa f f )
t
(λ+α∆λ

a f f )
stλ

)3

with

α = sup
{

α̃ ∈ [0, 1] | s + α̃∆sa f f � 0, λ + α̃∆λ
a f f � 0

}

.

6: α← min {1, 0.99 sup {α̃ ≥ 0 | s + α̃∆s � 0, λ + α̃∆λ � 0}}.

7: Update the primal and dual variables: ⊲ Step 3.
8: w← w + α

(
∆wa f f + ∆wcc

)
.

9: s← s + α
(
∆sa f f + ∆scc

)
.

10: λ← λ + α
(

∆λ
a f f + ∆λ

cc
)

.

11: µ← µ + α
(
∆µa f f + ∆µcc

)
.

12: if residual ≤ ǫ then

13: x̃∗ ← ∑
m
k=1 ṽj,kwk. ⊲

{
ṽj,k
}

k=1,...,m: vertices of ζ̃ j.
14: return x∗ = Ex̃∗ + c.
15: else

16: Go to step 1.
17: end if

18: end procedure
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Appendix E

Maximum volume ellipsoid inside
a polyhedron

The algorithm of R. Deits and R. Tedrake also requires to find the maximum volume
ellipsoid contained in a polyhedron. This problem has been tackle by numerous au-
thors (see, e.g., [168] for a few references). The proposed solution here relies on the
article of Y. Zhang and L. Gao ([189]). The following is merely a detailed explana-
tion of the algorithm developed by Y. Zhang and L. Gao and taken from their own
article [189].

Note: if the reader is not familiar with the notions of constrained convex optimi-
sation, it is recommend to refer to the excellent book of Boyd and Vandenberghe [26]
before continuing.

E.1 Mathematical expression of the problem.

Let’s, on the one hand, P ∈ Rn be a polyhedron represented by:

P = P(A, b) = {x ∈ Rn | Ax ≤ b} (E.1)

Where b ∈ Rm and A ∈ Rm×n, m > n has full rank n and contains no zero rows.
Moreover, it is assumed that ∃x̄ ∈ int(P) such that Ax̄ < b. (int(P) refers to the
interior of set P).

On the other hand, let’s E ⊂ Rn be an ellipsoid of centre c ∈ Rn with a non-
singular scaling matrix E = G−t. E can be represented as:

E(c, E) = {x ∈ Rn | x = c + Ey, ‖y‖ ≤ 1} (E.2)

Ellipsoid E(c, E) ⊂ P if, and only if:

sup‖y‖=1 at
i(c + Ey) ≤ bi, i = 1, . . . , m (E.3)

Where ai is the ith row of A.

Equivalently, condition E.3 can be rewritten:

at
i c + ‖Eai‖ ≤ bi, i = 1, . . . , m (E.4)
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Let’s introduce the notation:

h(E) = (‖Ea1‖, . . . , ‖Eam‖)t ∈ Rm (E.5)

Then:

E(c, E) ⊂ P⇔ b− Ac− h(E) � 0 (E.6)

The volume Vol(E) of ellipsoid E is given by:

Vol(E) = V0

n

∏
i=1

ri ∝
n

∏
i=1

ri (E.7)

Where V0 = 2πn/2

nΓ( 1
2 n)

is the volume of the unit sphere inRn1 and the {ri}i=1,...,n are

the semi-axis lengths of the ellipsoid.

The semi-axis lengths {ri}i=1,...,n are related to the singular values {µi}i=1,...,n of
the scaling matrix E as follow:

ri = µi, i = 1, . . . , n

Therefore:

1
Vol(E) ∝ det

(

E−1
)

= (det(E))−1 (E.8)

Maximising the ellipsoid volume Vol(E) is thus equivalent to minimising

ln
(

(det(E))−1
)

= −ln det(E) (E.9)

as the logarithmic function ln is bijective overR+\{0}.

Finding the maximum volume ellipsoid E(c, E) ⊂ P amounts to solve the follow-
ing optimisation problem:







minc,E − ln det(E)

s.t.
b− Ac− h(E) � 0
E ≻ 0

(E.10)

The Lagrangian and dual function associated to the optimisation problem E.10 are
respectively:

L(c, E, λ) = −ln det(E)− λ
t (b− Ac− h(E))

g(λ) = in fc,E L(c, E, λ)

1Γ(m) =
∫ ∞

0 e−r2
r2m−1 dr is the gamma function.
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E.1.1 KKT constraint qualifications

The optimisation problem E.10 is solved using the Karush-Kuhn-Tucker (KKT) con-
straint qualifications (see Section 5.5.3 of the book [26]), where the following two
differentiation formulae are used2:

∇E (ln det(E)) = E−1 (E.11)

∇Ehi(E) =
Eaia

t
i + aia

t
i E

2hi(E)
, i = 1, . . . , m (E.12)

With these differentiation formulae and introducing the notations:

Λ =






λ1 . . . 0
...

