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Deformation of soap bubbles in uniform
magnetic fields

S. Mawet, *a H. Caps,a S. Dorbolo,b and F. Eliasc

The deformation of hemispherical sessile bubbles made of ferrofluid soap under vertical uniform magnetic

fields was studied using Helmholtz coils. The deformation and the shape of the bubbles were monitored

according to the amplitude of the magnetic field, the initial volume of the bubbles and the ferrofluid

volume used to create them. The meniscus was found to bear most of the deformation, reshaping into a

cylinder, with the remainder of the bubble forming a spherical cap, mainly adapting to the meniscus

transformation. The growth of the meniscus height was rationalised using a simple model. More precisely,

the meniscus shape depends on the competition between capillary, gravity and magnetic effects. These

three ingredients can be rewritten to highlight two characteristic lengths of the system: the capillary and

the magnetic lengths. Depending on the magnetic field intensity, the shape of the meniscus is described

by one of the two lengths, thus revealing the existence of two distinct regimes.

I. Introduction

Sessile and floating bubbles are pockets of gas enclosed inside
a thin liquid film. Due to surface tension, they naturally adopt a
spherical shape which can be modified by the application of an
external field. Indeed, in the gravity field, Cohen et al.1 showed
that metric-sized sessile bubbles are flattened, while Teixeira
et al.2 demonstrated that the shape of floating bubbles is
determined by buoyancy. Moreover, the application of a uniform
electric field on a floating or sessile bubble made of a conducting
liquid induces its deformation into an ellipsoid (see Fig. 1(a)) or,
for a field higher than a critical one, into a cone, the well-known
Taylor cone.3–5 In this paper, we show that a uniform magnetic
field can also be used to reshape a bubble made of a solution
containing a ferrofluid6,7 and a surfactant, forming a ferrofluid
soap.8,9 An example of such a deformation is illustrated in the
pictures in Fig. 1(b). Unlike gravity and the electric field, which
reshape the whole bubble, the magnetic field acts mainly on the
meniscus of the bubble, increasing the meniscus height as its
intensity rises. The aim of this paper is to rationalise and explain
these deformations.

Ferrofluids are stable colloidal dispersions of ferromagnetic
nanoparticles in a carrier liquid. In general, the effect of an
external magnetic field on such a ferrofluid body is twofold. If
the field is not uniform, a volumetric magnetic force is applied

to the body and can, for instance, compensate the gravity force.10

If the magnetic field is uniform, the alignment of the magnetic
moments carried by the particles generates a dipolar repulsion
between the particles, which results in a deformation of the
body.7,11 The effect of the two magnetic forces can be illustrated
by several phenomena. For example, beyond a certain critical
threshold, a flat and still ferrofluid surface subjected to a
perpendicular uniform magnetic field

-

B0 deforms due to a peak
instability: the so-called Rosensweig instability.12,13 Inside a two-
phase liquid, a uniform magnetic field can also deform the
ferrofluid droplets forming one of the phases, stretching them in
the direction of the field.14 Moreover, when such a two-phase
liquid is confined, many different patterns can emerge.15

Fig. 1 Pictures of bubbles resting on horizontal solid substrates subjected to
a vertical uniform electric (a) and magnetic (b) field. The internal gas volumes
are identical in both cases: Vg = 0.5 mL. Image (a) shows a bubble on a
conductive plate under an electric field intensity E0 = 480 V mm�1 generated
by a plane capacitor of 25 mm thick. The bubble consists of conductive soap
and assumes a hemi-spheroidal shape due to the charges attraction.3 Picture
(b) depicts the shape of a bubble on a microscopic slide under a magnetic
field with an intensity of B0 = 41.22 mT. The bubble is made up of a volume of
soapy ferrofluid Vff = 60 mL and adopts the shape of a cylinder closed by a thin
spherical cap due to dipole alignment. The scale of both pictures is approxi-
mately the same and is indicated in the upper right-hand corner of image (a).
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Deformations due to a magnetic field can also be observed
on ferrofluid droplets resting on a superhydrophobic substrate,
as investigated by Timonen et al.16 thanks to a non-uniform
magnetic field produced by a permanent magnet. They not only
found that droplets deform into a conical spiked shape, but
also that they may divide due to the non-uniformity of the
magnetic field. Later, Rigoni et al.17 showed that ferrofluid
droplets can either be flattened by magnetic interaction due to
the magnetic gradient or elongated by a uniform magnetic
field. Both phenomena result from the competition between a
magnetic pressure, which tends to deform the droplet, and the
capillary one, trying to keep it spherical. Later, Rigoni et al.18

showed that these competitions can also be used to describe the
separation of a ferrofluid droplet into daughter ones. Latikka et al.19

further studied the separation in daughter droplets and observed
the presence of satellite and subsatellite droplets after splitting.
Furthermore, they also investigated the impact of both the substrate
and ferrofluid composition on the self-assembled pattern induced
by the separations. Shyam et al. have also shown that a time-
dependent magnetic field can be used to enhance the convective
flow within a drop to both increase its evaporation rate20 and the
mixing between two fluids of different magnetic susceptibilities.21

In the work reported in this article, the ferrofluid is confined
between the liquid–air interfaces of a soap bubble deposited on
a solid surface. The bubble is hemispherical and a liquid
meniscus borders the equatorial line at the junction between
the bubble and the solid substrate. Whereas the thickness of
the bubble soap film is usually of the order of a micrometre or
less, most of the fluid volume lies in the meniscus, which is
millimetre thick. The application of a vertical external uniform
magnetic field induces growth in the height of the meniscus.
This growth presents both similarities and differences with the
Rosensweig instability and the ferrofluid droplet deformation.
On one hand, the effect of a uniform magnetic field seems to
induce a rise of the ferrofluid in each case. Yet, on the other
hand, for the magnetic field intensities tested, the meniscus
does not deform into spikes nor separate beyond a critical field.
It forms a cylinder whose height grows with the intensity of the
magnetic field (see Fig. 2). This ferrofluid cylinder holds until
the bubble blows up, at which point the ferrofluid separates into
small droplets as a drop subjected to a sufficiently high magnetic
field does.18 This reaction means that the bubble not only forces
the liquid volume into a singular shape, i.e. a meniscus topped
by a thin liquid cap, but also holds it together, preventing it from
separating under the action of the magnetic field.

