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Abstract
On the 11th of February 2016, the Laser Interferometer Gravitational-wave Observa-

tory (LIGO) and the Virgo collaboration jointly announced the first direct observation of
a gravitational wave. Coming from a binary black hole merger, the detection was made
possible thanks to match filtering techniques which require a collection of accurate wave-
form models. In opposition to compact binary mergers, minute-long transients include a
wide range of astrophysical phenomena including accretion disk instabilities, fallback of
matter onto neutron stars and magnetar flares. Because of their inherent complexity, most
of these phenomena are poorly modeled, preventing the use of matched filtering methods.
Such events are thus probed through the template-free excess-power method, consisting in
searching for a local excess of power in the time-frequency (TF) space correlated between
detectors. Their detection is mainly constrained by environmental and instrumental tran-
sient noises called glitches. Glitches contaminate burst searches, reducing the amount of
useful data and limiting the sensitivity of current algorithms. It is therefore of primordial
importance to distinguish them from potential burst signals. In this thesis, I propose to
build a Convolutional Neural Network (CNN) in order to highlight both burst signals and
glitches in TF maps. The CNN is designed to set apart groups of pixels resembling glitches,
acting both as an anomaly detector and a classifier. A thorough analysis shows that our
new algorithm is competitive with the current state-of-the-art burst pipelines while being
much faster.

Chapter 1 introduces the framework of General Relativity needed for gravitational-
wave detection. In Chapter 2, we give details about the detectors’ architecture as well as
the main sources of noise. Chapter 3 reviews the general methods implemented to detect
bursts and provides extensive details about long-duration searches. An introduction to
deep learning with a special focus on convolutional neural networks is found in Chapter
4. In Chapter 5, we present the method implemented in this thesis as well as some major
improvements based on a former analysis. Chapter 6 is finally dedicated to the inclusion of
our algorithm into an existing pipeline, called Pyxel. The results of our new pipeline to the
Burst Benchmark Project are also presented and prospects for future work are envisaged.
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Chapter 1

From General Relativity to
Gravitational Waves

1.1 Fundamentals of General Relativity

1.1.1 Metric tensor and geodesic equations

In General Relativity (GR), the trajectory of free-falling objects in spacetime is described
through the geodesic equations. Prior to considering the latter, let us introduce the defi-
nition of spacetime itself. In GR, spacetime unifies the three dimensions of space and one
dimension of time into a single four-dimensional manifold. It is described by a second-
order tensor known as the metric. In turn, the metric allows to define the notion of distance
which is fundamental in order to characterize the motion of objects. If we consider two
points in a manifold, infinitely close to each other, the distance ds between them is defined
as:

ds2 = gµνdxµdxν (1.1)

where gµν is the metric tensor and xµ are coordinates of spacetime (t, x, y, z). Einstein’s
summation convention is used, meaning that there exists an implicit sum on repeated in-
dices (here µ and ν).

The metric tensor leads to a calculation of the deformation of spacetime, i.e. it permits
to evaluate the curvature of spacetime at every point of a manifold. If we consider a
classical Euclidean space in 2 dimensions, the metric in cartesian coordinates reduces to:

g =

(
1 0
0 1

)
(1.2)

and the distance between two points of this space is expressed as:

ds2 =
(
dx dy

) (1 0
0 1

)(
dx
dy

)
= dx2 + dy2 (1.3)

which corresponds to the Euclidean distance formula. Note that the time coordinate does
not appear in the Euclidean metric, i.e. space and time are not coupled. Newton’s laws of
motion, built within the Euclidean formalism, therefore describe a universe in which time
is absolute. In the case of special relativity, the Minkowski metric is used to describe the
flat space in which space and time are associated:

g =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (1.4)
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Now that we know how to define a distance in a four-dimensional manifold, let us
consider a particle moving freely under the influence of a gravitational field. The particle
is said to be in free-fall since it is not subject to external forces. According to the Principle
of Equivalence, stating that the inertial mass is equivalent to the gravitational mass, the
particle must be at rest with respect to a freely falling coordinate system noted Xµ(x).
Setting T ≡ X0, the following equation is therefore satisfied locally [1]:

d2Xµ

dT2 = 0 (1.5)

Using the chain rule of partial derivatives, this leads to:

dXµ

dT
=

dxν

dT
∂Xµ

∂xν
(1.6)

By differentiating one more time with respect to T,

d2Xµ

dT2 =
d2xν

dT2
∂Xµ

∂xν
+

dxν

dT
dxα

dT
∂2Xµ

∂xν∂xα
= 0 (1.7)

Therefore:
d2xν

dT2
∂Xµ

∂xν
= −dxν

dT
dxα

dT
∂2Xµ

∂xν∂xα
(1.8)

Multiplying both sides by ∂xλ

∂Xµ and using the product rule

∂Xµ

∂xν

∂xλ

∂Xµ
= δλ

ν , (1.9)

we have:
d2xλ

dT2 = −dxν

dT
dxα

dT

[ ∂2Xµ

∂xν∂xα

∂xλ

∂Xµ

]
(1.10)

This gives the equation of motion:

d2xλ

dT2 + Γλ
να

dxν

dT
dxα

dT
= 0 (1.11)

where Γλ
να is the affine connection, defined by:

Γλ
να =

∂2Xµ

∂xν∂xα

∂xλ

∂Xµ
(1.12)

Expression (1.11) settles the geodesic equations. Their solutions, known as geodesics
are the generalization, in curved space, of a straight line in flat space. Just as in Newton’s
theory where free objects follow straight lines, in General Relativity free objects follow
geodesics. Within equations (1.11), the affine connections appear, noted Γλ

να. These con-
nections determine the gravitational force as seen from an external observer in a locally
inertial frame of reference.

To understand the role of the connections Γλ
να in GR truly, consider the surface of a

sphere as a curved manifold as shown in the left panel of Fig. 1.1. At every point on
this surface, we can define tangent spaces on which we can build vectors. If we want to
compare these vectors, we need to transport one of the two vectors in the tangent plane of
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FIGURE 1.1: Left: Illustration of tangent planes defined at the surface of a sphere. The
covariant derivative is used to compare vectors defined on different planes. Right: Ge-
ometrical representation of the parallel transport on a curved manifold. If we transport
a vector from A to B, then from B to N and finally come back to A, the direction of the

vector will be altered.

the other vector. For this, a mathematical tool exists and is called the covariant derivative:

∇µVν = ∂µVν + Γν
µρVρ (1.13)

For a vector V, defined in one plane, the covariant derivative has a term containing the
connection coefficients. The translation of the vector V along a path defined on the surface
is not well defined and depends on the path along which the vector is translated. As an
example, let us take a vector defined at a point A along the equator (see right panel of Fig.
1.1). If we transport the vector first along the equator to point B, then along a meridian
to the north pole noted N, and finally transport it along another meridian back to A, the
orientation of this vector will differ from the original vector. This is a direct consequence
of the curvature of the surface: parallel transport does not yield the same result whether
the vector lies on a flat or curved space. In the case of an Euclidean space, which is flat,
the direction of the vector would be unaltered. The connection coefficients in (1.13) serve
to express this change of direction and contain the information related to the curvature of
the manifold.

As a first result, we obtained that the connections are responsible for the gravitational
force in expression (1.11). Then, we concluded that these connections express the curva-
ture of the manifold in the definition of the covariant derivative (1.13). Since the metric
tensor, used to introduce the notion of distance, defines spacetime itself, it must be related
to the connection coefficients. However, under some hypotheses1 we can show that only
one coefficient is compatible. It is expressed as:

Γα
µν =

1
2

gαβ(∂µgνβ + ∂νgµβ − ∂βgµν) (1.14)

Note that, even if the above expression involves the metric tensor, Γα
µν is not a tensor. This

connection, called the Christoffel symbol, is of primordial importance in General Relativ-
ity. The Christoffel symbol associates the curvature of spacetime with the metric. If we
look back at the geodesic equations (1.11), the curvature of spacetime itself is now respon-
sible for the force of gravitation, which is the fundamental principle in General Relativity.

1The coefficient must be torsion-free (Γν
µρ = Γν

ρµ) and the covariant derivative of the metric should be zero
(∇αgµν = 0), i.e. the metric should be preserved everywhere on the manifold.
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1.1.2 Einstein’s equations

In order to solve the equations of motion (1.11), we need to evaluate the Christoffel sym-
bols, and consequently the metric tensor. For this, Einstein assumed that matter and en-
ergy are responsible for the curvature of spacetime. He connected the metric tensor gµν to
the stress-energy tensor Tµν via his famous Einstein’s equations:

Rµν −
1
2

Rgµν + Λgµν =
8πG

c4 Tµν (1.15)

where G is the Cavendish gravitational constant and c is the speed of light in vacuum. As
the metric tensor is defined on a four-dimensional spacetime, the above expression should
represent 16 equations: each of the four dimensions (t, x, y, z) affecting each of the other
four. However, Rµν = Rνµ, gµν = gνµ and Tµν = Tνµ, i.e. the tensors are symmetric. Thus,
only 10 equations need to be solved to derive the metric gµν. Let us now detail each term
of (1.15) individually.

The first term on the left hand side is the Ricci tensor. It is a contraction of the Riemann
tensor:

Rρ
θµν = ∂µΓρ

νθ − ∂νΓρ
µθ + Γρ

µλΓλ
νθ − Γρ

νλΓλ
µθ (1.16)

This tensor characterizes the variation of a parallel-transported vector on an infinitesimal
loop. If we transport a vector Vσ around a close loop defined by two vectors Aµ and Bν

as shown in Fig. 1.2, the expression of the change δVρ experienced by this vector is of the
form [2]:

δVρ = (δa) (δb) Aµ Bν Rρ
σµν Vσ (1.17)

The Riemann tensor therefore contains information about the curvature of the manifold.
In the case of a flat manifold, the change δVρ should be zero since the parallel-transported
vector is identical to the initial vector. This imposes the Riemann tensor to be null for a flat
manifold, and Rρ

σµν ̸= 0 otherwise.

FIGURE 1.2: Infinitesimal loop defined by two vectors Aµ and Bν.

From the Riemann tensor, we can build the Ricci tensor Rµν and the Ricci scalar R that
both appear in Einstein’s equations (1.15). The first one is obtained by contraction of the
Riemann tensor over its first and third indices:

Rµν = Rλ
µλν (1.18)
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This latter expression can be further contracted and yields the Ricci scalar:

R = Rµ
µ (1.19)

The Ricci tensor, defined through the Riemann tensor and appearing in Einstein’s equa-
tions, can be interpreted as the measure of volume changes of an object [1]. It describes
how much a volume element has changed under a gravitational field. Besides, the Ricci
scalar, which appears as the second term in (1.15), is a local measure of the curvature of a
manifold. It assigns a unique real number to each point of this manifold [2].

The third term on the left side of (1.15) contains the cosmological constant Λ. The latter
considers the effects of the expansion of the Universe on the metric tensor. As Λ is very
small and its effects are perceptible on very long time scales, this term will be neglected
throughout this thesis. The implications of the cosmological constant in Einstein’s equa-
tions are beyond the scope of this thesis and we refer to [1] for more details.

The term on the right-hand side of Einstein’s equations contains the stress-energy ten-
sor Tµν that describes the energy density, momentum density and stress at that point in
spacetime. It is defined as:

Tµν =


u ρx ρy ρz
ρx Pxx σxy σxz
ρy σyx Pyy σyz
ρz σzx σzy Pzz

 (1.20)

where u represents the energy density, ρi are the momentum densities, Pii stand for the
pressures and σij are the shear stresses. The element Tµν therefore expresses how much
energy in the µ direction flows into the ν direction at a given point in spacetime.

All in all, Einstein’s equations tell us how spacetime (left-hand side) reacts to the matter
(right-hand side) within it. Hence the expression "matter tells spacetime how to curve, and
spacetime tells matter how to move" makes perfect sense. Einstein’s equations need to be
solved to determine the metric tensor gµν, which in turn is used to predict the motion of
objects in a gravitational field via the geodesic equations (1.11).

1.2 Gravitational Waves

1.2.1 Derivation from Einstein’s equations

Once we have introduced the fundamental concepts and equations in General Relativity,
let us try to solve Einstein’s equations. Because of their non-linearity, finding analytical
solutions is complex and tedious. However, if we consider a flat Minkowski spacetime, to
which we add a small perturbation, it becomes possible to linearize Einstein’s equations.
This almost flat Minkowski spacetime admits the following metric:

gµν = ηµν + hµν + O(h2
µν), |hµν| << 1. (1.21)

where ηµν is the Minkowski metric (1.4) and hµν is a small correction due to a weak gravi-
tational field. Note that, under the hypothesis of a weak field, one can raise and lower the
indices by ηµν, i.e.:

hα
ν = ηαµhµν

h = hµ
µ = ηµνhµν

(1.22)
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where h is the trace of the perturbation hµν.

Injecting (1.21) into the expression of the Christoffel symbols (1.14) leads to:

Γα
µν =

1
2

(
∂µh α

ν + ∂νh α
µ − ∂αhµν

)
(1.23)

which in turn gives the Riemann tensor via expression (1.16):

Rρ
θµν =

1
2

(
∂µ∂θh ρ

ν + ∂ν∂ρhµθ − ∂µ∂ρhνθ − ∂ν∂θh ρ
µ

)
(1.24)

The Ricci tensor can be obtained from the contraction of the Riemann tensor:

Rµν =
1
2

(
∂β∂µhνβ + ∂ν∂βhβµ − ∂β∂βhµν − ∂µ∂νh

)
(1.25)

for which a further contraction gives the Ricci scalar:

R = ∂α∂βhαβ − ∂α∂αh (1.26)

Einstein’s equations therefore write as:

1
2

(
∂β∂µhνβ + ∂ν∂βhβµ − ∂β∂βhµν − ∂µ∂νh

)
− 1

2
ηµν

(
∂α∂βhαβ − ∂α∂αh

)
=

8πG
c4 Tµν (1.27)

To simplify the above expression further, let us define the tensor h̄µν = hµν − 1
2 ηµνh whose

trace h̄ = ηµνh̄µν = −h. With this new definition, equation (1.27) gives:

1
2

(
∂µ∂βh̄νβ + ∂ν∂βh̄µβ − ∂β∂βh̄µν − ηµν∂α∂βh̄αβ

)
=

8πG
c4 Tµν (1.28)

To go further, we must note that GR is a gauge theory. Contrarily to Newton’s theory
and special relativity, we do not need to work in an inertial frame of reference. We can thus
freely choose the coordinate system in which we write Einstein’s equations. By choosing
the appropriate coordinate system (i.e. fixing the gauge), we can get rid of redundant
degrees of freedom and thus obtain the simplest expressions possible. Here, we consider
the Lorenz gauge, defined by the condition: ∂µh̄µν = 0. Substituting this condition into
(1.28) allows to discard the first, second and fourth term on the left-hand side, leading to:

∂β∂βh̄µν = −16πG
c4 Tµν (1.29)

Equations (1.29) are known as the linearized Einstein equations. The choice of the Lorenz
gauge, ∂µh̄µν = 0, imposes 4 conditions (ν = 0, 1, 2 or 3) that reduce the 10 independent
components of the symmetric tensor hµν to 6.

In the absence of matter, they become:

∂β∂βh̄µν = 0 (1.30)

The expression ∂β∂β = □ is known as the d’Alembertian operator and the above equation
is therefore a wave equation. The solution of (1.30) is then a wave traveling at the speed of
light in vacuum, called a gravitational wave (GW). For example, a monochromatic plane
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wave propagating in a direction noted z would take the following form:

h̄µν = Aµν cos(2π f (t− z/c) + φ0) (1.31)

where Aµν is a tensor describing the amplitude of the wave, f represents the frequency
of the wave and φ0 is an initial phase. At this stage, h̄µν is a symmetric tensor showing 6
independent components. The Lorenz gauge therefore determines a whole class of gauge
transformations, so we need to further specify the coordinate transformation. Let us con-
sider the transformation xµ → xµ + ξµ(x). The metric transforms as [3]:

gµν(x)→ g′µν(x′) =
∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ(x). (1.32)

Using this transformation law, h̄µν becomes

h̄µν → h̄′µν = h̄µν − (∂µξν + ∂νξµ − ηµν∂ρξρ). (1.33)

The coordinate transformation xµ → xµ + ξµ(x) cannot be chosen without restriction.
Indeed, it has to fulfil the Lorenz condition ∂µh̄µν = 0, which translates as:

∂µh̄µν → (∂µh̄µν)
′ = ∂µh̄µν −□ξµ (1.34)

If the initial field hµν is such that ∂µh̄µν = 0, then ξµ must be chosen so that □ξµ = 0. This
means that we can choose the functions ξµ(x) so as to impose 4 conditions on h̄µν via the
transformation (1.33). In particular we can choose ξ0 and ξ i such that the trace h̄ = 0 and
h0i = 0 respectively. Since the trace is zero, h̄µν = hµν and the Lorenz condition with µ = 0
then reads

∂0h00 + ∂ih0i = 0 (1.35)

which further implies ∂0h00 = 0, i.e. h00 is constant in time. A time-independent term
corresponds to the Newtonian potential of the source, which is the static part of the gravi-
tational interactions. Therefore, as far as gravitational waves are concerned, ∂0h00 = 0 also
means h00 = 0. We thus have set all four components h0µ = 0 and we are left only with
the spatial components hij ̸= 0.

The 4 conditions impose by the Lorenz gauge and the 4 conditions on h0µ = 0 define
the transverse-traceless gauge or TT-gauge. By imposing this gauge, the symmetric matrix
h̄µν now has just 2 degrees of freedom to be shared between the non-zero spatial compo-
nents hij. In the case of the monochromatic plane wave described in (1.31), it can take the
form:

hTT
µν =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 cos(2π f (t− z/c) + φ0) (1.36)

where the two degrees of freedom are denoted h+ and h×. To understand their meaning,
let us study what happens when this wave propagates through matter.

1.2.2 Effect on matter

In order to understand what is a gravitational wave, it is necessary to apprehend its effect
on matter. For this, let us consider an almost flat Minkowski space in which a gravitational
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wave is propagating. The metric is therefore defined by gµν = ηµν + hTT
µν , which gives:

gµν =


−1 0 0 0
0 1 + h+ cos(2π f (t− z/c) + φ0) h× cos(2π f (t− z/c) + φ0) 0
0 h× cos(2π f (t− z/c) + φ0) 1− h+ cos(2π f (t− z/c) + φ0) 0
0 0 0 1

 (1.37)

Injecting the above metric into the definition of the interval ds (1.1), we obtain:

ds2 = −c2dt2 +
(
1 + h+ cos(2π f (t− z/c) + φ0)

)
dx2

+
(
1− h+ cos(2π f (t− z/c) + φ0)

)
dy2

+
(
2h× cos(2π f (t− z/c) + φ0)

)
dxdy

+ dz2

(1.38)

Although this expression seems complex, an intuitive explanation is easily accessible. Let
us first consider the case where h× = 0. In that case, the term in dxdy is dropped and
the intervals in the x and y directions are no longer related. However, when cos(2π f (t−
z/c) + φ0) is positive, the interval along the x axis is stretched by a value h+ cos(2π f (t−
z/c) + φ0) while the interval along the y axis is shortened by the exact same amount. The
reverse happens when cos(2π f (t − z/c) + φ0) is negative. This oscillating motion, seen
in the top panel of Fig. 1.3, forms a + sign if we superimpose the largest deformations at
T/4 and 3T/4. When dx and dy are inversely affected by a gravitational wave, the latter
is said to be plus-polarized.

In the case where h+ = 0, the interval ds can be written as:

ds2 = −c2dt2 + dx2 + dy2 + dz2

+
(
2h× cos(2π f (t− z/c) + φ0)

)
dxdy

(1.39)

We can observe that the only term that differs from the Minkowski space is the term in
dxdy. To understand the effect of this term, let us rotate our coordinate system by 45◦. In
the new coordinates x′ and y′, the expression (1.38) becomes:

ds2 = −c2dt2 +
(
1 + h× cos(2π f (t− z/c))

)
dx′2 +

(
1− h× cos(2π f (t− z/c))

)
dy′2 + dz2

(1.40)
which is equivalent to a plus-polarization. In our (x, y) system of coordinates, the effect
of h× is therefore equivalent to tilting the effect of h+ by 45◦. The deformation induced on
a ring of matter can be seen in the bottom panel of Fig. 1.3. The oscillating motion shows
a × sign and h× is therefore called the cross-polarization. Note that pure plus or cross
radiation is typically received from systems whose plane motion is viewed edge-on. In
nature, gravitational waves rather show a mix of plus- and cross-polarizations. They are
said to be elliptically polarized.

1.2.3 Sources of gravitational waves

Just as electromagnetic waves are produced through the acceleration of charged parti-
cles, gravitational waves are produced via the acceleration of masses. However, where
a dipole of charges is sufficient to generate electromagnetic waves, gravitational waves
require at least a quadrupole moment. Monopoles and dipoles are absent as the result
of mass and momentum conservation respectively. Einstein [4] derived the expression of
the quadrupole formula by solving the linearized field equations with a far-away source
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FIGURE 1.3: Effect of the plus- (top) and cross- (bottom) polarizations of a gravitational
wave on a ring of matter over a period T = 1/ f of oscillations.

term, namely (1.29). His solution shows that the first multipole contribution to the wave
amplitude comes from the second time derivative of the quadrupole moment of the source
[5]:

hTT
µν =

2G
c4r

Q̈TT
µν (t− r/c) (1.41)

where r stands for the distance from the source and QTT
µν is the quadrupole moment eval-

uated in the TT-gauge at the retarded time t− r/c. This formula is accurate as long as the
wavelength of the gravitational wave is much longer than the source size, which is valid
for all the sources we will further consider.

In order to figure out which astrophysical phenomena are inclined to produce GWs,
let us approximate the above expression. The quadrupole moment of a mass system is
approximately equal to the mass that moves M times the square of the size of the system
R [5]. The second time derivative is then proportional to:

Q̈ ≈ M R2

T2 ≈ Mv2 (1.42)

where v is the mean velocity of the source’s non-spherical motion2 and T can be inter-
preted as the period of the system. Injecting the latter expression into (1.41) leads to:

h ≈ G
c4r

Mv2 ≈ GM
c2

1
r

(v
c

)2
(1.43)

The first conclusion that can be drawn concerns the mass and velocity of the objects in
the system. The latter need to be massive and relativistic to generate strong gravitational
waves. A second remark can be raised by looking at the energy radiated over time, known
as the GW luminosity LGW . The luminosity can be obtained from the quadrupole moment
via its third derivative according to:

LGW =
1
5

G
c5 ⟨

...
QTT

µν

...
Qµν

TT⟩ (1.44)

2Spherically symmetric motions do not yield to a quadrupole moment that is varying in time and thus do
not produce gravitational waves.
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where ⟨.⟩ denotes the average over several wavelengths3. Using (1.42), we can estimate
LGW :

LGW ≈
G
c5

Mv2

T
Mv2

T
≈ G

c5
M2v4

T2 ≈ Gc
(M

R

)2 (v
c

)6
(1.45)

As R appears in the denominator of (1.45), it is clear that compact systems are preferred to
maximize the GW luminosity.

The approximation of h can also be written in terms of signal properties like the energy
radiated EGW , the frequency fGW and the duration τ of the gravitational wave [5]:

h ≈ 10−22
( EGW

10−4 [M⊙c2]

)1/2(1 [kHz]
fGW

)(1 [ms]
τ

)1/2(15 [Mpc]
r

)
(1.46)

This formula describes the amplitude of a GW emitted from the Virgo cluster (located at
roughly 15 Mpc from our galaxy) during which the energy EGW is radiated at a frequency
of 1 kHz with a signal duration of 1 ms. This expression summarizes why gravitational
waves are hard to detect. If we consider h ≈ 10−22, a kilometer-size ring of matter would
be deformed by an amount:

dl = h L = 10−22 103 = 10−19m (1.47)

The changes in length induced by gravitational waves are therefore extremely faint. De-
tecting such a faint motion is similar to measuring the distance from the Earth to Nep-
tune with a precision smaller than the thickness of a human hair. Although this task is
extremely challenging, one very sophisticated technology has made it feasible: laser in-
terferometry. Chapter 2 describes the inner workings of this scientific and engineering
achievement.

From the approximate expression of h, which we will now call the strain, we estab-
lished that relativistic compact objects are the ideal progenitors of GWs. However, a black
hole moving fast along a straight trajectory does not produce GWs. The only necessary
criterion is that the system has to show a quadrupole moment for which the second time
derivative is not zero. This important result implies that mass systems showing large
asymmetric motions of dense masses produce gravitational waves. This is the case for
black holes and neutron stars in binary systems. The orbital motion of both objects leads
to the production of GWs that extract energy from the system. In turn, this loss of energy
leads to the progressive shrinkage of their orbit and eventually to their collision. These
events are known as Compact Binary Coalescences (CBC). Fig. 1.4 shows an example of
strain h for a collision of black holes associated to the orbital motion of the two objects.
Note that although they are less dense than neutron stars, white dwarfs could also produce
gravitational waves via binary mergers. They however remain undetectable for current-
generation detectors.

Single neutron stars can also produce gravitational waves. If a neutron star is rapidly
rotating and not perfectly symmetric about its rotation axis, it will emit a faint continuous
GW signal. In order to generate a GW signal with h of the order of 10−25, a 10-kilometer
radius neutron star should exhibit an ellipticity of the order 10−8 − 10−7 [6]. Such ellip-
ticities would lead to millimeter-high "mountains" at the surface of these dense objects.

3The energy carried by GWs cannot be localized within a wavelength. Instead, one can say that a certain
amount of energy is contained in a region of space that extends over several wavelengths [5].
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FIGURE 1.4: Representation of a binary black hole merger. The two objects orbit close
to each other in the inspiral phase, then get deformed and collide in the merger phase.
The final heavier black hole vibrates for a short time during the ringdown phase before

returning to a quiet state.

Fig. 1.5 shows the generation process and the corresponding GW signal received on Earth.

FIGURE 1.5: Non-axisymmetric neutron star emitting continuous gravitational waves.
The signal received on Earth is expected to have a quasi-monotonic frequency, equal to

twice the rotational frequency of the star. Source: [7]

The third class of gravitational wave events concerns what we call the stochastic back-
ground. When a lot of CBC sources generate GWs that ultimately reach the Earth, the
resulting signal is a mixture of h+ and h× polarizations arriving with different phases.
Resolving each source independently is therefore impossible, leaving data analysts with
detecting statistical properties of this background signal [8, 9]. Moreover, the nature of
the sources contributing to the stochastic background depends also on the sensitive fre-
quency band of the detectors. For example, stellar-mass binary black holes are expected
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to be partly responsible for the stochastic background of current-generation detectors [9].
Another GW background signal may arise from early universe sources. Among the possi-
ble candidates, we can cite phase transitions, cosmic strings and "preheating" mechanisms
after the inflation phase [10, 11]. Detecting such events would have a deep impact on high-
energy physics as well as early-universe cosmology.