. . .
...

0 . . . λm




 ∈ Rm×m (E.13)

Y = Y(E, λ) =







1
h1(E)

. . . 0
...

. . .
...

0 . . . 1
hm(E)







Λ ∈ Rm×m (E.14)

y =

(
λ1

h1(E)
, . . . ,

λm

hm(E)

)t

∈ Rm (E.15)

The KKT constraint qualifications are (Y. Zhang and L. Gao [189]):

At
λ = 0 (E.16)

E−1 −
(
E
(

AtYA
)
+
(

AtYA
)

E
)

/2 = 0 (E.17)

z− (b− Ac− h(E)) = 0 (E.18)

Λz = 0 (E.19)

λ, z � 0 (E.20)

Where z ∈ Rm is a slack variable.

Indeed

• Condition E.16 comes from the KKT stationarity condition with respect to vari-
able c:

∇cL = 0 = At
λ

• Condition E.17 comes from the KKT stationarity condition with respect to vari-
able E and by making use of the differentiation formulae E.11 and E.12:

∇EL = 0 = −E−1 + ∑
n
i=1 λi

(
Eaia

t
i+aia

t
i E

2hi(E)

)

⇔ 0 = E−1 −
(
E
(

AtYA
)
+
(

AtYA
)

E
)

/2
2See Reference [168], for details about how these formulae are derived.
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• For conditions E.18 and E.20, the constraint b− Ac− h(E) � 0 is considered.
By introducing the slack variable z ∈ Rm such that b− Ac− h(E) = z � 0,
this constraint can be rewritten as:

z− (b− Ac− h(E)) = 0

Which is condition E.18.

And, with the KKT dual feasibility condition λ � 0, one obtain:

λ, z � 0

Which is condition E.20.

• Finally, the KKT complementary slackness condition λ
t (b− Ac− h(E)) = 0

can be expressed as

Λz = 0

Which is condition E.19.

E.1.2 Simplification of the KKT constraint qualifications

The above KKT conditions can be further simplified by eliminating the matrix vari-
able E by solving equation E.17. The solution3 to equation E.17 is indeed4:

E(y) =
(

AtYA
)−1/2

(E.21)

As, by definition, h(E) = (‖Ea1‖, . . . , ‖Eam‖)t; with solution E.21 h(E) can be
re-expressed as:

h̃(y) = h (E(y)) (E.22)

Moreover, by equation E.14 one can obtain:

λ = g(y) = Yh̃(y) (E.23)

Using the above results, the KKT constraint qualifications can then be expressed
as:

At
λ = 0 (E.24)

z− b + Ac + h̃(y) = 0 (E.25)

Λz = 0 (E.26)

y, λ, z � 0 (E.27)

λ− g(y) = 0 (E.28)
3The uniqueness of the solution is proven in Reference [189].
4This is easy the check by plugging the solution into the equation.
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Or, in a more condensed form (Y. Zhang and L. Gao [189]):

F0(c, y, λ, z) = 0, y, λ, z � 0 (E.29)

F0 : Rn+3m → Rn+3m; (c, y, λ, z) 7→ F0(c, y, λ, z) =







Atλ

Ac + h̃(y) + z− b

λ− g(y)
Λz







(E.30)

The system E.29 can be further simplified by eliminating the variable λ by using
equation E.23 (Y. Zhang and L. Gao [189]):

F1(c, y, z) = 0, y, z � 0 (E.31)

F1 : Rn+2m → Rn+2m; (c, y, z) 7→ F1(c, y, z) =





Atg(y)
Ac + h̃(y) + z− b

Zg(y)



 (E.32)

And:

Z =






z1 . . . 0
...

. . .
...

0 . . . zm




 ∈ Rm×m (E.33)

E.1.3 Algorithm solving the optimisation problem E.10

The algorithm of Y. Zhang and L. Gao (see algorithm 425) can be viewed as a damped
Newton’s method applied to a perturbed version of the system E.31. The perturbed
version is the following:

F1(c, y, z) =





0

0

w



 , y, z ≻ 0 (E.34)

Where w = µw0 for some w0 ∈ Rm
++. Usually, one chooses w0 = e, with e a

vector of all ones.

The perturbed system E.34 admits a unique solution for every µ > 0 and, as
µ → 0, its solution converges to the solution of the original system E.31 (see Ref-
erence [189] for a proof).

5A Matlab implementation can be found at ❤tt♣✿✴✴✇✇✇✳❝❛❛♠✳r✐❝❡✳❡❞✉✴⑦③❤❛♥❣✴♠✈❡✴✐♥❞❡①✳❤t♠❧.
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Algorithm 42 Algorithm of Y. Zhang and L. Gao [189]

Require: Bounded non–empty polyhedron P = P(A, b).
Require: c0 ∈ int(P).

