Numeration systems and string attractors

France Gheeraert Joint work with Giuseppe Romana and Manon Stipulanti

May 26, 2023

fnl's
 LA liberté de Chercher

String attractors

> Definition
> A string attractor for a (finite) word w is a set of positions $\Gamma \subseteq\{1, \ldots,|w|\}$ covering each factor of w, i.e. each factor has an occurrence in w crossing one of the positions in Γ.

For the word

01000101,

String attractors

Definition

A string attractor for a (finite) word w is a set of positions $\Gamma \subseteq\{1, \ldots,|w|\}$ covering each factor of w, i.e. each factor has an occurrence in w crossing one of the positions in Γ.

For the word
010이농,
the set $\{4,6\}$ is a string attractor.

String attractors

Definition

A string attractor for a (finite) word w is a set of positions $\Gamma \subseteq\{1, \ldots,|w|\}$ covering each factor of w, i.e. each factor has an occurrence in w crossing one of the positions in Γ.

For the word
01000101,

length	factors	covered?
1	0,1	

the set $\{4,6\}$ is a string attractor.

String attractors

Definition

A string attractor for a (finite) word w is a set of positions $\Gamma \subseteq\{1, \ldots,|w|\}$ covering each factor of w, i.e. each factor has an occurrence in w crossing one of the positions in Γ.

For the word
01000101,

length	factors	covered?
1	0,1	\checkmark

the set $\{4,6\}$ is a string attractor.

String attractors

Definition

A string attractor for a (finite) word w is a set of positions $\Gamma \subseteq\{1, \ldots,|w|\}$ covering each factor of w, i.e. each factor has an occurrence in w crossing one of the positions in Γ.

For the word

	length	factors	covered?
01000101,	2	0,1	\checkmark

the set $\{4,6\}$ is a string attractor.

String attractors

Definition

A string attractor for a (finite) word w is a set of positions $\Gamma \subseteq\{1, \ldots,|w|\}$ covering each factor of w, i.e. each factor has an occurrence in w crossing one of the positions in Γ.

For the word

	length	factors	covered?
01000101,	2	0,1	\checkmark

the set $\{4,6\}$ is a string attractor.

String attractors

Definition

A string attractor for a (finite) word w is a set of positions $\Gamma \subseteq\{1, \ldots,|w|\}$ covering each factor of w, i.e. each factor has an occurrence in w crossing one of the positions in Γ.

For the word

	length	factors	covered?
01000101,	2	0,1	\checkmark

the set $\{4,6\}$ is a string attractor.

String attractors

Definition

A string attractor for a (finite) word w is a set of positions $\Gamma \subseteq\{1, \ldots,|w|\}$ covering each factor of w, i.e. each factor has an occurrence in w crossing one of the positions in Γ.

For the word

	length	factors	covered?
1	0,1	\checkmark	
01000101,	2	$01,10,00$	\checkmark

the set $\{4,6\}$ is a string attractor.

String attractors

Definition

A string attractor for a (finite) word w is a set of positions $\Gamma \subseteq\{1, \ldots,|w|\}$ covering each factor of w, i.e. each factor has an occurrence in w crossing one of the positions in Γ.

For the word

	length	factors	covered?
01000101,	1	0,1	\checkmark
	2	$01,10,00$	\checkmark
	3	$010,100,000,001,101$	

the set $\{4,6\}$ is a string attractor.

String attractors

Definition

A string attractor for a (finite) word w is a set of positions $\Gamma \subseteq\{1, \ldots,|w|\}$ covering each factor of w, i.e. each factor has an occurrence in w crossing one of the positions in Γ.

For the word

	length	factors	covered?
01000101,	1	0,1	\checkmark
	2	$01,10,00$	\checkmark
	3	$010,100,000,001,101$	\checkmark

the set $\{4,6\}$ is a string attractor.

String attractors

Definition

A string attractor for a (finite) word w is a set of positions $\Gamma \subseteq\{1, \ldots,|w|\}$ covering each factor of w, i.e. each factor has an occurrence in w crossing one of the positions in Γ.

For the word

	length	factors	covered?
01000101,	2	0,1	
	3	$01,10,00$	
		$010,100,000,001,101$	

the set $\{4,6\}$ is a string attractor but $\{2,4,5\}$ is not.

String attractors

Definition

A string attractor for a (finite) word w is a set of positions $\Gamma \subseteq\{1, \ldots,|w|\}$ covering each factor of w, i.e. each factor has an occurrence in w crossing one of the positions in Γ.

For the word

	length	factors	covered?
01000101,	1	0,1	\checkmark
	3	$01,10,00$	\checkmark
	3	$010,100,000,001,101$	\boldsymbol{X}

the set $\{4,6\}$ is a string attractor but $\{2,4,5\}$ is not.

Why string attractors?

- String attractors were introduced by Prezza in 2017 for data compression.

Why string attractors?

- String attractors were introduced by Prezza in 2017 for data compression.
- Finding a string attractor of minimal size for a given word is an NP-complete problem (Kampa-Prezza '18)

Why string attractors?

- String attractors were introduced by Prezza in 2017 for data compression.
- Finding a string attractor of minimal size for a given word is an NP-complete problem (Kampa-Prezza '18)
- That's where combinatorists on words can help! (Mantaci et al. '21, Schaeffer-Shallit '20, Restivo-Romana-Sciortino '22, Dvoráková '22, etc.)

Why string attractors?

- String attractors were introduced by Prezza in 2017 for data compression.
- Finding a string attractor of minimal size for a given word is an NP-complete problem (Kampa-Prezza '18)
- That's where combinatorists on words can help! (Mantaci et al. '21, Schaeffer-Shallit '20, Restivo-Romana-Sciortino '22, Dvoráková '22, etc.)
- We want to find a string attractor for each prefix of some infinite word.

