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Abstract: The use of micro/meso-fluidic reactors has resulted in both 
new scenarios for chemistry and new requirements for chemists. 
Through flow chemistry, large-scale reactions can be performed in 
drastically reduced reactor sizes and reaction times. This obvious 
advantage comes with the concomitant challenge of re-designing 
long-established batch processes to fit these new conditions. The 
reliance on experimental trial-and-error to perform this translation 
frequently makes flow chemistry unaffordable, thwarting initial 
aspirations to revolutionize chemistry. By combining computational 
chemistry and machine learning, we have developed a model that 
provides predictive power tailored specifically to flow reactions. We 
show its applications to translate batch to flow, provide mechanistic 
insight, contribute reagent descriptors, and to synthesize a library of 
novel compounds in excellent yields after executing a single set of 
conditions. 

Introduction 

Organic chemistry has accompanied and sustained the 
development of fuels, therapies, and advanced materials 
throughout human history. Several technological revolutions later, 
the tools and overall context have changed: while robots and 
automated systems are being increasingly implemented in labs 
and on production lines, chemists remain pivotal assets behind 
innovation. The horizon of their imagination has extended, 
feeding new ways to access molecular architectures and cover 
emerging needs. Countless iterations and disruptive advances 
however still converge to a very pragmatic conclusion: developing 
new synthetic routes is resource-, time- and waste-intensive. A 
fundamental shift in how chemists approach their work is 
necessary. 

Flow technology is one of the most impactful paradigm 
changes in the modern history of organic chemistry, offering 
superior process control, reduced waste generation, and 
enhanced safety from R&D to production scale.[1–3] These 
advantages, which are obtained through the use of 
micro/mesofluidic reactors (MFRs) can be further enhanced with 
the integration of artificial intelligence,[4,5] process analytical 

technology (PAT) tools,[6] and automation.[7,8] This makes flow 
technology particularly adapted to robust and versatile production 
systems,[9,10] and yet, breaking away from centuries of 
macroscopic batch synthesis has remained difficult.[11] There are 
mainly three aspects that keep making reactions challenging to 
perform with MFRs: slow kinetics which imposes onerous reactor 
size requirements, viscous liquids which are difficult to pump, or 
solid particles which can clog the reactor channel. The last two 
issues have been addressed by designing MFR configurations 
with specific technical features. Slow kinetics, on the other hand, 
represent a particular challenge considering that flow reactions 
typically require a timeframe below 15 min to be scalable. 
Traditional chemistry has not been developed to afford high 
conversions within such a narrow window nor does it indeed have 
the tools to reach them (Fig. 1A).[11]  

Flow reactions are typically accelerated by using process 
intensification techniques, such as high reaction concentrations 
and/or increased temperatures.[12] The development of such 
intensified conditions has, until now, depended on trial-and-error 
chemistry, occasionally aided by a design-of-experiments 
approach or machine learning (ML) such as Bayesian 
Optimization models,[13] to increase the efficiency of the 
exploration. Predictive models based on mining data from 
databases such as Reaxys, while successful when applied to 
batch protocols, have limited use for flow chemistry due to the 
relatively small number of reactions that have been reported in 
MFRs.[14] Other types of predictive ML models based on 
Structure-Reactivity Relationships (SReARs) to relate chemical 
structure to a desired output (e.g., function or enantiomeric 
excess) have been developed,[15] yet only in the context of batch 
reactions. Despite the great insight they provide, the dependence 
of these models on experimental data represents a greater 
challenge for a young field such as flow chemistry where very little 
knowledge exists to even guide initial experiments. If we are to 
catch up with centuries of accumulated batch chemistry 
knowledge, the reliance of predictive tools on experimental data 
needs to be lessened. 

While searching for less experiment-dependent ways to 
predict feasibility in flow, we became interested in the 
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mathematical relationship described between kinetics (k), 
temperature (T) and the activation barrier (∆G‡) of a reaction 
afforded by Erying’s equation [1] (with k = reaction rate constant, 
κ = transmission coefficient, H = Planck's constant (J s), kB = 
Boltzmann constant (J K-1), T = temperature (K), R = gas constant 
(cal K−1 mol−1), ΔG‡ = activation barrier (cal mol-1)). Considering 
the rate laws of non-zero order chemical reactions, a kinetic 
constant (k) can then be related to the rate and concentration of 
the reaction. In other words, if ∆G‡ can be accessed with high 
accuracy, Erying’s equation becomes an invaluable gateway to 
predict a reaction time, at any given temperature and 
concentration.  

