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C on t eXt Geological disposal of radioactive wastes
» Complex multi-physical (THMC) processes
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Conceptual scheme of a deep geological repository. Major perturbations of the host rock over the lifetime of a geological repository, -
adapted from Sillen (2012).




C on t ex t Geological disposal of radioactive wastes

» Complex multi-physical (THMC) processes
» Interactions between processes
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C on t ex t Geological disposal of radioactive wastes

» Complex multi-physical (THMC) processes
» Interactions between processes

” ’ 1st aspect: 2nd aspect: Predictions:

short-term long-term numerical modelling
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Conceptual scheme of a deep geological repository. Major perturbations of the host rock over the lifetime of a geological repository, -

adapted from Sillen (2012).
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Context Gas migration issue
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Conceptual scheme of a deep geological repository Expected gas transport modes in the EDZ and the sound rock,

focussing on the gas generation process. from ONDRAF/NIRAS (2016).
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Context Gas migration issue
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» Governed by the rock structure at a micro-level
» Multi-Scale Model
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Conceptual scheme of a deep geological repository Expected gas transport modes in the EDZ and the sound rock,

focussing on the gas generation process. from ONDRAF/NIRAS (2016).
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From experimental evidence to modelling
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(i) Advection and diffusion of (i) Visco-capillary (iii) Dilatancy-controlled gas flow (iv) Gas flow in fractures
dissolved gas two-phase flow

Phenomenological description of the gas transport processes relevant to low-permeable clayey rocks, adapted from Marschall et al. (2005).

Classical HM two-phase flow models
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From experimental evidence to modelling

Classical HM two-phase flow models

Solid Water Gas

v

Bright, Aster, Lagamine, OpenGEOSys, Though2/3

-

Triphasic porous medium

Solid Liquid Gas
phase phase phase

|

Liquid Water Water
water vapour species
-
Mineral || Dissolved Dry Ha - .
species H, H, species e U

Phases and species




From experimental evidence to modelling

Background
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(i) Advection and diffusion of (i) Visco-capillary (iii) Dilatancy-controlled gas flow (iv) Gas flow in fractures
dissolved gas two-phase flow

Phenomenological description of the gas transport processes relevant to low-permeable clayey rocks, adapted from Marschall et al. (2005).

Classical HM two-phase flow models Supported by experimental data
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From experimental evidence to modelling

Laboratory experiments

Clay-rich material Boom Clay

Intact sample

Gas-induced fracturing, Wiseall et al. (2015)
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From experimental evidence to modelling

Background
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(i) Advection and diffusion of (i) Visco-capillary (iii) Dilatancy-controlled gas flow (iv) Gas flow in fractures
dissolved gas two-phase flow

Phenomenological description of the gas transport processes relevant to low-permeable clayey rocks, adapted from Marschall et al. (2005).

Classical HM two-phase flow models Supported by experimental data

* Natural heterogeneities represent preferred weaknesses for r X
the process of opening discrete gas-filled pathway e U
* Introduce stronger coupling between gas flow and mechanical
behaviour into the models.

L

» Advanced HM models
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From experimental evidence to modelling

Advanced HM models

Macroscopic models

» No direct representation of local phenomena

» Enriched with micromechanical effects

fracture in
» Examples: B
. _ PI€
= Natural heterogeneity based models oiivella and Alonso (2008) i
= Intrinsic permeability based models  paroen et al. (2016) et
» Embedded fracture models Alonso et al. (2006) |
= Explicit fracture based models Cerfontaine et al. (2015) I o e
Continuum ﬂl
// Dis::r.n-ntinuityﬂ3
Cr.ml:l'l-nuumﬂ2
w
X, -

SO

> b bl r |
M eu

L

Conceptual scheme of the explicit fracture based
model, after Cerfontaine et al. (2015) Conceptual scheme of the embedded fracture model, after Olivella et al. (2008)




From experimental evidence to modelling

Advanced HM models

Microscopic models

» Direct modelling of all the microstructure complexity at very low scale
» Useful for modelling at the process scale

» High computational expense at the scale of a repository

From pore network to molecular model, from Yu et al. (2019).
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From experimental evidence to modelling

Advanced HM models
Micro-macro based models

» Combines the benefits from large- and small-scale modelling strategies

» Explicit description of all the constituents on their specific length scale
through a REV definition

0 12

/@i,«/
o
/
r |
rr ot

(©) e UL
Conceptual scheme of micro-macro based models, with microstructure definitions of a microcracked material,
after (a) Levasseur (2013), (b) Francois (2010), and (c) van den Eijnden (2016).
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Multi-scale modelling approach