Two famous infinite words

Definition

A morphism (or substitution) is an application respecting the concatenation, i.e., for all words u, v, we have $\mu(u v)=\mu(u) \mu(v)$. If $\mu(0)=0 u$ with u such that for all $n \geq 1, \mu^{n}(u)$ is not empty, then we define the fixed point of μ as

$$
\mu^{\omega}(0)=\lim _{n \rightarrow \infty} \mu^{n}(0)
$$

Two famous infinite words

Definition

A morphism (or substitution) is an application respecting the concatenation, i.e., for all words u, v, we have $\mu(u v)=\mu(u) \mu(v)$. If $\mu(0)=0 u$ with u such that for all $n \geq 1, \mu^{n}(u)$ is not empty, then we define the fixed point of μ as

$$
\mu^{\omega}(0)=\lim _{n \rightarrow \infty} \mu^{n}(0)
$$

Examples
(1) μ such that $\mu(0)=01, \mu(1)=10$
(2) μ such that $\mu(0)=01, \mu(1)=0$

Two famous infinite words

Definition

A morphism (or substitution) is an application respecting the concatenation, i.e., for all words u, v, we have $\mu(u v)=\mu(u) \mu(v)$. If $\mu(0)=0 u$ with u such that for all $n \geq 1, \mu^{n}(u)$ is not empty, then we define the fixed point of μ as

$$
\mu^{\omega}(0)=\lim _{n \rightarrow \infty} \mu^{n}(0)
$$

Examples
(1) μ such that $\mu(0)=01, \mu(1)=10$: Thue-Morse word \longrightarrow string attractors of size 4 (Katsukake et al. '20, Schaeffer-Shallit '21)
(2) μ such that $\mu(0)=01, \mu(1)=0$

Fixed point of $\mu(0)=01$ and $\mu(1)=0$

Construction of the string attractors:

$$
\mu^{\omega}(0)=\underline{0} 100101001001
$$

Fixed point of $\mu(0)=01$ and $\mu(1)=0$

Construction of the string attractors:

$$
\mu^{\omega}(0)=\underline{0100101001001}
$$

Fixed point of $\mu(0)=01$ and $\mu(1)=0$

Construction of the string attractors:

$$
\mu^{\omega}(0)=\underline{0100101001001}
$$

Fixed point of $\mu(0)=01$ and $\mu(1)=0$

Construction of the string attractors:

$$
\mu^{\omega}(0)=\underline{0100101001001}
$$

Fixed point of $\mu(0)=01$ and $\mu(1)=0$

Construction of the string attractors:

$$
\mu^{\omega}(0)=\underline{0100101001001}
$$

Fixed point of $\mu(0)=01$ and $\mu(1)=0$

Construction of the string attractors:

$$
\mu^{\omega}(0)=\underline{0100101001001}
$$

Fixed point of $\mu(0)=01$ and $\mu(1)=0$

Construction of the string attractors:

$$
\mu^{\omega}(0)=0 \underline{100101001001}
$$

Fixed point of $\mu(0)=01$ and $\mu(1)=0$

Construction of the string attractors:

$$
\mu^{\omega}(0)=0 \underline{100101001001}
$$

Fixed point of $\mu(0)=01$ and $\mu(1)=0$

Construction of the string attractors:

$$
\mu^{\omega}(0)=0 \underline{100101001001}
$$

Fixed point of $\mu(0)=01$ and $\mu(1)=0$

Construction of the string attractors:

$$
\mu^{\omega}(0)=0 \underline{100101001001}
$$

Fixed point of $\mu(0)=01$ and $\mu(1)=0$

Construction of the string attractors:

$$
\mu^{\omega}(0)=0 \underline{100101001001}
$$

Fixed point of $\mu(0)=01$ and $\mu(1)=0$

Construction of the string attractors:

$$
\mu^{\omega}(0)=0 \underline{10} \underline{1} 01001001
$$

Fixed point of $\mu(0)=01$ and $\mu(1)=0$

Construction of the string attractors:

$$
\mu^{\omega}(0)=01 \underline{0} \underline{101001001}
$$

Fixed point of $\mu(0)=01$ and $\mu(1)=0$

Construction of the string attractors:

$$
\mu^{\omega}(0)=01 \underline{0} \underline{101001001}
$$

Fixed point of $\mu(0)=01$ and $\mu(1)=0$

Construction of the string attractors:

$$
\mu^{\omega}(0)=01 \underline{0} \underline{101001001}
$$

Fixed point of $\mu(0)=01$ and $\mu(1)=0$

Construction of the string attractors:

$$
\mu^{\omega}(0)=01 \underline{0} \underline{101001001}
$$

Fixed point of $\mu(0)=01$ and $\mu(1)=0$

Construction of the string attractors:

$$
\mu^{\omega}(0)=01 \underline{0} \underline{101001001}
$$

Fixed point of $\mu(0)=01$ and $\mu(1)=0$

Construction of the string attractors:

$$
\mu^{\omega}(0)=01 \underline{0} 0101001001
$$

Fixed point of $\mu(0)=01$ and $\mu(1)=0$

Construction of the string attractors:

$$
\mu^{\omega}(0)=01 \underline{0} 0 \underline{1010} \underline{0} 01001
$$

Fixed point of $\mu(0)=01$ and $\mu(1)=0$

Construction of the string attractors:

$$
\mu^{\omega}(0)=01 \underline{0} 0101 \underline{0} 01001
$$

Fixed point of $\mu(0)=01$ and $\mu(1)=0$

Construction of the string attractors:

$$
\mu^{\omega}(0)=0100101 \underline{0} 01001
$$

Fixed point of $\mu(0)=01$ and $\mu(1)=0$

Construction of the string attractors:

$$
\mu^{\omega}(0)=0100101 \underline{0} 01001 \cdots
$$

We have the string attractors $\{1,2\},\{2,3\},\{3,5\},\{5,8\}, \ldots$ \longrightarrow Fibonacci sequence!

