Université de Liège Faculté des Sciences Département de Géologie Laboratoire de Minéralogie

Crystal chemistry and nomenclature of pegmatitic iron-manganese phosphates

Prof. Frédéric Hatert

Paris, October 17th 2023

s Fillow<u>ites</u>

Triphylites

First meeting with Christian

SFMC Field-trip - 1998 « Minéralogie du métamorphisme alpin »

Dora Maira Massif

Fillowites

Triphylites

Second meeting with Christian

5 th International Conference MINERALOGY AND MUSEUMS Paris France 2004

Hydrothermal synthesis and crystal structure of $Na(Na,Mn)_7Mn_{22}(PO_4)_{18}$. 0.5H₂O, a new compound of fillowite structure type

PAUL KELLER^{1,*}, FRÉDÉRIC HATERT^{2,3}, FALK LISSNER⁴, THOMAS SCHLEID⁴ and ANDRÉ-MATHIEU FRANSOLET²

- Synthetic fillowite-type phosphates
- 15 cationic sites and 6 PO₄ tetrahedra
- (a ~ 15 Å and c ~ 43 Å, space group R-3)
- Fe-Mn randomly distributed on several sites

Impossible to apply the CNMMN « 50 % rule »
Grouping of sites necessary

The « Dominant constituent rule »

The Canadian Mineralogist Vol. 46, pp. 717-728 (2008) DOI: 10.3749/canmin.46.3.717 THE IMA-CNMNC DOMINANT-CONSTITUENT RULE REVISITED AND EXTENDED 1. The « 50 % » rule FRÉDÉRIC HATERT§ Vice-Chairman, Commission on New Minerals, Nomenclature and Classification (CNMNC) of the International « 50 % mark » Mineralogical Association (IMA), Laboratory of Mineralogy, University of Liège, Bâtiment B-18, B-4000 Liège, Belgium 50 % A^{n+} B^{n+} ERNST A.J. BURKE Chairman, Commission on New Minerals, Nomenclature and Classification (CNMNC) 4. The « Dominant Mineral 1 Mineral 2 nd Life Sciences, Vrije Universiteit Amsterdam, **ACKNOWLEDGEMENTS** The Netherlands а valency » rule We thank Frank Hawthorne, Christian Chopin and Thomas Armbruster for starting the discussion on the b application of the dominant-constituent rule, and for « Dominant valency rule » providing examples showing that it should be revised urgently. Several CNMNC members helped to improve $D^{n+}{}_{N} \longrightarrow E^{n+}{}_{N}$ $C^{(n+1)+}$ A^{n+} « 33.3 % marks » N Site Mineral 3. « Valency-imposed $(A_{0,4}B_{0,6})_M (C_{0,4}D_{0,3}E_{0,3})_N$ Mineral double-site occupancy » Mineral 2 Mineral 3 $A^{n+}{}_{M} \longrightarrow (B^{n+}, C^{n+})_{M}$ D^{n+} E^{n+1} Mineral 2 « 50 % mark » Mineral 3 B^{n+} C^{n+1} $A^{n+}_{M} \longrightarrow (B^{(n+1)+}_{0,5}C^{(n-1)+}_{0,5})_{M}$ b 2. The « Dominant $|^{50\,\%}(B^{(n+1)+}_{0.5}C^{(n-1)+}_{0.5})|$ A^{n+} 5. Grouping of sites with similar constituent » rule crystal-chemical affinities Mineral 2 Mineral 1

• Li(Fe²⁺,Mn)(PO₄)

Fillowites

Triphylites

Iron-manganese pegmatite phosphates

Alluaudite, Kibingo pegmatite, Rwanda

NaMnFe³⁺₂(PO₄)₃

- a ~ 12, b ~ 12.5, c ~ 6.5 Å, β ~ 115°
- Space group C2/c

Fillowite, Buranga pegmatite, Rwanda

- $Na_2Ca(Mn,Fe^{2+},Mg)_7(PO_4)_6$ a ~ 15 Å and c ~ 43 Å
- Space group R-3

Triphylite + sarcopside, Cañada pegmatite, Spain (BSE)