Overview 4. Computation at the macro-scale

=  Macro-to-micro scale transition: Localisation of
the macro-scale deformations to the micro-scale o
3. Homogenisation

= Resolution of the boundary value problem at the
micro-scale

1. Localisation

Po
= Micro-to-macro scale transition: Homogenisation ) m
of the micro-scale stresses to compute the -
macroscopic quantities 2. Computation at the micro-scale
» Resolution of the boundary value problem at the m
macro-scale

Conceptual scheme of the iterative process for the multiscale model

Hybrid developed tool

= Complete hydraulic system implemented and solved at the micro-scale

= Mechanical effects addressed at the macro-scale and implicitly integrated e U
at the lower scale through HM couplings
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Multi-scale modelling approach

Model formulation at the macroscopic scale

Clay material treated as a porous medium Balance equations Constitutive equations
Solid Water Gas =  Momentum » Total stress definition
do;;
—L g =0 0y =0, +by Sy P+ (1= Srw)P};f] 0ij
(3xj
=  Water = Variation of solid density
M afw,z' -0
wt S Tw= b (b = BNSYp, + SEp) + 6
Solid Liquid Gas N — = —
— phase “|[ phase Liquid water Ps (1 - @)K,
"""" 1
Watcr Water = Gas of of
vapour species . g.i . dg.i
M, + —+M,;,,+ ——-0,=0
------ ¢ ox; %7 ox, Qe
_______ A - ~ . - ~
Mineral G!as Dry gas Dissolved gas r !
species species e UL 4

Unsaturated triphasic porous medium and 14
definition of phases and species
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Multi-scale modelling approach

Macro-to-micro scale transition: Localisation

Decomposition of the micro-kinematics:

= Macro-pressure fields (oM) of water and gas must be identical to
the micro-quantities (0™) for any point of the material
pM(P) =

pI(P) Py (P)=pr(P)

= For any point P close to P,
at the macroscopic scale:

opM (P) apM (P) )
ox, TR o (P) = p! (P) + o (x, - %))

My~ pMPy+

Higher-order terms neglected

at the microscopic scale:

R M
. opM(P) ” ap, (P)
Pg(P)“N"Pf(P)+T(xJ—x)+pw(P) Pg(P) Py (P)+T

Fluctuation fields to replace higher-order terms

j \/

Separation of scales

= Approach restricted to situations where the variations of
the macroscopic fields is large compared to the
variations of micro-scale fields

opM(P)
ox - (x; = %;) +pl(P) < pM(P)
J
opM(P)
;x (xj - X; )+Pf(P) <p, M(p)
J
Xj—X; ) "‘Pf(P) r 1

eu
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Multi-scale modelling approach

Micro-scale boundary value problem

REV generation in general
» Representative of the microstructure
* Large enough to represent the microstructure

+  Small enough to satisfy the principle of scale separation

A Domainof 4T Domain of
microscopic effects porous medium

1

Inhomogeneous medium

Porosity [-]

Homogeneous medium

0 : >

0 Elementary Volume

_______.1________________

Representativeness of an elementary volume applied to the
concept of porosity, Bear (1972).

Spatial repetition of a very small part of the whole microstructure

Relevant statistical representation of any random part of the micro-scale

Not a unique choice

Examples of two rectangular unit cells, Anthoine (1995)e U

L

-
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Multi-scale modelling

Micro-scale boundary value problem

Multi-scale model supported by experimental data

Internal visualisation of a Boom Clay sample
using FESEM, from Gonzalez-Blanco (2017).

Boom clay matrix block

Bridging

Equivalent
(bundle of) tubes

Bedding

\ °

REV

Physical idealisation of the microstructure.

Homogenisation

Schematic representation

of the macroscopic scale

w
< >

Definition of the representative
element volume (REV)

FE computation

Localisation

Hydraulic system
resolution

r a

eu
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Multi-scale modelling approach

Micro-scale boundary value problem

Balance equations at the micro-scale

= Gas = \Water

”-I-dfm-i_n_i_ a‘g,z x_l_ dx,-:O

M’” M‘”g M™. Variations of fluid contents
w
m _
fo, = Puwlu,
m _
J g — Pglg Mass flows
Fie = Pago, g
= Mechanical effects: computed at the macro-scale and transferred to e UL

the micro-scale through HM couplings
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Multi-scale modelling approach

