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ABSTRACT

The exponential growth of unstructured and unlabeled data has created a pressing need for
effective methods of extracting insights from such data. Natural language processing (NLP)
has emerged as a powerful tool for analyzing and understanding human language in various
real-world applications. However, weak signal and emerging trends detection, which involves
processing large amounts of text data, has been limited by the use of predefined keywords or
relatively simple topic modeling methods. In this work, we propose a hierarchical and temporal
clustering method that enables the extraction of fine-grained information and the detection of
smaller weak signals. Moreover, our method provides a way to understand the interaction and
evolution of weak signals/emerging trends through topic correlations and temporal tracking.
Furthermore, we introduce a novel approach to evaluate the accuracy, robustness, and flexibility
of our method. Overall, this research offers a new and advanced method for weak signal detection
through NLP, which can help organizations make informed decisions and stay ahead in today’s
dynamic market.
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In today’s rapidly changing and highly competitive global landscape, organizations must
continually adapt to new challenges and seize opportunities to remain relevant. A crucial aspect
of achieving this goal is that of environmental scanning, which refers to the continuous process
of gathering, analyzing, and interpreting information from the external environment to pinpoint
significant developments that may impact an organization [Glenn and Gordon, 2009]. In this
thesis, we will be focusing on a sub-task of environmental scanning. Namely, detecting weak
signals [Ansoff, 1975, Glenn and Gordon, 2009].

In this thesis, we define a weak signal as : "An ambiguous and potentially transformative
cue, often conveyed through textual or communicative means, indicating an event, phenomenon,
or subtle shift within a specific domain of interest. These signals are inherently uncertain and
easy to dismiss, making their full impact and implications unclear. While seemingly insignificant
in isolation, weak signals may possess latent potential to herald significant emergent trends or
discontinuities, influencing the course of developments within the observed context." We will see
how this definition came about in Chapter 1.

The exponential growth in data production in recent years has generated an abundance of
unstructured and unlabeled information, encompassing scientific articles, press articles, blog
posts, social media posts, and reports. This data is presumed to harbor valuable insights that
can be extracted automatically to perform environmental scanning and weak signal detection
[Hiltunen, 2007a]. However, this task can be challenging, as traditional manual analysis often
struggles to effectively work on a large amount of unstructured and unlabeled data. Conse-
quently, there is a pressing need for advanced techniques capable of mining insights from this
diverse pool of information [Mühlroth and Grottke, 2018].

Natural Language Processing (NLP) is a rapidly evolving field of study that focuses on the
interaction between computers and human languages [Cambria and White, 2014]. NLP systems
employ a combination of machine learning, linguistics, and computer science to enable machines
to understand, analyze, and generate human language. Owing to advances in deep learning
algorithms, the field of NLP has witnessed significant progress in recent years [Zhao et al.,
2023], culminating in a plethora of practical applications across various domains. Some notable
examples include chatbots [Biswas, 2023] capable of engaging in natural conversations with
users, machine translation systems [Stahlberg, 2020] that automatically translate text between
languages, and sentiment analysis [Birjali et al., 2021] systems that determine the emotional
tone of written text.

In particular, NLP can be used to detect weak signals [Mühlroth and Grottke, 2018]. By
utilizing NLP techniques, it is possible to process automatically vast amounts of unstructured
and unlabeled text data within a specific domain, enabling the identification of patterns and
content related to weak signals. This approach has the potential to surpass traditional methods
that rely on manual labor, as it facilitates the discovery of new weak signals that may be unknown
or unanticipated. Ultimately, NLP holds the potential to revolutionize the way organizations
approach strategic decision-making by offering early insights into potentially emerging trends
and potential opportunities or threats.
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Prior NLP research on weak signal detection has proven to be limited in their effectiveness, as
they rely on basic keywords and statistical techniques to pinpoint infrequent and growing terms
as potential weak signals [Yoon, 2012, Park and Cho, 2017, Lee and Park, 2018, Kim et al.,
2016]. These approaches necessitate the predefinition of keywords, which hinders the discovery
of new weak signals which, by their very nature, are unknown. To tackle this limitation, some
researchers have investigated flat text clustering methods, such as topic models, which adopt
a more exploratory approach and facilitate the discovery of novel weak signals [Kim and Lee,
2017, El Akrouchi et al., 2021, Breitzman and Thomas, 2015]. However, these topic modeling
techniques come with their own set of limitations, as they solely extract large, high-level generic
clusters [Paisley et al., 2015]. Thus, such techniques are not capable of capturing more subtle
details present within the data such as weak signals. Furthermore, these methods necessitate
the number of topics to be defined upfront. However, this value is unknown and difficult to
estimate [Teh et al., 2006]. Since we do not know what we are supposed to extract, determining
the appropriate number of topics to extract in advance becomes problematic.

In light of the limitations of previous NLP research on weak signal detection, our methodology
aims to develop a more effective approach for identifying and tracking weak signals over time, as
well as analyzing topic interactions for scenario planning and decision-making [Coffman, 1997].
The innovative methodology we propose combines a hierarchical and temporal topic model with
topic tracking and correlations, enabling the extraction of both high-level and fine-grained topics
and events in the data thus producing a topic hierarchy without the need to predefine the number
of topics. Moreover, we also studied methods of Coreference Resolution, the task of clustering
textual mention referring to the same reality, which could help in resolving duplicate mentions
of events extracted. This scalable and unsupervised approach is designed to work with any kind
of corpus from scientific articles to news articles, making it especially valuable for discovering
unknown weak signals in any domain.

With this approach, small sub-topics (that may be localized in time) which cannot be traced
back to previous periods are indicators of new emerging weak signals. In other words, the
weakness of a signal (small sub-topics) and its novelty (cannot be traced back in time) are the
main factors which allows us to detect weak signals. The topic correlation module in itself does
not help us with the detection of weak signals but rather provide additional information about
how these weak signals interact with other weak signals and larger trends. Thus, providing a
platform for scenario building and strategic planning.

Ensuring the quality of the extracted topics is crucial in order to trust the insights they
provide. However, evaluating unsupervised models, especially hierarchical ones, has proven to
be a challenging task [Chang et al., 2009, Hoyle et al., 2021, Doogan and Buntine, 2021, Bhatia
et al., 2017]. Numerous methods have been proposed for evaluating topic models, such as
perplexity, topic coherence, and the Word Intrusion task. Unfortunately, these methods exhibit
several shortcomings. For instance, perplexity [Blei et al., 2003] and topic coherence [Newman
et al., 2010] have been shown to be uncorrelated with human judgment. The Word Intrusion task
has been proposed as a solution [Chang et al., 2009, Lau et al., 2014] but we have demonstrated
in Chapter 8 that it might be unreliable for evaluating hierarchical topic models.
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To address these challenges, we propose a novel evaluation method for hierarchical topic
models that leverages labeled datasets. This approach focuses on the ability to extract known
topics, providing a more comprehensive understanding of the model’s performance. By analyzing
the document topic distribution and its ability to predict the actual labels of the documents,
we can obtain a quantitative assessment of the model’s quality, termed "label accuracy." While
labelled dataset may not be easily available, this new evaluation method offers a promising new
approach to assessing the quality and completeness of hierarchical topic models.

From the foregoing discussions, the research questions addressed by this thesis are :

• Q1 : Event & Entity Coreference Resolution (ECR)

– Can we use ECR to support weak signal detection?
– Is there a trade-off between performance (predictive & run-time) and embedding size?
– How do the embeddings’ performance compare within and across families?
– Current state of the art methods for ECR relies on neural network and word embed-

dings methods. Hence, these research questions are focused on understanding the re-
lationship between embedding size, performance (both predictive and run-time), and
the comparison of performance among different embedding families in the context
of Coreference Resolution (CR). The overall goal is to evaluate whether the current
state of the art in ECR is sufficiently precise to support weak signal detection.

• Q2 : Hierarchical & Temporal Topic Modelling

– How can hierarchical and temporal information be effectively integrated into topic
models?

– What are the challenges associated with combining hierarchical and temporal infor-
mation in topic modeling?

– Can we efficiently use Gibbs sampling and how does it compare to stochastic varia-
tional inference (SVI) in terms of speed?

– These research questions focus on the integration of hierarchical and temporal infor-
mation in topic modeling, the challenges associated with this integration, the evalu-
ation and comparison of the proposed HTMOT method, and the performance of the
novel implementation of Gibbs sampling.

• Q3 : Topic Tracking

– Can semantic information be effectively used for topic tracking and how does it com-
pare to lexical information?

– What are the advantages and challenges of using semantic-based approaches for topic
tracking compared to lexical-based approaches?

– How does the proposed Semantic Divergence (SD) method, based on word embed-
dings, perform in topic tracking compared to existing methods?

– What are the challenges of topic tracking in the context of hierarchical topic mod-
elling?

– These research questions revolve around investigating the use of semantic information
for topic tracking, comparing it to lexical information, evaluating the proposed Se-
mantic Divergence (SD) method, and understanding the challenges of topic tracking
in hierarchical topic modelling.
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• Q4 : Evaluating Topics & Topic Models

– Can the current state of the art for topic model evaluation effectively evaluate hier-
archical topic models, and what are its limitations?

– How does the automated version of this method compare to the human version in
evaluating hierarchical topic models?

– Can we define a new methodology for evaluation and how does ot compare to a
traditional evaluation method coherence?

– Can the document topic distribution accurately predict the known labels of the doc-
uments, and what is the label accuracy achieved by the models?

– How does the coherence of the taxonomy produced from the known labels reflect the
quality and coherence of the hierarchical topic models?

– Do the results of the experiments support the effectiveness of hierarchical topic models
in extracting small sub-topics?

– These research questions focus on evaluating and comparing different evaluation
methods for hierarchical topic models, including the Word Intrusion task, label accu-
racy, completeness, unexpectedness, and coherence. The research also aims to inves-
tigate the performance of hierarchical topic models in extracting small sub-topics.

In this thesis, we will propose several novel methods for answering these research questions.
The structure is as follows. The background (part 2) will define important concepts and provide
a review of the related literature. It is divided into the following Chapters:

1. Trends and Weak Signals

2. Event & Entity Coreference Resolution

3. Word Embeddings

4. Topic models

Our methodology (part 3) is divided into the following Chapters:

1. Event & Entity Coreference Resolution

• This Chapter was published as a long paper in EMNLP 2021 1 with title "A Compre-
hensive Comparison of Word Embeddings in Event & Entity Coreference Resolution".

• It is concerned with the research question Q1

2. Hierarchical Topic Modelling Over Time

• This Chapter was submitted as a long paper in RANLP 2023 2.

• It is concerned with the research question Q2

3. Computing Topic Correlations

• It is concerned with the research question Q2

4. Topic Tracking Using Word Embeddings
1https://2021.emnlp.org/
2http://ranlp.org/ranlp2023/
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• This Chapter was published as a long paper in NLDB 2022 3 "Using Meaning Instead
of Words to Track Topics".

• It is concerned with the research question Q3

Our evaluation strategy (part 4) is divided into the following Chapters:

1. A Critic of the Current State Of The Art in Topic Model Evaluation for Hierarchical Topic
Model

• This Chapter was submitted as a long paper in ACL 2023 4.

• It is concerned with the research question Q4

2. A new Method for Topic Model Evaluation

• This Chapter was submitted as a short paper in RANLP 20235.

• It is concerned with the research question Q4

Finally, Section 5 concludes the thesis with a summary of the findings, limitations, and future
research directions.

3https://link.springer.com/conference/nldb
4https://2023.aclweb.org/
5http://ranlp.org/ranlp2023/
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The following Chapters will provide the necessary background for the rest of the thesis. We
will start by presenting the concepts related to weak signals and previous work on the subject
since it is the main goal of this thesis (see Chapter 1). In Chapter 2 and 3, we will follow with a
literature review on Coreference Resolution and Word Embeddings which represent the first part
of our methodology, specifically Chapter 5 about Word Embeddings in Coreference Resolution.
Word Embeddings will also be used in Chapter 7 about Topic Tracking. Finally, Chapter 4 we
will provide a background on topic models and related tasks which represent the core of our
work. This will be important for Chapter 6 which is about our novel method for Hierarchical
and Temporal Topic Modelling method, Chapter 7 which is about Topic Tracking, Chapter 8
which is about the Word Intrusion Task, and Chapter 9 which is about our novel evaluation
method based on a labelled dataset.
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1 Trends and weak signals

1.1 Introduction

Environmental scanning refers to the continuous process of gathering, analyzing, and inter-
preting information from the external environment to pinpoint significant developments that
may impact an organization [Glenn and Gordon, 2009]. The information gathered often take
the form of trends or weak signals observed in the firm’s environment [Ansoff, 1975].

A trend is a general direction in which something is developing or changing. In the context
of markets, trends are patterns or tendencies that emerge over a period of time. They can
be long-term or short-term, upward or downward, and they can relate to economic, social, or
technological factors. Trends are often used in forecasting and analysis to help predict future
behavior or events based on historical patterns [akhavanhariri et al., 2022]. Trends can be divided
into macro, micro, and emerging trends. Each of these categories serves different purposes and
offers unique insights that can help businesses, policy makers, and individuals make informed
decisions [Peloso, 2020].

Macro trends are broad and long-lasting trends that affect various sectors and demographics
worldwide. They are driven by significant shifts in cultural, technological, or economic land-
scapes. Examples include the rise of artificial intelligence, climate change, or demographic shifts
such as aging populations. Recognizing macro trends is crucial for strategic planning, as they
shape the context in which organizations operate. They can influence business models, product
development, and marketing strategies over the long term [Peloso, 2020].

Micro trends, on the other hand, are more localized and short-term in nature. They are
specific to a particular industry, market segment, or geographic area. These trends often emerge
from shifts in consumer preferences or advances in technology within a specific field. For instance,
a new fashion style gaining popularity among teenagers or a new software tool being adopted
by graphic designers would be considered micro trends. Micro trends provide opportunities for
innovation and differentiation, especially for businesses targeting niche markets or looking for
short-term growth opportunities [Peloso, 2020].

Emerging trends represent the early signals of change that have the potential to become
significant micro and macro trends. They are often seen as the ’next big thing’ but are currently
in their infancy and not yet mainstream. For example, cryptocurrency or virtual reality in their
early stages were considered emerging trends before they evolved into mainstream phenomena.
Tracking emerging trends is important for businesses and individuals aiming to stay ahead of
the curve, as they can highlight new market opportunities or potential disruptions [Kim et al.,
2013].
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Finally, weak signals are the earliest indicators of a potential emerging trend. Contrary
to trends, they manifest more often as punctual events instead of a continuous trend. These
signals are subtle, ambiguous, and easy to dismiss, but they can indicate significant changes.
Weak signals could include a novel use of technology, a new behavior among a small group of
consumers, or an unconventional business strategy that’s beginning to show signs of success.
Recognizing and interpreting weak signals can be challenging, but it’s a crucial part of trend
forecasting and strategic planning [Hiltunen, 2007b].

It is important to note that there is often interplay between these types of trends. A macro
trend can be subdivided into multiple micro and emerging trends, and an emerging trend can
grow to become a macro trend of its own. Conversely, multiple subsequent weak signals may
eventually lead to the birth of a new emerging trend. Understanding this dynamic can provide
a comprehensive view of the evolving landscape, enabling more effective planning and decision-
making [Coffman, 1997].

1.2 A Bit of History on Weak Signals

The concept of weak signals was first proposed by Ansoff in 1975 [Ansoff, 1975] as a way to
address the limitations of traditional strategic planning. He defined weak signals as incomplete
and difficult-to-interpret indicators of potential future developments which could provide early
warning of strategic discontinuities and allow firms to anticipate and prepare for them effectively.
Hence, understanding weak signals enables firms to anticipate and prepare for potential threats
or opportunities to stay ahead of the curve and gain a competitive advantage.

Hence, weak signals are subtle, emerging indicators that may provide early warning of po-
tential future trends or events. They are part of the early lifecycle of trends [Andrus, 1997];
specifically, they are punctual events that indicate that a new trend might emerge. However,
weak signals are often difficult to detect and interpret, particularly because they are often found
close to the noise level of the global signal [Coffman, 1997]. Despite this, they can provide
valuable insights into what the future may hold, making them an important tool for firms to
stay ahead of the curve and gain a competitive advantage.

Weak signals may be found in various sources, such as social media, news articles, and expert
interviews [Hiltunen, 2007a], and they can be related to a wide range of topics such as Political,
Economic, Sociological, Technological, Legal, and Environmental changes (PESTEL) [Coffman,
1997]. They have a number of potential applications in various fields, such as risk management,
strategic planning, and policy-making [Yoon, 2012]. By providing early warning of potential
future developments, weak signals can help organizations and decision-makers anticipate and
prepare for potential changes or challenges.
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While weak signals are a valuable tool for anticipating potential future trends and events,
they also create a paradox for planners. Waiting too long to act may result in missed oppor-
tunities while acting too quickly based on weak signals can lead to false alarms or misinterpre-
tations. Therefore, it is important to recognize that weak signals are not always accurate or
reliable and should be carefully evaluated and contextualized to be used effectively. Firms must
exercise caution and discernment in interpreting weak signals and using them to inform strategic
decision-making.

Weak signals are not naturally understood due to the current paradigm and their inherent
weakness. Preparing for weak signals requires stepping out of our comfort zone and being
creative. In particular, scenario planning is an effective method for studying potential outcomes
based on weak signals. By making up stories about what the future may bring, we can infer
what is possible and better anticipate discontinuities [Coffman, 1997].

For example, in 2004, Blockbuster was at its prime since its founding in 1985. They had
become the de facto name in video rental and the company’s fortunes seemed like they’d go on
forever, at least internally. In 1997, Netflix was founded as an online DVD rental and streaming
video startup. Blockbuster launched a competing DVD-by-mail service in 2004, which ultimately
floundered, and the company subsequently declared bankruptcy in 20101. This story exemplifies
how ignoring emerging market disruption can lead to tragic consequences.

Creating a scenario requires a deep understanding of the multiple inter-dependencies of
current and emerging technologies. One important aspect to consider is the auto-catalytic nature
of weak signal ecosystems, where weak signals often depend on each other for their growth. For
example, cars depend on engines and petroleum products to function, and petroleum products
depend on engines for their distribution, while engines depend on cars and petroleum products.
Understanding these inter-dependencies is crucial for identifying and interpreting weak signals.
This is why weak signals are better found in uncertain environments since their chaotic potential
attracts innovation [Coffman, 1997].

1.3 A Modern Understanding of Weak Signals

In the 2000s, Hiltunen [Hiltunen, 2007b] noticed that weak signals had not been analyzed
formally in mainstream science and identified a significant debate about weak signals in Finland.
She aimed to draw attention to this discussion on the international level and observed that there
was a lack of coherence in the comprehension of weak signals, with various synonyms and closely
related concepts being used and ambiguous features being identified.

Hiltunen drew on the field of semiotics, as pioneered by Peirce [Peirce, 1868], to formalize
the concept of weak signals with her triadic model of future signs [Hiltunen, 2008]. The model
consists of three dimensions (the issue, signal, and interpretation) which will be explained in
the following paragraphs. To illustrate the triadic model, we can consider the emergence of
self-landing rockets as a future sign, signaling a new era in space travel.

1https://thefuturemarket.com/futurechronicle/the-value-of-weak-signals
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The issue refers to the underlying reality that a future sign represents and measures its
magnitude. For example, with self-landing rockets, one measure of magnitude could be the
number of times rockets have successfully self-landed, or more generally, the number of events
related to this topic. The issue is at the core of future signs since it represents the actual reality
that gives rise to them. Without an issue, no signal can be emitted, and no interpretation can
be proposed [Kuusi and Hiltunen, 2012, Hiltunen, 2008].

The signal refers to the amount of discussion around the issue and includes any messages
transmitted about it. These messages might be anthropogenic (created by someone) [Kuusi and
Hiltunen, 2012], such as news articles, social media posts, scientific papers, or patents [Hiltunen,
2007b], or naturogenic [Kuusi and Hiltunen, 2012], meaning that the future sign itself has some
direct effect on the observable world, which can be reported through anthropogenic signals. In
most cases, people have access to the signal, but not to the issue. For example, one may not
have witnessed a rocket self-landing but may have heard or read many reports about it. The
signal is the surface of future signs; the visible part that people can perceive.

Lastly, the interpretation measures our perception of the disruptive/transformative potential
of the future sign. It reflects whether people are hyped, invested, and hopeful or dismissive and
pessimistic. Specifically, interpretation should be low when the potential impact is unclear, and
high when its importance is clear. This is the only subjective component of the triadic model.
In the case of self-landing rockets, it is now clear that this technology will revolutionize the
space industry, but it was not always evident. Interpretation is the landscape that colors future
signs, and it has two main sources: the interpretation of the reporter and the interpretation of
the readers.

All three dimensions of the triadic model (issue, signal, and interpretation) are closely con-
nected [Hiltunen, 2008, Kuusi and Hiltunen, 2012], as illustrated by the signification process
described in [Kuusi and Hiltunen, 2012]. The issue is often latent, as it may not be directly
observable, but it generates the signal. The signal is accessible and carries information about
the issue, which can be interpreted by reporters and readers alike. Their interpretation (opinions
and perceptions) about the potential impact of the future sign can color the facts presented in
the signal.

Using the triadic model, we can distinguish between weak and strong signals. A weak signal
is one that is weak in at least two of the three dimensions [Hiltunen, 2008]. For instance, in the
early days of self-landing rockets, only a few attempts were successful (low issue), the media did
not cover the topic extensively (low signal), and there was little enthusiasm or belief in the idea
(low interpretation). In such cases, all three dimensions were small, indicating a weak signal.
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Another example of a weak signal that later became a significant trend is the development of
chatbots such as chatGPT. This issue dimension is represented by the creation and advancements
of different chatbots, starting with Eliza and Cleverbot in 1996 and 1997. At the time, these
chatbots represented a weak emerging issue compared to the current capabilities of chatGPT.
The signal dimension represented by the news coverage of the issue remained mostly anecdotal
until chatGPT. While Siri and Alexa were introduced more recently, they did not fundamentally
disrupt the industry. However, ChatGPT has clearly disrupted the conversation, as evidenced by
the increasing number of news articles discussing it. The interpretation dimension represented
by the general opinion on the issue remained low and neutral as it was mostly of academic
interest until chatGPT emerged. Now, many people believe that such chatbots will be extremely
important in the coming years. Hence, we can observe how chatbots used to be a weak signal
that grew over time to a strong signal.

Henceforth, we define a weak signal as : "An ambiguous and potentially transformative cue,
often conveyed through textual or communicative means, indicating an event, phenomenon, or
subtle shift within a specific domain of interest. These signals are inherently uncertain and easy
to dismiss, making their full impact and implications unclear. While seemingly insignificant
in isolation, weak signals may possess latent potential to herald significant emergent trends or
discontinuities, influencing the course of developments within the observed context."