Fibonacci word

Construction of the string attractors:

$$
\mu^{\omega}(0)=0100 \underline{1} 01 \underline{0} 01001 \cdots
$$

We have the string attractors $\{1,2\},\{2,3\},\{3,5\},\{5,8\}, \ldots$
\longrightarrow Fibonacci sequence!
We also have

$$
\left|\mu^{0}(0)\right|=1 \quad\left|\mu^{1}(0)\right|=2 \quad\left|\mu^{2}(0)\right|=3 \quad\left|\mu^{3}(0)\right|=5 \quad \ldots
$$

Generalized morphisms

For $k \geq 2$ and for $c_{1}, \ldots, c_{k} \geq 0$ with $c_{1}, c_{k} \geq 1$, we define

$$
\mu_{c}:\left\{\begin{array}{l}
0 \mapsto 0^{c_{1}} 1 \\
1 \mapsto 0^{c_{2}} 2 \\
\cdots \\
k-2 \mapsto 0^{c_{k-1}}(k-1) \\
k-1 \mapsto 0^{c_{k}}
\end{array} \quad \text { and } \quad \mathbf{x}_{c}=\mu_{c}^{\omega}(0)\right.
$$

If $k=2$ and $c_{1}=1=c_{2}$, we obtain the Fibonacci word.

Generalized morphisms

For $k \geq 2$ and for $c_{1}, \ldots, c_{k} \geq 0$ with $c_{1}, c_{k} \geq 1$, we define

$$
\mu_{c}:\left\{\begin{array}{l}
0 \mapsto 0^{c_{1}} 1 \\
1 \mapsto 0^{c_{2}} 2 \\
\cdots \\
k-2 \mapsto 0^{c_{k-1}}(k-1) \\
k-1 \mapsto 0^{c_{k}}
\end{array} \quad \text { and } \quad \mathbf{x}_{c}=\mu_{c}^{\omega}(0)\right.
$$

If $k=2$ and $c_{1}=1=c_{2}$, we obtain the Fibonacci word.

Question

Can we use similar techniques to prove that every prefix of \mathbf{x}_{c} has a "small" string attractor made of lengths of $\mu_{c}^{n}(0), n \geq 0$?

Examples

$$
\mu_{112}:\left\{\begin{array}{l}
0 \mapsto 01 \\
1 \mapsto 02 \\
2 \mapsto 00
\end{array}\right.
$$

$$
\mu_{102}:\left\{\begin{array}{l}
0 \mapsto 01 \\
1 \mapsto 2 \\
2 \mapsto 00
\end{array}\right.
$$

Examples

$$
\left.\begin{aligned}
\mu_{112}:\left\{\left.\begin{array}{l}
0 \\
1 \\
1 \\
2
\end{array} \right\rvert\, 000\right.
\end{aligned} \right\rvert\, \quad \mu_{102}:\left\{\begin{array}{l}
0 \mapsto 01 \\
1 \mapsto 2 \\
2 \mapsto 00
\end{array}\right\}
$$

Examples

$$
\left.\begin{gathered}
\mu_{112}:\left\{\begin{array}{l}
0 \mapsto 01 \\
1 \mapsto 02 \\
2 \mapsto 00
\end{array}\right. \\
\left|\mu^{n}(0)\right|: 1,2,4,8,16, \ldots
\end{gathered} \right\rvert\, \quad \mu_{102}:\left\{\begin{array}{l}
0 \mapsto 01 \\
1 \mapsto 2 \\
2 \mapsto 00
\end{array}\right.
$$

Examples

$$
\begin{aligned}
& \mu_{112}:\left\{\begin{array}{l}
0 \mapsto 01 \\
1 \mapsto 02 \\
2 \mapsto 00
\end{array}\right. \\
& \left|\mu^{n}(0)\right|: 1,2,4,8,16, \ldots
\end{aligned} \quad \mu_{102}:\left\{\begin{array}{l}
0 \mapsto 01 \\
1 \mapsto 2 \\
2 \mapsto 00
\end{array}\right\}
$$

Examples

$$
\left.\begin{aligned}
\mu_{112}:\left\{\left.\begin{array}{l}
0 \\
1 \\
1 \\
2
\end{array} \right\rvert\, 000\right.
\end{aligned} \right\rvert\, \quad \mu_{102}:\left\{\begin{array} { l }
{ 0 \mapsto 0 1 } \\
{ 1 \mapsto 2 } \\
{ 2 \mapsto 0 0 }
\end{array} ~ \left(\mu^{n}(0) \left\lvert\,: 1,2,4,8,16, \ldots . \begin{array}{l}
\\
\underline{0102010} \underline{0} 0102010101 \ldots
\end{array}\right.\right.\right.
$$

Examples

$\mu_{112}:\left\{\begin{array}{l}0 \mapsto 01 \\ 1 \mapsto 02 \\ 2 \mapsto 00\end{array}\right.$

$$
\mu_{102}:\left\{\begin{array}{l}
0 \mapsto 01 \\
1 \mapsto 2 \\
2 \mapsto 00
\end{array}\right.
$$

$$
\left|\mu^{n}(0)\right|: 1,2,4,8,16, \ldots
$$

Examples

$$
\left.\begin{aligned}
\mu_{112}:\left\{\left.\begin{array}{l}
0 \\
1 \\
1 \\
2
\end{array} \right\rvert\, 000\right.
\end{aligned} \right\rvert\, \quad \mu_{102}:\left\{\begin{array} { l }
{ 0 \mapsto 0 1 } \\
{ 1 \mapsto 2 } \\
{ 2 \mapsto 0 0 }
\end{array} ~ \left(\mu^{n}(0) \left\lvert\,: 1,2,4,8,16, \ldots . \begin{array}{l}
\\
0 \underline{1} 0 \underline{2} 010 \underline{0} 0102010101 \ldots
\end{array}\right.\right.\right.
$$