The last category of GW signals includes all the transient signals different from CBC
events. This class is called Burst. Sources such as spherically asymmetric supernovae, disk
instabilities in the torus of matter around black holes or gamma-ray bursts are expected
to produce burst gravitational waves. As the focus of this thesis is to detect burst signals,
more details will be given in Chapter 3.
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Chapter 2

Gravitational wave detectors

2.1 The Michelson interferometer

2.1.1 Taking advantage of GW polarizations

The detection of gravitational waves is challenging because of their faint amplitude, h be-
ing of the order of 10−22 for the strongest events. However, before discussing how we can
achieve such sensitivity, let us introduce the basic principles of detection.

If we consider a pure plus-polarized gravitational wave passing through a ring of mat-
ter, the latter will be deformed into an ellipse (see Fig. 2.1). The oscillating motion can
be detected by looking at the major and minor axes which make a plus sign. The situa-
tion is then similar to a gravitational wave passing through a "plus" sign. We thus have
to monitor the length of both axes to check for GWs. The deformations induced by the
gravitational wave are exactly the same on each side of the major and minor axes. We can
therefore reduce the "plus" shaped detector into an "L" structure and save half the materi-
als needed to build our detector. Of course, the orientation of the "L" is primordial in order
to be sensitive to both h+ and h×. This can be partially solved by building multiple de-
tectors with distinct spatial orientations. More details will be given in Sect. 2.2. Now that
we have our optimal shape, we need a way to measure precisely the change in length for
the two arms. An 1880s technology is the first step towards this purpose: the Michelson
interferometer.

FIGURE 2.1: Representation of the effect of a plus-polarized GW on a ring of matter at
phase 3π/4. The red and green arrows respectively indicate contraction and stretching.
From left to right, we simplify the design of our detector to end up with an "L" shape

structure.

2.1.2 Experimental setup

A Michelson interferometer consists of an optical system capable of measuring interfer-
ences. A laser beam is sent through a beamsplitter where half the beam is reflected through
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a primary mirror while the other half is refracted and sent to another mirror. Both light
beams are reflected back to the beamsplitter where they recombine. The resulting inter-
ference is then projected onto a screen. Fig. 2.2 shows the setup of the Michelson inter-
ferometer when Albert M. Michelson and Edward Morley achieved their famous exper-
iment in 1887. The experiment aimed at detecting the luminous aether, a medium that
was supposed to carry light waves. The negative result brought by Michelson and Morley
provided strong evidence against the presence of such a medium and paved the way for
special relativity.

In their original setup, Michelson and Morley positioned the two mirrors at the exact
same distance from the light source. However, one of the two mirrors was movable and
tilted with respect to the other mirror. This arrangement leads to the interferogram shown
in Fig. 2.2. The interference pattern observed depends on whether or not the mirrors are
tilted but also on the difference in the distances of the mirrors to the beamsplitter. If the
paths of the beams that reach the detector differ by whole numbers of wavelengths, the
constructive interference generates a strong output signal. For differences equal to an odd
number of half wavelengths, the interference is destructive and the signal is close to zero.

FIGURE 2.2: Original Michelson interferometer setup. Using a beamsplitter, a light beam
is divided into two identical beams. Each beam is then sent to a mirror and reflected
back to the original beamsplitter. Both beams recombine again to produce an interference

pattern that can be seen on the detector screen. Source: [12].

By precisely tuning the difference in path length, we can force the destructive interfer-
ence of the two light beams. Therefore, a GW detector including an adapted Michelson
interferometer could be used to measure the change in length induced by a gravitational
wave. In normal conditions, the difference in arms lengths is such that destructive in-
terference takes place at the beamsplitter [3]. If a gravitational wave passes through the
instrument, the wave will alternately stretch and compress each arm and the two beams
do not annihilate each other anymore. The interferences at the screen could then reveal
the passage of a GW.

2.1.3 Towards a real GW detector

Michelson interferometers can be tuned to detect the polarizations of gravitational waves.
Moreover, their perpendicular design matches well with the optimal "L" shape derived
in subsection 2.1.1. However, a simple Michelson interferometer is not sensitive enough
to detect gravitational waves with h = 10−22. Let us consider a simple interferometer in
order to determine its limitations.
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FIGURE 2.3: Setup of a basic Michelson interferometer adapted for gravitational wave
detection. The detector screen has been replaced by a photodiode that converts the re-

ceived light into a current. BS is the acronym for beamsplitter.

Fig. 2.3 shows a basic interferometer setup. A laser producing monochromatic near-
infrared electromagnetic radiation is used as well as a beamsplitter (BS). Two perfectly
reflecting mirrors are found at the end of the two arms while a photodiode is positioned
at the output. The photodiode is a light-sensitive device that produces a current when
it absorbs photons. The lengths of the two arms are noted Lx and Ly. For this perfect
interferometer, the phase difference at the photodiode is equal to [13]:

∆ϕ =
4π

λ

(
Lx − Ly

)
(2.1)

where λ is the wavelength of the monochromatic laser light. In modern interferometers,
lasers have a wavelength of 1064 nm. A gravitational wave passing through the detector
will cause a differential change in arm length. For example, the lengths of the arms are
momentarily given by:

Lx = (1 + h) L and Ly = (1− h) L (2.2)

where h is the GW strain amplitude and L is the total length of the arms. Let us assume
that we can build an interferometer with arms of 10 kilometers. Considering h = 10−22,
this yields to measure a phase difference of the order:

∆ϕ =
4π

λ
2hL ≈ 10

10−6 10−22 104 ≈ 10−11 (2.3)

A perfect Michelson interferometer is nonetheless impacted by quantum noise [14].
The major quantum noise limiting the sensitivity is the shot noise that originates from the
quantum fluctuations in the laser beam. The noise in the phase difference induced by shot
noise is given by [15]:
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δϕSN =

√
2 hPlank c

ηPλ
∆ f (2.4)

with hPlank represents the Plank constant, P is the power of the laser at the photodiode, ∆ f
is the sensitive bandwidth of the interferometer and η stands for the efficiency of the pho-
todiode to convert photons into electrons. Current generation detectors target a frequency
bandwidth of the order of 1 kHz. Considering a perfect photodiode (η = 1), the power
required to achieve the sensitivity in phase difference is given by:

Pmin =
2 hPlank c

∆ϕ2λ
∆ f ≈ 10−34 108

10−22 10−6 103 = 105 [W] = 100 [kW] (2.5)

The laser systems used in GW detectors can deliver only several hundred watts of
power. Most powerful lasers exist but they do not meet the required stability in phase and
amplitude [16]. Transmitting hundreds of kilowatts of power through the interferometer
would also cause significant thermal deformations of the optics due to absorption [16]. A
solution could be to increase the arm length to enhance the phase difference to measure.
However, building 100-kilometer-long arms is impossible because of terrain and cost con-
straints.

An answer to both the power and length limitations is found via Fabry-Perot cavities.
A Fabry-Perot cavity is an optical cavity formed by two mirrors that achieves resonance
of the light that is trapped inside. Two highly reflecting mirrors are positioned an integer
number of half laser wavelengths away from one another, leading to the constructive in-
terference of the light inside the cavity [17]. This constructive interference then amplifies
the laser power in the cavity, maximizing the sensitivity of the interferometer to a change
in the frequency or wavelength of the input laser. The effect of adding a Fabry-Perot cavity
to the arms of the interferometer is similar to multiplying the arm lengths by a factor Ne f f
given by [13]:

Ne f f =
2
π

F with F =
π
√

r1 r2

1− r1r2
(2.6)

where r1 and r2 are the reflectivities of the first and second mirrors forming the cavity and
F is known as the finesse of the cavity. A higher finesse will lead to a more sensitive detec-
tor. Current detectors show a finesse in the range 500-1500 with reflectivities higher than
98% [18]. For a 4-kilometer-arm interferometer, the lower margin is equivalent to building
a 1280-kilometer detector. There is nonetheless an upper limit to the finesse that is imposed
by quantum noise. Indeed, a high finesse will lead to a small bandwidth which could pre-
vent us from detecting some events [14]. The finesse of the cavities therefore determines
the sensitive bandwidth of the interferometer, as seen in Fig. 2.4. It is important to point
out that the strain has units 1/

√
Hz. The strain in Fig. 2.4 is not the strain of the GW but

rather the expected strain sensitivity of the detector as a function of the frequency. In this
specific case, it is preferred to mention it as the amplitude spectral density of the detector.
Further details will be given in Chapter 3 when addressing the burst search methods.

Fabry-Perot cavities are useful to build up the power that circulates in the arms of
the interferometer. However, a part of this power is lost and leaves the interferometer
towards the laser. Instead of ‘wasting’ that power, we can insert a semi-transparent power-
recycling mirror to send the light back to the interferometer. A new resonant cavity is
formed between this mirror and the rest of the interferometer so that little light comes
back toward the laser. The effective laser power is then enhanced by a factor of 10 to 50
[15] which is called the recycling gain.
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FIGURE 2.4: Sensitivity to quantum noise of a Fabry-Perot Michelson interferometer. A
high finesse of the Fabry-Perot cavity leads to an improved sensitivity but also to a tighter

bandwidth. Note that the strain has units 1/
√

Hz. Source: [14].

The Fabry-Perot cavity is tuned to resonate at the particular frequency of the laser
light. However, in the cavity, sidebands are generated on the light by gravitational wave
signals interacting with the arms. These sidebands, carrying power, do not interfere de-
structively at the beamsplitter and therefore appear at the output. If a mirror is put ahead
of the photodetector, these sidebands can be recycled back into the system where they res-
onate. Their amplitude is thus enhanced over a given bandwidth which can be tuned by
choosing the adequate reflectivity of the mirror. This technique, called signal recycling, is
particularly useful to narrow the detection bandwidth, which may be valuable in searches
for continuous waves [19].

The final design of our interferometer adapted to gravitational wave searches can be
seen in Fig. 2.5. This view constitutes the basic design on which the current generation
GW detectors, namely LIGO and Virgo, have been built.

FIGURE 2.5: Advanced interferometer design showing Fabry-Perot cavities, a power re-
cycling mirror and a signal recycling mirror. Source: [20]



20 Chapter 2. Gravitational wave detectors

2.2 Current generation of detectors

2.2.1 The LIGO, Virgo and KAGRA collaborations

On the 11th of February 2016, the Laser Interferometer Gravitational-wave Observatory
(LIGO) and the Virgo collaboration jointly announced the first direct observation of a grav-
itational wave [21]. The 2017 Nobel Prize in Physics was awarded to three scientists that
initiated the LIGO project, namely Rainer Weiss, Kip Thorne and Barry Barish for this
exceptional discovery. LIGO consists of two "L" shaped interferometers with 4 km arms
located 3000 km apart within the United States, one in Hanford Washington and the other
in Livingston, Louisiana. The LIGO detectors are operated by the LIGO Scientific Collab-
oration (LSC). Funded in 1997, the collaboration is currently made up of more than 1500
scientists over 100 institutions spread over 18 countries worldwide.

In Europe, the European Gravitational-wave Observatory (EGO) is the operating cen-
ter of the Virgo detector, a 3km interferometer situated in Cascina, Italy. EGO is partially
funded by three agencies in France (CNRS), Italy (INFN) and in the Netherlands (Nikhef).
More than 650 members work as a community on the development and operation of the
Virgo detector, forming the Virgo collaboration.

The third observatory is an underground detector with 3 km arms located in Kamioka,
Japan and called KAGRA. KAGRA is a project initiated by the Institute for Cosmic Ray
Research (ICRR) at the University of Tokyo. Although it became operational in February
2020, the current sensitivity of the Japanese detector prevents it from actively participating
in the detection of GW events. Developments of innovative technologies such as cryogenic
mirrors are currently being improved to reach LIGO and Virgo operational sensitivities.
More than 400 individuals from 15 countries compose the KAGRA collaboration.

LIGO and Virgo collaborations have agreed to share their data and to carry out joint
analyses since 2010. The observational results of the numerous analyses are found in sci-
entific papers whose authorship is shared by the two collaborations. In early 2021, the
KAGRA collaboration joined its two sister collaborations. Together, they constitute the
LIGO-Virgo-KAGRA (LVK) Collaboration. Fig. 2.6 shows the location of the GW detectors
on Earth.

FIGURE 2.6: Gravitational wave detectors around the world. GEO600 is a 600-m long
interferometer based in Hannover (Germany) that serves as a prototype and testing fa-

cility. LIGO India is a duplicate LIGO observatory that is expected to operate by 2030.
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2.2.2 Observing runs and upgrade phases

The current GW detectors are the culmination of more than four decades of work. To
achieve strain sensitivities of the order of h = 10−22 and beyond requires to proceed step
by step. That is why the interferometers are not continuously gathering data as it is the
case for classical optical telescopes. Instead, the interferometers are turned off regularly to
install new instruments contributing to increase the overall sensitivity of the detectors or
to upgrade them. The periods where detectors are "on" are called observing runs (desig-
nated "O1", "O2", etc.) while the inactive intervals are known as upgrade (or commission-
ing) phases. Since the GW detectors are improved during the upgrade phases, their strain
sensitivities always increase from one observing run to the following.

Fig. 2.7 presents the observing plans as well as the foreseen sensitivities from 2015 to
the end of the current decade. Note that the sensitivities are not expressed in terms of
the best strain sensitivity that can be achieved. Alternatively, the sensitivity is indicated
with respect to the Binary Neutron Star (BNS) range of the detectors. The BNS range can
be defined as the volume- and orientation-averaged distance at which the coalescence of
a pair of 1.4 solar mass neutron stars gives a signal-to-noise ratio of 8 in a single detector
[22]. It is important to note that a factor 2 improvement in the BNS range leads to a volume
8 times larger, and so to potentially 8 times more recorded signals.

FIGURE 2.7: LIGO, Virgo and KAGRA observing plans. The O5 start date, duration and
sensitivities are current projections that will likely be adjusted after O4. Credit: LIGO-

Virgo-KAGRA collaborations.

To this date, 3 observing campaigns have been concluded. Over the first 3 observing
runs, the data analysis pipelines have recorded a total of 90 gravitational wave events in
the LIGO and Virgo data [23, 24, 25]. As the BNS ranges of the detectors have been signif-
icantly improved, most of the detections happened during O3. Fig. 2.8 shows the cumula-
tive histogram of the detections with respect to the number of observing days. Among the
90 detections, 86 were Binary Black Hole mergers, 2 originated from BNS collisions [26, 27]
and 2 came from Neutron Star-Black Hole events (NSBH) [28].

2.2.3 Sources of noise

The LIGO and Virgo detectors, whose latest status are known respectively as aLIGO [29]
and Advanced Virgo [30], are limited by many sources of noise. Although they are im-
proved versions of the Michelson interferometer (designated as Dual-Recycled Fabry-
Perot Michelson interferometers), they still suffer from some limitations inherent to the
original design.
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FIGURE 2.8: Cumulative number of detections as a function of the number of days in
each run period. Note that the third observing run O3 has been split into 2 periods but

no upgrades were performed between O3a and O3b.

Quantum noise

Quantum noise impacts the interferometer in two different ways, via shot noise and radi-
ation pressure noise.

Shot noise arises from quantum fluctuations in the arrival of photons at the photo-
diode. The photons in the laser beam are not equally distributed, rather they follow a
Poisson statistic. The photodiode therefore absorbs photons at an irregular rate, leading to
a noisy output voltage as it can be seen in the left panel of Fig. 2.9. In current generation
detectors, shot noise is the dominating source of noise at high frequencies [13].

Shot noise Radiation pressure noise

FIGURE 2.9: Quantum noise affecting the current generation detectors. Shot noise (left)
leads to uncertainties in the output voltage while radiation pressure (right) induces un-

desired motions of the mirrors. Source: [14].
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Radiation pressure is related to the impact of photons on the mirrors. When a photon
hits one of the mirrors, it transfers a part of its momentum to the mirror causing the latter
to move. In turn, this motion modifies the length of the cavity leading to a change in the
phase of the laser light. The interference at the beamsplitter is therefore affected and a fake
signal is recorded at the photodiode. The right panel of Fig. 2.9 shows a representation of
this effect. The effects of radiation pressure are mostly prevailing in the low-frequency
regime [13].

In an attempt to reduce shot noise, we can enhance the power of the laser [20]. By doing
so, we increase the number of photons in direct proportion to the laser power. As the noise
induced in the photon arrival rate is proportional to the square root of the power [14], the
overall signal-to-noise ratio is therefore improved. However, as the power of the laser
increases, the transfer of photon momentum to the mirrors also increases. This introduces
more uncertainty in the length of the arm and cancels out any gain due to reduced shot
noise. As both noises impact the interferometer sensitivity at different frequency regimes,
the trade-off in the laser power causes quantum noise to shape the overall sensitivity of
the detectors. Fig. 2.10 illustrates how shot noise and radiation pressure noise affects the
sensitive bandwidth of the GW detectors.

FIGURE 2.10: Theoretical sensitivity curve imposed by shot noise and radiation pressure
noise for the aLIGO detectors. Shot noise limits the strain sensitivity of the detectors at
high frequencies while radiation pressure effects are dominant at low frequencies. Source

[31].

A new technique has recently been introduced into both LIGO and Virgo detectors to
overcome the quantum limit imposed by radiation pressure and shot noises: squeezing.
Both sources of noise arise from the quantum uncertainties in the laser light. Although
photons from the laser are in a coherent state, there exist minimal uncertainties that impact
both the phase and amplitude of the light. Phase uncertainties cause the rate of photons
in the laser to be irregular, leading to shot noise in interferometers [32]. Amplitude uncer-
tainties affect the transfer of momentum from photons to the mirrors and then show up as
radiation pressure noise. Squeezing is a technique that allows to reduce the uncertainties
either in phase (phase squeezing) or amplitude (amplitude squeezing) at the price of an
increase in the uncertainties of the other property. Phase squeezing is therefore useful to
reduce shot noise at high frequencies while amplitude squeezing improves the radiation
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pressure noise at low frequencies. Achieving both squeezed states at different frequencies
is known as Frequency Dependent Squeezing (FDS). Fig. 2.11 shows the effect of squeez-
ing on the theoretical noise curve in LIGO. FDS has been introduced into both the aLIGO
[33] and Advanced Virgo detectors [34] prior to the third observing run. Overall, squeez-
ing produced a sensitivity enhancement up to 8% in the BNS range of Advanced Virgo
and 15% in aLIGO.

FIGURE 2.11: Effect of Frequency Dependent Squeezing on the quantum noise in LIGO.
Source [32].

Displacement noise

Because LIGO and Virgo are built on the ground, they are susceptible to ground motion.
GW detectors are so sensitive that they can detect cars on highways kilometers away as
well as almost every earthquake that happens on Earth. Even though it is a remarkable
achievement, these phenomena are sources of noise that cause unwanted vibrations of the
mirrors, perturbing the search for gravitational waves. Mitigating them is therefore of pri-
mordial importance if we want to achieve the desired sensitivity. That is why LIGO and
Virgo mirrors are hung by an assemblage of pendulums. Each pendulum has a different
length and so a different resonance frequency. By stacking them one above the other, it is
possible to reduce significantly the external perturbations in a broad range of frequencies,
with the exception of the particular natural frequencies of the pendulums. The overall
suspension system allows the mirrors to behave as effective free-falling masses along the
axes of the laser beam. The design of the multi-stage pendulum of both LIGO and Virgo
can be seen in Fig. 2.12. This passive structure works together with active stages using
feedback control loops to achieve more than 10 orders of magnitude attenuation above 10
Hz.

Among the sources of noise, there is one that cannot be shielded: gravity gradients [15].
Gravity gradients arise from fluctuations in the gravitational field of the ground below the
detectors. These fluctuations are usually caused by microseismic motion that modifies the
local mass density by very tiny amounts. Wind, rain or human activities could also be
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LIGO Virgo

FIGURE 2.12: Schematic representation of the LIGO and Virgo multi-stage pendulums.
The LIGO suspension system is composed of 4 stages while Virgo has 7 stages. The mir-
rors are suspended via fused silica fibers on the lowest level. Credit: Caltech/MIT/LIGO

Lab and Virgo collaboration.

responsible for these density fluctuations. As the gravitational field in the vicinity of the
detector changes, the orientation of the mirrors can be slightly impacted. The strain sen-
sitivity noise due to gravity gradients is expected to be proportional to f−4 [15], which
affects mainly the low-frequency regime. Building underground interferometers is a solu-
tion to minimize the impact of gravity gradients, as the density fluctuations are damped
few hundreds of meters below the ground level.

Thermal noise

In the absence of any motion, thermal physics dictates that every object has a minimal
state of energy depending on its temperature. Therefore, the strings holding the mirrors
(i.e. fused silica fibers) can undergo thermal excitations of their natural vibration modes
due to their inner temperature [20]. This leads the mirrors to vibrate at the resonant fre-
quencies of the fibers (at 500 Hz and harmonics: 1000, 1500, 2000 Hz), called violin modes.

The mirror surface is also impacted by thermal noise in the form of Brownian motion.
Indeed, the temperature of the coating’s molecules causes the surface to vibrate, which in
turn slightly affects the length of the cavity producing a change in the phase of the laser
beam. The coating Brownian noise is responsible for the largest contribution to the overall
detector noise by the optical components of the interferometers [29, 30].

Other sources of noise originate from the optics such as thermo-elastic noise and thermo-
refractive noise. Thermo-elastic noise is the apparent expansion of the mirror coating into
the probe beam causing a change in phase [35]. Thermo-refractive noise arises from the
changes in both the refractive index and the width of the coating layers due to the tem-
perature [35]. These two sources of noise are referred to as thermo-optic noise. In current
generation detectors, the thermo-optic noise is one order of magnitude below the coating
Brownian noise [35].



26 Chapter 2. Gravitational wave detectors

Residual gas noise

LIGO and Virgo are so sensitive that they are susceptible to exceptionally faint distur-
bances like sound vibrations and dust in the air. The former can refract the laser beam
as well as cause parasite motion of the mirrors [20]. Dust sticks to the mirror surfaces
and scatters the laser beam, decreasing the coherence of the laser. Even the impact of air
molecules on the mirrors can introduce detectable motions. All these sources result in fluc-
tuations in the path length and must be eliminated to achieve the desired sensitivity. One
strategy allows to address all of them: operating the experiment in a vacuum. It consists
in enclosing the laser beam in large vacuum tubes for which the air is evacuated down to
a pressure of about 10−9 mBar. With respectively 7000 and 10000 cubic meters of vacuum,
Virgo and LIGO are among the largest ultra-high vacuum chambers ever built [20]. The
remaining excess gas in these chambers is taken into account in the noise budget although
it is of the same order of magnitude as the thermo-optic noise.

Noise budget

After listing the primary source of noise in the GW detectors, we can estimate the overall
sensitivity as a function of the frequency. This is done in Fig. 2.13 where the noise budget
of the LIGO and Virgo interferometers are shown. As we can see, the sensitivity is shaped
by the quantum noise, especially at high frequencies. Gravity gradients and seismic noise
limit the sensitivity of the detectors at low frequencies while the thermal noise from the
mirrors’ coating has a significant impact at frequencies around 50 Hz to several hundreds
of Hz. Both detectors achieve their best sensitivity around 300 Hz.

LIGO Virgo

FIGURE 2.13: Design sensitivity of the LIGO and Virgo detectors. The black curve rep-
resents the total sensitivity, accounting for all the sources of noise. Quantum noise is the
limiting noise at high frequencies while seismic and thermal noises affect the sensitivity

in the low-frequency regime. Sources: [29, 30].

In practice, the sensitivity is spoiled by various technical noises such as instrument
coupling to environmental noises (magnetic, seismic, acoustic, etc.), scattered lights in the
cavity due to small defects at the surface of the mirrors or electrical readout noise [36].
The noises known as instrumental lines appear in the sensitivity as vertical peaks. The
most prominent peaks arise at harmonics of the electric power line frequency (60 Hz for
LIGO in the US, 50 Hz for Virgo in Europe), due to imperfect electromagnetic shielding
and magnetic coupling to the mirror suspensions [37]. It is also important to mention
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the thermally excited violin modes of the silica fibers that induce peaks at 500 Hz and
harmonics (1000, 1500, 2000 Hz). Both the LIGO and Virgo measured sensitivity (also
known as amplitude spectral density) are shown in Fig. 2.14.

FIGURE 2.14: Representative amplitude spectral density of the LIGO and Virgo detectors
for the O2 and O3 runs. The curves shown for O3 are taken from O3a. Source: [36].

2.2.4 Lock and duty cycle

The Fabry-Perot cavities installed in the current GW detectors allow to build up the power
circulating in the arms exclusively when the laser light resonates. This holds for the other
cavities such as those formed with the signal recycling mirror and the power recycling mir-
ror [38]. For example, aLIGO has five length degrees of freedom that must be controlled
in order for the interferometer to be operational. All these degrees of freedom, strongly
coupled, need to be tuned simultaneously between 0.01% and 1% of a fringe [39], making
the acquisition of the operating point very challenging. When all the cavities work on res-
onance, we say that the interferometer is "locked".

Because of the tight adjustment of the cavities, exceptional ground motions can cause
LIGO and Virgo to lose the lock in one or more optical cavities. As a consequence, the
whole detector suffers and the strain sensitivity drops, resulting in a reduction of the effec-
tive observation time. Earthquakes, microseisms, human activities and winds are all sorts
of incidents that are considered as potential lock loss events [40]. Studies have shown
a correlation between local ground motions and losses of the interferometer operating
state [41, 42]. Fig. 2.15 shows the effect of repeated earthquakes in a 24-hour period that
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happened during the ninth engineering run1 in 2015. We can clearly see the correlation
between the peak ground motions (bottom) and the steep drop in the BNS range (top) of
the LIGO Livingston detector.

FIGURE 2.15: Top: BNS range of the Livingston detector on 11 June 2015. Bottom: Ground
motion around the detector on the same day. The X and Y axes point in the direction of

the two arms while the Z axis is directed from the ground to the sky. Source: [44].

The length of the cavities, as well as accurate measurement of the ground motions and
other external factors, are recorded in the form of time series known as auxiliary chan-
nels [45]. By using the information retained in these channels, it is possible to infer which
component of the detector is susceptible to causing a lock loss. The auxiliary channels are
therefore vital to predict a likely lock loss and engage the detector in a "lock loss robust"
state [45]. Together with active control loops, these channels help resume the operation
much more quickly than the minimal hours-days otherwise required.