Other studies have already explored the interaction between
a meniscus and an applied magnetic field, but none of them
fully explain the behaviour of the bubble meniscus. For example,
Rosensweig7 (see the application on the conical meniscus at the
end of the fifth chapter on pages 79 to 82 of ref. 7) also observed
the growth of a meniscus, formed around a wire emerging
vertically from a ferrofluid pool, with the applied magnetic field.
He shows that the height is prescribed by the competition
between the magnetic and the gravity fields. However, the
conclusions drawn from this situation do not remain valid in
the case of a ferrofluid bubble. Indeed, neither the meniscus nor

the magnetic field are equivalent: first the presence of the
meniscus in ref. 7 is not due to a soap film, but solely to the
magnetic effect (the capillary one being neglected) and second
the magnetic field is not uniform and vertical, but circular around
the wire. Another configuration closer to ours has, however, been
studied by Elias et al.:9 they described the drainage of a flat,
vertical film made of ferrofluid soap suspended inside a rectan-
gular frame when submitted to a uniform magnetic field. They
notably highlighted the crucial role of the meniscus and the
direction of the applied magnetic field on the aforesaid drainage
and, in particular, on its velocity. Indeed, a magnetic field applied
perpendicularly to the film tends to speed up the drainage,
whereas a field applied parallel to the film tends to slow it down.
This is due to the interaction between the magnetic moments,
which is less (more) favourable inside the film than inside the
meniscus when the field is perpendicular (parallel) to the film,
thus enhancing (diminishing) the drainage. However, they did not
mention any impact on the meniscus shape itself.

As showcased by the different examples presented above,
neither the deformations produced by a magnetic field on a
droplet or a flat liquid interface, nor those caused in a liquid
configuration inducing the presence of a meniscus, can fully
explain the observation illustrated in Fig. 2. Our objective is
therefore to describe how the unique liquid configuration
formed by a bubble and its meniscus deforms under a uniform
magnetic field, with particular attention paid to the meniscus
since it concentrates most of the deformations.

This paper investigates experimentally this effect and inter-
prets it in terms of an increase in the magnetic pressure inside
the bubble meniscus. We show that, conversely to droplets
whose shape is prescribed by a magneto/capillary competition,
and the Rosensweig’s meniscus, described by a magneto/gravity
competition, the bubble meniscus is characterised by the inter-
play between gravity, capillarity and magnetism. Beyond the
academic interest of this study, understanding how the bubble
deforms and what phenomena drive these changes in shape
could help us to better handle bubbles and control their life-
span so that they can be used as an actuator in fluid-based
systems. In this respect, the experiment presented here can be

Fig. 2 Pictures of a bubble resting on a horizontal microscopic slide glass
under a uniform vertical magnetic field. Its internal gas volume Vg = 0.5 mL
and its ferrofluid volume Vff = 15 mL. Picture (a) shows the bubble on a slide
when the applied magnetic field intensity B0 = 0 mT. Image (b) depicts the
shape of the bubble under a uniform vertical magnetic field with an
intensity of B0 = 11.07 mT. Picture (c) illustrates the bubble further
deformed by an applied field of higher intensity B0 = 41.22 mT. The size
of the bubble meniscus increases with the intensity of the uniform
magnetic field. The bubble adopts the shape of a spherical cap sitting
atop of a cylinder. The height hb and the radius Rb of the bubble are
measured, as well as the meniscus height hm and the contact angle at the
top of the meniscus yb.
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seen as complementary to those performed on a bubble under a
uniform vertical electric field,3 as suggested by Fig. 1. Indeed,
in the latter case, the deformations are due to a surface force,
while in the present case they are due to a volume force. The
combination of these two fields could also improve the overall
liquid injection induced by electrospray, as carried out on
droplets by King et al.22 Finally, as the meniscus grows with
the applied magnetic field, measuring the latter is an astute
way to directly access the magnetisation in the ferrofluid.

The experimental set-up as well as the method used to study
the deformation are presented in Section II. Next, we first
explore the overall steady shape of the bubble to determine
the magnetic field inside the ferrofluid (Section III). Then,
based on dimensional analysis, we propose to rationalise the
observation made in Fig. 2 to arrive at a law relating the
meniscus height hm and the magnetisation inside the ferrofluid
M in the linear magnetisation regime (Section IV). Finally, a
general conclusion is drawn in Section V.

II. Experimental set-up

The deformations due to the application of a uniform magnetic
field were studied using two coils mounted in a Helmholtz configu-
ration. The uniformity of the magnetic field between the two coils
was verified in a circular area of 50 mm radius whose centre
corresponds to that of the coils. The deviation relative to the field
at the centre was found to be of the order of 3%, at worst. Moreover,
the vertical uniformity of the field was even better, diverging by less
than 1% over 20 mm. As the size of the bubbles is smaller, the
applied field can be considered uniform over the entire bubble. A
power source was used to establish the direct current inside the
coils, which was first amplified to reach field intensities of up to 50
mT. The law linking the uniform magnetic field at the centre of
the coils to the voltage f used to establish the current was found
to be linear as expected. Adjusting this linear law gives us B0 =
6.7f � 3 [mT]. The images of the bubbles were recorded thanks
to a camera placed in front of them. To limit their evaporation,
the bubbles were caged inside a hermetic chamber made of
transparent Perspex sheets with some wadding soaked in water.
Sketches of the experimental set-up are presented in Fig. 3.

A droplet of a preset volume of ferrofluid soap Vff was
released onto a horizontal microscope slip glass using a micro
pipette with an accuracy of 0.1 mL. After depositing the droplet,
a syringe pump was used to inflate the bubble by injecting air
directly inside the soapy solution. Bubbles created in this way
not only have their size (through the injected air volume Vg)
fixed, but also the amount of ferrofluid Vff used to create them.
The whole process between the bubble creation and the begin-
ning of the experiment lasted about 10 s. Three initial gas
volumes (Vg = 1, 0.5 and 0.25 mL) together with five ferrofluid
volumes (Vff = 3, 7, 15, 30 and 60 mL) were used. Due to
compressibility and air leakage, Vg could slowly evolve over
time, so we therefore determined the precise internal volume a
posteriori, by imaging, using a classical trapezoidal integration
method and taking advantage of cylindrical symmetry.