Alluaudites Introduction

Fillowites

Triphylites

The alluaudite group

François II Alluaud (1778-1866) Mayor of Limoges and mineralogist

Alluaudite, []NaMnFe³⁺²(PO₄)₃

Augustin-Alexis Damour (1808-1902)

Varulite, NaCaMn²⁺₃(PO₄)₃ Varuträsk, Sweden

Hagendorfite, NaCaMnFe²⁺₂(PO₄)₃ Hagendorf-Süd pegmatite, Germany

Fillowites

Triphylites

The alluaudite structure

A(2)': gable disphenoid
A(1): distorted cube
M(1): very distorted octahedron
M(2): distorted octahedron

C2/c,
$$Z = 4$$

a ~ 12, *b* ~ 12.5, *c* ~ 6.5 Å, β ~ 115°

 $[A(2)A(2)'][A(1)A(1)'A(1)''_2]M(1)M(2)_2(PO_4)_3$

Fillowites

Triphylites

Crystal chemistry of natural and synthetic alluaudites

LIÈGE université

Crystal chemistry of the divalent cation in alluaudite-type phosphates: A structural and infrared spectral study of the Na_{1.5}(Mn_{1-x} M_x^{2+})_{1.5}Fe_{1.5}(PO₄)₃ solid solutions (x = 0 to 1, $M^{2+} = Cd^{2+}$, Zn^{2+})

ralogie, Université de Liège, Bâtiment B18, B-4000 Liège, Belgiu

Frédéric Hatert *

Moore & Ito (1979)

 $A(2)' \Rightarrow [], Na^+, K^+$ $A(1) \Rightarrow Na^+, Mn^{2+}, Ca^{2+}, []$ $M(1) \Rightarrow Mn^{2+}, Fe^{2+}, Ca^{2+}, Mg^{2+}$ $M(2) \Rightarrow Fe^{3+}, Fe^{2+}, Mn^{2+}, Mg^{2+}, Li^+$

Nomenclature based on the M(2) content:

Valency-imposed double-site occupancy was not allowed in 1979!

Cation	Ionic radius (Å)		Site			
	[VI]		A(2)'	A(1)	<i>M</i> (1)	<i>M</i> (2)
Aa⁺	1.15	1.28	Х	Х		
Na⁺	1.02	1.18	X	X	Х	
Cu⁺	0.77	-	р	p		
Li⁺	0.76	0.92	p	p		
Ca ²⁺	1.00	1.12	р	p	q	
Cd ²⁺	0.95	1.10	•	p	X	р
Mn ²⁺	0.830	0.96	р	p	Х	X
Fe ²⁺	0.780	0.92	•	•	Х	Х
Co ²⁺	0.745	0.90			Х	Х
Zn ²⁺	0.740	0.90			Х	Р
Cu ²⁺	0.73	-		р		
Mg ²⁺	0.720	0.89			Х	Х
In ³⁺	0.800	0.92			р	Х
Fe ^{³+}	0.645	0.78		р		Х
Ga ³⁺	0.620	-				р
Cr ³⁺	0.615	-				p
AI ³⁺	0.535	-				p

X : Complete occupancy of the site

p : Partial occupancy of the site

New end-member formulae

Mineral name	Old CNMNC formula	New ideal formula
Alluaudite	$(Na,Ca)(Mn,Mg,Fe^{2+})(Fe^{3+},Mn^{2+})_{2}(PO_{4})_{3}$	\Box NaMnFe ³⁺ ₂ (PO ₄) ₃
Ferroalluaudite	NaFe ²⁺ Fe ³⁺ ₂ (PO ₄) ₃	$\Box NaFe^{2+}Fe^{3+}(PO_4)_3$
Hagendorfite	NaCaMn ²⁺ Fe ²⁺ ₂ (PO ₄) ₃	$Na_2MnFe^{2+}Fe^{3+}(PO_4)_3$
Maghagendorfite	$(Na,\Box)MgMn^{2+}(Fe^{2+},Fe^{3+})_{2}(PO_{4})_{3}$	$Na_2MgFe^{2+}Fe^{3+}(PO_4)_3$
Varulite	$NaCaMn^{2+}(PO_4)_3$	$Na_2Mn_2Fe^{3+}(PO_4)_3$