1.4 Detecting Weak Signals

The concept of weak signals has been primarily studied in the field of futures studies and
management, but it is gaining attention from other communities, especially natural language
processing (NLP). According to the systematic review by Muhlroth, between 2006 and 2016 only
one to three articles are published per year on the subject of weak signal detection through text
mining [Mühlroth and Grottke, 2018] while articles on the subject of emerging trend detection
account for three times as much. In total, this review found 86 articles on these subjects in this
period. Hence, we can see that this research field is still young. Nonetheless, it is a growing
field; from our own bibliometric analysis out of all the articles published about weak signals
since 2010, 75% of them have been published in the period 2016-2022.

One limitation of the triadic model is that it is not clear what weak signals are and how each
dimension can be quantified. To address this, Yoon [Yoon, 2012] proposed a system for detect-
ing weak signals by quantifying the triadic model, modeling weak signals as manually selected
keywords and focusing on the objective dimensions: the signal and the issue. Term frequency
was used for measuring the signal and document frequency for the issue. They analyzed these
measures through time and came up with two criteria to find weak signals. One, weak signals
have low frequencies (term and document). And two, these frequencies have recently been in-
creasing. However, a manual selection of keywords gives up all hopes of finding unknown signals
and single words are often not flexible and expressive enough. Moreover, we argue that the use
of document frequency is highly correlated to term frequency and does model the issue. E.g. a
document may discuss multiple issues and multiple documents may discuss the same issue.
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Park and Cho [Park and Cho, 2017] applied Yoon methodology on smart grid technology.
While Lee and Park 2018 [Lee and Park, 2018] applied Yoon’s methodology on ethical problems
for AI. Both improved upon Yoon’s ideas by developing a method for keyword extraction that
relies less on manual work. More importantly, [Lee and Park, 2018] used a clustering technique
to extract sets of keywords as topics based on co-occurrence rather than focusing on single
keywords. Kim [Kim et al., 2016] expanded once more on Yoon’s ideas, and created three
keyword maps: a cluster map, an intensity map, and a relationship map. The cluster maps
show topics, the intensity map finds weak signals, and the relationship map finds similarities
between keywords. Their results have shown to be more interesting with topics such as "killer
robots" and "legal liabilities" being classified as AI weak signals.

As we observe, the triadic model has been relatively well-adopted by the literature on weak
signal detection [Mühlroth and Grottke, 2018]. However, many studies focus on keywords rather
than topics, which are more expressive and flexible. Furthermore, most of these studies have not
applied the model in a novel way and are mainly a continuation of Yoon’s idea. These studies
show interesting results even though none provided a quantitative evaluation.

Nonetheless, some studies have taken a different approach that does not rely on the triadic
model. One paper proposed the novelty model, in which he argued that weak signals have two
main characteristics: rarity and paradigm unrelatedness [Kim and Lee, 2017]. To measure these
characteristics, he used the local outlier factor (LOF) method to identify local outliers based
on the frequency of keywords in patent and futuristic news articles. The LOF values were then
used to plot the rarity and paradigm unrelatedness of both documents and keywords in two 2D
maps. Quadrants were arbitrarily created in the maps to categorize weak, strong, feeling, and
stagnant signals based on their rarity and paradigm unrelatedness.

Another paper used patent citation analysis and clustering techniques to identify weak signals
in the form of emerging technologies [Breitzman and Thomas, 2015]. His approach involved
identifying "hot patents," or highly cited patents with a high proportion of recent citations,
and "next-gen patents," or recent patents that cite currently hot patents. He argued that hot
patents can serve as catalysts for emerging technologies, which manifest as next-gen patents
clustering around hot patents during their "heating period." Two features of next-gen patents
were used to rank them efficiently as potential weak signals: the proportion of citations from
government-funded patents and the proportion of citations from research papers. The results of
this approach showed that next-gen patents with high scores were 50% more likely to be cited in
the next five years than the average patent, and were twice as likely to be cited as non-next-gen
patents in the same time frame.

From the above, we can observe that temporality is an important component that is missing
the triadic model of Hiltunen. Indeed, weak signals suggest the emergence of new trends. There-
fore, it is interesting to not only understand weak signals but also to monitor their evolution.
Hence, through our conceptual understanding of weak signals in this Chapter, we have set the
stage for the overall methodology of this thesis that will be described in Chapter III.
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2 Event & Entity Coreference Resolution

2.1 Introduction

Coreference Resolution (CR), a fundamental task in NLP, aims to identify sequences of
text that refer to the same real-world object or occurrence. This task is often sub-divided into
Event Coreference Resolution (EvCR) and Entity Coreference Resolution (EnCR) which involve
clustering event and entity mentions respectively [Barhom et al., 2019, Lee et al., 2017, Joshi
et al., 2019, Choubey and Huang, 2017, Kenyon-Dean et al., 2018]. Figure 2.1 illustrates this
concept of coreference with event and entities mentions with identical meanings in two distinct
sentences.

Figure 2.1: Two coreferent event mentions with colors indicating associated coreferent entity
mentions.

Event mentions represent textual descriptions of real-life events, typically consisting of a
trigger word (often a verb) and a set of arguments (entities). For instance, in Figure 2.1, the
trigger word "launched" is accompanied by arguments "SpaceX" and "a South Korean Military
satellite". Four argument types can be identified: Arg0, Arg1, location, and time, as defined in
[Barhom et al., 2019]. Arg0 (resp. Arg1) refers to the nearest entity to the left (resp. right) of
the trigger word.

Notably, the task of Coreference Resolution can also be divided into Cross-Document Coref-
erence Resolution (CD) vs Within Document Coreference Resolution (WD). While the WD
setup aims to cluster mentions inside a single document, CD aims to cluster mentions across
them.

In this Chapter, we will explore models capable of addressing the tasks of EvCR and EnCR,
followed by a discussion of models capable of addressing both. In our methodology, we initially
aimed to use CR to accurately measure the issue by detecting duplicate event that would have
been extracted from a corpus. We will explain in Chapter III and 5 why this was not reasonably
feasible and how this affected our final methodology.
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2.2 Event Coreference Resolution

In one study [Peng et al., 2016], the authors have put forth an unsupervised approach to
Event Coreference Resolution. They used the cosine similarity on the embeddings of mention
pairs for clustering. The authors conducted experiments with a variety of embedding systems,
such as ESA, Brown cluster, Word2vec, and DEP, to evaluate their methodology. Although their
system does not set new standards, it achieves comparable performance with existing systems
at the time.

In another study [Choubey and Huang, 2017], the authors highlight that while most studies
focus on WD EvCR, CD EvCR is inherently more challenging. They propose an iterative
solution that alternates between CD and WD resolutions as a clustering problem using pairwise
classifiers. This approach, which emphasizes the importance of both local and global context,
operates in two stages: first, CD/WD merges are suggested by a pairwise classifier, and in the
second stage, second-order relations across clusters are utilized for further merging. The iterative
alternation between CD & WD merges continues until no further merging is possible.

Finally, another study proposes a novel approach to CD/WD EvCR [Kenyon-Dean et al.,
2018]. They introduce an alternative to the traditional pairwise clustering, creating embeddings
that draw coreferent elements closer together through the use of cluster-oriented regularization
during training. This allows for traditional hierarchical clustering methods to be applied.

2.3 Entity Coreference Resolution

In one study [Wiseman et al., 2016], the authors identify the limitations of traditional EnCR
systems, which are mostly local. They propose a model that learns representations of mentioned
clusters by sequentially embedding them using a recurrent neural network. Moreover, they
argue that while EnCR is fundamentally a clustering task, it can be approached by identifying
antecedents and recovering clusters from chains of antecedents.

In another paper [Lee et al., 2017], the authors propose an end-to-end neural coreference res-
olution model that eliminates the need for a syntactic parser. The model jointly learns to find
and cluster mentions, operating at the span level. Using embeddings and an attention mecha-
nism, the model determines whether each span represents an antecedent. Due to computational
constraints, the model applies a scoring system to classify spans as entities and prunes those
with low scores. The model also restricts the number of considered antecedents for each span.
Despite aggressive pruning, the model maintains a high recall rate.
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2.4 Joint Models

In one study [Lee et al., 2012], the authors address the limitation of traditional coreference
resolution systems that primarily focus on EnCR. They present a holistic approach that considers
both events and entities. Their approach utilizes an iterative algorithm that constructs clusters
of entity and event mentions using linear regression to model cluster merge operations. This
algorithm also allows for the interplay of information between entity and event clusters via
features that model context using semantic role dependencies.

In a subsequent study [Barhom et al., 2019], the authors aim to address the challenge of
CD/CR, a task that is vital but often overlooked in favor of within-document coreference.
Recognizing that both entity and event coreference are crucial for CD/CR, the authors propose
a novel joint neural architecture where the representation of an event (entity) mention considers
other entities (events) connected to it via predicate-argument structure. This model cluster
mentions based on a learned pairwise mention coreference scorer.

2.5 Evaluation Metrics

Evaluating the performance of coreference resolution systems is essential to measure their
effectiveness and guide their development. However, assessing coreference resolution is not
straightforward due to the complexity of the task setup. Indeed, in a simplified understand-
ing of the task, given a set of mentions M , there is BM possible clustering configurations of
these mentions corresponding to the Bell number of M . There is only one correct configuration
(T ) where each cluster contain only and all mentions that are coreferent. However, compared
to a simpler classification or regression setup, there is no clear definition of distance between T
and any other BM − 1 possible configurations.

Moreover, coreference resolution models do not directly produce clusters of mentions. In-
stead, they tend to resolve links between pairs of mentions thus producing a graph of mentions
(nodes) and links (edges). Afterwards, we can recover clusters of mentions by extracting the
connected components of the resulting graph. Here, we do not have BM possible configurations
of links but rather 2((M−1)∗M)/2 configurations given than fully connected graph as (M−1∗M)/2
edges. In this setup, the problem worsen since one wrong link can connect (resp. split) two sep-
arated (resp. connected) components of the graph. Depending on the size of these components,
one link may have a small impact or a large impact on performance. Additionally, adding one
wrong link between two mentions which are already inside a connected component does not
change the final clusters and thus has no more impact on the final set of cluster. Hence, one
link can impact performance in an arbitrary manner. Therefore, defining a metric for evaluating
the performance of coreference resolution is a complex combinatorial problem with no trivial
solution.
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Hence, many different evaluation metrics, such as MUC, B3, CEAF and BLANC, have been
proposed to address coreference resolution evaluation. However, these metrics are complex so-
lution to a combinatorial problem and thus their definition is outside the scope of this thesis.
Moreover, past research demonstrated that these metrics are neither reliable nor easily inter-
pretable [Moosavi and Strube, 2016]. As a consequence, researchers have been using the CoNLL
measure defined as the average of MUC, B3 and CEAF as an ad hoc solution to the unreliability
of these metrics. A new metric, LEA, has been proposed to tackle the problem of reliability
[Moosavi and Strube, 2016]. However, it remains difficult to interpret and has not been accepted
by the latest state of the art in coreference resolution [Held et al., 2021].

As we can see, Coreference Resolution is a complex and deep field of study. Nonetheless,
our inability to accurately measure the performance of a model makes it challenging to rely
on them. Moreover, the supervised nature of the task makes it difficult to scale to new data
while ensuring generalizability and cost effectiveness. Furthermore, there are other problems of
consistency in terms of the definition of the task as we will discover in Chapter 5. Consequently,
our final methodology for weak signal detection does not make use of CR.
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3 Word Embeddings

3.1 Introduction

To perform CR and many other tasks in NLP such as topic tracking [Liu et al., 2020a, Xu
et al., 2019, Zhu et al., 2016, AlSumait et al., 2008, Allan et al., 2003, Zhe et al., 2011], we rely on
Word embeddings. They are a set of methods that allows us to translate natural language into
a vector space. Precisely, they provide a way to encode words or sequences of words into dense
numerical vectors called word embeddings [Mikolov et al., 2013]. These embeddings encode
words in such a way that the semantic relationships between words is translated into algebraic
relationships. A trivial example is that v(King)-v(Man)+v(Woman) = v(Queen) where v(*) is
the function that maps each word to a word embedding.

Words embeddings have revolutionized the field of NLP as they allow for a dense representa-
tion of words that can be fed directly into machine learning models such as deep neural networks.
Hence, since their inception, their use only increased and many types of word embeddings have
been proposed. Specifically, the literature generally distinguishes between three families: static,
contextual, and character embeddings [Almeida and Xexéo, 2019, Liu et al., 2020b, Dos Santos
and Zadrozny, 2014]. Nonetheless, there exist many other kinds of word embedding that are
more specific to some applications such as phonetic-based [Liu et al., 2018] and non-euclidean
embeddings [Nickel and Kiela, 2017].

We will use word embeddings in Chapter 5 to perform Event & Entity Coreference Resolution
and in Chapter 7 for Topic Tracking.

3.2 Static Embedding

Static embeddings were the first kind of word embedding proposed [Mikolov et al., 2013,
Bojanowski et al., 2017, Pennington et al., 2014]. To transform words into dense numerical
vectors, they start with a sparse representation of these words called one-hot encoding. Given a
vocabulary of size V. The one-hot encoding vector for a word i have V dimensions and is full of
zeros except at index i which is set to one. Some embeddings start with the one-hot encoding
of characters or part of words [Bojanowski et al., 2017, Dos Santos and Zadrozny, 2014]. These
one-hot vectors are sparse, extremely large, and by definition linearly independent. Through,
word embedding methods, we will see how we can transform these vectors into smaller and
denser vectors whose linear relationships encode semantic relationships between the words they
represent. The size of these embedding vectors tends to be 300 as larger static embeddings tend
to provide only marginal gains in performance [Patel and Bhattacharyya, 2017].
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The fundamental assumption behind word embeddings is called the distributional hypothesis
[Mikolov et al., 2013] which states that the meaning of a word can be inferred from the context in
which it appears, and that words that appear in similar contexts tend to have similar meanings.
For example, the embedding for "car" and "truck" might be more similar than "car" and "star"
because "car" and "truck" often appear in text around similar words such as "roads" and
"traffic".

Word2Vec was one of the first word embedding proposed [Mikolov et al., 2013]. Word2Vec
produces embeddings through a neural network architecture that is similar to an auto-encoder
[Tschannen et al., 2018]. Specifically, there are two versions of Word2Vec : CBOW and Skip-
gram. CBOW models are trained by trying to predict a word given the words that surrounds
it while Skip-gram models are the opposite; they are trained by trying to predict the words
that surround a given word. Since the architecture of Word2Vec is similar to an auto-encoder,
there is many fewer neurons in the middle of the network than on the input and output side.
This forces the network to compress the information into a compact representation. After the
training process, it is this hidden representation that is used as a word embedding.

GloVe [Pennington et al., 2014] was proposed soon after Word2Vec as another word embed-
ding model. It uses a co-occurrence matrix to learn word representations. The model constructs
a co-occurrence matrix from a large corpus, where each cell in the matrix represents the number
of times a word appears in the context of another word. GloVe then factorizes this matrix us-
ing matrix factorization techniques to obtain word embeddings that capture both the local and
global context of words. Unlike CBOW and skip-gram models, GloVe takes into account the
global statistics of the corpus, such as the frequency of word pairs, to learn word embeddings.

FastText [Bojanowski et al., 2017] is a more recent static embedding that works similarly to
Word2Vec. Its main difference is that it learns the embedding of sub part of words. For example,
the word "fabulous" could be cut into the pieces <fa,fab,abu,bul,ulo,lou,lous,us>. Through this
method, FastText is capable of better-capturing information about word morphology which is
useful in inflected languages such as English. For example, the words "eat" and "eating" have a
similar but slightly different meanings through the suffix "-ing" which FastText is supposed to
better capture. Moreover, while Word2Vec is not capable of providing an embedding for a word
that is outside its training set, by using sub-parts of words, FastText is capable of providing
embedding to these out-of-vocabulary words.

Finally, character embeddings are a sub-class of static embeddings [Dos Santos and Zadrozny,
2014, dos Santos and Guimarães, 2015]. Instead of using words or sub-part of words, they encode
each individual character of a word into a one-hot vector. Hence, for a given word we have a
set of one-hot encoded vector that forms a matrix. A CNN with a 1-d kernel is then used to
find a lower representation of these words by training it in conjunction with a task such as
text classification. While these embeddings are extremely useful for encoding out-of-vocabulary
words, many words have totally different meanings with only a one character difference such as
"dock" and "duck". The size of these embedding vectors tends to be 50 because they seem to
contain less information [Patel and Bhattacharyya, 2017].
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3.3 Contextual Embedding

While static embeddings provide a good representation of words, they are not capable of
handling word polysemy; the existence of multiple meanings for a given word. For example, in
the sentences "I deposited my paycheck at the bank" and "The river bank is eroding", the word
"bank" has two different meanings. A static word embedding would still only provide a unique
representation for "bank". In contrast, contextual embedding provides a vector representation
that is relative to the context which means the word "bank" will have different representations
in these two sentences. To do so, contextual embeddings use static embeddings as input. The
size of these embedding vectors tends to be larger than static embeddings (i.e. 1024) because
they provide more information.

ELMo was the first contextual embedding that was proposed [Peters et al., 2018]. The
architecture is a Bi-LSTM trained based on a bi-directional language modeling task. This
means each word is predicted given all others. Hence, for a given sentence, at the output of
the Bi-LSTM, the embedding of each word is affected by the embedding of the words around
it. This also means that contextual embeddings must be applied to sequences of words to be
effective. Moreover, due to the nature of the Bi-LSTM, words that are further apart affect each
other less.

BERT followed up soon after and proposed a transformer architecture to train word embed-
ding based on a masked language modeling task. This means that for each input sequence, a
few words are masked and must be predicted. The appeal of transformers is that they use the
attention mechanism to inject contextual information into contextual embedding. This means
that, contrary to LSTM solutions, the distance between words is not a factor in deciding what
matters in the context.

Finally, GPT provides a similar method for producing contextual word embeddings. How-
ever, it is trained using an auto-regressive language modeling task. This means GPT is trained
to predict the next word for a given sequence making GPT well suited for text generation tasks.

3.4 Studies on Embeddings’ Performance

One study [Gromann and Declerck, 2018] demonstrated that FastText surpasses Polyglot
and Word2Vec in ontology alignment, achieving an F1 score of 0.812 compared to 0.675 and
0.750 respectively. The study, which utilized the Global Industry Classification Standard and
the Industry Classification Benchmark ontologies, also highlighted FastText’s superior capability
to manage out-of-vocabulary words.

In a distinct study [Berardi et al., 2015], the authors found that Word2Vec outclassed Poly-
glot and GloVe in a word analogy test, obtaining an accuracy of 43.63% in comparison to 40%
and 30.21% respectively. This experiment employed Wikipedia and a collection of Italian liter-
ature, predominantly novels, as data sources.
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Other researchers [Li et al., 2018] discovered that GloVe exceeded both FastText andWord2Vec
in a tweet classification task, especially when trained on specific corpora, specifically Cri-
sisLexT6, CrisisLexT26, and 2CTweets. These three studies demonstrate that there is no general
rule as to whether one static embedding is better than the others.

We can also review the performance of word embeddings on our task of interest : Event
& Entity Coreference Resolution (EvCR and EnCR). Regarding EnCR, one study [Lee et al.,
2017] leveraged GloVe for word representation in conjunction with a Bi-LSTM and attention
mechanisms. Their model achieved state-of-the-art performance with a 68.8 F1 score on the
CoNLL-2012 corpus. While another study [Joshi et al., 2019] reported improved EnCR results
when employing BERT over ELMo, with increases of +3.9 F1 in OntoNotes and +11.5 F1 in
GAP.

In the EvCR domain, one study [Choubey and Huang, 2017] utilized GloVe for EvCR on
the ECB+ corpus [Cybulska and Vossen, 2014]. They developed a joint modelling approach for
within and cross-document EvCR, achieving state-of-the-art performance. A subsequent study
[Barhom et al., 2019] also used this corpus, proposing an EvCR/EnCR model based on ELMo
[Peters et al., 2018], GloVe [Pennington et al., 2014], and a fine-tuned character embedding.
Their model, which jointly performs EnCR and EvCR, achieved an impressive 79.5 F1 score in
EvCR.

As we can observe, we cannot point to a single embedding as the overall best performing
solution to all tasks. Specifically, there is no study comparing the various embeddings in Coref-
erence Resolution. We will address this knowledge gap in Chapter 5. Morover, we will see how
these embeddings can be used to track topics over time in Chapter 7.
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4 Topic Models

4.1 Introduction

The core of this thesis relies on topic models which are a broad class of unsupervised machine-
learning techniques aimed at discovering hidden semantic structures in a corpus of documents.
These models transform unstructured text data into structured topics, which are distributions
over words that capture the thematic content of the documents [Blei et al., 2003].

The essence of topic modeling is to represent documents as mixtures of latent topics. A
topic, in this context, is a collection of words that are semantically related. For example,
words like "election", "vote", "democracy", might constitute a "politics" topic, while "neutron",
"quantum", "particle" might constitute a "physics" topic. The underlying assumption is that a
document is a mixture of various topics, and each word in the document is attributable to one
of the topics in that document.

Topic models have become a critical part of the toolkit for researchers dealing with large
text corpora, enabling tasks such as document summarization [Yang et al., 2015], environment
scanning [Gregoriades et al., 2021, Kim et al., 2020], understanding employee and customer
satisfaction [Korfiatis et al., 2019, Bastani et al., 2019] among others [Hong et al., 2011, Zhou
and Chen, 2013]. Since the introduction of the first probabilistic topic model, Latent Dirichlet
Allocation (LDA) [Blei et al., 2003], numerous variants have been proposed to address specific
challenges. In this Chapter, we will review these different sub-types namely, flat topic models,
hierarchical topic models, temporal topic models, and correlated topic models. Additionally,
this Chapter will review other related sub-fields such as topic tracking which aims at tracking
the evolution of topics over time, and the topic evaluation methods. The methods and tools
presented in this Chapter will form the foundation of this thesis.

4.2 Flat Topic Models

Latent Dirichlet Allocation (LDA) is considered the first topic model and remains popular to
this day due to its simplicity [Blei et al., 2003]. LDA is a generative probabilistic model which
assumes that each document in a corpus is a mixture of a finite number of topics. Each topic
is represented as a distribution over a vocabulary, and each document is represented as a distri-
bution over topics. LDA employs a Dirichlet prior to modeling these distributions. The goal of
LDA is to infer the latent topics and the document-topic distributions given the observed doc-
uments, which is typically achieved through stochastic variational inference or Gibbs sampling.
The main weakness of LDA is that it requires the user to specify a predefined number of topics
to be extracted. However, such information is usually not known in advance. Consequently,
LDA requires a long model validation step to determine the number of topics.
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As a solution, the Hierarchical Dirichlet Process (HDP) model was proposed as an extension
of LDA [Teh et al., 2006]. Unlike LDA, which requires a pre-specified number of topics, HDP
automatically determines the appropriate number of topics during training. HDP achieves this
by replacing the Dirichlet prior to LDA with Dirichlet Processes. Otherwise, HDP operates
similarly to LDA.