1: procedure MAXVOLELLIPSOIDINPOLYHEDRON(A, b, c0)
2: k← 0.
3: y0 ← (1, . . . , 1)t.
4: E(y0)←

(
AtY0A

)−1/2.

5: h̃(y0)←
(
‖E(y0)a1‖, . . . , ‖E(y0)am‖

)t.
6: z0 ← b− Ac0 − h̃(y0).

⊲ Step 1

7: Choose σk ∈]0, 1[.

8: µk ← σk
g(yk)tzk

m .
⊲ Step 2

9: Solve for (dc, dy, dz) from:

10: F′1(c
k, yk, zk)





dc

dy

dz



 = µk





0

0

e



− F1(c
k, yk, zk).

⊲ Step 3

11: Choose a step length αk ∈]0, 1] and update:
12:

(
ck+1, yk+1, zk+1

)
←

(
ck, yk, zk

)
+ αk (dc, dy, dz) such that ck+1 ∈ P and

yk+1, zk+1 � 0.
⊲ Step 4

13: if ‖F1
(
ck+1, yk+1, zk+1

)
‖ ≤ ǫ then

14: c∗ ← ck+1.
15: E∗ ← E(yk+1) =

(
AtYk+1A

)−1/2
.

16: return c∗, E∗.
17: else

18: k← k + 1 and goto Step 1.
19: end if

20: end procedure
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In algorithm 42, the following quantities are used:

F′1(c, y, z) =





0 Atg′(y) 0
A h̃′(y) I
0 Zg′(y) G(y)



 (E.35)

G(y) =






g1(y) . . . 0
...

. . .
...

0 . . . gm(y)




 (E.36)

and g′(y) and h̃′(y) are the Jacobian matrices of g(y) and h̃(y), respectively.

For the sake of completeness, these Jacobian matrices are given by (Y. Zhang and
L. Gao [189]):

g′(y) = H(y) + Yh′(y) (E.37)

And:

h′(y) = −1
2

H(y)−1 (Q(y) ◦Q(y)) (E.38)

Where:

Q(y) = A
(

AtYA
)−1

At (E.39)

With “◦” referring to the Hadamard product between matrices.

And:

H(y) =






h̃1(y) . . . 0
...

. . .
...

0 . . . h̃m(y)




 (E.40)
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Appendix F

The GDBSCAN algorithm

F.1 Preliminary definitions

Let’s D be a spatial database of objects (here ellipsoids) with spatial attributes (here
the semi-axes of the ellipsoids and their associated lengths) and non-spatial attributes
(here the value of the maximum associated to each ellipsoid). It is assumed here that:

1. The objects of D lie in an affine euclidean space E: ∀o ∈ D, o ⊂ E.

2. D has finite cardinality (#D < ∞).

3. D is bounded (for any point O in the space E containing the objects of D, there
exist a radius R > 0 such that, for a given distance d, the closed ball1 centred
in O of radius R contains all objects of D: ∀o ∈ D, o ⊂ B[O; R]).

Definition F.1. (From ❤tt♣✿✴✴♠❛t❤✇♦r❧❞✳✇♦❧❢r❛♠✳❝♦♠✴P♦✇❡r❙❡t✳❤t♠❧) Given a set
D, its powerset, noted 2D or P(D), is the set of all subsets of D. For D of cardinality
#D, the cardinality of its powerset 2D is #

(
2D
)
= 2#D.

Definition F.2. (J. Sander et al. [147])
Let’s NPred be a binary predicate on D which is reflexive and symmetric, i.e., ∀p, q ∈
D : NPred(p, p) and, if NPred(p, q) then NPred(q, p). Then the NPred-neighbourhood
of an object o ∈ D is defined as:

NNPred(o) =
{

o′ ∈ D | NPred(o, o′)
}

(F.1)

Definition F.3. (J. Sander et al. [147])
Let’s wCard be a function from the powerset of the database D (see definition F.1)

into the nonnegative Real numbers, wCard : 2D → R+ and MinCard be a positive
real number. Then, the predicate MinWeight for a set S of objects is defined to be
true if and only if wCard ≥ MinCard.

Definition F.4. (J. Sander et al. [147])
An object p is directly density–reachable from an object q with respect to NPred and
MinWeight if:

1. p ∈ NNPred(q).

2. MinWeight (NNPred(q)) = true (core object condition).

Figure F.1 illustrates a situation where an object p is directly density reachable
from an object q, but where the converse is not true.

1For a space E, a closed ball B[O; R] of radius R > 0 centred in O ∈ E is defined as: B[O; R] =
{y ∈ E | d(o, y) ≤ R}.
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p

q

p

q

p: border object

q: core object

p directly density-

reachable from q
q not directly density-

reachable from p

FIGURE F.1: Core objects and border objects. [147].