The time percentage during which the detectors are in observing mode is called the
duty cycle. It is critical to have a high duty cycle to achieve a lot of gravitational wave
detections. Most importantly, a network of detectors is primordial to confirm detections
and localize the sources of the event, especially in the case of an electromagnetic counter-
part [26]. Fig. 2.16 shows the operating status of the two LIGO detectors (Hanford H1,
Livingston L1) and the Virgo detector for the third observing run O3. All of them are

1Engineering runs are periods where the detectors are operated as in an observing run. These runs are
scheduled at various stages of installation or detector configuration to characterize the effect of the recent
upgrades and to fix the remaining bugs in hardware and software [43].
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locked more than 70% of the time, resulting in 80% observing coverage with two or three
interferometers.

FIGURE 2.16: Percentage of time that the aLIGO and Advanced Virgo detectors spent
in different operating modes during the third observing run. The overall network duty
cycle is also shown in the bottom right panel. "Observing" refers to the periods where the
detectors were locked and the data quality was sufficient for data analysis. "Locked" and
"ready" refer respectively to the periods where the operation team achieved the lock and
to the periods where some complementary maintenance was performed. Credits: LIGO

Detector Characterization team.

2.2.5 Calibration

Once the lock is achieved, there is a need to convert the output of the photodetector into
the strain h(t). Since aLIGO and Virgo employ active feedback loops to keep the opti-
cal cavities in resonance, the calibration process should include models of the electronics
used. Fig. 2.17 illustrates the feedback control as well as the calibration pipeline for the
aLIGO detector. There are three main components to the feedback loop: the sensing func-
tion S, the digital filters applied D and the actuation function A. Since the digital filters
are known with great precision, the main uncertainties in the calibration come from the
sensing and actuation functions, S and A [46].

The feedback procedure works as follows. At first, the photodetector, which is an el-
ement of the sensing C, measures the residual differential arm length ∆Lres. The output
derr of the sensing function is then sent through digital filters D and applied to the dif-
ferential arm length actuators through the actuation function A. These actuators are used
to suppress ∆Lcrtl from the desired quantity ∆L f ree and therefore keep the interferometer
locked. In order to get a faithful representation of ∆L f ree, we model A and C via photon
calibrators [48]. Photon calibrators (PC) are auxiliary lasers assemblies that send a pair of
beams to the mirrors. These lasers, whose intensities are modulated at a known ampli-
tude and frequency, allow to measure A and C as functions of frequency and yield to a
displacement xPC

T at the mirrors (via radiation pressure). Note that some sinusoidal forces
are applied at very specific frequencies during the calibration process, leading to calibra-
tion lines appearing in the raw strain data. For O2 and onwards, these lines are removed
before releasing the data [49, 50]. Once A and C are known, the strain h is obtained by
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FIGURE 2.17: Control loop (left) and calibration procedure (right) of the Advanced LIGO
detector. The sensing function, comprising the photodiode, provides the output derr in
response to the residual differential motion ∆Lres. The output is then passed through
digital filters D, which produces a control signal dctrl . The actuation system A processes
dctrl and acts on the optics by ∆Lctrl to maintain cavity resonance. The sensing and ac-
tuation functions are modeled through the calibration pipeline using photon calibrators.

The output of the calibration procedure is the GW strain data h(t). Source: [47].

dividing the true differential arm length by the length of the arm (4 km for LIGO, 3 km for
Virgo) via the following expression [46]:

h(t) =
1
L

(
C−1 ∗ derr(t) +A ∗ dctrl(t)

)
(2.7)

where A and C are time-domain filters derived respectively from the actuation and sens-
ing functions A( f ) and C( f ).

The calibration procedure described above is applied to the photodiode output respec-
tively 16384 times and 20000 times per second for LIGO and Virgo data. The strain h(t)
is therefore a time series sampled at 16384 Hz for LIGO and 20 kHz for Virgo [46]. It is
fundamental to note that the strain h(t) is only calibrated between 10 Hz and 5 kHz for
Advanced LIGO and 10 Hz and 8 kHz for Advanced Virgo [50]. The reconstruction of the
strain is not faithful at lower or higher frequencies.

2.2.6 Angular sensitivity

As described in subsection 2.1.1, interferometers take advantage of the polarization modes
of gravitational waves in order to detect them. However, the sensitivity of the LIGO and
Virgo detectors highly depends on the source location in the sky. Indeed, the interferome-
ter response is maximized for GW propagating orthogonally to the plane of the arms and
linearly polarized2 [51] while any other angles of incidence or polarizations give a reduced
response. It is possible to derive the sensitivity of the detector as a function of the direction
of the GW. This sensitivity is known as the antenna pattern of the detector and is shown in

2We say that a gravitational wave is linearly polarized when it shows exclusively the plus- or cross-
polarization.
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Fig. 2.18. As we can see, the antenna pattern has a very peculiar peanut shape, indicating
that GW detectors are more sensitive to GWs coming directly from above or below them.

FIGURE 2.18: Antenna pattern for a L-shaped GW detector in the long-wavelength ap-
proximation (i.e. the wavelength of the GW is much larger than the size of the detector).
The black lines indicate the orientation of the two arms with the beamsplitter at their
center. The sensitivity for h+, h× are shown respectively in the left and middle panels.

The right-most pattern is for the root mean square of h+ and h×. Source: [51].

FIGURE 2.19: Angle-averaged sky maps of the LIGO Hanford (H), LIGO Livingston (L)
and Virgo (V) detectors for their design sensitivities. The color scale indicates the BNS

range, noted here ⟨D⟩. Source: [52].

When projected onto the sky, the antenna pattern shows the sky sensitivity of each de-
tector. Fig. 2.19 represents the sky maps of the LIGO and Virgo detectors in their initial
design state in spherical coordinates (Mollweide projection). We can clearly see the two
preferred directions of each detector and the 4 blind spots corresponding to GWs propa-
gating in the plane of the arms, as shown in Fig. 2.18. Another remark concerns the impor-
tant role of the Virgo detector. In addition to confirming and localizing GW events, Virgo
is undoubtedly more sensitive than LIGO to GWs coming from certain sky directions. This
highlights the importance of having a network of detectors covering the whole sky [52].
This comment finds a confirmation in Fig. 2.20 where the antenna patterns |F+| and |F×|
are shown for the HL and HLV networks. The sky sensitivity of a network of 3 detectors
has fewer blind spots than any network of 2 detectors, allowing a wider sky coverage. The
current generation network’s sensitivity will be further improved with KAGRA joining
the fourth observing run.
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FIGURE 2.20: Antenna pattern |F+| (left) and |F×| (right) in spherical Earth-based coordi-
nates for two networks of detectors, HL (top) and HLV (bottom). When adding Virgo to
the network formed by the two LIGO detectors, we assume all detectors share the same
spectral sensitivity. The location and orientation of the LIGO and Virgo detectors are de-

picted in white. Source: [53].

2.2.7 Transient noise artefacts

Despite the attempts to model and mitigate the noise sources in the current GW detectors,
the latter are still susceptible to instrumental and environmental disturbances that con-
taminate the strain data. Of particular concern are non-Gaussian transient noise artifacts,
known as glitches, that occur at a very high rate (∼ 1 per min in O2 [36]). Glitches usu-
ally last less than a second and can mimic high-mass binary black hole mergers as seen
in Fig. 2.21. Moreover, they can also hinder the detection of longer signals such as in the
case of GW170817 [26]. Although efforts have been carried out to mitigate the effect of
glitches on GW searches [36], the sensitivity of burst searches is still limited by the pres-
ence of these noise transients [54, 55]. A thorough analysis of the methods employed in
burst searches and their limitations is discussed in Chapter 3.

FIGURE 2.21: Time-frequency representations of a blip glitch (left) and a high-mass BBH
event (right) produced via the Q-transform method. Source: [56].
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FIGURE 2.22: Time-frequency representations of the 23 glitch classes identified over the
first 3 observing runs. The classes are grouped by the time window (0.5 s, 1 s, 2 s or 4 s)

that best illustrates their features. Source: [57].

Glitches come in a wide variety of time-frequency morphologies, with new classes ap-
pearing as the sensitivity of the detector improves. Characterizing and identifying the
cause of all the different classes seems to be a tedious and daunting task. A promising
option is to build machine-learning techniques that would rapidly recognize them in the
data streams. To this end, Zevin et al. [58] have developed a pioneer work via a crowd-
sourcing initiative called Gravity Spy. Their method consists in using the classification
labels assigned by volunteers in order to train a neural network to distinguish the existing
glitch classes. Gravity Spy initially identified 20 glitch classes selected by detector charac-
terization experts [58]. The training set was later refined to 23 classes [57], including a "No
Glitch" class and a "Chirp" family. The former was added when no significant power is vis-
ible in the time-frequency representations. The "Chirp" class contains the time-frequency
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footprints of binary black hole mergers that have been detected so far [25]. An exhaustive
list of the classes used is shown in Fig. 2.22.

With the goal of improving the classification and mitigation of glitches, Melissa Lopez
and I have developed a deep-learning algorithm that generates glitch time series [56]. The
method consists in training a neural network on glitch time-series reconstructions [59]
to learn their intrinsic properties. Once the training is completed, the network is able to
generate new unseen glitches sharing the properties of the real glitches. An open-source
Python package implementing this algorithm has been developed [60]. The work is pre-
liminary and only considers glitches from the "Blip" class. An example of the generation
capability of our network called gengli, can be seen in Fig. 2.23. Note the resemblance
between the generated glitch and the real blip glitch in the second-top left subfigure of
Fig. 2.22.

FIGURE 2.23: Time series (left) and time-frequency (right) representations of a glitch
generated with gengli. The fake glitch has been injected into O2 real noise.
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Chapter 3

Burst searches

3.1 General methods

3.1.1 Prerequisites and notations

Before describing the search methods for GW burst events, let us introduce the notation
adapted from [3]. Consider a gravitational wave passing through an interferometric GW
detector. The signal in the output port, after the calibration process, is a strain s(t) given
by1:

s(t) = n(t) + h(t) (3.1)

where n(t) is the noise and h(t) is the strain of the gravitational wave. In the general
case of an elliptically polarized wave, h(t) is the sum of both polarizations h+ and h×.
However, the interferometer response is different for these two polarizations, depending
on the orientation of the arms. Noting F+ and F× the antenna patterns shown respectively
in the left and middle panels of Fig. 2.18, the strain response of the detector is expressed
as:

h(t) = F+h+(t) + F×h×(t) (3.2)

We further make the assumption that the noise in the detector is not correlated with the
signal. Mathematically, this requires imposing the correlation of n(t) and h(t) to be zero
when averaged over several noise realizations [61]. The correlation between two signals
is defined as:

Rxy = R(x(t), y(t)) = x(t)⊗ y(t) =
∫ +∞

−∞
x(τ)y(t + τ)dτ (3.3)

where τ is called displacement or lag. The condition for which n(t) and h(t) are uncorre-
lated therefore writes as:

⟨n(t)⊗ h(t)⟩ = 0 (3.4)

where ⟨.⟩ denotes the average over multiple noise realizations.

It is important to note that the time domain representation of the GW signals is not
the only representation. Expressions (3.1) and (3.2) can be transformed into the frequency
domain. The Fourier transform is useful to go from the time domain to the frequency
domain according to:

x̃( f ) =
∫ +∞

−∞
x(t) e−i2π f t dt (3.5)

Note that this integral is written in the case of continuous signals. In practice, the strain
s(t) is evaluated thousands of times per second and we only know its value at discrete

1Note that we make the trivial assumption that the noise in the detector and the GW signal add linearly,
which suggests that the detector responds linearly to GW signals (h2 << h).
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times. The discrete version of the Fourier transform is expressed as:

x̃k =
N−1

∑
j=0

xj e−i2π jk/N (3.6)

where j is an integer number and xj refers to x(tj) with tj = t0 + j ∆t, ∆t being the time in-
terval between successive measurements with ∆t = 1/ fs, with fs the sampling frequency.

The correlation of two signals in the time domain can also be represented in the fre-
quency domain. For this, we apply the Fourier transform to expression (3.3), resulting in
the cross-spectral density (CSD) of the signal x(t) with respect to y(t):

CSDxy = CSD(x(t), y(t)) =
∫ +∞

−∞

∫ +∞

−∞
x(τ)y(τ + t)dτ e−i2π f t dt (3.7)

A particular case of expression (3.7) is found when evaluating the correlation of a signal
with itself, known as auto-correlation. The Fourier transform of the auto-correlation is
known as the power spectral density (PSD), noted S and expressed as [61]:

Sx =
∫ +∞

−∞

∫ +∞

−∞
x(τ)x(τ + t)dτ e−i2π f t dt = x̃( f )x̃∗( f ) = |x̃( f )|2 (3.8)

according to the Wiener-Khinchin theorem and x̃∗( f ) = x̃( f ) for real signals. For prac-
tical purposes, the PSD measures the contribution to the total power of x made by each
frequency component. Its square root, known as the amplitude spectral density (ASD),
quantifies the root-mean-squared value of the signal at frequency f .

The definition of the PSD is remarkably helpful in order to characterize the noise n(t).
The PSD and the ASD of the noise are widely used to evaluate the impact of the different
sources of noise on the output of the detector, as seen in Figures 2.10 and 2.13.

3.1.2 Maximum-likelihood analysis

The maximum-likelihood analysis consists in defining a rule that allows to discriminate
between two hypotheses: the data contains only noise and the data contains noise plus
a signal. The former hypothesis is noted H0 and referred to as the null hypothesis. The
alternative hypothesis is indicated as H1.

In practice, the data are sampled at discrete times and s(t) can be considered as a vector,
noted s. The antenna pattern functions F+ and F× then write as matrices that project each
polarization in the frame of the detector. In matrix notation, expression (3.1) can therefore
be written as:

s = n + F+h+ + F×h×

= n + Fh
(3.9)

where the contribution of both antenna patterns have been grouped into a single matrix F.

Under each hypothesis, the data s can be viewed as the realization of a stochastic pro-
cess [61] respectively associated to a probability p(s|H0) and p(s|H1). To distinguish be-
tween hypotheses, one can define the log-likelihood ratio [62]:

L = 2 log
( p(s|H1)

p(s|H0)

)
(3.10)
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With the above definition, if L >> 1, this means that the alternative hypothesis has a
high probability of being true and the data cannot be explained by the noise only. They
should therefore contain a signal. One can show that thresholding the log-likelihood ratio
is the optimal strategy for detecting h, known as the Neyman-Pearson lemma [63].

To expand upon, let us assume that the noise n follows a Gaussian statistics. In such a
case, the probability of measuring s in the absence of GW (h = 0) is given by:

p(s|H0) = exp
(
− 1

2
sTs
)

(3.11)

while the probability of measuring s given a GW h is:

p(s|H1) = exp
(
− 1

2
(s− Fh)T(s− Fh)

)
(3.12)

The log-likelihood ratio becomes [64]:

L = sT Fh + (Fh)Ts − (Fh)T(Fh) (3.13)

The first two terms in expression (3.13) depend on the data s and the signal h. The last
term is generally ignored since it does not depend on s. Typical search methods consist in
spanning many different signals h to maximize the likelihood for each detector. The collec-
tion of signals for which we evaluate expression (3.13) is called a template bank. Because
this method matches the data with the appropriate templates, it is termed matched filter-
ing [65]. In practice, the noise in the detectors is not Gaussian and the detection threshold
is not applied to the likelihood ratio but rather to the signal-to-noise ratio (SNR), defined
as [3]:

ρ2 = 4
∫ +∞

0

|h̃( f )|2
Sn( f )

d f (3.14)

where h̃( f ) is the Fourier transform of the template h and Sn( f ) is the PSD of the noise.

However, this method requires prior knowledge of the expected signals as well as an
accurate way to model them. Since bursts are produced in highly turbulent and/or com-
plex explosion mechanisms, simulations can take months to complete only one template
on the most recent supercomputers. That template can be considered as a best guess,
which might not reflect the complexity of the real GW emission event. We are therefore
left with maximizing the likelihood, which is satisfied when:

∂L
∂h

∣∣∣
h=ĥ

= 0 (3.15)

with ĥ being the best-fit waveform. The problem is linear and we can solve it by deriving
expression (3.13) with respect to h, leading to:

ĥ = (FT F)−1FTs (3.16)

In practice, FT F tends to be a singular matrix (i.e the determinant is close to zero) and the
problem does not converge well [64]. An efficient technique to overcome this limitation
has been proposed by Klimenko et al. [66]. It consists in projecting the antenna pattern of
each detector F over a Dominant Polarization Frame (DPF) [67]. This new frame allows
to remove the convergence problem that arises in expression (3.16) and to solve for each
polarization h+ and h×.
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3.1.3 Time-Frequency analysis

Let us consider a signal h(t) uncorrelated with the noise n(t). We can evaluate the energy
in the data s by computing its auto-correlation, averaged over several noise realizations:

⟨s(t)⊗ s(t)⟩ = ⟨n(t)⊗ n(t)⟩+ 2⟨n(t)⊗ h(t)⟩+ ⟨h(t)⊗ h(t)⟩ (3.17)

Since the signal and the noise are uncorrelated, expression (3.4) is valid and the second
term equals zero. As the energy carried by the signal is positive, ⟨h(t)⊗ h(t)⟩ > 0, we can
write:

⟨s(t)⊗ s(t)⟩ = ⟨n(t)⊗ n(t)⟩+ ⟨h(t)⊗ h(t)⟩ ≥ ⟨n(t)⊗ n(t)⟩ (3.18)

i.e. the signal induces an excess of power in the data [68].

The above result has led researchers to consider time-frequency representations of the
data. Assuming a signal that is well localized in a compact time-frequency box, it will
cause an excess of power regardless of the form of the signal. This conclusion allows to de-
velop robust and model-agnostic techniques based on image processing tools. Numerous
time-frequency representations have been proposed to detect bursts: Wilson-Daubechies-
Meyer transform [66, 69], Welch periodogram [70] and spherical harmonics [71].

It is important to mention that transient artifacts happening in the detector noise n(t),
i.e. glitches, also generate an excess of power in the data. Developing techniques to reject
them is therefore fundamental to perform searches with low false-alarm rates. Among the
proposed methods, we can cite the null-energy [72] or simply the use of Gravity Spy [58]
in pre- or post-processing analysis.

As the above-mentioned methods aim at showing the excess of power caused by a sig-
nal in the data, their time-frequency representations are all different measures of the power
in the data. However, if we decide to measure the absolute variation in power, we will be
limited by the power contained in the noise. Indeed, the noise has a particular ampli-
tude spectral density, mainly limited by quantum noise, thermal effects and displacement
noise and contaminated by instrumental lines. The PSD, being the square of the ASD (see
Fig. 2.13), reveals that most of the power is contained at low frequency or in the instru-
mental lines. It is therefore necessary to measure the relative excess of power to mitigate
this effect. To this aim, Cuoco et al. [73] have developed a technique, called whitening, that
consists in dividing h̃( f ) by the ASD of the noise

√
Sn( f ) at each frequency component.

This procedure transforms the noise into a white noise, i.e. showing uniform distribution
of power at all frequencies2, resulting in a flat PSD. Note that in the expression of the SNR
(3.14), the whitening is done implicitly each time we match one template with the noise.
This is the consequence that most of our theory of detection is established in the frame-
work of a stationary Gaussian white noise [73]. If we whiten the data, we approach the
ideal case in which most of the detection algorithms have been developed.

Fig. 3.1 shows an example of a spectrogram generated on raw data as opposed to a
spectrogram evaluated on the same data, but whitened. In the left panel, we can clearly
identify the lines corresponding to the violin modes of the silica fibers as well as a peak
of noise at low frequencies (< 20 Hz). It is also impossible to depict the injected signal.
When the data is whitened, the excess power due to the signal is easily identified. We also
recognize 4 broadband glitches that appear as vertical lines because of their short duration.

2In opposition, when a signal does not show the same power over all frequencies, it is said to be colored.
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FIGURE 3.1: Spectrograms generated on H1 data from O3a. The data are either non-
whitened (left) or whitened (right). In the non-whitened case, most of the power lies
below 20 Hz and in the instrumental lines. When whitened, the excess of power due
to the signal and the glitches is easily recognized. The frequency resolution is 2 Hz with
time bins of 6 s. The GPS time at the start of the data is 1248306006 and the injected signal

is a magnetar model [74].

3.1.4 Coincident searches

Even if statistics and methods have been defined to address the problem of glitches [58, 72],
causing parasite excess of power in the data, the overwhelming amount of these transient
artifacts still limits the sensitivity of burst searches. A way to solve this problem is to use
multiple detectors in coincidence. The core concept is, if two or more detectors are far
apart, their noise should be mostly uncorrelated3. The probability of an accidental coinci-
dence is therefore very small while a GW signal should shake both detectors nearly at the
same time. Note that the methods addressed in subsections 3.1.2 and 3.1.3 can be easily
adapted to coincident searches by taking into account the time-of-flight between detectors
∆t = ∆r ·Ω/c, where r is the position of the detector with respect to the center of the
Earth, ∆r the distance between them and Ω is the sky localization of the GW signal.

When performing coincidences between detector data, it is important to orient the de-
tectors according to their location. To confirm a signal, both detectors should be sensitive
to roughly the same sky directions. As the location of these detectors affects their sky sen-
sitivity, it is convenient to orient the arms to compensate for this difference in location [3].
That is why both LIGO detectors, H1 and L1, show approximately the same sky maps (see
Fig. 2.20).

There exist two methods to carry coincident searches: single-detector or multi-detector
methods. The former consists in analyzing separately the data streams from the detectors
at first and searching for coincidences in a second time. In the time-frequency domain,
we can build two separate TF maps, process them and require some consistency in the de-
tected signals. For instance, we could require that the bandwidth of the two events have
an overlap [3]. The multi-detector method rather combines the data from each detector

3To the exception of electromagnetic disturbances, that can propagate all over the globe.
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to evaluate one or several statistics that will be used to search for GW signals. As an ex-
ample of statistics, we can cite the coherence of two data streams from different detectors.
Considering two signals x(t) and y(t), the coherence is evaluated via:

Cx y( f ) =
|CSDx y( f )|2

Sx( f ) Sy( f )
(3.19)

where the cross-spectral density and the PSD of both signals are involved. In practice,
expression (3.19) is evaluated at several sampled frequencies to produce a vector of co-
herence values versus frequency bins. To generate a full time-frequency array, we apply
Welch’s method [75] to successive time intervals of the original data streams. This is equiv-
alent to repeatedly updating the coherence value and compiling this time evolution as a
single map, known as a coherence spectrogram.

Any algorithm that aims at detecting GW signals needs to assess the number of false
detections over a certain period of time, known as the false-alarm rate. These false alarms
are most of the time due to random noise realizations or glitches contaminating the data.
In order to assess the sensitivity of the pipeline to these noise artifacts, it is convenient
to process a large quantity of data that does not contain GW signals, referred to as back-
ground. To estimate the background, and therefore make sure that there is no GW signal,
we can shift the data streams that are analyzed. The procedure consists in shifting the
data of one detector with respect to the other by a time step significantly longer than the
time-of-flight [76]. The events captured by the detection algorithms are then all accidental
coincidences arising from different noise realizations. Repeating this process with multi-
ple time steps allows to simulate hundreds of years of coincident data with only months
of data acquired by the GW detectors.

3.1.5 Sky localization

Typically we do not know the incident sky direction Ω of a signal. However, the likeli-
hood ratio depends on Ω, via the antenna patterns F+ and F×, and via the arrival time
delay between detectors ∆t. The standard approach consists in repeating the maximum
likelihood analysis over a grid of Ω covering the entire sky [64, 66]. This procedure gives
likelihood maps as seen in Fig. 3.2. The likelihood can be well localized in a unique small

FIGURE 3.2: Likelihood sky map produced by coherent WaveBurst [66] for a Sine-
Gaussian signal injected at Ω = (θ, ϕ) = (−30◦, 144◦). Source: [77].
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area or distributed over a large zone, itself split into several disjoint clusters. This ambi-
guity can be caused by several factors such as the signal strength or its morphology and
is typical for networks with only three detectors [77]. Adding KAGRA and LIGO India to
the current network of detectors will allow a wider sky coverage as well as an improved
sky localization [77].

3.2 Long-duration searches

3.2.1 Astrophysical sources

Historically, gravitational wave transients have been classified into two classes: compact
binary coalescences (CBC), whose models can be predicted, and bursts for which exact
waveforms are inaccessible yet. The methods used to search for burst events and their
associated challenges greatly depend on their durations. That is why bursts have been
further decomposed into two types, short (≤ 1 sec) and long (> 1 sec). As this thesis
focuses on the detection of long transients, only the potential progenitors of such signals
will be described below. As a reminder, although some waveforms have been modeled,
they mainly serve as test signals to compare algorithms and pipelines due to their known
inaccuracies.

At the end of their lives, massive stars generally blow up into supernovae, giving birth
to either a black hole or a neutron star. The remnant object could, under some conditions,
be subject to fallback accretion of the matter originally ejected by the massive star. In the
case of a neutron star, the fallback of matter can cause its collapse into a black hole, possi-
bly producing gamma-ray bursts. When the incoming material forms a disk, the accretion
can spin up the neutron star sufficiently to produce non-axisymmetric instabilities, lead-
ing to gravitational wave radiation [78]. When a black hole is the remnant of the massive
star, the accretion of fallback material down to the Inner most Stable Circular Orbit (ISCO)
can generate and sustain broadband gravitational wave emissions [79]. The subsequent
models of GW emission are called ISCOchirp in this work.

Long duration bursts could also be produced in a torus of matter around a black hole.
Catastrophic events such as hypernovae or black hole-neutron star coalescences are ex-
pected to result in a black hole surrounded by a disk or a torus of matter. Gravitational
wave radiation could then originate from instabilities in the accretion disk or fragmenta-
tion of matter spiraling into the black hole [80, 81]. The waveforms referring to this type
of event are denoted by the acronym ADI (adiabatic disk instabilities).

Supernovae and even binary neutron star mergers can lead to the formation of a highly
magnetized rapidly rotating neutron star, known as magnetar. This newborn object could
undergo secular instabilities, leading to gravitational wave losses which in turn would
affect its spin-down [82]. The latter process has been proposed to account for plateaus ob-
served in the light curves of gamma-ray bursts (GRB), and we mention the related wave-
form models as GRBplateau or CM09. Other mechanisms like distortions of the magnetar
shape caused by very high internal magnetic fields (> 1015 Gauss) are considered to be
GW sources [74]. In such scenarios, the models are commonly denoted as Magnetar or
maXgnetar.

Fig 3.3 shows some of the models used to test the methods developed in this work.
The acronyms refer to the above-mentioned progenitor events with the exception of ECBC
that refers to eccentric compact binary coalescences. Some of the CBC waveforms [83] are
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FIGURE 3.3: Time-frequency representation of some long-duration burst models. Note
that the ISCOchirp waveforms have been shifted up by 50 Hz for readability. The different
capital letters (from A to I) assigned to a waveform model refer to the same astrophysical
phenomenon simulated with different parameters and/or different hypotheses. Source:

[55].

indeed considered targets for burst searches. Note that WNB and SG stand respectively
for White Noise Bursts and Sine-Gaussian. Even if they are not astrophysical signals, their
time-frequency behavior serves as valuable tests for detection algorithms [55].

