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1. INTRODUCTION 
Buildings are becoming more and more complex: the services installed are always more complicated, 

and are integrated with passive solutions, in order to reduce the energy consumption of the buildings. 

To lower this latter, the research is now focused on the development of advanced control systems to 

be introduced in the so called “Smart Buildings”. However, to implement these systems, it is necessary 

a deep knowledge of the building, and therefore a detailed model of this latter. The aim of this project 

is, then, to develop a model on Matlab/Simulink of two rooms of a school building, which will be the 

basis on which apply a control system aimed to increase the energy efficiency of the rooms analyzed.  

1.1. Context 
As discussed by Levy et al. (Lévy & Belaïd, 2018), a building model should draw on a set of variables 

relating not only to the properties of the building, the price of energy, climate or (in the case of 

residential buildings) to the household incomes and the number of household electrical appliances, 

but should refer also to the energy behavior of individuals or groups and to sociological, 

anthropological and geographical approaches, because they affect practices and lifestyles.  

A building model is therefore the basis of a strategical reduction of the energy consumption, that puts 

its foundation on the integration of the occupant awareness, the use of more efficient building 

envelope and systems, the exploitation of renewable energy sources and the implementation of 

intelligent HVAC controls.  

However, to achieve this result, a proper and accurate model of the considered building and of its 

systems must be defined. To do this, different methodologies can be applied. As for the building 

model, a detailed review of these latter is described by Atam and Helsen. (Atam, E., Helsen, 2016). 

Instead, for the building systems (and, particularly, the HVAC system) a critical discussion has been 

conducted by Afroz et al. (Afroz et al., 2018). Both of them analyse the following three main categories 

of approaches, considering their advantages and disadvantages: 

• white-box approaches, where all the building components are modelled for heat conduction, 

convection and radiation on the basis of mass, energy and momentum transfer;  

• black-box approaches, that are based only on data and do not require any physical knowledge 

of the system; 

• grey-box approaches, that are the mix of the two latter. 

Among them, Atam and Helsen mention as main possible applicable methods System Identification 

and RC Network approach and goes further by describing the possible methods suitable for large-scale 

models and for the management of humidity and CO2 concentration. Afroz et al., instead, give an 

interesting and detailed application of a white-box method on different components of the HVAC 

system. 

All these above-mentioned approaches are the instruments thanks to which the energy loads and 

consumptions can be finally modelled. As described by Fanti et al. (Fanti et al., 2018), it can be done 

in the environment of Matlab/Simulink, by taking into account both the total building energy 

consumptions and the respect of the comfort conditions. That is why the power consumed by each 

load, the set-points of each load, the available energy provided by the electric main grid and the 

renewable sources, the total power cost and the controller must be included inside the model. 

The same importance must be given also to people, because they affect the characteristics of the 

indoor environment and interact with buildings to enhance their personal comfort. As discussed by 

Page et al. (Page et al., 2008), their model can be built considering people’s presence as an 
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inhomogeneous Markov chain interrupted by occasional periods of long absence, so to realistically 

reproduce key properties of occupant presence such as times of arrival and departure, periods of 

intermediate absence and presence as well as periods of long absence from the zone. 

All these aspects here mentioned, as stated by Afroz et al., will allow improving the function of HVAC 

control system, and so a reduction of the building energy consumption and an improvement of both 

indoor air quality and thermal comfort. 

1.2 Case study 
The rooms studied are two classrooms (classroom 251 and 252) located at the first floor of the 

university, with the main axis in direction NE-SW. Their main dimensions are 7.30 x 10.70 m, with an 

internal free height of 3.22 m. The maximum capacity is of about 30 people. 

The rooms are symmetric. Therefore, during the following discussion, the analysis will be discussed in 

detail only for the room 251. This latter is in contact with: 

• the outside at NE and NW, through the external walls 

• a similar heated room at SE, through an internal partition 

• a heated corridor at SW, through an internal partition 

• a heated class at the floor below 

• the roof above. 

The NW side is fully glazed starting from a height of 105 cm. Along this side, three openable parts are 

present, with a dimension of 80 x 110 cm. 

The NE and the SW sides, instead, have only a glazed part in correspondence with the NW corner. In 

the first case, there is only a non-openable window 190cm wide starting from a height of 105 cm. In 

the second case, instead, there is a 190 x 204 cm glazed element wide and, next to it, there is a fully 

opaque door 150 cm wide and 204 cm high. Finally, the SE is fully opaque, with a door that allows the 

communication with the confining classroom. 

  



6 
 

2. LITERATURE REVIEW 
In this section, we discuss the references and summarize their content. 

2.1. The determinants of domestic energy consumption in France: Energy modes, 

habitat, households and life cycles 
In this Section, we revise the work (Lévy & Belaïd, 2018). 

Introduction 

Whatever the (economic or engineering) methods employed, the models relating to energy 

consumption and demand draw on a set of variables relating to the properties of buildings, the price 

of energy, household incomes, the number of household electrical appliances, or climate (particularly, 

indoor temperature). 

The great weakness of these models, however, is that they ignore consumer lifestyles, and therefore 

the energy use patterns of households. In other words, they treat the consumption patterns of users 

as governed purely by supply, reducing the individual to a mere energy consumer. 

Attempts to include socio-demographic variables reveal results in which the age of individuals and 

household size emerge as decisive variables in understanding domestic consumption processes: by 

shifting the focus to the energy behavior of individuals or groups, sociological, anthropological and 

geographical approaches, the residential practices and lifestyles result to be significantly important to 

better understand energy consumption processes. 

The essential goal of this article (which seeks to study the effect of household characteristics on the 

modes and intensities of French domestic energy consumption) is, then, to understand whether socio-

demographic factors affect the typological profiles of domestic energy consumers, and whether the 

latter have a direct impact on the intensity of and trends in consumption. 

The empirical analysis is divided into three stages: the first seeks to verify the correspondences 

between the combined use of domestic energy, the household profiles and the dwelling profiles, in 

order to establish consumer mode typologies. The second looks at the stabilities and variations over 

time of consumption in each of these types, endeavoring to distinguish between the role of household 

characteristics (consumption per head) and of dwellings (consumption per m2) in these intensities. 

The final stage seeks to identify the causes of these changes, notably by introducing a life-cycle based 

analysis. 

The findings reveal sharp divergences between the factors affecting global consumption, consumption 

per m2 and per person, due to the impact of the demographic characteristics of households, residential 

mobility and life cycles. Therefore, these findings demonstrate the flexibility over time of domestic 

energy consumption, which is still too often approached as a static variable solely associated with 

building characteristics, but that should be taken further through a longitudinal and multidisciplinary 

approach to energy consumption patterns. 

