
Penalty parameter selection and asymmetry
corrections to Laplace approximations in
Bayesian P-splines models

Philippe Lambert 1,2, Oswaldo Gressani 3
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Abstract: Laplace P-splines (LPS) combine the P-splines smoother and the Laplace
approximation in a unifying framework for fast and flexible inference under the
Bayesian paradigm. The Gaussian Markov random field prior assumed for penal-
ized parameters and the Bernstein-von Mises theorem typically ensure a razor-sharp
accuracy of the Laplace approximation to the posterior distribution of these quan-
tities. This accuracy can be seriously compromised for some unpenalized parame-
ters, especially when the information synthesized by the prior and the likelihood is
sparse. Therefore, we propose a refined version of the LPS methodology by split-
ting the parameter space in two subsets. The first set involves parameters for which
the joint posterior distribution is approached from a non-Gaussian perspective with
an approximation scheme tailored to capture asymmetric patterns, while the poste-
rior distribution for the penalized parameters in the complementary set undergoes
the LPS treatment with Laplace approximations. As such, the dichotomization of
the parameter space provides the necessary structure for a separate treatment of
model parameters, yielding improved estimation accuracy as compared to a setting
where posterior quantities are uniformly handled with Laplace. In addition, the pro-
posed enriched version of LPS remains entirely sampling-free, so that it operates at
a computing speed that is far from reach to any existing Markov chain Monte Carlo
approach. The methodology is illustrated on the additive proportional odds model
with an application on ordinal survey data.

Key words: Additive model ; Bayesian P-splines ; Laplace approximation ; Skew-
ness.

Statistical Modelling 23(5-6), pp. 409-423, 2023.
        DOI: 10.1177/1471082X231181173

               (with R package ‘ordgam’)



2 Philippe Lambert and Oswaldo Gressani

1 Introduction

By publishing his Mémoire sur la probabilité des causes par les événements (Laplace,
1774), the young French polymath Pierre-Simon de Laplace (1749-1827) seeded an
idea today known as the Laplace approximation. At that time, Laplace probably
could not have imagined that almost two centuries later, his approximation tech-
nique would be resurrected (see e.g. Leonard, 1982; Tierney and Kadane, 1986; Rue
et al., 2009) to play a pivotal role in the modern Bayesian literature. Essentially,
the Laplace approximation is a Gaussian distribution centered at the maximum a
posteriori (MAP) of the target distribution with a variance-covariance matrix that
coincides with the inverse of the negative Hessian of the log-posterior target evaluated
at the MAP estimate. Recently, the Laplace approximation has crossed the path of
P-splines, the brainchild of Paul Eilers and Brian Marx (Eilers and Marx, 1996), to
inaugurate a new approximate Bayesian methodology labelled “Laplace P-splines”
(LPS) with promising applications in survival analysis (Gressani and Lambert, 2018;
Gressani et al., 2022b; Lambert and Kreyenfeld, 2023), generalized additive models
(Gressani and Lambert, 2021), nonparametric double additive location-scale mod-
els for censored data (Lambert, 2021) and infectious disease epidemiology (Gressani
et al., 2022a,c). The sampling-free inference scheme delivered by Laplace approxima-
tions combined with the possibility of smoothing di↵erent model components with
P-splines in a flexible fashion paves the way for a robust and much faster alternative
to existing simulation-based methods.

Although LPS shares some methodological aspects with the popular integrated nested
Laplace approximations (INLA) approach (Rue et al., 2009), there are fundamental
points of divergence. First, the tools in INLA and its associated R-INLA software
are originally built to compute approximate posteriors of univariate latent variables,
contrary to LPS that natively delivers approximations to the (multivariate) joint pos-
terior distribution of the latent vector. The key benefit of working with an approxi-
mate version of the joint posterior is that pointwise estimators and credible intervals
for subsets of the latent vector (and functions thereof) can be straightforwardly con-
structed. Second, by working with closed-form expressions for the gradients and Hes-
sians involved in the model, LPS is computationally more e�cient than the numerical
di↵erentiation proposed in INLA. Third, while INLA can be combined with various
techniques for smoothing nonlinear model components, LPS is entirely devoted to
P-splines smoothers with the key advantage of having full control over the penaliza-
tion scheme (as the approximate posterior distribution of the penalty parameter(s)
is analytically available). In this regard, LPS has more in common with the work
of Wood and Fasiolo (2017) than with INLA, especially in the class of (generalized)
additive models (Wood, 2017).