3.2.2 Expected amplitude and range

Now that we have an idea of the physical processes that can produce GW bursts, it is
convenient to evaluate the distance to which LIGO and Virgo could detect them. For this
let us express the SNR of the GW signal at the detectors as a function of the energy radiated
by the source. By estimating the amount of energy carried away from different sources,
we can derive the distance that would lead to a particular SNR in the detector data. First
we write expression (3.14) as a function of the two polarizations h+ and h×:

ρ2 = 4
∫ +∞

0

|F+h̃+( f ) + F×h̃×( f )|2
Sn( f )

d f (3.20)

In burst searches, the standard measure of the intensity of a signal is not the SNR, but
rather the root-sum squared amplitude:

h2
rss =

∫ +∞

−∞

(
h2
+(t) + h2

×(t)
)

dt

= 2
∫ +∞

0

(
|h̃+( f )|2 + |h̃×( f )|2

)
d f

(3.21)

where we have used Parseval’s theorem and integrated over the physical positive frequen-
cies. Note that the hrss does not take into account the detector noise as in the definition of
the SNR. Since the noise in the current GW detectors varies with time, two identical sig-
nals (i.e. with the same hrss) arriving at different times could lead to different footprints in
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the time-frequency maps. This concern will be addressed in Chapter 5.

We can estimate the signal-to-noise ratio by assuming a narrowband signal with central
frequency f0. The power spectrum of the noise Sn( f ) can then be considered constant and
equal to Sn( f0). In the case of an elliptically polarized wave, the two polarizations are
independent stochastic time series and the terms h̃+h̃∗× can be dropped4 [84]. The SNR can
therefore be written as:

ρ2 =
4

Sn( f0)

∫ +∞

0

(
F2
+ |h̃+( f )|2 + F2

× |h̃×( f )|2
)

d f

=
Θ2

Sn( f0)

∫ +∞

0

(
|h̃+( f )|2 + |h̃×( f )|2

)
d f

=
Θ2

Sn( f0)
h2

rss

(3.22)

where the dependence on the sky position, source orientation and polarization of the wave
is contained in the angle factor Θ [84]. Now we need to relate the total energy emitted in
gravitational waves EGW to the hrss amplitude at the detector. This expression can be found
in [3]:

EGW =
πc3

2G

∫ +∞

−∞
f 2

[ ∫ (
|h̃+( f )|2 + |h̃×( f )|2

)
dA

]
d f (3.23)

where we integrate over all frequencies of the signal and over the area A through which
the total energy is flowing. Let us consider an isotropic emission from a source located
at a distance r from the detectors. The two polarizations are therefore independent of the
emission direction and the integral over dA is equal to 4πr2, leading to:

EGW =
2π2c3r2

G

∫ +∞

−∞
f 2
(
|h̃+( f )|2 + |h̃×( f )|2

)
d f

≃ 2π2c3r2

G
f 2
0

∫ +∞

−∞

(
|h̃+( f )|2 + |h̃×( f )|2

)
d f

≃ 2π2c3r2

G
f 2
0 h2

rss

(3.24)

where we have assumed a narrowband signal with central frequency f0.

We can now express the signal-to-noise ratio as a function of the energy by replacing
the expression of the hrss with expression (3.24):

ρ2 ≃ Θ2 G
π2c3

EGW

Sn( f0)r2 f 2
0

(3.25)

If we average over angles, a good estimate for Θ is 1/
√

2 [84]. Rearranging the terms,
we obtain the effective distance at which our current GW detectors are sensitive to burst
events:

Re f f ≃
(

G
2π2c3

EGW

Sn( f0) f 2
0 ρ2

det

)1/2

(3.26)

4This result is also valid in the case of a circularly or linearly polarized wave, where respectively the two
polarizations are orthogonal and h̃× = 0 or h̃+ = 0.
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where ρdet is the threshold at which the detection efficiency is 50%. For sine-Gaussian sig-
nals, this threshold is expected to be ρdet ≃ 20-30 [85, 86]. As we expect the effective range
to be limited by the fainter signals, we take ρdet = 20 for our further estimates. Taking the
aLIGO and Advanced Virgo design sensitivity curves, it is possible to illustrate Re f f as a
function of the frequency. Fig. 3.4 shows the effective range of the two GW detectors in
two different cases, EGW = 10−6 M⊙c2 or EGW = 10−2 M⊙c2.

Fig. 3.4 can be used to determine the effective range for some of the astrophysical
events described in subsection 3.2.1. In the case of magnetar giant flares, the amount of
energy radiated into GWs is not expected to exceed 10−6 M⊙c2 [87]. This leads to a range
roughly equal to 100 kpc in the most sensitive band of the LIGO detector. The width of
the Milky Way being 32 kpc, only galactic sources can be probed with current generation
detectors. Instabilities in the accretion disk around black holes (as in ADI) are expected
to emit GWs with EGW = 10−3 − 10−2 M⊙c2, leading to an effective range of 10 to 100
Mpc in the most optimistic scenarios [88]. Such events can thus be detected as far as the
Virgo cluster and even beyond. Secular instabilities in highly magnetized neutron stars
(as modeled in GRBplateau) should produce GW energy of the order EGW = 10−2 M⊙c2,
and therefore be observable up to 100 Mpc [82]. Fallbacks of material down to the ISCO
may induce turbulences and spin down of the black hole, leading to GWs with energy up
to 10−1 M⊙c2. This strong emission scenario shows an effective range of several Gpc [81].

FIGURE 3.4: Effective range as a function of the frequency for the Advanced LIGO and
Advanced Virgo detectors. The design sensitivity curves have been used to evaluate
Sn( f ) and ρdet > 20. For comparison, the effective range of the Hanford detector in 2010

is shown. Source: [89].

3.2.3 Detection pipelines

The search for long duration bursts is tackled by several groups within the LVK collabo-
ration. The use of multiple pipelines, implementing various TF representations and clus-
tering algorithms, provides redundancy as well as different sensitivities to different signal
morphologies. The diversity of detection algorithms is therefore important to cover the
whole TF space. The methods used to identify bursts in the TF images can be classified
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into two categories: seed-based or seedless. Seed-based methods aim at clustering pix-
els above a predefined threshold while seedless algorithms are processing pixels derived
from generic models.

In O2 [90], the pipelines used were the long-duration configuration of coherent Wave-
Burst (cWB) [66], the two different versions of the Stochastic Transient Analysis Multi-
detector Pipeline - All Sky (STAMP-AS), Zebragard and Lonetrack [91, 92], and X-SphRad
[71]. In O3, X-SphRad has been dropped and only the 3 first pipelines performed the
analysis of the LIGO-Virgo data [55]. For O4, PySTAMPAS [70] should incorporate and
replace the two configurations of STAMP-AS. cWB and PySTAMPAS are both seed-based
algorithms.

cWB [66] is based on a maximum likelihood approach. A time-frequency representa-
tion of the strain data is obtained via the Wilson-Daubechies-Meyer transform [69]. Then,
the whitened TF series of all detectors are combined to build multi-resolution energy
maps, which are used to identify clusters of excess power. The selected clusters consti-
tute the burst events, from which cWB extracts the signal waveform, polarization and sky
location by solving the inverse problem in expression (3.16). The search is performed on
data where poor quality periods have been removed, in the frequency range of 24 - 2048
Hz. A threshold is applied on the null-energy criterion to reject glitches [72]. The triggers
that survive this threshold, are then ranked according to their detection statistic.

PySTAMPAS [70] processes single-detector spectrograms built on the time series strain
data. The TF maps have a duration of 500 s and a frequency band of 24 – 2048 Hz with a set
of 4 resolutions ranging from 4 s × 0.25 Hz to 0.5 s × 2 Hz. A clustering algorithm identi-
fies clusters of excess energy pixels in all individual spectrograms. The pixels from clusters
obtained in a single spectrogram are then matched with the corresponding pixels in the
other spectrograms to produce a coherent statistic. This coherent analysis is evaluated on
multiple sky positions, which enables a precise reconstruction of the signal. PySTAMPAS
also implement a glitch rejection procedure, similar to the null-energy criterion. Finally,
post-processing steps such as vetoes and gating are used to deal with non-Gaussian events.

Unfortunately, long duration bursts have not been detected over the first three ob-
serving runs. With the planned improved sensitivity of the aLIGO and Advanced Virgo
detectors, the probability of an event entering the effective range of the detectors is higher.
Burst pipelines should therefore be ready to analyze the incoming data during O4. How-
ever, a single 1000-second block of data can take several minutes to be processed, which
ultimately leads to delayed detection. This latency might affect the discovery of a potential
electromagnetic counterpart. Moreover, the thresholds used to select the excess power pix-
els are affected by the noise in the detectors. Consequently, they might need to be modified
from one observing run to the following. The same remark holds for the parameters used
in the post-processing steps. In the end, a detection pipeline might need several weeks
to months to be fine-tuned. This thesis aims at tackling both problems by developing a
parameter-free tool that provides fast trigger identification, taking advantage of the speed
of neural networks.

As building a full detection pipeline takes several years, we will not develop every-
thing from scratch in this thesis. Indeed, this work originates from the early development
of a new long-duration pipeline, called Pyxel (draft in progress), which has been built
by Maxime Fays. Pyxel is a seed-based algorithm that processes coherence spectrograms.
More precisely, after whitening the data from both detectors, it evaluates their coherence
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from which a TF map is built. The whitening procedure being imperfect, violin lines ap-
pear in the raw coherence spectrogram as in the right panel of Fig. 3.1. A normalization
across the frequency bins is then performed to discard these horizontal lines. Pyxel finally
applies a clustering method on the pixels that pass a certain threshold. The goal of this
thesis is to replace the detection engine included in Pyxel while preserving the structure
of the pipeline.
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Chapter 4

Deep learning

4.1 Introduction to deep learning

4.1.1 General considerations

Deep learning, machine learning and artificial intelligence (AI) are terms often used in-
terchangeably to characterize algorithms that are capable of mimicking human behavior.
It is important to understand the key distinctions among them to use the appropriate term.

Deep learning is a subset of machine learning, which in turn is a subset of AI. More
generally, AI refers to all the computer systems that are able to perform tasks that normally
require human intelligence such as decision-making, visual perception or speech recogni-
tion. A pile of "if-else" statements, carrying out some computations if some conditions are
fulfilled, is then considered an AI algorithm. The fundamental aspect that distinguishes
machine learning from other AI programs, is the ability to modify itself when exposed to
data. A machine learning algorithm is therefore dynamic and can adapt its inner parame-
ters without being explicitly programmed to do so. The phase in which the machine learn-
ing model optimizes its parameters to achieve an objective is called the learning phase.
The key differences between machine learning and deep learning are the methods used
to complete the learning phase. Machine learning involves statistical models while deep
learning is based on Artificial Neural Networks (ANNs). ANNs are a set of interconnected
nodes that process and learn from data in a way that is inspired by the human brain. Neu-
ral networks usually pass input data through much more mathematical operations than
other machine learning algorithms and are therefore more computationally intensive to
train. Fig. 4.1 summarizes the relationship between AI, machine learning and deep learn-
ing.

FIGURE 4.1: Illustration of the difference between AI, machine learning and deep learn-
ing. Source: [93].
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Within machine learning, there are two basic types of approaches: supervised learning
and unsupervised learning. In the former case, the goal is to predict the outcomes of new
data. During the training, the predicted outcomes are compared to the expected outputs,
known as labels, and the result is used by the network to learn over time. Classification
and regression tasks are examples of problems where labeled data are particularly help-
ful. In contrast, unsupervised learning models work on their own to discover the inherent
structure of data. The purpose is to discover patterns and trends in the data without the
help of labeled outputs. These algorithms are generally used in clustering or dimension-
ality reduction problems, where a-priori knowledge of the data is often missing.

The first neural network has been proposed in 1958 by Frank Rosenblatt [94] and is
known as the Multi-Layer Perceptron (MLP). It consists of nodes arranged in multiple lay-
ers, and non-linearly activated via an activation function. Each node includes a simple
linear model of the form y = Ax + b, representing an artificial neuron. The activation
functions are essential to introduce the non-linearities needed to learn complex relation-
ships between the input data and the desired outputs1. They play the role of the axons in
biological neurons, allowing them to transfer or discard the information to other neurons.
Fig. 4.2 illustrates the analogy with the model of a neuron. In an MLP, the nodes from
one layer are connected to all the nodes in the next layer so that the information can flow
through the whole network. Such a layer is denoted as a fully-connected layer.

FIGURE 4.2: Similarity between a biological (left) and an artificial (right) neuron. The
neuron receives the signals from the other neurons via the dendrites, concatenates the
information and propagates it through the axonal connections. The artificial neurons
sum the weighted inputs, apply an activation function to the sum and generate an output

signal. Adapted from [95] and [96].

All neural networks share a common goal: minimizing a loss function. A loss function
is a mathematical expression used to assess how close are the predictions of the network
from the expected outputs. By minimizing the value of the loss, the predictions progres-
sively approach the desired outputs and the network consequently learns how to perform
its task. This optimization phase is known as the learning or training phase.

4.1.2 How do neural networks learn?

Gradient descent

The learning phase of a neural network is an iterative process in which the network modi-
fies its inner parameters, or weights, to minimize a loss function. The idea is to find the best
set of parameters via a technique called gradient descent. Gradient descent is a method to
update the weights of a network by evaluating the derivatives of the loss function with re-
spect to these weights. To illustrate how it works, let us consider a loss function L defined

1Linear algebra shows that any composition of linear functions can be reduced to a single linear function.
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over some parameters θ, as seen in Fig. 4.3. Let us try to find the minimum of the loss with
an iterative procedure, starting from an initial guess θ0. For a small perturbation ϵ of this
starting point, the loss can be written:

L̂(ϵ; θ0) = L(θ0) + ϵT∇θL(θ0) +
1

2γ
||ϵ||2 (4.1)

using a second-order Taylor expansion with γ being a constant. To minimize the loss, we
need to solve:

∇ϵL̂(ϵ; θ0) = 0

∇θL(θ0) +
1
γ

ϵ = 0
(4.2)

which happens when
ϵ = −γ∇θL(θ0). (4.3)

The optimal step to update the parameters is therefore proportional to the gradient of
the loss. By repeating this procedure, we find a general rule to update the network’s
parameters:

θt+1 = θt − γ∇θL(θt) (4.4)

where γ is known as the learning rate.

FIGURE 4.3: Illustration of the gradient descent algorithm. The black curve shows the
loss function while the red curve represents its approximation via a Taylor expansion.
The dotted line indicates the local gradient that is used to update the initial parameters

from the blue dot to the orange dot. The graph is adapted from [97].

The iterative procedure described above consists in approximating the loss L with a
second-order Taylor expansion around a local point and then evaluating the local gradi-
ent. Finally, the parameters are updated thanks to expression 4.4.

It is important to consider that the procedure of finding the minimum of the loss func-
tion is dependent on the data. The gradient ∇θL(θt), and therefore the approximation of
the loss, will depend on the data x that have been used to evaluate the loss, i.e. ∇θL(x, θt).
The best approximation could be achieved by evaluating the loss over all the data available
at every step of the gradient descent algorithm. This method is known as batch gradient
descent. However, since thousands or even millions of samples are often required to train
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a neural network, this would lead to a memory overload or would take too much time to
complete. Instead one can decide to evaluate the loss over only 1 sample at a time. This
procedure is known as stochastic gradient descent. Unfortunately, although being compu-
tationally cheap, the approximation of the total loss is imprecise and leads to a very long
training time to reach the minimum of the loss. As a compromise, a subset of the data,
known as a mini-batch, is used to improve the accuracy of the gradient and accelerate the
training phase. The size of the mini-batch subset is designated as (mini-)batch size. Fig. 4.4
illustrates the gradient descent algorithm in the 3 different cases mentioned above. In the
parameter space, batch gradient descent allows to get the most accurate feedback and con-
verge rapidly towards the minimum. Stochastic gradient descent is inaccurate and takes
time to converge while mini-batch gradient descent is a good compromise between speed
and accuracy.

FIGURE 4.4: Illustration of the different gradient descent procedures in the parameter
space. Batch (blue), stochastic (purple) and mini-batch (green) gradient descents are
shown. Batch gradient descent provides ideal feedback but is impractical. Stochastic

gradient descent is computationally cheap but imprecise. Source: [98].

Backpropagation

At this stage, we have a rule to update the parameters of the neural network that is based
on the gradient of the loss function, the latter being evaluated over a mini-batch of data.
The gradient of a function depending on K parameters is a vector of all the partial deriva-
tives:

∇L =

[
∂L
∂θ0

,
∂L
∂θ1

, ...,
∂L

∂θK−1

]
. (4.5)

Computing the gradient requires to evaluate all the partial derivatives with respect to
the network’s parameters. Let us consider a very simple network in order to demonstrate
how it is done in practice. As shown in Fig. 4.5, we build a multi-layer perceptron with 3
inputs, 2 intermediate (or hidden) layers comprising 2 nodes, and 1 output. The 3 inputs,
noted x, are first passed through a linear model Wx + b and then through a non-linear
activation function f . The output of the linear model is denoted h while the output of the
activation function is designated as a. The intermediate values are fed to a second hidden
layer, producing the final output S.
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FIGURE 4.5: Example of a multi-layer perceptron. The inputs x are fed to two hidden
layers which produce the output S. The outputs of the linear models before and after
the activation functions are noted h and a respectively. The weights corresponding to the
first and second hidden layers are indicated as [W1, b1] and [W2, b2] respectively while

W3 stands for the weights of the last layer.

The forward pass of the inputs through the network can be summarized into a set of 5
expressions:

h1 = W1 x + b1 with h1 =

[
h1

1
h1

2

]
, W1 =

[
w1

11 w1
12 w1

13
w1

21 w1
22 w1

23

]
, b1 =

[
b1

1
b1

2

]
(4.6)

a1 = f (h1) with a1 =

[
a1

1
a1

2

]
(4.7)

h2 = W2 a1 + b2 with h2 =

[
h2

1
h2

2

]
, W2 =

[
w2

11 w2
12

w2
21 w2

22

]
, b2 =

[
b2

1
b2

2

]
(4.8)

a2 = f (h2) with a2 =

[
a2

1
a2

2

]
(4.9)

S = W3 a2 with W3 =
[
w3

1 w3
2
]

(4.10)

where the superscripts refer to the layers of the network. Note that the bias b of the last
layer has been set to zero for simplicity.

Let us compute the partial derivative of the loss with respect to w2
22. Using the forward

pass equations (4.6) to (4.10) and the chain rule of partial derivatives, it leads to:

∂L
∂w2

22
=

∂L
∂h2

2

∂h2
2

∂w2
22

=
∂L
∂a2

2

∂a2
2

∂h2
2

∂h2
2

∂w2
22

=
∂L
∂S

∂S
∂a2

2

∂a2
2

∂h2
2

∂h2
2

∂w2
22

=
∂L
∂S

w3
2 f ′(h2

2) a1
2

(4.11)

The second and fourth terms are obtained during the forward pass, which does not
require additional computations. The first and third terms depend on the form of the loss
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L and the activation function f . By choosing adequately these two functions, the evalua-
tion of the partial derivative can be computationally cheap. The four terms obtained can
be assigned to different arrows in the graph of the network. As seen in Fig. 4.6, each term
allows to go back to the node indicated in the denominator, forming a chain of derivatives
that propagated backward. This chain is accordingly known as backpropagation.

FIGURE 4.6: Backpropagation procedure applied to a multi-layer perceptron. The weight
of interest is indicated by a gold arrow. The loss value L has been added to the graph since

it is a function of the predictions S and the expected output y, namely L(S, y).

A further remark can be raised concerning the values of the weights. As gradient
descent is an iterative procedure, it requires an initial guess of the optimal parameters of
the network. However, in view of expression (4.11), these values cannot be set to zero. If
it was the case, the gradients would be null and the weight values would remain zero.

4.1.3 Activation and loss functions

Activation functions

The role of activation functions is multiple. They introduce the requested non-linearities
while constraining the outputs of neurons, which in turn influence the learning phase.
In view of (4.11), it is clear that the activation functions must be differentiable. Another
fundamental condition concerns computational performance. As state-of-the-art neural
networks can include up to billions of parameters, the forward pass has to be fast if we
want to complete the training in a decent period of time. Therefore, activation functions
must show a very simple analytical expression. Some of the most widely used activation
functions are shown in Fig. 4.7.

The ReLU [99] and its variants, Leaky ReLU [100] and ELU [101], are used in most
modern networks. Note that the ReLU and the LeakyReLU are not differentiable in zero.
In practice, this has no consequence on the evaluation of the gradients (4.11) since the
values that flow in the networks are never exactly zero. The hyperbolic tangent and the
Sigmoid are particularly useful to constrain the values of the nodes in the intervals [−1, 1]
and [0, 1] respectively. They are mostly added at the last layer of the network in order to
produce probabilities or confidence scores.
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FIGURE 4.7: Some of the activation functions used in current neural networks.

The loss function

The choice of the loss is conditioned by the objective of the training. For what concerns
neural networks, the training procedure is almost exclusively supervised, i.e. the goal is
classification or regression. Although recent developments have been proposed to build
unsupervised learning strategies based on neural networks, their use is still limited [102].
We will therefore focus on losses adapted to classification and regression tasks.

When the goal is to achieve the prediction of some continuous values such as the price
of houses or temperatures, regression losses are needed to provide accurate feedback to
the network. The Mean Squared Error (MSE) and the Mean Absolute Error (MAE) are
among the most frequently used losses. Their analytical expressions are given by:

MSE =
1
n

n

∑
i=1

(
yi,true − yi,predicted

)2 and MAE =
1
n

n

∑
i=1

∣∣yi,true − yi,predicted
∣∣. (4.12)

where yi,true and yi,predicted stand for the labels and the network’s predictions respectively,
and the sum is performed over a number n of outputs. The MSE has the advantage of pe-
nalizing large errors while showing no local minima, which almost guarantees the training
to converge to the optimal parameters. However, if the data present some outliers, they
can impact the training with undesired large errors. This does not arise with the MAE
which applies the absolute value. The MAE is nonetheless more computationally expen-
sive and the absence of local minima cannot be guaranteed. A compromise of both losses
is found through the Huber loss [103]:

Lδ =

{
1
2

(
ytrue − ypredicted

)2, if|ytrue − ypredicted| ≤ δ

δ |ytrue − ypredicted| − 1
2 δ2, otherwise

(4.13)

which behaves like the MSE for small errors and is similar to the MAE for large errors.
The only drawback of the Huber loss is that the threshold δ that distinguishes small errors
from large ones needs to be tuned, which highly depends on the problem considered.

Classification can be viewed as the prediction of discrete outputs corresponding to
the different classes expected. When only two classes are considered, the Binary Cross
Entropy (BCE) is used:

BCE = − 1
n

n

∑
i=1

(
yi,true log(yi,predicted) + (1− yi,true) log(1− yi,predicted)

)
(4.14)
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Note that the use of the logarithm implies the predictions yi,predicted to be bounded in the in-
terval [0, 1], which can be satisfied with the use of the Sigmoid activation. More generally,
for a number C of classes, the above expression becomes:

CE = − 1
n

n

∑
i=1

C

∑
j=1

(
yij,true log(yij,predicted)

)
(4.15)

which is known as the Cross-Entropy (CE). The latter requires to add the Softmax activa-
tion at the last layer of the network:

σ(zi) =
ezi

∑C
j=1 ezj

f or i = 1, 2, . . . , C (4.16)

where the sum is performed over C classes. The Softmax normalizes the output to a prob-
ability distribution over the expected classes, enforcing the network to output a vector of
values for which the sum equals 1.

4.1.4 Optimizers, initialization and normalization

Optimizers

Training a neural network consists in computing the gradients via backpropagation and
using the update rule to modify its weights. With this method, the only free parameter is
the learning rate γ. However, the update rule (4.4) does not converge well in practice. This
happens because of the loss expression, the architecture of the network and the complexity
of the data. Altogether, they can lead to a very complex problem for which it is not easy
to find the optimal parameters, i.e. the minimum of the loss curve. As neural networks
have up to billions of parameters, a direct representation of this curve, as it is done for a
single parameter in Fig 4.3, is therefore impossible. Li et al. [104] have thus developed a
method that allows to visualize the loss curve by projecting this high-dimensional surface
onto a 3D space. An example of the loss surface for a deep neural network is shown in the
left panel of Fig. 4.8. With this representation, it is possible to understand why our update
rule is not performing well.

Consider that we want to find the minimum of the loss surface in Fig. 4.8 starting
from the green dot. At that point the loss is maximum and the gradient is zero in a small
neighbourhood. Let us consider that we manage to find a way to move from that point
and we start to follow the gradient, being the slope of the surface. As far as the slope
is negative, we keep moving down till we land on a flat area (yellow dot). There, as the
gradient is close to zero, the update rule θt+1 = θt − γ∇θL(θt) will not help us to move
away from that point. It is even worse if we account for the slight positive slope next to the
canyon shown in dark blue. Considering only the local gradient to decide where to move
in the parameter space is generally not a good idea. Instead, the inertia acquired during the
descent could help to move in the direction of the canyon, where the minimum probably
lies. Momentum-based techniques have been proposed to add inertia in the choice of the
step direction according to:

θt+1 = θt + ut

ut = αut−1 − γ∇θL(θt)
(4.17)

where u is called the velocity and α is a constant parameter to weigh the contribution from
the previous step. A graphical representation is shown in the right panel of Fig. 4.8.
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FIGURE 4.8: Left: Loss surface of a deep neural network according to the projection
defined in [104]. The height of the surface indicates the value of the loss in this projected
space. Adapted from [104]. Right: Representation of the principle behind momentum-
based techniques. The final step ut is a combination of the local gradient ∇θL(θt) and

the previous step ut−1.

The algorithms that compute the gradients, apply the backpropagation procedure and
implement momentum-based techniques are called optimizers. All in all, they are respon-
sible for the convergence of the training to the optimal network’s parameters. In practice,
two optimizers implementing momentum-like methods are widely used: ADAM [105]
and RMSprop [106]. Both involve additional steps compared to (4.17) but the purpose is
identical.