Examples

$$
\left.\begin{aligned}
\mu_{112}:\left\{\begin{array}{l}
0 \\
1 \\
1 \\
2 \\
2
\end{array}\right. \\
\left|\mu^{n}(0)\right|: 00
\end{aligned} \right\rvert\, \quad \mu_{102}:\left\{\left.\begin{array}{l}
0 \mapsto 01 \\
1 \\
1 \\
2 \mapsto 2
\end{array} \right\rvert\,\right.
$$

Examples

$$
\begin{aligned}
& \mu_{112}:\left\{\begin{array}{l}
0 \mapsto 01 \\
1 \mapsto 02 \\
2 \mapsto 00
\end{array}\right. \\
& \left|\mu^{n}(0)\right|: 1,2,4,8,16, \ldots \\
& 010201000102010101 \ldots
\end{aligned}
$$

Examples

$$
\left.\begin{array}{c}
\mu_{112}:\left\{\begin{array}{l}
0 \\
1 \\
1 \\
\\
2 \mapsto 01
\end{array}\right. \\
\left|\mu^{n}(0)\right|: 1,2,4,8,16, \ldots
\end{array}\right\}
$$

$$
\mu_{102}:\left\{\begin{array}{l}
0 \mapsto 01 \\
1 \mapsto 2 \\
2 \mapsto 00
\end{array}\right.
$$

Examples

$$
\left.\begin{gathered}
\mu_{112}:\left\{\left.\begin{array}{l}
0 \\
1 \\
1 \\
2 \\
2
\end{array} \right\rvert\, \begin{array}{l}
\not \mapsto 00
\end{array}\right. \\
\left|\mu^{n}(0)\right|: 1,2,4,8,16, \ldots
\end{gathered}\left|\begin{array}{l}
0 \mapsto 01 \\
1 \mapsto 2 \\
2 \mapsto 00
\end{array}\right| \begin{aligned}
& \mu_{102} \\
& 010 \underline{2} 010 \underline{0} 0102010 \underline{1} 01 \cdots
\end{aligned} \right\rvert\,
$$

Examples

Seems

$$
\left.\begin{array}{c}
\mu_{102}:\left\{\begin{array}{l}
0 \mapsto 01 \\
1 \\
\mapsto 2
\end{array}\right. \\
2 \mapsto 00
\end{array}\right\}
$$

Examples

Seems

$$
\left.\begin{array}{c}
\mu_{102}:\left\{\begin{array}{l}
0 \\
1 \\
1 \\
2
\end{array}>000\right.
\end{array}\right\} \begin{aligned}
& \mapsto \mu^{n}(0) \mid: 1,2,3,5,9,15, \ldots \\
& \underline{012} 000101012012 \ldots
\end{aligned}
$$

Examples

$$
\begin{array}{c|c}
\mu_{112}:\left\{\begin{array}{l}
0 \mapsto 01 \\
1 \mapsto 02 \\
2 \mapsto 00
\end{array}\right. & \mu_{102}:\left\{\begin{array}{l}
0 \mapsto 01 \\
1 \mapsto 2 \\
2 \mapsto 00
\end{array}\right. \\
\left|\mu^{n}(0)\right|: 1,2,4,8,16, \ldots \\
010 \underline{2} 010 \underline{0} 0102010101 \cdots
\end{array} \quad\left|\mu^{n}(0)\right|: 1,2,3,5,9,15, \ldots,
$$

Examples

$$
\begin{array}{c|c}
\mu_{112}:\left\{\begin{array}{l}
0 \mapsto 01 \\
1 \mapsto 02 \\
2 \mapsto 00
\end{array}\right. & \mu_{102}:\left\{\begin{array}{l}
0 \mapsto 01 \\
1 \mapsto 2 \\
2 \mapsto 00
\end{array}\right. \\
\left|\mu^{n}(0)\right|: 1,2,4,8,16, \ldots \\
010 \underline{2} 010 \underline{0} 0102010101 \cdots
\end{array} \quad\left|\mu^{n}(0)\right|: 1,2,3,5,9,15, \ldots .
$$

Examples

$$
\begin{array}{c|c}
\mu_{112}:\left\{\begin{array}{l|}
0 \mapsto 01 \\
1 \mapsto 02 \\
2 \mapsto 00
\end{array}\right. & \mu_{102}:\left\{\begin{array}{l}
0 \mapsto 01 \\
1 \mapsto 2 \\
2 \mapsto 00
\end{array}\right. \\
\left|\mu^{n}(0)\right|: 1,2,4,8,16, \ldots
\end{array} \quad\left|\mu^{n}(0)\right|: 1,2,3,5,9,15, \ldots,
$$

Examples

Seems

$$
\left.\begin{array}{c}
\mu_{102}:\left\{\begin{array}{l}
0 \mapsto 01 \\
1 \\
\mapsto 2
\end{array}\right. \\
2 \mapsto 00
\end{array}\right\}
$$

Examples

Seems

$$
\left.\begin{array}{c}
\mu_{102}:\left\{\begin{array}{l}
0 \\
1 \\
1 \\
2 \\
\hline
\end{array}\right. \\
\left|\mu^{n}(0)\right|: 1,2,00
\end{array}\right\}
$$

Examples

$$
\begin{gathered}
\mu_{112}:\left\{\begin{array}{l}
0 \\
0 \\
1 \\
\mapsto 00 \\
2 \mapsto 00
\end{array}\right. \\
\hline\left|\mu^{n}(0)\right|: 1,2,4,8,16, \ldots \\
0102010 \underline{0} 0102010101 \cdots
\end{gathered}
$$

$$
\left.\begin{array}{c}
\mu_{102}:\left\{\begin{array}{l}
0 \mapsto 01 \\
1 \\
\mapsto 2
\end{array}\right. \\
2 \mapsto 00
\end{array}\right\}
$$

Seems \downarrow

A linear recurrence

We denote U_{n} the length of $\mu_{c}^{n}(0)$.