The Correlated Topic Model (CTM) is another extension of LDA that assumes topics are
not independently distributed in documents [Blei and Lafferty, 2007]. This is a more realistic
assumption in many scenarios, such as in a document about genetics being more likely to also
discuss diseases than astronomy. The CTM achieves this by using the logistic normal distribution
to model variability among topic proportions, as opposed to the Dirichlet distribution used in
LDA.

4.3 Hierarchical Topic Models

Methods like LDA and HDP, while effective in many contexts, primarily generate a flat topic
structure. Hence, they treat all topics as being at the same level of abstraction. However,
in complex or large-scale text corpora, topics often exhibit inherent hierarchical relationships.
For example, in a corpus about science, "biology" and "physics" could be top-level topics,
with "genetics" and "quantum mechanics" as respective subtopics. Flat models like LDA and
HDP cannot capture such hierarchical associations. Recognizing this limitation, the focus has
shifted toward the development of models that can learn hierarchical topic structures. By
extracting topics and subtopics, these hierarchical models enable a more detailed and nuanced
understanding of the thematic structure of a corpus. For our purposes, hierarchical models
provide a more fine-grained analysis which could help uncover weak signals and micro trends.

The state-of-the-art for hierarchical topic modeling is nHDP [Paisley et al., 2015]. It models
topic hierarchy by defining a potentially infinite tree where each node corresponds to a topic.
At each branch of the tree, we exactly have the HDP model. The difference is that, when a
word is assigned to a topic during training, there is a chance to go deeper in the tree based on
a Bernoulli distribution. If we do go deeper, we repeat the HDP algorithm with a sub-corpus
made up of the documents and tokens assigned to the selected topic.

The Nested Hierarchical Dirichlet Process (nHDP) represents the state-of-the-art model for
hierarchical topic modeling [Paisley et al., 2015]. In the nHDP model, topics are arranged in
a potentially infinite tree structure, where each node signifies a topic. Each level of the tree
resembles the HDP model. What differentiates nHDP is that for each word, the model decides
iteratively if that word needs to be assigned to a topic deeper in the tree based on a Bernoulli
distribution. If the decision is to delve deeper, the HDP algorithm is recursively applied to a
sub-corpus comprising the documents and tokens associated with the topic where the decision
is made. Once again, the word is then assigned to a sub-topic based on the HDP model. This
mechanism allows nHDP to grow automatically a hierarchically organized set of topics, from
broad themes to more specific sub-themes, thereby providing a granular view of the corpus’s
thematic landscape.
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Previously, the nested Chinese Restaurant Process (nCRP) [Blei et al., 2004] was proposed.
It is the predecessor of nHDP and works similarly. Nevertheless, it does not model the document-
topic distribution as in nHDP. This means that a document-topic distribution is limited to a
singular path from the root of the tree to a branch.

Other topic models have been proposed to model hierarchy. For example, the Large-Scale
Hierarchical Topic Model (LSHTM) [Pujara and Skomoroch, 2012] recursively applies LDA to
the sub-corpus defined by the topics of the previous LDA application. However, it means that it
inherits from the limitations of LDA that the number of topics to extract needs to be predefined.

Finally, the hierarchical Pachinko Allocation Model (hPAM) [Mimno et al., 2007] capture
arbitrary topic relations by modeling topics as a Directed Acyclic Graph (DAG) instead of a tree
structure. This structure allows topics at lower levels to share multiple parent topics. While
this provides less trivial relationships between topics, it is harder to display and navigate due to
the complex web of relationships.

4.4 Temporal Topic Models

While flat and hierarchical topic modeling approaches have provided valuable insights into
the thematic structure of text corpora, they do not model the temporal dimension. Hence, In
parallel to research on hierarchical topic models, other researchers have begun to explore the
temporality of topics, aiming to understand not only what topics are discussed, but also when
they occur and how they evolve over time. The integration of this temporal aspect is of particular
importance when analyzing trends, as it enables us to monitor topics, identify emerging topics,
and detect events that are represented by topics localized in time.

The Topic over Time (ToT) model extends LDA by incorporating temporal information into
the topic discovery process [Wang and McCallum, 2006]. In ToT, each document is accompanied
by a timestamp, which allows us to fit a beta distribution for each topic. This distribution repre-
sents the temporal aspect of the topic and is jointly optimized with the topic-word distributions
during the learning process. Consequently, the ToT model is capable of revealing topics that
are localized in time (i.e. events) or topics that demonstrate clear trends of growth or decline
over time. This ability to capture both events and trends adds an extra layer of richness to the
understanding of topics in a corpus.

The Multiscale Topic Tomography (MTT) model is another approach to temporal topic
modeling that offers an understanding of topics across multiple time scales [Nallapati et al.,
2007]. In MTT, a separate tree is constructed for each topic, where nodes at varying depths
represent the topic’s behavior at different time granularities. Specifically, deeper nodes in the
tree correspond to finer temporal resolutions while horizontally, at each level nodes represent
different time periods.
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The Dynamic Topic Model (DTM) captures the evolution of topics in a corpus over time
[Blei and Lafferty, 2006]. In DTM, the corpus is divided into discrete time slices, with the topic
distributions in each slice being influenced by those in the preceding slice. The initial time
slice is processed using standard LDA, while subsequent slices incorporate information from the
previous slice, using it as a prior in the Bayesian inference process. This sequential approach
enables DTM to model the dynamic nature of topics, tracking how they change and evolve across
different periods.

4.4.1 Topic Tracking

Topic tracking is a key aspect of temporal topic modeling, involving the monitoring of topic
evolution over a given timeframe. Different models offer varied degrees of temporal analysis.
For instance, models such as MTT and DTM provide detailed insights into how topics evolve
over time, considering changes across different time scales. On the other hand, the ToT model
primarily offers a temporal distribution, pinpointing when topics occur but providing less infor-
mation on their progression. Notably, ToT uniquely excels at identifying temporally localized
events. Nonetheless, tracking the evolution of topics can also be conducted as a post-training
analysis, offering additional flexibility in understanding topic dynamics over time.

Numerous researchers have explored the idea of linking topics extracted independently from
different time periods to track their evolution over time [Zhu et al., 2016, Xu et al., 2019, Liu
et al., 2020a]. In one study, the authors applied Latent Dirichlet Allocation (LDA) to each year’s
data independently and then linked the resulting topics using the Jensen-Shannon Divergence
(JS), a measure of similarity between probability distributions [Dagan et al., 1997, Zhu et al.,
2016]. Another study used a similar method but added an extra layer of complexity by clustering
linked topics [Xu et al., 2019]. This means that once two topics were linked, they formed a cluster,
and subsequent topics were compared to the entire cluster rather than just the preceding topic.
Yet another study proposed a tracking method using the JS divergence but did not constrain
linkage to a one-to-one mapping, thereby allowing for the fusion and splitting of topics [Liu
et al., 2020a].

In the context of this thesis, we have opted for a posteriori topic tracking, primarily due
to our objective of combining temporal and hierarchical information into a single topic model,
as discussed in Chapter 6. Combining a hierarchical structure, as in the nHDP model, with a
temporal structure, akin to the MTT model, could potentially overcomplicate the model. Ad-
ditionally, we sought to create a model that could be scaled up effectively. This necessitated
avoiding models like DTM, which are inherently sequential and cannot be parallelized. Conse-
quently, we converged on integrating the ToT and nHDP models, a combination that enables
us to train various time slices in parallel and conduct a posteriori topic tracking, which can
also be performed in a parallel manner. This approach offers a balance between complexity and
scalability while still capturing both temporal and hierarchical dimensions of topics.
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4.5 Topic Model Evaluation

Evaluating the performance of topic models is a critical aspect of topic modeling research,
as it facilitates the comparison of different models and the assessment of their effectiveness. For
a long time, perplexity was the standard metric for such evaluations. It gauges the likelihood of
the training data having been generated by the trained topic model. However, it was recently
found that perplexity does not necessarily correlate well with human judgment [Chang et al.,
2009]. This revelation spurred the development of alternative evaluation techniques, although
no single method has emerged as a new standard.

One of these alternative methods is Topic Coherence [Newman et al., 2010], which involves
calculating similarity scores between the top N words of a topic. The computation is done as
follows:

∑
i<j score(wi, wj), where wi is more frequent than wj . This method is flexible, ac-

commodating a variety of scoring functions. UCI and UMass, both utilizing word co-occurrence
for scoring, are among the most popular. UCI is an extrinsic measure based on an external
dataset such as Wikipedia articles, while UMass is intrinsic and uses the training corpus. Other
scoring functions, such as the cosine similarity of word embeddings, can also be employed. The
average coherence score of the topics gives the topic coherence score of a model. However, recent
studies question the correlation between coherence measures and human ratings [Newman et al.,
2010, Doogan and Buntine, 2021, Bhatia et al., 2017].

The Word Intrusion task is another recently developed evaluation method. This technique
involves embedding an intruder word within the top word list of a topic and having individuals
identify it [Chang et al., 2009]. This intruder word is randomly selected from a pool of words
that have a low probability in the current topic but a high probability in another, to avoid
the inclusion of rare words. The premise is that high-quality topics will allow annotators to
easily spot this intruder. The final score of this evaluation method corresponds to the average
classification accuracy determined by human annotators. A subsequent study demonstrated that
this Word Intrusion task can be automated [Lau et al., 2014]. However, we will show in Chapter
8 that the Word Intrusion task may not be reliable either for hierarchical topic models.

A more direct understanding of a model’s performance can be obtained through qualitative
analysis of the extracted topics, a method adopted widely. However, this approach, compared to
quantitative measures like coherence and perplexity, is susceptible to cherry-picking, especially
when a large number of topics are extracted.

Hence, despite the variety of evaluation methods available, none have proven to be con-
sistently reliable. Moreover, this problem worsen for Hierarchical Topic Models (see Chapter
8). Furthermore, none of these methods adequately assess comprehensively the quality of the
results: Do we extract every topic we expect to extract? How effectively do we extract them?
Do we extract unanticipated topics? Is the hierarchy produced coherent? Thus, it is evident
that new tools for evaluating topic models, particularly hierarchical ones, are required. Chapter
9 will adress these challenges and propose a novel approach to Topic Model evaluation.
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Part III

METHODOLOGY
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In this Section, we will outline the methodology used throughout the thesis, which aims to
develop a method for weak signal extraction based on the theoretical elements discussed in the
literature review on weak signals. Our goal was to create a scalable and unsupervised approach
that could extract and track emerging topics over time, identify topic interactions, and provide a
platform for scenario planning and decision-making. Through a series of iterations, we developed
a novel methodology that combines a hierarchical and temporal topic model (HTMOT) with
topic tracking and correlations. Additionally, we devoted a portion of the thesis to developing a
methodology for evaluating the performance of the topic model, which led to the creation of a
new approach based on supervised evaluation for unsupervised models.

In the initial phase of the methodology, our aim was to quantify the dimensions described by
the Triadic model of Future signs [Hiltunen, 2008]. To achieve this, we attempted to measure
the dimensions using the following method:

1. To extract potential future signs, we used a topic model. We found that using topics
provides a flexible approach compared to traditional keyword searches. Additionally, while
keywords must be selected, topics can be discovered, which is advantageous when trying
to uncover the unknown.

2. We measured the signal through the frequency of a topic describing a sign. This is similar
to the term frequency measure proposed by Yoon [Yoon, 2012], but in the context of topics.

3. For measuring the issue, we aimed to extract events described in the data. This involved
computing the number of events in a topic, which required the removal of duplicates
through the event coreference resolution task.

4. We chose sentiment analysis as the method for measuring interpretation, as it is the obvious
choice in this context.

Based on this approach, we began investigating possible methods to measure the issue, which
ultimately led to our first paper on the subject of Event Coreference Resolution (see Chapter
5).

Despite the successful publication resulting from this approach, we encountered some draw-
backs when attempting to quantify the issue dimension. First, this required us to extract events
from the data and then remove duplicates through coreference resolution. However, even with
state-of-the-art methods, the high pipeline error resulting from the extraction and subsequent
coreference of events would have led to poor performance. Second, the lack of a consistent defi-
nition for these tasks in the literature made it difficult to find relevant datasets and benchmarks
for our specific case. Finally, the thesis aims to develop a method that can operate at a large
scale on any type of data, and using supervised solutions for event extraction and coreference
resolution may lead to poor generalization on unseen data, especially given the lack of large
datasets available.

In the subsequent years, we shifted our focus towards unsupervised methodologies, aimed
at tackling the challenge posed by the limited availability, high cost and generalizability issues
associated with labeled data. This pivot led us to reevaluate our focus on sentiment analysis,
a domain that had already reached a high level of maturity, making it daunting to offer novel
and substantial insights. Consequently, our attention turned to the refinement and innovation
of evaluation techniques for topic models as well as the computation of topic correlations.
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Topic correlations is also an important contribution to the overall methodology as it pro-
vides a deeper understanding of the interactions between topics. As stated in the review of the
literature on weak signals in Chapter 1, the auto-catalytic nature of weak signals means that
understanding their interactions is crucial to better understand their potential. Hence, we be-
lieve that computing topic correlations allows us to better understand these inter-dependencies.
Nonetheless, we did not perform any significant experiments using topic correlations since we de-
cided to focus instead on the bigger problem of topic model evaluation methods. Consequently,
this subject will not be discussed further.

This final strategic decision was influenced both by invaluable input from a member of my
thesis committee and by an existing opportunity in the field for impactful contributions. This
opportunity was particularly evident due to the numerous limitations inherent in the existing
evaluation methods, which we discussed in Section 4. Hence, in Chapter8 we provide a critic of
the latest evaluation method and propose our own in Chapter9.

Therefore, while the triadic model served us well to understand weak signals and define
the initial direction of research, the final methodology is not based on quantifying the three
dimensions. Instead, the extraction and subsequent analysis of topics extracted from textual
data became the core of the methodology. In the final version of our methodology, we developed
a hierarchical and temporal topic model (HTMOT) as the core component of the system. With
HTMOT, topics and sub-topics can be extracted in a hierarchical manner, and the model also
incorporates a temporal component that allows it to extract specific events described in a corpus.
Moreover, another module allows us to track these topics over time and detect emerging ones.
With this new approach, small sub-topics (that may be localized in time) which cannot be
traced back to previous periods are indicators of new emerging weak signals. In other words, the
weakness of a signal (small sub-topics) and its novelty (cannot be traced back in time) are the
main factors which allows us to detect weak signals. The topic correlation module in itself does
not help us with the detection of weak signals but rather provide additional information about
how these weak signals interact with other weak signals and larger trends. Thus, providing a
platform for scenario building and strategic planning.

The overall methodology can be described as follows:

1. Extract topics using HTMOT to discover topics at a fine-grained level both temporally
and thematically.

2. Use topic tracking and correlations to understand the evolution of topics and to discover
emerging weak signals.

3. Use topic correlations to uncover interactions between topics, which provides a platform
for scenario building.

4. Compile the extracted information on topics, their evolution, and correlations on a dash-
board that allows users to navigate the results.

All the methods used in the extraction and monitoring of weak signals and emerging trends are
unsupervised.

We will now describe each component of the methodology in details :

• Chapter 5 will describe Event Coreference Resolution
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Figure 4.1: Final version of the Thesis Methodology and associated papers produced
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• Chapter 6 will describe HTMOT

• Chapter 7 will describe Topic Tracking

50



5 Word Embeddings in Event & Entity Coreference Resolution

5.1 Preamble

In this Section, we introduce our first paper, which focuses on coreference resolution. Initially,
its goal was to develop an effective method for identifying and resolving references to the same
real-world entities within a given text.

This paper provides a comprehensive comparison of various inputs for coreference resolution.
Moreover, it shows that much smaller models can achieve competitive performance. Further-
more, it describes how larger models have been observed to train faster. Finally, it discusses the
significant differences between the definition of the task of coreference resolution across various
datasets and how it negatively impacts the study of the task.

5.2 Introduction

Coreference Resolution (CR) is an important NLP task. It can be subdivided into Event
and Entity Coreference Resolution (EvCR and EnCR). These tasks serve as the basis for several
downstream applications such as information extraction, text summarization, machine trans-
lation, and text mining [Humphreys et al., 1997, Azzam et al., 1999, Miculicich Werlen and
Popescu-Belis, 2017, Su et al., 2008].

State-of-the-art methods for CR[Barhom et al., 2019, Lee et al., 2017, Joshi et al., 2019]
rely on various word embeddings for word representation. These embeddings are organized into
three families: static, contextual, and character embeddings [Almeida and Xexéo, 2019, Liu
et al., 2020b, Dos Santos and Zadrozny, 2014], each differing in size. Contextual embeddings are
larger (1024) compared to the other families (usually 300 for static and 50 for character). They
also tend to outperform the other families in most tasks but lead to larger and heavier models
[Devlin et al., 2019, Peters et al., 2018]. We are thus confronted with a trade-off of performance
(predictive & run-time) vs. dimensionality. Moreover, embeddings also differ within families
which also leads to differences in predictive performance.

Several studies investigated how different embeddings influence the predictive performance
in different tasks [Berardi et al., 2015, Gromann and Declerck, 2018, Joshi et al., 2019, Li et al.,
2018]. However, the two aforementioned issues of the performance vs. dimensionality trade-off
and performance variations within and across embedding families have been overlooked to a large
extent, especially in coreference resolution. Literature is still unclear about which embeddings
perform best in which tasks, and whether larger, more expressive embeddings should also be
preferred or whether some predictive performance can be compromised for improved run time.
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Thus, we seek to address two questions in the context of CR: 1) Is there a trade-off between
performance (predictive & run-time) and embedding size? 2) How do the embeddings’ per-
formance compare within and across families? The current state-of-the-art in EvCR [Barhom
et al., 2019] relies on three families of embeddings for word representation, and thus provides
a suitable framework for addressing our research questions. Starting from the original model
of Barhom [Barhom et al., 2019], we performed various experiments and ablative studies across
and within each family of embeddings, resulting in 16 different models. 1. We compared their
predictive performance, size (number of parameters) , run-time, and memory usage.

We discovered a high level of diminishing returns in terms of predictive performance per
embedding. The smallest model (using solely a character embedding [Dos Santos and Zadrozny,
2014]) achieves 86% of the performance of the largest model (GloVe [Pennington et al., 2014] ,
ELMo [Peters et al., 2018], Character embedding) with 1.2% of its size. Hence, incorporating
additional embeddings leads to diminishing returns in terms of predictive performance. In ad-
dition, we found that size and run-time are weakly correlated: larger (more complex) models
can converge faster (number of epochs and total training time) than smaller ones. In terms of
predictive performance, we found GloVe and FastText perform best in EvCR and EnCR respec-
tively in their family with ELMo being the best overall. Moreover, we found that the smallest
aforementioned model outperforms Word2Vec (∼+10 F1), yielding predictive performance close
to the previous state-of-the-art [Kenyon-Dean et al., 2018] in EvCR (68.43 vs 69 F1). Our results
can have important implications for practitioners in implementing CR and other NLP models
in real-life applications.

5.3 Methodology

5.3.1 Original model

Our approach is based on the state-of-the-art model of Barhom [Barhom et al., 2019], which
we refer to as the Original 2 model. This model consists of two neural networks, which jointly
resolve entities and events’ coreferences. Figure 5.1 shows the input structure of both networks.
The two events (resp. entity) mentions embeddings to classify are in blue and the green box
represents an element-wise multiplication of these embeddings. Finally, binary features indicate
whether the two encoded mentions have coreferent arguments. The constituents of each mention,
i.e. trigger, Arg0, Arg1, Location, and time, are represented by a static (GloVe) and a character
embedding. The trigger is also represented by contextual embedding (ELMo). Furthermore, the
character embedding is fine-tuned during training while the contextual and static embeddings
are not. The model outputs a score between 0 and 1 with a score > 0.5 indicating that the
two input mentions are coreferent. For example, given the mention "the city of Liège" and it’s
nickname "The ardent city", we should expect the model to output a value higher than 0.5
classifying these mentions as coreferent.

1The relatively large number of models and experiments is one reason why we preferred to focus on a single
task

2modelname denotes a model
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Figure 5.1: Original input structure of Barhom’s model [Barhom et al., 2019].

The input dimensionality is input = 3∗(1024+5∗(300+50))+200 = 8522, where 1024, 300,
and 50 are the dimensions of ELMo, GloVe, and the character embeddings, and 200 corresponds
to the size of the binary features. This input is then fed into two subsequent ReLU layers
with dimensions equal to half the input dimension (4261 neurons each). Since the number of
parameters is proportional to the square of the input dimension, we have a model size exceeding
54 million parameters, computed as ( input

2

2 + ( input2 )2 + input
2 ) 3.

5.3.2 Derived models

The gist of our methodology involves substituting and/or removing specific embeddings
from Barhom’s original model [Barhom et al., 2019] (which uses 3 embeddings: static=GloVe,
contextual=ELMo, and character), resulting in 16 different models shown in Table 5.1. In
the first group of models, one, two, or three (of the three) embeddings are removed from the
original model. In the second group, the static embedding is changed to Word2Vec (Skip-gram)
or FastText (other embeddings are either left unchanged or removed). Similarly, in the third
group, the contextual embedding is changed to BERT or GPT-2 (other embeddings are either
left unchanged or removed). Note: in Table 5.1, gray rows denote identical models.

We implemented our models using Pytorch. Models were trained and tested following
Barhom’s procedure [Barhom et al., 2019]. Pre-trained vectors and models were used for the
embeddings. Our code is available online 4.

3The term input2/2 corresponds to the number of connections between the input layer (i) of size input and
the first hidden (h1) layer of size input/2. The term (input/2)2 corresponds to the number of connections between
h1 and h2 both of size input/2. Finally, input/2 corresponds to the number of connections between the second
hidden layer (h2) and the final output layer (o) of size 1.

4github.com/JudicaelPoumay/event_entity_coref_ecb_plus
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Model Stat. Ctx. Char.
Group 1: Across family study

Original [Barhom et al., 2019] GloVe ELMo X
Contextual/Static GloVe ELMo X
Contextual/Char X ELMo X
Static/Char GloVe X X
Static GloVe X X
Contextual X ELMo X
Char X X X
No word embed X X X

Group 2: Within family study: Static
GloVe GloVe ELMo X
Word2Vec Word2Vec ELMo X
FastText FastText ELMo X
Only GloVe GloVe X X
Only FastText Word2Vec X X
Only Word2Vec FastText X X

Group 3: Within family study: Contextual
ELMo GloVe ELMo X
BERT GloVe BERT X
GPT-2 GloVe GPT-2 X
Only ELMo X ELMo X
Only BERT X BERT X
Only GPT-2 X GPT-2 X

Table 5.1: List of trained and tested model and their components. Ctx. = Contextual; Stat. =
Static; Char. = Character; X/Xindicate absence/presence of an input.