+ Wyllieite-type phosphates: topologically similar structure, but significant AI and P2₁/n space group

+ Alluaudite-type arsenates: 6 formulae redefined

Fillowite-type phosphates

- Accessory Na-Ca-(Mn-Fe-Mg)-bearing anhydrous phosphates
- Occurring in granitic pegmatites, in metamorphic rocks and in iron meteorites
- Very complex crystal structure (a ~ 15 Å and c ~ 43 Å, space group R-3)
- The fillowite group contains 5 species, according to the CNMNC mineral list:

• <u>Fillowite:</u> Na₂CaMn²⁺₇(PO₄)₆ (Brush & Dana, 1879)

- <u>Johnsomervilleite</u>: Na₁₀Ca₆Fe²⁺₂₅Mg₁₈(PO₄)₃₆ (Livingstone, 1980)
- <u>Chladniite:</u> Na₂CaMg₇(PO₄)₆ (McCoy *et al.*, 1994)
- <u>Galileiite</u>: NaFe²⁺₄(PO₄)₃ (Olsen & Steele, 1997)
- <u>Stornesite-(Y)</u>, $Na_6(Ca_5Na_3)YMg_{43}(PO_4)_{36}$ (Grew *et al.*, 2006)

Extremely heterogeneous nomenclature!

Fillo<u>wites</u>

Triphylites

Chemical analyses and structural data

<u>Chladniite, Sapucaia</u> a = 15.1416(6) Åc = 43.123(2) Å $R_1 = 5.59 \%$

Johnsomervilleite, Loch Quoich a = 15.036(2) Å c = 42.972(9) Å $R_1 = 4.14 \%$

<u>Johnsomervilleite, Maplensata</u> a = 15.090(2) Åc = 43.050(9) Å $R_1 = 4.04 \%$

Fillowite, Buranga a = 15.122(1) Åc = 43.258(4) Å $R_1 = 3.79 \%$

Fillowites

Triphylites

The fillowite structure

- Extremely complex and compact crystal structure
- Alternation of polyhedra, forming rods aligned along the *c* axis

Examples of cationic distributions

Fillowite, Buranga, Rwanda (A) Fillowite, Kabira, Uganda (B) ASP RSS CSS BVS ASP RSS CSS TV BVS Site TV M(1)1.00 Mn 0.60 Mn + 0.40 Ca 2.06 23.15 25.00 2.02 22.70 23.00 2.00 2.00 M(2) 0.50 Mn + 0.50 Ca 21.65 22.50 2.07 1.00 Mn 23.38 25.00 2.00 2.00 2.03 M(3)0.65 Mn + 0.25 Fe³⁺ + 1.00 Fe²⁺ 25.38 26.00 22.24 22.75 2.05 1.99 2.00 2.09 0.10 🗆 1.08 0.40 Mn + 0.50 Fe³⁺ + M(4)1.00 Na 1.00 10.79 11.00 22.70 23.00 2.30 2.27 0.1 M(5)0.50 Mn + 0.50 Fe³⁺ 1.00 Fe²⁺ 26.00 1.98 24.13 2.00 25.45 25.50 2.50 2.33 M(6) 1.00 Mn 0.40 Mn + 0.60 Fe²⁺ 25.00 25.00 1.99 25.06 25.60 2.00 2.00 2.03 M(7)0.35 Mn + 0.65 Fe²⁺ 0.40 Mn + 0.60 Fe²⁺ 25.65 25.60 25.21 1.92 25.44 2.00 2.00 2.00 M(8) 0.55 Mn + 0.45 Fe²⁺ 25.08 0.55 Mn + 0.45 Fe²⁺ 25.45 2.00 1.96 25.12 25.45 2.00 1.99 M(9)0.55 Mn + 0.45 Fe²⁺ 0.70 Mn + 0.30 Fe²⁺ 24.94 25.45 1.97 25.00 25.30 2.00 2.00 2.01 M(10) 0.48 Mn + 0.52 Fe²⁺ 1.00 Mn 25.29 25.52 2.00 2.04 25.00 25.00 2.00 2.02 0.66 Mn + 0.34 Fe²⁺ M(11) 0.60 Mn + 0.40 Fe²⁺ 25.33 25.26 2.02 25.39 25.40 2.00 2.00 2.00 1.00 Na 0.65 Ca + 0.35 Na M(12) 16.85 1.65 10.91 1.01 17.03 1.36 11.00 1.00 M(13) 0.60 Fe²⁺ + 0.40 Fe³⁺ 24.28 26.00 2.40 2.31 1.00 Na 11.03 11.00 1.00 1.11 M(21) 1.00 Na 0.88 0.10 Ca + 0.90 Na 12.08 11.90 1.10 0.94 11.31 11.00 1.00 0.70 Ca + 0.30 Na M(31) 1.00 Na 17.17 17.30 1.70 1.45 11.00 11.00 1.00 1.01 EMP $Na_{1.795}Ca_{0.822}Mn_{4.077}Fe^{2+}_{2.486}Fe^{3+}_{0.359}(PO_4)_6$ $Na_{1.905}Ca_{0.908}Mn_{3.903}Fe^{2+}_{2.823}Fe^{3+}_{0.259}(PO_4)_6$ STR $Na_{1.967}Ca_{0.783}Mn_{4.230}Fe^{2+}_{2.600}Fe^{3+}_{0.383}(PO_4)_6$ $Na_{1.983}Ca_{0.750}Mn_{4.050}Fe^{2+}_{3.017}Fe^{3+}_{0.167}(PO_4)_6$