Initialization

In the previous part, we tried to find the minimum of a loss by following the slope of the
loss surface. Our set of initial parameters, namely the green dot, was a poor choice. In-
deed, we end up in a flat region where the loss is at its maximum. If we had to follow
the update rule θt+1 = θt − γ∇θL(θt), we would be stuck there. Here, the momentum
cannot be used since there is no previous step. This inconvenient position can be solved
by randomly choosing another point on the surface, with no guarantee to end up in a dif-
ferent situation. Instead, some strategies have been defined in order to discard poor initial
guesses. The most effective schemes are the Xavier [107] and He [108] initializations2:

Xavier : wl
ij ∼ U

[
−
√

6
ql + ql−1

,

√
6

ql + ql−1

]
(4.18)

He: wl
ij ∼ U

[
−
√

6
ql−1

,

√
6

ql−1

]
(4.19)

where wl
ij is a weight of the layer l, ql is the number of neurons in the same layer and

U [−a, a] denotes a uniform distribution in the interval [−a, a]. They both rely on the con-
servation of the variance of the weights across the layers. Preserving the variance of the

2Note that these expressions are the uniform version of the Xavier and He distributions. A Gaussian
variant has also been proposed for both methods.
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weights allows the information to flow in the network without reducing or magnifying its
amplitude, which is a major concern for deep neural networks.

Normalization

In both Xavier and He initializations, the values of the weights in a layer depend on the
number of neurons in the preceding layer. Their result can be obtained by enforcing the
variance of the values stored in the neurons to be identical for all layers, i.e. V(hl) =
V(hl−1). Consequently, this condition also holds for the very first layer V(h1) = V(h0),
where h0 = x are the input nodes (see Fig. 4.6). This further implies that the inputs should
follow a certain distribution. In practice, this constraint is rarely satisfied since the input
data can have very different natures (price, temperature, air humidity, etc.) which all have
different scales and units. However, we can enforce this condition by normalizing the data
to a Gaussian distribution via

x′ =
x− µ̂

σ̂
with

µ̂ =
1
N

N−1

∑
x=0

x and σ̂2 =
1
N

N−1

∑
x=0

(x− µ̂)2
(4.20)

where N is the total number of inputs.

In some cases, it does not really make sense to transform your data, in particular when
you are interested in their distribution. That is why another method has been proposed
to normalize the data: batch normalization [109]. It consists in performing the normal-
ization in between the layers of the network, by normalizing over the mini-batch. The
normalization therefore becomes a special kind of layer that can be added while defining
the network. Its expression is almost identical to (4.20) except that the mean and the stan-
dard deviation are estimated over a subset of the data. Batch normalization has shown
to be very effective, reducing the training time by up to a factor of 10 for some network
architectures [109].

4.1.5 Methodology to train neural networks

The training of a neural network is nothing else but an optimization problem with thou-
sands or millions of parameters. The goal of the training is to minimize a loss function
that corresponds to the problem we want to solve, i.e. classification or regression. How-
ever, in the case of a small dataset or if the neural network has too many parameters, the
loss can decrease while the network does not learn how to solve the problem. Instead, the
network memorizes the inputs and assigns them the optimal output in order to reduce the
loss, which is the only criterion to minimize. If we show new data to the network after
the training, it will not know how to perform its task and it is likely to give a random
output. This problem is known as overfitting. A way to solve overfitting is to separate the
data into two sets: a training set and a validation set. The former is used to train the net-
work, meaning computing the gradients and performing the backpropagation to update
the weights. The latter controls the training by taking care that the network performs well
on a new unseen dataset. The loss is thus also evaluated on the validation set and its value
indicates when to stop the training in case of overfitting. When the training loss decreases
but the validation loss increases, this reveals that the network starts to overfit the training
data. The optimal solution therefore lies slightly before the overfitting region, as seen in
the left panel of Fig. 4.9. Usually, the validation set comprises from 5 to 20% of the total
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data available, leaving a significant portion to train the network.

Once the network has been designed and the weights have been initialized properly,
we still have to choose the value of the learning rate and the batch size. Both are related
since the batch size affects the evaluation of the loss over the data and the learning rate
influences the contribution of the gradients in the weight updates. Therefore, they have to
be adjusted together. It is however recommended to set the batch size to a power of 2 to
increase the efficiency of the matrix operations performed on the GPU. For what concerns
the learning rate, its value can have a substantial impact on the loss curve, as shown in the
right panel of Fig. 4.9. A high learning rate induces large value updates even in the case
of small gradients, which can prevent the optimizer to find the optimal set of parameters.
Contrarily, a low learning rate tends to attenuate the feedback from the gradients and
extends the time needed to reach the optimal solution.

FIGURE 4.9: Left: Representation of the overfitting problem in neural network training.
A validation dataset is used to control and prevent overfitting. The optimal training is
achieved when the validation loss starts to rise, as depicted by the dashed line. Right:
Effect of the learning rate on the evolution of the loss. A low learning rate induces a long
training time while a high learning rate does not yield the optimal solution. The plot on

the right is taken from [110].

4.2 Convolutional neural networks

4.2.1 From MLPs to convolutions

The first ever neural network, the multi-layer perceptron (MLP), processes the input data
as one-dimensional arrays. In lots of applications, it is required to analyze images or
videos in order to detect specific shapes or unusual events. To use this very first architec-
ture, we might need to flatten our 2D or 3D arrays into 1D inputs. If we consider images of
shape 1000x1000, the total number of input nodes will be 1 million. Typical MLPs usually
show at least 3 layers for which the number of neurons decreases with depth, starting from
100 or 1000. In the former case, the first layer of our MLP would contain 100 million pa-
rameters. Such a large number of trainable parameters is intractable for most researchers
and companies.

A way to reduce this number consists in rethinking how the inputs are combined in-
side the network. In MLPs, every neuron is a combination of all the neurons in the previ-
ous layer. That is the brute-force method which might be useful when we have no prior
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knowledge of the data. However, in images and videos, there is no need to combine all
the pixels together to highlight a specific event such as a tennis player hitting a ball. The
local pixels around the player are enough to distinguish what is happening. With this idea
in mind, researchers have proposed to introduce convolutions in neural networks [111].
Convolutions make use of kernels that slide over the data as seen in Fig. 4.10. The output
of a convolution is a smaller array whose values are a linear combination of the kernel
values with the initial array. In computer vision, kernels are widely used to highlight lines
or curves in images. The choice of the values inside the kernel conditioned the output. In
neural networks, the kernel values are left as free parameters so that the network can learn
which filters lead to the best result.

FIGURE 4.10: Illustration of how a convolution kernel is applied to a 1D array. From top
left to bottom right, the kernel slides over the array, combining only the local information

to produce an output value.

An interesting property of convolutions is their ability to be stackable. As the output of
a convolution is a smaller array, we can feed this array to another convolution which will
further combine these first-stage features. This property, known as feature hierarchy, is the
fundamental principle in convolutional neural networks (CNNs). A second characteristic
concerns their invariance to translation. Since the kernel slides over the array, it applies
the same filter all over the data, allowing to highlight features even if they are translated
within the data3.

The basic principle behind CNNs is to apply successive convolutions to the input data
to allow the network to learn features at different levels. The first layers detect low-level
features such as lines or colors while the deeper layers combine them into more complex
objects like a wheel or a tree. This procedure can be applied in any dimension, making
CNNs particularly suitable to analyze images and videos.

3Note that convolutions are not invariant to rotations or other transformations like squeezing or stretching.
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4.2.2 Parameters of a convolution

The convolution operation can be adapted via four main parameters: the kernel size, the
stride, the padding and the dilation. As in many edge detection algorithms, the kernel
size can be tuned. A larger kernel has little effect on the shape of the output array while
it increases the number of parameters to train. As seen in Fig. 4.11, a single convolution
with a 5x5 kernel is equivalent to two stacked 3x3 convolutions while having more pa-
rameters (52 = 25 versus 2 ∗ 32 = 18). The general rule is to build deep networks with
small kernels, which benefits memory usage and training time. Also, odd-sized kernels
are preferred over even-sized kernels because of symmetry. For odd-sized kernels, the
parameters of the kernel are symmetrically distributed around the output pixel, which is
not the case for even-sized kernels. As a consequence, some distortions can happen in the
output array. Small odd kernels are therefore the common choice in CNN architectures.

FIGURE 4.11: Comparison of a 5x5 convolution and 2 stacked 3x3 convolutions applied
over a vector of 5 input values. Stacked convolutions with small kernels lead to fewer
parameters than convolutions with large kernels, reducing the cost in memory and the

training time. Adapted from [112].

The stride is the second free parameter of a convolution. It represents the step in be-
tween two consecutive applications of the kernel over the input pixels. A classical convo-
lutional that has a step of 1 pixel therefore shows a stride of 1. Strides of 2 or 3 are widely
used since they reduce the size of the input array by a similar factor. An example of the
effect of the stride on a convolution is seen in Fig 4.12.

FIGURE 4.12: Representation of the convolution operation with stride s = 1 (left) and
stride s = 2 (right). The size of the output array is highly dependent on the value of the

stride.

The third free parameter is known as the padding. It consists in adding values around
the input array to control the size of the output, as depicted in Fig 4.13. In general, the
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arrays are padded with zeroes so that they do not affect the linear combination of the in-
put values. There exist other padding modes that reflect or copy the boundary values.
Padding can also help reduce the loss of information at the borders. As the values at the
border appear only once in the convolution process, their information could vanish in
deep networks. Padding the input can eliminate this effect.

FIGURE 4.13: Illustration of a convolution operation applied on zero-padded input ar-
rays. A single (left) or double (right) padding is shown. The output of the two operations

only differs by the width of the padding.

The dilation is the last adjustable parameter of a convolution. Dilation refers to the
spacing left between the input values when applying the kernel on the input array. A di-
lation factor of 2 indicates that 1 pixel out of 2 will be combined through the kernel. By
default, there is no space left between the input pixels and the dilation factor is equal to
1. Dilated convolutions are useful to increase the field of view of a single convolution
without increasing the number of parameters. A 3x3 dilated convolution sees as far as a
classical 5x5 convolution but with only 9 parameters to train. Fig. 4.14 shows how dilation
is used in convolution operations.

FIGURE 4.14: Illustration of two successive steps of a convolution operation with a dila-
tion factor of 2.

A convolution operation with kernel size k, stride s, padding p and dilation d trans-
forms an input array according to:

Wout =

⌊
Win − 1 + 2 p− d (k− 1)

s
+ 1

⌋
(4.21)
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where ⌊.⌋ specifies the nearest integer down and Win and Wout stand for the input and out-
put sizes respectively. In the case of 2D or 3D arrays, this formula holds in any dimension.

Kernel size, stride, padding and dilation are set prior to the training of the network
and are thus not trainable. We distinguish them from the trainable parameters by calling
them hyperparameters.

4.2.3 Ingredients of a CNN

The main idea behind convolution networks is to exploit a feature hierarchy. Low-level
features are detected by the first layers and combined into more complex features as they
go deeper in the network. However, the convolution operation is still a linear operation
and some non-linearities are needed. That is why activation functions are inserted in be-
tween each convolution operation. Each value of the output array will then be passed to
an activation function such as ReLU or ELU.

The objective of a CNN is often to classify images or to give them a score based on a
specific feature. For this, the network has to produce a vector of classes or a single value
accordingly. In the case of large images, reducing their size down to a single value can be
difficult and requires to apply a lot of stacked convolution layers. This further increases the
number of weights in the network, extending the training time. Instead of using dozens
of convolution layers, we can use a mix of convolution and fully-connected layers. The
set of convolution layers then serves as a feature extractor, which combined them through
several fully-connected layers. The latter are easier to tune since we precisely set the num-
ber of neurons in the output layers, which is very practical in the case of a classification
task. In general, up to 3 fully-connected layers are used after the convolution part. A lot
of state-of-the-art CNNs have adopted this mixed architecture [113, 114, 115].

Training a CNN consists in discovering and transferring features that can help perform
the desired task. However, a convolution layer is defined by a unique kernel and cannot
learn many features at once. If we want to transfer different features, we need to apply
different kernels at the same stage in the network architecture. In practice, every convolu-
tion layer applies Nl kernels to the input array, leading to Nl outputs, called feature maps.
The next layer then applies its first kernel to each feature map and sums them to form the
first feature map. This procedure is repeated over the Nl+1 kernels of that layer. Although
there is no golden rule in the number of kernels to apply at the different layers, it is rec-
ommended to increase it by a factor of 2 from one layer to the next one. This allows to
combine the low-level features into even more high-level features that will be used to pro-
duce the final output. The number of feature maps at each convolution layer is therefore
another hyperparameter that needs to be chosen before the training phase.

Strided convolutions are not the only layers to reduce the size of the input arrays. In
a lot of applications, pooling layers are used. They consist in parameter-free operations,
like averaging or maxing out, that reduce the size of the input array by an integer value
as seen in Fig. 4.15. The pooling operation can be viewed as a convolution with a stride
equal to the kernel size, also known as pooling factor. In this way, they synthesize the
information contained in each block of the input array, leading to an array that has been
reduced by a factor equal to the pooling factor. Contrary to strided convolutions, these
layers do not have trainable parameters. In applications where large images are involved,
they can alleviate the memory requirements and therefore accelerate the training time.
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FIGURE 4.15: Illustration of the maximum (left) and average (right) pooling operations
on a 4x4 input array. In both cases the pooling factor is equal to 2.

A typical convolutional neural network is therefore composed of convolution and
fully-connected layers, activation functions, pooling layers and possibly batch normal-
ization layers. Fig. 4.16 shows how these layers interact in a typical architecture used for
classification tasks. As the input data are images, the output features need to be flattened
before passing them to the fully-connected layers. Note that there is no need to add an acti-
vation function after a pooling operation since it does not contain any trainable parameter.

FIGURE 4.16: Common CNN architecture used for classification. The network is made
of two parts: a set of convolution layers and 2 fully-connected layers. The former serves
as a feature learning algorithm while the latter takes the final decision by combining the
high-level features. The last layer returns a vector quantifying the probabilities for the

image to belong to each class. Taken from [116].

In applications like image segmentation or super-resolution, the goal is not to produce
a class vector but rather an image. However, all the precedent layers only reduce the im-
age size or leave it unchanged4. That is why a reverse convolution operation has been
implemented, known as transposed convolution. Fig. 4.17 shows how they work. Trans-
posed convolutions can be tuned in the same way as classical convolutions, i.e. with the
same hyperparameters.

Transposed convolutions are used in numerous neural network architectures to up-
scale the information [117, 118]. In general, these networks comprise two parts. The first
part is a series of convolutions that learn the relevant features in the input and the second
is a set of transposed convolutions that upscale these features up to the original image
size. This is particularly well suited for image segmentation tasks where we aim at locat-
ing objects and their boundaries in the input image. Transposed convolutions therefore

4Padding can be used to slightly increase the image size up to a certain limit that is the size of the kernel.
Beyond that, this is equivalent to adding redundant or useless information in the network.
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FIGURE 4.17: Illustration of a transposed convolution applied to a 2x2 input array. The
kernel is multiplied by each value in the input and the intermediate results are stored
adequately in larger arrays. The final step consists in summing all the intermediate arrays

into the final output.

act as methods to upscale precisely the learned features. However, transposed convolu-
tions might suffer from undesired artifacts in the image produced [114, 119]. This happens
when the kernel size is not a multiple of the stride [120] as seen in Fig. 4.18. In particular, it
appears with the ideal kernel size of 3 and the minimal stride of 2. It consists in input val-
ues that are overused with respect to their immediate neighbors, creating a checkerboard
pattern in the output. To circumvent this problem, Odena et al. [120] have proposed to
use parameter-free upsampling methods followed by a convolution. The suggested up-
sampling strategies are either the nearest neighbor algorithm or the bilinear interpolation.
They both consist in interpolating the values of the input array to enlarge the latter by an
integer factor.

FIGURE 4.18: Checkerboard artifacts introduced by transposed convolutions in one-
dimensional arrays (left) and images (right). The stride used in the left image is 2. The
repeated pattern is the consequence of the kernel size not being a multiple of the stride.

Both images are adapted from [120].

In the following chapter, we will design a search strategy based on convolutional neu-
ral networks. As the essence of burst searches is to identify clusters of pixels in time-
frequency images, CNNs are the natural choice to reach that objective. For this, we will
build our network with some of the ingredients defined above. Table 4.1 summarizes all
the layers and presents their hyperparameters, trainable weights and possible varieties.
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Hyperparameters N◦ of weights Varieties

Convolution

Kernel size k, stride s,

padding p, dilation d,

N◦ of feature maps N f

N f ∗ k2 /

Fully-connected
N◦ of neurons

in the layer Nl

Nl ∗ Nl−1 /

Pooling Pooling factor /
Maximum or

average pooling

Transposed

convolution

Kernel size k, stride s,

padding p, dilation d,

N◦ of feature maps N f

N f ∗ k2 /

Upsampling

layers
/ /

Nearest neighbor or

bilinear interpolation

Batch

normalization
Batch size / /

Activation

function

Negative slope of the

Leaky ReLU or

negative slope of

the ELU or None

/

ReLU, Leaky ReLU

ELU, Sigmoid, Tanh

Softmax, etc.

TABLE 4.1: Summary of the layers used to build typical convolutional neu-
ral networks. The table shows the adaptable hyperparameters, the number

of weights per layer as well the available varieties within that layer.
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Chapter 5

Anomaly detection for Long duration
BUrst Searches

5.1 Limitations from burst searches

5.1.1 Waveform models

The techniques used in burst searches aim at being model-agnostic. The various detection
algorithms proposed in the different pipelines should therefore not be biased towards a
particular waveform model. In the long duration regime, we can further assume that the
signals are well-behaved in the time-frequency plane. This means that the signals should
be spread over contiguous TF pixels forming thin solid curves. In terms of machine learn-
ing, the search for minute-long bursts is equivalent to finding curves in images. This is a
task that suits particularly well to convolutional neural networks. However, if we train a
CNN to recognize the handful of simulated models, it could lead to a bias in our search
algorithm. CNNs perform well in identifying shapes and patterns that they have seen
during the training phase but achieve poor results on new signals. If we want to build
a true model-agnostic algorithm based on neural networks, we therefore need to find a
way to mimic the burst models and broaden the parameter space that they cover in the TF
plane.

Frequency-swept cosines are particularly suited to mimic the behavior of long duration
burst models. They are defined through the expression:

y(t) = cos(ϕ(t)) with ϕ(t) =
∫ t

0
2π f (t) dt (5.1)

where f (t) can be any function describing the frequency evolution over time. The Scipy
library [121] allows to generate frequency-swept cosines following 4 different frequency
evolutions: linear, quadratic, hyperbolic and logarithmic. Considering a signal starting
at (0, f0) and evolving toward (t1, f1), the instantaneous frequency of the signal for each
case is indicated in Table 5.1. For a quadratic evolution, note that the expression of f (t)
depends on where the vertex of the parabola is attached. This further determines if the
parabola will be oriented upwards or downwards. In the case of a logarithmic frequency
evolution, the requirement that f0 and f1 have the same sign is trivially ensured since we
work with positive frequencies.

All these expressions are implemented within Scipy [121] and we can use them to gen-
erate long burst-like signals. We can even go further by mimicking the energy evolution
displayed in some waveform models. In some emission mechanisms, the GW energy is
not evenly released over the duration of the phenomenon. As an example, eccentric CBC
events show more energy at the end of the signal since it corresponds to the merger phase.



66 Chapter 5. Anomaly detection for Long duration BUrst Searches

Freq. evolution f(t) Conditions

Linear f (t) = f0 + ( f1 − f0)
t
t1

/

Quadratic
f (t) = f0 + ( f1 − f0)

(
t
t1

)2

f (t) = f1 − ( f1 − f0)
(

t1−t
t1

)2

⇒ vertex at (0, f0)

⇒ vertex at (t1, f1)

Hyperbolic f (t) = f0 f1t1
1

( f0− f1)t+ f1t1
f0 and f1 must be nonzero

Logarithmic f (t) = f0

(
f1
f0

)t/t1 f0 and f1 must be nonzero

and have the same sign

TABLE 5.1: Mathematical expressions of some frequency evolution models
over time. The mandatory conditions on f0 and f1 are shown in the right

column.

For frequency-swept cosines, the energy distribution can be adjusted via a Kaiser filter
[122] as shown in Fig. 5.1. For this, a Kaiser window twice as long as the signal is gener-
ated and the signal is multiplied by either the first or second half of the window. When the
first half is implied, the final chirp shows an increasing energy as the signal evolves in time
and the reverse holds when the second half is concerned. A shape parameter β is used to
control the width of the Kaiser window. A larger beta parameter implies a narrower Kaiser
window leading to a more uneven energy distribution across the signal duration.

FIGURE 5.1: Examples of Kaiser windows with different values for the β parameter.

Ultimately, the starting and ending frequencies, the duration as well as the frequency
and energy evolutions can be freely adapted to mimic long duration burst models. Fig. 5.2
illustrates some examples of frequency-swept cosines, also known as chirps, generated
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with the Scipy library. These chirps are almost identical to the long-duration burst mod-
els selected for O3 (see Fig. 3.3) while covering the full time-frequency plane. However,
the harmonics that appear in GW emission models like ISCOchirp [79] or ECBC [83] are
not reproduced. These harmonics come from emission mechanisms such as multiple mass
moments in the torus around black holes [123] or eccentricity oscillations in eccentric com-
pact binary coalescences [83]. They usually show less power than the main component of
the gravitational wave and show up exclusively at high amplitudes. For now, we leave
harmonics aside for the sake of simplicity. We will thus generate chirp signals to build our
training dataset.

FIGURE 5.2: Examples of frequency-swept cosines injected into a coherence spectrogram.
The frequency resolution is 2 Hz with time bins of 6 s.

5.1.2 Injection procedure

In burst searches, we measure the intensity of injected signals via the root sum squared
value of the strain, defined as:

hrss =

√∫ (
h2
+(t) + h2

×(t)
)

dt (5.2)

However, this expression only depends on the injected signal itself and could vary with
the local noise level. Fig. 5.3 shows a waveform model injected with a hrss value of 10−21

in two different spectrograms. Although the model is injected with the same hrss value in
the two TF maps, the signal is buried in the background noise in the right panel while it
is easily depicted in the left panel. This is the consequence of the variability of the noise
spectrum over time. Such TF maps can fool a neural network during supervised learn-
ing and eventually cause the training to be badly conditioned [124]. It is critical to assign
accurate labels to the training images to end up with a powerful neural network. A new
injection criterion is therefore required to form a healthy dataset.
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FIGURE 5.3: Injection of a Magnetar-F model [74] at 300 s with an hrss value of 10−21 in
two different O3a background coherence spectrograms. In the left image, the GW signal
is easily recognized while it is buried in the background noise in the right image. The
GPS time at the start of the H1 and L1 data in the left panel is respectively 1248306006
and 1248273184, while it is 1246174396 and 1246108524 for the right panel. The frequency

resolution is 2 Hz with time bins of 6 s.

To be visible in time-frequency representations, an injected signal has to stand above
the local noise level. Defining a noise-only coherence spectrogram N and the same spec-
trogram to which a signal has been injected by S, we propose a new injection criterion:

CA = ∑
i,j

(
Sij − Nij

)
(5.3)

where the sum is carried over all the pixels (i, j) of the injected model. We call this new cri-
terion the Coherent Amplitude (CA). The pixel-to-pixel difference allows to fine-tune how
much a signal emerges from the local noise level and form a dataset with different levels
of intensity. This is particularly useful when training procedures like curriculum learning
[125] are used. With this new criterion, it is now possible to adapt the strength of signals to
the noise level in TF images. Fig. 5.4 shows the same background TF maps, as in Fig. 5.3,
in which a Magnetar model has been injected with an identical coherent amplitude. Con-
trarily to Fig. 5.3, both signals are seen equally well, leaving a clear footprint in the TF map.

As the coherent amplitude is defined on the final coherent spectrogram, we need to it-
erate over hrss values to obtain the desired amplitude. The procedure consists in adapting
the hrss value to produce a TF map in which the signal shows the target coherent ampli-
tude. For this, we stop the iteration loop when the current amplitude CAcur is within 10%
of the target amplitude CAtar. The full injection algorithm can be seen in Alg. 5.1. The
core algorithm is a basic dichotomous search among the stored hrss values. Even if the
algorithm is demonstrated on a burst model, the procedure can also be applied to chirp
signals, which will allow us to build a faithful dataset to train our neural network.
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FIGURE 5.4: Injection of a Magnetar-F model [74] at 300 s with a coherent amplitude of
10 in two different O3a background coherence spectrograms. The equivalent hrss value is
respectively 10−21 and 2.7 10−21 from left to right. Both GW signals appear with a similar
intensity despite the very different background noise. The GPS time at the start of the
H1 and L1 data in the left panel is respectively 1248306006 and 1248273184, while it is
1246174396 and 1246108524 for the right panel. The frequency resolution is 2 Hz with

time bins of 6 s.

Algorithm 5.1 Injection procedure based on the coherent amplitude
1: ⋄ Fetch data
2: ⋄ Generate noise-only coherent spectrogram N
3: ⋄ Inject signal at default hrss
4: ⋄ Generate coherent spectrogram S
5: ⇒ CAcur ← ∑i,j

(
Sij − Nij

)
6:
7: while CAcur /∈ [0.9 ∗ CAtar, 1.1 ∗ CAtar] do
8:
9: ⋄ Find closest CA from above and below CAtar

10: ⋄ Find corresponding hrss from above h+rss and below h−rss
11:
12: if ∄ h+rss then
13: hrss ← h−rss ∗ 2
14: else if ∄ h−rss then
15: hrss ← h+rss/2
16: else
17: hrss ← (h+rss + h−rss)/2
18: end if
19:
20: ⋄ Inject signal at new hrss
21: ⋄ Generate coherent spectrogram S
22: ⇒ CAcur ← ∑i,j

(
Sij − Nij

)
23: ⋄ Store new hrss and CAcur
24:
25: end while

The relationship between the hrss and the coherent amplitude depends on the local
noise around the signal and is therefore not linear. Nonetheless, it is valuable to show
how a change in hrss affects the coherent amplitude and vice-versa. For this, let us evalu-
ate the coherent amplitude on different noise backgrounds, as a function of the hrss. The
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left panel of Fig. 5.5 illustrates how the relationship varies with the noise level. The change
in coherent amplitude for a fixed hrss can be substantial, reaching almost a factor of 7 at
hrss = 10−21. This confirms why a hrss is a poor choice to inject signals in images processed
with neural networks. The right panel of Fig. 5.5 shows the dependency of the relation-
ship to the waveform model used for a fixed background noise. As these models have
different morphologies, they are all affected in a singular way by a change in hrss. Note
that the curves in Fig. 5.5 highly depend on the time and frequency resolutions. Indeed,
a larger frequency bin implies more GW energy captured in a single bin, which increases
the local coherence and in turn the coherent amplitude. However, a larger frequency bin
also reduces the number of pixels in the signal footprint, reducing the coherent amplitude.
Both effects act antagonistically on the shape of the curves shown below.

FIGURE 5.5: Coherent amplitude as a function of the hrss. Left: A Magnetar-F model [74]
is injected at 400 s in 5 different O3a noise backgrounds. The GPS time at the start of the
H1 and L1 data is indicated in the legend of the plot. Right: 4 long-duration models have
been injected into the same O3a noise background for comparison. The GPS time at the
start of the H1 and L1 data is 1241246771 and 1252436251 respectively. The plots have

been generated with frequency resolution of 2 Hz and time bins of 6 s.

