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Predicting Urban Heat Island Mitigation 
with Random Forest Regression 
in Belgian Cities 
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Abstract An abundance of impervious surfaces like building roofs in densely popu-
lated cities make green roofs a suitable solution for urban heat island (UHI) mitiga-
tion. Therefore, we employ random forest (RF) regression to predict the impact of 
green roofs on the surface UHI (SUHI) in Liege, Belgium. While there have been 
several studies identifying the impact of green roofs on UHI, fewer studies utilize 
a remote-sensing-based approach to measure impact on Land Surface Temperatures 
(LST) that are used to estimate SUHI. Moreover, the RF algorithm, can provide 
useful insights. In this study, we use LST obtained from Landsat-8 imagery and 
relate it to 2D and 3D morphological parameters that influence LST and UHI effects. 
Additionally, we utilise parameters that influence wind (e.g., frontal area index). 
We simulate the green roofs by assigning suitable values of normalised difference-
vegetation index and built-up index to the buildings with flat roofs. Results suggest 
that green roofs decrease the average LST. 

Keywords Green roofs · Random forest regression · Urban heat island (UHI) ·
Land surface temperature (LST) 

16.1 Introduction 

Unprecedented urban growth has led to increased building densities resulting in 
limited green spaces in cities, exacerbating the impacts of climate change (Dong 
et al. 2020; Wang et al. 2022). Consequently, urban areas are experiencing higher
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temperatures as compared to rural regions, which is known as the urban heat island 
(UHI) effect (Stewart and Oke 2012; Santamouris 2013). Negative impacts of UHI 
effect include increased energy consumption, carbon emissions, decreased comfort 
levels, and global warming (Bowler et al. 2010). Thus, to circumvent these impacts, 
identifying solutions to mitigate the UHI effect is crucial. 

The UHI phenomenon is primarily caused by a high density of built-up areas, as 
well as low albedo of urban surfaces, resulting in absorption of excess solar radiation 
(Razzaghmanesh et al. 2016). In this scenario, green roofs are highly relevant owing 
to the abundance of building rooftops made of impervious surfaces in cities (Francis 
and Jensen 2017; Joshi and Teller 2021). Green roofs prevent the absorption of 
short-wave radiation and act as thermal insulators (Razzaghmanesh et al. 2016). 
Green roofs also prevent heat from entering the structures in summer, reducing 
energy consumption (di Giuseppe and D’Orazio 2014). Moreover, green roofs also 
increase evapotranspiration and natural ventilation within built-up areas (Li et al. 
2014). Along with this, green roofs also have other benefits in terms of biodiversity 
and runoff retention. Thus, considering their multifold benefits, green roofs are a 
suitable strategy for UHI mitigation (Jamei et al. 2021). 

Researchers have analyzed green roofs and their impact using numerous methods. 
Most of the studies use numerical modelling, simulations and statistical analysis 
to analyze greening scenarios (Bartesaghi Koc et al. 2018). However, micro-scale 
urban canopy models (UCM) and microclimate simulation models like ENVImet 
cannot be employed for entire city due to computational demands (Mirzaei, 2015; Lin  
et al. 2021). While mesoscale models like weather research and forecasting (WRF) 
coupled with UCM aid in conducting research at a regional scale, running these 
models at high resolution require significant computational resources. Therefore, 
most of the WRF studies are carried out at a resolution of 1 km (Yang and Bou-
Zeid 2019; Wang et al. 2022). Moreover, analyzing and processing these models are 
generally challenging for most urban planners (Lin et al. 2021). Therefore, remote 
sensing approach can be advantageous as finer resolution datasets are increasingly 
available. Furthermore, the analysis using remote sensing can be straightforward with 
existing geographic information system (GIS) softwares like QGIS and ArcGIS for 
urban practitioners (Bartesaghi Koc et al. 2018; Lin et al. 2021).In this study, we 
employ a remote sensing-based approach for analyzing the impact of green roofs on 
UHI. 

Traditionally, UHI effect is classified into surface and air UHI, referring to the 
surface and air temperature respectively (Roth et al. 1989; Kleerekoper et al. 2012; 
Kim and Brown 2021). The impact of Green roofs on air temperature is debatable, 
however, their impact on surface temperature is significant (Berardi et al. 2014; 
Francis and Jensen 2017). Thus, we focus mainly on the impact of green roofs on 
surface temperature. This estimate, referred to as Land Surface Temperature (LST) 
is obtained using satellite images. 