M(1) to M(11): M²⁺
M(12) to M(31): Na and Ca

Exchange of Na and (Fe,Mn)

Extremely disordered cationic distribution!

Exchange of Na and Ca

Definition of a new general formula

Sites	Occupancy	Total multiplicity (basis = 36 P)	Number of atoms in the formula (basis = 36 P)
M(1), M(2)	Fe²+, Mn, Mg (+ minor Ca, REE)	1 X 2 sites = 2	2 M ²⁺
M(3), M(5)	Fe ²⁺ , Mn, Mg	2 x 2 sites = 4	4 M ²⁺
M(6), M(7), M(8), M(9), M(10), M(11)	Fe²+, Mn, Mg	6 x 6 sites = 36	36 M ²⁺
M(4), M(13), M(21)	Two of these three sites are dominantly occupied by Na, while the other site is dominantly occupied by M ²⁺ .	2 x 3 sites = 6	4 Na 2 M ²⁺
M(12), M(31)	One of these two sites is dominantly occupied by Na, while the other site is dominantly occupied by (Ca, Na) with a Ca/Na ratio close to 2.	6 x 2 sites = 12	6 Na (4 Ca + 2 Na)
TOTAL			44 M ²⁺ (= C sites) 12 Na (= A sites) 4 Ca (= B sites)

The Canadian Mineralogist Vol. 59, pp. 781-796 (2021) DOI: 10.3749/canmin.2000043

CRYSTAL CHEMISTRY AND NOMENCLATURE OF FILLOWITE-TYPE PHOSPHATES

FRÉDÉRIC HATERT[§]

Laboratoire de Minéralogie, B18, Université de Liège, B-4000 Sart-Tilman, Belgium

Edward S. GREW

School of Earth and Climate Sciences, University of Maine, 5790 Bryand Global Sciences Center, Orono, Maine 04469-5790, USA

Fillowites

Triphylites

Nomenclature modifications

 $A_{3}BC_{11}(PO_{4})_{9}$

Grouping of crystallographic sites with the same affinities

Mineral name	Old CNMNC formula	New ideal formula
Fillowite	$Na_{2}CaMn^{2+}_{7}(PO_{4})_{6}$	$Na_3CaMn^{2+}_{11}(PO_4)_9$
Johnsomervilleite	$Na_{10}Ca_{6}Mg_{18}Fe^{2+}_{25}(PO_{4})_{36}$	$Na_{3}CaFe^{2+}_{11}(PO_{4})_{9}$
Chladniite	$Na_{2}CaMg_{7}(PO_{4})_{6}$	$Na_{3}CaMg_{11}(PO_{4})_{9}$
Galileiite	$NaFe_{4}^{2+}(PO_{4})_{3}$	$Na_{3}Fe^{2+}Fe^{2+}_{11}(PO_{4})_{9}$
« Stornesite-(Y) »	$Na_6(Ca_5Na_3)YMg_{43}(PO_4)_{36}$	DISCREDITED