The success of Laplace approximations in Bayesian statistics owes much to a central
limit type argument. Under certain regularity conditions, the Bernstein-von Mises
theorem (see e.g. Van der Vaart, 1998) ensures that posterior distributions in di↵eren-
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tiable models converge to a Gaussian distribution under large samples. In situations
involving small to medium sample sizes, the suitability of the Laplace approximation
can be questioned as it does not take into account the potential skewness or kurtosis
of posterior distributions (Ruli et al., 2016). Even under relatively large samples, the
Laplace approximation might fail in scenarios involving binary data as the latter are
poorly informative for the model parameters and can result in a flat log-likelihood
function, thus complicating inference (Ferkingstad and Rue, 2015; Gressani and Lam-
bert, 2021).

Laplace P-splines belong to the class of latent Gaussian models, where model pa-
rameters are dichotomized between a vector of latent variables ⇠ (including penalized
B-spline coe�cients, regression coe�cients and other parameters of interest) that are
assigned a Gaussian prior and another vector of hyperparameters ⌘ that involves
nuisance parameters, such as the smoothing parameter inherent to P-splines, and for
which prior assumptions need not be Gaussian. Combining Bayes’ rule and a sim-
plified Laplace approximation, the conditional posterior distribution of ⇠ under the
LPS framework is approximated by a Gaussian distribution denoted by epG(⇠|b⌘,D),
where b⌘ is a summary statistic of the posterior hyperparameter vector (e.g. the MAP
estimate, the posterior mean or median) and D denotes the observed data. Although
the latter approximation is typically accurate for penalized B-spline coe�cients, it
might be less appropriate for other candidates in ⇠ with large prior variance. In that
case, the misfit between the Laplace approximation and a potentially asymmetric (or
heavy-tailed) target posterior distribution for a parameter can have a detrimental
e↵ect on posterior summary statistics and on any results relying on the generated ap-
proximation for the posterior distribution of the model parameters. This motivates
us to develop an approach that corrects for potential posterior misfits provided by
the Laplace approximation.

A recent technique proposed by Chiuchiolo et al. (2022) in the INLA framework con-
sists in using a skew Gaussian copula to correct for skewness when posterior latent
variables have a non-negligible deviation from Gaussianity. Our proposal in models
involving P-splines consists in splitting the latent vector ⇠ into a set of parameters
� for which the posterior distribution (conditional on the hyperparameters) is ap-
proximated in a non-Gaussian fashion with an emphasis on capturing asymmetries,
and a set of parameters ✓ (that typically involves penalized B-spline coe�cients) for
which the conditional posterior is approached with Laplace approximations. Our re-
fined LPS approach thus allows to obtain an approximation to the joint posterior
distribution of ⇠ (given ⌘) together with an approximation to the posterior of the
hyperparameters ⌘ without relying on an MCMC sampling scheme.

A simple motivating example inspired by the infectious disease model of Gressani
et al. (2022c) helps framing the problem. Let D = {(xi, yi) : i = 1, . . . , n} be a
sample of n = 120 independent pairs where xi = i and yi has a negative binomial dis-
tribution NB(µ(xi),�) following the parametrization of Piegorsch (1990) with mean
E(y|x) = µ(x), variance V(y|x) = µ(x)+�µ(x)2 and overdispersion parameter � > 0.
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Figure 1: Left panel: Count data (n = 120) generated using a negative binomial
NB(µ(x),�) with ��1 = 6. Right panel: Histogram of a MCMC sample for log �
compared to Laplace (solid) and skew-t (dashed) approximations.

We model the conditional mean with P-splines log µ(x) = ✓>
b(x), where b(·) is a

cubic B-spline basis on the interval [1, 120] and ✓ is a vector of B-spline coe�cients.
Following Lang and Brezger (2004), a global smoothness prior is assumed for the
B-spline parameters, p(✓|�) / exp