Definition F.5. (J. Sander et al. [147])
An object p is density-reachable from an object q with respect to NPred and MinWeight
if there is a chain of objects p1, . . . , pn, p1 = q, pn = p such that ∀i = 1, . . . , n− 1,
pi+1 is directly density reachable from pi with respect to NPred and MinWeight.

The left part of Figure F.2 illustrates this concept.

Definition F.6. (J. Sander et al. [147])
An object p is density-connected to an object q with respect to NPred and MinWeight

if there is an object o such that both, p and q are density-reachable from o with re-
spect to NPred and MinWeight.

The right part of Figure F.2 illustrates this concept.

p

q

p

q

p density-

reachable from q

q density-

reachable from p

p and q density-

connected to

each other by o

FIGURE F.2: Density–reachability and density–connectivity [147].

Definition F.7. (J. Sander et al. [147])
A density-connected set C with respect to NPred and MinWeight in D is nonempty

subset of D satisfying the following conditions:

1. Maximality: ∀p, q ∈ D, if p ∈ C and q is density-reachable from p with respect
to NPred and MinWeight, then q ∈ C.

2. Connectivity: ∀p, q ∈ C: p is density-connected to q with respect to NPred and
MinWeight.

Definition F.8. (J. Sander et al. [147])
A clustering CL of D with respect to NPred and MinWeight is a set of density-

connected sets with respect to NPred and MinWeight in D, CL = {C1, . . . , Ck}, such
that for all C the following hold: if C is a density-connected set with respect to NPred
and MinWeight in D, then C ∈ CL.
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Definition F.9. (J. Sander et al. [147])
Let CL = {C1, . . . , Ck} be a clustering of the database D with respect to NPred and
MinWeight. The the noise of D is defined here as the set of objects in the database D
not belonging to any density–connected set Ci, i.e., noiseCL = D\ (C1 ∪ . . . ∪ Ck).

F.2 Algorithm

The GDBSCAN algorithm starts with a set of objects marked as unclassified. It takes
then the first unclassified object p of the set and marks it with a cluster number
(e.g. starting from 1). Then, it tries to add to this first cluster candidate and mark
all density connected objects p1, . . . , pn with respect to NPred and MinWeight by
scanning the neighbourhood of the first object and the subsequent neighbourhoods
of the possibly added objects in the cluster (constructing a queue of objects). It adds
objects to the current cluster candidate while the queue is not empty.

If the MinWeight predicate for the first object q is false, then q is classified as
noise and the next unclassified object is tested against NPred and MinWeight for
constructing the next cluster candidate. The algorithm repeats the above steps while
there are unclassified objects in the set.

Algorithm 43 Generalised Density-Based SCAN (GDBSCAN) algorithm for cluster-
ing spatial objects (J. Sander et al. [147]). Algorithm particularised for the case of
ellipsoids.

Require: D set of spatial objects with R*-tree structure (insert objects using algo-
rithm 51).

Require: MinCard cluster volume threshold.
Require: τ overlapping volume ratio criterion as given in condition 2.64.
Require: Mmax maximum number points for estimating the overlapping volume.
Require: tol convergence tolerance for algorithm 28.

1: procedure GDBSCAN(D, MinCard, tau, Mmax, tol)
2: ClusterId = nextId(NOISE) ⊲ Objects in set D are UNCLASSIFIED.
3: for i = 1, . . . , D.size() do

4: Object = D.get(i)
5: if Object.ClusterId = UNCLASSIFIED then

6: if EXPANDCLUSTER(D, Object, ClusterId, MinCard, τ, Mmax, tol) then

⊲ See algorithm 44
7: ClusterId = nextId(ClusterId)
8: end if

9: end if

10: end for

11: end procedure
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Algorithm 44 Expand a cluster for the GDBSCAN algorithm 43 (J. Sander et
al. [147]). Algorithm particularised for the case of ellipsoids.

Require: D set of spatial objects.
Require: Object considered object in D.
Require: ClusterId current cluster identifier (number in Z).
Require: MinCard cluster volume threshold.
Require: τ overlapping volume ratio criterion as given in condition 2.64.
Require: Mmax maximum number of integration points for estimating the overlap-

ping volume.
Require: tol convergence tolerance for algorithm 28.