First stage: a typology of domestic energy consumers in France 

In the first step, in order to obtain a typology of consumers based on the combinations of energy types 

used by French households, a hierarchical cluster analysis (HCA) and multiple correspondence analysis 

(MCA, i.e., a generalization of factorial correspondence analysis to multivariate cases) were 

conducted. The distances calculated between the different households within the factorial axis space 

was used to classify the closest individuals and merge them, at each successive stage, using a proximity 

criterion called Ward's minimum variance method.  
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In the second phase, in order to analyse the morphological, social and demographic determinants of 

domestic energy consumption, a logistic regression was employed, in which the variable to be 

explained is low energy consumption per person and per m2, and the explanatory variables are the 

socio-demographic characteristics of the households and of their habitat.  

Finally, in the third and last stage, for the analysis of household consumption on a life-cycle basis, the 

age of the reference person was combined with household size. In this way, the major life cycles of 

households were identified, assuming linear family development (without separation, death or 

divorce). Four snapshots of life-cycle stages were then obtained, meaning that these stages can be 

observed from a transversal perspective on a given date, rather than from a longitudinal perspective. 

Ultimately, it may be observed that changes in the distribution of consumer types related more to the 

mode of energy used than to the intensity of consumption. This then raises the question of the 

connection between changes in consumer types and changes in buildings and households, insofar as 

the former are indicative of the latter and, above all, insofar as the structure of households and of the 

housing stock changed little between 2002 and 2006, whereas that of consumer types changed 

significantly. 

Second stage: the morphological, social and demographic determinants of domestic energy 

consumption 

In the light of this, it was observed that consumption intensity per person increases with household 

size and diminishes with dwelling size. It might seem counterintuitive, especially if one begins with the 

assumption that big households occupy large dwellings, and that logically, total consumption should 

be distributed between family members and across housing space. It becomes less so if one considers 

that there is no automatic match between household size and dwelling size, and that small households 

can also live in large dwellings, for example when the children of a large family occupying a large 

dwelling leave the family home, while the parents stay. 

Third stage: analysis of consumption in relation to life cycle 

The role of life cycle on consumption provides a better explanation than household or dwelling size in 

isolation. Therefore, the major stages in the life-cycle snapshots of households in 2006 were marked 

out to conduct the study.  

By distinguishing between consumption by working-class categories and consumption by higher class 

categories, the graph shows that average annual consumption per person is the same for both 

categories, whatever their stage in the life cycle. On the other hand, it is very clear that working-class 

households consume more energy per m2 than higher class households, since for the same position in 

the life cycle, household size is greater and that they occupy smaller dwellings and because their 

houses are less energy-efficient than those of the higher-class categories. 

Moreover, the older buildings consume more energy per m2, and for the same place in the life cycle, 

the occupants of the older dwellings consume more per person than those in the more recent 

dwellings, probably because the latter are better insulated and more energy-efficient. And for 

equivalent social status and construction date, consumption per person is relatively stable for families, 

whatever the age of the reference person. However, consumption explodes when the household 

reference person is aged over 60, and when the household consists of just one person or a childless 

couple. 

Finally, by distinguishing between those living in rented social housing and in private rented housing, 

it was shown that private tenants consume more energy per m2 than social housing tenants. 
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2.2. Control-Oriented thermal modeling of multizone buildings: methods and issues  
 

In this Section, we revise the work (Atam, E., Helsen, 2016). 

Introduction 

Residential and commercial buildings are responsible of around 40% of the energy consumption, 

mostly due to HVAC systems and to lighting. Considering the problems of climate change and of the 

limited amount of non-renewable energy sources, different strategies to reduce the energy 

consumption could be adopted. Among them, we can mention the implementation of intelligent HVAC 

controls, that can be done following many different approaches. The aim of the article is to give an 

overview of these latter, particularly describing their issues, the important aspects to keep in mind 

while modeling and giving some examples of their application. 

Building modelling approaches 

Three main categories of approaches aimed to modeling the thermal dynamics of buildings are: 

• White-box 

• Data driven 

• Hybrid 

White box methods are based on mass, energy and momentum transfer and all the building 

components are modelled for heat conduction, convection and radiation. Some examples are: 

• CFD, that is not applicable to control domain; 

• Zonal approach, which is still too complex; 

• White multi-zone approach. 

Data driven (or black-box) approaches, instead, require only data and do not need any physical 

knowledge of the system. Some examples are: 

• time domain methods, like System identification (SI) and Machine Learning (ML); 

• frequency domain methods. 

Finally, hybrid approaches are a mix of the two latter and are applied when white and black box 

alone are not enough or are too complex. Some examples that can be mentioned are: 

• Grey box methods, like Resistance Capacitance (RC) and LP models; 

• Others, like response-factor models (RF). 

Control-oriented building modelling methods 

Control-oriented building modeling methods should be applicable to different building types and 

scales, work in different locations, be robust and updatable if a part of the building changes, be easily 

understandable and implementable, work with different HVAC equipment and have a satisfactory 

prediction performance. 

To satisfy these constraints, different possibilities are available. Particularly, we can mention System 

Identification (SI) and RC Network, that are respectively black and grey-box approaches. 

SI is done according to the following steps: 

• define a minimum-cardinality input set, with the identification of the dominant ones and their 

ranking; 
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• define an informative identification data set, where the measured outputs are due to the 

application of all the inputs to the system; 

• decide if apply it to the whole building or to the single zone; 

• define an appropriate model structure and order; 

• implement an appropriate algorithm to identify the model. 

However, time domain SI methods cannot be applied in general because they identify system matrixes 

and not specific parameters. The same is for frequency domain methods. 

RC Network, instead, starts from the analogy between heat transfer and current flow in electrical 

circuits. In this case: 

• we define a Resistance for each type of heat exchange (advective, conductive, convective and 

radiative) and the capacitance C of materials; 

• we build the circuit, with heat inputs and disturbances at the appropriate nodes and RC values 

estimated from measured data or based on materials and construction properties. 

Another approach that is mentioned is the Artificial Neural Network, that accurately predict multi-

zone air temperatures when nonlinearities, uncertainties, delay times, time-varying aspects and a not 

uniform zone temperatures occur, but resulting in nonconvex optimization problems. 

Control models for large-scale buildings 

According to the application, there are three possible methods: 

• Composable-zones-based 

• Graph-theory-based 

• Model-Order reduction 

The composable-zones-based approach has a good single zone prediction, that however may result in 

a poor global prediction due to error propagation among zones. To apply this method, the following 

steps must be put in place: 

• modular decomposition of the thermal dynamics of a single zone, with three main blocks 

(zone envelope, zone air, zone ventilation and airflow) 

• construction of subsystem matrixes for each subcomponent 

• couple the dynamics of the subcomponents to obtain a single-zone model 

• couple single-zone models to obtain a multiple-zone model 

To extend this method, the graph-theory-based approach has been developed: it divides large-scale 

multizone systems into groups of zones for which identification is possible, simpler and less time-

consuming in order to guarantee that the identifiability of the groups of zones determines the 

identifiability of the whole building. This method, therefore, increases the computational speed, is 

more systematic and guarantees the identifiability of the subsystems and of the overall system. In 

addition, weakly interacting zones can be separately considered from the interacting ones that, 

instead, are grouped together. This facilitates the parameter identification problem.  