�
��

2✓
>
P✓
�
, where P is a penalty matrix and

� is the penalty parameter to which we assign a weakly informative Gamma prior
(with mean a/b and variance a/b2), denoted by � ⇠ G(a, b). To complete the model
specification, a Gamma prior with large variance is assumed for the overdispersion
parameter ��1. The left panel of Figure 1 shows a data set of size n = 120 simu-
lated from the above negative binomial model with a nonlinear function for µ(x) and
��1 = 6. The histogram for log(�) on the right panel of Figure 1 is obtained from a
long MCMC chain with a Metropolis-within-Gibbs algorithm. There is an important
misfit between the Laplace approximation (solid curve) and the MCMC output, so
that quantities like the posterior standard deviation or selected posterior quantiles
for log � will be poorly estimated using a straightforward Laplace approximation to
p(�|D). The dashed curve represents the skewed distribution that we propose as an
alternative candidate to the Laplace approximation and that will be thoroughly dis-
cussed in the next section within a Bayesian P-splines context. The fitted distribution
is able to capture the asymmetry that is apparent in the MCMC sample, improving
the precision of posterior estimates for log � as compared to Laplace and at a much
lower computational cost than MCMC. The article is organized as follows. Section 2
presents the Bayesian Laplace P-spline model and gives a detailed description of the
proposed asymmetric posterior approximation methodology for non-penalized param-
eters. In Section 3, we illustrate the method in an additive proportional odds model
for ordinal data. Finally, Section 4 concludes with a discussion.
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2 Laplace approximation and Bayesian P-splines

2.1 Model specification

Consider a regression model describing the conditional distribution of a response
y for given covariates xxx. Denote by ⇠⇠⇠ the model parameters: it includes the re-
gression and spline parameters, plus possibly the (log of the) scale and (uncon-
strained transformed) shape parameters. Denote by p(⇠⇠⇠|⌘⌘⌘) the joint prior density
of ⇠⇠⇠ conditionally on a vector of hyperparameters ⌘⌘⌘. In the context of a P-spline
model, the latter parameters can come from J unknown smooth functions specified
as fj(·) =

PL
`=1 ✓`jbj`(·) (j = 1, . . . , J) where Bj = {bj`(·) : ` = 1, . . . , L} denotes a

B-spline basis with equidistant knots spanning the argument range. Vector ⌘⌘⌘ would
typically include positive roughness penalty parameters �j with prior density p(�j)
for the jth function. The frequentist penalty on changes in di↵erences of neigh-
bour spline parameters (Eilers and Marx, 1996) can be translated in a Bayesian
context using a conditional prior on ✓✓✓j = (✓j1, . . . , ✓jL)> (Lang and Brezger, 2004),

p(✓✓✓j|�j) / exp
⇣
�1

2 ✓✓✓j
>(�jP)✓✓✓j

⌘
, with P = D

>
r Dr denoting a penalty matrix cor-

responding to a finite di↵erence penalty matrix Dr of order r. For example, when
r = 2, one has ✓✓✓>j P✓✓✓j = ||Dr✓✓✓j||22 =

PL�2
`=1 (✓`+2,j � 2✓`+1,j + ✓`,j)2. The penalty

parameter �j > 0 is used to tune the smoothness of the associated additive term
with, at the limit when �j ! +1, a polynomial of order r � 1 for fj(·). Di↵erent
prior distributions could be chosen for �j with Brezger and Lang (2006) suggesting
to take Gamma priors �j ⇠ G (aj, bj) (with mean aj/bj and variance aj/b2j). A small
value for bj (= 10�4, say) combined with bj = aj or aj = 1 ensures a large prior
variance with some more weight set on small or large values of �j, respectively. Mix-
tures of Gamma densities were also investigated in Jullion and Lambert (2007) with
(�|�) ⇠ G (⌫/2, ⌫�/2) and � ⇠ G (a�, b�) yielding, in the special case a� = b� = .5 and
⌫ = 1, a Beta prime distribution B0(.5, .5) for � or equivalently a half-Cauchy prior
for
p
� with p(�) / ��.5(1 + �)�1 (Lambert and Bremhorst, 2019).

Penalties can also be combined and extended in multiple ways, see e.g. the book by
Eilers and Marx (2021) for inspiring examples. More generally, we assume that the
joint conditional prior for the vector ✓✓✓, stacking all the vectors of penalized B-spline
coe�cients in the model, can be written as

p(✓✓✓|���) / exp

✓
�1

2
✓✓✓>P� ✓✓✓

◆
, (2.1)

where P� is a positive semi-definite matrix. The vector of model parameters can be
reorganized as follows, ⇠⇠⇠ = (���>,✓✓✓>)> 2 IRk1+k2 , where ��� 2 IRk1 denotes the vector of
non-penalized parameters. If D generically denotes the available data and if ��� stands
for the vector of hyperparameters ⌘⌘⌘ in the specific context of P-spline models, then
the joint posterior for ⇠⇠⇠ directly follows from Bayes’ theorem,

p(⇠⇠⇠,���|D) / L(⇠⇠⇠|D) p(���) p(✓✓✓|���) p(���),

where L(⇠⇠⇠|D) denotes the likelihood. It is typically explored using Markov chain
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Monte Carlo methods (MCMC). In this paper, we build up on the methodology de-
scribed in Gressani and Lambert (2018, 2021) and in Lambert (2021), where Laplace
approximations to the conditional posterior of (⇠⇠⇠|���,D) and an additional approxi-
mation to the marginal posterior of (���|D) enable to bypass sampling algorithms, see
Section 2.2.