1: procedure EXPANDCLUSTER(D, Object, ClusterId, MinCard, τ, Mmax, tol)
2: if WCARD({Object})≤ 0 then ⊲ Object not in selection. Algorithm 46.
3: D.changeClusterId(Object, UNCLASSIFIED)
4: return false
5: end if

6: seeds = D.NPREDNEIGHBOURHOOD(Object, τ, Mmax, tol) ⊲ Algorithm 45
7: if WCARD(seeds)< MinCard then ⊲ No core object. Algorithm 46.
8: D.changeClusterId(Object, NOISE)
9: return false

10: end if

11: ⊲ Still here ? Object is a core object.
12: D.changeClusterId(seeds, ClusterId)
13: seeds.delete(Object)
14: while seeds 6= empty do

15: currentObject = seeds. f irst()
16: result = D.NPREDNEIGHBOURHOOD(currentObject, τ, Mmax, tol) ⊲

Algorithm 45
17: if WCARD(result)≥ MinCard then ⊲ Algorithm 46.
18: for i = 1, . . . , result.size() do

19: P = result.get(i)
20: if WCARD({P})> 0 and P.clusterId ∈
{UNCLASSIFIED, NOISE} then ⊲ Algorithm 46.

21: if P.clusterId = UNCLASSIFIED then

22: seeds.append(P)
23: end if

24: D.changeClusterId(P, ClusterId)
25: end if ⊲ WCARD(. . . )> 0 and UNCLASSIFIED or NOISE
26: end for

27: end if ⊲ WCARD(. . . ) ≥ MinCard
28: seeds.delete(currentObject)
29: end while ⊲ seeds 6= empty
30: return true
31: end procedure
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F.2.1 Remarks

• The GDBSCAN algorithm 43 assumes that the lowest non-negative object iden-
tifier (Id) is the “unclassified” Id, followed by the “noise” Id. The function
nextId simply increase the input Id by one: nextId : Z → Z , x 7→ nextId(x) =
x + 1.

• the ExpandCluster algorithm 44 only consider object that are “selected”, i.e.
with a non-negative identifier, this allows to perform clustering on a subset of
the database D.

• The D.get(i) function returns the ith object from set D.

The NPred-neighbourhood of an object p in dataset D queries all intersecting ob-
jects q with p, using the above predicate NPred. It takes advantage of the R*-tree
structure of the dataset D, testing p with the predicate NPred only for objects q be-
longing to the same parent node as object p. For instance, in the simplified example
given in Figure 2.35, if p is the object 1, only objects 2 and 3 are tested against p with
the predicate NPred. The R*-tree data structure allows to reduce the complexity of
one query from O(n) to O(log(n)), where n = #D is the number of objects in the
dataset. The NPred-neighbourhood procedure is given in algorithm 45.

Algorithm 45 Given an object (ellipsoid) belonging to a R*-tree data structure, return
its neighbourhood satisfying the predicate NPred (see algorithm 22).

Require: Object considered object in a R*-tree data structure.
Require: τ overlapping volume ratio criterion as given in condition 2.64.
Require: Mmax maximum number of integration points for estimating the overlap-

ping volume.
Require: tol convergence tolerance for algorithm 28.

1: procedure NPREDNEIGHBOURHOOD(Object, τ, Mmax, tol)
2: neighbours = {Object}
3: candidateNeighbours = QUERYNEIGHBOURHOOD(Object) ⊲ Algorithm 55.
4: for candidate ∈ candidateNeighbours do

5: if NPRED(Object, candidate, τ, Mmax, tol) then ⊲ Algorithm 22
6: neighbours = neighbours ∪ {candidate}
7: end if

8: end for

9: return neighbours
10: end procedure
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The wCard function used here is simply the volume of the objects it receive as
arguments. The MinCard volume threshold is simply set by the user, and can be
seen as a minimum volume threshold. Algorithm 46 describes the wCard function.

Algorithm 46 wCard function used in this thesis. Simply computes the volume of
ellipsoids it gets as arguments

Require: {Ei}i=1,...,m finite set of ellipsoids.
1: procedure WCARD({Ei}i=1,...,m)
2: volume = 0
3: for i = 1, . . . , m do

4: Extract the semi-axes lengths r1, r2 and r3 of the current ellipsoid Ei.
5: volume = volume + 4π

3 r1r2r3
6: end for

7: return volume
8: end procedure
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Appendix G

Algorithms for a R*-tree data
structure

This appendix contains algorithms for handling a R*-tree data structure as they are
given in the article of N. Beckmann et al. [17].

Algorithm 47 Subtree choice for the insertion of a new entry in a R*-tree (N. Beck-
mann et al. [17]).

Require: N the root of a R*-tree.
1: procedure CHOOSESUBTREE(N)
2: if N is a leaf then

3: return N
4: else

5: if Childpointers in N point to leaves then

6: Choose the entry in N whose box needs least overlap enlargement to
include the new data box.

7: Resolve ties by choosing the entry whose box needs least volume en-
largement, then the entry with the box of smallest volume.

8: end if

9: if Childpointers in N do not point to leaves then

10: Choose the entry in N whose box needs least volume enlargement to
include the new data box. Resolve ties by choosing the entry with
the box of smallest volume.