Finally, if the models obtained are still large-scale (with, therefore, controllability, observability 

issues), the Model-Order reduction can be applied: it allows reducing the number of states and the 

order of the model, lowering also the computational time. However, these improvements have as a 

cost the loss of physical meaning of the state variables. This latter can be preserved thanks to the 

PROM (Parameterized Reduced-Order Modelling) technique, that allows also updating automatically 
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the low-order when a parameter changes in the large-scale one, automatically updating the effects of 

the parameters and representing a variety of building types. However, it makes increasing again the 

number of parameters and so the computational demand. That is why it is better to use it on single-

zone models. 

The importance of humidity and CO2 

Humidity and CO2 are parameters to be considered, but that are very difficult to manage. A method 

that can be applied is the Model Predictive Control for multizone buildings, that allows the control of 

thermal conditions in multizone buildings with many advantages: if convex, it is a feedback control, it 

can be applied to MIMO systems and gives globally optimum results. 

Provided a good prediction performance, the least sensitive should be chosen, because the sensitivity 

is strongly linked to the robustness of the closed-loop system. 

2.3. Modeling techniques used in building HVAC control systems: A review 
In this Section, we revise the work (Afroz et al., 2018). 

The choice of the proper modelling technique is essential to conduct an appropriate HVAC analysis 

and to improve its control system. That is why this paper is critically reviews the current modelling 

techniques used to improve HVAC systems in terms of energy consumption, thermal comfort and 

indoor air quality, with the aim to summarize their strengths, weaknesses, applications, and 

performance, focusing on their applicability and ease of acceptance in practice and on the need for 

further research efforts. 

Modelling processes in HVAC control system 

In a modelling process (that leads to dynamic, nonlinear, and very high-order models), the most 

challenging and important part of the model development for a particular application is the process 

of identifying the model order and the optimum parameters (SI).  

Most of the existing studies just applied trial and error method to determine the model structure and 

order. However, different techniques are available: 

• the physics-based (or white-box/mathematical/forward) 

• the data-driven (or black-box/empirical/inverse) 

• the grey-box (or hybrid) 

The physics-based approach generally leads to continuous and deterministic models. It is based on 

fundamental laws of energy (mass balance, heat transfer, momentum, and flow balance), from where 

a set of mathematical equations can be derived and solved. Distributed or lumped parameter methods 

can be applied. Particularly, based on ease of use, the lumped parameter method has shown superior 

performance over distributed parameter type. 

Physics-based HVAC system models are suitable for the prediction and the analysis of the performance 

of HVAC system components through simulation. The dynamic ones are commonly developed for the 

slow-varying temperature and humidity processes (e.g., zone temperature dynamics, zone humidity 

dynamics, heating/cooling coil dynamics, etc.), while static models are implemented for the fast-

moving dynamics of the system (e.g., mixed air temperature and carbon dioxide concentration in 

mixing box, and flow rate of air and water through damper and valve respectively) and energy 

consumption (fan or pump energy consumption). 
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Data-driven methods result in discrete and deterministic or stochastic models. They collect the system 

performance data from real practice and then establish a relationship between the input and output 

variables. 

Finally, grey-box methods are a combination of white box and black box models. Here, the basic 

structure of the model is formed from physics-based methods while the model parameters are 

determined by using the parameter estimation algorithms on the measured data of the system. This 

approach is especially beneficial for control applications when the model is expressed in a suitable 

form, such as transfer function or state space. 

Physics-based modelling technique 

In the physics-based model, the following main components are analysed in detail: chiller, zone, 

heating and cooling coils. 

The chiller rejects heat from a liquid through a vapor compression cycle or an absorption cooling cycle. 

It is composed by four elementary elements: evaporator, condenser, compressor, and expansion 

valve. It can be physically described using the evaporator load and the energy balance equations, and  

the load and energy balance equations. However, the model is not fully capable of predicting the 

modulating nature of the chiller. 

Modelling zones is also a challenging task, especially when the number of zones becomes multiple. 

They can be described by the following equations: 

• energy and mass balance governing equations of the zone: 

• the rate of change of energy in the zone, equal to the difference between the energy 

transferred to the zone by either conduction or convection and the energy removed from the 

zone: 

• the rate of change of energy in the walls, equal to the energy transferred to the walls due to 

the temperature difference between indoor and outdoor air. 

Finally, the heating and cooling coils act as heat exchangers where air loses or gains heat from water 

passing through the coil. Their model is based on the energy balance equations and the mass balance 

equations. : 

In addition to these components, also the humidifier, the cooling model and the mixing box model can 

be added. 

Data-driven modelling approach 

Inside the domain of the data-driven modelling approaches, multiple methods can be discussed:  

• frequency domain models, where slow moving due to the substantial thermal inertia of the 

system can be modelled using the first and second order (over-damped) models with dead 

time. 

• data mining algorithms, like Artificial Neutral Network (ANN) and Support Vector Machine 

(SVM), that are capable of dealing complex and non-linear system dynamics. 

In particular, a significant reduction in energy consumption can be achieved by applying ANN 

model in building HVAC systems. 

• fuzzy logic models, based on if-then-else statements, whose rules are expressed in the form 

of a table or database. 

• statistical models, that describe how a sample of data can be generated from a massive 

dataset by following a particular trend. Some examples are single and multivariate regression, 

output error (OE), Box-Jenkins (BJ), autoregressive integrated moving average (ARIMA), 
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autoregressive exogenous (ARX), autoregressive moving average exogenous (ARMAX) and 

finite impulse response (FIR). 

• State Space models, used for system identification, but for which very few literatures can be 

found in the domain of HVAC systems. 

• geometric models, which use mathematical methods to model real objects thanks to 

computer graphics and computer-aided design (CAD). They represent a system through the 

use of two-dimensional (2D) or three dimensional (3D) geometric shapes such as curves, 

surfaces, and volumes. 

• case-based reasoning, that is not very popular since the model suffers from the problems 

related to the unseen cases. 

• stochastic models, which can deal with the random processes of the HVAC systems that act 

as random variables. Although a large amount of data is a prerequisite, they are characterized 

by a strong versatility, with the possibility to apply it to many physical processes and to 

approximate them to standard normal and uniform distributions.  

• instantaneous models, that comprise a statistical and a pattern model to find the patterns in 

previous data similar to the current data. They allow food thermal load estimation as the 

weather condition are stable; however, on a unique weather day, thermal load estimation is 

not good. 

2.4. A simulation and control model for building energy management  
In this Section, we revise the work (Fanti et al., 2018). 