5.4 Experimentation setup

5.4.1 Dataset

The dataset we use for our study is ECB+ [Cybulska and Vossen, 2014]. Together with
EECB [Lee et al., 2012], it is one of the largest datasets for within and cross-document EvCR
and EnCR [Lee et al., 2012, Barhom et al., 2019]. Both EECB and ECB+ are extensions of
ECB [Bejan and Harabagiu, 2010] and consist of English Google News documents clustered into
topics and annotated for coreference. For more details on the ECB+ statistics see table 5.2 or
refer to [Barhom et al., 2019].
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Train Validation Test Total
#Documents 574 196 206 976
#Sentences 1037 346 457 1840
#Event mentions 3808 1245 1780 6833
#Entity mentions 4758 1476 2055 8289
#Event cluster 1527 409 805 2741
#Entity cluster 1286 330 608 2224

Table 5.2: ECB+ corpus statistics

Other datasets for coreference resolution exist: GAP, OntoNotes, CoNLL 2012, ACE, TAC
KBP and MUC. However, the definition of coreference resolution in these corpora does not suit
our study and model. For example, GAP is a corpus of ambiguous pronoun-name pairs while
ECB+ defines mentions cluster for events and their entities [Joshi et al., 2019]. OntoNotes
annotates coreferences but does not indicate which mentions is an event and which is an entity.
MUC, ACE, and TAC KBP do not provide cross-document coreferences[Lu and Ng, 2018].
Finally, while CoNLL 2012 defines an event coreference task, events represent only a small
portion of all the coreferent mentions and again it does not provide cross-document coreferences
[Pradhan et al., 2012]. In-depth reviews of the listed datasets are provided in [Stylianou and
Vlahavas, 2021, Lu and Ng, 2018, Sukthanker et al., 2018].

5.4.2 Experiments

We performed three sets of experiments using the same hyperparameters as in the original
study [Barhom et al., 2019]. Specifically, we used the default PyTorch’s ADAM Optimizer with
a mini-batch of 16.

The first set concerns models of Group 1 (see Table 5.1). We investigated the impact of
removing one, two, or three (of the three) embeddings from the original model. Our aim was
to determine the contribution of the different embeddings (static, contextual, and character)
on the predictive performance of the Original model. Thus, the models will have varying
sizes, translating into varying run-time and memory requirements. Therefore, for this set of
experiments, we also report on model size (number of parameters), run-time (seconds), and
memory usage (RAM).

The second (third) set concerns models of Group 2 (Group 3) (see Table 5.1) and aim at
investigating the contributions of static (contextual) embeddings.

For the latter two experiments, we do not consider model size as all possible sizes would have
been investigated in group 1. For all experiments, we will report the predictive performance
achieved by the various models with the CoNLL F1 and MUC F1 metrics [Moosavi and Strube,
2016] (see Chapter 2 for more details on these metrics).
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Following Barhom’s original paper [Barhom et al., 2019], we can claim that a difference of
1 point between any two models is significant with a p-value < 0.001. This confirms that our
results are statistically sound and not due to randomness.

5.5 Results

5.5.1 Results 1: All Embedding Families

As mentioned earlier, our aim was to investigate the contributions of the static (Glove),
contextual (ELMo), and character embedding to the original model’s performance via an ablative
study. The predictive performance scores (CoNLL/MUC F1) of Group 1 models are in Figure
5.2, respectively from left to right.

A first observation is that the baseline performance differs between the two measures (CoNLL
& MUC F1). This is due to the mentioned identification effect [Moosavi and Strube, 2016] which
makes CoNLL F1 more optimistic than it should be for low-performing models. Interestingly,
CoNLL seems more pessimistic than MUC for high-performing models. Moreover, Barhom’s
model [Barhom et al., 2019] is helped by using a gold cluster for within-document entity corefer-
ence. This explains the non-zero MUC F1 performance of the baseline on the entity coreference
resolution task.

Figure 5.2: Comparing the predictive performance of the original model (using 3 embeddings)
with models where we removed one, two, or all three embeddings.

Another important observation is that when using only two embeddings, the Static/Char
model is the one experiencing the largest drop in performance (CoNLL & Event MUC). At the
same time, when using only one embedding, the Contextual model performs best. It even
outperforms the aforementioned model with two embeddings: Static/Char. These results lead
us to conclude that contextual embeddings are the most expressive for this task. This is not
surprising since contextual embeddings take context into account while static and character do
not.
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More interestingly, we note that removing either the static or contextual embedding results
in an average performance drop of ∼2.5 and ∼4 CoNLL points respectively (see model Con-
textual/Char and Static/Char). However, when both are removed simultaneously, the
performance drops by ∼10 CoNLL points (see model Char). That is, the sum of the losses
incurred by removing either one of these embeddings ( ∼6.5) is smaller than the loss ( ∼10)
incurred when both are simultaneously removed. Similarly, adding any one embedding to the
baseline No word embedding model significantly improves the latter’s performance, in the
range of ∼[+27,5 to +34,7]. However, if any one embedding is removed from the Original
model, then the latter’s performance drops by a much smaller amount,∼[-1,1 to -4]. That is, re-
moving an embedding from the Original model does not impact performance in a comparable
way as adding an embedding to the baseline model. But performance does drop significantly
when all embeddings are removed. In other words, we face diminishing returns in terms of
performance per embedding.

Figure 5.3: Comparing the size and predictive performance of the original model (using 3 em-
beddings) with models where we removed one, two, or all three embeddings. The size of each
model is the number of neural connections.

Impact of Dimensionality on Model Size

As mentioned earlier, the model size is related to the square of the input, resulting in more
than 54 million parameters in the Original model. Thus, an important question is whether
the gains in performance of such large models outweigh the corresponding increase in size. Our
observations in this respect are in Figure 5.3, depicting the model’s respective size and predictive
performance. We observed similar diminishing returns when considering performance relative
to size, i.e. increasing the model size by incorporating larger, more complex embeddings results
in modest performance gains.

The Contextual and Char models are particularly interesting. The former achieves 96%
of the performance of the Original model with 14.7% of its size. While the latter, i.e. Char,
achieves 86% of the performance of the Original model’s performance, with only 1.2% of its
size. Its performance (68.43 F1) is even comparable to that of the previous event coreference
resolution state-of-the-art in EvCR (69 F1) [Kenyon-Dean et al., 2018].
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Model Size & Run-Time

Our investigations on the influence of model size on run-time and memory usage revealed
paradoxical results.5 They are presented in Figure 5.4. For the run-time and memory analysis,
we focus only on the largest and smallest models to have a better idea of the magnitude of
differences and to avoid overcrowding the Figures.

As can be seen, the huge difference in model size (54 Million vs. 0.67 Million), does not
translate into equally large differences in run-time (training & testing) - the run-time reductions
afforded by the Char model are relatively modest. While the actual reasons deserve further
investigation, we can posit that this could be attributed to hardware and software optimization,
enabling a high level of parallelization such that larger models run comparably to smaller ones.

Paradoxically, however, the larger Original model trains in fewer epochs than the smaller
Char model (14 vs. 24 respectively). In consequence, it is 21% faster to train overall (68924.8
sec. vs 87587.28 sec. or about 19h9 vs 24h19). These results confirm the observation of a previous
study [Li et al., 2020] that larger models tend to converge faster. One possible explanation could
be that larger models have to optimize an error surface of higher dimensionality, leading to more
possible paths for gradient descent, some of which might lead to convergence more rapidly.
Thus, although adding more embedding in the model results in diminishing returns in terms of
predictive performance, it can lead to faster training. However, more experiments are needed to
investigate this issue.

Concerning memory usage, we found that, as expected, the smaller Char model required
substantially smaller amounts of memory, especially during training as evidenced by Figure 5.5.
Note that, the RAM usage of the Original model is mostly due to GloVe pre-trained vectors.

Figure 5.4: Run-time between the largest (54M weights) and smallest (677k weights) models.
The total training time is associated with the right axis while the other measures are associated
with the left axis.

5Ran on a Ryzen 5 3600X CPU and an RTX 2070 Super GPU along with 32GB of RAM
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Figure 5.5: Memory usage between the largest (54M weights) and smallest (677k weights) mod-
els.

5.5.2 Results 2: Static Embeddings

We now focus on the second set of experiments, focusing our attention on static embeddings.
The models concerned are from Group 2 of Table 5.1.

Figure 5.6: Comparing the predictive performance of static embeddings when used with other
embeddings (ELMo and Character)
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Figure 5.7: Comparing the predictive performance of static embeddings when used alone

First, we varied the static embedding (GloVe, Word2Vec, FastText), while keeping the same
contextual embedding and character embedding as in the Original model. It can be seen in
Figure 5.6 that, when used with other embeddings (contextual and character), all static em-
beddings show comparable performance. The average performance ranges from 77.12 (GloVe)
to 75.59 (Word2Vec). This corroborates with our earlier findings of Section 5.5.1 whereby
the model with only contextual and character embeddings, i.e. Contextual/char, achieved
comparable performance to the Original (static/contextual/char) model, indicating that the
specific static embedding chosen contributed only marginally to the model’s performance.

However, when used alone (see Figure 5.7), we see a drastic difference in performance between
them; with the average performance ranging from 72.73 (GloVe) to 51.56 (Word2Vec).

Thus, it is only when studied alone that static embeddings show their differences. Once we
isolate static embeddings, we see GloVe works best for EvCR. However, for EnCR, the Fasttext
model shows a significantly higher MUC. The better performance of GloVe and FastText with
respect to word2vec can be explained by their construction. Compared to Word2Vec, GloVe
takes word co-occurrence information into account. If coreferent event mentions are more likely
to share co-occurring words, it would explain parts of the performance gain. FastText also
outperforms Word2Vec; here the difference is that FastText takes sub-word information into
account which can be advantageous for coreferent entity mentions. E.g. in Figure 2.1, "Korea"
and "Korean" have similar sub-word information.
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Figure 5.8: Comparing the predictive performance of solely Word2Vec vs solely a character
embedding

What is most surprising is that Word2Vec is significantly outperformed by a simple character
embedding as we can see in Figure 5.8. Moreover, in terms of dimension, Word2Vec has 300
and the character embedding has 50. Thus, the resulting model is not only more accurate but
also ∼24 times smaller (Figure 5.8). This could indicate that the internal structure of a word
(char embedding) contains more information about possible coreferences than its usual entourage
(Word2Vec).

5.5.3 Results 3: Contextual Embeddings

We now focus on the third set of experiments about contextual embeddings. The models
concerned are from Group 3 of Table 5.1.

Similarly to the previous Section, we present the performance of different contextual em-
beddings when used in tandem with the static (GloVe) and character embedding of the original
model (Figure 5.9) or when used alone (Figure 5.10). We see the same as in the previous Section,
i.e. the difference in performance between the contextual embeddings is clearer when they are
used alone versus when they are used with GloVe and a character embedding. Thus, we will
only focus on Figure 5.10 which better represents the differences between ELMo, BERT, and
GPT-2.
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Figure 5.9: Comparing the predictive performance of contextual embeddings when used with
other embeddings (GloVe and Character embedding)

Figure 5.10: Comparing the predictive performance of contextual embeddings when used alone

A first observation is that BERT both outperforms and is outperformed by GPT-2 on both
tasks. Specifically, BERT performs better in EvCR while GPT-2 performs better in EnCR.
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A second observation is that ELMo clearly outperforms GPT-2 and BERT on both tasks.
This result contradicts Joshi’s model that found that BERT greatly outperforms ELMo on EnCR
(+11.5 F1 on the GAP benchmark) [Joshi et al., 2019]. Such disparity may be indicative of
differences in the model and dataset. The aforementioned model uses a span ranking approach
that asks, for each mention, which is the most likely antecedent [Joshi et al., 2019]. This
implicitly produces a tree that clusters coreferent mentions. Such a method only takes local
information between two mentions into account while the method used in Barhom’s model uses
global information between two entity clusters and related event clusters [Barhom et al., 2019].
Moreover, ECB+ or EventCorefBank+ is an EvCR dataset first and foremost and only defines
EnCR to support EvCR; you could argue that the EnCR tasks are more about argument than
entities. GAP on the other hand is a corpus of ambiguous pronoun-name pairs [Joshi et al.,
2019].

Thus, while an EnCR task is defined by both datasets, they are significantly different. We
argue that both the task definition and the use of global versus local information play a major
role in the disparity between the performance reported by Joshi’s study and our study. Further
confirming these findings would require evaluating Barhom’s model on GAP and Joshi’s on
ECB+. However, these models are not interchangeable because the datasets and the task they
define differs.

5.6 Conclusion

We used the state-of-the-art in EvCR [Barhom et al., 2019] as a framework to investigate the
complexity-performance trade-off and compare the predictive performance of word embeddings
across and within the three families.

We observed that the smallest model using solely a character embedding yielded 86% of the
performance of the original (largest) model (using Elmo, GloVe and a character embeddings)
despite being only 1.2% of its size. In fact, that smallest model achieves similar performance
(68.43 F1) to the previous state-of-the-art in EvCR (69 F1) [Kenyon-Dean et al., 2018].

Paradoxically, we found that the largest model converged faster during training (by 21% in
overall run-time) as it took only 14 epochs vs 24 for the character model. Overall, we found size
and run-time to be weakly correlated.

In addition, our experiments revealed that augmenting the model with additional embed-
dings does not substantially improve the performance, leading to diminishing returns in term of
predictive performance per embedding.

Concerning predictive performance, one of our most interesting result is that the model using
solely a character embedding significantly outperformed (∼+10 F1) a larger model using solely
a static embedding (Word2Vec) while being radically smaller (4% of its size). Hence, while
character embeddings have often been used as supplementary embeddings, they can actually
compete with other embeddings’ families in terms of predictive performance per size.
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Finally, our experiments lead us to conclude that for the task of Event and Entity Coreference
Resolution, GloVe, FastText and Elmo yielded the best predictive performance. GloVe and
FastText performed best in EvCR and EnCR respectively in their family while Elmo performs
best overall.

Future directions include working on other comprehensive study of embeddings in other tasks
and experimenting with CR models using different embeddings for different tasks to improve
performance. E.g. GloVe and FastText in EvCR and EnCR respectively.

This Chapter was published as a long paper in EMNLP 2021, which represents one of the
best NLP conference world-wide. Nonetheless, we faced several challenges with this approach,
including high pipeline error stemming from the extraction and subsequent coreference of events,
the lack of consistent definitions and benchmarks in the literature, and the potential for poor
generalization on unseen data due to supervised solutions. In response to these drawbacks, we
shifted our focus towards unsupervised methods and broadened our scope to encompass iden-
tifying emerging trends more comprehensively, rather than just concentrating on weak signals.
As a result, the Event Coreference Resolution task was no longer part of the final methodology.
Hence, we had to refine our methodology and change the scope of our investigation. However,
the insights and contributions from this Chapter on coreference resolution remain valuable.
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6 Hierarchical Topic Modelling Over Time

6.1 Preamble

In this Section, we introduce our second paper, which delves into Hierarchical Topic Mod-
elling Over Time (HTMOT), a novel approach that serves as the foundation of our methodology
for weak signal extraction and emerging trend analysis. By integrating both hierarchical and
temporal dimensions into topic modeling, we can effectively extract more in-depth and nuanced
insights from textual data, which is crucial for supporting well-informed decision-making across
a range of applications, including environmental scanning.

Our paper explores recent developments in topic modeling techniques that focus on either
hierarchy or temporality. Modeling temporality bolsters the precision of topics by differentiat-
ing them based on distinct events, while modeling hierarchy facilitates a more comprehensive
understanding of a corpus by revealing overarching topics and related sub-topics. Despite the
advantages of each approach, no existing models combine hierarchy and temporality, which could
yield significant benefits in a variety of applications.

To bridge this gap, we introduce HTMOT, an innovative method that merges hierarchy and
temporality into a unified, coherent model. We assess the performance of our approach using
a corpus of news articles and the Word Intrusion task, demonstrating the efficacy of our model
in generating topics that seamlessly blend hierarchical structure and temporal aspects. Fur-
thermore, our proposed Gibbs sampling implementation exhibits competitive performance when
compared to previous state-of-the-art methods, specifically Stochastic Variational Inference, em-
phasizing the potential of HTMOT in extracting valuable insights from text data.

6.2 Introduction

In the field of natural language processing (NLP), numerous methods for extracting top-
ics from a corpus have been proposed over the years [Alghamdi and Alfalqi, 2015, Barde and
Bainwad, 2017]. While the seminal Latent Dirichlet Allocation (LDA) algorithm [Blei et al.,
2003] paved the way for topic modeling, it lacks the ability to capture hierarchical or temporal
information.

Recently, hierarchical topic models have been proposed [Paisley et al., 2015, Blei et al., 2004]
that enable the extraction of topics and sub-topics organized in a tree-like structure. These
models dynamically determine the appropriate number of topics and sub-topics during training
and have been found to be useful in ontology learning [Zhu et al., 2017] and research idea
recommendation [Wang et al., 2019].
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In parallel, temporal topic models have been developed [Wang and McCallum, 2006, Nallap-
ati et al., 2007, Song et al., 2008, Blei and Lafferty, 2006] that allow for the extraction of topics
that describe events or trends occurring in a corpus. These models have been applied to tasks
such as tracking trends in scientific articles [Hong et al., 2011] and events in social media [Zhou
and Chen, 2013].

Combining hierarchical and temporal information in models can capture broad and detailed
aspects of a corpus, benefiting applications like environment scanning [El Akrouchi et al., 2021].
Hierarchical modeling yields detailed topics and sub-topics for a comprehensive thematic un-
derstanding, while temporal modeling provides precise descriptions of events. This integration
produces nuanced models for informed decision-making and deeper insights.

However, integrating temporal and hierarchical information in topic models remains a chal-
lenge [Nallapati et al., 2007, Song et al., 2008, Blei and Lafferty, 2006, Wang and McCallum,
2006]. Many temporal models have their own structure to represent time, such as time trees
or time slices, which complicates the integration with a hierarchical structure [Nallapati et al.,
2007, Song et al., 2008, Blei and Lafferty, 2006]. The only temporal model that does not require
its own structure is ToT [Wang and McCallum, 2006], but combining time and hierarchy is
still difficult due to the beta distribution used to model time lacking a known conjugate prior,
making it incompatible with stochastic variational inference (SVI) used by previous hierarchical
models [Wang and McCallum, 2006].

Our proposed method, Hierarchical Topic Modelling Over Time (HTMOT), jointly models
topic hierarchy and temporality to leverage the strengths of both dimensions and overcome the
challenges associated with integrating them.

As a secondary contribution, we propose a novel implementation of Gibbs sampling based on
a tree-based data structure called the Infinite Dirichlet Tree. This implementation is comparable
to stochastic variational inference (SVI) in terms of speed. Our work provides a promising avenue
for addressing the need for topic models that can incorporate both hierarchical and temporal
information. [Wang and McCallum, 2006]

We performed our experiments using a corpus of 62k news articles and evaluated our method
using the Word Intrusion task [Chang et al., 2009].

6.3 Methodology

We now describe our method for Hierarchical Topic Modelling Over Time (HTMOT). We
begin by presenting a new type of data structure at the core of HTMOT (section 6.3.1). Next,
we describe how temporality was incorporated into the hierarchy (section 6.3.2). Then, we
detail our novel implementation of Gibbs sampling (section 6.3.3). Finally, we denote important
differences between HTMOT and its predecessor (section 6.4.1).
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6.3.1 Counting words using Infinite Dirichlet Trees

Infinite Dirichlet Trees (IDTs) are efficient tree-based data structures we developed. The
name refers to the potentially infinite number of topics provided by the Dirichlet Processes,
which define how they grow. The role of these trees is to model the topics, their hierarchical
dependency, and temporality. Hence, these trees are optimized during the training process to
serve as the final output of HTMOT.

Each node of an IDT is identified by a finite path in the tree as a sequence of node ids,
starting from the root. For example, the node "root.A.B" corresponds to a sub-topic of the
topic "Root.A". The nodes record word assignments (see Figure 6.1) and the timestamps of
those words (associated with the source document). Thus, each node represents a topic and
defines a topic-word and a topic-time distribution.

The trees also model the hierarchical distribution of topics. Words are assigned to a final topic
and to all ancestors of that topic. Hence, there are two types of word assignments: "through"
and "final", respectively for the ancestor topics and final topic. This creates a hierarchical
dependency between the nodes and thus a hierarchical distribution.

We use multiple IDTs, one for the corpus and one for each document. All words in the corpus
are assigned to nodes of the corpus tree. Similarly, each document has an associated document
tree recording each word of that document. Hence, combining all document trees together would
yield the corpus tree. For both the corpus and document trees, each node (topic) will be assigned
a different number of words. Thus, nodes differ in size which creates a distribution. Hence, the
corpus tree defines a corpus-topic distribution and each document tree defines a document-topic
distribution.

From the foregoing discussion, we can see that the assignment of words to the different
trees defines the topic-word, topic-time, document-topic, corpus-topic, and topic-hierarchy dis-
tributions. Hence, by simply moving words around in those trees, we can optimize all these
distributions jointly. Once optimized, the trees can be used directly as output to view topics,
their hierarchy, and temporality for the corpus and each document.

6.3.2 Modelling temporality

Temporality is modelled by associating topics with a beta distribution as in ToT (Topic over
Time) [Wang and McCallum, 2006]. This allows us to extract topics that describe specific event
in time. Mathematically, we separate topics that are lexically similar but located at different
periods in time. However, applying temporality to high level topic would split them into various
periods. Each of these splits would have similar sub-topics, which would lead to an unnecessary
multiplication of topics. Hence, contrary to ToT, we do not apply temporality to all topics but
only deep ones. For our experiments, we choose depths of 3 or more. This allows us to extract
precise topics about specific events in time at the deeper levels while keeping the high level
topics intact.
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Figure 6.1: Example of an IDT with word assignments and time distribution (inside nodes).

The parameters of the beta distribution ρ1i and ρ2i are computed for a topic i based on the
current timestamps assignments (associated with each word assignment). We used the method
of the moment to estimate these parameters :

ρ1i = ti ∗ (
ti ∗ (1− ti)

σti
− 1) (6.1)

ρ2i = (1− ti) ∗ (
ti ∗ (1− ti)

σti
− 1) (6.2)

where ti is the empirical average timestamp assigned to topic i and σti is the empirical variance.
These parameters are updated each time a word is assigned or unassigned to topic i.
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Algorithm 1 Traditional Gibbs sampling
1: procedure ClassicGibbs(corpus)
2: for N iterations do
3: for each document in corpus do
4: for each word in document do
5: Sample topic-word assignment
6: Sample topic-time
7: Sample word-topic
8: Sample document-topic
9: Sample corpus-topic

10: Sample hierarchy-topic
11: end for
12: end for
13: end for
14: Return solution
15: end procedure

6.3.3 Training HTMOT using Gibbs sampling

Two methods are commonly used for training topic models : Gibbs sampling and Stochastic
Variational inference (SVI). Gibbs sampling is asymptotically exact1 unlike SVI [Blei et al.,
2017] This means that Gibbs sampling is more precise which is particularly significant when the
dataset is small such as for small topics which are represented by a smaller subset of the data.
However, classical implementations of Gibbs sampling are prohibitively slow as they require
sampling from all distributions (see algorithm 2).