 

𝑘𝑘 =  𝜅𝜅𝑘𝑘𝐵𝐵𝑇𝑇
ℎ

𝑒𝑒(−𝛥𝛥𝐺𝐺
‡

𝑅𝑅𝑅𝑅 )      [1] 
These observations led us to develop a quantum chemistry-
guided assistant, a prototype of which was successfully applied to 
the development on a large scale of an intensified flow synthesis 
of a contraceptive pharmaceutical.[16] This prototype used DFT to 
provide an ideal set of reagents, residence times, and 
temperatures to reach the target conversion, therefore minimizing 
waste, spending, and exposure to highly active hormonal 
substances. Despite its effectiveness, the method had two main 
drawbacks: suboptimal accuracy of the estimated conditions and 
taxing computational requirements to access high quality ∆G‡ 
information. Therefore, a more practical solution was sought (Fig. 
1B).  

 
Figure 1. Overview of the interdisciplinary approach for revisiting the paradigm of reaction optimization. (A) One of the main challenges in translating from batch to 
flow conditions: batch chemistry was developed relying on extended reaction times whereas flow requires process intensification. (B) Our rationale for the adoption 
of quantum chemistry and machine learning to access rational and intelligent flow processes. (C) Case study: electrophilic amination between nitrosoarenes 1 and 
silyl enol ethers 2 toward hydroxylaminated ketones 3. Compounds 3 are valuable aminated building blocks. (D) Representative examples of APIs potentially 
synthesizable through electrophilic aminations with nitrosoarenes.
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The use of a relative logarithm (log(k/k0)), comparing a reaction 
of interest (k) to the kinetics of a reference reaction (k0), was 
proposed as a first step to increase the accuracy of our estimates. 
Aside from providing data normalization and variance stabilization, 
log(k/k0) can provide immediate intuitive insight about how fast or 
slow a reaction is, compared to the model reaction. Reactions 
involving nitrosoarene electrophiles 1 (Fig. 1C) were selected to 
test this approach. The choice was based on their potent nitrogen-
transfer capacities which unfortunately remain underexploited 
due to their capricious reactivity.[17–19] Developing a protocol for 
the application of 1 would provide a precious tool for the 
preparation of pharmaceutically relevant aminated derivatives 
(Fig. 1D). 

Results and Discussion 

A Roadmap to Flow 

The reaction between nitrosobenzene (1a) and unsubstituted silyl 
enol ether (2a) results in the highly selective formation of the 
corresponding N-addition product (3a) and was chosen as the 
model reaction with kinetic constant k0.[20] The analogous reaction 
between 2-nitrosotoluene (1b) and 2a was used to define a first 
relative constant log(k1b/k0). Extensive computational and 
experimental probing of these two reactions was performed to 
show the robust accuracy of this metric (Supporting Information, 
see Section 7.1.). 

Current records for precise ∆G‡ determination feature a 
mean absolute error (MAE) between 0.5 and 1 kcal mol-1 which 
translates to a ∼5-fold change in the predicted reaction time.[21–23] 
This means that an estimated residence time of 5 min could take 
place anywhere between 1 to 25 min, and therefore that the 
margin of error exceeds the narrow time window for optimal flow 
conditions (i.e., >15 min). Twenty computational methods to 
determine ∆G‡ were assessed, from which a combination of 
Minnesota functionals[24] with corrective factors for concentration 
and quasi-harmonic oscillators,[25] provided values that were 
within 0.3 kcal mol-1 of experimental ∆G‡ values, reducing the 
uncertainty for predicted time to ∼1.5-fold (Supporting Information, 
see Section 5.3.). The method was translated into a DIY 
LabVIEWTM software (SnapPy) to automatically extract corrected 
∆G‡ and kinetic data from output files generated by a Quantum 
Mechanics software. 

