Study of Complex Carbides obtained after Solidification and Thermal Treatment in High Speed Steels

Ir. J. TCHOUF-ANG TCHUINDJANG, Prof. Dr. Ir. J. LECOMTE-BECKERS
Metallurgy and Materials Science – University of Liège
j.tchouindjang@ulg.ac.be, jaqueline.lecomte@ulg.ac.be

Introduction
High-speed steels (HSS) rolls are used in front finishing stands of hot strip mills. Good wear resistance and hardness at high temperature are defining characteristics of HSS.

Many carbides are present in these alloys, each having different effects upon the final properties of HSS. As a result, the nature, the morphology and the amount of these carbides are factors of important concern.

Optical microscopy combined with electron microscopy lead to quicker identification and characterization of HSS carbides.

Raw material
The rolls are elaborated from centrifugal vertical casting process. The final roll is bimetallic, with a shell material (HSS) different from the core material (Ferritic nodular graphite iron).

Chemical analysis of HSS – %Wt (Shell material)* - The Balance is Fe

<table>
<thead>
<tr>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>Ni</th>
<th>Cr</th>
<th>Mo</th>
<th>P</th>
<th>S</th>
<th>V</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0/2.5</td>
<td>0.1/0.5</td>
<td>1.5/1.5</td>
<td>1.0/2.5/4.0/8.0</td>
<td>20/80 <0.05</td>
<td>0.015</td>
<td>3.0/9/6/20/80</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Microscopic characterization of HSS microstructure

Optical microscopy for microstructural characterisation
The shell material is composed of a fully martensitic matrix (dark), with a network of eutectic carbides (light) mostly located at grain boundaries.

Grain size increases from the shell to the core.

Microscopic characterization of HSS carbides (SEM/EDX)

Electron microscopy for carbides identification
SEM is combined with EDX to determine the shape and the nature of carbides.

Results of rough observations:
- **MC**: Cluster of Globular or Rod-like particles – V rich (Eutectic carbides located inside grains)
- **M2C**: Cluster of Acicular particles – Mo rich (Eutectic carbides located at grain boundaries)
- **M2C2**: Fish-bone like – Fe rich (Eutectic carbides – Rare, and often associated with \(\text{M}_{23}\text{C}_6 \))
- **M23C6**: Fine Globular particles – C rich (Secondary carbides fully distributed inside the matrix)

The chemical composition of each type of carbide is a combination of various elements with a leading one, which atomic concentration is highly over the others.

Correlations between Microstructure (Grain Size and Secondary Carbides) and Mechanical Properties (Tensile Strength)

Coloured etching allows rapid identification of HSS carbides, while using optical microscopy. Before running optical identification, it is quite important to determine the nature of each type of existing carbides, by the means of SEM and EDX.

HSS Rolls for Hot Strip Mills contain different types of carbides, each having specific effect on mechanical properties. Overall distribution, nature and carbides size directly affect rolls mechanical properties. Vanadium forms very hard MC eutectic carbides mainly inside grains, improving hardness and wear resistance. High content of Cr causes formation of M23C6 eutectic carbides mainly at grain boundaries, improving hardness and preventing oxidation phenomenon. Both Mo and W lead to the formation of M2C eutectic carbides, which lower the secondary hardening effect during tempering. M23C6, which are very fine secondary carbides precipitate in the matrix during tempering at high temperatures. This second hardening effect seems to improve the ultimate tensile strength in temperatures around 600°C, all in progress to study transformations that occur between carbides themselves, during heat treatments of HSS.