Nevertheless, in the context of topic modelling, we can avoid this issue and greatly speed up
the process [Xiao and Stibor, 2010]. Specifically, it is possible to only draw from the word-topic
assignment distribution. This requires the construction of a data structure tailored to the model
to implicitly represent the other distributions. This is the role played by our Infinite Dirichlet
Trees.

As stated in Section 6.3.1, IDTs model the aforementioned distributions based on how words
are assigned to them. Hence, simply by iteratively re-arranging the words in the trees, we are
implicitly optimizing these distributions. This is the key to speed up the Gibbs sampling process
and represents our secondary contribution.

Hence, our training procedure consists essentially of three steps (see Figure 6.2). For each
word of each document in the corpus :

1. Unassign the word from its current topic (and its ancestors) in the corpus and associated
document tree.

1I.e. it can produce exact samples of the target distribution as the number of iterations approaches infinity.
On the other hand, SVI uses a kind of Stochastic Gradient Descent which is not guaranteed to converge to a
global optimum and thus will likely not produce exact samples of the target distribution.
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2. Draw a random topic assignment z for that word from the word-topic assignment distri-
bution.

3. Re-assign the word to the chosen topic z (and its ancestors) in the corpus tree and asso-
ciated document tree.

This procedure is repeated until convergence which is assessed by observing empirically during
training that the curves representing the frequency of each topic have flattened. Note that,
changing a word’s topic assignment will also update the estimated time parameters of the affected
topics (equation 6.1). The initialization procedure of our algorithm is similar expect that it
ignores the first step as all words starts unassigned.

Figure 6.2: Gibbs sampling with Infinite Dirichlet Trees. Repeat for each word of each document
until convergence.

6.4 Sampling topic-word assignments (paths in the trees)

We will now explain the procedure behind sampling from the topic-word assignment dis-
tribution. When drawing a topic assignment for a word we have three possible outcomes: (1)
We draw a node/topic from the associated document tree, (2) We draw a node/topic from the
corpus tree or (3) We create a new node/topic.

Formally, given a word w with timestamp t in document d, we wish to draw a new topic
assignment z. As stated in Section 6.3.1, topics are identified as a sequence of node ids. Thus,
we iteratively draw the random sequence z0,L = (z0, ..., zL). The length L of this sequence is
decided by sampling a Bernoulli distribution in-between the sampling of each zj .
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Hence each zj is sampled in a two step process. First, we decide how the topic will be drawn
using a multinomial distribution :

Case ∼
(1) Create a new topic with probability β

β+nw
∗ α
α+nd

or if z0,j−1 has no subtopics (6.3)
(2) Draw from the document tree with probability nd

α+nd
(6.4)

(3) Draw from the corpus tree with probability nw
β+nw

∗ ( α
α+nd

) (6.5)

Unless case (1) is chosen, a topic needs to be drawn from one of the trees, then we sample a
topic using the following distribution :

zj |w, d, t ∼
∑

k
βk(t)∗(A(k|d)+ε)∗(A(k|w)+φ)∗δk

(A(k)+(φ∗V ))∗nd
if case (2) (6.6)∑

k
βk(t)∗(A(k|w)+φ)∗δk

nw
if case (3) (6.7)

Variable Description
n # words in the corpus
nd # words in the corpus that are part of document d
nw # words in the corpus that are instantiations of the word w
V Vocabulary length
A(k|w) # words w assigned to topic (z0,j−1, k) or its descendants (corpus tree information)
A(k|d) # words in document d assigned to topic (z0,j−1, k) or its descendants (document tree information)
A(k) # words assigned to topic (z0,j−1, k) or its descendants
βk Probability density function of the beta distribution with parameter ρ1k and ρ2k associated with topic (z0,j−1, k)
ε, φ, β, α Priors for the Dirichlet distributions and processes (more details are provided in the parameter Section)

Table 6.1: Descriptions of variables for equations 6.6 to 6.3

Note that sampling a node from the corpus tree can lead to the creation of a new node in
the associated document tree if that node does not already exist. However, when creating an
entirely new node, it is created in both trees (corpus tree and associated document tree).

Once a topic zj is drawn, we draw from a Bernoulli with parameter p to decide if we stop or
go deeper in the tree. p is computed with the following formula :

pε,φ(t, w, d) =
Pε,φ(t, w, d) + θ1

Nφ + θ1 + θ2 + Cε,φ(t, w, d) + Pε,φ(t, w, d)
(6.8)

.
Pε,φ(t, w, d) =

βj(t) ∗ (A∗(z0,j |w) + φ) ∗ (A∗(z0,j |d) + ε)

A∗(z0,j) + (φ ∗ V )
(6.9)

Nφ =
φ ∗ ε
φ ∗ V

(6.10)

Cε,φ(t, w, d) =
∑
k

βk(t) ∗ (A(k|w) + φ) ∗ (A(k|d) + ε)

A(k) + (φ ∗ V )
(6.11)
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With A∗(z0,j) : the number of words assigned to topic z0,j . P : the weight of the currently
selected node z0,j . C : the weight of all of the children of the selected node z0,j . N : the weight
of a potentially new child for z0,j and θ1 / θ2 : the priors for the Bernoulli distribution.

To summarize, when drawing a topic assignment for a word, we either draw from the docu-
ment tree, corpus tree, or we create a new topic. Then, we draw from a Bernoulli to decide if
we go deeper or not. If we do go deeper, we repeat the same process until we eventually stop.
This process is then applied repeatedly too all of the words in the corpus multiple times until
convergence (see Algorithm 2 for more details).

6.4.1 Comparing HTMOT vs. nHDP

The main difference between HTMOT and nHDP is their use of Gibbs sampling and SVI
training procedures, respectively. However, other notable differences exist. Firstly, our HTMOT
algorithm starts with all words unassigned, while nHDP uses a pre-clustering step with k-means.
Secondly, we do not use a greedy algorithm to select trees for each document. Instead, the tree
for each document is created automatically as the Gibbs sampler progresses. As a result, our
training algorithm is simpler and easier to implement, avoiding the need for pre-clustering or
greedy procedures.

6.5 Experimental setup

6.5.1 Dataset

To perform our experiments, we crawled 62k articles from the Digital Trends 2 archives from
2015 to 2020. The crawling was performed using Python with the help of the BeautifulSoup
library. Digital Trends is a news website that mainly focuses on technological news but also
contains general news. For all articles, we extracted the text, title, and timestamp.

The timestamps were mapped to a number between 0 and 1, which corresponds to the domain
of the beta distribution used. Hence, 0 corresponds to the earliest date of a document in the
corpus, and 1 corresponds to the latest.

We cleaned the data as follows. First, we removed common editor’s sentences such as "we
strive to help our readers...." to remove noise from the data. Then, we relied on Spacy’s NER
and POS to filter relevant tokens. Specifically, we kept specific kinds of entities (Person, Norp,
Fac, Org, Gpe, Loc, Product, Event, Work_Of_Art, Law, Language) and POS elements (ADJ,
NOUN, VERB, INTJ, ADV). Finally, lemmatization was also applied.

2https://www.digitaltrends.com/.
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Algorithm 2 Gibbs sampling using Infinite Dirichlet Trees
1: procedure IDTGibbs(corpus)
2: IDT = Empty Infinite Dirichlet Tree (only a root)
3: N = Number of iterations
4: for iteration in range(N) do
5: for each document in corpus do
6: for each token in document do
7: sampleTopic(token,IDT ,iteration)
8: end for
9: end for

10: end for
11: Return IDT
12: end procedure
13:
14: procedure sampleTopic(token,IDT ,iteration)
15: z = (root)
16: y = current topic assignment for token if it was assigned to a topic before
17: Unassign token from y if y is defined
18:
19: while true do
20: Sample topic t from topic-word distribution (see 6.6)
21: if t is a new topic (see 6.6) then
22: if iteration < SGI (see 6.5.2) then
23: Create a new topic t in IDT
24: Append t to z
25: end if
26: Exit the loop
27: end if
28: Append t to z
29:
30: if size(z) < SM (see 6.5.2) then
31: Exit the loop
32: end if
33:
34: Draw continue from a Bernoulli distribution with parameter p (see 6.8)
35: if continue == 0 then
36: Exit the loop
37: end if
38: end while
39:
40: Assign the token to z
41: Update topic-time distribution estimation for all topics in the path of z and y (see 6.3.2)
42:
43: for each topic in IDT do
44: if size(topic) < CM for more than TTL iterations (see 6.5.2) then
45: Delete topic
46: end if
47: end for
48: end procedure
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A good pre-processing procedure is essential for the interpretability of topics, as shown in
[Martin and Johnson, 2015]. Hence, our extraction of named entities aims to enhance the topics’
interpretability by showing actors in the topic such as personalities and companies. The training
algorithm will not discriminate between words and entities, but the visualization interface does.
This means that a topic is no longer displayed as a simple list of words but is instead represented
by a list of words and a list of entities.

6.5.2 Parameters

Many parameters control the behavior of our model; this Section will describe each of them.

First, we have the Infinite Dirichlet Trees parameters. α : the rate at which we create new
topics in the document trees. β : the rate at which we create new topics in the corpus tree. θ :
how likely we are to create deeper sub topics.

Second, we have parameters that regulate the growth of the trees. These help speed up the
algorithm and keep memory usage to a minimum. CM (Critical Mass) : the minimum valid size
of a topic; only valid topics are part of the final output. SM (Splitting Mass) : the minimum
size of a topic before it can create sub-topics. Both are defined as a percentage of the total
number of words in the corpus. TTL (Time To Live) : how many pass through the corpus
before destroying a non-valid node. Nodes are also destroyed when they become empty.

Third, we have the Dirichlet prior parameters as in the traditional LDA model. φ : the prior
for the topic-word distribution. ε : the prior for the corpus and document-topic distributions.

Finally, we have training parameters. Iterations : how many batches we will go through
during training. SGI (Stop Growth Iteration) : a point at which node new nodes won’t be
created. Set SGI < Iterations to ensure that the last topic to be created has time to converge.

Table 6.2 defines the value of each parameter used to perform our experiments.

Parameter Value
α 0.00005
β 0.0002
θ 0.25

Critical Mass (CM) 0.0005
Splitting Mass (SM) 0.005
Time To Live (TTL) 2

φ 0.1
ε 1

Iterations 4500
Batch size 500

Table 6.2: Parameters used for our model
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6.6 Results and Discussion

We now present our results, starting with a statistical analysis of the training behavior of
HTMOT. Then, we will discuss the results of the Word Intrusion task, its drawbacks, and
directions for future topic modeling evaluation methods. Finally, we will examine the various
extracted topics qualitatively.

6.6.1 Convergence rate, training speed, and algorithmic complexity

To assess the convergence of our method during training, we looked at the frequency of depth
1 topic over time. As these frequencies stabilize, it indicates that the model has converged.
Since hierarchical topic models extract hundreds of topics, it is not reasonable to observe the
convergence of each topic.

Our experiments revealed that the convergence rate of our training algorithm is sub-linear
with respect to the dataset size. Using a dataset ten times smaller leads to a halving of the
time to convergence. However, new topics created during training can perturb this convergence,
which is prevented by the SGI parameter (see Section 6.5.2).

To compare training times, we disabled HTMOT’s temporal modeling to ensure a fair com-
parison with nHDP, which lacks a temporal component. Our sampler analyzes 135k documents
per hour, while nHDP’s SVI analyzes roughly 90k articles per hour, based on figures reported in
[Paisley et al., 2015]. While hardware and programming language used differ, Gibbs sampling
is generally understood to be prohibitively slow compared to SVI. Our results demonstrate that
our Gibbs sampling implementation can be used effectively for large datasets. The algorithmic
complexity is linear with respect to the dataset size, but the depth of topic trees and growth and
regulating parameters for the IDTs can greatly impact performance. Nonetheless, as mentioned,
the convergence rate is sub-linear.

6.6.2 Results of the Word Intrusion Task

We evaluated our model using the automated Word Intrusion task, testing the quality of all
topics by replicating the original study[Lau et al., 2014] (see Chapter 8 for details). Unlike the
classical task, we selected intruder words only from sibling topics, making the task more chal-
lenging as deeper topics tend to be more lexically related to their siblings. This is important as
it helps ensure topic distinctiveness. For example, when selecting an intruder word for "astron-
omy", we chose from its sibling topics like "astronaut", making the chosen intruder semantically
closer to the target topic (see Figure 6.3 for illustration). This approach provides a more robust
evaluation of topic quality.
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Figure 6.3: Example of a topic tree with cousins and siblings.

By applying the Automated Word Intrusion task to every topic extracted, we observed an
accuracy of 98% which is similar to LDA’s performance [Chang et al., 2009]. This demonstrates
that HTMOT provides topics of similar quality with the added benefit of modeling temporality
and hierarchy. Chapter 8 will delve into more details about the word intrusion task and its
performance.

6.6.3 A qualitative examination of the resulting topics

In Figure 6.4, our model’s ability to extract atomic events at the deeper level of the tree is
demonstrated through the well-localized time distribution of the three sub-topics under "astro-
nauts". These sub-topics, namely the historic test launch of the SpaceX Dragon capsule, the
Crew 1 launch, and the Crew 3 launch were mostly interpreted from top documents due to their
depth, making it difficult to interpret based on top words. The timing of these events matched
their associated time distribution, occurring in May 2020, November 2020, and November 2021
respectively. The model missed the Crew 2 launch event, which may be related to the reduced
output of digital trends news during that period, as shown in Figure 6.5.

6.7 Conclusion

We have proposed a new model for topic modeling capable of modeling hierarchy and time
jointly. Through examples, we have demonstrated how combining hierarchy and temporality
provides us with a more fine-grained understanding of a corpus through detailed sub-topics
which can represent specific events. Moreover, we developed a novel implementation of Gibbs
sampling for hierarchical topic models. This implementation provides a fast alternative to SVI
that makes Gibbs sampling a viable solution for training such complex models. Moreover, we
have shown how extracting entities can help interpret and understand topics at a deeper level.

Through the rest of this thesis, this Chapter will serve as the core of our methodology. Hence,
all subsequent Chapter will aim at improving or evaluating the capabilities of HTMOT for the
purposes of trend and weak signal detection.
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Figure 6.4: Examples of depth 3 topics that are well localized in time

Figure 6.5: Number of articles published by Digital Trends over the years 2020 and 2021. We
can see a sharp decline at the beginning of the year 2021 (middle of the graph)
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7 Topic Tracking Using Word Embeddings

7.1 Preamble

In this Section, we introduce our third article, which centers around topic tracking, a key
component of our methodology that allows us to understand the evolution of topics over time
and gain deeper insights into emerging trends. By monitoring how topics change and develop,
businesses can better adapt their strategies to stay ahead of the curve.

Existing topic tracking methods primarily rely on lexical information by matching word usage
patterns. However, no studies have yet investigated the potential benefits of using semantic
information for tracking topics. Therefore, we delve into an innovative semantic-based approach
that leverages word embeddings to capture the underlying meanings and relationships among
words.

Our findings reveal that the semantic-based method for topic tracking performs on par with
the traditional lexical approach, albeit with different types of errors. This suggests that combin-
ing both methods could complement each other, resulting in a more robust and comprehensive
topic tracking system. Furthermore, our paper also highlights the inherent challenges associated
with tracking topics in hierarchical topic models, emphasizing the need for innovative approaches
to address these complexities.

7.2 Introduction

Topics extracted through topic models can be tracked over time to understand their evolution
or discover emerging ones. Hence, the goal of topic tracking is to link instances of the same topic
that have been extracted at different time periods. Several methods for tracking topics have
been proposed in the past [AlSumait et al., 2008, Fan et al., 2021, Zhu et al., 2016, Xu et al.,
2019, Liu et al., 2020a]. These methods use measures such as the JS divergence [Zhu et al.,
2016, Xu et al., 2019, Liu et al., 2020a] or online topic models [AlSumait et al., 2008, Fan et al.,
2021] which rely on lexical information to track topics across time.
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However, no studies have ever experimented with using semantic information to track topics
over time. Intuitively, semantic-based approaches could be promising as they do not rely on
simple surface form and can capture concepts such as synonymy. For example, given the topic
of "AI", across time we could observe that the term "Machine Learning" has become more
popular than "AI". However, a lexical approach to topic tracking would not be able to handle
such lexical drift and relate those words over time. Conversely, such lexical variation would
have been captured by a semantic approach. Moreover, topic-word distributions are unstable
across multiple runs [Agrawal et al., 2018], i.e. the resulting top words of a topic tend to change
significantly. This entails that the lexical information we rely upon to track topics is also unstable
even if the overall semantic of the topic remains the same. Thus, a semantic-based approach
may be more robust.

Hence, our work aims at investigating the use of semantic information for topic tracking
and its comparison against lexical information. Therefore, as our main contribution, we propose
a novel semantic-based topic tracking method (SD) based on word embeddings. As an ancil-
lary contribution, we study the challenges of topic tracking in the context of hierarchical topic
modeling.

7.3 Methodology

In this Section, we will present our methodology for topic tracking. We will start by describ-
ing our corpus and topic extraction method. Next, we will define our SD measure. Finally, we
will present the topic tracking algorithm.

7.3.1 Topic extraction

To perform our experiments, we crawled 10k articles from the Digital Trends 1 archives
from 2019 to 2020. This news website is mainly focused on technological news with topics such
as hardware, space exploration, and COVID-19. For all articles, we extracted the text, title,
category, and timestamp. We pre-possessed the corpus as described in Chapter 6.

To extract topics hierarchies (see Figure 7.1), we used the HTMOT topic model proposed in
Chapter 6. The extracted topics are represented by a list of words and a list of entities extracted
in the corpus through Named Entity Recognition as described in Chapter 6.

In accordance with Chapter 6, we only focus on the first and second levels for the extracted
topics. Specifically, the authors observe that deeper topics become more esoteric making them
harder to understand by annotators representing a general audience. Consequently, this makes
it difficult to assess the correctness of tracked topics at deeper levels of the topic tree.

1https://www.digitaltrends.com/
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Figure 7.1: Example of a topic hierarchy

7.3.2 Proposed Semantic Divergence measure

We will now describe our novel topic tracking method, which departs from the JS divergence
traditionally applied in previous studies. Our measure called "Semantic Divergence" (SD) uses
word embeddings to measure the distance between topics. Each topic will be assigned an embed-
ding as the sum of the embeddings of the top words in that topic weighted by their probability.
Then, the distance between the two topics is computed as the cosine distance of their respective
embedding. We will use FastText as the word embedding. FastText helps with rare and out-of-
vocabulary words [Bojanowski et al., 2017]. This is essential considering our pre-processing step
includes lemmatization which may produce incorrectly spelled words. Hence the embedding of
a topic is defined as follows :

emb(t) =
∑

(w,p)∈t

p ∗ FastText(w) (7.1)

And our Semantic Divergence measure between two topics is defined as :

SD(t1, t2) = 1− emb(t1) ∗ emb(t2)
||emb(t1)||2 ∗ ||emb(t2)||2

(7.2)

where w is a word in a topic t and p is the probability of that word as defined by the topic t.

7.3.3 Topic Tracking Algorithm

Finally, to track topics across time we applied HTMOT to our corpus. For each year (2019
and 2020), we obtained a corresponding topic tree. Then, we computed the distance between
every topic across both years using either JS or SD. To do this we used the top 100 words and
top 15 entities to represent each topic. Subsequently, we ranked all computed pairs of topics
and then iteratively selected the most similar pairs (lowest SD or JS score) such that each topic
is paired only once. Finally, we used a pre-defined threshold to remove pairs with poor scores.
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Figure 7.2: The pairs extracted by both methods can be grouped into three categories. The
circle represents topics and their color represents years (2019 blue; 2020 yellow). The link color
represents the method used (JS red; SD green). The three categories are 1) The pairs extracted
by both methods (72). 2) The pairs that differ but share a topic (10) E.g. JS extracted the
pair 4-D while SD extracted 4-E. 3) The pairs of topics that were only linked with one method
(29-39).

Note that our approach does not take into account structural information. Indeed, tracking
topics in the context of hierarchical topic modeling presents another interesting challenge: there
exist many possible resulting trees that are equally correct. In one run, we may extract the topic
of space whose sub-topics can be grouped into space exploration and astronomy. Conversely, in
another run, we may extract space exploration and astronomy as separate topics with their own
sub-topics. Hence, it is difficult to leverage the structural information contained in the topic
trees to track topics as it cannot be expected to respect a specific conceptual taxonomy.

7.4 Results : JS vs SD

In this Section, we will discuss how our semantic-based method compares with respect to
the traditional lexical-based method.

First, we studied the overlap between the two methods, i.e. the number of pairs extracted
by both. We discovered that 111 pairs were extracted with JS with a threshold of <0.4, while
121 pairs were extracted with SD with a threshold of <0.1. These thresholds were set through
empirical observation and may depend on the dataset used. These 111-121 pairs can be grouped
into three categories (see Figure 7.2). 72 pairs were the same between the two methods (60-65%
of the total pairs). For example, topics such as space and video games were easily paired across
both years by both methods. This already indicates that our SD method is able to pair topics
across time with performance similar to JS. This leaves 39-49 pairs that are different across the
two methods (35-40% of the total pairs) which we can evaluate. Out of those different pairs, we
notice that in most cases one method (e.g. SD) would track/link a topic pair across both years,
while the other method (e.g. JS) did not as the best possible pair was above the threshold. We
are then left with 10 different pairs that can themselves be paired according to which 2019 or
2020 topic they share (see Figure 7.2).
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To compare the performance of the two tracking methods, we decided to use a survey com-
paring these 10 pairs of topics extracted by both JS and SD. Precisely, for each question, given
an initial topic, annotators were shown the JS and SD pairing and asked which is better. Addi-
tionally, we also asked annotators to provide a confidence score on a scale from 1 to 5. In total,
we received 38 answers coming from a small online community focused on answering surveys2.
The survey can be found on GitHub 3.

Looking at the survey results (table 7.1), it can be seen that SD slightly outperforms JS with
54% of annotators preferring the former to the latter. Moreover, we also note that the annotators
were confident in their evaluation, with an average confidence score of 3.3. Interestingly, there
is a lot of variability in the answers. Some topics were clearly better paired with one method or
the other (Q3 and Q5) while for others, it wasn’t as clear (Q1, Q2, and Q4).

Table 7.1: The "chose SD" column corresponds to the % of annotators that chose the SD pair
as the best pair.