UHI effect is the outcome of dynamic interactions between the macroclimate 
and urban morphology (Boccalatte et al. 2020). Thus, along with greening, several 
other morphological parameters influence LST. The relationship of LST with several 
morphological parameters has been investigated using satellite data (El-Zeiny and
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Effat 2017). For example, the Normalised difference vegetation index (NDVI) has 
a strong to moderate negative correlation with LST, whereas normalized difference 
built-up index (NDBI) has a positive correlation (Adeyeri et al. 2017; Govil et al. 
2020). Parameters such as building densities also influence LST. 3D data was also 
strongly influencing LST in some studies (Zha et al. 2010). Moreover, detailed 3D 
parameters such as frontal area index (FAI) and sky view factor (SVF), can be now 
computed in a raster format for facilitating a better analysis (Asadi et al. 2020). Subse-
quently, 3D parameters can represent the contribution of shadows, solar radiation and 
orientation. 

The relationship between LST and related parameters have been previously 
analyzed using ordinary least square (OLS) regression and graphically weighted 
regression (Deilami et al. 2018). Recent studies also have used machine learning in 
predicting changes in LST (Jato-Espino et al. 2022; Lyu et al. 2022). For example, 
Asadi et al. (2020) use Artificial neural network (ANN) to predict changes in LST 
after implementing green roofs in Austin, Texas. Their study showed that LST 
decreased by 1.96 degree Celsius on an average after greening 3.2% of the roofs. The 
study used 2D and 3D urban morphological parameters in their analysis. Although the 
parameters are comprehensive for the task, parameters influencing wind flow, such as 
frontal area index (FAI) could have enhanced the analysis (Wang et al. 2021). More-
over, random forest (RF) regression has proven to be robust in predicting several 
scenarios (Jato-Espino et al. 2022; Lyu et al. 2022). Along with this, RF regression 
prediction is regarded as being unaffected by the multicollinearity and distribution 
of data (Matsuki et al. 2016; Busato et al. 2023). Thus, in this study, we explore the 
performance of RF regression in predicting changes in LST caused by green roofs. 

16.2 Methodology 

Figure 16.1 represents the broad methodology used in this study.

16.3 Study Area and Dataset 

In this study, we analyze the Brussels capital region and the city of Liege in Belgium. 
Brussels is the capital of Belgium and has an area of 161.4 km2 with around 1,222,637 
inhabitants (Christis et al. 2019). As it is the national capital, it is highly dense and 
compact with limited space for developing green infrastructure within the city. Liege, 
on the other hand, is located in the Wallonia region of Belgium. The city is the third 
largest city in terms of population in the country, with an area of 69 km2 and 196,296 
inhabitants. The city is highly compact with significant building density in the center 
and open residential areas in the outskirts (Joshi et al. 2022). Thus, roof greening is 
a suitable UHI mitigation strategy for both cities.



308 M. Y. Joshi et al.

Fig. 16.1 Methodology

We use four datasets mainly for computing the parameters influencing LST. Table 
16.1 presents the dataset used and respective sources for Liege and Brussels. 

We processed all rasters to 30 m resolution as it is the resolution of LST obtained 
from Landsat-8.

Table 16.1 Datasets used for analysis with their respective sources for Liege and Brussels 

Datasets Liege Brussels 

Building footprints PICC (Projet Informatique de 
Cartographie Continue) dataset, with 
an accuracy of less than 25 cm 

The footprints are obtained from 
UrbIS online (data platform for 
Brussels capital region) 

Building heights Digital surface model (DSM) and the 
digital elevation model (DEM) 

3D model of Brussels from UrbIS 

LST Landsat-8 level 1 image captured on July 18, 2021 

NDVI and NDBI Sentinel-2 multispectral image obtained on 21st July 2021 
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16.4 Parameters Influencing LST 

16.4.1 Building Density 

To obtain building density (BD), we first transform the building footprints to a raster 
with 1 m resolution. Thereafter, we aggregate the raster by summing the building 
pixels to a raster with 30 m resolution, representing building density. Thus, building 
density is computed as: 

BD  = 
n∑

i=1 

ai (16.1) 

where ai is the 1 by 1 m pixel covered by building and n is the total number of 1 m 
pixels in 30 m pixel. 