The ferrofluid soap is the same as that used by Elias et al..9

The solution consists of a water-based ferrofluid of maghemite
particles (g-Fe2O3) to which 2 wt% of an anionic surfactant, the
sodium dodecyl sulfate (SDS), has been added. The physical
properties are obtained directly from ref. 9: the surface tension
g = 30 mN m�1 and the density r = 1.5 � 103 kg m�3. Even if the
experimental parameter is the amplitude of the external mag-
netic field B0, the parameter that drives the behaviour of the
system is the amplitude of the ferrofluid magnetisation M. For a
ferrofluid, this amplitude is linked to the internal field intensity
H through a magnetisation curve, which is presented in Fig. 4
(obtained with a vibrating sample magnetometer). On this
graphic, the blue dots are the measured values and the red
curve a phenomenological adjustment of the data with the
following function (see ref. 10):

MðHÞ ¼ wlMsH

Ms þ wlH
(1)

where wl and Ms are the two fitting parameters, wl is the magnetic
susceptibility in the linear regime and Ms is the saturation value
of the magnetisation. For our ferrofluid soap, the two parameters
are equal to wl = 2.65 � 0.04 and Ms = 41.00 � 0.08 kA m�1.

The experiments were carried out by recording videos in
which the intensity of the applied magnetic field B0 was

Fig. 3 Sketches of the experimental set-up used for measurements per-
formed on sessile bubbles under a magnetic field. (a) Summary of the
elements composing the experimental set-up. (b) Drawing of the geometric
measurements of the experiment: the applied magnetic field B

-
0, the gravity

field g-, the heights of both the meniscus and the spherical cap forming the
bubble (hm and hc respectively), its total height hb and internal volume Vg as
well as the angle at the top of the meniscus yb and two of its radii Rs and Rb.
The first, the radius at the slide Rs, is measured at the contact between the
bubble base and substrate, while the second, the common bubble radius Rb,
is taken at the top of the meniscus. The scale of both sketches is roughly the
same and is indicated in the upper right-hand corner.
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increased by 2.01 mT every 10 s. The videos are a succession of
approximately 5 s of bubble shape recording followed by 5 s of
black screen during which the magnetic field is modified, and
the bubble reaches its steady shape. As the bubble lifetime did not
allow the full range of magnetic fields to be explored (from�3 mT
to 43.23 mT), several bubbles were used. Each recording started at
�3 mT before either picking up where the last bubble left off or
changing the parameters and starting a new sequence. All experi-
ments were performed at least three times and three experiments
were done with negative magnetic fields (namely from �3 mT to
�43.2 mT), to verify that only the field intensity mattered and not
its direction.

The video recordings from the experiments were cut into
constant-field segments and, as the bubble reached a steady
regime, each part of the recording was summarised into a single
image by averaging all those composing the portion using
ImageJ.23 The average pictures thus obtained were then analysed
using a home-made Python code to detect the edge and the
meniscus of the bubbles. The various characteristic lengths
defining the bubble and meniscus shapes are then extracted,
namely the bubble height hb, volume Vg and radii, Rs and Rb

(measured at the base of the bubble and at the top of the
meniscus, respectively), as well as the meniscus and the spherical
cap height, hm and hc. Finally, the angle at the top of the meniscus
yb, is directly measured on the pictures averaged with ImageJ.

The origin of the typical errors on the various geometric
lengths (namely hb, hc, hm, Rs and Rb) are all related to the pixels

resolution (which correspond roughly to the pixels size, namely
30 mm in actual length). Since the detection of the bubble’s
edge, meniscus and base has an accuracy of one or two pixels,
the resulting standard error is estimated to be of the order of
50 mm at worst. Moreover, the error on Vg was determined to be
of the order of a few percent and that on yb to be of the order
of 11. To summarise, this corresponds to a relative error of a few
percent or less for all characteristic lengths.

III. Whole bubbles under magnetic
fields
A. Meniscus shape

To analyse the deformation of the bubble meniscus, a sessile
bubble resting on a microscope cover slip is used (see Fig. 2(a)).
In this situation the meniscus height is defined by the surface
tension/gravity competition and can be related to the capillary

length ‘c ¼
ffiffiffiffiffiffiffiffiffiffi
g=rg

p
. When we apply a uniform magnetic field,

the height of the meniscus increases as the intensity of the
applied field does, changing its shape (see Fig. 2(b–c)). Thus, in
this second situation, the meniscus shape is a competition
between gravity, capillarity and magnetism.

In order to rationalise the effect observed in the pictures
presented in Fig. 2, the meniscus height hm was measured for
an increasing applied field intensity H0 (where B0 = m0H0 and m0

is the vacuum permeability). The results are presented in Fig. 5
for a bubble of Vg = 0.5 mL and Vff = 15 mL. Each point
represents the average of three different measurements with

Fig. 4 The magnetisation curve of the ferrofluid soap obtained using a
vibrating sample magnetometer. It represents the amplitude of the ferro-
fluid magnetisation M as a function of the field intensity H inside it. The
blue bullets are the measured values, while the red line is the phenom-
enological adjusted function. This function takes the form described by
eqn (1) with wl and Ms being the two fitting parameters. For our ferrofluid
soap, the fitting parameters are equal to wl = 2.65 � 0.04 and Ms = 41.00 �
0.08 kA m�1, respectively.

Fig. 5 Steady height of the bubble meniscus hm as a function of the
applied field intensity H0. The volume of the sessile bubble and the
ferrofluid volume used to create it were respectively Vg = 0.5 mL and
Vff = 15 mL. Each point represents the average of three measurements
made on three distinct bubbles, with the associated standard deviation.
Picture (i) and (ii) illustrate the bubble shape under H0 = 8.86 kA m�1 and
H0 = 32.96 kA m�1 respectively.
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the associated standard deviation. Pictures (i) and (ii) of Fig. 5 show
the ferrofluid bubble under a field intensity H0 = 8.86 kA m�1 and
H0 = 32.96 kA m�1 respectively (corresponding to B0 = 11.07 mT in
Fig. 2(b) and to B0 = 41.22 mT in Fig. 2(c)). A first observation
can be made: as the applied field intensity H0 increases and the
meniscus rises, the shape of the sessile bubble changes from a
hemispherical shape to one that closely resembles that of a
spherical cap sitting atop of a cylinder, with the meniscus
forming the cylinder.