The triphylite group

Red octahedra: M1 (Li, Na) Blue octahedra: M2 (Fe, Mn)

S.G. Pmnb

a = 6.092 Å

American Mineralogist, Volume 98, pages 767-772, 2013

Karenwebberite, Na(Fe²⁺,Mn²⁺)PO₄, a new member of the triphylite group from the Malpensata pegmatite, Lecco Province, Italy

PIETRO VIGNOLA,¹ FRÉDÉRIC HATERT,^{2,*} ANDRÉ-MATHIEU FRANSOLET,² OLAF MEDENBACH,³ VALERIA DIELLA,¹ AND SERGIO ANDÒ⁴

- Triphylite, LiFe²⁺(PO₄)
- Lithiophilite, LiMn(PO₄)
- Natrophilite, NaMn(PO₄)
- Karenwebberite, NaFe²⁺(PO₄)

Karen Louise Webber

Malpensata pegmatite, Italy

Fillowites

Triphylites

The triphylite and sarcopside structures

Chopinite: Mg₃(PO₄)₂

Topologically identical crystal structures
50 % of M(1) positions are vacant in sarcopside

Christian Chopin

Florencia Márquez Zavalía

Brian Mason (1917-2009)

Percy Quensel (1881-1966)

Introduction | Alluaudites

Fillowites

Triphylites

Fillowites

Triphylites

Nomenclature modifications

Eur. J. Mineral., 35, 427–437, 2023 https://doi.org/10.5194/ejm-35-427-2023 © Author(s) 2023. This work is distributed under the Creative Commons Attribution 4.0 License. European Journal of Mineralogy Open Access

Nomenclature of the triphylite group of minerals

Lyudmila M. Lyalina¹, Ekaterina A. Selivanova¹, and Frédéric Hatert² ¹Geological Institute, Kola Science Centre of the Russian Academy of Sciences, Apatity, 184209, Russia ²Laboratoire de Minéralogie, Université de Liège, B18, 4000 Liège, Belgium

Mineral	IMA List of Minerals, December 2022	New end-member formulae
Triphylite	$LiFe^{2+}(PO_4)$	$LiFe^{2+}(PO_4)$
Lithiophilite	$LiMn^{2+}(PO_4)$	$LiMn^{2+}(PO_4)$
Heterosite	$Fe^{3+}(PO_4)$	$Fe^{3+}(PO_4)$
Purpurite	$Mn^{3+}(PO_4)$	$Mn^{3+}(PO_4)$
Sicklerite	$LiMn^{2+}(PO_4)$	Discredited
Ferrisicklerite	$Li_{1-x}(Fe^{3+},Mn^{2+})(PO_4)$	Discredited
Simferite	$Li(Mg,Fe^{3+},Mn^{3+})_2(PO_4)_2$	$LiMg(PO_4)$
Karenwebberite	$NaFe^{2+}(PO_4)$	$NaFe^{2+}(PO_4)$
Natrophilite	$NaMn^{2+}(PO_4)$	$NaMn^{2+}(PO_4)$

Conclusions

• The CNMNC « Dominant constituent rule » now allows the grouping of crystallographic sites and a valency-imposed double-site occupancy.

• Nomenclature schemes of three Fe-Mn-phosphate groups were revisited according to these new guidelines.

• In alluaudites, a double occupancy is allowed on the M(2) sites of varulites and hagendorfites, for example.

• In fillowites, a grouping of several cationic sites is necessary to reduce the number of potential new species.

• In the triphylite group, ferrisicklerite and sicklerite were discredited since they correspond to intermediate members of solid solutions.