16.4.2 Building Volume Index 

Building volume index (BVI) is the building volume in a pixel and it is calculated as 
follows: 

BV I  = 
n∑

i=1 

ai × hi (16.2) 

where ai is the 1 m pixel covered by building, hi is the height of the building in the 
1 m pixel and n is the total number of 1 m pixels in 30 m pixel. 

16.4.3 Sky View Factor 

Sky view factor (SVF) is the ratio of proportion of sky visible from the ground at a 
given position, to the proportion of sky not obstructed by the surrounding built-up 
(Rodler and Leduc 2019). We calculate it with the Relief Visualisation Toolbox of 
QGIS 3 (Zakšek et al. 2011; Kokalj and Somrak 2019). 

We use the DSM and the building footprint dataset to generate the raster with 
building height information. We consider open spaces and roads along with the 
bottom of the buildings at 0 m. We consider a search radius of 100 m and the number 
of directions as 16 for SVF calculation (Dirksen et al. 2019). We compute SVF at a 
resolution of 1 m and later resample it at 30 m resolution.
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16.4.4 Solar Radiation 

The amount of solar radiation (SR) received by the surfaces in the city influences 
the LST (Bristow and Campbell 1984; Asadi et al. 2020). Therefore, we compute 
the SR using the solar radiation tool in ArcGIS Pro 2.9.1. This represents the global 
radiation, which is the total incoming solar radiation and is calculated for each pixel 
of DSM. The value of SR was calculated on July 18, 2021 to match the date of 
acquisition for Landsat-8 image. 

16.4.5 Normalized Difference Vegetation Index (NDVI) 

NDVI is used to detect bare soil and vegetation (Montandon and Small 2008; Ferreira 
and Duarte 2019). In a way, it represents the pervious regions in the city. We calculate 
the NDVI using the Sentinel-2A satellite imagery captured on July 21, 2021, from the 
United States geological survey (USGS) (https://earthexplorer.usgs.gov/). We chose 
the image on this date as July and August experience higher temperatures. Moreover, 
among the images available for this time frame, the selected image had the lowest 
and most acceptable cloud coverage of less than one per cent. Sentinel-2A image is 
of 10 m spatial resolution and thus the NDVI obtained is also at 10 m. We calculate 
NDVI using the near infrared (NIR) and red (R) bands of the image as follows: 

NDV  I  = N I  R  − R 
N I  R  + R (16.3) 

16.4.6 Normalized Difference Built-Up Index (NDBI) 

Zha et al. (2010) defined NDBI to determine urban and built-up areas. It is used to 
express the intensity of urbanization (Chen et al. 2006). Although we use building 
density, we consider NDBI as one of the parameters as it helps highlight other urban 
areas that are not buildings. Moreover, it also explains the development intensity 
by indicating impervious surfaces. We calculate NDBI using the Sentinel-2A image 
used for obtaining NDVI. To compute NDBI, we need short wave infrared (SWIR) 
band, which has a resolution of 20 m and NIR with a resolution of 10 m. Therefore, 
the SWIR band was resampled to 10 m resolution for the calculation. NDBI is thus 
calculated as follows: 

ND  B  I  = SW I  R  − N I  R  

SW I  R  + N I  R  
(16.4)

https://earthexplorer.usgs.gov/
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16.4.7 Frontal Area Index (FAI) 

FAI influences the wind flow, thus influencing the LST. It is defined as the area of 
building walls facing the wind flow in a particular direction (Wong et al. 2010). We 
compute FAI using the methodology of H. Li et al. (2021) in this paper. The method 
involves rasterization of the building height and area and computing the FAI at 30 m 
resolution. The FAI is only calculated for northerly/easterly winds. 

16.4.8 Height Variation (HV) 

Height Variation (HV) is the variation observed in building heights (1 m pixel) in 
30 m pixel. For computing HV, we first transform building heights to a 1 m raster. 
Then, we aggregate the raster to 30 m with standard deviation of heights in a 30 m 
pixel using geopandas package in python 3. 

16.4.9 Average Height (AH) 

Similar to HV, we compute average height (AH) for the pixels by aggregating 1 m 
height pixels to 30 m, by averaging the heights of 1 m pixels. 