2.2 Laplace approximation and penalty parameter selection

Assume that closed form expressions can be derived for the gradient and Hessian of
log p(⇠⇠⇠|���,D),

U� = U�(⇠⇠⇠) = @ log p(⇠⇠⇠|���,D)/@⇠⇠⇠ ; H� = H�(⇠⇠⇠) = @2 log p(⇠⇠⇠|���,D)/@⇠⇠⇠@⇠⇠⇠> .

The conditional posterior mode ⇠̂⇠⇠� of ⇠⇠⇠ can be quickly obtained using the Newton-
Raphson (NR) algorithm with the substitution, ⇠⇠⇠  � ⇠⇠⇠ � H

�1
� U�, repeated un-

til convergence. The Levenberg-Marquardt algorithm (Marquardt, 1963) could be
preferred if good initial conditions are not easily found to ensure convergence. A
Laplace approximation to the conditional posterior distribution of ⇠⇠⇠ directly follows:
(⇠⇠⇠|���,D)

·⇠ Nk1+k2(⇠̂⇠⇠�,⌃�) where ⌃� = �H�1
� . Thanks to the Gaussian Markov ran-

dom field (GMRF) prior (Rue and Held, 2005), p(✓✓✓|���), assumed in (2.1) for the
penalized parameters, the Gaussian approximation to the conditional posterior of
(✓✓✓|���,D) is usually excellent, see Rue et al. (2009) for the same argument in latent
Gaussian models. However this might not be true for some non-penalized parame-
ters in ⇠⇠⇠, especially when the combined information coming from their prior and the
likelihood is sparse, see Section 2.3 for a specific handling.

The preceding Laplace approximation can be used to approximate the marginal pos-
terior distribution of the penalty parameters ��� with the Normal approximation sub-
stituted in the denominator of the following identity, p�(���|D) = p(⇠⇠⇠,���|D)/p(⇠⇠⇠|���,D),
yielding

ep�(���|D) =
p(⇠⇠⇠,���|D)

epG(⇠⇠⇠|���,D)
/ p(⇠̂⇠⇠�,���|D)

��b⌃�|
1
2

/ L(⇠̂⇠⇠�|D) p(⇠̂⇠⇠�|���,D)|b⌃�|
1
2

| {z }
Marginal likelihood

⇥p(���) , (2.2)

see Tierney and Kadane (1986) for the same strategy in the approximation of a
marginal distribution. One might prefer to work with ��� = log��� and its approximate
marginal posterior,

ep�(���|D) = p̃�(e
���|D)

Y

j

e�j . (2.3)

The maximization of (2.2) or of the marginal likelihood (as with ‘empirical Bayes’
methods) can be used to select a specific value for ���. Alternatively, it could be derived
from the log-penalty using (2.3), yielding larger penalty values when the selection is
made from the marginal posterior instead of the (parametrization invariant) marginal
likelihood.
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2.3 Asymmetric posterior for non-penalized parameters

Assume that ⇠⇠⇠ = (���>,✓✓✓>)> 2 IRk1+k2 with ��� 2 IRk1 is suspected to have a non-

symmetric marginal posterior distribution. Let ⇠̂⇠⇠� = (�̂��>� , ✓̂✓✓
>
� )

> denote the posterior
mode of p(⇠⇠⇠|���,D) and b⌃�1

� the observed information matrix structured in blocks as
follows,

b⌃� =

"
b⌃��
�

b⌃�✓
�

b⌃✓�
�

b⌃✓✓
�

#
.

The conditional posterior of (✓✓✓|���,���,D) has an approximate Normal distribution re-
sulting from the GMRF prior in (2.1) for (✓✓✓|���). One has

(✓✓✓|���,���,D)
·⇠ Nk2

⇣
E(✓✓✓|���,���,D), b⌃✓|�

�

⌘
,

where

E(✓✓✓|���,���,D) = ✓̂� + b⌃✓�
�

⇣
b⌃��
�

⌘�1

(��� � �̂���) ;

b⌃✓|�
� = b⌃✓✓

� � b⌃
✓�
�

⇣
b⌃��
�

⌘�1 b⌃�✓
� .