Introduction 

One of the main problems to be faced in the near future is the increase of the power demand. Indeed, 

in the next decade, power demand is estimated to rise by 19% and the existing infrastructures can 

increase their productivity by only 6%. In this context, this paper proposes a detailed model devoted 

to simulating the building appliance energy consumptions and to controlling the loads usage by a 

strategy that takes into account both the total building energy consumptions and the respect of the 

comfort conditions.  

This demand reduction strategy is implemented by a Building Energy Management System (BEMS) 

and aims at monitoring the real-time building energy consumptions in order to avoid the overcoming 

of power provided by the electric grid and to respect the user comfort by an intelligent power 

reduction based on a priority list of the electric loads. Therefore, the control procedure ensures the 

aggregated power consumption does not exceed the available power profile and avoid curtailment, 

by managing the appliances according to the comfort preferences.  

In this paper, the controller above described is integrated in a Matlab/Simulink tool, where appliances 

and renewable energy sources are modelled in a way that the simulation can not only be used as a 

framework to test the controller, but can also be suitable to sensitize the building occupants. Finally, 

the simulation and control model is validated by experimental data measured in a large size dwelling 

equipped with domestic appliances and renewable energy sources, where smart meters and WiFi 

smart plugs are used to collect energy consumption data and a PLC is used to apply the control 

strategy.  

Simulation framework for appliances modelling and control  

The Simulink model of the simulation and control systems includes 6 modules: the domestic loads (for 

which the state of functioning on/off is provided), the power consumed by each load, the set-points 

of each load, the available energy provided by the electric main grid and by renewable sources, the 

total power cost and the controller.  
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Going into details, the appliances and the renewable energy sources constitute the building micro-

grid. As for the renewable sources, wind and solar renewable sources are modelled and integrated 

inside the system. Regarding the domestic loads, instead, they are characterised by both controllable 

and non-controllable appliances. In the first case, it is possible to switch off or partialize them using a 

controller. Some examples are HVAC system (heating and cooling mode), water heater, dishwasher, 

washing machine and dimmable lamps. On the other hand, the non-controllable appliances are 

passive loads that cannot be switched off or partialized, like ovens, TVs, PCs, irons, refrigerators and 

freezers.  

Finally, the control unit of the BEMS is specified and modelled in a Petri Network (PN) framework and 

manages the appliances by respecting the user preferences.  

HVAC system and water heater models  

The HVAC system is modelled both in heating and cooling functioning mode. The paper provides 

details on the HVAC dynamics equation based on the physics considerations.  

The paper also provides equations to model the heat dynamics.  

Washing machine and dishwasher models  

Washing machines and dishwashers are heterogeneous systems composed of mechanical parts, a 

hydraulic system, a thermal system and an electronic control system. To model such appliances, an 

asynchronous monophasic motor is considered in order to allow the rotation of the machine. In 

addition, a thermal system heats up the water according to the washing program selected by the user.  

The water heaters of washing machines and dishwashers to manage high temperatures are modelled 

as follows:  

Dimmable lamp model  

The dimmable lamp is controlled by a dimmer, i.e., an electronic regulator that is able to control the 

power absorbed by the lamp and vary its lighting intensity.  

Non-controllable loads  

With regards to the non-controllable loads, the paper provides equations to model the oven, the iron, 

the refrigerator, and the freezer.  

The power consumption is assumed to be constant when the considered appliance is on.  

Renewable energies  

The wind and photovoltaic renewable energy sources are modelled considering their production 

forecasts for a 24 h time period. The forecasted power production and time data vectors are saved in 

a lookup table in the Simulink model for both renewable energy sources.  

 

2.5. A generalized stochastic model for the simulation of occupant presence 
In this Section, we revise the work (Page et al., 2008). 

Each human being emits heat and ‘‘pollutants’’ (such as water vapor, carbon dioxide, etc.) and 

therefore directly modify the indoor environment. Occupants also interact with a building to enhance 

their personal comfort. It is for these reasons that their presence should be considered inside a 

building modelling procedure. 
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This paper describes an algorithm for the simulation of occupant presence by considering occupant 

presence as an inhomogeneous Markov chain interrupted by occasional periods of long absence. The 

resulting model has proven its capacity to realistically reproduce key properties of occupant presence 

such as times of arrival and departure, periods of intermediate absence and presence as well as 

periods of long absence from the zone. 

Methodology 

The model of occupancy is destined to deliver the metabolic heat gains and pollutants released by the 

occupants within the zone and to serve as an input for the use of windows, lighting appliances and 

other electrical and water appliances. 

It is based on the hypothesis that the presence of occupants sharing the same zone can then be 

simulated by multiplying the obtained pattern by the total number of occupants (this case of collective 

behavior would correspond to the occupancy of a meeting-room), or by simulating each occupant 

separately and then adding the produced patterns of presence. 

In addition, the probability of presence at a time step is assumed to be dependent on the state of 

presence at the previous time step. 

Development 

The desired model should be capable of generating a time series of zeros (absence) and ones 

(presence), that should not simply reproduce the pattern given as an input (the profile of probability 

of presence and the parameter of mobility), but create a pattern that never repeats itself while 

reproducing the statistics of the real world it is simulating. 

The model was then based on the ‘‘inverse function method’’ (IFM) that can generate a sample (in our 

case a time series) of events from a given probability distribution function (PDF). 

However, simple models were only capable of producing a Gaussian distribution around the average 

of the empirical data. This showed that, although the Markov chain model works well at reproducing 

periods of short absence and presence for one day, it needs to be complemented in order for the 

model to generate long periods of absence. These have been included by adding to the algorithm the 

possibility to start, at random, a period of long absence at each time step. 

Algorithm 

The model was implemented as a MATLAB script according to the following steps: 

• given the probability of starting a period of long absence (derived from the number of long 

absences happening in a year, entered as an input), check whether the occupant starts a 

period of long absence or not by using the IFM; 

• if so, determine the length of that absence given the distribution of the duration of periods of 

long absences (entered as an input) with the same method, during which period the occupant 

is considered to be absent; 

• at his return, or if he did not start a long period of absence, we find ourselves in the case of 

the Markov chain of ‘‘usual daily’’ changes in state of occupancy; 

• determine the next state of presence by the use of the IFM. 

2.6 Conclusion 
Considering what discussed in the papers previously analysed, it has been decided to build and RC 

model for the room considered in our project: in fact, knowing the detailed geometry of the room, the 

materials used for all its components and the physics governing the problem, it is possible to easily 

derive the values of all resistances and capacitances of the equivalent circuit. 
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In addition, it has been established to include a stochastic representation of people’s presence inside 

the model: following what described by Page et al., it will allow realistically introducing the influence 

of people on our room parameters. 

Finally, as for the HVAC system, it has been stated to start from the model described by Fanti et al. 

and arrange it according to our needs (avoiding, for example, the cost analysis). 
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3. RC Modelling 

3.1. Brief description 
There is an analogy between heat transfer in building components and current flow in electrical 

circuits. This analogy helps to derive the equations for thermal dynamics of building environments 

easily using circuit theory. 