A linear recurrence

We denote U_{n} the length of $\mu_{c}^{n}(0)$.

Proposition

For all $n \geq 0$, we have

$$
\mu_{c}^{n}(0)= \begin{cases}\mu_{c}^{n-1}\left(0^{c_{1}}\right) \cdot \mu_{c}^{n-2}\left(0^{c_{2}}\right) \cdots \mu_{c}^{0}\left(0^{c_{n}}\right) \cdot n & \text { if } n \leq k-1 ; \\ \mu_{c}^{n-1}\left(0^{c_{1}}\right) \cdot \mu_{c}^{n-2}\left(0^{c_{2}}\right) \cdots \mu_{c}^{n-k}\left(0^{c_{k}}\right) & \text { if } n \geq k .\end{cases}
$$

In particular,

$$
U_{n}= \begin{cases}c_{1} U_{n-1}+c_{2} U_{n-2}+\cdots+c_{n} U_{0}+1 & \text { if } n \leq k-1 \\ c_{1} U_{n-1}+c_{2} U_{n-2}+\cdots+c_{k} U_{n-k} & \text { if } n \geq k .\end{cases}
$$

A linear recurrence

We denote U_{n} the length of $\mu_{c}^{n}(0)$.

Proposition

For all $n \geq 0$, we have

$$
\mu_{c}^{n}(0)= \begin{cases}\mu_{c}^{n-1}\left(0^{c_{1}}\right) \cdot \mu_{c}^{n-2}\left(0^{c_{2}}\right) \cdots \mu_{c}^{0}\left(0^{c_{n}}\right) \cdot n & \text { if } n \leq k-1 ; \\ \mu_{c}^{n-1}\left(0^{c_{1}}\right) \cdot \mu_{c}^{n-2}\left(0^{c_{2}}\right) \cdots \mu_{c}^{n-k}\left(0^{c_{k}}\right) & \text { if } n \geq k .\end{cases}
$$

In particular,

$$
U_{n}= \begin{cases}c_{1} U_{n-1}+c_{2} U_{n-2}+\cdots+c_{n} U_{0}+1 & \text { if } n \leq k-1 ; \\ c_{1} U_{n-1}+c_{2} U_{n-2}+\cdots+c_{k} U_{n-k} & \text { if } n \geq k\end{cases}
$$

We denote \mathcal{S}_{G} the greedy numeration system associated with the sequence $\left(U_{n}\right)_{n \geq 0}$.

Another numeration system

We denote $\mathcal{S}_{D M}$ the Dumont-Thomas numeration system associated with \mathbf{x}_{c}, i.e. $\operatorname{rep}_{\mathcal{S}_{D M}}(m)$ is the coefficients of the greedy factorization of $\mathbf{x}_{c}[1, m]$ into elements of $\left(\mu_{c}^{n}(0)\right)_{n \geq 0}$.

Another numeration system

We denote $\mathcal{S}_{D M}$ the Dumont-Thomas numeration system associated with \mathbf{x}_{c}, i.e. $\operatorname{rep}_{\mathcal{S}_{D M}}(m)$ is the coefficients of the greedy factorization of $\mathbf{x}_{c}[1, m]$ into elements of $\left(\mu_{c}^{n}(0)\right)_{n \geq 0}$.
Example: For $c=102$, we have
so $\operatorname{rep}_{\mathcal{S}_{D M}}(8)=$

Another numeration system

We denote $\mathcal{S}_{D M}$ the Dumont-Thomas numeration system associated with \mathbf{x}_{c}, i.e. $\operatorname{rep}_{\mathcal{S}_{D M}}(m)$ is the coefficients of the greedy factorization of $\mathbf{x}_{c}[1, m]$ into elements of $\left(\mu_{c}^{n}(0)\right)_{n \geq 0}$.

Example: For $c=102$, we have

$$
\begin{array}{ll|l}
n & \mu_{c}^{n}(0) \\
\hline \mathbf{x}_{c}[1,8]=0 & 0 \\
1 & 01 \\
2 & 012 \\
3 & 01200 \\
4 & 012000101
\end{array}
$$

so $\operatorname{rep}_{\mathcal{S}_{D M}}(8)=\frac{1}{3}$

Another numeration system

We denote $\mathcal{S}_{D M}$ the Dumont-Thomas numeration system associated with \mathbf{x}_{c}, i.e. $\operatorname{rep}_{\mathcal{S}_{D M}}(m)$ is the coefficients of the greedy factorization of $\mathbf{x}_{c}[1, m]$ into elements of $\left(\mu_{c}^{n}(0)\right)_{n \geq 0}$.
Example: For $c=102$, we have

$\mathbf{x}_{c}[1,8]=01200 \cdot 010$	n	$\mu_{c}^{n}(0)$
0	0	
1	01	
2	012	
3	01200	
4	012000101	

so $\operatorname{rep}_{\mathcal{S}_{D M}}(8)=10$

Another numeration system

We denote $\mathcal{S}_{D M}$ the Dumont-Thomas numeration system associated with \mathbf{x}_{c}, i.e. $\operatorname{rep}_{\mathcal{S}_{D M}}(m)$ is the coefficients of the greedy factorization of $\mathbf{x}_{c}[1, m]$ into elements of $\left(\mu_{c}^{n}(0)\right)_{n \geq 0}$.
Example: For $c=102$, we have

so $\operatorname{rep}_{\mathcal{S}_{D M}}(8)=101$

Another numeration system

We denote $\mathcal{S}_{D M}$ the Dumont-Thomas numeration system associated with \mathbf{x}_{c}, i.e. $\operatorname{rep}_{\mathcal{S}_{D M}}(m)$ is the coefficients of the greedy factorization of $\mathbf{x}_{c}[1, m]$ into elements of $\left(\mu_{c}^{n}(0)\right)_{n \geq 0}$.
Example: For $c=102$, we have

so $\operatorname{rep}_{\mathcal{S}_{D M}}(8)=1011$.