(2.4)

Hence, starting from the following identity, p�(���|���,D) = p(���,✓✓✓|���,D)/p(✓✓✓|���,���,D), one
gets the approximation

p�(���|���,D) ⇡ p(���,✓✓✓|���,D)

epG(✓✓✓|���,���,D)
/ p

�
���,E(✓✓✓|���,���,D)

�����,D
� ��b⌃✓|�

�

�� 12 , (2.5)

see Eq. (2) in Tierney et al. (1989) for a similar expression. We propose to reparametrize
��� by projecting it on the eigenvectors of the singular value decomposition (SVD) of
b⌃��
� = VZV> where V = [v1 . . .vk1 ] denotes the matrix of orthonormal eigenvectors,

⇣⇣⇣ the eigenvalues and Z = diag(⇣⇣⇣). It yields �̃�� = Z� 1
2V

>(���� �̂���) and ��� = �̂���+VZ
1
2 �̃��,

with

p�̃(�̃��|���,D) / p�(�̂��� +VZ
1
2 �̃��|���,D). (2.6)

The posterior dependence between the components of �̃�� is expected to be milder than
under the original ��� parametrization. Therefore, conditionally on ���, we propose to
approximate the joint posterior density of (�̃��|���,D) by the product of the marginal
densities of its components:

p�̃(�̃��|���,D) ⇡
k1Y

s=1

p�̃s(�̃s|���,D). (2.7)

Under that working independence hypothesis, each univariate marginal in the product
in (2.7) is equal to its conditional with the other components set equal to an arbitrary
value. Combined with (2.6), it implies that

p�̃s(�̃s|���,D) = p�̃s|�̃�s(�̃s|�̃���s = 0,���,D)

/ p�̃(�̃ses|���,D)

/ p�(�̂��� + �̃s
p
⇣svs|���,D) , (2.8)
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where es denotes the sth unit vector in IRk1 such that [es]k = �ks. The univariate
marginal posterior density in (2.8) can be evaluated for any value of �̃s using (2.5). We
suggest to approximate it using a skew-normal (SN) or a skew-t (ST) distribution to
also handle kurtosis. Here, we provide details for the ST distribution. By definition,
X ⇠ ST( ,!2,↵, �) if X 2 IR and has density

t(x| ,!2,↵, �) =
2

!
t�

✓
x�  
!

◆
T�

✓
↵
x�  
!

◆
,

with location parameter  2 IR, scale parameter ! > 0, slant (or skewness) parame-
ter ↵ 2 IR and � > 0 degrees of freedom (d.f.), where t�, T� respectively denote the
density and c.d.f. of a standard Student distribution with � d.f., see e.g. Azzalini and
Capitanio (2014) for more details on the ST definition and its properties. An approxi-
mation to the target distribution can for example be derived by minimizing its Jensen-
Shannon divergence from a skew-t distribution, giving (�̃s|���,D)

·⇠ ST( ̃s, !̃2
s , ↵̃s, �̃s).

Substituting these ST densities in (2.7) provides an approximation to the joint pos-
terior of (�̃��|���,D) and an e�cient method to sample from it using the independence
of its components. An analytic form for the joint posterior density of (���|���,D) follows
from the combination of (2.7) with �̃�� = Z� 1

2V
>(��� � �̂���), giving

p�(���|���,D) =
k1Y

s=1

1p
⇣s

t(�̃s| ̃s, !̃
2
s , ↵̃s, �̃s).

An approximation to the marginal distribution of its sth component (�s|���,D) can be
obtained using fast Monte Carlo techniques. Indeed, an approximate large random
sample from (�̃��|���,D) can first be generated by sampling its independent skew-t com-
ponents ST( ̃s, !̃2

s , ↵̃s, �̃s), yielding {�̃��(m) : m = 1, . . . ,M}. The associated random
sample for (���|���,D) is given by {���(m) = �̂���+VZ

1
2 �̃��(m) : m = 1, . . . ,M}. Then, a skew-t

approximation to the marginal posterior of �s can be fitted to {�(m)
s : m = 1, . . . ,M},

yielding (�s|���,D)
·⇠ ST( s,!2

s ,↵s, �s). Point estimates or credible regions for �s can
be computed from it. These di↵erent steps provide a convenient approximation to
the joint posterior of the model parameters. Indeed, based on the factorization of the
joint posterior density, p(⇠⇠⇠,���|D) = p(✓✓✓|���,���,D) p(���|���,D) p(���|D), one has the following
stochastic representation for (⇠⇠⇠,���|D),