16.4.10 Distance to Water 

Liege city is situated on the banks of river Meuse. The river divides the city into two 
parts. Similarly, Brussels has the river Senne that flows through the region. As water 
bodies have a significant impact on surface temperature (Wu and Zhang 2018), we 
consider this parameter in our analysis. We obtained the river shapefiles for Liege 
and Brussels fro, geoportail of Wallonia and UrBIS respectively. We calculate this 
parameter using Euclidean distance tool to the river shapefiles at 30 m resolution. 

16.5 Land Surface Temperature (LST) 

We calculate the LST using the Landsat-8 level 1 image captured on 18th July 2021. 
We choose the image on this date since July and August experience higher temper-
atures. Moreover, the image on this date had the lowest and most acceptable cloud 
coverage of less than one per cent. We use the thermal band 10 to compute the LST 
(in Kelvin (K)) using the following equations (USGS 2019).
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Lλ = ML Qcal + AL (16.5) 

where Lλ = TOA (Top of Atmosphere) spectral radiance (Watts/(m2 * srad * µm)), 
ML = Band-Specific multiplicative rescaling factor from the metadata, AL = Band-
specific additive rescaling factor from the metadata, Qcal = Quantized and calibrated 
standard product pixel values (DN) 

T = K2 

lnln
(

K1 
Lλ 

+ 1
) (16.6) 

where T = TOA brightness temperature (K), K1 = Band-specific thermal conversion 
constant from the metadata, K2 = Band-specific thermal conversion constant from 
the metadata. We further convert the LST values to degrees Celsius (°C). 

16.6 Data Processing 

We first generate random points in ArcGIS Pro 2.9.1 over the Brussels capital region 
and Liege city with 100 m spacing between the points to avoid spatial autocorrelation. 
We consider 100 m as minimum distance as spatial variability of urban temperatures 
is around 100 m (Bechtel et al. 2015; Li et al.  2021; Hereher et al. 2022). We then use 
the “extract values to point” tool, to extract values of all the parameters mentioned 
above to the randomly generated points. We obtain 7500 points in Brussels and 4000 
points in Liege, giving us a total of 11,500 points for training and testing the RF 
regression model. 

16.7 RF Regression 

RF is a supervised machine learning algorithm proposed by Breiman (2001). The 
RF regression algorithm combines a large set of regression trees, where dataset is 
broken down into smaller subsets to predict a response variable by learning decision 
rules (Breiman et al. 1984). The trees are combined using bootstrap aggregation 
or bagging, such that each set is run independently, and the outputs are merged to 
achieve an accurate prediction (Breiman 1996). 

The regression begins by selecting n samples of k random observations from a 
training dataset. Then, individual decision trees are built for each sample. These 
n trees are run in parallel, and separate outputs are generated. The mean of these 
outputs results in the final prediction. The random selection in RF regression prevents 
overfitting (Huynh-Thu and Geurts 2019). 

In this study, RF regression is implemented in python through the scikit-learn 
package. The package includes several parameters that can be tuned for an improved
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performance. We focus on tuning the number of trees (ntree) and number of features 
randomly sampled at each split (mtry). 

RF regression is a supervised and straightforward method, which is fast and robust 
to the noise in the data (Kontschieder et al. 2011; Izquierdo-Verdiguier and Zurita-
Milla 2020). We train the RF regressor model using 80% of the data points and test 
it over remaining 20% of the data points. We validate the RF regression model with 
k-fold cross validation, with k set at five. Additionally, we identify the suitable mtry 
and ntree based on the lowest value of RMSE (root mean squared error). We also 
analyse the R-squared value of the relation between observed and predicted LST for 
both the cities to understand the goodness of fit. 

16.8 Simulating Green Roofs 

We simulate the green roofs similar to the method proposed by Asadi et al. (2020). 
Liege has around 20% of flat roofs as computed in the study by Joshi et al. (2020). For 
Brussels, we identify flat roofs using the 3D model of the region available at UrbIS 
online. As it will be unrealistic to simulate green roofs on all of these buildings, we 
consider buildings with area larger than 100 m2 to be suitable for greening in this 
study. Figure 16.2 shows the potential roofs in Brussels and Liege. Around 92,333 
roofs (out of 256,484) in Brussels are flat, whereas 23,326 roofs (out of 136,170) are 
flat in Liege. 