Questions Chose SD Confidence level
Q1 42.1% (22) 3.2
Q2 63.2% (14) 2.6
Q3 21.1% (30) 3.7
Q4 65.8% (13) 3.5
Q5 78.9% (8) 3.5
Average 54% 3.3

For example, Figure 7.3 corresponds to Q1. It shows how a 2019 topic has been paired with
2020 topics using JS and SD. First, we can notice that the distance recorded between the pairs
is close to the threshold for both methods. Specifically, 0.29 for the JS pair and 0.09 for the SD
pair (threshold = 0.4 for JS and 0.1 for SD). This makes sense as good pairs (pairs with low
JS/SD values) are extracted by both methods. Second, the 2019 topic is about social media
data security. Whereas the chosen 2020 topic is about :

• Social media when paired with JS.

• Data security when paired with SD.

Hence, both pairing seems suitable, which could explain the indecisiveness of annotators. Specif-
ically, 16 of them decided the SD pairing was better whereas 22 of them decided the JS pairing
was better. Their confidence level for this question was 3.2 out of 5.

Similarly, Figure 7.4 corresponds to Q5 and shows how another 2019 topic has been paired
based on the two methods. Here, the 2019 topic is about web security. Whereas the chosen 2020
topic is about :

• Data security when paired with JS.

• Web security topic when paired with SD.
2https://www.reddit.com/r/SampleSize/
3https://github.com/JudicaelPoumay/TopicTrackingPaper
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Figure 7.3: A first example of different pairing between SD and JS on the same 2019 topic.

Figure 7.4: A second example of different pairing between SD and JS on the same 2019 topic.

Moreover, the topic chosen by SD is a sub-topic of the topic chosen by JS which demonstrates
the difficulty in topic tracking in a hierarchical setting. Indeed, it can be difficult to differentiate
a topic from its sub-topic, especially if that sub-topic dominates the others as parent topics are
the sum of their sub-topics. In this case, annotators agreed more and 30 out of 38 decided the
SD pair was better. Their confidence level for this question was 3.5 out of 5.

Hence, we argue that JS and SD are two fundamentally different approaches and that both
have their advantages. JS is lexically driven and may work best for linking topics that tend
to have a stable and precise vocabulary such as in legal documents. On the other hand, SD is
driven by semantics and may be more appropriate for linking topics that have greater lexical
variability. Greater lexical variability may be the result of lexical drift over time as terms change
in popularity or informal texts which do not use a standard vocabulary such as tweets. Hence,
we believe that SD not only competes but complements JS for topic tracking.

7.5 Conclusion

In this paper, we presented a novel semantic-based topic tracking method (SD). We showed
that its performance was comparable to that of the state-of-the-art method (JS), which is lex-
ically based. This validates our hypothesis that semantic information is valuable for tracking
topics.
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Moreover, we have discussed the challenges associated with tracking topics in a topic hierar-
chy. First, topics and their sub-topic can be difficult to differentiate, which makes topic tracking
more challenging. Second, deeper topics are more esoteric and consequently, it is harder to
assess the quality of their tracking. Finally, a topic hierarchy may have many equally correct
arrangements which make it difficult to leverage structural information for topic tracking.

We believe that our work would benefit future studies investigating hybrid methods for topic
tracking, such as by integrating lexical and semantic information.

This chapter was published as a short paper in NLDB 2022 which is further published in
Lecture Notes in Computer Science, a Book published in Springer. In the context of this thesis,
this chapter provides the final element of our methodologies by allowing us to understand the
evolution of topics through time. This move from static analysis to a temporal one allows us to
understand not only weak signals but also discover emerging trends and detect larger micro and
macro trends.
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Part IV

EVALUATION
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A significant portion of this thesis was dedicated to developing a methodology for evaluating
hierarchical topic models. As existing evaluation methods were shown to be less reliable than
initially thought, we explored alternative approaches, including the word intrusion task and
its automated variant. However, our investigation revealed that the word intrusion task was
not well-suited for evaluating hierarchical topic models either. Indeed, hierarchical models can
discover hundreds of small sub-topics in many domains. Each small sub-topic requires a high level
of domain knowledge making the method unscalable and costly. Consequently, we investigated
a new evaluation technique based on a labeled dataset.

We will now describe each component of the evaluation methodology in details:

• Chapter 8 will describe a critic of the Word Intrusion Task for Hierarchical Topic Models

• Chapter 9 will describe evaluating Hierarchical Topic Models using a labeled dataset
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8 A Critic of the Word Intrusion Task for Hierarchical Topic
Models

8.1 Preamble

In this Chapter, we present our fourth article that critiques the Word Intrusion task. While
this task is considered a state-of-the-art method for evaluating topic models, its effectiveness in
assessing the quality of hierarchical models has not been thoroughly investigated.

To address this gap, we conducted a series of experiments using both a human-annotated
and an automated version of the Word Intrusion task on the latest hierarchical topic model. Our
findings revealed that the task posed significant challenges for human annotators, particularly
when evaluating deep sub-topics. In fact, the accuracy rate dropped from 79% to only 6.4% as
we delved deeper into the tree.

In contrast, the automated version of the task performed remarkably well, achieving near-
perfect accuracy rates even at the deepest level of the tree, with the lowest score of 95.9%. These
results suggest that the Word Intrusion task may be too easy for computers to solve and may
not serve as a reliable surrogate measure of human judgment.

Our findings highlight the limitations of the Word Intrusion task as an evaluation method
for hierarchical topic models and underscore the need for more reliable and robust evaluation
techniques. This research has significant implications for researchers and practitioners in natural
language processing and related fields who rely on topic modeling to understand large text
corpora.

8.2 Introduction

Several methods have been proposed for evaluating topic models, including perplexity [Blei
et al., 2003], which measures how well a model predicts the probability of unseen documents,
and topic coherence [Newman et al., 2010], which assesses the degree to which the words within
a topic are semantically related. However, these methods have been repeatedly shown to be
uncorrelated with human judgment and may not always be reliable indicators of the quality of
a topic model [Chang et al., 2009, Hoyle et al., 2021, Doogan and Buntine, 2021, Bhatia et al.,
2017].
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To address this issue, the Word Intrusion task has been proposed as a more reliable evaluation
method [Chang et al., 2009]. In this task, human annotators are asked to spot an intruder word
inserted in each topic. The idea is that in good topics, annotators would easily find this intruder.
In a subsequent study, the authors have shown that this task can be automated with performance
that correlates with human annotators [Lau et al., 2014] . However, the effectiveness of the Word
Intrusion task has not been investigated in the context of hierarchical topic models.

In this study, we address this research gap by examining the reliability of the Word Intrusion
task for evaluating hierarchical topic models. We experiment with both a human-annotated and
an automated version of the task and apply them to a hierarchical topic model. Our results
show that :

1. The human version of the task

(a) is not reliable for topics that are extremely domain specific (esoteric) in nature, es-
pecially deeper topics.

(b) is not reliable for deep sub-topics as the intruder becomes semantically closer to the
target topic.

(c) is not scalable for large topic trees as there can be thousands of topics to evaluate.

2. The automated version of the task

(a) is not correlated to human judgment once we apply it to deep topic trees since we
do not observe a large drop in performance similar to the one observed with human
annotators.

(b) is too trivial to solve for computers and does not reflect the actual performance of
the model.

8.3 Methodology

To evaluate the effectiveness of the Word Intrusion task in the context of hierarchical topic
models, we conducted a series of experiments using a corpus of 64k articles between 2015 and
2020 from the Digital Trends website. As we had access to a pool of annotators from the general
population, we chose this corpus for our study because it includes a variety of current news
topics that were easily accessible for crawling.

We used the HTMOT topic model described in Chapter 6 to extract topics from the articles,
following the same preprocessing steps as described in the original paper. Specifically, we filtered
relevant tokens using Spacy’s Named Entity Recognition and Part-of-Speech tags and applied
lemmatization.
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To apply the Word Intrusion task to the hierarchical topic model, we modified the task to
only consider intruder words from sibling topics rather than from any topic. This was done
to make the task more challenging, as deeper topics tend to be more lexically related to their
siblings. This is important as we want topics to be distinguishable from their siblings. For
example, in evaluating the sub-topic "astronomy," we would select an intruder word from one
of its sibling topics, such as "astronaut," rather than from an unrelated topic such as "Covid-19
vaccines" (as shown in Figure 8.1). This provides a more difficult and thus robust evaluation of
topic quality.

Figure 8.1: Example of a topic tree with cousins and siblings.

To collect human annotations, we conducted a survey asking annotators to select an intruder
word for each of 15 topics (5 level 1 topics, 5 level 2 topics, and 5 level 3 topics). The topics
were randomly selected at each depth. The survey presented 10 words for each topic, including
the intruder. The annotators were recruited from an internet community involved in sharing
and answering surveys 1. A total of 91 respondents participated in the survey over the months
of November and December 2022.

In addition to the human-annotated version of the Word Intrusion task, we also experimented
with an automated version of the task [Lau et al., 2014]. This method involves training a ranking
support vector regression (SVMRANK) model using the Point-Wise Mutual Inforamtion (PMI),
Normalized PMI (NPMI), and Conditional Probability (CP) between the top N words (including
the intruder) as features. We reproduced this method but modified it to only compare with
sibling topics and use only PMI and CP as features as it was found to be sufficient to achieve
high performance.

Specifically, for a given word wi and the top N topic word for a given topic t,

CP (wi) =

N−1∑
j

D(wi, wj)

D(wj)

PMI(wi) =
N−1∑
j

D(wi, wj)

D(wj) ∗D(wi)

NPMI(wi) =

N−1∑
j

PMI(wi)

−log(D(wj , wi))

where D(W ) is the number of document containing the set of words W .

1https://www.reddit.com/r/SampleSize/.

93

https://www.reddit.com/r/SampleSize/


Level Random Closest Furthest Humans
1 0.986 0.972 1 0.793
2 0.983 0.978 0.996 0.513
3 0.968 0.959 0.970 0.064

Table 8.1: Results of the automated Word Intrusion task for each level comparing the three
word intruder sampling techniques.

To better understand the performance of the automated version of the task, we compared
three different sampling strategies for selecting the intruder word: 1) sampling from a random
sibling topic, 2) sampling from the closest sibling topic, and 3) sampling from the furthest sibling
topic. Distance between the siblings is computed as the JS divergence between their topic-word
distributions. For the human-annotated task, we only used the random sampling strategy.

8.4 Results and Discussion

8.4.1 Results of the Word Intrusion task

The results of the human-annotated version of the Word Intrusion task showed an average
accuracy of 45.66% across all topics. However, this accuracy varied significantly with depth, as
shown in Table 8.1. For level 1 topics, the performance was on par with the results reported
in the original Word Intrusion task paper [Chang et al., 2009]. However, accuracy dropped
dramatically for deeper levels, indicating that annotators had more difficulty finding the intruder
word in these topics.

In contrast, the automated version of the task achieved extremely high accuracy, as shown
in Table 8.1. The original study did not report the actual accuracy of the automated version,
but only the Pearson correlation with human annotators [Lau et al., 2014]. Our results show
that automating the task leads to much higher accuracy than the human-annotated version,
with only slight variations based on depth and sampling method. Sampling the intruder from
the furthest sibling led to slightly higher accuracy than sampling from the closest sibling, but
the performance remained much higher than the human-annotated task in all cases.

8.4.2 The limitations of the Word Intrusion task in a hierarchical setting

Limitations of the human-annotated version

The results of our experiments reveal several limitations of the Word Intrusion task for
evaluating the quality of hierarchical topic models.

94



Figure 8.2: Example of topics with an intruder. On the left, we have the parent topic and one of
its children on the right. The intruder is highlighted in orange. Galaxy is a less obvious intruder
than the title.

First, the task is difficult for human annotators, particularly for topics that are more esoteric
and thus require domain knowledge. When running our experiments, one annotator actually
remarked on the difficulty of not recognizing some technical words which hindered their ability
to answer the survey. Another study made a similar observation when applying LDA to medical
text [Arnold et al., 2016]. This situation is worsened for deeper sub-topics which by definition
become more precise and require even more domain knowledge to understand. For example, the
topic "covid-19" might contain the sub-topic "covid vaccines" which in turn might contains the
topic "mRNA-based vaccines".

Second, as we delve deeper into the topic tree, sibling topics become increasingly thematically
similar, as shown in Figure 8.1. Quantitative analysis revealed significant variations in the
average JS divergence between topics at different depths (depth 1: 3500; depth 2: 1200; depth
3: 200), with deeper topics having smaller values. This indicates that deeper topics are less
distinct from one another. Consequently, as we go deeper into the tree, the intruder word
chosen for the word intrusion task becomes increasingly similar to the other words in the target
topic (see Figure 8.2), making it more difficult for annotators to identify the intruder without
specialized domain knowledge.

Hence, the human-annotated word intrusion task is unreliable if the annotators come from
the general population. The alternative would be to consult domain experts but this approach
would be either costly and lead to a smaller pool of annotators making the results less reliable
once again. Moreover, as extracted topics can span a wide range of themes, we would need
domain experts for each domain that the corpus presents. Hence, relying on domain experts
may become prohibitively expensive if the corpus covers many different domains.

Third, because of the tree structure, the number of subtopics is exponentially greater than
high-level topics. Hence, the high number of sub-topics in hierarchical topic models makes the
task unscalable for human annotation, as it would be impractical to create a survey that covers
a significant portion of the topics.
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Limitations of the automated version

The automated version of the Word Intrusion task eliminates the issues related to human
annotators (i.e. the lack of domain knowledge and the high number of topics to evaluate), but
it has its own set of limitations.

First, the high accuracy of the automated version suggests that the task is too easy to solve
for computers. Indeed, the accuracy of human annotators drops dramatically with topic depth
as the topic becomes more esoteric and less distinct. However, the automated task is only barely
affected by topic depth. Moreover, even though sampling from the closest sibling makes the task
more difficult, the results remain above 95% accuracy. Finally, the automated version relies on
simple features such as PMI and CP1. This indicates that for hierarchical topic models, the
automated version of the task may not adequately capture the complexity of human judgment.

Second, we already achieve nearly 100% accuracy with the automated intrusion task. Hence,
if we believe in the accuracy presented by this method, there isn’t a lot of room for improvement,
and the model performs extremely well. This would be wonderful if it was true. However, the
low accuracy reported in the human-annotated task indicates that this is unlikely. Hence, the
accuracy reported by the word intrusion task does not reflect the actual performance of the
model.

8.4.3 Future directions for topic model evaluation

The limitations of current evaluation methods highlight the need for more reliable approaches
that can better align with human judgment and accurately assess hierarchical topic models. We
propose that evaluating topics and topic models should involve a multifaceted approach. While
current methods such as perplexity, coherence, and the word intrusion task may be useful, they
are not comprehensive and should eventually be replaced. To effectively evaluate topic models,
we suggest considering the following dimensions:

• Coherence: Assesses the coherence of the set of words extracted by the model.

• Interpretability: Evaluates how easily human annotators can agree on a label for a topic

• Distinguishability: Assesses the distinctness of any two topics.

• Stability: Measures the variability in the top words of a model when run multiple times
on the same corpus [Agrawal et al., 2018].

• Completeness: Evaluates the model’s ability to extract all of the topics present in a corpus

Overall, these dimensions provide a useful framework for evaluating the quality of a topic
model and can help to guide future research in this area.
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8.5 Conclusion

In this study, we investigated the effectiveness of the Word Intrusion task for evaluating
the quality of hierarchical topic models. Our results showed that the task is unreliable in this
context for several reasons.

First, the human-annotated version of the task is extremely challenging for annotators to
perform when evaluating deep sub-topics, which are often esoteric and difficult to understand.
This makes it difficult for annotators to identify the intruder word, leading to low accuracy.
Additionally, the task is not scalable for large topic trees, as there may be thousands of topics
to evaluate.

Second, the automated version of the task achieves near-perfect accuracy when applied to
deep sub-topics. However, this high accuracy does not necessarily reflect the quality of the
topic model as judged by humans, as it is too easy for computers to learn. This suggests that
the automated version of the task is not correlated with human judgment in the context of
hierarchical topic models.

Our findings highlight the limitations of the Word Intrusion task for evaluating hierarchical
topic models and underscore the need for more reliable evaluation methods. In particular,
existing methods have not adequately considered the completeness of the extracted topics, which
is an important aspect of topic model quality.

Therefore, this chapter demonstrated the need for a new approach to hierarchical topic model
evaluation. Hence, the final chapter of this thesis will be focused on proposing a new solution
for this challenging problem.

This chapter was submitted to ACL 2023.
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9 Evaluating Hierarchical Topic Models Using a Labeled Dataset

9.1 Preamble

In this Section, we present our fifth article about using labeled data to perform a more
holistic evaluation of topic models. This paper addresses the limitations of previous evaluation
methods by focusing on the comprehensiveness and quality of the extracted topics, as well
as the coherence of the generated taxonomy in the context of hierarchical topic models. By
leveraging a well-known labeled dataset, Reuters-21578, our approach provides a more in-depth
understanding of the model’s performance and its ability to uncover expected topics, as well as
its effectiveness in capturing smaller and unexpected topics.

Our experiments involved training 60 different models, including both hierarchical and flat
models, with varying hyperparameters to quantitatively assess their ability to produce high-
quality topics. The results demonstrate that our proposed label accuracy metric offers a more
conservative measure of topic quality compared to coherence. Specifically, we demonstrate that
while a low coherence score can be an indicator of poor topic quality, a high coherence score
does not always indicate good topic quality.

Furthermore, we found that hierarchical topic models effectively extract small sub-topics,
even those accounting for less than 1% of the data, with label accuracy as high as 37.9% for
these small topics despite the existence of 90 labels. In contrast, larger topics achieved over
70% accuracy. This research showcases the value of using labeled data to evaluate topic models
more comprehensively and highlights the strengths of hierarchical topic models in extracting
meaningful insights from a diverse range of topics.

9.2 Introduction

Evaluating the quality of the extracted topics is crucial to ascertain their real-world utility.
However, as these methods extract knowledge in an unsupervised manner, previous studies
on topic model evaluation have been limited to evaluating the quality of the resulting topics.
Hence, many methods have been proposed to study the performance of these models such as the
perplexity and coherence measures [Newman et al., 2010, Doogan and Buntine, 2021, Bhatia
et al., 2017].
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Nonetheless, these measures have proved to be unrelated to human judgement [Chang et al.,
2009, Doogan and Buntine, 2021, Bhatia et al., 2017], indicating that humans do not agree with
these measures when it comes to the quality of the topics extracted. Recently, the word intrusion
task has been proposed to evaluate the extracted topic quality [Chang et al., 2009]. While its
initial implementation relies on human annotators, it can be automated without losing the link
to human judgement [Lau et al., 2014].

However, all of the methods previously presented have failed to ask other essential questions
about the extracted topics and the completeness of the results. For example: Do we extract
every topic? How well do we extract them? Do we extract unexpected topics? And in the
context of hierarchical topic models, is the hierarchy produced coherently?

Hence, in this article, we propose a method for evaluating topic models using a well-known la-
belled dataset (Reuters-21578 [Tekn, 2020] ) but the method can be extended to other datasets.
Our approach differs from previous methods by focusing on known topics that we expect to
extract and their quality, providing a better understanding of the completeness of the model.
Using known labels we can automatically name extracted topics. Afterwards, we can study
whether the document topic distribution can predict the actual labels of the documents. We
call this label accuracy and it provides a quantitative assessment of how well we fit the training
set. Moreover, if more topics are extracted than expected we can study their relevance and un-
expectedness. Finally, as the extracted topics exist in a hierarchy, we can analyze the coherence
of the taxonomy produced from the known labels.

To perform our experiments, we trained 60 different models (30 hierarchical and 30 flat
models) with various hyperparameters to understand how and if this new evaluation approach
is able to help us determine quantitatively which model provides the best topics.

Results show that label accuracy provides a more conservative measure of topic quality
compared to coherence. We show that while low coherence [Newman et al., 2010] is a good
indicator of bad quality in topics, a high coherence score is not sufficient to determine the
quality of a set of topics. We also compute the label accuracy for labels that account for less
than 1% of the data and demonstrate that it is a good metric if we care about extracting small
sub-topics. Precisely, we see that although we have 90 labels the accuracy of small topics can
get as high as 37.9% while the largest topics achieve more than 70% accuracy. In that sense,
we have noticed a logarithmic relationship between the number of documents per label and its
accuracy as accuracy quickly goes up with the number of documents indicating that hierarchical
topic models can extract small topics effectively.
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9.3 Methodology

9.4 Overview

Our evaluation methodology consists of multiple steps. We aim to assess the stability and
sensitivity of the topic models and compare the performance of hierarchical and flat models. To
achieve this, we extract topics from our corpus using 60 variations of topic models (30 hierarchical
and 30 flat models with different parameters as shown in Table 9.1) by training them on the
Reuters dataset. The varying parameters include basic LDA parameters that control the topic-
word and document-topic prior distributions, as well as the dynamic parameters controlling the
creation of new topics during training.

Following this, we automatically assign labels to the topics by using the known labels from
the corresponding dataset, based on the document-topic distribution. Next, for each document
with n labels, we compare the top n+k labeled topics for that document to calculate label
accuracy. Finally, we evaluate the results.

9.5 Corpus

For our experiments, we will employ the Reuters-21578 corpus[Tekn, 2020], a widely used
dataset in the literature on topic models. Composed of English news articles primarily focused
on business and politics, this corpus was used as it has detailed and multiple labels for each
document.

We preprocessed the corpus by filtering relevant tokens using Spacy’s Named Entity Recogni-
tion and Part-of-Speech tags and applied lemmatization. Consequently, our training set consists
of 10788 documents, each labeled with one or more of the 90 tags in the corpus (e.g. wheat,
gold, money-fx, etc.).

The label distribution is highly uneven, resembling a power-law distribution, with labels such
as ’earn’ or ’acq’ constituting approximately 36% and 22% of the documents, respectively. In
contrast, labels like ’rye’ and ’castor-oil’ appear only in a single document each.

9.6 Constructing and training the models

In our experiments, we utilized our HTMOT model presented in Chapter 6 stripped of its
temporal component which is not evaluated here. Hence, mathematically we have the nHDP
topic model albeit trained with our novel Gibbs sampling procedure instead of Stochastic Vari-
ational Inference (SVI).
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As previously mentioned, Gibbs sampling performs better on small topics since it it asymp-
totically exact contrary to SVI [Blei et al., 2017]. Extracting these small topics is crucial since
they may represent weak signals. Hence, we will also provide a quantitative analysis of the
performance of labels spanning a small subset of the data.

We explored 60 distinct models, training 30 hierarchical models (nHDP) and 30 flat models
(HDP) to highlight the importance of hierarchy for smaller labels. Each hierarchical/flat model
pair shares the same set of parameters (refer to Table 9.1). For example, the set of parameters
S1 is used to train both a hierarchical and a flat model.

The parameters that we vary in each model are defined as follows: α: the rate at which we
create new topics in the document trees. β: the rate at which we create new topics in the corpus
tree. φ: the prior for the topic-word distribution. ε: the prior for the corpus and document-topic
distributions.