(⇠⇠⇠,���|D)
·⇠ Nk2

⇣
E(✓✓✓|���,���,D), b⌃✓|�

�

⌘
⇥

k1Y

s=1

ST(�̃s| ̃s, !̃
2
s , ↵̃s, �̃s)⇥ (���|D) , (2.9)

with mean and variance-covariance matrix in the first factor given in (2.4). It can
be used to generate an arbitrarily large number of independent copies from the joint
posterior much faster than with MCMC. This is for example particularly useful to
make inference on complicated functions of the model parameters or for predictive
purposes.
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3 Illustration

3.1 The additive proportional odds model for ordinal data

Denote by Em = {1, . . . ,m} the set containing the first m positive integers. Assume
that n independent units are observed with data D = {(xi, yi) : i = 1, . . . , n} where
y is an ordinal random variable taking values in ER and x a vector of covariates.
The proportional odds (PO) model is a popular choice when the response is ordinal
(Agresti, 2010). It assumes that

logit[P (Y  r|x)] = ⌘r = �r + x
>✓✓✓ (r 2 ER�1) ,

with a specific intercept �r for each cumulative logit, but a shared vector of regression
parameters ✓✓✓. Consequently,

log
Pr(Y  r|x1)/Pr(Y > r|x1)

Pr(Y  r|x2)/Pr(Y > r|x2)
= ✓✓✓(x1 � x2)

is independent of r and provides a clear interpretation to the regression parameters ✓✓✓
with a change ✓k in the log-odds of Y taking values in the lower end of the ordinal scale
for every unit increase in the kth component of x. Let Fir = P (Yi  r|xi) = e⌘ir/(1+
e⌘ir) for r in ER�1 and let Fi0 = 0, FiR = 1. Then, ⇡ir = P (Yi = r|xi) = Fir � Fi,r�1

for r in ER. Let ⇠⇠⇠ = (���>,✓✓✓>)> and assume a prior of the following form,

p(⇠⇠⇠|���) / exp

✓
�1

2
(⇠⇠⇠ � e)>K�(⇠⇠⇠ � e)

◆
, (3.1)

conditionally on a vector of parameters ��� and for a positive semi-definite matrix K�.
The log-likelihood takes a simple form, `(⇠⇠⇠|D) =

Pn
i=1 log ⇡iyi(⇠⇠⇠), with the resulting

conditional posterior for ⇠⇠⇠,

log p(⇠⇠⇠|���,D) = `(⇠⇠⇠|D)� 1

2
(⇠⇠⇠ � e)>K�(⇠⇠⇠ � e). (3.2)

Explicit analytical forms can be derived for the associated gradient and Hessian ma-
trix, see Appendix A. Assume now for simplicity a model with J continuous covariates
x1, . . . , xJ with smooth additive terms fj(xj) (j = 1, . . . , J) describing their e↵ects
on the conditional log-odds,

logit[P (Y  r|x)] = ⌘r = �r + f1(x1) + . . .+ fJ(xJ) .

Following Eilers and Marx (1996), consider now a basis of (L + 1) cubic B-splines
{s⇤j`(·)}L+1

`=1 associated to a generous number of equally spaced knots on the range
(xmin

j , xmax
j ) of values for xj (Marx and Eilers, 1998). They are recentered for identifi-

cation purposes in the additive model using sj`(·) = s⇤j`(·)� 1
xmax
j �xmin

j

R xmax
j

xmin
j

s⇤j`(u)du (` =

1, . . . , L). Then, the additive terms in the conditional model can be approximated
using linear combinations of these recentered B-splines, fj(xj) =

PL
`=1 sj`(xij)✓`j. In
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a Bayesian framework, as reminded in Section 2.1, smoothness can be forced on these
additive terms by taking GMRF priors for the vectors of spline coe�cients

p(✓✓✓j|�j) / exp

✓
�1

2
✓✓✓j

>(�jP)✓✓✓j

◆
,

whereP stands for the penalty matrix. A multivariate Normal prior could be taken for
��� to complete the model specification, ��� ⇠ N

�
ẽ, (Q)�1�. Under the general formula-

tion in (3.1), one has ⇠⇠⇠ = (���>,✓✓✓>)>, ✓✓✓ = (✓✓✓>1 , . . . ,✓✓✓
>
J )

>, e = (ẽ>,0>
JL)

>, and a block-
diagonal penalty matrix K� = diag

�
Q,P�

�
where P� = ⇤⇤⇤ ⌦ P with [⇤⇤⇤]jj0 = �jj0�j.