Micro-scale boundary value problem

Constitutive equations: Hydraulic problem considering a channel flow model (Navier-Stokes equations)
. 4
= Advective component: o1 P k. H 9 kr, 1 op k., D% Op
Goo = — o~y OPo . Hra T OPo Goi = = g Nbe g = T 0802
' Uo, A frac Ox; to 12w Ox; Ha X Ma W= OXi
LLLLLLLLLS L LY it
kz D4 lf \"-‘ | 1]
Vilxz) |y Kfrﬂt' = — éhb W Kiube = — ﬂ:@ = |III 'E Hvﬂ'ﬂ Dy Xy
x 1 I" e
Fir U A U O kxz ‘.‘h'{
1 . . . . . .
Laminar fluid flow profiles between two parallel plates Laminar fluid flow profiles in a circular pipe
52 2 Dy/2
k;-h_ = — (3 — S_r) krw = SJ"
: k, = (1—8,)? "
_ 3 = — X3
}f(rg = (1 —Sr) T g Ié::z D,/2
: Gas Water
Gas flow in between of water flows in a circular pipe
Gas flow in between of water flows in a fracture space r n
eu -
= Diffusive component : _ d ([ Pag
igo. = — 8 TD ot Pw —
dgi ry dg/w Py (3'.].’5 Ow 19



Multi-scale modelling approach .

] oo e

Micro-scale boundary value problem o [MPa]

First contact
point

Asperities
deformation

Constitutive equations: Hydro-mechanical couplings

= Stress-dependent evolution of micro-elements aperture

‘zj{j; = f{'” An .fj.U; =K ﬂDJ’: compression
K K! g 26 v h [m]
n— - .= -
(] | rﬂh) : Dy Constitutive law describing the normal behaviour
ha of a rough rock joint, Cerfontaine (2015)

» Stress-dependent formulation of the transmissivity and the entry pressure of micro-elements

h; D*
Kfmf = — Eh."} W Kiube = — ﬂ:ﬁ
,;Ill' m m

e = Pey (F_}”) Pe = Pey (%)

i D;,
h=0 hb= I.lmin

26 cosB 20gcos0

7 = — ’) —_ @
Py 7y Peo= "Dy /2

hy, = hy+h Dy =Dy +D Definitions of the hydraulic and the

mechanical aperture in reality (left) and in
the modelling (right), Marinelli (2016)
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Multi-scale modelling approach

Micro-scale boundary value problem H

General principles for numerical resolution of the hydraulic system

= Hydraulic network respecting these conditions: Ps Follow boundary
* Anti-symmetric boundary fluxes !
* Macroscopic pressure gradient between the boundaries
. . m]) ")I] ¢.D ‘I'D
= Hydraulic problem established through mass balance on each wre
node (j) % w®
P1 % 1 ? P4
= Hydraulic problem solved $a. op. 0 Pz 0% 5 0"
= For a given configuration
» Under steady-state conditions @Bl 8, $B, "
= By applying the macro-pressure to one node
>
Lead boundary P2

Example of a channel network with the mass balance on node j

ey,




= |

Multi-scale modelling approach

Micro-scale boundary value problem

General principles for numerical resolution of the hydraulic system
= Hydraulic network respecting these conditions: Ps Follow boundary
* Anti-symmetric boundary fluxes

* Macroscopic pressure gradient between the boundaries

D D D D
=> Channel (fracture or tube) mass fluxes of water and gas ol I R

w® w®
Pk OVl Pit e 1P
w,, = — K—— A A A C C C
w u, = Os on. df. 0" P3 ¢% dp 0
N
Advection of liquid water wB ¢'B ¢I] lIJB
w gl
. m o
pg krf; dpg pgkrw dpw
W, = — K— - H, K
Hy s o as
| R — ~ ~ o -
Advection of gaseous gas ~ Advection of dissolved gas Lead boundary P2

Hg (pwpg.() d[):: _ pgﬂwﬂ dp:f}

_S, iD,, ., —* _
Tw s/u Puw pg,() as Xw ds

k . eu !

