2023 IEEE PES ISGT-Europe

October 23rd-26th, 2023, Grenoble, France

A one-leader multi-follower approach to distribution network development planning

Geoffrey Bailly & Manon Cornet

From the Montefiore Institute of the University of Liège

Paper №: A9049GB

DISTRIBUTION NETWORKS

Yesterday

DISTRIBUTION NETWORKS

DISTRIBUTION NETWORKS

Yesterday

Today

Tomorrow

NETWORK PLANNING

Traditional Approach

NETWORK PLANNING

Our Approach

ACTOR 1

ACTOR 2

NETWORK PLANNING

Our Approach

Develop a **new framework** to devise **distribution network development plans** ...

Develop a **new framework** to devise **distribution network development plans** ...

... considering the **DSO** and **grid users'** strategies ...

Develop a **new framework** to devise distribution network development plans ...

... considering the **DSO** and **grid users'** strategies ...

... that would allow to evaluate the impact of external events.

market decisions technical solutions technology prices

PROBLEM STATEMENT

Goal: minimize investment & operational costs

Constraints:

- Budget balance
- Radial network
- Reliable network (voltage and current limits)
- Satisfied grid users' electricity demand

Goal: minimize investment & energy usage costs

Constraints:

- Grid connection capacity
- PV capacity
- (Storage capacity)

Candidate substations & lines
 Topology from the DSO
 Existing or not

- Candidate substations & lines
 Topology from the DSO
 Existing or not
- Different types of conductors Section, impedance, cost

- Candidate substations & lines
 Topology from the DSO
 Existing or not
- Different types of conductors Section, impedance, cost
- Distribution network connecting e.g.
 - TSO substations → industrial parks
 - medium voltage → residential estate

- Candidate substations & lines
 Topology from the DSO
 Existing or not
- Different types of conductors Section, impedance, cost
- Distribution network connecting e.g.
 - TSO substations → industrial parks
 - medium voltage → residential estate
- Static solution
 Optimized at once, knowing the future
 Not multistage yet

- Candidate substations & lines
 Topology from the DSO
 Existing or not
- Different types of conductors Section, impedance, cost
- Distribution network connecting e.g.
 - TSO substations → industrial parks
 - medium voltage → residential estate
- Static solution
 Optimized at once, knowing the future
 Not multistage yet
- Great flexibility
 Medium ⇔ low voltage network

- Candidate substations & lines
 Topology from the DSO
 Existing or not
- Different types of conductors Section, impedance, cost
- Distribution network connecting e.g.
 - TSO substations → industrial parks
 - medium voltage → residential estate
- Static solution
 Optimized at once, knowing the future
 Not multistage yet
- Great flexibility
 Medium ⇔ low voltage network

Load profiles Domestic load + EV & HP

- Load profiles
 Domestic load
 + EV & HP
- PV profiles
 1 summer day & 1 winter day

- Load profiles
 Domestic load
 + EV & HP
- PV profiles
 1 summer day & 1 winter day
- Sizing

 PV

 Grid connection

 (Storage)

 Converters

- Load profiles
 Domestic load
 + EV & HP
- PV profiles
 1 summer day & 1 winter day
- Sizing
 PV
 Grid connection
 (Storage)
 Converters

Distribution System Operator

Grid user

Variables

lines to build or reinforce
substations to build or reinforce

PV installation grid connection capacity

Distribution System Operator

Grid user

Variables

Constraints

lines to build or reinforce substations to build or reinforce

power balance with losses distflow model budget constraint

PV installation grid connection capacity

power balance grid connection limit

Distribution System Operator

Grid user

Variables

lines to build or reinforce

substations to build or reinforce

Constraints

power balance with losses

distflow model

budget constraint

Objectives

fixed costs

loss costs

PV installation

grid connection capacity

power balance

grid connection limit

energy costs & revenues

PV costs

grid costs

Distribution System Operator

Grid user

Variables

lines to build or reinforce

substations to build or reinforce

Constraints

power balance with losses

distflow model

budget constraint

Objectives

fixed costs

loss costs

Mixed-integer Second order cone PV installation

grid connection capacity

power balance

grid connection limit

energy costs & revenues

PV costs

grid costs

Linear

BILEVEL PROGRAMMING

Subset of lower-level variables

 $x \in X$

$$\mathbf{s.t.}: \quad G_i(\boldsymbol{x},\ \boldsymbol{y}) \leq 0, \quad i = 1, ..., k$$

Lower-Level (or Follower)

 $\min \qquad f(\boldsymbol{x}, \ \boldsymbol{y})$

 $y \in Y$

 $F(\boldsymbol{x}, \ \boldsymbol{y})$

s.t.:
$$g_j(x, y) \leq 0, j = 1, ..., m$$

Subset of upper-level variables

BILEVEL FORMULATION

Upper-Level (or Leader)

min DSO's objective

s.t.: DSO's constraints

Lower-Level (or Follower)

min. $\sum_{i \in users} \text{Grid user}_i$'s objective $y \in Y$

s.t.: Grid user_i's constraints, $\forall i \in users$

BASE CASE			
Electric vehicles	Energy export price	Energy import price	
None	0.1 k€/MWh	0.3 k€/MWh	

	BASE CASE		
	Electric vehicles	Energy export price	Energy import price
	None	0.1 k€/MWh	0.3 k€/MWh
DSO × 2 Inv	vestment costs erational costs		
× 2.5	PV costs electricity costs grid costs		

CONCLUSION

CONCLUSION

U Future work

- Storage
- GHG emissions
- Energy communities
- ...

CONCLUSION

U Future work

- Storage
- GHG emissions
- Energy communities
- ...

✓ Proof of concept

- Bilevel program...
- for a one-leader multi-follower approach...
- to distribution network development planning...
- considering impacts from exogenous factors...
- showing expected results.