The conditional posterior for ⇠⇠⇠ is given by (3.2). With a Gamma prior for the penalty
parameters, �j ⇠ G (a, b), one has (�j|⇠⇠⇠,D) ⇠ G

�
a+ .5 ⇢(P), b+ .5✓✓✓>j P✓✓✓j

�
. Starting

from these conditional posterior distributions, a Metropolis-within-Gibbs algorithm
can be set up to generate a random sample from the joint posterior for (⇠⇠⇠,���), with
Gibbs steps for the penalty parameters ��� and Metropolis steps for the regression
and splines parameters ⇠⇠⇠. Alternatively, proposals for ⇠⇠⇠ could be made using the
modified Langevin (Roberts and Tweedie, 1996; Lambert and Eilers, 2009) or the
Metropolis-Hastings algorithm with proposals based on the local topological infor-
mation provided by the explicit analytic forms for the gradient and Hessian matrix
(Gamerman, 1997). Such a sampling approach based on MCMC will be compared to
the strategy proposed in Section 2.

3.2 Application on survey data

Consider now an illustration of the proposed methodology on data coming from the
European Social Survey (ESS Round 9, 2018) with a specific focus on the French
speaking respondents from Wallonia, one of the three regions in Belgium. Each of
the participants (aged at least 15) was asked to react to the following statement, Gay

men and lesbians should be free to live their own life as they wish, with a positioning
on a Likert scale going from 1 (=Agree strongly) to 5 (=Disagree strongly), with 3
labelled as Neither agree nor disagree (with relative frequencies 1: 54.9% ; 2: 30.4%
; 3: 8.2% ; 4: 5.4% ; 5: 1.1%). That ordinal response e↵ectively recorded on n = 552
respondents was analyzed using the proportional odds model described above with the
number of completed years of education (14.1±4.4 years) and age (47.3±18.5 years)
entering as additive terms with L = 10 recentered B-splines spanning each covariate
range. Starting from Gamma priors, �j ⇠ G (1, 10�4) (j = 1, 2), the penalty pa-
rameters �1 and �2 associated to f1(eduyrs) and f2(age), respectively, were selected
by maximizing p(���|D) in (2.2) using the Levenberg-Marquardt algorithm, yielding
�̂1 = 191.8 (e.d.f.=1.24), �̂2 = 18.4 (e.d.f.=2.55), the value in brackets standing for
the e↵ective degrees of freedom. Alternatively the maximization of the marginal like-
lihood in (2.2) would yield a very large value for �̂1 (e.d.f.=1.00), suggesting linearity
for f1(eduyrs), and �̂2 = 18.5 (e.d.f.=2.55) practically unchanged. The fitted addi-
tive terms are visible on Fig. 2 with their pointwise 95% credible intervals, suggesting
a statistically non-significant e↵ect of eduyrs, but a tolerant perception of homo-
sexuality tending to decrease with age, with a marked change in attitude revealed
beyond age 60. To compare the merits of our proposal, a MCMC algorithm was
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Figure 2: ESS dataset: fitted additive terms for eduyrs and age with pointwise 95%
credible intervals: this suggests a growing hostility to homosexuality beyond the age
of 60, while it appears that the number of completed years of education does not play
a statistically significant role.

run to explore p(⇠⇠⇠|�̂��,D), the generated samples and their properties being compared
to the analytical approximations suggested in Section 2.3. The estimated additive
terms and their 95% credible intervals based on MCMC are practically identical to
our estimates in Fig. 2, confirming the excellent quality of the Laplace approxima-
tion to the conditional posterior distribution of (✓✓✓|���,D) underlying our calculations.
Let us now focus on the non-penalized regression parameter in ��� standing for the
four intercepts in the proportional odds model. The scatterplot of the MCMC sam-
ple {���(m) : m = 1, . . . ,M} generated from p(���|�̂��,D) using the modified Langevin
algorithm can be found in the left panel of Fig. 3 where the posterior dependence
between the vector components clearly stands out. The reparametrization suggested
in Section 2.3 along the principal axes corresponding to the eigenvectors of the SVD
decomposition of b⌃��

� yields �̃��, with the scatterplot of the associated MCMC sample
{�̃��(m) = Z� 1