This effect is due to the internal field
-

H inside the meniscus
which, in general, depends on the overall shape of the bubble
through the demagnetising factor D. This demagnetising factor
and the corresponding field DM

��!
arise from the magnetic

dipole interaction inside the ferrofluid which lowers the inter-
nal field

-

H. This effect can be expressed as follows

~H = ~H0 � DM
��!

. (2)

Since most of the ferrofluid is concentrated inside the menis-
cus, which is very similar in shape to a cylinder, we have
assumed that the ferrofluid forms a cylinder with a thickness
em. To validate the cylinder hypothesis, the radius at the base of
the bubble and that at the top of the meniscus, respectively
labelled Rs and Rb, were measured. The closer the values of the
radii are, the more valid the hypothesis is. The results are
presented in Fig. 6 for the different values of Vff and Vg as well
as for all field intensity H0. It can be observed that the radii are
close to each other even though the base radius Rs is always a
bit larger than that taken at the top of the meniscus Rb. Yet, the
difference between the radii is small compared with the values
of the radii, so the cylinder hypothesis gives a fairly good
description of the situation.

B. Cylindrical hypothesis

In order to refine the cylindrical hypothesis, variation of the
radii was measured as a function of the applied field intensity
H0. The results show that for small amounts of ferrofluid, the
radii remain independent of H0, whereas, for larger quantities,
the meniscus shrinks as H0 increases. This shrinkage is due to
the finite value of Vff and the need to fuel hm growth and is
associated with the values of Rb and Rs approaching each other.
Consequently, as the field intensity H0 and the meniscus height
hm increase, the shape of the meniscus becomes increasingly
similar to that of a cylinder.

Together, the information gathered from the radii analysis
allows us to conclude that the difference between the radii is
small compared to the value of hm, except for low values of the
applied field

-

H0 where they can be comparable. Under these
conditions, the ferrofluid can be considered to rise almost
perpendicularly to the substrate, forming a cylinder. The radius
of this cylinder is assumed to be equal to the average of the two
radii, namely Ra = (Rb + Rs)/2, its height equal to hm and its
volume to Vff. Indeed, the quantity of liquid inside the spherical
cap Vc is approximately equal to 2pRa

2ec, where ec is the film
thickness (assuming a hemispherical shape for the cap, which
is the upper limit). Taking ec E 1 mm and Ra E 5 mm, Vc o 0.2 mL
which is, at least, an order of magnitude smaller than Vff.

Finally, we can estimate that the cylinder thickness em is equal
to Vff/2pRahm and calculate the ratio em/Ra. The latter ranges
from 3 � 10�3 in the best-case scenario, to 0.13 in the worst
one. The worst-case scenario corresponds to Vg = 0.25 mL, Vff =
60 mL and weak applied fields

-

H0. Considering these values and
since the approximation improves with increasing field
strength, it is realistic to assume that the meniscus has a
cylindrical shape with a thickness at least ten times smaller
than its radius for all sets of parameters.

The demagnetising factor corresponding to a thin cylindrical
shell submitted to an external magnetic field parallel to the
cylindrical axis was derived by Beleggia et al..24 Given the obtained
thickness over the radius ratio, this leads to a D ranging from
E 0.01 to E 0.1. Consequently, since M is of the same order of
magnitude as H, the demagnetising field can be neglected. Hence,
the effects of the dipolar magnetic interactions can be ignored in
our experiments and the internal field in the ferrofluid hollow
cylinder

-

H is equal to the external applied field
-

H0. This approxi-
mation is especially accurate for large

-

H0 and small Vff/Vg ratios.
Even in the least favourable cases, deviations from the model
should be small taking the upper limit of D into account.

C. Bubble cap

Above the meniscus, the thin film of soap that closes the bubble
is almost transparent and can therefore be assumed to contain a
very small amount of ferrofluid, as estimated above. Therefore,
both effects of H0 and gravity are assumed to be negligible,

Fig. 6 Values of Rs as a function of Rb for all applied fields intensity H0, the
five ferrofluid volumes Vff considered and the three air volumes used Vg:
Vff = 3 mL represented by solid circles, Vff = 7 mL by solid triangles, Vff =
15 mL by solid squares, Vff = 30 mL by solid diamonds and Vff = 60 mL by
solid pentagons together with Vg = 0.25 mL in lilac, Vg = 0.50 mL in orange
and Vg = 1.00 mL in green. Each point represents the average of three
measurements with the corresponding standard deviations and the black
line is a guide representing Rb = Rs. The difference between the two radii
has been exaggerated on the sketch displaying Rs and Rb.
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and the film should take a shape prescribed by surface tension
alone, namely a spherical cap. To validate this hypothesis,
the measured spherical cap height hc,m can be compared with
the calculated one hc,c. These are obtained from the measured
cylinder radius Ra and the angle measured at the top of the
meniscus yb. Assuming a spherical cap, this leads to

hc;c ¼ Ra
1� cosðybÞ
sinðybÞ

: (3)

The closer these two values (i.e. hc,m and hc,c) are, the less effect
gravity and magnetism have on the soap film.

In Fig. 7 each point once again represents the average of
three measurements with the corresponding standard devia-
tion. The measured and calculated hc are plotted for each set of
parameters, namely for the five Vff, the three Vg and for all
applied fields intensity H0. The solid black line is a guide for
the eyes representing hm,c = hc,c. As can be seen, if the standard
deviation is taken into account, all the data indicate that the
calculated and measured heights are equal. Consequently, in
the following, we consider that the part of the bubble located at
the top of the meniscus adopts a spherical cap shape.

IV. Model
A. Meniscus under magnetic fields

According to Rosensweig7 the influence of the magnetic field
on the ferrofluid can be described by three distinct pressures.

The first is the pressure linked to the magnetostrictive effects
Ps, which is, in our case, assumed to be null since the ferrofluid
density is seen as independent of the magnetic field. The
second is the magnetic overpressure inside the fluid due to
the interaction between the magnetic moments Pm. Finally, the
third is the pressure due to the magnetisation perpendicular to
the interface Pn. This last term is also assumed to be zero
because the magnetisation due to the applied field is parallel
to the liquid–air interface of the hollow ferrofluid cylinder.
Consequently, the pressure equilibrium inside the ferrofluid
under a field intensity H can be obtained by combining a general-
ised Pascal’s principle and the associated boundary conditions.
The expression thus obtained is constant everywhere inside the
fluid for an imposed field intensity H and reads as follows

P0 þ Pg � m0

ðH
0

MdH� þ rgz ¼ cst; (4)

where P0 and Pg are respectively the atmospheric and capillary
pressures, z is the liquid height and M is its magnetisation. The
third term of the equation is the expression for the in-fluid
magnetic pressure Pm. This equation is applicable everywhere
inside the ferrofluid forming the bubbles and therefore inside the
whole meniscus. Yet, it cannot be used to directly predict the effect
of a change in

-

H as the constant depends on the field, otherwise
nothing would vary. To circumvent this difficulty, we propose to
use dimensional analysis to rationalise our observations.