To be applicable to a library of compounds, the time 
required to predict log(k/k0) needed to be reduced from hours to 
a few minutes. The need for a method to determine log(k/k0) 
without having to compute ∆G‡ was therefore evident. Instead, 
easily computed reagent properties (e.g., electronic, steric, or 
vibrational) to find log(k/k0) through SReARs were explored.[15,26] 
Fourteen different reagent properties for each of 25 nitrosoarenes 
1 (Fig. 2A) and 25 silyl enol ethers 2 (Fig. 2A) were computed and 
analyzed to identify feature intercorrelations. The size of the data 
set and its inherent features were selected based on previous 
works.[27–29] This resulted in the selection of two properties to be 
used as features for a ML training set, specifically the nitrogen 
charge and the B5 Sterimol steric parameter for nitrosoarenes 1, 
and the C=C stretching and the B1 Sterimol steric parameter for 
silyl enol ethers 2 (Fig. 2B). The ∆G‡ values for the reactions 
between these same 25 nitrosoarenes 1 (Fig. 2A) with 2a and for 
the 25 silyl enol ethers 2 with 1a were computed to calculate 

log(k/k0). We then searched for a ML model to relate log(k/k0) to 
the selected features. Model generalization was assessed with k-
fold cross-validation (k = 5). A total of four ML models were 
evaluated, namely, Least Absolute Shrinkage and Selection 
Operator (LASSO), Ridge, K-Nearest Neighbors (KNN) and 
Random Forest (RF) regressions (Supporting Information, see 
Sections 6.1. and 6.2.). Among the four, the Ridge regression 
afforded the clearest correlation for both the nitrosoarene 1 (R²train 
= 0.93) and the silyl enol ether 2 training sets (R²train = 0.93) (Fig. 
2C). 

Having trained our system to determine log(k/k0) using only 
in silico reagent properties, an experimental test procedure was 
performed. The trained ML-model was used to determine optimal 
temperatures to experimentally access ∆G‡ for the reactions 
between five novel nitrosoarenes (1c-g) with 2a, and between five 
silyl enol ethers (2b-f) with 1a (Fig. 2C). This was done by 
classifying reactions in 5 categories according to their 
computationally derived log(k/k0) value. Each of the 5 categories 
suggested a temperature and residence time range at which 
relevant kinetic information could be obtained (Fig. 2C, table). 
Category 5 reactions, for which no reactivity was predicted using 
MFRs, were also recorded as negative data.[30,31] This 
experimental guidance is particularly relevant to design kinetics 
experiments in MFRs where, contrary to batch procedures, time 
is defined by the MFR setup, meaning kinetics cannot be 
performed simply by monitoring the reaction over time, as it is 
typically done for batch kinetics.  

The experiments were performed using an automated flow 
setup inspired by Jensen et al.[32] Our setup incorporated real-time 
monitoring of temperature, pressure and conversion in four 
compact units: (1) a dosing unit including feed solutions and 
syringe pumps; (2) a reactor unit combining a 
proportional−integral−derivative (PID) temperature controller and 
a stainless steel coil reactor; (3) a downstream analytical unit 
featuring an in-line IR spectrometer and (4) a DIY control unit 
relying on LabVIEWTM (enFLOW) to coordinate all auxiliaries and 
execute instructions from an Excel sheet.  

The data from the test set was plotted into the  Ridge 
regressions which provided a clear correlation for the reactions 
varying the nitrosoarene (1c-g) (R²test = 0.96) and the reactions 
varying the silyl enol ethers (2b-f) (R²test = 0.96, Fig 2B). The ∆G‡ 
values extracted from our ML model afforded a MAE of ~0.2 kcal 
mol-1 and a root-mean-square error (RMSE) of ~0.3 kcal mol-1 in 
comparison to the experimental values (Supporting Information, 
see Section 7.2.). 

Extension to Mayr’s Database   

This ML model was used to contribute to the reaction prediction 
scale developed by Mayr which predicts a reaction rate using 
experimentally derived reactivity parameters for the electrophile 
(E) and the nucleophile (sN and N) according to equation [2].[33–35]  
 

log (𝑘𝑘20 °𝐶𝐶) = 𝑠𝑠𝑁𝑁(𝐸𝐸 + 𝑁𝑁)    [2] 
 

To add nitrosoarene electrophiles 1 to the database, the 
reactivity parameters (sN and N) associated with our reference 
nucleophile (2a) needed to be obtained in acetonitrile. This was 
performed by determining the kinetics of the reactions between 
silyl enol ether 2a and four azodicarboxylates (4, Fig. 3A) for 
which the reactivity parameter E was reported.[36] The 
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nucleophilicity parameters for 2a allowed to calculate the E 
parameter of each nitrosoarene 1a-g using our kinetics data. The 
E parameters obtained were in the range of -8 to -11, comparable 

to the values of azodicarboxylates (Supporting Information, see 
Section 7.3.).  
 