11: end if

12: end if

13: Set N to be the child node pointed to by the childpointer of the chosen entry
and repeat from beginning.

14: end procedure

Algorithm 48 Node split if maximum number of child M is reached (N. Beckmann
et al. [17]).

1: procedure SPLIT

2: Invoke CHOOSESPLITAXIS to determine the axis, perpendicular to which the
split is performed. ⊲ Algorithm 49

3: Invoke CHOOSESPLITINDEX to determine the best distribution into two
groups along that axis. ⊲ Algorithm 50

4: Distribute the entries into two groups.
5: end procedure
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Algorithm 49 Choose the split axis for the Split algorithm (N. Beckmann et al. [17]).

1: procedure CHOOSESPLITAXIS

2: for Each axis do

3: Sort the entries by the lower then by the upper volume-value, overlap-
value and margin–value of their boxes and determine all distributions.

4: Compute S, the sum of all margin–values of the different distributions.
5: end for

6: Choose the axis with the minimum S as split axis.
7: end procedure

Algorithm 50 Choose the split index along a given split axis (N. Beckmann et
al. [17]).

1: procedure CHOOSESPLITINDEX

2: Along the chosen split axis, choose the distribution with the minimum
overlap-value.

3: Resolve ties by choosing the distribution with minimum volume-value.
4: end procedure

Algorithm 51 Insert a new entry in a R*-tree (N. Beckmann et al. [17]).

1: procedure INSERTDATA

2: Invoke INSERT(level) starting with the leaf level as a parameter, to insert a
new data box. ⊲ Algorithm 52

3: end procedure

Algorithm 52 Insert a new entry in a R*–tree (N. Beckmann et al. [17]).

Require: level: leaf level.
1: procedure INSERT(level)
2: Invoke CHOOSESUBTREE(N), with the level as a parameter, to find an appro-

priate node N, in which to place the new entry E. ⊲

Algorithm 47
3: if N has less than M entries then

4: Accommodate E in N.
5: end if

6: if N has M entries then

7: Invoke OVERFLOWTREATMENT(N, level) with the level of N as
parameter.

⊲ Algorithm 53
8: end if

9: if OverflowTreatment was called and split occured then

10: Propagate OverflowTreatment upwards if necessary.
11: end if

12: if OverflowTreatment caused a split of the root then

13: Create a new root.
14: end if

15: Adjust all covering boxes in the insertion path such that they are minimum
bonding boxes enclosing the children boxes.

16: end procedure
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Algorithm 53 Split a node which has to contains more that M children (N. Beckmann
et al. [17]).

Require: N: the node to split.
Require: level: the node level.

1: procedure OVERFLOWTREATMENT(N, level)
2: if level is not the root level and this is the first call of OverflowTreatment for

the given level then

3: Invoke REINSERT(N). ⊲ Algorithm 54
4: else

5: Invoke SPLIT. ⊲ Algorithm 48
6: end if

7: end procedure

Algorithm 54 Reorganise boxes for node N (N. Beckmann et al. [17]).

Require: N: a node.
1: procedure REINSERT(N)
2: For all M + 1 entries of node N, compute the distance between the centres of

their boxes and the centre of the bounding box of N.
3: Sort the entries in decreasing order of their distances computed here above.
4: Remove the first p = 30% of the entries from N and adjust the bounding box

of N.
5: In the above sort, starting with the maximum distance (= far reinsert) or min-

imum distance (= close reinsert), invoke INSERT(level) to reinsert the en-
tries at the level of N. ⊲

Algorithm 52
6: end procedure

Algorithm 55 Perform a neighbourhood query for a given R*-tree.

Require: Object an object in the R*–tree.
1: procedure QUERYNEIGHBOURHOOD(Object)
2: Compute the bounding box B of Object.
3: Starting from the root node of the tree, select the sub–node from the root

whose associated bounding box contains B.
4: If the current sub–node is not a leaf node, select the next sub–node from the

current one whose associated bounding box contains B.
5: Go back to line 4 while the last selected sub–node is not a leaf node.
6: return Objects in current leaf node.
7: end procedure
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Appendix H

Intersection volume between two
colliding ellipsoids

This section is devoted to the numerical computation of the intersection volume
Vol (E1 ∩ E2) of two ellipsoids E1 and E2. This intersection volume is used from the
evaluation of the overlapping criterion 2.64.

H.1 Monte Carlo integration and the VEGAS algorithm

With an integration domain separable along each dimension taken as the intersec-
tion of axis-aligned box of the two considered ellipsoids E1 and E2, the VEGAS al-
gorithm of G.P. Lepage [129] can be used for estimating the intersection volume
Vol (E1 ∩ E2) with the integrand given in equation H.1.

f inter
E1,E2

: R3 → {0, 1}; x 7→ f inter
E1,E2

(x) =

{
1 if x ∈ E1 ∩ E2
0 elsewhere

(H.1)

H.1.1 Description of the VEGAS algorithm

The following section describes how G.P. Lepage’s algorithm works and is mainly
extracted from G.P. Lepage’s article [129]. It is given here for the sake of complete-
ness. The complete procedure is given in algorithm 56.