Assuming that the bubble is large enough that its horizontal
curvature has no influence, the meniscus shape can be entirely
characterised by its height hm. Moreover, according to eqn (4),
the pressures involved in its creation are the hydrostatic,
capillary and magnetic pressures respectively described by
Ph B rghm, Pg B ghm

�1 and Pm. As the magnetisation M is
related to the internal field intensity H by eqn (1), the set of
magnetic effects can be characterised by two dimensional para-
meters M and m0 and a dimensionless one w, the magnetic
susceptibility. We have chosen to keep M instead of H or H0

because M is related to the magnetic effects inside the ferrofluid.
Consequently, the height hm can be defined as a function of five
dimensional parameters, r, g, g, m0 and M and a dimensionless
one w. Four of the dimensional parameters have independent
dimensions and the dimension of the fifth can therefore be
expressed as a product of the others. If the dimension of m0 is
chosen as the dependent one, it can be formulated as follows

[m0] = [r]1/2[g]1/2[g]1/2[M]�2. (5)

Moreover, the dimension of hm is also expressed as the product
of the same four dimensional parameters:

[hm] = [r]�1/2[g]�1/2[g]1/2[M]0. (6)

Then, according to the dimensional analysis and the Bucking-
ham P-theorem,25 the following relationship applies:

hm ¼ ‘cfm
m0M

2ffiffiffiffiffiffiffiffi
rgg
p ; w
� �

(7)

where fm m0M
2=

ffiffiffiffiffiffiffiffi
rgg
p

; w
� �

is a function of the two dimensionless

Fig. 7 Comparison between the calculated height hc,c and the measured
height hc,m for each set of parameters Vg, Vff and for all applied fields
intensity H0. The three air volumes Vg and the five ferrofluid volumes Vff

used are represented in the same fashion as in Fig. 6: Vg = 0.25 mL in lilac,
Vg = 0.50 mL in orange and Vg = 1.00 mL in green together with Vff = 3 mL
with solid circles, Vff = 7 mL with solid triangles, Vff = 15 mL with solid
squares, Vff = 30 mL with solid diamonds and Vff = 60 mL with solid
pentagons. The black line is a guide that represents hc,c = hc,m.
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numbers m0M
2=

ffiffiffiffiffiffiffiffi
rgg
p

and w and ‘c ¼
ffiffiffiffiffiffiffiffiffiffi
g=rg

p
is the capillary

length.
The expression of hm can be manipulated to highlight the

two characteristic lengths of the problem. If we define the
magnetic length cm:

‘m ¼
m0M

2

rg
; (8)

Eqn (7) can be rewritten as a function of cc and cm:

hm ¼ ‘cfm
‘m
‘c
; w

� �
: (9)

The two characteristic lengths reflect a competition between a
driving effect, which pulls the liquid upwards, and a restraining
effect, which has the opposite outcome. For both characteristic
lengths, the restrain is gravity, which pulls the ferrofluid down,
but the motor is different. In cc, it is capillarity that is at work,
whereas in cm it is the magnetic in-fluid pressure Pm. As fm is a
function of the ratio between these two lengths, two different
regimes are expected: one dominated by capillarity and the
other by magnetic pressure. The transition between these two
regimes occurs when the two lengths are equal, namely at a
critical magnetic field Mc E 4.2 kA m�1. In the capillary regime,
the meniscus shape is close to the usual one (see Fig. 2(a)). In
the magnetic regime, the meniscus shape is gradually trans-
formed into a cylinder. This metamorphosis erases the initial
curvature of the meniscus, inducing the disappearance of the
capillary pressure associated to this curvature. As the horizontal
curvature is not taken into account in this first-order model,
capillarity and magnetism can be considered to act solely in
their respective regimes.

To highlight the effect of the magnetic field on the meniscus
height, hm was plotted as a function of the squared amplitude
of the magnetisation M2 in Fig. 8 for each volume of air (Vg = 1,
0.5 and 0.25 mL) and volume of ferrofluid (Vff = 3, 7, 15, 30 and
60 mL). The labels used in the figure are the same as previously
and each point represents the average of three different mea-
surements with the corresponding standard deviation. The
vertical red line indicates the transition between the capillary-
dominant (M o Mc) and magnetic-dominant regimes (M Z Mc).
As can be seen, only the points corresponding to a very weak
magnetic field belong to the first regime (the first two points of
each data set, corresponding to a negative value of M, have
been omitted from this graph for clarity). Therefore, almost the
entire range of applied fields corresponds to a meniscus shape
prescribed by the magnetic field. Another observation can be
made on this graphic: all data seem to be roughly sorted into
five categories, each corresponding to a different Vff. Further-
more, hm appears to linearly depend on M2 as long as the
intensity of the field is weak (i.e. for M r 21 kA m�1, which is
nearly half of the data range). Consequently, a linear expression
for fm in the weak field limit can be proposed.

B. Meniscus: linear regime

For very weak fields, in the capillary regime (M o Mc), hm is
directly linked to the capillary length cc, which expresses the

opposition between Pg and Ph. In particular, for a floating
bubble subjected to no field other than gravity, Teixeira et al.2

proposed an expression for hm. Moreover, a method similar to
that used to determine the height of the meniscus formed by a
liquid bath along a solid wall (see ref. 26 pages 48–50 for
example) can be used for those that are sessile. However, the
latter configuration is quite different from our case (there is no solid
on which to wet and a finite amount of ferrofluid) and the result
can therefore only be considered as an estimate. Nevertheless, in
both cases, hm can be expressed as hm = C1cc, with C1 a constant
that depends on the bubble size in the floating bubble case and on
the contact angle in the solid wall situation. Dimensional analysis
leads to exactly the same result for our configuration under a null
magnetic field with C1 depending on both Vg and Vff (see the zero-
field values of hm in Fig. 8).