  
Figure 2. Development of the QM/ML predictive model. (A) Presentation of the various sets used. Colors represent the category for the kinetics in flow (green: cat. 
1, blue: cat. 2, orange: cat. 3; purple: cat. 4).  (B) Ridge regressions to describe nitrosoarenes 1 (left, drawn orbital: LUMO) or silyl enol ethers 2 (right, drawn orbital: 
HOMO) for both training and test sets. (C) Overview of the experimental testing with the presentation of discriminating categories based on log(k/k0). Each category 
suggested optimum reaction conditions for the kinetics studies.  
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Figure 3. Applications of this work in Physical Organic Chemistry. (A) Electrophilicity Mayr indexes determined for nitrosoarenes (1), as compared to 
azodicarboxylates (4). (B) Linear free-energy relationships for nitrosoarenes (1, left) and silyl enol ethers (2, right) based on the electrophilic substituent constants 
σp+ from Brown.[40][ Purple values highlight predicted σp+ from unreported substituents. (C) Molecular electrostatic potential (MEP) surfaces of various nitrosoarenes 
(1) and silyl enol ethers (2) ranked based on the electrophilic substituent constants σp+ from Brown[40]  (in red: negative potential, in blue: positive potential). 
 
According to Mayr’s categories, their reactions with silyl enol 
ethers such as 2a are correctly classified as occurring under 
thermal activation,[37,38] except for 1g which reacts spontaneously 
(Fig. 3A). Aside from contributing the experimentally obtained E 
parameters for a new family of electrophiles to Mayr’s database, 

we offer a ML model that could be used in the future to provide 
estimates for substituted nitrosoarenes of choice.[39]  
 
 

10.1002/anie.202311526

A
cc

ep
te

d 
M

an
us

cr
ip

t

Angewandte Chemie International Edition

This article is protected by copyright. All rights reserved.

 15213773, ja, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/anie.202311526 by U

niversity of L
iege L

ibrary L
éon G

raulich, W
iley O

nline L
ibrary on [25/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



RESEARCH ARTICLE    

6 
 

Application toward LFERs  

Using the ML model, Linear Free-Energy Relationships (LFER) 
analysis of the reaction mechanism could be performed without 
any additional experiments. The computed log(k/k0) values for 15 
nitrosoarenes 1 and silyl enol ethers 2 substituted at the para 
position were plotted against the corresponding electrophilic 
substituent constant (σp

+) reported by Brown (Fig. 3B).[40] 
When the molecular probe is borne by nitrosoarene 1, the 

rate of the electrophilic amination is accelerated with increasingly 
powerful electron withdrawing groups (EWG). This reaction 
acceleration, indicated by a positive reaction constant (ρ), reflects 
the incoming electron flow at the transition state. A ρ value of +3.6 
highlights the high sensitivity of the reactivity of nitrosoarenes to 
electronic modulation. On the other hand, when the molecular 
probe is located on silyl enol ether 2, two trends are observed. 
Initially, EWGs moderately deter the reaction due to the 
decreasing electron density of the nucleophile (ρ = -0.59). 
However, when strong EWGs are used (i.e. 4-CF3, 4-CN, 4-NO2), 
the trend inverts and a ρ value of +3.33 is obtained. Such a drastic 
change in behavior reflects the ambivalent nature of both 
nitrosoarenes 1 and silyl enol ethers 2.[17,41] The incorporation of 
strong EWGs in 2 results in an inverse electronic demand by 
which 2 behaves as the electrophile and 1 as the nucleophile. To 
further confirm this finding, the molecular electrostatic potential 
(MEP) has been computed, clearly showing a change in the 
electrophilic and nucleophilic centers (Fig. 3C). The broader 
dispersion of the scatter plot of 2 emphasizes a higher sensitivity 
towards steric hindrance, rather than the electronic factors 
described by Brown’s electrophilic constants. This observation 
agrees with the main descriptor identified for the ML model, νc=c, 
which gathers both electronic and steric information.[42] The ML 
model can also be used to predict unreported σp

+, as illustrated 
for compounds 1f,j and 2e (Fig. 3B). 

