Assessment of geometric variability effects through a viscous through-flow model applied to modern axial-flow compressor blades

Arnaud Budo⁽¹⁾ 10/2018 - 10/2024

Thibault Le Men⁽²⁾, Koen Hillewaert⁽¹⁾, Vincent E. Terrapon⁽¹⁾

JDD HAIDA 2023

SAFRAN AERO BOOSTERS

Context

Geometric variability of low-pressure compressor blades

Performance variation

Manufacturing tolerances?

- Need of rigorous/robust definition
- Linked to manufacturing process
- Simplify the treatment of poorly made parts

Methodology & objectives

Outline

Outline

ASTEC: a viscous through-flow model

Circumferential averaged Navier-Stokes equations:

Non-intrusive formulation for CFD solver:

$$\frac{\partial U}{\partial t} + \frac{\partial (F - F_v)}{\partial x} + \frac{\partial (G - G_v)}{\partial r} = S + \left[\frac{(F_v - F)}{b} \frac{\partial b}{\partial x} + \frac{(G_v - G)}{b} \frac{\partial b}{\partial r} \right]$$
Blockage factor terms (known)

Viscous TF model: closure models

Reynolds stress τ_{reys} : standard **turbulence model** (k - l Smith)

 l_t [m]

Viscous TF model: closure models

Circumferential averaged Navier-Stokes equations:

$$\frac{\partial \boldsymbol{U}}{\partial t} + \frac{\partial (\boldsymbol{F} - \boldsymbol{F}_{v})}{\partial x} + \frac{\partial (\boldsymbol{G} - \boldsymbol{G}_{v})}{\partial r} = \boldsymbol{S}$$

Inviscid blade force decomposition *B*_i :

- Reynolds stress
- Inviscid blade force
- Viscous blade force
- Axisymmetric source terms

Closure models: blade forces

Correlations for δ and ω

Deviation angle $\delta \rightarrow$ inviscid blade force

- δ_{TE} from cascade experiments (Lieblein)
- Linear variation with incidence around design conditions
- $\delta = \delta_{TE} \frac{\kappa_{LE} \kappa}{\kappa_{LE} \kappa_{TE}}$ Blade angle

Loss coefficient $\omega \rightarrow$ viscous blade force

• From cascade experiments (Lieblein)

Profile loss only

Outline

Closure model assessment

Closure model assessment

- Good prediction (low margin)
- 600 times faster
- Sources of errors: τ_{circ} , closure model form, δ_{TE} distribution, blockage assumption, turbulence model...

Model able to predict performance

But exact δ , ω unknown in practice...

Correlations assessment

 \succ Error quantification of **correlations** for δ , ω

Correlations assessment

 \succ Error quantification of **correlations** for δ , ω

• Inaccurate when applied to the modern compressor

Correlations assessment

\succ Error quantification of **correlations** for δ , ω

- Rotor deviation angle correction \rightarrow total pressure ratio improvement
- Mach number effect added to loss coefficient

Strong dependence of model prediction with respect to correlation accuracy

Outline

Geometry in through-flow model

Incidence correction

- Avoid flow angle discontinuity
- Modification of blade skeleton @ LE
- Unchanged correlation input

Incidence correction can smooth variability @ LE

Camber line definition

Geometric variabilities

> Assess adequacy to predict performance variation due to geometric variabilities

Preliminary analysis

- @ nominal conditions
- Relative variations
- Stator blades

- LE blade angle variability
- 3D position of undeformed & endwalls deformation

Geometric variabilities: LE blade angle

Geometric variabilities: stagger angle

Geometric variabilities: blade position

Conclusion

Through- flow model

- Reliable low-fidelity method
- Good prediction of performance
- Strong **dependence** between performance prediction and **correlation accuracy**
- Promising approach to drastically reduce CPU cost compared to 3D RANS for multi-fidelity approach and UQ

Geometrical variability	 Modeling aspects (incidence correction and camber line definition) smear variability propagation @ LE Global good agreement for performance variation Promising first step towards the use of TF modeling for geometric uncertainty quantification
Future work	 Correlation improvement @ high incidence Thorough analysis of geometric variability propagation Strength and weakness of the model

Acknowledgement

Funding for this research is provided by the Walloon region, under grant no. 7900 in the frame of the project MARIETTA

BACK-UP

Geometry in through-flow model

Indirect impact on correlations byflow quantities