This is the reason why it has been adopted the RC modelling, which is a subcategory of grey-box 

modelling.  

3.2. Advantages and disadvantages 
The following main advantages of RC modelling have been identified: 

• the identified parameters have some physical meaning, and hence their values can give some 

idea about the correctness of the identified model; 

• since grey-box models are between white-box and black-box models, the time and effort 

required to obtain such models also, in general, are situated between white-box and black-

box models; 

• model validation through extra experiments may not be needed if the obtained RC values are 

reasonable. 

The main disadvantages of RC modelling, instead, are: 

• the determination of an appropriate model structure reflecting the dynamics of a 

subcomponent, which may not be easy; 

• although there are some guidelines to assign the number of Rs and Cs for building 

components, for some complicated building structures, constructing an RC thermal network 

may be hard. 

3.3. Methodology 
Considering the relationship between building components and electrical circuits, an RC model can be 

interpreted according to the following analogies: 

Electrical circuit Thermal circuit 

Voltage Temperature 
Current Heat Flow 

Electrical Conductance Thermal Conductance 
Electrical Resistance Thermal Resistance 

Electrical Capacitance Thermal Capacitance 
Current Source Heat Source 

where capacitance represents thermal capacity (i.e., the property of objects to describe its capability 

to store heat), while resistance represents thermal resistance (i.e., the property of objects or materials 

to resist the heat flow through it).  

In addition, to understand an RC model, the following aspect must be kept in mind: 

• the order of such kind of model is determined by the number of lumped capacitances (nodes); 

• the physical interpretation of the parameters is dependent on how the building is divided into 

entities in the model. 
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Finally, the values of R and C are estimated based on samples of inputs and outputs by applying an 

identification algorithm, e.g., nonlinear regression algorithm, which typically minimizes a norm of 

either simulation errors or prediction errors. The boundaries on the parameters in the identification 

process are normally estimated from a rough description of the building geometry and materials. 

The way in which the RC model is integrated in our building modelling project is represented by the 

scheme below. 

 

Figure 1 Integration of the RC model into a building modelling project 

3.4. Equations 
Using RC network, our building (MVP) can be modelled as follow: 

 

Figure 2 Model of an RC network of a building 

Using the electrical-thermal analogy described above, we can determine that our current source (Heat 

flow source) will be the sum of the current (Heat flow) generated by the HVAC and the current (Heat 

flow) generated by the human presence. 

Part of this current will be stored in the room, thus the presence of the capacitor, and part of it will be 

lost through the walls, windows, floor, ceiling, and doors. This loss is determined by the thermal 

resistance of each material of the building (e.g., concrete, wood), thus the presence of the resistances. 
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We can finally deduce the following equations: 

𝑖𝐻𝑉𝐴𝐶 + 𝑖𝐻𝑢𝑚𝑎𝑛 = 𝐶.
𝑑𝑉𝑟𝑜𝑜𝑚

𝑑𝑡
+ ∑ 𝐼𝑖

𝑖

 

𝐼𝑖 = (𝑇𝑟𝑜𝑜𝑚 − 𝑇𝑖)/𝑅𝑖 

𝑉𝑟𝑜𝑜𝑚 = ∆𝑉𝑤𝑎𝑙𝑙 =  ∆𝑉𝑤𝑖𝑛𝑑𝑜𝑤 = ∆𝑉𝑐𝑒𝑖𝑙𝑖𝑛𝑔 = ∆𝑉𝑓𝑙𝑜𝑜𝑟 = ∆𝑉𝑑𝑜𝑜𝑟 
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4. Building Analysis 
In order to define the resistance values to introduce into the model, a preliminary analysis of the 

stratigraphy of the opaque and glazed elements has been performed. 

4.1. Stratigraphy  

Opaque elements 

As for the opaque elements, we can distinguish the vertical (external walls and internal partitions) and 

horizontal ones (floor and roof). 

As for the external walls, starting from the outside we have: 

• white concrete panels on inox substructure (3cm) 

• air gap (4 cm) 

• insulation layer in mineral wool (20 cm) 

• concrete structure (20 cm) 

• systems cavity (5 cm) (filled with PUR above windows) 

• cardboard (2.5cm) 

• finishing with painting (1.5 cm) 

Regarding the internal walls, instead, we have one in contact with the corridor: 

• painting (1.5 cm) 

• concrete structure (20 cm) 

• system’s gap (5 cm) 

• cardboard (2.5 cm) 

• finishing with painting (0.5 cm) 

and one with the room: 

• finishing with painting (0.5 cm) 

• cardboard panels (2.5 cm) 

• steel structure with acoustic insulation (4.8 cm) 

• cardboard panels (2.5 cm) 

• finishing with painting (0.5 cm) 

Moving to the horizontal elements, the floor stratigraphy is the following: 

• linoleum finishing (dark coloured) 

• concrete structure (alveolar slab + compression screed, total 31 cm) 

• inspectable plenum (30 cm) 

• counter ceiling panels in mineral fibres (2 cm) 

Finally, as for the roof: 

• aggregates finishing (4 cm) 

• elastomeric waterproof membrane (0.3 mm) 

• insulation in PUR (20 cm) 

• vapour barrier (0.2 mm) 

• concrete structure (alveolar slab + compression screed, total 31 cm) 

• inspectable plenum (33 cm) 

• counter ceiling panels in mineral fibres (2 cm) 
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Windows and doors 

As for the glazed elements, all windows are characterised by a double glazing with aluminium frame. 

They are equipped with electrical sunshade screens. 

The doors, instead, are fully opaque and are characterised by an HPL finishing on the room side and 

an MDF finishing on the other. Their thickness is respectively of 4mm and 8mm. The core of the door 

is filled with EPS insulation 2.5 cm thick. 

Equipment 

As for lighting, the counter ceiling is equipped with 24 light points. Instead, as for heating, two 

electrical radiators are positioned on the NW side. 

4.2. Resistance values 
Knowing the materials composing each building element, the unitary resistance values have been 

calculated for each stratigraphy. The detailed calculations are reported in the appendix (A1). Then, 

the dispersing surfaces have been calculated in order to find the final Resistance values of our rooms. 

The procedures performed to compute the dispersing surfaces and to find the final Resistance values 

for the two rooms are detailed in the Appendix (A2 and A3). 