Predicting optimum reaction conditions 

A particularly powerful application of our ML model is the capacity 
to predict the time needed to reach a target conversion at a given 
concentration and temperature for a combination of reagents 1,2. 
We have expanded the use of log(k/k0)-based categories 
developed for the testing of the ML model (Fig. 2C, table) to rank 
reactions based on their efficiency in a MFR. We propose to use 
the log(k/k0) value to sort reactions in five categories based on 
the predicted residence time. Firstly, because categories depend 
on reaction conditions, a temperature and concentration need to 
be defined before a reaction can be sorted. From there, reactions 
can be considered as follows: Category 1 (residence time <1 min) 
for reactions with outstanding potential in MFR; category 2 
(residence time of 1-5 min) indicates a high potential in MFR; 
category 3 reactions (residence time of 5-15 min) are considered 
to have medium potential; and category 4 (residence time of 15 
min) have a low potential to be applied in MFR. Category 5 
reactions require more than 15 min under the chosen conditions 
and are considered unsuitable for flow. Considering the properties 
of our system, 150 °C and 0.50 M (or 0.25 when required for 
solubility) have been chosen as  reference conditions to classify 
our reactions (Fig. 4B). 

Using the ML model, the log(k/k0) for the reactions of three 
novel nitrosoarenes 1h-j with 2a, and for the reactions of three 

new silyl enol ethers (2g-i) with 1a were calculated. These values, 
along with the log(k/k0) of the reagents studied thus far (1a-g and 
2a-f), were used to assign a category and to calculate the 
residence time needed to obtain a target conversion (tconv.) 
between 85 or 95% at 150 °C (5 bars). These instructions were 
then transferred to the automated flow platform (Fig. 4A), which 
successfully synthesized a total of 18 new compounds (Fig. 4C) 
after testing only one set of conditions per reaction (Supporting 
Information, see Section 7.4.). Noticeably, these conditions were 
non-generic, each of them being tailored to fit the reactivity of 
each different compound. 

The predicted conditions led to experimental conversions 
(expconv) that matched the targeted conversions with high fidelity 
(MAE ∼3% and RMSE ∼4%), with the exception of compounds 3c 
and 3m. For the latter, an azoxy side-product 5c,m (Fig. 4A) was 
isolated from the reactor effluent, which indicated a hydride 
transfer from the aminated product 3c,m to the dimer 1c,m as a 
side-reaction.[43] Increasing the excess of silyl enol ether to 3 
equivalents reinstated the expected conversion. 

When high selectivity was obtained, the pure product could 
be isolated after evaporation of the effluent under reduced 
pressure. For reactions requiring purification, the isolation of the 
product was sometimes problematic due to its instability. Nine 
aminated products were isolated in excellent yields (3a,d-h, 86-
91%) and seven in moderate isolated yields (3b,c,i,k,l,o,q, 60-
79%), while products 3m (23%) and 3r (42%) were isolated in 
lower amounts as a result of TMS deprotection or degradation into 
benzoic acid.[44] Predictions were not impacted by these side-
reactions since they occurred after the electrophilic amination (Fig. 
4A).  

Because substituent effects are additive, our model is not 
limited to predicting reactions using necessarily either 1a or 2a. 
When considering a reaction between both a new nitrosoarene 1k 
and new silyl enol ether 2j (Fig 4C, 3s), the relative rate constant 
log(k1k2j/k0) can be obtained by adding the predicted values for 
1k and of 2j compared to a same model reaction k0 (i.e., 
log(k1k/k0) + log(k2j/k0)). Nitrosoarene 1k is predicted to be an 
outstanding electrophile, with a log(k1k/k0) value of +2.0 (category 
1). Silyl enol ether 2j is a poorly reactive nucleophile, with a 
predicted log(k1k/k0) of -1.3 (category 4). Their combination 
predicted a category 2 reaction with a log(k(1k2j)/k0) of 0.7, 
indicating an overall high potential in flow. The predicted 
conversion (tconv: 95%) was successfully obtained 
experimentally (expconv: 96%).  
 