Green roofs are of mainly of two types: extensive and intensive green roofs. The 
third type of green roof is a green roof somewhere in between the two main types.

Fig. 16.2 Potential roofs for greening in both the cities 
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Extensive green roofs have relatively thinner substrate vegetation compared to the 
intensive ones. Intensive green roofs have a thick substrate layer and dense vegetation, 
such as rooftop gardens and agriculture (Joshi and Teller 2021). We simulate green 
roofs by changing the value of NDVI and NDBI for the potential roofs in both cities. 

The NDVI values for green surfaces vary from 0.3 to 1 depending upon the inten-
sity of greening. However, for green roofs, NDVI values range from 0.3 to 0.8, 
considering the range from extensive to intensive green roofs. Further, changing 
NDBI values also becomes mandatory due to the change in NDVI. We change 
NDBI values according to the relationship derived between original NDVI and NDBI 
values obtained from Sentinel-2 for Brussels and Liege. Figure 16.3 represents this 
correlation. 

The relation between NDBI and NDVI is significant, given that the R-squared 
value is 0.87 and pearson correlation co-efficient is less than 0.05. Based on this 
relation, Table 16.2 provides the corresponding values of NDBI for each NDVI from 
0.3 to 0.8.  

Fig. 16.3 Correlation 
between NDVI and NDBI 
values 

Table 16.2 Values of NDBI 
corresponding to NDVI 
values of green roofs 

NDVI (x) NDBI(y) 

0.3 −0.05474677 

0.4 −0.11654956 

0.5 −0.17835235 

0.6 −0.24015514 

0.7 −0.30195793 

0.8 −0.36376072
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Wherever there is a potential roof with 100 m2, we convert the pixels to NDVI 
values indicated in the table. We do this by first resampling the 10 m NDVI to 1 m 
spatial resolution. Thereafter, we change the values of NDVI at the pixels corre-
sponding to building footprints of potential roofs. Later, we aggregate the NDVI 
with green roofs to 30 m spatial resolution by calculating the average value. Simi-
larly, we convert the NDBI values of potential green roofs to the values in Table 
16.1 corresponding to the respective NDVI values. Thus, we generate predictions 
for six scenarios for six values of NDVI and NDBI in Table 16.1. As only the roof is 
converted to a “green roof”, we keep other building related parameters unchanged. 
We run the trained model on the newly built NDVI and NDBI along with other 
variables and predict changes in LST. 

16.9 Results 

16.9.1 Model Results and Accuracy 

Figure 16.4 shows the results of RF hyperparameters (mtry and ntree). We did the 
optimization based on RMSE. Results indicate that RF hyperparameters affect predic-
tion accuracy only by 0.02 °C. The optimal results are observed at ntree = 6000 and 
mtry = 3, with lowest RMSE (1.65 °C). 

Fig. 16.4 Optimisation of hyperparameters ntree and mtry
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Fig. 16.5 Feature 
importance of the optimised 
model 

16.9.2 Variable Importance at Optimal Ntree and Mtry 

Figure 16.5 shows feature importance in an optimized RF regression model. We 
observe that NDBI and NDVI are the most important parameters, followed by BVI, 
FAI, AH, SVF, HV and WD. 

The model is mainly driven by NDBI, NDVI, BVI and FAI values, which decide 
the value of LST. 

16.9.3 Comparing Predicted and Observed Values of LST 

Here, we compare the predicted values of LST with the observed values of LST 
from Landsat-8 for both the cities. The city of Brussels has observed values of LST 
ranging from 21 to 42 °C, whereas the city of Liege has the values of LST ranging 
from 18 to 38 °C (Fig.  16.6). The predicted values for both the cities, however, fall 
between 21 and 33 °C (Fig. 16.7). 

Fig. 16.6 Distribution of observed LST values for Liege and Brussels
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Fig. 16.7 Comparison of predicted vs observed values of LST for Brussels and Liege 

We observe that the trained model’s R-squared value is 0.76 with an RMSE of 
1.55 °C for Brussels. For Liege, the R-squared value is 0.633 with an RMSE of 
1.97 °C (Fig. 16.7). We observe that the values between 21 and 33 °C are predicted 
more accurately compared to the values outside of this range (Fig. 16.7). The reason 
could be the distribution of data which ranges from 19 to 38 °C, with 80% of the 
points in the range between 21 and 33 °C. As the model tends to slightly underpredict 
LST, we compare the effect of green roofs on LST with the predicted LST of our 
model, to understand the actual impact green roofs can have on LST. 