4.3. Capacitor value 
The thermal capacity of each of the two rooms (which have equal dimensions) is given by the following 

formula: 

𝐶 = 𝑚 ∙ 𝑐𝑚 

where: 

• m is the mass of air contained in the room [kg] 

• cm is the specific heat [J/(kg.K)] 

We assume to have a temperature of 19°C (292,15K) and a relative humidity ψ of 60% at a pressure 

of 1atm. To calculate the thermal capacity, we firstly calculate the density of the humid air as follows: 

𝜌 =  
𝑝𝑎

𝑅𝑎𝑇
+

𝑝𝑣

𝑅𝑣𝑇
 

where: 

• pa : partial pressure of dry air [Pa] 

• Ra : specific constant of dry air =  287,058 [J/(kg.K)] 

• T : absolute temperature [K] = 292,15K 

• pv : pressure of water vapour [Pa] 

• Rv : specific constant of water vapour =  461,495 [J/(kg.K)] 

The partial pressures pa and pv are given by the following equations: 

𝑝𝑣 =  𝜑 ∙ 𝑝𝑠𝑎𝑡 =  𝜑 ∙ 610.78 ∙ 10
7.5 𝑇−2048.625

𝑇−35.85 = 0.6 ∙ 610.78 ∙ 10
7.5∙292.15−2048.625

292.15−35.85 = 1318 𝑃𝑎 

𝑝𝑎 = 𝑝 − 𝑝𝑣 = 101325𝑃𝑎 − 1318.3𝑃𝑎 = 100007 𝑃𝑎 

where: 

• ψ is the relative humidity  
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• psat is the pressure of saturation 

• p is the ambient pressure 

So, the density of the air is: 

𝜌 =  
𝑝𝑎

𝑅𝑎𝑇
+

𝑝𝑣

𝑅𝑣𝑇
=

100007𝑃𝑎

287,058
𝐽

𝑘𝑔 ∙ 𝐾
∙ 292.15𝐾

+
1318𝑃𝑎

461,495
𝐽

𝑘𝑔 ∙ 𝐾
∙ 292.15𝐾

= 1.202
𝑘𝑔

𝑚3
 

Secondly, we calculate the specific heat cm as follows: 

𝑐𝑚 =  𝑐𝑝𝑎 + 𝑥 ∙ 𝑐𝑝𝑣 = 𝑐𝑝𝑎 + (0.622 ∙
𝑝𝑣

𝑝 − 𝑝𝑣
) ∙ 𝑐𝑝𝑣 = 

= 1.005
𝑘𝐽

𝑘𝑔 ∙ 𝐾
+ (0.622 ∙

1318𝑃𝑎

101325𝑃𝑎 − 1318𝑃𝑎
) ∙ 1.87

𝑘𝐽

𝑘𝑔 ∙ 𝐾
= 1.020

𝑘𝐽

𝑘𝑔 ∙ 𝐾
 

where: 

• cpa is the specific heat of dry air = 1,005 [kJ/(kg.K)] 

• x is the absolute humidity 

• cpv is the specific heat of water vapour = 1,87 [kJ/(kg.K)] 

Being the dimensions of the room 7.30 x 10.70 x 3.22 m, its volume is 251.51 m3. So, concluding, the 

thermal capacity of the room is:  

𝐶 = 𝑚 ∙ 𝑐𝑚 = 𝜌𝑉 ∙ 𝑐𝑚 = 1.202
𝑘𝑔

𝑚3
∙ 251.51𝑚3 ∙ 1.020

𝑘𝐽

𝑘𝑔𝐾
= 308.36

𝑘𝐽

𝐾
 

4.4. Final RC values of the model 
Considering what discussed in the previous paragraphs, a summary of the parameter values inserted 

into the model is reported in the table below. 

Variable  Unit of measure  Room 1  Room 2  

R_out  [K/W]  0.00937  0.00736  

R_corr  [K/W]  0.02068  0.07456  

R_int_room  [K/W]  0.00956  0.00956  

C  [kJ/K]  308.36  308.36  
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5. Probabilistic model of the occupants 
In order to model the presence of the students inside the room, a probabilistic model has been 

implemented, that describes the probability to find students inside the room. In this model, 0 indicates 

no probability to find students in the room, whereas with a probability of 1 it is certain to have 

students in the class. In order to implement the model, a typical school day has been considered, with 

the beginning of the morning lectures at 8.30 a.m., a pause of thirty minutes at 10 a.m., a lunch break 

from 12 a.m. to 1.30 p.m., and the afternoon classes until 5 p.m., with a thirty minutes break in the 

middle.  

The graphical representation below represents the probabilistic curve of the school day described. 

From 7 p.m. to 7 a.m. the probability is negligible. Then, when the university opens, the probability 

linearly rises to 95% until 8.30 a.m., when the lecture starts, and remains constant until 10 a.m. Having 

a break of 30 minutes, between 10 and 10.15 a.m. the probability linearly lowers to 50% and comes 

back at the previous value by the end of the pause. The probability remains constant at 95% until the 

noon break, when the students progressively leave the room in order to have lunch. Therefore, the 

probability curve significantly decreases. 

Following the same approach, the probabilistic model during the afternoon has a symmetric behavior 

with respect to the morning one, but with a slower decrease of the occupancy probability at the end 

of the lectures (between the end of the classes and the close of the university, there are two hours, 

and not one and half as in the morning). 

 

Figure 3 Probabilistic model of the occupants 
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6. Simulink model design 
Our Simulink model is composed of 4 blocks: the model of the room 251, the model of the room 252, 

the HVAC system, and a block that models the heat gain of people. 

  

Figure 4 Simulink model of the rooms 251 and 252 

6.1. Room 251 and 252 
The blocks representing the models of room 251 and 252 take as an input the heat gain that come 

from HVAC and human presence in the room, the temperature outside, the temperature of the other 

room (for instance the block room 251 take as in input the temperature of the room 252), and the 

temperature of the corridor. It gives as an output the temperature inside the room. 

As mentioned before, in order to model the thermal behaviour of the rooms, we used the RC 

modelling method, where the capacity C represents the tendency of the room to store heat whereas 

the resistances represent the heat loss through thermal conductivity and convection. As for the 

resistances R, in particular, 3 main resistances have been defined in the block: the first one 

representing the heat loss with the outside, the second one representing the heat loss with the 

adjacent room, and the third one representing the heat loss with the corridor. 

These latter are used to define the heat loss that stems from these 3 resistances, that is finally 

subtracted from the thermal heat gain to get the available heat in the room. 

 

Figure 5 Simulink model of the Room 251 
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6.2.  Heating system 
Our heating system is modeled according to the following equation: 

𝑃 = 𝑘 ∙
𝑑𝑇

𝑑𝑡
 

It means that the heat provided by the HVAC is proportional to the difference between the desired 

(set-point) and measured indoor temperatures. 

𝑃 is then saturated such as to respect physical constraints of the HVAC (i.e., maximum power that can 

be provided by the HVAC). 