Conclusion 

When chemists optimize reactions in MFRs, they typically either 
feed upon preliminary batch experiments (prior art or trials), trials 
and errors or guided trials (DoE) in available flow systems. This 
optimization process is time-, resource-consuming, and produces 
ample waste. This is particularly concerning when the availability 
of resources is scarce, when toxic/high activity or unstable 
compounds are involved. We have developed a different 
approach. A ML-DFT was constructed for the expedient 
computation of an in silico kinetic metric, log(k/k0), which predicts 
with high fidelity experimental data (MAE ~0.2 kcal mol-1 and 
RMSE ~0.3 kcal mol-1). This tool was successfully applied to 
nitrosoarene electrophilic aminations for which no prior 
experimental data exists. In addition to drastically accelerating 
optimization, this tool also offered a powerful gateway to 
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incorporate data into known Physical Organic Chemistry 
databases (Mayr’s reactivity scale and LFER). The model here 
reported is based on the properties of the reagents and therefore 
is limited to exothermic reactions in which the transition state is 
closer in energy and structure to the reagents. However, the 
construction of an analogous model applied to endothermic 

reactions could be envisaged, as well as models accommodating 
other factors excluded here such as catalyzed processes or non-
homogeneous conditions. Complementary tools to analyze 
competitive pathways and to suggest corrective actions should 
also be developed in the future.

Figure 4. Applications of this work in synthetic organic chemistry. (A) Overview of the flow setup for the synthesis of silylated α-hydroxylaminated ketones 3 and 
description of the side-products. (B) Illustration of a predictive model to perform the reactions at 0.5 M to obtain 95% conversion. Black lines represent combinations 
of temperature and log(k/k0) to reach 95% conversion within 1, 5 or 15 min of residence time. (C) Products synthesized using conditions predicted by the ML model. 
Conversions and yields were determined by off-line HPLC analyses using calibration curves at the maximal absorption of each species (DAD detector). Predicted 
conversions: [tconv.] – Experimental conversions: expconv. – Yields: (yield). Values of log(k/k0) are written next to the molecule. Colors represent the category 
(green: cat. 1 – outstanding, blue: cat. 2 – high, orange: cat. 3 – medium; purple: cat. 4 – low).  

10.1002/anie.202311526

A
cc

ep
te

d 
M

an
us

cr
ip

t

Angewandte Chemie International Edition

This article is protected by copyright. All rights reserved.

 15213773, ja, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/anie.202311526 by U

niversity of L
iege L

ibrary L
éon G

raulich, W
iley O

nline L
ibrary on [25/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



RESEARCH ARTICLE    

8 
 

 
The computation power required to develop this type of 

model is available to many chemistry labs, facilitating its 
widespread adoption. To assist any person wishing to explore this 
approach, we have included a step-by-step tutorial in our 
supporting information (see Supporting Information, Scheme S1). 
Indeed, the growing accessibility of quantum mechanics and 
machine learning makes it increasingly hard to justify a 
guesstimate approach to synthesis. This is particularly crucial for 
flow syntheses where the expense of re-writing centuries of batch 
protocols threatens to outweigh the potential benefits of flow. It is 
in great deal the lack of rational ways of performing this translation 
that has deferred the transformation that flow technology was 
once hailed to bring to the chemical world. 

Aside from the pragmatic purpose of reaction optimization, 
the ease these tools provide to advance physical organic 
chemistry descriptors is an invitation to increase the depth of 
analysis of chemical developments. The DFT methods we 
identified also go beyond the application shown here, being 
sufficiently accurate to immediately provide an intensified 
temperature protocol that would suggest if and how a known 
batch reaction can be applied in flow. It is meant to serve, in a 
way, as a chemical translator from batch to flow. We expect that 
expediting the development of flow chemistry will have further 
repercussions in industrial reshoring efforts, by providing safer 
and greener methods in accordance with modern regulations.  

If more than one process needs to be evaluated, e.g., when 
constructing chemical libraries, the ML model becomes a door 
towards rational synthesis development. Because the ML model 
provides reactivity predictions as well as mechanistic insight 
solely through computational data, it reduces the need for 
experimentation. This is showcased by the successful use of 
categories based purely on quantum mechanics and machine 
learning to predict optimal conditions to perform the testing. 
Although test sets are an important part of ML methods, the 
strength of our approach lies in the construction of a model with 
predictive power based purely on computational data. In other 
words, reactions and conditions for which no previous knowledge 
exists, can be preliminarily modeled without experimentation. The 
ML model becomes therefore a scout for the vast and new 
chemical space that flow chemistry provides.  
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