Another numeration system

We denote $\mathcal{S}_{D M}$ the Dumont-Thomas numeration system associated with \mathbf{x}_{c}, i.e. $\operatorname{rep}_{\mathcal{S}_{D M}}(m)$ is the coefficients of the greedy factorization of $\mathbf{x}_{c}[1, m]$ into elements of $\left(\mu_{c}^{n}(0)\right)_{n \geq 0}$.

Example: For $c=102$, we have

$$
\begin{array}{cc|l|l}
& n & \mu_{c}^{n}(0) & U_{n} \\
\hline 0 & 0 & 1 \\
\mathbf{x}_{c}[1,8]=01200 \cdot 01 \cdot 0 & 1 & 01 & 2 \\
2 & 012 & 3 \\
3 & 01200 & 5 \\
4 & 012000101 & 9
\end{array}
$$

so $\operatorname{rep}_{\mathcal{S}_{D M}}(8)=1011$. But $\operatorname{rep}_{3210}(8)=1100$!

$\mathcal{S}_{G}=\mathcal{S}_{D M} ?$

Theorem
 Let $c=c_{1} \cdots c_{k}$ such that $c_{1}, c_{k} \geq 1$. The following are equivalent

- $\mathcal{S}_{G}=\mathcal{S}_{D M}$;

$\mathcal{S}_{G}=\mathcal{S}_{D M} ?$

Theorem

Let $c=c_{1} \cdots c_{k}$ such that $c_{1}, c_{k} \geq 1$. The following are equivalent

- $\mathcal{S}_{G}=\mathcal{S}_{D M}$;
- the language of $\mathcal{S}_{D M}$ is given by

$$
\left\{v_{1} \cdots v_{n} \mid v_{1} \neq 0, v_{i} \cdots v_{n} \leq_{\text {lex }} d_{c}^{\star}\right\}
$$

where $d_{c}^{\star}=c_{1} \cdots c_{k-1}\left(c_{k}-1\right) c_{1} \cdots c_{k-1}\left(c_{k}-1\right) \cdots$;

$\mathcal{S}_{G}=\mathcal{S}_{D M} ?$

Theorem

Let $c=c_{1} \cdots c_{k}$ such that $c_{1}, c_{k} \geq 1$. The following are equivalent

- $\mathcal{S}_{G}=\mathcal{S}_{D M}$;
- the language of $\mathcal{S}_{D M}$ is given by

$$
\left\{v_{1} \cdots v_{n} \mid v_{1} \neq 0, v_{i} \cdots v_{n} \leq_{\text {lex }} d_{c}^{\star}\right\}
$$

where $d_{c}^{\star}=c_{1} \cdots c_{k-1}\left(c_{k}-1\right) c_{1} \cdots c_{k-1}\left(c_{k}-1\right) \cdots$;

- there exists a Parry simple number β such that

$$
c_{1} \cdots c_{k}=\left(d_{\beta}(1)-1\right)^{\ell} d_{\beta}(1) ;
$$

$\mathcal{S}_{G}=\mathcal{S}_{D M} ?$

Theorem

Let $c=c_{1} \cdots c_{k}$ such that $c_{1}, c_{k} \geq 1$. The following are equivalent

- $\mathcal{S}_{G}=\mathcal{S}_{D M}$;
- the language of $\mathcal{S}_{D M}$ is given by

$$
\left\{v_{1} \cdots v_{n} \mid v_{1} \neq 0, v_{i} \cdots v_{n} \leq_{\text {lex }} d_{c}^{\star}\right\}
$$

where $d_{c}^{\star}=c_{1} \cdots c_{k-1}\left(c_{k}-1\right) c_{1} \cdots c_{k-1}\left(c_{k}-1\right) \cdots$;

- there exists a Parry simple number β such that

$$
c_{1} \cdots c_{k}=\left(d_{\beta}(1)-1\right)^{\ell} d_{\beta}(1) ;
$$

- for all $i \leq k$,

$$
c_{i} \cdots c_{k-1}\left(c_{k}-1\right) c_{1} \cdots c_{i-1} \leq c_{1} \cdots c_{k-1}\left(c_{k}-1\right)
$$

when $\mathcal{S}_{G}=\mathcal{S}_{D M}$

Proposition

If $\mathcal{S}_{G}=\mathcal{S}_{D M}$, then for all $n \geq 0$

- $\mathbf{x}_{c}\left[1, U_{n+1}-1\right]$ is periodic of period U_{n};
- $\mathbf{x}_{c}\left[U_{n}+1, U_{n+1}-1\right]$ is a prefix of \mathbf{x}_{c}.

For $c=112$, we have

$010201000102010101 \ldots$

when $\mathcal{S}_{G}=\mathcal{S}_{D M}$

Proposition

If $\mathcal{S}_{G}=\mathcal{S}_{D M}$, then for all $n \geq 0$

- $\mathbf{x}_{c}\left[1, U_{n+1}-1\right]$ is periodic of period U_{n};
- $\mathbf{x}_{c}\left[U_{n}+1, U_{n+1}-1\right]$ is a prefix of \mathbf{x}_{c}.