H.1.1.1 Classic Monte Carlo integration

Given an integrable function f : Rn → R; x 7→ f (x) over a domain Ω ⊂ Rn, the
integral I =

∫

Ω
f (x) dx is to be calculated. If a primitive of f is not known and if f

and/or the integration domain Ω are not well-suited for classic integration methods
(as the Gauss-Legendre quadrature rule), Monte Carlo methods may be effective
alternatives for computing the integral I.

The classic Monte Carlo integration method is the following. Given a set {x}
of M point chosen randomly in the integration domain Ω following a probability
density function p : Rn → R+; x 7→ p(x), the integral I can be approximated by
equation H.2.

S(1) =
Vol(Ω)

M ∑
x

f (x)

p(x)
(G.P. Lepage [129], eq. 1.) (H.2)

Where Vol(Ω) =
∫

Ω
1 dx and

∫

Ω
p(x) dx = 1. In that case, we have:

limM→∞S(1) = I (H.3)
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For different sets of M points, S(1) in equation H.2 will fluctuate with a variance
σ2 estimated by equation H.4 for M big.

σ2 ≈
S(2) −

(

S(1)
)2

M− 1
(G.P. Lepage [129], eq. 2) (H.4)

Where S(2) = (Vol(Ω))2

M ∑x

(
f (x)
p(x)

)2
.

Integration method of G.P. Lepage. In general, Monte Carlo integration methods
require a high number of evaluation points M in order to obtain an accurate result,
i.e. a small variance σ2. However, evaluating numerous time a function may be
computationally expensive. G.P. Lepage’s methods consist in avoiding a to high
number of evaluation points M, while minimising the variance σ2.

This aim is achieved iteratively adapting the probability density function p(x).
The idea, known as importance sampling consist in adapting the probability density
function p(x) such that the chosen random points {x} concentrate where the func-
tion | f (x)| is larger. As probability density function p(x) G.P. Lepage suggests to use
the piecewise constant function given in equation H.5.

p(x) = p(1)(x(1)) . . . p(n)(x(n)),

p(µ)(x(µ)) = 1
N∆x

(µ)
i

, x
(µ)
i − ∆x

(µ)
i ≤ x(µ) ≤ x

(µ)
i ,

i = 1, . . . , N, µ = 1, . . . , n

(H.5)

Where N is the number of piece along each direction µ = 1, . . . , n and the ∆x
(µ)
i

are intervals along each direction µ = 1, . . . , n such that ∑
N
i=1 ∆x

(µ)
i = 1, µ = 1, . . . n.

The procedure consists now into adapting the different intervals ∆x
(µ)
i such that

the variance σ2 is minimised. To this aim, G.P. Lepage suggests to subdivide each

interval δx
(µ)
i into (m

(µ)
i + 1) subintervals given by equation H.6.

m
(µ)
i = K

f
(µ)

i ∆x
(µ)
i

∑
N
j=1 f

(µ)

j ∆x
(µ)
j

, i = 1, . . . , N, µ = 1, . . . , n (H.6)

Where K is a constant and f
(µ)

i = ∑x(1) . . . ∑x(µ−1) ∑
x(µ)∈x

(µ)
i −∆x

(µ)
i

∑x(µ+1) . . . ∑x(n)

| f (x)|
p(1)(x(1))...p(µ−1)(x(µ−1))p(µ+1)(x(µ+1))...p(n)(x(n))

Note that in practice, and in order to ensure algorithmic stability, a damped ver-

sion of the expression of m
(µ)
i , involving a kind of “learning parameter” α, is used

(see algorithm 56 line 34).
Once the subintervals along each direction µ are computed, these subintervals

are amalgamated into N new intervals along each direction µ. Neighbouring in-
tervals where evaluations of | f (x)| are low are merged, while intervals with high
evaluations of | f (x)| are kept. The change of these intervals directly impact the
probability density function p(x) which is updated. This process is then repeated
with a new set of M randomly distributed points {x} according to the new proba-
bility density function p(x) until convergence is met. Figure H.1 shows a sketch of
this process.
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|f(x)|

(b)

(d)

(a)

(c)

FIGURE H.1: One–dimensional sketch of the process dividing inter-
val into subintervals and merging the obtained subintervals accord-
ing to the evaluations of a function | f (x)|. a) Initial intervals. b) Sam-
pling of the function | f (x)|. c) Division of the intervals into subinter-

vals. d) Amalgamation of the subintervals.
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H.1.1.2 Error estimation

At each iteration involving a new set of M random points {x}, the quantities given
in equations H.7 are computed.

