Geometric uncertainties in through-flow models

Arnaud Budo⁽¹⁾ Octobre 2018 → Octobre 2023

Vincent E. Terrapon⁽¹⁾, Maarten Arnst⁽¹⁾ Sophie Mouriaux⁽²⁾, Jules Bartholet⁽³⁾

Journée des doctorants HAIDA 2021

SAFRAN AERO BOOSTERS

Context

Geometrical variability of aerodynamic parts of low-pressure compressors

[SAB]

Technical and economic performances

Manufacturing tolerances?

- Rigorous/robust methodology
- Choice of manufacturing process
- Simplify the treatment of poorly made parts

Decrease the overall cost

Methodology

Outline

Outline

Viscous through-flow model

Circumferential averaged Navier-Stokes equations:

Non-intrusive formulation for elsA:

[Onera]

$$\frac{\partial U}{\partial t} + \frac{\partial (F - F_v)}{\partial x} + \frac{\partial (G - G_v)}{\partial r} = S + \frac{(F_v - F)}{b} \frac{\partial b}{\partial x} + \frac{(F_v - G)}{b} \frac{\partial b}{\partial r}$$
Blockage factor terms

ASTEC: correlations for δ and ω

Deviation angle δ (inviscid blade force)

- From cascade experiments (Lieblein)
- Linear variation with incidence around design conditions
- $\delta = \delta_{TE} \frac{\kappa_{LE} \kappa}{\kappa_{LE} \kappa_{TE}}$ Blade angle

Loss coefficient ω (viscous blade force)

- From cascade experiments (Lieblein)
- Design + off-design parts

Outline

CME2: Overview

[Moreau 2019]

• Research compressor designed by Safran Aircraft Engines

- Low speed flow
- NACA65A012 blades
- Correlations calibrated at these conditions

CME2: results

- Globally good agreement
- Relative difference lower than LES-URANS discrepancy
- ASTEC maximum peak efficiency close to LES prediction
- Slight shift of mass-flow rate
- Discrepancies near stall

CME2: Diffusion limit

Assumptions of loss correlations not valid beyond diffusion limit at large incidence *i*

Measurements of C4-series cascade (M = 0.4)

Outline

Modern high-loaded axial LP compressor

Modern compressor: comparison to RANS

- Low margin at nominal conditions
- More than 400 times faster (not yet optimized for speed)
- Increasing discrepancies near peak efficiency

Correlations not calibrated for

- Optimized 3D blade geometries
- High subsonic Mach number

Closure model improvement

R2

Modern compressor: comparison to RANS

Loss coefficient 0.35 M = 0.8 0.3 M = 0.40.25 Validity range 0.1 $2\omega_{\min}$ $\omega_{\min}^{0.05}$ 0 -5 0 5 -10 10 15 **Deviation angle** 5 0 δ [degree] -5 -10 [Cumpsty 1989] -15 -5 0 5 10 15 -10

Measurements of C4-series cascade

Incidence angle i [deg]

Impact of Mach number

- Minimum-loss incidence angle shifted
- Increase of ω_{\min}
- Narrow range of validity
- Inconsistency between loss validity range and deviation linear range

Correlations not calibrated for these flow conditions

Safran PhD Days - 10/2021 - A. Budo

Modern compressor: comparison to RANS

König's profile loss model (Bart Ruis' Master thesis)

- Mach number effect
- Valid beyond diffusion limit
- Compressibility

Correction for Lieblein's deviation angle:

Isentropic efficiency

Total pressure ratio

ṁ [-]

 $\dot{m} \, [
m kg/s]$

Conclusion

ASTEC

- Closures computation: blade forces
- Coupled with elsA_[Onera]
 →Navier-stokes based through-flow model
- Correlations:
 - deviation angle
 - loss coefficient (profile loss)

Application to compressors

- Global good agreement for CME2 compressor stage
- Improvement required for **modern axial-flow** compressor at high subsonic Mach
- Promising approach to drastically reduce CPU cost compared to 3D RANS

Outline

Future work: other sources of loss

• Tip gap model: Lakshminarayana models

IGV

R1

S1

- > Not efficient for small tip gap (B.L. dominates loss production)
- Endwall loss partly taken into account by NS model but measurements used for correlations usually not performed close to endwalls (~ 5% of blade height)
- Secondary flows: in progress

Corner vortex, horseshoe vortex, passage vortex [Roberts, Ricci]

Loss coefficient ω

Future work: geometrical uncertainties

Parametric model

- Based on ASTEC's input parameters
- Bounds based on SAB tolerances?

(Axisymmetric \rightarrow no mistuning as 3D steady computation)

ightarrow Sensitivity analysis on performance and source terms

Uncertainties vs incidence correction

LE variabilities → large impact on performance **But** Axisymmetric model not able to predict flow prerotation at LE →Smoothing from upstream flow angle and flow angle imposed by models/blade geometry → Geometrical variabilities partially rubbed out

Acknowledgement

Funding for this research is provided by the Walloon region, under grant no. 7900, and Safran Aero Boosters in the frame of the project MARIETTA

BACK-UP

Viscous through-flow model: ASTEC

Methodology:

ASTEC: Inviscid blade force

- Streamtube contraction
- Known (averaged pressure p + geometry)
- Added to blockage factor terms

$$b = 1 - \frac{\varepsilon(x)}{s}$$

ASTEC: inviscid blade force

- Flow slips on the mean flow path (camber line + deviation angle δ)
- No entropy generation
- Iterative procedure:

$$\frac{\partial f_b}{\partial \tau} = -C(W_x n_x + W_r n_r + (W_\theta - \mathbf{\Omega} r)n_\theta)$$
[Simon 2007]

11

Safran PhD Days - 10/2021 - A. Budo

$$\frac{\partial \theta}{\partial x}\Big|_{cl} \\ \frac{\partial \theta}{\partial r}\Big|_{cl} \\ S_{bi2} = \begin{bmatrix} 0 \\ f_{bx} \\ f_{br} \\ f_{b\theta} \\ f_{b\theta} \\ \Omega r \end{bmatrix}$$

W: velocity in the relative frame

 $\boldsymbol{\Omega}$: shaft angular velocity

ASTEC: viscous blade force

Cascade computation (Bart Ruis)

STEC: Mesh & incidence correction

nplementation of linear smoothing