2V
>(���(m) � �̂���) : m = 1, . . . ,M}, visible in the right panel of Fig. 3 con-

firming that the posterior dependence between the vector components of �̃�� is very mild
and probably negligible for most practical purposes. The suggested analytical approx-
imation to p�̃s(�̃s|���,D) in (2.8) was evaluated and added to the MCMC sample taken
as a trustful proxy of the true marginal posterior distribution of (�̃s|���,D), see Fig. 4.
The quality of the analytical approximations is excellent with a noticeable left asym-
metry for (�̃1|���,D) in particular. When transformed back to the �-parametrization,
the approximating skew-Normal densities shown in Fig. 5 closely match the distribu-
tion of the MCMC samples for (�s|���,D). The positive skewness is non-negligible for
the marginal posterior distribution of �4: that asymmetry would not be captured by
a simple Laplace approximation. It is caused by the small proportion of respondents
in the survey expressing a strong disagreement with the submitted statement on the
freedom of gays and lesbians.
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Figure 3: ESS dataset: scatterplots of the MCMC samples for (���|���,D) and (�̃��|���,D)
when ��� = �̂��.
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Figure 4: ESS dataset: approximated marginal posterior density for (�̃��|���,D) com-
pared to MCMC samples when ��� = �̂��.
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Figure 5: ESS dataset: approximated marginal posterior density for (���|���,D) com-
pared to MCMC samples when ��� = �̂��.

4 Discussion

In this paper, the Laplace P-spline (LPS) approach has been extended to improve the
accuracy of inference in a Bayesian framework. Indeed, when information is sparse,
the posterior distribution of non-penalized parameters may exhibit a non-negligible
skewness that can have adverse e↵ects on inference or predictions when ignored. The
proposed approximation to the joint posterior density in (2.9) takes a simple form
that can be used in a much faster way than MCMC to make predictions or inference
on functions of the model parameters.

An approximation to the marginal posterior distribution of the penalty parameters
��� keeps playing an important role in the procedure. Point estimates for ��� can be
derived from it with a subsequent empirical Bayes approach (Carlin and Louis, 2000)
to handle these hyperparameters, see Section 3 for an illustration. Alternatively,
the uncertainty in the selection of ��� could be accounted for by marginalizing over it
with a Monte Carlo or a grid-based integration in p(⇠⇠⇠|D) =

R
� p(⇠⇠⇠|���,D) p(���|D) d���.

However, in the context of generalized additive models (Gressani and Lambert, 2021)
and nonparametric double additive location-scale models (Lambert, 2021), simulation
studies suggest that coverages of credible intervals resulting from an empirical Bayes
approach for model parameter estimation are already close to their nominal values,
even with moderate sample sizes.

The proposed methodology diverges from the proposal made by Rue et al. (2009) and
underlying INLA where the size of the latent vector ⇠⇠⇠ increases with sample size and
where the marginal distribution of the scalar components of ⇠⇠⇠ are the research focus.
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The joint distribution of (⇠⇠⇠|���,D) with asymmetric forms for the non-penalized com-
ponents is here available for the whole vector ⇠⇠⇠ and completed by an approximation
to the marginal posterior distribution of the hyperparameters ���.

The code necessary to reproduce the results in the paper can be downloaded from
https://github.com/plambertULiege/ordgam.

This paper and, more broadly, our research on smoothing methods, owe much to
Brian Marx, who left us too soon. His joint work with Paul Eilers will continue to
endure and shape the field for years to come.
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A Gradient and Hessian in the PO model

Consider the proportional odds model defined in Section 3 and the notations therein.
Let vir = Fir(1� Fir), wir = (1 + ⇡ir � 2Fir), zir = (1� 2Fir)vir for r in ER and take
s, t 2 ER�1. One has:

@`

@�s
=
X

i

@ log ⇡iyi
@�s

;
@ log ⇡ir
@�s

=
1

⇡ir
(�rsvir � �r�1,svi,r�1)

@`

@✓k
=
X

i

@ log ⇡iyi
@✓k

;
@ log ⇡ir
@✓k

= xikwir

and

@2`

@�s@�t
=
X

i

1

⇡iyi
{�yi,s,tzi,yi � �yi�1,s,tzi,yi�1}�

X

i

@ log ⇡iyi
@�s

@ log ⇡iyi
@�t

;

@2`

@2✓k✓`
=
X

i

xikxi`

 
⇡iyiwiyi � 2

yiX

j=1

⇡ijwij

!
;

@2`

@✓k@�s
= �

X

i

xik(�yisviyi + �yi�1,svi,yi�1) .

Therefore, given ���, one has

U� =
@ log p(⇠⇠⇠|���,D)

@⇠⇠⇠
=
@`

@⇠⇠⇠
�K�(⇠⇠⇠ � e) ; H� =

@2 log p(⇠⇠⇠|���,D)

@⇠⇠⇠@⇠⇠⇠>
=

@2`

@⇠⇠⇠@⇠⇠⇠>
�K� .
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