Diffusion of dissolved gas

) Example of a channel network with the mass balance on node j
-
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Multi-scale modelling approach

Micro-scale boundary value problem

General principles for numerical resolution of the hydraulic system

= Hydraulic problem established through mass balance on each Ps Follow boundary
node (j) !
= Mass conservation principle, i.e. for each node of the

network, the sum of the input flows is equal to the sum of o D AD oD

the output flows o7 bw bW .
do w? w®

= =0 =3 o7+ ol + ot =0 p,¢ - e~ _ep, . o

ds' bn g 0" P3¢ o5 UC j

a = w,g Liquid or gaseous phase

ol &3, g U"
» Well-posed hydraulic system to solve

[Guww| 1P} =0 |G| {PE } + |Gyu] 1P} =0 .
Lead boundary P2

» For a given configuration Example of a channel network with the mass balance on node j
» Under steady-state conditions
» By applying the macro-pressure to one node e U
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Multi-scale modelling approach

Micro-to-macro scale transition: Homogenisation

=  Fluid fluxes

|
; rJ), " r)Jl 1 I M M _f 7 id T
fui ‘l:;x = aloM ih Jzﬁfmﬁpi‘-'“df T i = g f 0
I i
(3‘;}“- /* .
= "xdl
2 g )T
1

= Fluid masses: total amount of fluids inside the fractures and tubes

MY = Q [y Pud 2 My =My + M,
- vLSr n )

— pg (1 - Sru=) ¢.’I + pngFu-q)ﬂ

eu

L
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Multi-scale modelling approach

Macro-scale boundary value problem

= Under matrix form:

; ; r <f" BV{;}F ‘\> <f 8 'ﬁ;l
[K‘;V} (3x3) [K‘;;'} (3x3) ! Sp“" i (3) — hﬁM;;: (3)
[ng} (3%3) [KEK} (3%3) 4 8;{’& \ ) ng \

L\ pk’ J (3) ngJ{B)

Summarized as:

[AM} 10x10) {5UM} 10) {BEM} 10)

ey,
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Preliminary modelling

One-element simulation smpar"e“”“’ ampa]

MPa l l l l l

’ I—b time (@ <, Q ' time
Bedding plane separation: Loading % % Injection test
= 300um grad B, Response = Mechanically blocked

»‘D “‘: ' = Water pressure increase
Bedding plane aperture: = 3MPato 5MPa
= 0.1um » (Gas pressure imposed at 3MPa
& a &

Tubes diameter < >
— Distribution curve

Bridging plane aperture
— not considered

eu

L




= |

Preliminary modelling

A pressure

One-element simulation smparre“”“ 3MPa
S
’ \—b time (@ <, Q ' time
Bedding plane separation: Loading % % Injection test
= 300um grad B, Response = Mechanically blocked
»‘D (‘c ' = Water pressure increase
— from 3MPa to 5MPa

Bedding plane aperture:
= 0.1um

Gas pressure imposed at 3MPa

Tubes diameter

. . g 2m
— Distribution curve Localisation Homogenisation
Bridging plane aperture 300um 300um 300um
— not considered T H .'.w
_ @ ® o ° Q o
Load|ng O e ) E— O ._._‘ O _.—‘ — ReSponse
Bedding = Bedding S Bedding kS
3 3 \ 3 ) ]
-- — — =0 - -
Bedding Bedding + Bedding +

+
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Preliminary modelling

One-element simulation

Uy Ax _ Ax =2m
Kipt = — Flux — th
int = FUE N, W Ap = 2 MPa
100 10% Aperture = 2.0 - 107%m
_ Number of tubes [kg m] Kine x [mM?]
NG Flux |[—— '
£ m3 s
S 80 107 ¢ —7 ~19
= 0 1.581-10 1.581-10
L
7 ER
- 60 % 108
= x
8 =
3 40 5 108 1 fracture
o © |
2 =
=
zn - I () FE—
§ 1010 ¢ * Bedding * ¢
D Wy e 10_11 I , . , I
107 10 107 10 107 0 1 5 3 4 5 r 7

Tubes diameter [m] Time [days] e U
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Preliminary modelling

One-element simulation

_ w Ax ) Ax =2m
Kint = —WFluxA—p with Ap = 2 MPa
100 10 Aperture = 2.0 - 10~%m
Number of tubes kg m Kint x [M?]
9 Flux (—— ’
= m3 s
S 8o 107 |
= 0 1.581-1077 | 1.581 101
L0
5 1 770 1.643-1077 | 1.643-1071°
- 60 % 108
2 x
o = .
S 40 5 109 | 1 fracture + (micro) tubes |
ot (O ®
3 g
- @ Ubos (= ®
E 20 1000 | e,
=] Bedding
o
0 10-11 , ) o— ,
107 10 107 10 107 0 1 5 3 4 5 r 7