For $c=112$, we have

010201000102010101

when $\mathcal{S}_{G}=\mathcal{S}_{D M}$

Proposition

If $\mathcal{S}_{G}=\mathcal{S}_{D M}$, then for all $n \geq 0$

- $\mathbf{x}_{c}\left[1, U_{n+1}-1\right]$ is periodic of period U_{n};
- $\mathbf{x}_{c}\left[U_{n}+1, U_{n+1}-1\right]$ is a prefix of \mathbf{x}_{c}.

For $c=112$, we have

$\underline{010201000102010101}$

when $\mathcal{S}_{G}=\mathcal{S}_{D M}$

Proposition

If $\mathcal{S}_{G}=\mathcal{S}_{D M}$, then for all $n \geq 0$

- $\mathbf{x}_{c}\left[1, U_{n+1}-1\right]$ is periodic of period U_{n};
- $\mathbf{x}_{c}\left[U_{n}+1, U_{n+1}-1\right]$ is a prefix of \mathbf{x}_{c}.

For $c=112$, we have

010201000102010101

when $\mathcal{S}_{G}=\mathcal{S}_{D M}$

Proposition

If $\mathcal{S}_{G}=\mathcal{S}_{D M}$, then for all $n \geq 0$

- $\mathbf{x}_{c}\left[1, U_{n+1}-1\right]$ is periodic of period U_{n};
- $\mathbf{x}_{c}\left[U_{n}+1, U_{n+1}-1\right]$ is a prefix of \mathbf{x}_{c}.

For $c=112$, we have

$\underline{010201000102010101}$

when $\mathcal{S}_{G}=\mathcal{S}_{D M}$

Proposition

If $\mathcal{S}_{G}=\mathcal{S}_{D M}$, then for all $n \geq 0$

- $\mathbf{x}_{c}\left[1, U_{n+1}-1\right]$ is periodic of period U_{n};
- $\mathbf{x}_{c}\left[U_{n}+1, U_{n+1}-1\right]$ is a prefix of \mathbf{x}_{c}.

For $c=112$, we have

$0102010 \underline{0102010101}$

when $\mathcal{S}_{G}=\mathcal{S}_{D M}$

Proposition

If $\mathcal{S}_{G}=\mathcal{S}_{D M}$, then for all $n \geq 0$

- $\mathbf{x}_{c}\left[1, U_{n+1}-1\right]$ is periodic of period U_{n};
- $\mathbf{x}_{c}\left[U_{n}+1, U_{n+1}-1\right]$ is a prefix of \mathbf{x}_{c}.

For $c=112$, we have

when $\mathcal{S}_{G}=\mathcal{S}_{D M}$

Proposition

If $\mathcal{S}_{G}=\mathcal{S}_{D M}$, then for all $n \geq 0$

- $\mathbf{x}_{c}\left[1, U_{n+1}-1\right]$ is periodic of period U_{n};
- $\mathbf{x}_{c}\left[U_{n}+1, U_{n+1}-1\right]$ is a prefix of \mathbf{x}_{c}.

For $c=112$, we have

010201000102010101

when $\mathcal{S}_{G}=\mathcal{S}_{D M}$

Proposition

If $\mathcal{S}_{G}=\mathcal{S}_{D M}$, then for all $n \geq 0$

- $\mathbf{x}_{c}\left[1, U_{n+1}-1\right]$ is periodic of period U_{n};
- $\mathbf{x}_{c}\left[U_{n}+1, U_{n+1}-1\right]$ is a prefix of \mathbf{x}_{c}.

For $c=112$, we have

010201000102010101

when $\mathcal{S}_{G}=\mathcal{S}_{D M}$

Proposition

If $\mathcal{S}_{G}=\mathcal{S}_{D M}$, then for all $n \geq 0$

- $\mathbf{x}_{c}\left[1, U_{n+1}-1\right]$ is periodic of period U_{n};
- $\mathbf{x}_{c}\left[U_{n}+1, U_{n+1}-1\right]$ is a prefix of \mathbf{x}_{c}.

For $c=112$, we have

010201000102010101

when $\mathcal{S}_{G}=\mathcal{S}_{D M}$

Proposition

If $\mathcal{S}_{G}=\mathcal{S}_{D M}$, then for all $n \geq 0$

- $\mathbf{x}_{c}\left[1, U_{n+1}-1\right]$ is periodic of period U_{n};
- $\mathbf{x}_{c}\left[U_{n}+1, U_{n+1}-1\right]$ is a prefix of \mathbf{x}_{c}.

For $c=112$, we have

010201000102010101

when $\mathcal{S}_{G}=\mathcal{S}_{D M}$

Proposition

If $\mathcal{S}_{G}=\mathcal{S}_{D M}$, then for all $n \geq 0$

- $\mathbf{x}_{c}\left[1, U_{n+1}-1\right]$ is periodic of period U_{n};
- $\mathbf{x}_{c}\left[U_{n}+1, U_{n+1}-1\right]$ is a prefix of \mathbf{x}_{c}.

For $c=112$, we have

010201000102010101

when $\mathcal{S}_{G}=\mathcal{S}_{D M}$

Proposition

If $\mathcal{S}_{G}=\mathcal{S}_{D M}$, then for all $n \geq 0$

- $\mathbf{x}_{c}\left[1, U_{n+1}-1\right]$ is periodic of period U_{n};
- $\mathbf{x}_{c}\left[U_{n}+1, U_{n+1}-1\right]$ is a prefix of \mathbf{x}_{c}.

For $c=112$, we have

010201000102010101

when $\mathcal{S}_{G}=\mathcal{S}_{D M}$

Proposition

If $\mathcal{S}_{G}=\mathcal{S}_{D M}$, then for all $n \geq 0$

- $\mathbf{x}_{c}\left[1, U_{n+1}-1\right]$ is periodic of period U_{n};
- $\mathbf{x}_{c}\left[U_{n}+1, U_{n+1}-1\right]$ is a prefix of \mathbf{x}_{c}.