In the magnetic regime (M Z Mc), the meniscus height is
determined by cm, which reflects the competition between Pm

and Ph. Rethinking the dimensional analysis in this regime,
namely without the capillary pressure influence, leads us to
hm = f (w)cm, where f (w) is a function of the magnetic suscepti-
bility. In addition, according to eqn (1), when the field inside
the liquid is weak compared with the saturation magnetisation
Ms, the magnetisation is a linear function of the field, namely
M(H) E wlH. Under these conditions, the internal magnetic
pressure Pm takes a much simpler form: Pm B m0M2/2wl. This

Fig. 8 Height of the meniscus hm drawn as a function of the squared
amplitude of the magnetisation M2 for each volume of air (Vg = 1, 0.5 and
0.25 mL) and ferrofluid volume (Vff = 3, 7, 15, 30 and 60 mL). The label used
is the same as in the previous figure and, similarly, each point represents
the average of three measurements with the corresponding standard
deviation. The vertical red line marks the separation between the
capillary-dominant regime and the magnetic-dominant one, namely when
Mc

2 = 17.64 kA m�1. The black lines, corresponding to each Vff, are the
functions that describe the meniscus growth in the linear regime. They are
obtained thanks to the mean slope represented in Fig. 10 and the average
of the three heights in the capillary regime hm,0 displayed in Fig. 9.
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linear regime can define a weak field limit Ml = 21 kA m�1, the
value at which hm stops increasing linearly with cm. Therefore,
in the weak field limit, namely when M r Ml, equating Pm and
Ph gives us the characteristic height of the meniscus, which is
equivalent to cm/2wl. Therefore, since wl is constant and taking
into account the dimensional analysis in the magnetic regime,
the height of the meniscus under a weak field can be expressed
as hm = (C2/2wl)cm, with C2 a constant.

Accordingly, assuming that capillary and magnetic pressures
only act in their respective regimes, a function that satisfies the
definition given by eqn (9) can be proposed under the weak field
limit. On one hand, the meniscus height in the capillary regime
is hm,0 = C1cc, which is independent of the magnetisation. On the
other hand, in the weak field regime, hm grows linearly with cm.
By combining the results obtained in both regimes, the menis-
cus height can be expressed as

hm ¼
hm;0; ifM 2 0;Mc½ �

hm;0 þ C2
D‘m
2wl

; ifM 2 ½Mc;Ml�

8><
>: (10)

where hm,0 = C1cc is the meniscus height in the capillary regime
and Dcm = cm(M) � cm(Mc). In addition, the data represented in
Fig. 8 indicate that hm,0 vary drastically with Vff and, to a lesser
extent, with Vg.

C. Experimental validation

To ensure the validity of the first-order model, the linear part of
eqn (10) can be adjusted to each data set represented in Fig. 8.
Fitting the function over the weak field domain, namely for M A
[Mc, Ml], allows us to obtain both hm,0 and C2. The dependen-
cies of the first of these two parameters can be further ratio-
nalised. Indeed, the dimensional analysis in the capillary
regime states that hm,0 is proportional to the capillary length
cc, but the observation made in Fig. 8 shows that hm,0 also
depends on both Vff and Vg. This second variation in Vff and Vg

is the sign of the influence of the finite amount of ferrofluid
used to create the bubble.

To explore this dependence, we assume that the meniscus
has a height hm,0 of the same order of magnitude as its lateral
extension, i.e. that it has a constant curvature, and that its shape
is the same inside and outside the bubble. These assumptions
make it symmetrical with respect to the plane perpendicular to
the substrate and passing through its middle. Under these
conditions, geometric arguments and cylindrical symmetry allow
us to link Vff and hm,0 using the following formula

hm;0
2 ¼ Cs

Vff

R0
(11)

where Cs is a shape constant and R0 is the radius of the bubble in

the capillary-dominant regime, which is proportional to
ffiffiffiffiffiffi
Vg

3
p

due to the bubble hemispherical shape. This radius is defined in
the same way as for the cylinder, by taking an average of the
base radius Rs and the radius at the top of the meniscus Rb.
The graphic of hm,0

2 as a function of Vff/R0 is presented in Fig. 9.
The data points are obtained by adjusting a linear function to the

meniscus height values corresponding to the linear regime of
magnetisation. The points relative to each data set are shown
with the corresponding label. The vertical standard deviation is
calculated by propagating that given by the adjustment proce-
dure. Furthermore, to determine the horizontal standard devia-
tion, we have considered that the error on the pipetted volume of
ferrofluid is small enough to be neglected and the error is
therefore based on that on R0.

The black line is an adjustment of eqn (11) with Cs taken as
the only fitting parameter. Moreover, only the data corres-
ponding to hm,0

2 o cc
2 were used to adjust the function.

Indeed, eqn (11) describes the influence of the finite amount
of ferrofluid Vff/R0, but does not take the potential influence of
cc into account. Yet, when the meniscus height becomes
comparable to the capillary length, we expect gravity to start
limiting hm,0. The data is therefore separated into two categories:
in the first hm,0 it is only limited by Vff/R0 and described by
eqn (11) while, in the second, hm,0 results from both cc and the
available ferrofluid quantity Vff/R0. The separation between the
regimes is represented by the horizontal red line. The obtained
value for the shape constant Cs = 0.33 is close to that obtained by
assuming a constant curvature (in this case Cs = (p(4 � p))�1 E
0.37). As can be seen, the evolution of hm,0 is fairly well described
by eqn (11), except maybe for the higher values of Vff/R0, where it
starts to diverge from the prediction. For these large Vff/R0

values, we observe that the lateral extension of the meniscus

Fig. 9 Initial meniscus height squared hm,0
2 which is the square of the first

fitting parameter obtained by adjusting the linear part of the function
defined in eqn (10) on each set of parameters. This height is plotted as a
function of Vff/R0 and each point is displayed with the label corresponding
to its data set. The vertical standard deviation is obtained from that given
by the fitting procedure and the horizontal one is based on the error on R0.
The black line is the law obtained by adjusting eqn (11) to the hm,0

2 smaller
than the square of the capillary length, represented by the red line, and the
fitting procedure gives Cs = 0.33 � 0.01 (the standard deviation is given by
the adjustment procedure).
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starts to become larger than its height, which is surely the reason
for this discrepancy.

