LIFE CYCLE ASSESSMENT AND ECO-DESIGN: **TOWARDS OPTIMIZED REFRACTORIES TO SUPPORT LOW-CO₂ STEELMAKING**

Sarah Badioli^{1,2}, Thibault Champion¹, Léna Roumiguier¹, Marielle Dargaud¹, Angélique Léonard²

- Saint-Gobain Research Provence, Performance Ceramics and Refractories PCR, France
- 2. University of Liège, Chemical Engineering, Products, Environment, and Processes PEPs, Belgium

Objectives and context

Investigate, model and quantify the environmental burdens generated by the production and the usage of refractory materials in the steelmaking through a life cycle perspective.

- Find the most sustainable option for both producers and users
- Support the transition to the green steel

GAY-LUSSAC

ACADEMIC DAY

SAINT-GOBAIN

In relation to three pillars of circular economy:

- > Design the loop: modelling and optimising relevant production routes of several refractories in an eco-design perspective;
- > Slow down the loop: optimising environmental footprint of the refractories once applied in the steel industry;
- > Close the loop: integrating recycled materials in the production route.

Methodology

LCA: Life Cycle Assessment

Scientific multi-step methodology for a systematic analysis of the potential environmental impacts of a product or a service during its life cycle.

Figure 2. Life Cycle Assessment Framework (from ISO 14040, ISO 14044)

Materials

Structure of the project

The life cycle of the refractory is studied in three steps: > Expansion of the system boundaries with the gradual inclusion of all the stages of the refractory life.

Possible recycling routes

EF 3.0 impact assessment method

Goals

Filling the actual **gaps of the LCAS** of refractories

- Provide a methodology for data gathering and integration
- Improvement of the LCA database with process level data collection
- > Full modelling of 3 production routes (curing, sintering and fused casting) \succ Analysis of the entire life cycle (cradle-to-cradle)
- \succ Enhancement of the eco-design conception and the recyclability potential

¹ Hay, T.; Visuri, V.-V.; Aula, M.; Echterhof, T. (2021) A Review of Mathematical Process Models for the Electric Arc Furnace Process. *Steel Res. Int.*, 92(3), 2000395

Sarah Badioli

MSCA Doctoral candidate

Saint-Gobain Confidential & Proprietary

sarah.badioli@saint-gobain.com Sarah.Badioli@uliege.be

Figure 6. Most common End-of-life management routes of refractories