I = σ2
I

∑j
Ij

σ2
j

σI =

(

∑j
1

σ2
j

)−1/2 (G.P. Lepage [129], eq. 5.) (H.7)

Where Ij and σj are the integral and standard deviation estimated at iteration j.

The error at a given iteration can then be estimated as given by the sum H.8 which
follows a χ2 distribution1.

χ2 ≈∑
j

(
Ii − I

)2

σ2
j

(G.P. Lepage [129], eq. 7.) (H.8)

If the sum H.8 greatly exceeds the number of carried iterations, the integral esti-
mation should not be trusted.

Algorithm 56 G.P. Lepage’s VEGAS algorithm [129]

Require: Integrand function f inter
E1,E2

: Rn → R.
Require: Number of integration points M.
Require: Integration domain Ω = [dmin,1, dmax,1]× . . .× [dmin,n, dmax,n].
Require: Number of subdivisions along each axis N.

1: procedure VEGAS( f inter
E1,E2

, M, Ω, N)
2: α← 1.5 ⊲ GSL default value for convergence parameter.
3: K ← 1000 ⊲ Typical value according to G.P. Lepage [129].
4: trial ← 1
5: for each subdivision i = 1, . . . , N do

6: ∆x
(µ)
i ← dmax,i−dmin,i

N , µ = 1, . . . , n

7: p(µ)(x(µ))← 1
∆x

(µ)
i

, µ = 1, . . . , n

8: end for

9: p(x)← p(1)(x(1)) . . . p(n)(x(n))

10: Bj1,...,jn ←
[

dmin,1 + j1∆x
(1)
j1

, dmin,1 + (j1 + 1)∆x
(1)
j1

]

× . . . ×
[

dmin,n + jn∆x
(n)
jn

, dmin,n + (jn + 1)∆x
(n)
jn

]

, j1, . . . , jn = 0, . . . , N − 1

11: x←
{

set of two uniform random points in each box Bj1,...,jn

}

12: Vol(Ω)← ∏
n
µ=1

(
dmax,µ − dmin,µ

)

13: χ̃2

trial ← VEGASLOOP(p(x), f inter
E1,E2

, x, Ω, Vol(Ω), M, N, trial)

14: while
(

χ̃2

trial − 1
)

> 0.1 do

15:
{

χ̃2

trial , I
}

← VEGASLOOP(p(x), f inter
E1,E2

, x, Ω, Vol(Ω), M, N, trial)
16: trial ← trial + 1
17: end while

18: return I
19: end procedure

1A random variable X follows a χ2 distribution if it is the sum of n normal independent random
variables {Yi}i=1,...,n of mean 0 and variance 1.
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20: procedure VEGASLOOP(p(x), f inter
E1,E2

, x, Ω, Vol(Ω), M, N, trial)

21: s
(1)
trial ← VolΩ

M ∑x

f inter
E1,E2 (x)

p((x))

22: S
(2)
trial ←

Vol2(Ω)
M ∑x

(
f inter
E1,E2 (x)

p(x)

)2

23: σ̃2
trial ←

S
(2)
trial−

(

S
(1)
trial

)2

M−1

24: σI ←
(

∑
trial
j=1

1
σ̃2

j

)−1/2

25: I ← σ2
I

∑
trial
j=1

S
(1)
j

σ̃2
j

26: χ̃2

trial ← ∑
trial
j=1

(

S
(1)
j −I

)2

σ̃2
j

27: for each axis µ = 1, . . . , n do

28: for each subinterval i = 1, . . . , N do

29: f
(µ)

i ← ∑x(1) . . . ∑x(µ−1) ∑
x(µ)∈x

(µ)
i −∆x

(µ)
i

∑x(µ+1) . . . ∑x(n)

f inter
E1,E2 (x)

p(1)(x(1))...p(µ−1)(x(µ−1))p(µ+1)(x(µ+1))...p(n)(x(n))

30: end for

31: end for

32: for each axis µ = 1, . . . , n do

33: for each subinterval i = 1, . . . , N do

34: m
(µ)
i ← K







f
(µ)
i ∆x

(µ)
i

∑
N
j=1 f

(µ)
j ∆x

(µ)
j

1

log




f
(µ)
i

∆x
(µ)
i

∑N
j=1 f

(µ)
j

∆x
(µ)
j











α

35: end for

36: end for

37: for each axis µ = 1, . . . , n do

38: Subdivide each interval increment ∆x
(µ)
i in (m

(µ)
i + 1) subintervals.

39: Amalgamate all the new subintervals along axis µ into N bigger intervals
according to the weight of | f inter

E1,E2
(x)|.

40: end for

41: return
{

χ̃2

trial , I
}

42: end procedure
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