Tubes diameter [m] Time [days] e U

L
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Preliminary modelling

One-element simulation

_ w Ax ) Ax =2m
Kint = EFluxA_p with Ap = 2 MPa
100 10 Aperture = 2.0 - 107%m
- Number of tubes Flux kg E] Kintx [m?]
B 3
S 80 107 | -
= 0 1.581-1077 | 1.581-1071°
L
# Bl 770 1.643-1077 | 1.643-1071°
- 60 iel 108
£ x 6394 3.057-1077 | 3.057-10""°
o =
g 40 8 100 | 1 fracture + more tubes | Fracture-controlled flow
o () ®
: =
= I T [
E 20 100 | e,
=] Bedding
&
0 i 101 . — .
107 10 107 10 107 0 1 5 3 4 5 r 7
Tubes diameter [m] Time [days] e U

L |
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Preliminary modelling

One-element simulation

My Ax , Ax = 2m
Kint = EFluxA_p with Ap = 2 MPa
1005 10+ Aperture = 2.0 - 10~%m
Number of tubes kg m Kint x [m?]
Y Flux [—— ’
= m- s
5 8o
= 10 | 0 1.581-1077 | 1.581-107"°
L
£ §| « 770 1.643-1077 | 1.643-1071°
S €0 2%
£ X 100 | 6394 3.057-10"7 | 3.057-1071°
o =
8 40 8 1 fracture + r.nacro-tubes Fracture-controlled flow
o (L]
2 = : 9995 7.200-1076 | 7.200- 10718
= 1010 ? Tubes ’ E
E 20 .%moéo Effect of large pores
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Preliminary modelling

One-element simulation
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Model verification

Comparison with a macro-scale THM coupled model

Geometry
o, = 6. 1MPa
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k,=2-10"%m?* §
P.o=0.6MPa
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All the parameters are taken similar between the two models
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Model verification

Comparison with a macro-scale THM coupled model

Water-related results
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Gas-related results
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Gas Injection experiment
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Gas Injection experiment
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Gas Injection experiment

Characterisation of the microstructure parameters

» 4. Relative permeability curves » 5. Retention curve » 6. Normal stiffness of the fracture
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Gas Injection experiment

Geometry and boundary conditions Parameters
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Gas Injection experiment

Simulation stages
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Gas Injection experiment

Average axial strain
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Gas Injection experiment

Outflow volume
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Gas Injection experiment

Injection and recovery pressures
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Gas Injection experiment

Fracture aperture
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After air injection

J

Gas Injection experiment g
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Experimental observations:
Opened fractures after injection
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Gas Injection experiment

Injection and recovery pressures
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Gas Injection experiment

Injection and recovery pressures
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Gas Injection experiment

Injection and recovery pressures
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Gas Injection experiment

Effect of the connectivity of the planes
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Gas Injection experiment

Effect of the connectivity of the planes
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Gas Injection experiment

Effect of the connectivity of the planes
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Gas Injection experiment

Effect of the connectivity of the planes
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Gas Injection experiment

Effect of the connectivity of the planes
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Gas Injection experiment

Effect of the connectivity of the planes under up-scaling
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Gas Injection experiment

Pg at 100s
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Gas Injection experiment

Effect of the connectivity of the planes under up-scaling

oy = 6.1MPa

S S N |
0.017m¢ Downstream reservoir ﬁ

ZFD

0.080m
4 x Hy

0.034m Upstream reservoir

A
0.070m

>

[ Undisturbed Boom Clay
Disturbed bridging planes

[l Disturbed bedding and bridging planes
Disturbed bedding planes

Start injection

Breakthrough
Around 100000s

Air dissipation




Gas Injection experiment

4
Effect of the connectivity of the planes under up-scaling
3
oy = 6.1MPa
S 2
0.017m¢ Downstream reservoir ﬁ
. ZFD

0.080m
4 x Hy

Start injection Breakthrough Air dissipation
Around 100000s

0.034m Upstream reservoir
v
A
>
0.070m
r 1
Bl Undisturbed Boom Clay e U
Disturbed bridging planes -

[l Disturbed bedding and bridging planes
Disturbed bedding planes




Gas Injection experiment
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Gas Injection experiment

Effect of the connectivity of the planes under up-scaling
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Conclusions

We developed a multi-scale model able to

1. Simply idealise the microstructure of the rock with fractures and tubes
2. Reproduce mechanisms inherent to gas migrations in sound rock layers

We showed that

1. Macro-pores, bedding planes and bridging planes play different roles in gas flows
2. Preferential flow paths can be generated through fractures with weaker properties
3. Different gas mechanisms occur in the presence of weaker bridging planes
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