5.1.3 Size of the time-frequency arrays

The time and frequency resolutions of the generated spectrograms have an impact on the
sensitivity of the search. The longer the time segments, the more GW energy will be ac-
cumulated in a single pixel, leading to a higher coherence. As the noise appears to be
coherent on very small timescales (≪ 1 second) [36], increasing the length of the time seg-
ments allows to reduce the coherence of the noise versus the coherence of hypothetical
signals, yielding an increased signal-to-noise ratio. However, longer time bins will cause
short signals (∼ 10 seconds) to fall into very few pixels, making them harder to detect.
An identical reasoning can be made for the frequency resolution. In this work, we use a
6-s time resolution combined with a 2-Hz frequency bin as a good compromise. Taking a
1000-s data stream from the Advanced LIGO interferometers spanning frequencies up to
2048 Hz results in coherence spectrograms with dimensions of 166x1025 pixels.

The time-frequency arrays are heavy to store in the default 32-bit Python precision be-
cause of their large amount (> 105) of pixels. Each TF map weighs about 13 megabytes.
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As the RAM of the GPU is limited and should host both the network architecture and the
current mini-batch, there exists a maximum batch size determined by the weight of the
training images. Heavy images lead to small batch sizes, which eventually increase the
training time and downgrade the performance [126]. It is recommended to use batch sizes
above 10 to avoid a highly noisy gradient descent, and to take advantage of the speed-up
of matrix-matrix products over matrix-vector products [126]. Noisy gradients are obtained
when the gradients evaluated at each training iteration poorly generalize to all the sam-
ples in the dataset, which extends the time needed for the network to converge.

To allow larger batch sizes, we save the spectrograms as RGB images (8-bit integers).
A further argument in favour of using RGB images is the wide use of this format in deep
learning applications, e.g. some neural networks even require a 3-channel image as in-
put [113, 127]. This transformation leads to a gain in memory of roughly 26 compared to
the 32-bit NumPy arrays [128]. The reduction in memory requirements nonetheless comes
with a small loss of precision in the values of the array. As RGB images save 256 (28) inte-
ger values, floating point values are rounded to 2−8 after rescaling. The maximum loss of
precision for values falling right in between two integer levels is therefore 2−8/2, which
is less than 0.2%. To evaluate the impact of such loss, we add a Gaussian noise with a
standard deviation of 0.2% (0.002) to a TF map in which a glitch and a signal are present.
Fig. 5.6 compares the TF map before and after the noise addition, respectively in the left
and right panels. The TF images do not show any difference and both the signal and the
glitch appear identical to the human eye.

FIGURE 5.6: Comparison of TF maps with (right) and without (left) the addition of ran-
dom Gaussian noise with a standard deviation of 0.002. The effect of the noise is barely
visible and does not prevent a clear detection. A Magnetar-F model [74] has been injected
at 200 s. The GPS time at the start of the H1 and L1 data is respectively 1264183464 and

1264172464. The frequency resolution is 2 Hz with time bins of 6 s.

Saving the coherent TF maps into RGB images leads to spread the information in 3
channels, whose balance depends on the color map used to draw the initial array. As these
channels do not have any physical meaning, we choose to display evenly the information
in all of them. For this, we use the cubehelix color map from the Matplotlib Python library
[129]. As seen in Fig. 5.7, the GW signal is clearly visible in all channels and none seems to
contain more information than the others. We therefore select this color map to build our
training dataset.
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FIGURE 5.7: RGB representation of a TF map in which a chirp signal has been injected.
The GW signal and the glitch are seen equally well in the 3 channels of the image. The
GPS time at the start of the H1 and L1 data is respectively 1264183464 and 1264172464.

The frequency resolution is 2 Hz with time bins of 6 s.

5.2 Method

5.2.1 Network architecture

Neural networks and machine learning techniques have been applied to many fields in
gravitational wave physics [130]. Especially, convolutional neural networks have shown
successful applications in the detection of binary black hole [131] and binary neutron star
coalescences [132, 133] and estimation of their parameters [134], as well as in the classifi-
cation of detector glitches [58]. CNNs have also been used in burst-related applications
such as the detection or generation of short bursts [54, 135] and the identification of the
GW counterpart from supernovae [136, 137].

Most of the applications of CNNs in GW physics consist in classifying data into sev-
eral classes. In the search for GW signals, these classes reduce to either noise or signal.
However, it is sometimes risky to rely on a unique number to state if there is a signal in
the data. Given the gradual sensitivity improvement of the LIGO and Virgo detectors, it
seems clear that the first burst event will hardly stand out of the noise in the TF images. In
such a case, the class probability is likely to be close to 0.5 and we run the risk of missing it.

In this thesis, I propose to use a Convolutional Neural Network as a non-linear noise-
removal filter in order to highlight pixels of interest. I described the full methodology
in my first paper [138]. The objective is to produce a map where only the pixels that
could belong to chirp signals remain. For this, we use an architecture inspired by [139].
The network is made up of two parts, a downscaling part that keeps the useful informa-
tion through its different layers, and an upscaling part that aims at localizing precisely
this information in a map with the same dimensions as the input of the network. The
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connections between the downscaling and upscaling parts are known as skipped connec-
tions, which are nothing else than concatenation operations. They help the network to
learn how to precisely position the signals when upscaling the intermediate feature maps.
Fig. 5.8 shows the architecture of the network, called ALBUS (Anomaly detection for Long
duration BUrst Searches).

FIGURE 5.8: Architecture of ALBUS, modified from [139]. The downscaling and up-
scaling parts are represented in blue and red respectively. These two parts are coupled
thanks to skipped connections, represented as concatenation lines. The numbers in black

indicate the number of feature maps used at each stage of the network.

We exclusively use the ELU [101] as the activation function through the network and
we add batch normalization after every convolution layer except the last one. Even though
we aim at producing values in the interval [0, 1], we do not constrain the output of the last
convolution with a Sigmoid function. Once again, an ELU activation is used so that the
network is free to learn the correct range of values. We also add dropout layers [140] after
the convolution layers (yellow) showing 128 feature maps at the bottom of the down-
scaling network (blue). Dropout consists in randomly discarding some weights with a
probability set by the user. It allows to prevent the network from being dependent on
some features and therefore reduces the risk of overfitting. It is important to note that
dropout layers are activated only during the training phase. For the layers of concern, we
use a dropout probability of 50%. The full architecture of ALBUS can be seen in detail in
Appendix A.

5.2.2 Dataset generation

To efficiently train our network, we need to feed it with noise-only TF maps as well as
some containing chirp signals. For this, we use time-slides [76] applied on LIGO Hanford
(H1) and LIGO Livingston (L1) data from O3a to generate 9000 coherence spectrograms
(equivalent to 104 days of data). In half of them, we inject chirps at 9 different coherent am-
plitudes1 (500 samples for each intensity). Note that some chirps drawn randomly might
not contain enough pixels to reach coherent amplitudes above 20, as it is the case for IS-
COchirp and ECBC models in Fig. 5.5. In such a case, the maximum amplitude obtainable
is imposed by our algorithm. All the injection parameters and their range are summarized
in Table 5.2. The delay refers to the time from the start of the spectrogram where signals
are injected. We set a low-frequency threshold at 30 Hz because of the high noise level of
the Advanced LIGO detectors at lower frequencies [36].

1Note that the amplitude of chirp signals are first scaled down to 10−21 prior to being injected.
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Range of values

Duration 10 - 500 s

Delay 0 - 500 s

Frequency range 30 - 2000 Hz

Frequency evolution linear, quadratic, logarithmic or hyperbolic

β parameter - Kaiser 1 - 4

Coherent amplitudes 2, 3, 4, 6, 8, 10, 15, 20, 25, 30

TABLE 5.2: Parameters used to inject chirp signals in the TF maps. All the parameters
are uniformly drawn from their range of values.

Once trained, the network produces a map that indicates which pixels are susceptible
to being part of a burst event. To reach that goal, we need a way to assess how good is the
pixel selection during the training phase. A simple way of evaluating the progress made
by the network is to compare its output with a target map. The target map can be easily
built since we know where we inject the signals in the input TF image. Our target map is
defined by first applying a threshold on the spectrogram pixels corresponding to the 99th

percentile of the values. Only the top 1% pixels are kept, the others are set to zero. Then,
we select the pixels that belong to the footprint (or mask) of the signal in the input TF map.
Finally, we normalize the target map so that the maximum value is 1. This procedure leads
to a target map that follows the intensity evolution of the signals through the input map.
An example of a spectrogram containing a chirp signal and its corresponding target map
can be seen in Fig. 5.9.

FIGURE 5.9: Background spectrogram in which a chirp signal is injected at 300 s (left)
and its associated target map used for the training phase (right). The energy distribution
of the chirp signal can also be seen in the target map, providing adequate samples for the

training phase.

Note that we could have selected the pixels in the mask of the injected signal and
set them all to 1. However, this would force the network to set output values to either
0 or 1, with no intermediate values. It can be risky to enforce extreme values since it
would prevent us from ranking the detections based on their amplitudes. Moreover, it
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becomes difficult to discard false detections through simple postprocessing methods such
as thresholding. We rather need a definition that can output both high and low values
depending on the intensity of the signal found in the TF image.

5.2.3 Training procedure

Training a network means minimizing a loss function adapted to our objectives. Here, we
want the output of ALBUS to approach as close as possible to a target. The loss should
therefore account for the comparison between these two maps while producing a single
value. The Mean Squared Error (MSE) loss is well suited to our problem. Considering the
output of ALBUS, noted O, and a target map T associated with a particular input TF map,
the MSE loss is defined as:

MSE =
1
2 ∑

i,j

(
Tij − Oij

)2 (5.4)

where the sum is carried over the pixels (i, j) of the maps. As the MSE does not show
any local minima, we are guaranteed to end up with well-behaved training. In the case of
background TF maps, we simply set all the pixels in the target map to zero, i.e. Tij is zero
everywhere.

The training algorithms have all been coded with Pytorch [141]. The ADAM optimizer
[105] has been chosen with a learning rate of 10−4. We set the batch size to 20 where one
half is taken from the background images and the other half from the injection images. The
validation set is made of 10% of both datasets. Fig. 5.10 shows the training and validation
losses as a function of the number of epochs. An epoch refers to the time needed by the
network to see once each single image in the training set. The training loss decreases
monotonically which suggests that the learning progresses evenly. The validation loss
remains in close vicinity of the training loss ruling out any overfitting on the training data.
We decided to stop the training after 30 epochs since both losses started to reach a plateau,
indicating that no major improvements were made by the network.

FIGURE 5.10: Training and validation losses for a 30-epoch training of ALBUS. The loss
slowly reaches a plateau, indicating no further improvement of the network after 30

epochs.
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5.2.4 Detection performance

Burst signals

Figure 5.11 shows the output of ALBUS for 4 different waveforms from the selected models
in [55]. The simulated signals are well recognized and the variation of intensity in the input
map is also seen in the localization map. An additional remark can be made concerning
the lower right panel of Fig. 5.11, where a few pixels above the curve (from 950 to 1200
Hz at 500 seconds) are highlighted in the output map. Indeed, our network is not only
looking at the pixels having a high value but also at the connectivity between these pixels.
It then naturally prolongs the main structure to catch pixels following the general trend of
the signal. This property has nonetheless some limits, as depicted in the lower left panel.
Some pixels are indeed missed at the end of the GRBplateau waveform, probably because
of a high density of high-value pixels in that region of the image.

FIGURE 5.11: Detection performance on long-duration burst waveforms (top left: ECBC-
C [83], top right: Magnetar-F [74], bottom left: GRBplateau [82] and bottom right:
ISCOchirp-B [79]). The left image of each panel is the red channel of the input TF im-
age and the right panel shows the output of ALBUS. Most of the pixels from the GW
signals are detected when they stand above the noise level, with the exception of the har-

monics of ECBC-C and the tail of GRBplateau.

Another point concerns the harmonics of some burst models. It is reasonable to fore-
see that ALBUS will not detect them as they have not been implemented in the training
dataset. The upper left panel of Figure 5.11 displays this phenomenon to some extent. The
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harmonics appearing to the left of the rising chirp in the input TF image are not found
in the output map. This effect is certainly due to the extrapolation capability mentioned
above, for which ALBUS is looking for smoothly connected signals rather than thick signal
footprints. The choice of not incorporating harmonics of chirp signals in the data has here
minimal consequences since the main signal showing these harmonics is still detected.

Background

Even if our algorithm is good at recognizing chirps and burst waveforms, it will not be ac-
cepted as an official search engine if the false-alarm rate is large. It is therefore important
to evaluate how ALBUS processes background TF maps. Figure 5.12 shows the output of
ALBUS for 4 different background images. The output map shows values of the order of
0.01 except for the lower right panel. This trend is observed for all the processed spectro-
grams, with the exception of some isolated hot pixels as seen in the lower left panel. In any
case, the highlighted pixels appear sparse and unconnected, confirming that our network
is searching for connectivity among high-value pixels.

FIGURE 5.12: Detection performance on background spectrograms. The left image of
each panel is the red channel of the input TF image and the right panel shows the output
of ALBUS. ALBUS cleans out most of the background noise and only a couple of hot
pixels appear in the output image. The lower right panel shows the sensitivity of our
network to glitches. Although it has not been trained on such noise artifacts, ALBUS

recognizes them precisely.
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A further remark concerns transient noises or glitches. As most of the glitches last less
than 6 seconds [36], they show up in our TF maps as straight vertical lines as seen in the
lower right panel of Fig. 5.12. Our search in coincidence reduces their impact since a glitch
from L1 data needs to fall in the same overlapping time bin as another glitch from H1
while showing a sufficiently high signal-to-noise ratio (SNR) and sharing some frequency
bandwidth to show up in the coherence spectrogram. As we used random time slides to
produce our background, this condition is rarely fulfilled, leaving only a couple of glitches
over 4500 background TF maps. This small amount of glitches explains why ALBUS does
not consider them as part of the background noise and actually detects them.

5.3 Going further with ALBUS

5.3.1 Time and frequency resolutions

As a tentative to improve ALBUS, we decided to switch from a frequency resolution of 2
Hz to 4 Hz. This is done in order to reduce the size of the images by a factor of 2, allowing
us to set larger batch sizes while training our CNN. This choice has minor effects on the

FIGURE 5.13: Coherence spectrograms produced with a frequency resolution of 2 Hz (left
panel) and 4 Hz (right panel). Some long-duration burst models have been injected for
comparison (top left: Magnetar-F [74], top right: ADI-B [80], bottom left: GRBplateau [82]

and bottom right: ISCOchirp-B [79]).
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signals injected in TF maps, as seen in Fig. 5.13. As a consequence of a smaller number of
pixels to form their TF morphology, burst models show more angular and straight foot-
prints. However, larger pixels cause an increase in the coherence of burst signals versus
the coherence of the noise, leading to an improved SNR. The GW signals are therefore
more easily visible in the TF maps for the same value of the hrss.

The coherent amplitude of the signals is nonetheless barely affected by the change
in frequency resolution. As seen in Fig. 5.14, the coherent amplitude roughly reaches the
same values for a given hrss, compared to the former resolution (see right panel of Fig. 5.5).
We therefore keep the same range of values for any future chirp dataset.

FIGURE 5.14: Coherent amplitude as a function of the hrss for a frequency resolution of
4 Hz. As a comparison, 4 long-duration models have been injected into the same O3a
background noise. The GPS time at the start of the H1 and L1 data is 1241246771 and

1252436251 respectively.

5.3.2 Discriminating glitches from bursts

In the last section, we trained ALBUS with chirp signals having various morphologies in
the TF plane. We show that this methodology is adapted to detect long-duration burst
models. However, ALBUS can also recover glitches fairly and a human inspection is
needed to discriminate them from burst signals. In coincidence searches, this becomes
rapidly intractable in view of the thousands of glitches found out of millions of back-
ground maps. We could design a strategy that consists in eliminating any vertical cluster
of pixels in the output map. Nonetheless, some burst waveforms like the ISCOchirp [79]
show very peaking footprints and we run the risk of discarding some parts of these signals.

Rather we can train ALBUS to discriminate glitches from burst signals. This can be
achieved by adapting ALBUS to produce 2 output images: one that will contain the pixels
that belong to burst signals and another which gathers the pixels from glitches. In the
following, we will refer to these two outputs as Anomaly and Glitch maps respectively.
To train ALBUS on glitches, we need to build a third dataset containing several thousands
of glitches. As we barely get a few tens of them by using random time slides, we would
need to generate millions of background images and discard most of them. Rather, we
could inject fake realistic glitches with tools such as gengli [56, 60]. However, gengli can
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only generate blip glitches for the moment. Blips are one of the 23 classes that have been
characterized by Gravity Spy [58, 142]. As they have a limited frequency bandwidth (≤
256 Hz) [36, 143], they would limit the bandwidth sensitivity of ALBUS if used exclusively
in our dataset.

We thus have to rely on the glitches detected so far to constitute the training set. In
O3a, a lot of them have been recorded by Gravity Spy [144]. As we know where to find
them in the data, we can force two glitches to fall in the same overlapping time bin. For
this, we load the data containing the glitches in H1 and L1 and shift them so that the latter
fall into the same time bin. In this way, we maximize the probability of finding glitches in
the coherence maps. To account for variability in the footprints of the correlated glitches,
we select 17 glitch classes with SNR ranging from 20 to 10000 in both H1 and L1 data.
These pre-selected glitches will be used to build our glitch dataset. Table 5.3 summarizes
the details behind the glitch selection. As in the case of chirp injection, the delay refers to
the time from the start of the spectrogram where the glitches lie.

Glitch classes

Blip, Low Frequency Burst, Scattered Light, Tomte,

Whistle, Extremely Loud, Koi Fish, Power Line,

Violin Mode, Air Compressor, Repeating Blips, 1400Ripples,

1080Line, Helix, Paired Doves, Scratchy, None of the Above

SNR ranges
20-30, 30-40, 40-50, 50-100, 100-150,

150-200, 200-300, 300-500, 500-10000

N◦ per SNR range ≤ 30

Delay [6, 994] s

Total H1: 1320 L1: 1560

TABLE 5.3: Summary of the attributes of the glitches selected from H1 and L1.

The procedure for building a glitch dataset is therefore straightforward. First, we ran-
domly choose a glitch among the pre-selected glitches both in H1 and L1. Then, we pro-
duce the coherence spectrogram and process it with the former version of ALBUS. As it
is sensitive to glitches, the output map contains the footprint of the glitches. Therefore,
we only have to check the output of ALBUS to detect the presence of a glitch in the initial
TF map. To quantify the strength of the anomalies found in the original spectrogram, we
introduce the anomaly score (AS), defined as:

AS = ∑
i,j

Oi,j if Oi,j > 0.5 max(O) (5.5)

where O is the output map of ALBUS and i and j indicate the time and frequency dimen-
sions. The anomaly score can be thought of as the sum over the pixels remaining after
thresholding the values in the output map. This threshold has been chosen to exclude all
the values close to zero, as they are quite numerous given the size of the TF maps and can
have an impact on the final score. The anomaly score can also be used to rank the detected
signals as seen in Figure 5.15 where an extended glitch shows a higher score compared to
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a glitch that spans a smaller frequency bandwidth.

FIGURE 5.15: Examples of correlated glitches with different anomaly scores. The left
panel shows a glitch for which the AS is 7 while the glitch in the right panel has an AS of

43. The frequency resolution of the spectrograms is 4 Hz with time bins of 6 s.

To determine the minimum AS that effectively corresponds to the presence of a glitch
in the input TF image, we processed 10000 spectrograms. A histogram of the resulting
anomaly scores can be seen in Fig. 5.16. Almost all the background maps seem to show
an anomaly score below 2, with only 17 of them above that value. After visual inspection,
all the background images with scores above 4 show a correlated glitch. We thus set the
threshold to confirm the presence of a correlated glitch to 4. Every background TF map
showing an AS above 4 will therefore be selected as a sample of the glitch dataset.

FIGURE 5.16: Histogram of anomaly scores for 10000 background TF maps. The majority
of scores lie below 2, confirming that ALBUS has not detected any significant pattern. All

the TF images showing an Anomaly score above 4 contain a glitch.
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5.3.3 Simulating harmonics

In order to further enhance the capabilities of ALBUS, we implement a method to simu-
late waveform harmonics found in burst models like ISCOchirp and ECBC. From a former
analysis, we established that our network can miss loud signals when they show some
harmonics. This is probably due to their TF footprints which appear thicker in the input
spectrograms. As we exclusively inject frequency-swept cosines in TF images, our initial
dataset did not contain any thick signal. In turn, as it has never seen such TF structures,
ALBUS does not highlight the relevant pixels.

To overcome this limitation, we propose a method to simulate harmonics in chirp sig-
nals. Starting from an initial main chirp, the method consists in successively injecting the
main signal with slightly modified parameters and reduced amplitude. In this way, the
harmonics share the common structure of the main signal but remain dimmed with re-
spect to the latter. As an example, let us consider Fig. 5.17. As the signal is chirping up,
we could simply adapt the starting frequency of the harmonics to produce footprints sim-
ilar to ECBC signals (see Fig. 3.3). Then, the frequency spacing between the tails of the
harmonics becomes a free parameter. In the same way, the number of harmonics found
above and below the main signal can be tuned to generate chirps with very different TF
footprints. Note that, for the sake of simplicity, we will consider the same number of har-
monics above and below the injected chirp. When referring to a number of harmonics of
2, we therefore signify that 2 of them are found on either side of the main signal.

FIGURE 5.17: Illustration of the free parameters for a chirp signal including harmonics.
The number of harmonics as well as their frequency spacing and their intensity attenua-

tion with respect to the main signal can be adapted.

As the chirp injection procedure still relies on the hrss value2, one could simply dim the
harmonics by using an attenuation coefficient. For example, we can inject the main chirp
with hrss = 10−21 while the harmonics’ amplitude amounts to 7 10−22. In this particular

2Even if the decision criterion is based on the coherent amplitude, chirps are injected with the hrss.
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case, the attenuation coefficient is 0.7.

Both the frequency spacing, the number of harmonics and the attenuation coefficient
are 3 new free parameters in our chirp injection procedure. Fig. 5.17 illustrates how they
affect the generated harmonics. The frequency spacing is chosen to be constant and in
the range [10, 30] Hz. The number of harmonics on either side of the main signal is either
chosen to be 1, 2 or 3 to mimic the behavior of burst models like ISCOchirp. After visual
inspection, it seems that attenuation coefficients from 0.5 to 0.8 are adequate to produce
chirp signals whose harmonics appear at high amplitudes.

5.3.4 Generation of the new training dataset

In order to improve ALBUS by adding glitch discrimination and harmonics identification
capabilities, we need to build a new training dataset. In addition to the background and
chirp data, we build a third dataset containing exclusively correlated glitches. As nothing
prevents a glitch to appear in the same TF map as a burst signal, we also need to consider
the case where a glitch and a chirp are both present in the spectrograms. We then end up
with 4 different sets of TF images, referred to as background, chirp, glitch and combined
datasets.

All the input TF maps now have 2 target maps: one for the chirps and the other for
the glitches. The glitch target map consists of the output of ALBUS prior to the injection
of any chirp signal. Therefore, TF images from the background and chirp datasets show a
null glitch target map. Both the chirp and glitch target maps are shown in Fig. 5.18 in the
case where both can be seen in the input spectrogram. ALBUS will be trained to highlight
excess of power and discriminate whether it corresponds to a chirp or a glitch.

FIGURE 5.18: Coherence spectrogram containing both a chirp signal and a correlated
glitch. The middle and right panels show the corresponding chirp and glitch target maps,

used in the training phase.
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In a former coherent search, we analyzed 10 years of background (≈ 300000 TF maps)
with ALBUS. The output maps were then processed with Pyxel which clusters the re-
maining pixels to form triggers. More details about the processing steps will be given
in Chapter 6. As a sanity check, we overlay the centroid of every trigger in a single TF
map. Fig. 5.19 illustrates the results. Most of the triggers are found in the first half of the
map, between 0 and 600 seconds. As a consequence of setting the injection delays in the
interval [0, 500] s, ALBUS ends up being more sensitive on that side of the map. This is
highly problematic as it drops the overall sensitivity of our network. Even if this choice
was made so that any signal is entirely contained in the map, we adapt the delays to the
interval [0, 950] s. We therefore implement a method to cut off the chirp signals that exceed
the limits of the TF maps.

FIGURE 5.19: Trigger distribution for 10 years of background. The trigger identification
is conducted on the output Anomaly map of ALBUS. The remaining high-value pixels are
first clustered via Pyxel, which estimates their bandwidth and duration. Their centroid
is finally derived and plotted as a black dot in the above graph. As a consequence of the
injection delays being below 500 s, ALBUS ends up being more sensitive on the left-hand

side of the input TF image.

We further adjust the coherent amplitudes to add more variability to the chirp dataset.
Chirps are ultimately injected with 15 different intensities in coherence spectrograms. An-
other change concerns the bandwidth of these chirps, which is now limited to 1000 Hz.
This is done because very extended chirps require only a slight excess of power to give a
low coherent amplitude (≤ 4). They might still be mostly hidden by the local noise along
their TF footprint. Limiting the bandwidth of chirp signals helps to solve this problem. It
is important to note that this will not necessarily be harmful to the performances of AL-
BUS. In its first version, ALBUS has shown good extrapolation capabilities with the ability
to detect glitches while he was not trained on them. We therefore expect ALBUS to be sen-
sitive to very extended signals even if they do not show up in the training dataset. Table
5.4 summarizes the latest injection parameters.
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Range of values

Duration 10 - 500 s

Delay 0 - 950 s

Frequency range 30 - 2000 Hz

Max. Bandwidth 1000 Hz

Frequency evolution linear, quadratic, logarithmic or hyperbolic

β parameter - Kaiser 1 - 4

Coherent amplitudes 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20, 25, 30

N◦ harmonics 1, 2, 3

Frequency spacing 10, 15, 20, 25, 30 Hz

Attenuation coeff. 0.5, 0.6, 0.7, 0.8

TABLE 5.4: Final chirp injection parameters used to optimize ALBUS. All the parameters
are uniformly drawn from their range of values.

5.3.5 Results

Using time slides, we generate 15000 background images (corresponding to 6 months of
data) as well as 15000 spectrograms in which we inject a chirp signal (1000 per coherent
amplitude). Among these chirps, roughly 3300 show harmonics while the rest consists of
simple chirps. We also produce 1 million background spectrograms with adapted time
slides to select glitches with the first version of ALBUS. Out of this total, we end up with
27994 TF maps containing glitches. In comparison with random time-slides where we
found 11 glitches out of 10000 maps, our method yields roughly 28 times more glitches
per generated spectrogram. We further split this amount into two subsets; one part con-
stitutes our glitch dataset (15000 maps) while the other part is used to build the combined
dataset (12994 maps). In total, we generate 15000 images including both a glitch and a
chirp signal. In this mixed dataset, about 3800 maps include chirp signals with harmonics.