Parameters alpha beta phi epsilon
S1 0.0001 0.02 0.1 0.5
S2 0.0001 0.02 0.1 0.5
S3 0.0001 0.02 0.1 0.5
S4 0.0001 0.02 0.1 0.5
S5 0.0001 0.02 0.1 0.5
S6 0.0001 0.02 0.1 0.5
A1 0.000005 0.02 0.1 0.5
A2 0.00001 0.02 0.1 0.5
A3 0.00005 0.02 0.1 0.5
A4 0.0005 0.02 0.1 0.5
A5 0.001 0.02 0.1 0.5
A6 0.005 0.02 0.1 0.5
B1 0.0001 0.001 0.1 0.5
B2 0.0001 0.002 0.1 0.5
B3 0.0001 0.004 0.1 0.5
B4 0.0001 0.1 0.1 0.5
B5 0.0001 0.2 0.1 0.5
B6 0.0001 0.4 0.1 0.5
E1 0.0001 0.02 0.1 0.001
E2 0.0001 0.02 0.1 0.01
E3 0.0001 0.02 0.1 0.02
E4 0.0001 0.02 0.1 0.1
E5 0.0001 0.02 0.1 2.
E6 0.0001 0.02 0.1 5.
P1 0.0001 0.02 0.001 0.5
P2 0.0001 0.02 0.01 0.5
P3 0.0001 0.02 0.02 0.5
P4 0.0001 0.02 0.5 0.5
P5 0.0001 0.02 1. 0.5
P6 0.0001 0.02 5. 0.5

Table 9.1: Parameters of the models trained
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These 30 pairs of models are grouped as follows:

• 6 pairs of base models were trained with the same parameters to evaluate stability across
multiple runs.

• 6 pairs of models with different values for alpha

• 6 pairs of models with different values for beta

• 6 pairs of models with different values for epsilon

• 6 pairs of models with different values for phi

9.7 Automatic titling

To automatically assign a label l to a topic we used a simple heuristic. For each model
trained with the labelled corpus, we compute the label-topic distribution of label l by averaging
the document-topic distribution of documents that have this label. If the model is hierarchical,
this means we end up with a topic tree for label l with topic frequencies relative to this label,
i.e. the proportion of topics for the subset of the data with label l.

Starting from the root, we select the topic with the highest frequency relative to that label.
We do the same for the sub-topic of the selected topic until we reach a leaf. In the end, we have
selected a branch of the tree containing the most frequent topic and sub-topic for the label l.

Next, we compare the known frequency of the label l with each topic of this branch and select
the topic with the closest frequency i.e. the topic of the branch which optimizesmint(|frequency(t)−
frequency(l)|). This topic will be given the label l.

For example (see Figure 9.1), if l = gold , the branch of the topic tree for that label that
we will select could be interpreted as "Resources (45%) -> ore (20%) -> metal (10%)" because
"Resources" had the highest frequency of topics at that level for the subset of documents with
the label l and amongst subtopics "Resources", "ore" had the highest frequency for the subset
of documents with the label l and so on. Then if l has a true frequency of 17%, we will label
the topic "ore" with l since "ore" has the closest frequency at 15%.

This method is applied iteratively for each label. It is worth noting that a topic may have
multiple labels in its title if it is selected by several labels.

This heuristic is simple by design and is an important hypothesis that may have a large
impact on the performance of our evaluation methodology. Nonetheless, we will show that it is
sufficient to provide interesting results.
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Figure 9.1: Example of topic tree for label l with the best branch highlighted in red.

9.8 Computing Top n+k label accuracy

To calculate the top n+k label accuracy, we order labeled topics by their document-topic
distribution for each document by descending. Considering that document d has n labels, we
choose the top n+k topics from the sorted list. We subsequently extract the labels given to
these topics. Finally, using the set of extracted labels from the topics T and the known labels
of document L, we determine the label accuracy for document d using the formula |L∩T ||L| . The
overall top n+k label accuracy of the model is calculated as the average across all documents. The
overall top n+k label accuracy of each label l is calculated as the average across all documents
with that label l.

In addition to the overall top n+k label accuracy, we compute the small topic label accuracy,
which excludes labels that correspond to more than 1% of the dataset. This exclusion accounts
for 80% of the tags, or 72 tags in total.

This novel metric will be compared against the intrinsic UMass coherence measure. For
a given topic denoted as t, alongside its list of words sorted by their associated probabilities
(w0, . . . , wn), the UMass coherence is computed using the following formula:

∑
i<j log

D(wi,wj)+1
D(wi)

,
where D(W ) represents the count of documents in the corpus that contain the set of words W ,
and i < j indicates that the likelihood of occurrence is higher for word wi compared to word
wj .
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9.9 Results

In this Section, we will review the results of our experiments. We will start by comparing
the coherence measure to the label accuracy measure. Next, we will compare the performance of
the flat and hierarchical models. Then, we will study the hyperparameters’ importance. Finally,
we will study the stability of the topic models.

9.9.1 Coherence vs label accuracy

In Table 9.2, we display the metrics computed for all hierarchical models except those using
Sx parameters as these are only used for stability analysis. Three were the worst in at least
one metric and four were the best in at least one metric. The metrics are the average topic
coherence and the top n+3 label accuracy which we will now refer to as top 3 label accuracy for
simplicity’s sake. The topic 3 label accuracy is computed for all the labels in each hierarchical
model, in their flat counterpart (F), for small topics (S), and for both small topics in the flat
model (F/S).

We observe that the model with the worst coherence (P1) did produce topics that are difficult
to interpret. However, the model with the highest coherence (E1) is decisively not the best
model. The label tree it produces is incoherent and most of the labels are pushed to the leaves
of the tree. Consequently, this model has many topics which have been labelled multiple times
indicating that the model could not separate the labels properly. Specifically, 81% of labels share
a topic, and one topic shares as many as 34 labels. Moreover, this model created many duplicate
topics (similar word distribution), with the majority of the topics being similar if not the same.
Finally, we can observe that this model also has poor accuracy being the second worst.

The best-performing model is (B5) with the highest small label accuracy. Although its
coherence is lower than (E1), its label tree is much more coherent and detailed. Most labels do
not share co-labels meaning that the model is better at separating the labels into specific topics.
For example, labels such as "gold" and "iron-steel" have been assigned their own topic contrary
to the E1 model. Specifically, only 34% of labels share a topic, and one topic shares as many as
5 labels. B5 being the highest small topic accuracy, we also observed that small labeled topics
are easily interpretable.

Hence, the coherence measure is good at determining if a set of topics are of bad quality.
However, it is not sufficient in itself to determine if the topics are of good quality. A set of
coherent but duplicate topics will yield a high coherence score even if this results in bad topic
extraction overall. Moreover, high coherence does not guarantee that topics are well separated
or that the inferred hierarchical structure of topics makes sense. Figure 9.2 shows that both
label accuracy and coherence are not highly correlated which indicates they measure a different
aspect of a model’s performance.
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Figure 9.2: Coherence vs label accuracy across all models

Another way to ensure that the label accuracy represents the model’s performance is to look
at the discrepancy between the actual label size and the size of the topic with that label. In
Table 9.3, we compare the worst and best models for small label accuracy. We see that for the
best model, labels correspond to topics with a size that is closer to the actual label size.

Models T3A T3A (F) T3A (S) T3A (S/F) Coh
P2 0.218 0.247 0.057 0.006 0.244
P1 0.643 0.543 0.178 0.004 0.206
A4 0.711 0.338 0.323 0.003 0.296
A2 0.778 0.590 0.271 0.012 0.316
E1 0.382 0.542 0.128 0.005 0.342
B5 0.727 0.350 0.379 0.006 0.290
E2 0.631 0.373 0.267 0.018 0.340

Table 9.2: Comparing best and worst models for each measure. T3A corresponds to the top 3
label accuracy. (F) corresponds to the equivalent flat model performance. (S) corresponds to
the small topics’ performance.
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Tags Real B5 P2
nat-gas proportion 0.89 16
gnp 1.19% 2.15 1.02
coffee 1.49% 1.41 12.09
trade 1.6% 2.25 1.06
crude 5.31% 3.13 6.62
money-fx 6.01% 1.53 6.49
acq 6.91% 20.57 8.6
MSE 24.56% 10.499 63.932

Table 9.3: Comparing the worst hierarchical topic model (P2) with the best small accuracy topic
model on a set of random topics. We compare the real proportion of the tags in the data with
the proportion of the topics with that label. We then compute the Mean Square Error (MSE)
of this difference for both models.

We can also compare how the coherence and label accuracy metrics compare depending on
the size of labels or topics. Since coherence is computed for each topic and label accuracy is
computed for each label we cannot make a direct comparison. In the Figures 9.4 and 9.3, we plot
these results and observe that there is a logarithmic relationship between label accuracy and size
reminiscent of the formula 1 − e−x; indicating that the quality of topics quickly increases after
only a small number of documents although it takes many documents to achieve near perfect
accuracy. This implies that topic models could detect weak signals and emerging trends early
as a few documents can produce relatively decent topics. However, for coherence, there is not
such a clear relationship between topic size and coherence; the bigger topics do not seem to gain
in coherence either. Nonetheless, a qualitative analysis of topics reveals that bigger topics are
much easier to interpret.

Figure 9.3: Topic coherence vs size. The x-axis uses a logarithmic scale.
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Figure 9.4: Label accuracy vs size. The x-axis uses a logarithmic scale.

Hence, we have demonstrated that while coherence is good at avoiding bad topics it is not
sufficient to select good topic trees. The accuracy of small labels on the other hand provides us
with a better understanding of the quality of a topic tree as a whole.

9.9.2 Flat vs hierarchical models

In Table 9.2, we can observe the label accuracy for the flat topic model for all the labels and
the small one corresponding to a smaller set of documents. While the label accuracy can get
close to 60%, it is mostly a reaction to the highly unbalanced labels in the corpus. Once, we
focus on the smaller labels, this accuracy nearly drops to zero. This demonstrates the power of
the hierarchical topic model to uncover smaller topics.

As we automatically label topics in a topic tree, we can also observe the coherence of the
hierarchy produced. While the original labels are not structured in a hierarchy, we observe that
the label taxonomy created from the topic tree is aligned with common sense knowledge (see
Figure 9.5 for a sample). Thus, indicating that hierarchical topic models can produce coherent
taxonomy from labeled documents.
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Figure 9.5: Selected sample of the label hierarchy produced. The entire label tree is too large
to be shown entirely.

9.9.3 Hyper-parameter importance

Finally, we can study the hyper-parameter importance. We observe that ε and φ are posi-
tively correlated with label accuracy which controls document-topic and word-topic distributions,
indicating that a more uniform distribution provides a better prior for this dataset. Nonetheless,
for coherence higher values for φ and lower values for ε are preferable. For ε this discrepancy is
interesting, although we have discussed that the model (E1) with the lowest value for ε is one
of the worst models qualitatively and in terms of label accuracy.

If we believe in label accuracy, we may conclude that it is better to start with a uniform
prior which does not setup the model in any specific local minima. Indeed, lower values of ε or φ
will lead the model to select some random configuration for these distributions early on before it
has been able to see the whole data; this is called the burn-in phase of the Gibbs procedure. On
the other hand, starting with a uniform prior distribution forces the model to remain uniform
until it has seen enough data that the empirical distribution in the data takes precedence over
the prior. However, even higher values for these prior eventually lead to degrading performance
since it will eventually have a higher weight than the data itself.

Considering the parameters which control the creation of topics during training. We see that
higher β, which controls the rate at which we create new topics in the corpus tree, does not
impact significantly label accuracy but does negatively impact coherence. We observe similar
results for α: the rate at which we create new topics in the document trees. Expect that higher
values for α is correlated with higher small label accuracy. Once again, these priors mostly
impact the model during the burn-in phase of the Gibbs procedure.
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T3A T3A (S) Coh
0.776 0.316 0.303
0.482 0.252 0.303
0.745 0.315 0.300
0.734 0.298 0.302
0.720 0.325 0.302
0.774 0.316 0.304

Table 9.4: Comparing the performance 5 models with the same parameters but a different
random seed

9.9.4 Stability

In terms of stability, we observe that the model is mostly stable in terms of label accuracy
with one model out of 5 that displays a significant deviation from the rest which we confirmed
based on a qualitative analysis. However, coherence does not provide such observation. Once
again, this demonstrates that our measure provides additional information about a model’s
performance.

9.9.5 Do we extract unexpected topics?

While quantitative analysis of topic models is important, it is necessary to remember that
such models are not predictive. Hence, part of the reason we use topic models is to discover
unexpected topics, meaning topics that do not corresponds to any known label. Indeed, it is
important to note that while we have 90 labels in the dataset, we tend to extract about 1500
topics on average over all of the hierarchica models trained. Meaning that on average less than
5% of topics receive a label.

Hence, other unexpected topics have been extracted as well. We can look at the small
unexpected topics extracted by the B5 model, these topics are displayed in Table 9.5. These
topics are not specifically described by any of the labels present in the original dataset.

9.10 Conclusion

Our study introduces a novel method for evaluating hierarchical topic models based on
labeled data. We trained hierarchical topic models on the Reuters-21578 dataset and used the
known labels to evaluate the quality of the resulting topics. Our approach differs from previous
methods by focusing on known topics that we expect to extract, providing a better understanding
of the completeness of the model.
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Ship attack .5% Ore reserves 1.1% Trade dispute .5%
iranian estimate semiconductor
attack reserve tariff
tanker property pact
missile exploration sanction
platform total impose
war mining market
oil development japanese
protect prove failure
ship result chip
shipping program computer

Table 9.5: A selection of small unexpected topics. These topics have a frequency of 0.49%,
1.11%, and 0.49% respectively.

We found that labels with a large number of documents yielded high accuracy above 70%,
while smaller labels (1% of the data) had lower accuracy, but remained relatively high for a multi-
class accuracy with 90 labels at 37.9%. Additionally, we observed a logarithmic relationship
between label accuracy and size, indicating that even a small increase in the number of documents
could greatly improve the quality of the extracted topics. This suggests that topic models can
detect weak signals and emerging trends early, with just a few documents producing relatively
decent topics.

Furthermore, we demonstrated that coherence alone is not sufficient to select a good topic
tree, and the accuracy of small labels provides a better understanding of the quality of the topic
tree. Our approach also allowed us to discover unexpected topics, such as trade disputes or ore
reserves, that would have been missed by traditional evaluation methods. Lastly, we have shown
that hierarchical topic models produce relatively coherent label taxonomy.

Future research could build on our approach by developing better evaluation methods that
consider not only the quality of topics extracted but also the ability to extract expected topics.
Another direction for future research is to measure the unexpectedness of extracted topics since
topic models are often used to discover unknown patterns in the data.

This Chapter proposed a new solution for evaluating topic models, especially hierarchical
ones. As the final Chapter of this thesis it demonstrates the capabilities of hierarchical topic
models such as HTMOT to extract topics, especially small or unexpected ones.

This Chapter was submitted to RANLP 2023.
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Part V

CONCLUSION, LIMITATIONS AND
FUTURE WORK
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In the methodology Section of this thesis, a comprehensive investigation was conducted into
various aspects of natural language processing (NLP) tasks, including coreference resolution
and topic modeling. State-of-the-art techniques were utilized, and the performance of different
embeddings and models was compared, considering factors such as size, predictive performance,
and training time. A hierarchical and temporal topic modeling approach was employed for trend
analysis, providing advantages over existing methods by enabling fine-grained analysis, tracking,
and discovery of topic interactions.

For coreference resolution (i.e. the research question Q1), it was found that a smaller model
using only character embeddings achieved 86% of the performance of a larger model using
multiple embeddings (Elmo, GloVe, and character embeddings), while being only 1.2% of its
size. Surprisingly, the smallest model using solely character embeddings even outperformed
the previous state-of-the-art word embedding method, Word2Vec. The study also revealed that
adding additional embeddings did not significantly improve performance, suggesting diminishing
returns in terms of predictive performance per embedding. Interestingly, the largest model
converged faster during training, indicating a weak correlation between size and run-time.

In the context of topic modeling (i.e. the research question Q2), a new model capable of
modeling hierarchy and time jointly was proposed, providing a more detailed understanding of
a corpus by incorporating sub-topics that represent specific events. A novel implementation of
Gibbs sampling for hierarchical topic models was developed for training, offering a more exact
alternative to stochastic variational inference (SVI). Additionally, the study demonstrated how
extracting entities enhanced the interpretation and understanding of topics at a deeper level.

Topic tracking was explored (i.e. the research question Q3), introducing a semantic-based
method that performed comparably to a state-of-the-art lexical-based approach. This high-
lighted the value of incorporating semantic information in tracking topics. The challenges asso-
ciated with tracking topics in a hierarchy, such as differentiating between topics and sub-topics,
and evaluating the tracking quality of deeper, more esoteric topics, were discussed. It was
suggested that future studies should explore hybrid methods that integrate both lexical and
semantic information for topic tracking.

In the evaluation part of the thesis (i.e. the research question Q4), the effectiveness of
various evaluation methods for hierarchical topic models was examined. In particular, we ex-
perimented with the Word Intrusion task for evaluating hierarchical topic models and identified
several limitations. The human-annotated version of the task proved challenging for annotators,
particularly when evaluating deep sub-topics, leading to low accuracy. The automated version
achieved near-perfect accuracy but failed to align with human judgment, suggesting it was too
easy for computers to learn. These findings emphasized the necessity for more reliable evaluation
methods that consider the completeness of extracted topics.
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A novel approach based on labeled data was proposed, demonstrating its potential in eval-
uating hierarchical topic models. The method focused on known topics and their extraction,
providing insights into the completeness of the model. The results showed that labels associated
with a large number of documents yielded higher accuracy in topic extraction. However, smaller
labels still achieved relatively high accuracy for a multi-class setting. The relationship between
label accuracy and size followed a logarithmic trend, suggesting that even a small increase in
the number of documents significantly improved the quality of extracted topics. This indicated
the ability of topic models to detect weak signals and emerging trends with just a few relevant
documents.

The coherence metric was found to be insufficient to evaluate a model as a whole as high
coherence could be achieved even when all the topics extracted were the same. On the other
hand, label accuracy provided valuable insights into the topic model’s performance. The ap-
proach also uncovered unexpected topics that would have been missed by traditional evaluation
methods, showcasing the capabilities of hierarchical topic models in uncovering novel patterns
and information.

Future research should focus on developing evaluation methods that consider both the qual-
ity of extracted topics and the ability to extract expected topics. Additionally, measuring the
unexpectedness of extracted topics could provide further insights, as topic models are often em-
ployed to discover previously unknown patterns. Moreover, with the advent of Large Language
Models, new techniques for topic modelling extraction and interpretation could be envisaged.

While the methodology shows promise in providing valuable insights for organizations by
identifying emerging weak signals, there are certain limitations that need to be acknowledged.
These include the difficulty of evaluating unsupervised models, the necessity of manual topic in-
terpretation, and the lack of online learning capabilities, requiring re-running the entire method-
ology whenever the corpus grows.

Future work could address these limitations by focusing on developing better methods for
evaluating topic models, improving automatic labeling of topics for easier interpretation based
on large language models, and integrating sentiment analysis to understand feelings towards
weak signals and emerging trends. Additionally, exploring the applicability of the methodology
to various domains and creating more sophisticated techniques for topic tracking and interaction
analysis could further enhance organizations’ ability to make informed strategic decisions based
on evolving landscapes in their industries.

116



References

117



118



Bibliography

[Agrawal et al., 2018] Agrawal, A., Fu, W., and Menzies, T. (2018). What is wrong with topic
modeling? and how to fix it using search-based software engineering. Information and Software
Technology, 98:74–88.

[akhavanhariri et al., 2022] akhavanhariri, e., Mansouri, A., and Najafabadi, H. (2022). Identi-
fication of hot topics and trends in knowledge and information science, based on text mining
techniques. Iranian Journal of Information Processing & Management, 38.

[Alghamdi and Alfalqi, 2015] Alghamdi, R. and Alfalqi, K. (2015). A survey of topic modeling
in text mining. International Journal of Advanced Computer Science and Applications, 6(1).

[Allan et al., 2003] Allan, J., Lavrenko, V., and Connell, M. E. (2003). A month to topic de-
tection and tracking in hindi. ACM Transactions on Asian Language Information Processing
(TALIP), 2(2):85–100.

[Almeida and Xexéo, 2019] Almeida, F. and Xexéo, G. (2019). Word embeddings: A survey.
CoRR, abs/1901.09069.

[AlSumait et al., 2008] AlSumait, L., Barbará, D., and Domeniconi, C. (2008). On-line lda:
Adaptive topic models for mining text streams with applications to topic detection and track-
ing. In 2008 eighth IEEE international conference on data mining, pages 3–12. IEEE.

[Andrus, 1997] Andrus, D. L. (1997). Book review: Inside the tornado: Marketing strategies
from silicon valley’s cutting edge. Journal of Marketing, 61(2).

[Ansoff, 1975] Ansoff, H. I. (1975). Managing strategic surprise by response to weak signals.
California management review.

[Arnold et al., 2016] Arnold, C. W., Oh, A., Chen, S., and Speier, W. (2016). Evaluating topic
model interpretability from a primary care physician perspective. Computer methods and
programs in biomedicine, 124:67–75.

[Azzam et al., 1999] Azzam, S., Humphreys, K., and Gaizauskas, R. (1999). Using coreference
chains for text summarization. In Coreference and Its Applications, CorefApp ’99, page 77–84,
USA. Association for Computational Linguistics.

[Barde and Bainwad, 2017] Barde, B. V. and Bainwad, A. M. (2017). An overview of topic
modeling methods and tools. In 2017 International Conference on Intelligent Computing and
Control Systems (ICICCS). IEEE.

[Barhom et al., 2019] Barhom, S., Shwartz, V., Eirew, A., Bugert, M., Reimers, N., and Dagan,
I. (2019). Revisiting joint modeling of cross-document entity and event coreference resolution.
In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pages 4179–4189, Florence, Italy. Association for Computational Linguistics.

[Bastani et al., 2019] Bastani, K., Namavari, H., and Shaffer, J. (2019). Latent dirichlet al-
location (lda) for topic modeling of the cfpb consumer complaints. Expert Systems with
Applications, 127:256–271.

119



[Bejan and Harabagiu, 2010] Bejan, C. and Harabagiu, S. (2010). Unsupervised event corefer-
ence resolution with rich linguistic features. In Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics, pages 1412–1422, Uppsala, Sweden. Association
for Computational Linguistics.

[Berardi et al., 2015] Berardi, G., Esuli, A., and Marcheggiani, D. (2015). Word embeddings go
to italy: A comparison of models and training datasets. In IIR.

[Bhatia et al., 2017] Bhatia, S., Lau, J. H., and Baldwin, T. (2017). An automatic approach
for document-level topic model evaluation. In Proceedings of the 21st Conference on Com-
putational Natural Language Learning (CoNLL 2017), pages 206–215, Vancouver, Canada.
Association for Computational Linguistics.