 

Figure 6 Simulink model of the HVAC system 

6.3. Human presence function 
This block is used to model the thermal gain provided by human present in the room. 

As described in the section 5, it uses a stochastic algorithm to determine the number of people present 

in the room every hour during a day. Using this algorithm, we can then multiply the number of people 

by a gain in order to get the total heat gain. In particular, in order to define this latter, we have 

considered that a human being generates around 80 W of power as an average during the day. 
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7. Some illustrative simulations 

7.1. Human presence 
As explained above, we simulated the number of students in the room 251 during a week using a 

stochastic algorithm. Thus, we get the following graph, where on the y-axis the number of students is 

indicated: 

 

Figure 7 Human presence in the Room 251 

7.2. External temperature 
The external temperature data represents the temperature in Cesson-Sévigné in a week since the 

Campus of CentraleSupélec is located there. Its variation during the day is represented in the graph 

below. 

7.3. Temperature in room 251 
We simulated to model without turning on the HVAC. As we can see in the graph below, the 

temperature in the 251 is affected by the external temperature (same shape of the graph) while being 

also affected by the human presence: in fact, we can notice a temperature drop in the last 2 days of 

Figure 8 External temperature of Cesson-Sévigné 
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the week, due to the fact that no one is present in the room and we do not have any heat gain coming 

from students.  

 

Figure 9 Temperature variation of the Room 251 

7.4. Temperature in room 252 
We simulated to model without turning on the HVAC. As we can see in the graph below, the 

temperature in the room 252 has almost the same shape as the one in room 251, but is lower in terms 

of temperature values than room 251. This is mainly due to the fact that there is not any human 

presence in this room and, therefore, we do not have any heat gain coming from students.  

 

 

 

 

  

Figure 10 Temperature variation of the Room 252 
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8. Conclusion 
Designing a building model is a complex operation, that needs to consider a significant number of 

variables. As we have seen, in particular, a decisive role is played by the human presence, that 

significantly impacts on the heat gains. However, this aspect is also the most difficult to predict, either 

in terms of number, or in terms of typology of occupants (e.g. males, females, age, activity and 

metabolism). 

Thanks to the model we have realised, it is possible to partially manage this latter problem, thanks to 

the possibility to change manually the human heat gain per person. However, the model could 

certainly be improved, for example considering the solar radiation, the solar exposition and the 

humidity, which play a significant role either in the design and control of an HVAC system, or to 

guarantee a proper level of comfort for the user. 
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Appendix 

A1.  Calculation of the unitary resistances  
In the tables below, the resistance of each building component has been calculated, considering the 

stratigraphy listed in the section “Building analysis - Stratigraphy”. 

External wall – CODE EW1 

Layer Thickness  
[m] 

Density 
[kg/m3] 

Thermal conductivity λ 
[W/(m.K)] 

OUTDOOR    

Cement board  0.030 1280 0.350 

Air gap 0.040 1 0.218 

Mineral wool 0.200 100 0.035 

Concrete structure 0.200 2200 1.610 

Air gap 0.050 1 0.273 

Cardboard 0.025 900 0.210 

Finishing 0.015 1400 0.700 

INDOOR    

Resistance [m2.K/W] 6.60 

 

External wall [top window] – CODE EW2 

Layer Thickness  
[m] 

Density 
[kg/m3] 

Thermal conductivity λ 
[W/(m.K)] 

OUTDOOR    

Cement board  0.030 1280 0.350 

Air gap 0.040 1 0.218 

Mineral wool 0.100 100 0.035 

PUR insulation 0.100 32 0.032 

Concrete structure 0.200 2200 1.610 

PUR insulation 0.050 32 0.032 

Cardboard 0.025 900 0.210 

Finishing 0.015 1400 0.700 

INDOOR    

Resistance [m2.K/W] 8.25 

 

Internal wall [corridor] – CODE IW1 

Layer Thickness  
[m] 

Density 
[kg/m3] 

Thermal conductivity λ 
[W/(m.K)] 

INDOOR    

Finishing 0.015 1400 0.700 

Concrete structure 0.200 2200 1.610 

Air gap 0.050 1 0.273 

Cardboard 0.025 900 0.210 

Finishing 0.005 1700 1.470 

INDOOR    

Resistance [m2.K/W] 0.72 
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Internal wall [room] – CODE IW2 

Layer Thickness  
[m] 

Density 
[kg/m3] 

Thermal conductivity λ 
[W/(m.K)] 

INDOOR    

Finishing 0.005 1700 1.470 

Cardboard 0.025 900 0.210 

Mineral wool (acoustic) 0.048 2200 1.610 

Cardboard 0.025 900 0.210 

Finishing 0.005 1700 1.470 

INDOOR    

Resistance [m2.K/W] 1.88 

 

Floor – CODE F1 

Layer Thickness  
[m] 

Density 
[kg/m3] 

Thermal conductivity λ 
[W/(m.K)] 

INDOOR    

Linoleum  0.003 1200 0.170 

Concrete structure 0.310 2300 2.300 

Plenum 0.300 1 1.287 

Mineral fibres boards 0.020 280 0.041 

INDOOR    

Resistance [m2.K/W] 1.15 

 

Roof – CODE R1 

Layer Thickness  
[m] 

Density 
[kg/m3] 

Thermal conductivity λ 
[W/(m.K)] 

OUTDOOR    

Aggregates   0.040 1500 0.700 

Elastomeric waterproof 
membrane 

0.0032 1000 0.200 

PUR insulation 0.200 40 0.032 

Vapour barrier  0.0002 940 0.400 

Concrete structure 0.310 2300 2.300 

Plenum 0.330 1 2.031 

Mineral fibres boards 0.020 280 0.041 

INDOOR    

Resistance [m2.K/W] 7.25 

 

Window 1 [0.9m x 1.86m] – CODE W1 

Layer Thickness [m] 

OUTDOOR  

Float glass 0.006 

Gap - Argon 0.016 

Float glass 0.008 

INDOOR  

Resistance [m2.K/W] 0.26 
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Window 2 [1.80m x 1.86m] – CODE W2 

Layer Thickness [m] 

OUTDOOR  

Float glass 0.006 

Gap - Argon 0.016 

Float glass 0.008 

INDOOR  

Resistance [m2.K/W] 0.28 

 

Window 3 [2.30m x 1.86m] – CODE W3 

Layer Thickness [m] 

OUTDOOR  

Float glass 0.006 

Gap - Argon 0.016 

Float glass 0.008 

INDOOR  

Resistance [m2.K/W] 0.27 

 

Window 4 [1.90m x 2.04m] – CODE W4 

Layer Thickness [m] 

INDOOR  

Float glass 0.006 

Gap - Air 0.016 

Float glass 0.008 

INDOOR  

Resistance [m2.K/W] 0.35 

 

Door 1 [1.40m x 2.04m] – CODE D1 

Layer Thickness [m] 

INDOOR  

HPL finishing 0.004 

EPS insulation 0.025 

MDF finishing 0.008 

INDOOR  

Resistance [m2.K/W] 0.56 

  

Door 2 [0.90m x 2.04m] – CODE D2 

Layer Thickness [m] 

INDOOR  

HPL finishing 0.004 

EPS insulation 0.025 

MDF finishing 0.008 

INDOOR  

Resistance [m2.K/W] 0.52 
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A2. Calculation of the dispersing surfaces  

Computation criteria 

Regarding horizontal surfaces, they must include: 

• the whole thickness of the walls if these latter are in contact with the outside or with a non-

heated zone; 

• half thickness of the walls if these latter are in touch with another heated zone.   