According to eqn (10), the slope of the weak magnetic field
function is equal to C2m0/2rgwl. This slope has been plotted as a
function of Vff in Fig. 10, labelled in the same way as in the
previous figure. Again, the vertical standard deviation comes
from the adjusting procedure. As shown, the slopes are a
function of Vff, but appear to be almost independent of Vg

when the error bars are considered. The values of C2 can be
evaluated knowing that m0/2rgwl E 1.6 10�2 mm3 A�2. This
gives us a value of C2 = 0.146 for Vff = 3 mL to C2 = 0.409 for Vff =
60 mL. Since C2 is independent of Vg, global values of the slopes
can be used for each Vff. These average slopes were obtained by
adjusting a single linear function to all points corresponding to
a given Vff (black bullets in Fig. 10). Furthermore, it should be
noted that Fig. 9 and 10 suggest that hm,0 and C2 could reach
saturation values for sufficiently large Vff. These saturation
values could be obtained by using floating bubbles, although
in this case there may be a non-negligible effect of the demag-
netising field at the surface of the liquid bath, which in turn
may induce internal field gradients as observed in ref. 9.
Nevertheless, this work is beyond the scope of the experimental
study presented here. Finally, since wl contains all the informa-
tion about the specificities of the ferrofluid, both hm,0 and C2

can be presumed to be universal and therefore do not depend
on the ferrofluid used.

In order to highlight the evolution of hm in the magnetic
regime (M Z Mc), eqn (10) can be rewritten to express the

variation of the meniscus height Dhm = hm � hm,0 as a function
of M2. Accordingly, Dhm is described by the following law:

Dhm ¼ C2
D‘m
2wl

; (12)

with C2 as the only fitting parameter and, since hm,0 contains all
the dependence in Vg, with Dhm a function of cm and Vff.
Therefore, if Dhm is divided by the slope corresponding to its
given Vff, the resulting measure 2rgwlDhm/C2m0, which has the
unity of a squared magnetisation, depends only on cm.

This result is presented as a function of M2 in Fig. 11. The
representations used in this figure are the same as those in
Fig. 8 except that the standard deviations are not shown for
clarity. The black line is a guide representing 2rgwlDhm/C2m0 =
(M � Mc)2. On this graphic, we see that the data do indeed
collapse on a master curve, not only in the weak field regime,
but also beyond. The existence of this master curve validates
the dimensional analysis and confirms that hm is described by
eqn (9). Thanks to this master curve, the magnetisation value at
which the data ceases to be correctly grasped by the linear
approximation can be corroborated. It appears that the linear
law is meaningful over half of the data range (namely for M r
Ml = 21 kA m�1). After the linear regime, the deformations
saturate as expected from the magnetisation curve.

Fig. 10 Slopes of the adjusted function C2m0/2rgwl defined by eqn (10) as
a function of Vff. Each point represents the value obtained for a given data
set and is displayed with the same label. Standard deviations are given by
the adjusting procedure. The black bullets represent the mean values for
each Vff obtained by fitting a linear law defined by eqn (12) on all Dhm

corresponding to a given Vff. Here again, the standard deviations are given
by the adjusting procedure.

Fig. 11 Variation of the meniscus height Dhm divided by the slope of the
linear law C2m0/2rgwl corresponding to a given Vff as a function of M2 for all
the parameters. The labels used are the same as in the previous graphics
and each point corresponds to the average of three measurements for a
given Vg and Vff. The red line marks the transition between the capillary-
dominant and the magnetic-dominant regimes. The standard deviations
have been omitted to maintain a readable representation. Their order of
magnitude is the same as in Fig. 8 (more precisely, the error bars are
slightly larger due to errors in hm,0 and C2). Finally, the black line is a guide
representing 2rgwlDhm/C2m0 = (M � Mc)2.
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V. Conclusion

The experiments presented here as well as their description
confirm that, as presumed in the introduction, the interplay
between the intrinsically volumetric nature of the magnetic
force and the unique ferrofluid distribution inside a bubble is
responsible for its singular behaviour and deformation. Indeed,
for example, when comparing bubbles to droplets under the
same conditions, there is not only a clear distinction between
their shape, but also in the location and expression of the
magnetic effect.17 Unlike droplets where capillarity and mag-
netism counteract each other, in bubbles, both capillarity and
magnetism favour meniscus growth, as showcased by the two
characteristic lengths of the phenomenon: the capillary length
cc and the magnetic length cm. These two lengths appear as a
ratio in eqn (9) and the growth of the meniscus is therefore
driven by two distinct regimes: a capillary and a magnetic one.
In the first regime, hm,0 is determined by Vff/R0 (see eqn (11))
when the amount of ferrofluid is small and by a combination of
Vff/R0 and cc, when there is enough ferrofluid (see Fig. 9). In the
second regime, the shape assumed by the meniscus is a cylinder
due to the competition between the alignment of the magnetic
dipoles with the internal field and gravity. In particular, the
meniscus height under weak fields (i.e. for M o 21 kA m�1)
evolves linearly with the square of the magnetisation and is
represented by eqn (10). Moreover, the slope in the linear regime
only depends on Vff (see Fig. 10) and a master curve expressing
the meniscus growth as a function of cm can be obtained by
dividing the Dhm by their corresponding slope (see Fig. 11).
Finally, conversely to drops under the magnetic field, we did not
observe a critical magnetic field at which the bubble blew up and
the ferrofluid volume separates into several daughter droplets.

The volumetric nature of the magnetic force can be further
highlighted by comparing the deformation induced by an
electric or magnetic field on a bubble (see Fig. 1). Indeed,
although they both influence the liquid phase of the bubbles, they
clearly do not deform the bubble in the same way. Due to its
superficial nature, the electric force mainly affects the liquid
distribution with the largest surface-to-volume ratio, namely the
liquid shell, deforming into a hemispherical shell under weak
fields and into a Taylor cone beyond a critical one. Conversely, the
volumetric nature of the magnetic force induces effects within the
liquid distribution with the smallest surface-to-volume ratio, i.e.
the meniscus.

The study presented here sheds new light on the interplay
between gravity, capillary and magnetic effects thanks to the
bubble unique liquid configuration. Our analysis allows for a
better grasp of how to handle, control and especially deform a
bubble using external fields. In this respect, it can be considered
complementary to the work done on bubbles under electric
fields.3 Yet, these results constitute a first step and also raise
unresolved questions. Firstly, studying this system at very low
fields or with ferrofluids having lower wl could highlight the
transition between the capillary and the magnetic regimes and
allow us to explore how the shape of the meniscus changes when
determined by gravity, capillarity and magnetism together.