[Birjali et al., 2021] Birjali, M., Kasri, M., and Beni-Hssane, A. (2021). A comprehensive sur-
vey on sentiment analysis: Approaches, challenges and trends. Knowledge-Based Systems,
226:107134.

[Biswas, 2023] Biswas, S. S. (2023). Role of chat gpt in public health. Annals of Biomedical
Engineering, pages 1–2.

[Blei et al., 2004] Blei, D. M., Griffiths, T. L., Jordan, M. I., and Tenenbaum, J. B. (2004).
Hierarchical topic models and the nested chinese restaurant process. Advances in neural
information processing systems, 16(16):17–24.

[Blei et al., 2017] Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017). Variational inference:
A review for statisticians. Journal of the American Statistical Association, 112(518):859–877.

[Blei and Lafferty, 2006] Blei, D. M. and Lafferty, J. D. (2006). Dynamic topic models. In
Proceedings of the 23rd international conference on Machine learning, pages 113–120.

[Blei and Lafferty, 2007] Blei, D. M. and Lafferty, J. D. (2007). A correlated topic model of
science. The Annals of Applied Statistics.

[Blei et al., 2003] Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation.
J. Mach. Learn. Res., 3(null):993–1022.

[Bojanowski et al., 2017] Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. (2017). Enrich-
ing word vectors with subword information. Transactions of the Association for Computational
Linguistics, 5:135–146.

[Breitzman and Thomas, 2015] Breitzman, A. and Thomas, P. (2015). The emerging clusters
model: A tool for identifying emerging technologies across multiple patent systems. Research
Policy, 44(1).

[Cambria and White, 2014] Cambria, E. and White, B. (2014). Jumping nlp curves: A review of
natural language processing research. IEEE Computational intelligence magazine, 9(2):48–57.

[Chang et al., 2009] Chang, J., Gerrish, S., Wang, C., Boyd-graber, J., and Blei, D. (2009).
Reading tea leaves: How humans interpret topic models. In Bengio, Y., Schuurmans, D.,
Lafferty, J., Williams, C., and Culotta, A., editors, Advances in Neural Information Processing
Systems, volume 22, pages 288–296. Curran Associates, Inc.

[Choubey and Huang, 2017] Choubey, P. K. and Huang, R. (2017). Event coreference resolution
by iteratively unfolding inter-dependencies among events. In Proceedings of the 2017 Confer-
ence on Empirical Methods in Natural Language Processing, pages 2124–2133, Copenhagen,
Denmark. Association for Computational Linguistics.

120



[Coffman, 1997] Coffman, B. (1997). Weak signal research, part i-v. Journal of Transition
Management.

[Cybulska and Vossen, 2014] Cybulska, A. and Vossen, P. (2014). Using a sledgehammer to
crack a nut? lexical diversity and event coreference resolution. In Proceedings of the Ninth
International Conference on Language Resources and Evaluation (LREC’14), pages 4545–
4552, Reykjavik, Iceland. European Language Resources Association (ELRA).

[Dagan et al., 1997] Dagan, I., Lee, L., and Pereira, F. (1997). Similarity-based methods for
word sense disambiguation. In 35th Annual Meeting of the Association for Computational
Linguistics and 8th Conference of the European Chapter of the Association for Computational
Linguistics, pages 56–63, Madrid, Spain. Association for Computational Linguistics.

[Devlin et al., 2019] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT:
Pre-training of deep bidirectional transformers for language understanding. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–
4186, Minneapolis, Minnesota. Association for Computational Linguistics.

[Doogan and Buntine, 2021] Doogan, C. and Buntine, W. (2021). Topic model or topic twaddle?
re-evaluating semantic interpretability measures. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 3824–3848, Online. Association for Computational Linguistics.

[dos Santos and Guimarães, 2015] dos Santos, C. and Guimarães, V. (2015). Boosting named
entity recognition with neural character embeddings. In Proceedings of the Fifth Named Entity
Workshop, volume abs/1505.05008, pages 25–33, Beijing, China. Association for Computa-
tional Linguistics.

[Dos Santos and Zadrozny, 2014] Dos Santos, C. N. and Zadrozny, B. (2014). Learning
character-level representations for part-of-speech tagging. In Proceedings of the 31st Interna-
tional Conference on International Conference on Machine Learning - Volume 32, volume 32
of ICML’14, page II–1818–II–1826. JMLR.org.

[El Akrouchi et al., 2021] El Akrouchi, M., Benbrahim, H., and Kassou, I. (2021). End-to-
end lda-based automatic weak signal detection in web news. Knowledge-Based Systems,
212:106650.

[Fan et al., 2021] Fan, W., Guo, Z., Bouguila, N., and Hou, W. (2021). Clustering-based online
news topic detection and tracking through hierarchical bayesian nonparametric models. In
Proceedings of the 44th International ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 2126–2130.

[Glenn and Gordon, 2009] Glenn, J. and Gordon, T. (2009). Environmental scanning. Futures
research methodology.

[Gregoriades et al., 2021] Gregoriades, A., Pampaka, M., Herodotou, H., and Christodoulou, E.
(2021). Supporting digital content marketing and messaging through topic modelling and
decision trees. Expert Systems with Applications, 184:115546.

[Gromann and Declerck, 2018] Gromann, D. and Declerck, T. (2018). Comparing pretrained
multilingual word embeddings on an ontology alignment task. In Proceedings of the Eleventh
International Conference on Language Resources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association (ELRA).

121



[Held et al., 2021] Held, W., Iter, D., and Jurafsky, D. (2021). Focus on what matters: Ap-
plying discourse coherence theory to cross document coreference. In Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing, pages 1406–1417, Online
and Punta Cana, Dominican Republic. Association for Computational Linguistics.

[Hiltunen, 2007a] Hiltunen, E. (2007a). Where do future oriented people find weak signals.
FFRC eBook.

[Hiltunen, 2007b] Hiltunen, E. (2007b). Where do future-oriented people find weak signals.
FFRC eBook, 2:2007.

[Hiltunen, 2008] Hiltunen, E. (2008). The future sign and its three dimensions. Futures, 40:247–
260.

[Hong et al., 2011] Hong, L., Yin, D., Guo, J., and Davison, B. D. (2011). Tracking trends:
Incorporating term volume into temporal topic models. In Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’11, page
484–492, New York, NY, USA. Association for Computing Machinery.

[Hoyle et al., 2021] Hoyle, A. M., Goel, P., Peskov, D., Hian-Cheong, A., Boyd-Graber, J. L.,
and Resnik, P. (2021). Is automated topic model evaluation broken?: The incoherence of
coherence. CoRR, abs/2107.02173.

[Humphreys et al., 1997] Humphreys, K., Gaizauskas, R., and Azzam, S. (1997). Event coref-
erence for information extraction. In Operational Factors in Practical, Robust Anaphora Res-
olution for Unrestricted Texts.

[Joshi et al., 2019] Joshi, M., Levy, O., Zettlemoyer, L., and Weld, D. (2019). BERT for coref-
erence resolution: Baselines and analysis. In Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pages 5803–5808, Hong Kong, China.
Association for Computational Linguistics.

[Kenyon-Dean et al., 2018] Kenyon-Dean, K., Cheung, J. C. K., and Precup, D. (2018). Re-
solving event coreference with supervised representation learning and clustering-oriented reg-
ularization. In Proceedings of the Seventh Joint Conference on Lexical and Computational
Semantics, pages 1–10, New Orleans, Louisiana. Association for Computational Linguistics.

[Kim and Lee, 2017] Kim, J. and Lee, C. (2017). Novelty-focused weak signal detection in
futuristic data: Assessing the rarity and paradigm unrelatedness of signals. Technological
Forecasting and Social Change, 120.

[Kim et al., 2016] Kim, J., Park, Y., and Lee, Y. (2016). A visual scanning of potential dis-
ruptive signals for technology roadmapping: investigating keyword cluster, intensity, and
relationship in futuristic data. Technology Analysis & Strategic Management, 28(10).

[Kim et al., 2013] Kim, S., Kim, Y.-E., Bae, K.-J., Choi, S.-B., Park, J.-K., Koo, Y.-D., Park,
Y.-W., Choi, H.-K., Kang, H.-M., and Hong, S.-W. (2013). Nest: A quantitative model for
detecting emerging trends using a global monitoring expert network and bayesian network.
Futures, 52:59–73.

[Kim et al., 2020] Kim, S., Park, H., and Lee, J. (2020). Word2vec-based latent semantic anal-
ysis (w2v-lsa) for topic modeling: A study on blockchain technology trend analysis. Expert
Systems with Applications, 152:113401.

122



[Korfiatis et al., 2019] Korfiatis, N., Stamolampros, P., Kourouthanassis, P., and Sagiadinos, V.
(2019). Measuring service quality from unstructured data: A topic modeling application on
airline passengers’ online reviews. Expert Systems with Applications, 116:472–486.

[Kuusi and Hiltunen, 2012] Kuusi, O. and Hiltunen, E. (2012). The signification process of the
future sign. Journal of Futures Studies, 16.

[Lau et al., 2014] Lau, J. H., Newman, D., and Baldwin, T. (2014). Machine reading tea leaves:
Automatically evaluating topic coherence and topic model quality. In Proceedings of the 14th
Conference of the European Chapter of the Association for Computational Linguistics, pages
530–539, Gothenburg, Sweden. Association for Computational Linguistics.

[Lee et al., 2012] Lee, H., Recasens, M., Chang, A., Surdeanu, M., and Jurafsky, D. (2012).
Joint entity and event coreference resolution across documents. In Proceedings of the 2012
Joint Conference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, pages 489–500, Jeju Island, Korea. Association for Computational
Linguistics.

[Lee et al., 2017] Lee, K., He, L., Lewis, M., and Zettlemoyer, L. (2017). End-to-end neural
coreference resolution. In Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, pages 188–197, Copenhagen, Denmark. Association for Computational
Linguistics.

[Lee and Park, 2018] Lee, Y.-J. and Park, J.-Y. (2018). Identification of future signal based
on the quantitative and qualitative text mining: a case study on ethical issues in artificial
intelligence. Quality & Quantity: International Journal of Methodology, 52(2).

[Li et al., 2018] Li, H., Li, X., Caragea, D., and Caragea, C. (2018). Comparison of word
embeddings and sentence encodings as generalized representations for crisis tweet classification
tasks. Proceedings of ISCRAM Asia Pacific.

[Li et al., 2020] Li, Z., Wallace, E., Shen, S., Lin, K., Keutzer, K., Klein, D., and Gonzalez, J. E.
(2020). Train large, then compress: Rethinking model size for efficient training and inference
of transformers.

[Liu et al., 2020a] Liu, H., Chen, Z., Tang, J., Zhou, Y., and Liu, S. (2020a). Mapping the
technology evolution path: a novel model for dynamic topic detection and tracking. Sciento-
metrics, 125(3):2043–2090.

[Liu et al., 2018] Liu, H., Ma, M., Huang, L., Xiong, H., and He, Z. (2018). Robust neural ma-
chine translation with joint textual and phonetic embedding. arXiv preprint arXiv:1810.06729.

[Liu et al., 2020b] Liu, Q., Kusner, M. J., and Blunsom, P. (2020b). A survey on contextual
embeddings.

[Lu and Ng, 2018] Lu, J. and Ng, V. (2018). Event coreference resolution: A survey of two
decades of research. In Lang, J., editor, Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden,
pages 5479–5486. ijcai.org.

[Martin and Johnson, 2015] Martin, F. and Johnson, M. (2015). More efficient topic modelling
through a noun only approach. In Proceedings of the Australasian Language Technology As-
sociation Workshop 2015, pages 111–115, Parramatta, Australia.

123



[Miculicich Werlen and Popescu-Belis, 2017] Miculicich Werlen, L. and Popescu-Belis, A.
(2017). Using coreference links to improve Spanish-to-English machine translation. In Pro-
ceedings of the 2nd Workshop on Coreference Resolution Beyond OntoNotes (CORBON 2017),
pages 30–40, Valencia, Spain. Association for Computational Linguistics.

[Mikolov et al., 2013] Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient esti-
mation of word representations in vector space.

[Mimno et al., 2007] Mimno, D., Li, W., and McCallum, A. (2007). Mixtures of hierarchical top-
ics with pachinko allocation. In Proceedings of the 24th international conference on Machine
learning, pages 633–640.

[Moosavi and Strube, 2016] Moosavi, N. S. and Strube, M. (2016). Which coreference evaluation
metric do you trust? a proposal for a link-based entity aware metric. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 632–642, Berlin, Germany. Association for Computational Linguistics.

[Mühlroth and Grottke, 2018] Mühlroth, C. and Grottke, M. (2018). A systematic literature
review of mining weak signals and trends for corporate foresight. Journal of Business Eco-
nomics, 88(5):643–687.

[Nallapati et al., 2007] Nallapati, R. M., Ditmore, S., Lafferty, J. D., and Ung, K. (2007). Mul-
tiscale topic tomography. In Proceedings of the 13th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 520–529.

[Newman et al., 2010] Newman, D., Lau, J. H., Grieser, K., and Baldwin, T. (2010). Automatic
evaluation of topic coherence. In Human Language Technologies: The 2010 Annual Conference
of the North American Chapter of the Association for Computational Linguistics, HLT ’10,
page 100–108, USA. Association for Computational Linguistics.

[Nickel and Kiela, 2017] Nickel, M. and Kiela, D. (2017). Poincaré embeddings for learning
hierarchical representations. Advances in neural information processing systems, 30.

[Paisley et al., 2015] Paisley, J., Wang, C., Blei, D. M., and Jordan, M. I. (2015). Nested hierar-
chical dirichlet processes. IEEE Transactions on Pattern Analysis and Machine Intelligence,
37(2):256–270.

[Park and Cho, 2017] Park, C. and Cho, S. (2017). Future sign detection in smart grids through
text mining. Energy Procedia, 128. International Scientific Conference “Environmental and
Climate Technologies”, CONECT 2017, 10-12 May 2017, Riga, Latvia.

[Patel and Bhattacharyya, 2017] Patel, K. and Bhattacharyya, P. (2017). Towards lower bounds
on number of dimensions for word embeddings. In Proceedings of the Eighth International Joint
Conference on Natural Language Processing (Volume 2: Short Papers), pages 31–36, Taipei,
Taiwan. Asian Federation of Natural Language Processing.

[Peirce, 1868] Peirce, C. S. (1868). Some consequences of four incapacities. Journal of Speculative
Philosophy.

[Peloso, 2020] Peloso, A. (2020). Leveraging the power of micro-macro trends in contemporary
organizations. Journal of Applied Business and Economics, 22(4).

124



[Peng et al., 2016] Peng, H., Song, Y., and Roth, D. (2016). Event detection and co-reference
with minimal supervision. In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, pages 392–402, Austin, Texas. Association for Computational
Linguistics.

[Pennington et al., 2014] Pennington, J., Socher, R., and Manning, C. (2014). GloVe: Global
vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 1532–1543, Doha, Qatar. Association for
Computational Linguistics.

[Peters et al., 2018] Peters, M., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and
Zettlemoyer, L. (2018). Deep contextualized word representations. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers), pages 2227–2237, New Orleans,
Louisiana. Association for Computational Linguistics.

[Pradhan et al., 2012] Pradhan, S., Moschitti, A., Xue, N., Uryupina, O., and Zhang, Y. (2012).
CoNLL-2012 shared task: Modeling multilingual unrestricted coreference in OntoNotes. In
Joint Conference on EMNLP and CoNLL - Shared Task, pages 1–40, Jeju Island, Korea.
Association for Computational Linguistics.

[Pujara and Skomoroch, 2012] Pujara, J. and Skomoroch, P. (2012). Large-scale hierarchical
topic models. In NIPS Workshop on Big Learning, volume 128.

[Song et al., 2008] Song, Y., Zhang, L., and Giles, C. L. (2008). A non-parametric approach to
pair-wise dynamic topic correlation detection. In 2008 Eighth IEEE International Conference
on Data Mining, pages 1031–1036. IEEE.

[Stahlberg, 2020] Stahlberg, F. (2020). Neural machine translation: A review. Journal of Arti-
ficial Intelligence Research, 69:343–418.

[Stylianou and Vlahavas, 2021] Stylianou, N. and Vlahavas, I. (2021). A neural entity corefer-
ence resolution review. Expert Systems with Applications, 168:114466.

[Su et al., 2008] Su, J., Yang, X., Hong, H., Tateisi, Y., and Tsujii, J. (2008). Coreference
Resolution in Biomedical Texts: a Machine Learning Approach. In Ashburner, M., Leser, U.,
and Rebholz-Schuhmann, D., editors, Ontologies and Text Mining for Life Sciences : Current
Status and Future Perspectives, number 08131 in Dagstuhl Seminar Proceedings, Dagstuhl,
Germany. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany.

[Sukthanker et al., 2018] Sukthanker, R., Poria, S., Cambria, E., and Thirunavukarasu, R.
(2018). Anaphora and coreference resolution: A review.

[Teh et al., 2006] Teh, Y. W., Jordan, M. I., Beal, M. J., and Blei, D. M. (2006). Hierarchical
dirichlet processes. Journal of the American Statistical Association, 101(476):1566–1581.

[Tekn, 2020] Tekn, Y. (2020). Optimization of lda parameters. In 2020 28th Signal Processing
and Communications Applications Conference (SIU), pages 1–4.

[Tschannen et al., 2018] Tschannen, M., Bachem, O., and Lucic, M. (2018). Recent advances in
autoencoder-based representation learning. arXiv preprint arXiv:1812.05069.

[Wang et al., 2019] Wang, H.-C., Hsu, T.-T., and Sari, Y. (2019). Personal research idea recom-
mendation using research trends and a hierarchical topic model. Scientometrics, 121(3):1385–
1406.

125



[Wang and McCallum, 2006] Wang, X. and McCallum, A. (2006). Topics over time: A non-
markov continuous-time model of topical trends. In Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’06, page 424–433,
New York, NY, USA. Association for Computing Machinery.

[Wiseman et al., 2016] Wiseman, S., Rush, A. M., and Shieber, S. M. (2016). Learning global
features for coreference resolution. In Proceedings of the 2016 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language Technologies,
pages 994–1004, San Diego, California. Association for Computational Linguistics.

[Xiao and Stibor, 2010] Xiao, H. and Stibor, T. (2010). Efficient collapsed gibbs sampling for
latent dirichlet allocation. In Sugiyama, M. and Yang, Q., editors, Proceedings of 2nd Asian
Conference on Machine Learning, volume 13 of Proceedings of Machine Learning Research,
pages 63–78, Tokyo, Japan. JMLR Workshop and Conference Proceedings.

[Xu et al., 2019] Xu, G., Meng, Y., Chen, Z., Qiu, X., Wang, C., and Yao, H. (2019). Research
on topic detection and tracking for online news texts. IEEE access, 7:58407–58418.

[Yang et al., 2015] Yang, G., Wen, D., Kinshuk, Chen, N.-S., and Sutinen, E. (2015). A novel
contextual topic model for multi-document summarization. Expert Systems with Applications,
42(3):1340–1352.

[Yoon, 2012] Yoon, J. (2012). Detecting weak signals for long-term business opportunities using
text mining of web news. Expert Systems with Applications, 39.

[Zhao et al., 2023] Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y., Zhang,
B., Zhang, J., Dong, Z., et al. (2023). A survey of large language models. arXiv preprint
arXiv:2303.18223.

[Zhe et al., 2011] Zhe, G., Zhe, J., Shoushan, L., Bin, T., Xinxin, N., and Yang, X. (2011). An
adaptive topic tracking approach based on single-pass clustering with sliding time window. In
Proceedings of 2011 International Conference on Computer Science and Network Technology,
volume 2, pages 1311–1314. IEEE.

[Zhou and Chen, 2013] Zhou, X. and Chen, L. (2013). Event detection over twitter social media
streams. The VLDB Journal, 23(3):381–400.

[Zhu et al., 2016] Zhu, M., Zhang, X., and Wang, H. (2016). A lda based model for topic
evolution: Evidence from information science journals. In Proceedings of the 2016 Interna-
tional Conference on Modeling, Simulation and Optimization Technologies and Applications
(MSOTA 2016), pages 49–54.

[Zhu et al., 2017] Zhu, X., Klabjan, D., and Bless, P. N. (2017). Unsupervised terminological on-
tology learning based on hierarchical topic modeling. In 2017 IEEE International Conference
on Information Reuse and Integration (IRI), pages 32–41.

126


	I INTRODUCTION
	II BACKGROUND
	Trends and weak signals
	Introduction
	A Bit of History on Weak Signals
	A Modern Understanding of Weak Signals
	Detecting Weak Signals

	Event & Entity Coreference Resolution
	Introduction
	Event Coreference Resolution
	Entity Coreference Resolution
	Joint Models
	Evaluation Metrics

	Word Embeddings
	Introduction
	Static Embedding
	Contextual Embedding
	Studies on Embeddings' Performance

	Topic Models
	Introduction
	Flat Topic Models
	Hierarchical Topic Models
	Temporal Topic Models
	Topic Tracking

	Topic Model Evaluation


	III METHODOLOGY
	Word Embeddings in Event & Entity Coreference Resolution
	Preamble
	Introduction
	Methodology
	Original model
	Derived models

	Experimentation setup
	Dataset
	Experiments

	Results
	Results 1: All Embedding Families 
	Results 2: Static Embeddings
	Results 3: Contextual Embeddings

	Conclusion

	Hierarchical Topic Modelling Over Time
	Preamble
	Introduction
	Methodology
	Counting words using Infinite Dirichlet Trees
	Modelling temporality
	Training HTMOT using Gibbs sampling

	Sampling topic-word assignments (paths in the trees)
	Comparing HTMOT vs. nHDP

	Experimental setup
	Dataset
	Parameters

	Results and Discussion
	Convergence rate, training speed, and algorithmic complexity
	Results of the Word Intrusion Task
	A qualitative examination of the resulting topics 

	Conclusion

	Topic Tracking Using Word Embeddings
	Preamble
	Introduction
	Methodology
	Topic extraction
	Proposed Semantic Divergence measure
	Topic Tracking Algorithm

	Results : JS vs SD
	Conclusion


	IV EVALUATION
	A Critic of the Word Intrusion Task for Hierarchical Topic Models
	Preamble
	Introduction
	Methodology
	Results and Discussion
	Results of the Word Intrusion task
	The limitations of the Word Intrusion task in a hierarchical setting
	Future directions for topic model evaluation

	Conclusion

	Evaluating Hierarchical Topic Models Using a Labeled Dataset
	Preamble
	Introduction
	Methodology
	Overview
	Corpus
	Constructing and training the models
	Automatic titling
	Computing Top n+k label accuracy
	Results
	Coherence vs label accuracy
	Flat vs hierarchical models
	Hyper-parameter importance
	Stability
	Do we extract unexpected topics?

	Conclusion


	V CONCLUSION, LIMITATIONS AND FUTURE WORK