For $c=112$, we have

010201000102010101

when $\mathcal{S}_{G}=\mathcal{S}_{D M}$

Proposition

If $\mathcal{S}_{G}=\mathcal{S}_{D M}$, then for all $n \geq 0$

- $\mathbf{x}_{c}\left[1, U_{n+1}-1\right]$ is periodic of period U_{n};
- $\mathbf{x}_{c}\left[U_{n}+1, U_{n+1}-1\right]$ is a prefix of \mathbf{x}_{c}.

For $c=112$, we have

010201000102010101

when $\mathcal{S}_{G}=\mathcal{S}_{D M}$

Proposition

If $\mathcal{S}_{G}=\mathcal{S}_{D M}$, then for all $n \geq 0$

- $\mathbf{x}_{c}\left[1, U_{n+1}-1\right]$ is periodic of period U_{n};
- $\mathbf{x}_{c}\left[U_{n}+1, U_{n+1}-1\right]$ is a prefix of \mathbf{x}_{c}.

For $c=112$, we have

01020100010201010

when $\mathcal{S}_{G}=\mathcal{S}_{D M}$

Proposition

If $\mathcal{S}_{G}=\mathcal{S}_{D M}$, then for all $n \geq 0$

- $\mathbf{x}_{c}\left[1, U_{n+1}-1\right]$ is periodic of period U_{n};
- $\mathbf{x}_{c}\left[U_{n}+1, U_{n+1}-1\right]$ is a prefix of \mathbf{x}_{c}.

For $c=112$, we have

010201000102010101

when $\mathcal{S}_{G}=\mathcal{S}_{D M}$

Proposition

If $\mathcal{S}_{G}=\mathcal{S}_{D M}$, then for all $n \geq 0$

- $\mathbf{x}_{c}\left[1, U_{n+1}-1\right]$ is periodic of period U_{n};
- $\mathbf{x}_{c}\left[U_{n}+1, U_{n+1}-1\right]$ is a prefix of \mathbf{x}_{c}.

For $c=112$, we have
010201000102010101

when $\mathcal{S}_{G}=\mathcal{S}_{D M}$

Proposition

If $\mathcal{S}_{G}=\mathcal{S}_{D M}$, then for all $n \geq 0$

- $\mathbf{x}_{c}\left[1, U_{n+1}-1\right]$ is periodic of period U_{n};
- $\mathbf{x}_{c}\left[U_{n}+1, U_{n+1}-1\right]$ is a prefix of \mathbf{x}_{c}.

For $c=112$, we have

01020100010201010

when $\mathcal{S}_{G}=\mathcal{S}_{D M}$

Proposition

If $\mathcal{S}_{G}=\mathcal{S}_{D M}$, then for all $n \geq 0$

- $\mathbf{x}_{c}\left[1, U_{n+1}-1\right]$ is periodic of period U_{n};
- $\mathbf{x}_{c}\left[U_{n}+1, U_{n+1}-1\right]$ is a prefix of \mathbf{x}_{c}.

For $c=112$, we have

when $\mathcal{S}_{G}=\mathcal{S}_{D M}$

Proposition

If $\mathcal{S}_{G}=\mathcal{S}_{D M}$, then for all $n \geq 0$

- $\mathbf{x}_{c}\left[1, U_{n+1}-1\right]$ is periodic of period U_{n};
- $\mathbf{x}_{c}\left[U_{n}+1, U_{n+1}-1\right]$ is a prefix of \mathbf{x}_{c}.

For $c=112$, we have

\checkmark when $\mathcal{S}_{G}=\mathcal{S}_{D M}$

> Proposition
> If $\mathcal{S}_{G}=\mathcal{S}_{D M}$, then for all $n \geq 0$
> - $\mathbf{x}_{c}\left[1, U_{n+1}-1\right]$ is periodic of period U_{n};
> - $\mathbf{x}_{c}\left[U_{n}+1, U_{n+1}-1\right]$ is a prefix of \mathbf{x}_{c}.

For $c=112$, we have

$010201000102010101 \ldots$

> Theorem
> If c_{1}, \ldots, c_{k} are such that $\mathcal{S}_{G}=\mathcal{S}_{D M}$, then every prefix of \mathbf{x}_{c} admits a string attractor composed of k or $k+1$ consecutive elements of $\left(U_{n}\right)_{n \geq 0}$.

\boldsymbol{X} when $\mathcal{S}_{B} \neq \mathcal{S}_{D M}$

Proposition

If $\mathcal{S}_{B} \neq \mathcal{S}_{D M}$, then there exists n such that

- $\mathbf{x}_{c}\left[1, U_{n+1}-1\right]$ is not periodic of period U_{n};
- $\mathbf{x}_{c}\left[U_{n}+1, U_{n+1}-1\right]$ does not occur before in \mathbf{x}_{c}.

For $c=102$, we have

$01200010101 \ldots$

Open questions

- Given a sequence $\left(U_{n}\right)_{n \geq 0}$, can we find an infinite word \mathbf{x} whose prefixes have string attractors made of U_{n} 's?
- Given a infinite word \mathbf{x}, can we find a numeration system \mathcal{S} such that \mathbf{x} is \mathcal{S}-automatic and string attractors of \mathbf{x} 's prefixes can be easily described using \mathcal{S} ?

Open questions

- Given a sequence $\left(U_{n}\right)_{n \geq 0}$, can we find an infinite word \mathbf{x} whose prefixes have string attractors made of U_{n} 's?
- Given a infinite word \mathbf{x}, can we find a numeration system \mathcal{S} such that \mathbf{x} is \mathcal{S}-automatic and string attractors of \mathbf{x} 's prefixes can be easily described using \mathcal{S} ?

Thank you for your attention!