We split our dataset into training, validation and testing sets with proportions 60%−
6.66%− 33.33% (i.e. 9000− 1000− 5000 images from each dataset). The testing set will
be used to examine the performances of ALBUS on a collection of TF images from each
dataset once the training is completed. We keep the ADAM optimizer with a learning rate
of 5 10−5 and set the batch size to 32. Note that each batch is a collection of TF images
chosen randomly over our 4 datasets. Fig. 5.20 illustrates the behavior of both the training
and validation losses. They jointly decrease until progressively reaching a plateau. We
stop the training after 20 epochs since no further improvement is observed.

In terms of performance, ALBUS is now able to discriminate glitches from chirps even
when the latter have a short duration, as seen in Fig. 5.21. Both the chirp and glitch foot-
prints are well-highlighted with respect to the surrounding background. It is also impor-
tant to note that both chirps and glitches are recognized even if they show discontinuous
parts. This property allows us to select only the pixels that stand out of the noise or to
discard glitches where they actually contaminate the input TF map.
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FIGURE 5.20: Training and validation losses for a 20-epoch training of ALBUS on the
new dataset. As the validation loss starts to reach a plateau, we stop the training after

only 20 epochs.

FIGURE 5.21: Coherence spectrogram containing both a chirp signal and a correlated
glitch. The middle and right panels depict the corresponding Anomaly and Glitch maps,
produced by ALBUS. Note how ALBUS classifies the chirp and the glitch in the correct

output image.

A further remark can be raised regarding overlapping signals. Indeed, glitches can
happen at the same time as a GW signal, as it was the case for GW170817 [26]. It is therefore
fundamental for ALBUS to discern both types of events when their TF windows overlap.
Fig. 5.22 shows that ALBUS can isolate the contribution from both the chirp and the glitch,
facilitating the trigger identification.
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FIGURE 5.22: Coherence spectrogram where a chirp signal overlaps with a correlated
glitch. The middle and right panels show the outputs produced by ALBUS, namely the
Anomaly and Glitch maps. ALBUS is able to discriminate chirps from glitches even when

they overlap in the TF plane.

FIGURE 5.23: Coherence spectrogram in which a ECBC-C model has been injected. For
comparison, the Anomaly map of both the first and second versions of ALBUS are shown
in the middle and right panels respectively. The old version of ALBUS is not able to detect
signals with a thicker footprint while this is now possible with its newly-trained version.
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Another improvement concerns the harmonics of burst signals. As we have introduced
a strategy to simulate harmonics in the training dataset, ALBUS is now able to recognize
them in burst models. Fig. 5.23 illustrates the Anomaly maps of both the old and the new
version of ALBUS. The former version struggles to identify multiple curves in a narrow
TF space. This ends up reducing the number of detected pixels and can lead to a drop
in the sensitivity to burst signals like ISCOchirp and ECBC. The new version of ALBUS
accurately highlights the full signal, enabling better detection performance across a wide
range of waveforms.

In order to analyze the performances of ALBUS on the 4 different datasets, we need
a statistic that reflects what has been highlighted in both the Anomaly and Glitch maps.
For this, we can use the definition of the anomaly score and apply it likewise to the Glitch
map. We end up with two scores, defined by:

AS = ∑
i,j

Ai,j if Ai,j > 0.5 max(A) (5.6)

GS = ∑
i,j

Gi,j if Gi,j > 0.5 max(G) (5.7)

where the sum is performed both on the time and frequency dimensions and A and G
stand for the Anomaly and Glitch maps respectively. Note that this time, the newly trained

FIGURE 5.24: Anomaly and glitch scores obtained for the testing set. 5000 TF images
from each of the 4 datasets have been processed (top left: glitches, top right: combined,

bottom left: background, bottom right: chirps).
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ALBUS is used to evaluate both scores from the TF maps. Fig. 5.24 shows the scores ob-
tained for each of the 20000 TF maps (4x5000) in the testing set. Although the scores do not
correspond to the actual triggers found in the map, they give a good indication of what
ALBUS detects for each dataset. Note that the scale of both the Anomaly and Glitch scores
is different for the background images since they show very low scores. In the same way,
the extent of the chirp and glitch plots have been adapted for illustration purposes.

For the background images, both the Anomaly and Glitch scores are lower than 2, leav-
ing no doubt that nothing is found in those maps. For the chirp dataset, the distribution
of the TF maps is very peaked at low glitch scores. Nonetheless, some chirp TF maps can
show glitch scores up to 30. This primarily happens when the chirp signals have a short
duration (<15 seconds) and broad frequency bandwidth. Fig 5.25 shows the distribution
of anomaly and glitch scores as a function of the chirp duration. As it can be seen, most
of the chirps featuring a glitch score greater than 5 are short-duration chirps. Since they
span only 2 or 3 time bins, a part of them can then be mistaken as a glitch, as illustrated in
Fig. 5.26. Due to random background noise, the signal is divided into three parts for which
the longer vertical footprint is considered as a glitch by ALBUS. Such misidentifications
happen only at low coherent amplitudes and barely impact the sensitivity of ALBUS since
a part of the signal is still found in the Anomaly map.

FIGURE 5.25: Anomaly and glitch scores obtained for the 5000 images in the chirp testing
set as a function of the duration of the chirps. Most of the chirps showing a glitch score

over 5 last less than 30 seconds.

For what concerns glitches, they show a wide range of glitch scores associated with
very low anomaly scores. However, exceptional glitches can introduce noise artifacts that
mimic the behavior of burst signals. As most of the glitches last less than 6 seconds, they
fall into a single time bin in our TF maps, giving them a sharp vertical footprint. ALBUS
has probably also learned this peculiar feature during the training. However, rare longer
glitches show a thicker footprint that may therefore not be fully recognized as glitches, as
in Fig. 5.27. A couple of these glitches were found in the testing set, leading to anomaly
scores between 5 and 20. The last dataset, for which a chirp and a glitch are found in
the TF maps, shows a wide range of anomaly and glitch scores, reflecting the variability
introduced in the dataset generation.
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FIGURE 5.26: Coherence spectrogram from the chirp testing set. The middle and right
panels show the outputs produced by ALBUS, namely the Anomaly and Glitch maps. As
the chirp signal is divided into three parts, ALBUS identifies the vertical track as being a

distinct glitch while it correctly classifies the two other parts.

FIGURE 5.27: Coherence spectrogram from the glitch testing set. The middle and right
panels show the outputs produced by ALBUS, namely the Anomaly and Glitch maps. A
part of the glitch footprint is classified as a chirp, probably because it spreads over more

than one time bin.
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Now that we have trained ALBUS and improved its detection capabilities, we need to
run an extended search and compare our performances to other pipelines. For this, we
should first include ALBUS into Pyxel and determine which detection statistic achieves
optimal results. The methods developed to achieve these objectives are described and
analyzed in Chapter 6.
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Chapter 6

Towards a new burst pipeline

6.1 Integrating ALBUS into Pyxel

6.1.1 Pipeline structure and methods

The methods developed in Chapter 5 built up into a new machine-learning-based ap-
proach to the search for long duration bursts. However, as with all detection engines,
ALBUS has to be included in a pipeline to be used effectively during a search. To this aim,
I built ALBUS so that it matches the existing workflow of Pyxel. Previously, Pyxel pro-
cessed TF maps by using thresholding, morphological operations and clustering methods.
Since ALBUS produces outputs with the same size as the input TF map, these techniques
can still be applied with minimal adjustments. In this context, ALBUS acts as a noise re-
jection engine that provides clean TF maps to Pyxel.

The procedure to run ALBUS on data from H1 and L1 is as follows. First, the data from
both detectors are whitened via their respective PSDs. Then, Pyxel generates a coherence
spectrogram of the data via a GWpy [145] routine and normalizes it across all frequencies
for the entire duration of the TF map. ALBUS then processes the resulting TF map to pro-
duce two outputs, the Anomaly and Glitch maps. The last steps consist in clustering the
pixels remaining in the Anomaly map to form triggers and compute relevant statistics.

The clustering method consists in first applying a Yen’s threshold [146] on the Anomaly
map. Yen’s threshold is an adaptive local method that determines the best threshold ac-
cording to the noise in the map. It therefore guarantees to select adequate pixels without
setting a global threshold for all the processed TF maps. As seen in the previous chapter,
most of the noise is cleared out by ALBUS which makes Yen’s threshold a very effective
method to select the pixels with the highest values. Then, the Euclidean Distance Trans-
form (EDT) is performed on the resulting image. This transform replaces each background
pixel by its shortest distance to the closest trigger highlighted via Yen’s threshold. Ap-
plying a threshold on the Euclidean distance allows the clustering of unconnected pixels
belonging to the same event. In this way, GW events can be recovered via a unique trigger
showing a higher detection statistic than multiple shorter triggers. In this work, we con-
sider that pixels showing an EDT smaller than 5 pixels are part of the same triggers, which
allows to connect individual triggers 10 pixels away. We empirically notice that a lower
threshold does not connect parts of triggers together while a higher threshold clusters
noise speckles. We end up with N masks revealing the N triggers found in the Anomaly
map. Fig. 6.1 illustrates the output of the different processing steps from the input TF map
to the trigger detection. The final triggers (in pink) are superimposed on the input image.
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FIGURE 6.1: Illustration of the successive steps to achieve trigger identification. Each
panel is the output of the method referred to as its subtitle. From top left to bottom right:
input TF map, Anomaly map, Yen’s threshold, Euclidean Distance Transform, threshold

on the Euclidean distance, triggers superimposed on the input TF map.

6.1.2 Detection statistics

In order to build a new search pipeline targeting minute-long transients, we need one (or
several) detection statistics to summarize what has been found in the TF arrays. These
statistics ultimately quantify the loudness of the detected triggers over the background
noise. As we now have 2 output maps, the Anomaly and Glitch maps, we can use both
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contents to define several useful statistics.

We have shown in Chapter 5 that the anomaly and glitch scores allow to rank the
detections by summing over the pixels respectively in the Anomaly map and the Glitch
map. We can therefore apply the same methodology for each individual trigger. We thus
define the anomaly score for a trigger t as:

ASt = ∑
mask

A (6.1)

where A stands for the Anomaly map and the sum is carried over the trigger mask. In the
same way, we can assign a glitch score to each identified trigger with:

GSt = ∑
mask

G (6.2)

where G is the Glitch map. We can combine these two scores into a unique statistic via:

κ =
ASt

ASt + GSt
(6.3)

With this definition, κ should tend to 1 in the presence of a coherent burst signal and take
values≪ 1 in case of glitches. For convenience, we define:

pκ = − log(|1− κ|), (6.4)

such that the detection statistic increases with the significance of the trigger. Note that,
in the case of triggers containing few pixels with low values, ASt and GSt could be of
the same order, leading to high values for pκ. To discard such triggers, we can impose
a minimum value on ASt to be considered a valuable trigger. A background analysis is
necessary to choose this threshold appropriately.

6.1.3 Trigger features

Aside from the former statistics, triggers also have a morphology that could help us to
classify them as a GW signal or as noise. Short signals (≤ 6 seconds) showing a large
bandwidth are likely to be glitches. Even though ALBUS has been trained to discrimi-
nate glitches from potential GW signals, exceptionally loud glitches (or at least a part of
them) could still leak into the Anomaly map. In this context, we record the bandwidth and
duration of the triggers which could be useful in future postprocessing cuts. Additional
features are also provided via the Scikit-image package [147]. The package proposes vari-
ous measures of labeled regions such as their area, their mean intensity, their orientation,
etc. Some of these measures could be useful in discriminating background triggers from
GW candidates. In total, more than 30 geometric features are reported. The exhaustive
list of features and their definition can be found in Appendix B. Figure 6.2 illustrates the
complete workflow of our pipeline (Pyxel + ALBUS) from the pre-processing steps to the
evaluation of the anomaly score and the pκ statistic.

The anomaly score and the pκ statistic might not be the adequate detection statistic
when considering millions of background TF maps. Their definitions arise from the anal-
ysis of tens of thousands of images, which only represent a subset of the required millions
of background maps to be analyzed for testing new pipelines. It is therefore necessary to
assess which statistics or features are the most helpful to classify triggers into background
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noise and potential GW events. For this, we will use XGBoost [148], a decision tree ma-
chine learning algorithm. Decision trees are trees of if-else statements that aim at predict-
ing the label of the input data while minimizing the number of tree branches. XGBoost
produces multiple trees at once to test which features and which trees best classify the
data. Once trained, XGBoost provides an importance score for each feature in the training
dataset. The importance score quantifies how valuable was an attribute in the construction
of the decision trees. The more a feature is used to build key decision trees, the higher the
relative importance. In turn, we can use these importance scores to select the most rele-
vant features and combine them into a unique statistic or use them as post-processing cuts.

FIGURE 6.2: Diagram illustrating the workflow of Pyxel with ALBUS as the main detec-
tion engine.
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6.1.4 Preparation for a new run

As the detectors are improved during upgrade phases, the background noise spectrum
changes and new glitch classes can appear [58]. Even if ALBUS has learned to highlight
high-value pixels in various TF maps, its performances are driven by the noise seen dur-
ing the training. It is thus preferable to train ALBUS on the noise of the current run for
optimal results. The strategy to form the 4 required datasets is described in Chapter 5 and
illustrated in Fig. 6.3. Note that the glitch selection process is the main time-consuming
step in order to prepare ALBUS for the current observing run.

As an alternative, one can also train ALBUS from its latest training state obtained on
data from the previous run. The strategy would consist in training ALBUS on data from
the new run with a low learning rate (10−5 − 10−6) so that its weights are only slightly
modified. In this way, the glitch selection procedure and the training set generation can be
drastically shortened. As an example, we could only 10000 TF maps rather than the actual
40000 to train ALBUS, speeding up the data generation by a factor of 4. Note that the
training would also be faster with fewer TF images although it only amounts to a couple
of hours.

FIGURE 6.3: Diagram illustrating how the training datasets of ALBUS are formed. The
boxes enclosed in green contours are then used to train the final version of ALBUS.
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6.2 Burst all-sky pipeline benchmark

6.2.1 Description of the project

The LIGO-Virgo-KAGRA Burst group has planned to benchmark all burst pipelines as a
preparation for the O4 run. The project consists of a Mock-Data Challenge (MDC) using
O3 data from the LIGO and Virgo detectors in which waveforms are injected. Specifically,
the datasets cover 40 days of O3 from GPS time 1262304000 (January 5 2020 23:59:42 UTC)
to 1265760000 (February 14 2020 23:59:42 UTC). The waveform models are injected in 10
different datasets, provided as multiple strain channels.

The primary goal of the benchmark project is to offer a fair comparison between online
and offline pipelines. For this, one measures the fraction of GW events that are detected
above threshold as a function of the amplitude (efficiency curve) and the number of false
detections (false alarm). The results shall be provided as a list of triggers with the follow-
ing information:

• peak GPS time

• start GPS time

• end GPS time

• characteristic frequency (Hz)

• lower frequency (Hz)

• upper frequency (Hz)

• ranking statistic value

• False-alarm rate (Hz)

Most of these features are directly obtained from the triggers after the clustering step
except the False-Alarm Rate (FAR). In order to derive its value for every single trigger
found in the TF map, we have to compare them with background triggers. The back-
ground analysis therefore consists in processing a substantial amount of TF maps to pro-
duce relevant FAR thresholds, such as 1/10 years or 1/100 years.

6.2.2 Background analysis

In order to produce background TF maps, we first select the time segments where both
H1 and L1 were simultaneously observing from January 5 to February 14, 2020. This is
done so that we can compare the background maps obtained via time slides and the zero-
lag TF maps, that we will call foreground in the rest of this work. The analysis of the
background and the foreground should give statistically equivalent results. In total, we
analyzed 100 years of background, corresponding to more than 3 million TF maps span-
ning 1000 seconds of data. Out of these images, we recorded more than 16 million triggers.
In the foreground case, H1 and L1 share only 2034 1000-second-long segments, adding up
to roughly 24 days. The Anomaly and Glitch scores of the triggers found in both analyses
are shown in Fig. 6.4. The distributions of the foreground triggers match the distributions
of the background both for the Anomaly and Glitch scores. More precisely, their distribu-
tions appear to be similar within a factor 103, which is consistent with the number of TF
maps processed in both cases.

Two populations of triggers exist in the background. The first population shows low
Anomaly and Glitch scores from 10−6 up to 10−2. The triggers belonging to this family of
background events are single pixels located in the lower left corner of the TF maps. They
arise as a consequence of our clustering algorithm. When the Anomaly map contains al-
most exclusively low values (meaning that nothing relevant has been highlighted in the
input TF map), Yen’s threshold return a default value that points toward the first pixel of
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FIGURE 6.4: Anomaly scores and Glitch scores for 100 years of background triggers. For
comparison, the triggers found in the foreground are superimposed over the background

triggers.

the array. That pixel then goes through the other steps and is finally recorded as a trigger.
As the subsequent triggers show low scores, they have low impact on our analyses. This
particularity has been removed from the most recent version of Pyxel.

The second population consists of most of the triggers found during the analysis. The
Glitch score of the relevant triggers seems independent of the Anomaly score except at
high values. This effect is the consequence of the use of the trigger mask. As the mask
is defined through the Anomaly map, higher Anomaly scores originate from wider trig-
ger masks, which in turn leads to higher Glitch scores when applied over the Glitch map.
This trend is nonetheless not observed for all combinations of scores. Some spikes can be
depicted in Fig. 6.4 in both distributions, revealing triggers of different origins. Fig. 6.5 il-
lustrates an example of a trigger belonging to the spike with the lowest Glitch scores. Even
if the intensity of the pixels is low, Yen’s threshold reveals a vertical line at the border of
the image, around 1700 Hz. Similar lines also appear at both edges of the map around 200
Hz for triggers that are part of the lower and central spike. They are shown in Appendix
C. The cause of these spikes might have been edge effects caused by down times of H1
and/or L1 right before the start or shortly after the end of the map. However, it would
explain less than 5% of all the concerned triggers (≈ 2600). In view of the symmetrical
locations of the triggers and the checkerboard patterns appearing in the Anomaly map of
Fig. 6.5, these triggers likely come from our neural network. As ALBUS does not detect
any clear cluster of high-value pixels, both the Anomaly and Glitch maps show low values
that reveal its inner convolution patterns. The checkerboard pattern appears clearly when
feeding a null TF map to ALBUS, as can be seen in Fig. 6.6. However, the triggers related
to these artifacts are not harmful to our analysis since they show pixel intensities at least
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one order of magnitude lower than the loudest background triggers.

FIGURE 6.5: Left: Input background TF map starting at GPS times 1263922618 and
1263897618 respectively for H1 and L1. Centre: Anomaly map, output of ALBUS. Right:
Result of the Yen’s threshold applied to the Anomaly map. ALBUS does not find any ev-
idence for correlated pixels in the input TF map, revealing artifacts at low values (10−3)

which are further selected with Yen’s threshold.

FIGURE 6.6: Left: Input TF map filled with zero values. Centre: Anomaly map, output of
ALBUS. Right: Glitch map, output of ALBUS. As the input pixels are all set to zero, the
inner convolution operations of ALBUS are revealed in the Anomaly and Glitch maps.
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The third spike in the background distribution shows large values of Glitch scores
while spread over a larger area. It corresponds to glitches that are sufficiently loud to leak
into the Anomaly map, as shown in Fig. 6.7. As both maps are produced by ALBUS, the
same neurons are responsible for the detection and classification of pixels in those maps.
However, their values are different and the triggers show a Glitch score higher than their
Anomaly score. Such triggers should therefore not be a major concern when considering
their pκ value.

FIGURE 6.7: Left: Input background TF map starting at GPS times 1262688618 and
1262677618 respectively for H1 and L1. Centre: Anomaly map, output of ALBUS. Right:
Glitch map, output of ALBUS. The Anomaly and Glitch scores associated with the loud-
est trigger are 1.43 and 25.86 respectively. The glitch appearing in the LIGO data leaks

into the Anomaly map although being well classified in the Glitch map.

It is useful to show the distribution of triggers in frequency with respect to the date to
check if ALBUS has effectively covered the 40 days allocated for the Burst MDC. This is
done in Fig. 6.8, where only the triggers showing an Anomaly score above 0.5 are shown.
As we can see, some dates do not show any trigger, leaving blank spaces in the figure.
These times correspond to periods where H1 was not observing in coincidence with L1.
The most remarkable missing segment happened around the 18th of January 2020. At that
date, a series of microseisms caused the Livingston detector to lose the lock for more than
2 days, before getting back to normal operations 3 days later. This explains the blank space
left in Fig. 6.8. Another remark concerns the presence of triggers forming horizontal lines
around 1500 Hz, probably coming from the violin modes of the silica fibers holding the
mirrors.

Another way of representing the distribution of triggers consists in showing their cen-
troid over a single TF map. Fig. 6.9 illustrates how the loudest triggers are spread in time
and frequency. With the exception of the triggers coming from our network’s artifacts,
most triggers are found in the center of the map with frequencies from 100 Hz to 500 Hz.
This observation is the consequence of two effects. Firstly, as we show the centroid of the
triggers, long triggers will barely appear at the start or end of the TF map, concentrating
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FIGURE 6.8: Trigger distribution as a function of the date at the H1 detector for 100 years
of background. For the sake of readability, only the triggers showing an AS above 0.5 are

shown.

FIGURE 6.9: Trigger centroid distribution for 100 years of background. For the sake of
readability, only the triggers showing an AS above 0.5 are shown. With the exception of

the edge artifacts, most of the triggers are found below 500 Hz.

the triggers in the central regions of the image. Secondly, most of the loudest background
triggers are likely to come from glitches arising in the data of H1 and/or L1. From de-
tector characterization studies [36, 58], we know that most of their power appears at low
frequencies, typically below 1000 Hz. It is therefore legitimate to find the centroid of the
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majority of background triggers below 500 Hz. A further remark concerns the triggers
appearing along the violin mode of the silica fibers at 1500 Hz in the first 50 seconds of the
map. Their origin can be related to the down times of detectors caused by earthquakes.
Indeed, the violin resonances are excited by earthquakes, which impacts the TF maps [36].
Fig. 6.10 shows this effect, particularly strong for the 500 Hz violin mode, when the H1
detector was down twice on the 24th of January 2020. The last comment refers to the
slight excess of triggers at high frequencies. Since ALBUS has been trained with random
chirps covering the time-frequency plane, no bias was introduced during the training. As
a verification, we show the distribution of triggers for roughly 40000 injections in Fig. 6.11.
It can be seen that our network performs equally well whatever the central frequency of
the injected models. The slight excess of triggers at high frequencies could then possibly
comes from the noise itself although no definite source has been identified.

FIGURE 6.10: Time-frequency map of the H1 strain on 24th January 2020. The bottom
line shows the periods where the detector was locked (green) and not locked (red). When
the detector is not locked, the strain is considered unfaithful and no data are available,
leaving blank spaces. As the earthquake excites the violin modes of the silica fibers, their
amplitude rises for a couple of hours before returning to a normal state. Credits: Detector

characterization group.

In order to build the optimal detection statistic based on the features we have recorded,
we use XGBoost to rank the features based on their importance. For this, we perform
multiple injections of burst waveforms and process them with ALBUS. The exhaustive list
of models includes msmagnetar-A [149], ISCOchirp-A and -C [79], PT-A [78], ADI-B and -D
[80], NCSACAM-C [83], CM09-long[82]. The waveforms are injected over a range of hrss
values from 1e−22 to 9e−20. Then, we group all the triggers and their features into a single
text file. Note that some features are discarded since they are not pertinent to discriminate
whether the trigger comes from the noise or from an actual GW signal. For example, the
GPS times as well as the centroid and the bounding box are not pertinent. In the same way,
we gather the background triggers showing an Anomaly score above 0.5. In total, 13850
background triggers and 17860 injection triggers are found in the dataset. Once XGBoost
is trained to find the best decision trees, it indicates the relative importance of each of the
features. We report the results in Fig. 6.12.

As it can be seen, the mean intensity of the pixels is by far the most decisive criterion
when classifying triggers. However, relying on this single feature to detect GW signals is
not optimal since the loudest background triggers show similar pixel intensities. Rather,
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FIGURE 6.11: Trigger centroid distribution for 39600 injections. For the sake of read-
ability, only the triggers showing an AS above 0.5 are shown. The triggers appear to be
evenly distributed both in time and in frequency. The ascending curves arise because

long chirping down signals are cut when they exceed the extent of the map.

FIGURE 6.12: Ranking of the trigger features based on the importance estimated via
XGBoost.

it is preferable to use a combination of the top features to build a unique statistic. Among
the 6 most important features, 4 of them are correlated with the strength of GW signals:
the mean intensity, the anomaly score, pκ and the duration. For the first 3 features, it is
obvious that the louder the GW signal, the larger their values. For what concerns the
duration, it is not related to the amplitude of the GW signals in the first place. However,
longer signals both cover more pixels and are less likely of coming from a glitch in the
data. The fourth feature in XGBoost ranking, namely the eccentricity of the trigger, can
also help differentiate glitches from GW signals. It is defined as the eccentricity of the
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ellipse that has the same second moments as the trigger. This feature can be viewed as a
measure of the curvature of the trigger shape. If the trigger is a vertical or horizontal line,
the eccentricity therefore approaches zero. The eccentricity is then useful in discarding
triggers coming from glitches or violin modes as well as power lines. In view of the above
conclusions, we propose the following detection statistic:

Ds = I3
m AS d e pκ (6.5)

where Im is the mean intensity of the pixels belonging to the trigger, AS is the Anomaly
score, d is the duration, e is the eccentricity and pκ is defined in expression (6.4). The power
3 in the above expression is used to weigh the importance of the mean intensity with re-
spect to the other features.

Note that we did not include the Glitch score in expression (6.5). As the Glitch score
quantifies the proportion of the trigger that has been classified in the Glitch map, it in-
creases for triggers originating from glitches but leaking in the Anomaly map. It would
therefore have appeared in the denominator of (6.5). However, moderate values of glitch
scores (< 5), which can appear for loud GW injections, would have highly penalized our
detection statistic. Rather, it appears in the expression of our statistic through pκ, which
still accounts for the Glitch score.