As for vertical surfaces, they must include: 

• the entire thickness of the floors if these latter are in touch with the outside, the ground or a 

non-heated zone; 

• half thickness of the floors if these latter are in touch with another heated zone. 

Finally, for windows and doors the gross area must be considered.  

An example for each category of technical element is represented below. 
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Computation of the dispersing areas 

In order to calculate the dispersing areas of each typology of technical element, the vertical surfaces 

of the room have been divided into homogeneous parts. The subdivision and the characteristics of 

each sub-zone are reported in the figures below. 
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After having divided the vertical surfaces of the room, the dispersing areas of each technical element 

have been calculated considering the orientation of the surfaces. This process will also allow 

considering the different irradiance on each surface. 

The results obtained for each of the two rooms are reported in the tables below. 

ROOM 1 NE NW SW SE Horizontal 

OPAQUE ELEMENTS [m2] 

External wall [EW1] 21.82 15.58 - - - 

External wall [EW2] 2.07 10.30 - - - 

Internal wall [IW1] - - 23.16  - 

Internal wall [IW2] - - - 41.93 - 

Floor [F1] - - - - 90.64 

Roof [R1] - - - - 90.64 

GLAZED ELEMENTS  

Window 1 [W1] - 6.70 - - - 

Window 2 [W2] - 13.40 - - - 

Window 3 [W3] 4.28 - - - - 

Window 4 [W4] - - 3.88 - - 

DOORS      

Door 1 [D1] - - 2.86 - - 

Door 2 [D2] - - - 1.84 - 
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ROOM 2 NE NW SW SE Horizontal 

OPAQUE ELEMENTS [m2] 

External wall [EW1] 21.82 - 9.83 15.58 - 

External wall [EW2] 2.07 - 3.24 10.30 - 

Internal wall [IW1] - - 5.98  - 

Internal wall [IW2] - 41.93 - - - 

Floor [F1] - - - - 90.64 

Roof [R1] - - - - 90.64 

GLAZED ELEMENTS  

Window 1 [W1] - - 3.35 6.70 - 

Window 2 [W2] - - 3.35 13.40 - 

Window 3 [W3] 4.28 - - - - 

Window 4 [W4] - - - - - 

DOORS      

Door 1 [D1] - - 2.86 - - 

Door 2 [D2] - 1.84 - - - 
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A3. Calculation of the resistance values  
Knowing the unitary resistances and the dispersing surfaces, it is possible to calculate the resistance 

values that will be introduced into the model. They are identified considering the heat losses towards 

the outside, the neighbour rooms and the corridor. To define the final resistance towards the outdoor, 

the following calculations have been performed: 

𝑅𝑜𝑢𝑡 =
1

1
𝑅𝑁𝐸

+
1

𝑅𝑁𝑊
+

1
𝑅𝑅𝑜𝑜𝑓

= 0.009375
𝐾

𝑊
 

where: 

𝑅𝑁𝐸 =
1

𝐴𝐸𝑊1

𝑅𝐸𝑊1
+

𝐴𝐸𝑊2

𝑅𝐸𝑊2
+

𝐴𝑊3

𝑅𝑊3

=
1

21.82 𝑚2

6.60
𝑚2𝐾

𝑊

+
2.07 𝑚2

8.25 
𝑚2𝐾

𝑊

+
4.28 𝑚2

0.27 
𝑚2𝐾

𝑊

= 0.059054
𝐾

𝑊
 

𝑅𝑁𝑊 =
1

𝐴𝐸𝑊1

𝑅𝐸𝑊1
+

𝐴𝐸𝑊2

𝑅𝐸𝑊2
+

𝐴𝑊1

𝑅𝑊1
+

𝐴𝑊2

𝑅𝑊2

=
1

15.58 𝑚2

6.60
𝑚2𝐾

𝑊

+
10.30 𝑚2

8.25 
𝑚2𝐾

𝑊

+
6.07 𝑚2

0.26 
𝑚2𝐾

𝑊

+
13.40 𝑚2

0.28 
𝑚2𝐾

𝑊

= 0.012947
𝐾

𝑊
 

𝑅𝑅𝑜𝑜𝑓 =
𝑅𝑅𝑜𝑜𝑓

𝐴𝑅𝑜𝑜𝑓

=
7.25

𝑚2𝐾
𝑊

90.64 𝑚2
= 0.079987

𝐾

𝑊
 

The same procedure is valid for the resistance towards the neighbour rooms and the corridor: 

𝑅𝑐𝑜𝑟𝑟 = 𝑅𝑆𝑊 = 0.020678
𝐾

𝑊
 

𝑅𝑆𝑊 =
1

𝐴𝐼𝑊1

𝑅𝐼𝑊1
+

𝐴𝑊2

𝑅𝑊2
+

𝐴𝐷1

𝑅𝐷1

=
1

23.16 𝑚2

0.72
𝑚2𝐾

𝑊

+
3.88 𝑚2

0.35 
𝑚2𝐾

𝑊

+
2.86 𝑚2

0.56 
𝑚2𝐾

𝑊

= 0.020678
𝐾

𝑊
 

𝑅𝑖𝑛𝑡_𝑟𝑜𝑜𝑚 =
1

1
𝑅𝑆𝐸

+
1

𝑅𝐹𝑙𝑜𝑜𝑟

= 0.009555
𝐾

𝑊
 

𝑅𝑆𝐸 =
1

𝐴𝐼𝑊2

𝑅𝐼𝑊2
+

𝐴𝐷2

𝑅𝐷2

=
1

41.93 𝑚2

1.88
𝑚2𝐾

𝑊

+
1.84 𝑚2

0.52 
𝑚2𝐾

𝑊

= 0.038697
𝐾

𝑊
 

𝑅𝐹𝑙𝑜𝑜𝑟 =
𝑅𝐹𝑙𝑜𝑜𝑟

𝐴𝐹𝑙𝑜𝑜𝑟

=
1.15

𝑚2𝐾
𝑊

90.64 𝑚2
= 0.012688

𝐾

𝑊
 

The same procedure is applied for the room 252, obtaining the following results: 

𝑅𝑜𝑢𝑡 = 0.00736
𝐾

𝑊
 

𝑅𝑐𝑜𝑟𝑟 = 0.074556
𝐾

𝑊
 

𝑅𝑖𝑛𝑡_𝑟𝑜𝑜𝑚 = 0.009555
𝐾

𝑊
 

 