Secondly, other ferrofluid soaps can be used to probe the
influence of w, the second dimensionless number presented in
eqn (9). Thirdly, although the weak field limit Ml is certainly
linked to the saturation of the magnetisation curve, further
investigation of its physical meaning could help propose a law
based on the whole magnetisation curve and to identify whether
this limit is universal or not. Finally, submitting bubbles floating
on their own ferrofluid to a magnetic field could help us
complete the picture drawn in this paper. This presumption is
based on Fig. 9 and 10, which suggest that the values of hm,0 and
C2 could reach saturation for an infinite amount of liquid.
Floating bubbles therefore seem perfectly suited to obtain these
values and get rid of the influence on the limited volume of
ferrofluid available to make the bubble.
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and C. Clanet, On the Shape of Giant Soap Bubbles, Proc.
Natl. Acad. Sci. U. S. A., 2017, 114, 2515.

2 M. A. C. Teixeira, S. Arscott, S. J. Cox and P. I. C. Teixeira,
What is the Shape of an Air Bubble on a Liquid Surface?,
Langmuir, 2015, 31, 13708.

3 S. Mawet, H. Caps and S. Dorbolo, Deformation of soap
bubbles in uniform electric fields, Phys. Rev. Fluids, 2021,
6, 043603.

4 W. A. Macky, Deformation of Soap Bubbles in Electric
Fields, Math. Proc. Camb. Philos. Soc., 1930, 26, 421.

5 C. T. R. Wilson and G. I. Taylor, The Bursting of Soap-
bubbles in a Uniform Electric Field, Math. Proc. Camb.
Philos. Soc., 1925, 22, 728.

6 S. S. Papell, Inventor; NASA (United States of America),
assignee. Low viscosity magnetic fluid obtained by colloidal
suspension of magnetic particles, US Pat., 3215572, 1965.

7 R. E. Rosensweig, Ferrohydrodynamics, Dover Publications,
New York, United States, 2014.

8 J. C. Bacri, R. Perzynski, D. Salin, V. Cabuil and R. Massart,
Phase diagram of an ionic magnetic colloid: Experimental
study of the effect of ionic strength, J. Colloid Interface Sci.,
1989, 132, 43.

Paper Soft Matter



8328 |  Soft Matter, 2023, 19, 8318–8328 This journal is © The Royal Society of Chemistry 2023

9 F. Elias, J. C. Bacri, C. Flament, E. Janiaud, D. Talbot and
W. Drenckhan-Andreatta, et al., Magnetic soap films and
magnetic soap foams, Colloids Surf., A, 2005, 263, 65.

10 W. Drenckhan-Andreatta, F. Elias, S. Hutzler, D. Weaire,
E. Janiaud and J. C. Bacri, Bubble size control and measure-
ment in the generation of ferrofluid foams, J. Appl. Phys.,
2003, 93, 10078.

11 J. C. Bacri and F. Elias, Ferrofluids: A Model System of Self-
Organised Equilibrium, in Morphogenesis: Origins of Patterns
and Shapes, ed. P. Bourgine, A. Lesne, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2011. p. 15.

12 M. D. Cowley and R. E. Rosensweig, The interfacial stability
of a ferromagnetic fluid, J. Fluid Mech., 1967, 30, 671.

13 H. Knieling, R. Richter, I. Rehberg, G. Matthies and
A. Lange, Growth of surface undulations at the Rosensweig
instability, Phys. Rev. E, 2007, 76, 066301.

14 J. C. Bacri and D. Salin, Instability of ferrofluid magnetic
drops under magnetic field, J. Phys., Lett., 1982, 43, L-649.

15 F. Elias, C. Flament, J. C. Bacri and S. Neveu, Macro-
Organized Patterns in Ferrofluid Layer: Experimental Stu-
dies, J. Phys. I France, 1997, 7, 711.

16 J. V. I. Timonen, M. Latikka, L. Leibler, R. H. A. Ras and
O. Ikkala, Switchable Static and Dynamic Self-Assembly of
Magnetic Droplets on Superhydrophobic Surfaces, Science,
2013, 341, 253.

17 C. Rigoni, M. Pierno, G. Mistura, D. Talbot, R. Massart and
J. C. Bacri, et al., Static Magnetowetting of Ferrofluid Drops,
Langmuir, 2016, 32, 7639.

18 C. Rigoni, S. Bertoldo, M. Pierno, D. Talbot, A. Abou-Hassan
and G. Mistura, Division of Ferrofluid Drops Induced by a
Magnetic Field, Langmuir, 2018, 34, 9762.

19 M. Latikka, M. Backholm, A. Baidya, A. Ballesio, A. Serve
and G. Beaune, et al., Ferrofluid Microdroplet Splitting for
Population-Based Microfluidics and Interfacial Tensiome-
try, Adv. Sci., 2020, 7, 2000359.

20 S. Shyam, P. K. Mondal and B. Mehta, Field driven evapora-
tion kinetics of a sessile ferrofluid droplet on a soft sub-
strate, Soft Matter, 2020, 16, 6619.

21 S. Shyam, P. K. Mondal and B. Mehta, Magnetofluidic
mixing of a ferrofluid droplet under the influence of a
time-dependent external field, J. Fluid Mech., 2021, 917, A15.

22 L. B. King, E. Meyer, M. A. Hopkins, B. S. Hawkett and
N. Jain, Self-Assembling Array of Magnetoelectrostatic Jets
from the Surface of a Superparamagnetic Ionic Liquid,
Langmuir, 2014, 30, 14143.

23 C. A. Schneider, W. S. Rasband and K. W. Eliceiri, NIH
Image to ImageJ: 25 years of image analysis, Nat. Chem.
Biol., 2012, 9, 671.

24 M. Beleggia, D. Vokoun and M. De Graef, Demagnetization
factors for cylindrical shells and related shapes, J. Magn.
Magn. Mater., 2009, 321, 1306.

25 G. I. Barenblatt, Scaling, Self-similarity, and Intermediate
Asymptotics, Cambridge University Press, Cambridge, UK,
1996.

26 P. G. de Gennes, F. Brochard-Wyart and D. Quéré, Gouttes,
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