We can now examine the loudest background triggers with respect to our statistic Ds
and eventually determine thresholds on other features (i.e. cuts) to lower the FAR of GW
triggers. In Table 6.1, we show the main characteristics of the 10 highest triggers while their
TF footprints are overlaid in a single TF map in Fig. 6.13. Note that the orientation refers to
the angle (in radians) the trigger makes with respect to the vertical. As we can see, the first
2 triggers stand above the others in terms of Ds values due to their high Anomaly score.
Besides, 4 of the 5 top triggers show a relatively high Glitch score correlated with a very
steep footprint, and therefore a low orientation. These triggers are confirmed to be loud
glitches (SNR > 100) after inspection of the daily summary pages provided by the detector

Ds Im AS GS pκ e dur. (s) bw (Hz) orientation

3.7327 0.1572 59.56 20.96 1.35 1.00 12 452 -0.0036

2.5469 0.1706 30.20 19.12 0.95 1.00 18 192 0.0004

0.1161 0.0846 16.42 9.97 0.97 1.00 12 248 -0.0093

0.0936 0.1146 3.90 3.05 0.82 0.81 24 36 0.2489

0.0889 0.0882 9.80 8.91 0.74 0.99 18 120 0.0141

0.0627 0.0857 2.57 0.15 2.88 0.75 18 32 0.2701

0.0617 0.0533 2.82 0.18 2.82 0.95 54 60 0.5309

0.0612 0.0530 3.60 0.70 1.81 0.88 72 32 -1.3579

0.0352 0.0639 8.75 15.69 0.44 0.97 36 104 -0.0210

0.0342 0.0677 2.85 0.56 1.80 0.90 24 44 0.2789

TABLE 6.1: Main features of the 10 loudest background triggers ranked as a
function of their Ds value.
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characterization team. Some GW models like ISCOchirp or ADI might also show a very
steep behavior but they either have a longer duration or a chirp-down behavior, which is
not observed in the case of the background triggers. After visual inspection, it appears
that ruling out triggers showing an absolute orientation lower than 0.015 (equivalent to a
tilt of 0.86◦) eliminates half of the 100 loudest triggers.

FIGURE 6.13: Footprints of the 10 loudest background triggers shown in a unique TF
map. The number next to the trigger indicates its rank among the 10 loudest events.

It is important to associate a FAR to any trigger when running a search. As we have
found the optimal statistic regarding our recorded features and an adequate cut on the
orientation, we can draw the cumulative inverse histogram of Ds to determine the values
associated with FARs such as 1 per 10 years or 1 per 100 years. This is done in Fig. 6.14.
The threshold on the orientation allows the elimination of the tail of the histogram so that
it falls off sharply. Such behavior is expected for well-conditioned pipelines and confirms
that our detection statistic is appropriately defined. We can now assign a FAR to any
trigger coming from the foreground or from injected models and evaluate their likelihood
to be GW signals.

6.2.3 Foreground analysis

As we compared the background and foreground distribution in terms of Anomaly and
Glitch scores, it is important to verify if any foreground trigger stands above the others.
It would then potentially constitute a follow-up candidate. For this, we rank the top 10
foreground triggers as a function of their Ds statistic in Table 6.2. Note that we apply the
cut on the orientation beforehand. The second column shows the FAR associated with
their Ds value based on the background histogram. The loudest trigger has a FAR equal
to 7.54e-07, equivalent to an event happening twice per month of observing data. As we
analyzed roughly 25 days of coincident data, it is expected to find such triggers. We can
therefore confidently conclude that no GW event has been found by our pipeline in the
foreground data.
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FIGURE 6.14: Histogram of the Ds values for 100 years of background triggers. The red
area indicates the distribution of all triggers while the grey area refers to triggers passing

the orientation cut.

Ds FAR (Hz) Im AS GS pκ e duration bandwidth

0.000083 7.5454e-07 0.0187 0.47 0.16 1.37 0.83 24 28

0.000053 1.1536e-06 0.0167 0.43 0.18 1.23 0.90 24 32

0.000024 3.3597e-06 0.0113 0.35 0.17 1.14 0.85 48 24

0.000021 4.1552e-06 0.0089 0.36 0.14 1.31 0.96 66 44

0.000020 4.5498e-06 0.0068 0.72 0.46 0.94 0.88 108 48

0.000019 5.0490e-06 0.0174 0.24 0.09 1.29 0.63 18 20

0.000019 5.0656e-06 0.0124 0.38 0.16 1.21 0.70 30 32

0.000018 5.2370e-06 0.0146 0.28 0.09 1.43 0.61 24 20

0.000017 6.0064e-06 0.0126 0.29 0.10 1.37 0.88 24 32

0.000017 6.0255e-06 0.0192 0.19 0.04 1.66 0.62 12 16

TABLE 6.2: Main features of the 10 loudest foreground triggers ranked as a
function of their Ds value.

6.2.4 Performance on injected waveforms

A set of waveform models has been selected and injected into O3b data, distributed over
10 different strain channels. Specifically, more than 30 waveforms are included, for which
most of them are short duration models. Only a couple of waveforms show a duration
larger than our time resolution, namely:

• ADI-B (9.4 s) and ADI-D (142 s) [80]

• BAR-5 (102.5 s) [82, 150]

• CM09-long (2500 s) [82]

• ISCOchirp-A (238 s) [79]
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• msmagnetar-A (4000 s) [149]

• NCSACAM-C (65.5 s) [83]

• PT-A (25 s) [78]

We run the analysis of the 10 different channels and report the hrss value at which
half of the injections, showing a FAR lower than 1 per 10 years, from each waveform are
recovered. This value is known as the 50% hrss. We then compare our results with the
best and worst values obtained by various pipelines participating in the MDC in Fig. 6.15.
For the sake of confidentiality, the efficiency curves cannot be shown in this work. A
dedicated LVK paper is in preparation. Instead, we mark the best and worst 50% hrss,
which constitute a range of expected sensitivities, shown as a red box in Fig. 6.15. Note that
CM09-long and msmagnetar-A are very long waveforms, lasting more than 1000 seconds,
which cannot be processed by all pipelines. This explains why their respective red boxes
collapse into a single horizontal mark, meaning that only 1 other pipeline produced results
for these models.

FIGURE 6.15: Comparison of the 50% hrss values achieved by Pyxel (with ALBUS) with
the results obtained by several pipelines participating in the Burst MDC. A red box is
drawn over each GW model to indicate the best and worst results among the other

pipelines. Note that the results are shown for a FAR of 1 per 10 years.

We observe that our results lie in the range of sensitivity of the other pipelines for al-
most all the waveform models. In particular, our results are close to the best 50% hrss for 3
of the 8 models tested. We also deliver the best results for the msmagnetar A model.

Despite these observations, we must recognize that the conditions of the MDC are not
optimal for ALBUS. As limited time segments are allocated for the MDC, many injections
are found close to each other. As we process 1000-second segments, a lot of TF maps show
multiple signals with different amplitudes. Our normalization procedure can thus hinder
some injections if a loud signal is present in the map. Fig. 6.16 shows the effect of a loud
injection on the other signals. By contrast, Fig. 6.17 illustrates the results when the loud
injection is not present in the data. As we can see, the NCSACAM-C model is fully recov-
ered in the second case while most of its footprint is missed in the former case. The Ds
statistic of all triggers is impacted by the presence of a loud injection, even if they do not
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FIGURE 6.16: Left: Input foreground TF map starting at GPS time 1263082149 where 4 in-
jections are performed (from left to right: GRBplateau [82], ADI-B [80], ISCOchirp-C [79],
NCSACAM-C [83]). Centre: Anomaly map, output of ALBUS. Right: Triggers (pink) su-
perimposed on the input TF map. The presence of the loud GRBplateau prevents a clear

detection of the NCSACAM-C injection.

FIGURE 6.17: Left: Input foreground TF map starting at GPS time 1263082149 where 3
injections are performed (from left to right: ADI-B [80], ISCOchirp-C [79], NCSACAM-C
[83]). Centre: Anomaly map, output of ALBUS. Right: Triggers (pink) superimposed on
the input TF map. Since no loud signal is present in the data, all the injections are recovered

properly.
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share some frequency bandwidth. For example, the trigger associated with the ISCOchirp-
C model has a Ds value varying from 3.43 to 0.20 while it lies well above the loud injection.
It is even worse for the NCSACAM-C trigger, which goes from Ds = 0.1939 to Ds = 0.0043,
corresponding to a FAR of 1 per 25 years. Besides the normalization procedure, the train-
ing of ALBUS also affects the results of the MDC. Our network has been trained with TF
maps built from the 4 different combinations of 1 glitch and 1 chirp. There is therefore a
maximum of 2 "signals" per map and we cannot expect ALBUS to perform as well with
more signals. Moreover, since no minute-long GW burst has been observed so far, it is
very likely that the first detection will be unique in a 1000-second data segment.

Another remark concerns the results obtained for the ISCOchirp-A waveform, a 200-
second long GW model. It is surprising for us to obtain the highest 50% hrss among all
the other pipelines, including some pipelines tuned to search for short GW bursts. We
therefore examined the missed injections to understand the problem. Fig. 6.18 shows a TF
map evaluated on a data stream of the first strain channel and the Anomaly and Glitch
maps produced by ALBUS. In total, 4 patterns are depicted by the network, for which 3
of them are classified as glitches. However, the long vertical track at around 300 seconds
is labeled as a ISCOchirp-A model in the MDC injection files. Moreover, it corresponds to
a loud injection, with an hrss value equal to 1e-21. From the O3 long duration paper [55]
(see Fig. 3.3), this model shows a frequency band above 1400 Hz, which does not match
with the footprint observed in Fig. 6.18. To extend the investigation further, we select a
very loud missed injection and analyze it with ALBUS in Fig. 6.19. As we can see, two
ISCOchirp-A models are found in the input TF image. The two signals appear together
with a vertical line spanning the whole map. This is likely coming from spectral leakage

FIGURE 6.18: Left: Input TF map built from the MDC data (channel 1) starting at GPS
time 1262553296. Centre: Anomaly map, output of ALBUS. Right: Glitch map, output of
ALBUS. The ISCOchirp-A waveform, appearing as a vertical dashed line in the input TF

image, is classified as a glitch by our network.
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from higher frequencies. These artifacts can arise when discrete signals are Fourier trans-
formed. The discontinuities at the borders can cause some of the power to leak into other
frequencies, although it does not belong to the real signal bandwidth. These artifacts can
be minimized by tapering the waveform signal before adding it to the background noise.
In view of Fig. 6.18 and Fig. 6.19, it is likely that this step has not been conducted properly
when generating the waveform file. Even if ALBUS is able to discriminate the spectral
leakage from the main waveform at high amplitudes, it still impacts the identification of
the true waveform footprint by adding spurious high-value pixels all over the Anomaly
map. At low amplitudes, the signal is then mainly a vertical artifact classified as a glitch
which explains the unexpectedly high 50% hrss for the ISCOchirp-A waveform.

FIGURE 6.19: Left: Input TF map built from the MDC data (channel 1) starting at GPS
time 1262304167. Centre: Anomaly map, output of ALBUS. Right: Yen’s threshold ap-
plied on the Anomaly map. The ISCOchirp-A models show unusual vertical lines that
affect the output of ALBUS. The second ISCOchirp-A injection is not recovered as a po-

tential GW signal since it is split into two isolated triggers.

We must also note that ALBUS has been trained on TF maps built from O3a noise while
the MDC is based on O3b. This should have limited impact on the final results in view of
the evolution of the LIGO and Virgo BNS ranges over the third observing run, represented
in Fig. 6.20. The BNS range gives an indication of the level of noise in the detectors at a
precise moment in time. Although it is only slightly different from O3a and O3b, it could
be desirable to train ALBUS on noise showing a spectrum similar to the data processed.

The last remark concerns the results obtained for signals shorter or slightly longer our
time resolution (6 seconds). In Fig. 6.18, we can see that two short signals (at around
600 and 800 seconds) are reported in the Glitch map. These signals are part of the short
duration waveforms injected to benchmark pipelines targeting short bursts. With our res-
olution, it is basically impossible to distinguish them from glitches. This is also likely
happening for the ADI-B model. As this waveform is only 9 seconds long, it covers 2 or
3 time bins. At low amplitudes, the signal can therefore be very similar to glitches and
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FIGURE 6.20: BNS range of the LIGO and Virgo detectors for the O2 and O3 runs. The
gap between weeks 40 and 120 corresponds to the upgrade phase taking place after the
O2 run and before the O3 run, which is itself divided into O3a and O3b around weeks

150. Source: [36].

classified as such by ALBUS. Although being competitive with the other pipelines, this
explains why our results are closer to the maximum 50% hrss value than the minimum.

6.2.5 Comparison with results from O3 pipelines

We previously concluded that the conditions of the Burst MDC are not favourable for our
neural network, which has not been used to deal with a lot of signals in a single image.
An alternative would be to build additional TF maps including several chirps and train
ALBUS on this new dataset, closer to the conditions of the MDC. However, this would re-
quire to conduct again the background analysis, which takes at least an additional month
to complete. Instead, we can run an independent analysis with only a single GW signal
per TF map and compare our results to the pipelines involved in the O3 long duration pa-
per. We therefore perform injections for 11 GW models showing a duration larger than our
time resolution. We select logarithmic-spaced hrss amplitudes varying from 1e-22 to 9e-21,
with 100 injections for every value. For the sake of comparison, we inject the waveforms
at GPS times corresponding to the MDC challenge. As the pipelines involved in the O3
burst analysis have used a FAR threshold of 1 per 50 years, we stick to this threshold to
recover the injections in the TF maps. A trigger is considered to match an injection when
it shares at least 5 pixels with the injection footprint. Note that our recovery criterion is
slightly more stringent than what is done for the MDC, where a time-frequency bounding
box is used. We finally draw the comparison with the best result obtained among all the
other pipelines in Fig. 6.21.

Our results show that we reach the lowest 50% hrss for 7 of the 11 waveform mod-
els. In particular, our results on the ISCOchirp-A model are improved since it does not
show any spectral leakage. We also find confirmation that our time resolution is not suit-
able for short waveforms like ADI-B, probably because they are mistaken for glitches. For
what concerns the NCSACAM waveforms, ALBUS seems to lie slightly behind the best
results from the O3 long duration paper. The addition of simulated harmonics in the chirp
training dataset has not enabled us to perform better than the best pipelines but it shows
encouraging results. ALBUS is definitely better at recognizing their TF patterns with the
presence of harmonics in the training datasets.
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FIGURE 6.21: Comparison of the 50% hrss values achieved by Pyxel (with ALBUS) with
the best results obtained by pipelines taking part in the O3 long duration GW paper. Note

that the results are shown for a FAR of 1 per 50 years. Source: [55]

It is important to note that the results of the other pipelines date back to 2 years ago.
The majority of algorithms behind these pipelines have certainly been improved or com-
plemented with new post-processing techniques such as XGBoost. Despite that consider-
ation, our pipeline is very likely to yield the best results on some waveform models.

If we directly compare the results obtained on the MDC datasets with our local analy-
sis, we can point out an improvement in the results over almost all waveforms. For this,
we have added some of the GW models present in the MDC data to our analysis. Then,
we select the triggers that have a FAR lower than 1 over 10 years. Fig. 6.22 illustrates
the results in terms of 50% hrss values. The unique difference between the two analyses
lies in the number of signals seen in every TF map. Note the exception of the very long
msmagnetar-A and CM09-long, which occupy almost the whole TF map and are therefore
left as the unique signal in the TF image both in our local analysis and in the MDC datasets.
The results associated with these waveforms are therefore expected to depend on the in-
jection recovery procedure. For the others, a clear improvement is observed from 12% to
75% for the ISCOchirp-A waveform, to which we have already brought an explanation.

6.3 Future work and prospects

Taking advantage of the speed of neural networks, ALBUS can process roughly 150000 im-
ages per day on a 64-core machine. This capability can be exploited to process day-by-day
data within less than 3 minutes, which is currently inaccessible for the other long dura-
tion burst pipelines. ALBUS can therefore serve as an early tool to highlight significant
triggers within the foreground data, which could save precious time for members of the
other pipelines. In this way, any significant long duration trigger could be reported within
several minutes, enabling astronomers to find potential electromagnetic counterparts.
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FIGURE 6.22: Comparison of the results obtained by Pyxel (with ALBUS) in the burst
MDC with the results of an independent analysis. Note that the results are shown for a

FAR of 1 per 10 years.

In future work, we would like to consider the use of neural networks to achieve clus-
tering in the Anomaly map. This would reduce the number of postprocessing steps and
prevent them from affecting the number or the final shape of the triggers. For example,
Yen’s adaptive threshold yields an average of 5 to 6 low-intensity triggers per background
map, which greatly increase the number of triggers to process. In the presence of a lot of
high-value pixels, Yen’s threshold can also eliminate a part of the GW signals, compromis-
ing our Ds statistic. We can achieve the clustering operation with a simple convolutional
network composed of a few layers. By designing an adequate loss function and adding it
to the current loss used to train ALBUS, both pixel identification and clustering could be
achieved in a single training procedure.

It could also be valuable to process multiple TF maps with different resolutions. Al-
though ALBUS has been trained on chirps with different lengths and frequency band-
widths, its sensitivity to short waveforms like ADI-B is limited by the time resolution of
the TF images. Processing multiple images at different resolutions would enable ALBUS
to perform well on both long and short burst signals. To this aim, the different TF images
could be passed to ALBUS as it is currently the case with the RGB channels.

In the same way, we can remove the normalization procedure from our pre-processing
steps. As a consequence, the presence of loud signals would have limited impact on the
surrounding faint signals. Without this step, the violin modes of the silica fibers as well as
the power line will appear in the input TF map. Their presence is not necessarily harmful
to ALBUS since they will also appear in the background images. Throughout the training
phase, ALBUS would therefore learn that these lines are part of the background spectrum.

Given the capabilities of ALBUS to distinguish signals of different shapes, it could
naturally be adapted to other searches based on TF images. The most straightforward
adaption would consist in increasing the time and frequency resolutions to search for short
GW bursts, such as GW counterparts from supernovae. Although the correlated noise has
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a very different signature on scales of tenths of seconds, the methodology described in
Chapter 5 could comply with this new paradigm. At this scale, most of the glitches appear
with their specific shapes as described by Gravity Spy. Data quality tools like Omicron
[151] or Gravity Spy itself can then be used to reduce the rate of false alarms in the data.
In the same way, ALBUS can be tuned to search for CBC signatures in the LIGO and
Virgo data, usually limited by the presence of blip glitches. A convolutional network like
ALBUS, providing both classification and detection at the same stage, seems well indicated
to address this problem.

6.4 Conclusion

Throughout this thesis, we have built the first machine learning algorithm dedicated to
the search for long duration bursts. As burst searches are not naturally adapted to the use
of deep learning methods, we have defined new criteria and techniques to overcome the
intrinsic limitations. We employed frequency-swept cosines to mimic long duration wave-
form models so that our network is not biased toward the signals present in the training
dataset. Then, we developed a new amplitude measure based on pixel-to-pixel difference
to ensure that chirp signals stand above the background noise. This step was of primordial
importance in order to prevent ALBUS not to be fooled during the training phase, which
could lead to disastrous results as well as a lot of false detections. Once we generated our
dataset, we decided to save the TF maps in RGB format to allow larger batch sizes, which
is critical for the convergence of neural networks. From a preliminary analysis, we pointed
out the impact of glitches on the results of ALBUS. We thus adapt it to distinguish glitch
patterns from potential burst signals.

While integrating ALBUS into Pyxel, we first relied on the Anomaly score to charac-
terize the background and rank the detected signals. As we record the triggers together
with several geometric features, we decided to use XGBoost to find the most significant
characteristics and use the latter to build an improved detection statistic. This new statistic
helps to reduce the number of significant background triggers, which in turn enhances the
detection of GW waveforms. The results obtained on the Burst MDC showed that our new
pipeline is competitive with the current burst pipelines, although the conditions were not
optimal for us. An additional analysis revealed that ALBUS performs better on TF maps
showing fewer signals per map. It could however be easily adjusted by adding more sim-
ulated chirp signals in the training dataset.

We have shown that neural networks can be applied to the search for long duration
transients, despite the numerous limitations inherent to burst searches. Given the expected
growth and variety of deep learning models in the future, we hope the GW community
will continue to include them in their analyses. Both their speed and accuracy are valuable
assets that should prevail in the quest for the extremely faint echoes from our universe that
are gravitational waves.
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Appendix A

Architecture of ALBUS

Layer Conv. parameters N◦ feature maps Dropout Batch norm. Activation

Conv.

kernel=(3,3)

stride=(1,1)

padding=(1,1,1,1)

16 No Yes ELU

Strided

Conv.

kernel=(3,3)

stride=(2,2)

padding=(1,1,1,1)

32 No Yes ELU

Conv.

kernel=(3,3)

stride=(1,1)

padding=(1,1,1,1)

32 No Yes ELU

Addition / / / / ELU

Strided

Conv.

kernel=(3,3)

stride=(2,2)

padding=(1,1,1,1)

64 No Yes ELU

Conv.

kernel=(3,3)

stride=(1,1)

padding=(1,1,1,1)

64 No Yes ELU

Conv.

kernel=(3,3)

stride=(1,1)

padding=(1,1,1,1)

64 No Yes ELU

Addition / / / / ELU

Strided

Conv.

kernel=(3,3)

stride=(2,2)

padding=(1,1,1,1)

128 No Yes ELU

Conv.

kernel=(3,3)

stride=(1,1)

padding=(1,1,1,1)

128 Yes (p=0.5) Yes ELU
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Layer Conv. parameters N◦ feature maps Dropout Batch norm. Activation

Conv.

kernel=(3,3)

stride=(1,1)

padding=(1,1,1,1)

128 Yes (p=0.5) Yes ELU

Addition / / / / ELU

Strided

Conv.

kernel=(3,3)

stride=(2,2)

padding=(1,1,1,1)

128 No Yes ELU

Conv.

kernel=(3,3)

stride=(1,1)

padding=(1,1,1,1)

128 Yes (p=0.5) Yes ELU

Conv.

kernel=(3,3)

stride=(1,1)

padding=(1,1,1,1)

128 Yes (p=0.5) Yes ELU

Addition / / / / ELU

Transposed

Conv.

kernel=(3,3)

stride=(2,2)

padding=(1,1,1,1)

128 No Yes ELU

Conv.

kernel=(3,3)

stride=(1,1)

padding=(1,1,1,1)

256 No Yes ELU

Conv.

kernel=(3,3)

stride=(1,1)

padding=(1,1,1,1)

256 No Yes ELU

Addition / / / / ELU

Transposed

Conv.

kernel=(3,3)

stride=(2,2)

padding=(1,1,1,1)

64 No Yes ELU

Zero Padding padding=(0,0,1,0) / / / /

Conv.

kernel=(3,3)

stride=(1,1)

padding=(1,1,1,1)

128 No Yes ELU

Conv.

kernel=(3,3)

stride=(1,1)

padding=(1,1,1,1)

128 No Yes ELU
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Layer Conv. parameters N◦ feature maps Dropout Batch norm. Activation

Addition / / / / ELU

Transposed

Conv.

kernel=(3,3)

stride=(2,2)

padding=(1,1,1,1)

32 No Yes ELU

Conv.

kernel=(3,3)

stride=(1,1)

padding=(1,1,1,1)

64 No Yes ELU

Addition / / / / ELU

Transposed

Conv.

kernel=(3,3)

stride=(2,2)

padding=(1,1,1,1)

16 No Yes ELU

Zero Padding padding=(0,0,1,0) / / / /

Conv.

kernel=(3,3)

stride=(1,1)

padding=(1,1,1,1)

32 No Yes ELU

Addition / / / / ELU

Conv.

kernel=(3,3)

stride=(1,1)

padding=(1,1,1,1)

16 No Yes ELU

Conv.

kernel=(3,3)

stride=(1,1)

padding=(1,1,1,1)

1 No No ELU
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Appendix B

List of recorded triggers features

Feature Definition

Area bbox Area of the bounding box including the trigger.

Area convex
Area of the convex hull image, which is the smallest

convex polygon that encloses the trigger.

Area filled Area of the trigger with all the holes filled in.

Axis major length
The length of the major axis of the ellipse that has the

same normalized second central moments as the trigger.

Axis minor length
The length of the minor axis of the ellipse that has the

same normalized second central moments as the trigger.

Bandwidth Extent of the trigger in frequency (Hz).

Delay
Time from the start of the spectrogram where

the trigger is found (s).

Duration Duration of the trigger (s).

Eccentricity
Eccentricity of the ellipse that has the

same second-moments as the trigger.

Equivalent diameter area Area of the circle that has the same area as the trigger.

Euler number
Euler number of the trigger computed as the number of

connected components subtracted by the number of holes.

Extent
Ratio of pixels in the trigger to pixels

in the bounding box.

Freq end Maximum frequency of the trigger (Hz)

Freq peak
Frequency at the weighted centroid. The weighted centroid

is evaluated as the centroid of the trigger pixels,

weighted by their intensity.

Freq start Minimum frequency of the trigger (Hz)

GPS start H1 GPS time at the start of the trigger in the H1 stream.

GPS start L1 GPS time at the start of the trigger in the L1 stream.

GPS end H1 GPS time at the end of the trigger in the H1 stream.

GPS end L1 GPS time at the end of the trigger in the L1 stream.
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GPS peak H1 GPS time at the weighted centroid in the H1 stream.

GPS peak L1 GPS time at the weighted centroid in the L1 stream.

Intensity max Maximum intensity of pixels in the trigger.

Intensity mean Mean intensity of pixels in the trigger.

Intensity min Minimum intensity of pixels in the trigger.

Num pixels Number of pixels in the trigger

Orientation
Angle between the vertical and the major axis

of the ellipse that has the same second

moments as the trigger.

Perimeter
Perimeter of the trigger computed

using a 4-connectivity.

Perimeter crofton
Perimeter of the trigger approximated with

the Crofton formula.

Solidity
Ratio of pixels in the trigger to

pixels of the convex hull image.

TABLE B.1: List of features recorded for each trigger detected in the time-frequency spec-
trograms. The features are listed in alphabetic order.
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Appendix C

Examples of background triggers
showing edge artefacts

FIGURE C.1: Left: Input background TF map starting at GPS times 1262549618 and
1262488618 respectively for H1 and L1. Centre: Anomaly map, output of ALBUS. Right:
Result of the Yen’s threshold applied to the Anomaly map. ALBUS reveals a vertical arti-
fact at the lower left edge of the TF map, further selected as a trigger with Yen’s threshold.
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FIGURE C.2: Left: Input background TF map starting at GPS times 1263089618 and
1263001618 respectively for H1 and L1. Centre: Anomaly map, output of ALBUS. Right:
Result of the Yen’s threshold applied to the Anomaly map. ALBUS reveals a vertical
artifact at the upper left edge of the TF map, further selected as a trigger with Yen’s

threshold.

FIGURE C.3: Left: Input background TF map starting at GPS times 1264627618 and
1264448618 respectively for H1 and L1. Centre: Anomaly map, output of ALBUS. Right:
Result of the Yen’s threshold applied to the Anomaly map. ALBUS reveals a vertical
artifact at the lower right edge of the TF map, further selected as a trigger with Yen’s

threshold.
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