16.9.4 Prediction After Green Roofs 

Based on the model, after adding intensive green roofs (NDVI = 0.8) to potential 
buildings, average LST is shown to be reduced by 0.67 °C and 0.46 °C in Liege, 
whereas average LST is shown to be reduced by 0.68 and 0.48 °C in the Brussels 
capital region in building area and entire city respectively. On the other hand, when 
extensive green roofs (NDVI = 0.3) are added to potential buildings, the average LST 
can reduce by 0.32 °C and 0.36 °C in Liege, and the average LST can reduce by 0.22 
and 0.26 °C in the Brussels capital region in building area and entire city respectively. 
Figure 16.8 shows the predicted LST for each green roof scenario ranging from NDVI 
of 0.3–0.8.

Figure 16.9 depicts the distribution of pixels in each class of LST. With increase 
in NDVI value corresponding to green roofs, there is a decrease in pixels within the 
range of 32–35 °C for Liege as well as Brussels.

Similarly, Fig. 16.10 depicts the spatial variation in LST with adding intensive 
and extensive green roofs. As observed in Fig. 16.8, with increase in NDVI values 
of green roofs, we observe a reduction in pixels with temperature ranges between 29 
and 35 °C.
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Fig. 16.8 Mean of predicted LST in Liege and Brussels for different scenarios

Fig. 16.9 Distribution of proportion of pixels in LST ranges

16.10 Discussion and Conclusions 

In this study, we explore the RF regressor model for predicting impact of green roofs 
on LST. When comparing the observed LST with predicted LST, the model shows 
a significant goodness of fit. The RF model suggests that green roofs have potential 
to reduce LST. The benefit of green roofs is higher with intensive green roofs as 
compared to extensive green roofs.
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Fig. 16.10 Differences in LST in Brussels and Liege city for different greening scenarios

Although the impact of green roofs on LST on an average seems to be smaller, 
it is significant in terms of number of pixels where we observe the reduction of 
temperature (Fig. 16.9). However, small changes in LST may also indicate that 
when green roofs are placed on existing potential roofs, the impact may not be 
very significant (at least in case of extensive type of green roofs). 

The prediction of LST depends on the training of the RF regressor model. There-
fore, we include the data from two major cities in Belgium namely, Brussels and 
Liege, in order to have sufficient data points for training. However, we observe that 
the model does not perform well to predict extreme temperatures. To overcome this 
issue, adding more cities to the dataset can improve prediction accuracy. 

Apart from this, the parameter importance of the model implies that NDVI, NDBI 
and BV govern the predictions. Importance of other parameters such as SVF, WD and 
HV are relatively low, yet theyare known to be important predictors of the UHI effect 
(Rodler and Leduc 2019). A reason could be multi-collinearity within the variables. 
As multi-collinearity does not affect predictions, we consider all the variables to 
capture maximum variance in the model. For understanding the feature importance,
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it is important to drop the variables causing multi-collinearity. Further research can 
combine RF regressor with principal component analysis (PCA) to enhance this 
analysis. 

In this study, we include data points all over the city. However, splitting the 
training samples into built-up area and non-built up with added cities can improve 
the prediction accuracy of the model. Additionally, further research can also focus 
just on analyzing only the built-up area of several cities. 

Current model only considers changes in NDVI and NDBI to simulate green roofs. 
As greening can influence neighborhood areas as well, addition of a neighborhood 
effect in the model can also increase the prediction accuracy of the model. 

Lastly, use of RF regression in prediction of changes in LST after introducing 
green roofs in a city is a novel and a promising approach, given the proven robustness 
of RF algorithm in several studies. The model successfully indicates the potential 
of greening the roofs for reducing the LST in cities. Asadi et al. (2020) performed 
a similar study using ANN model for Austin, Texas. However, in this study, we 
introduced two additional parameters influencing wind flow, FAI and HV. We see 
that FAI influences the model, however, HV has the lowest impact. 
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