Université de Liège Faculté des Sciences Département de Géologie Laboratoire de Minéralogie

Pegmatite phosphates: from the field to the lab.

Prof. Frédéric Hatert

Leuven, December 16th, 2022

<u>Contents</u>

- 1. Introduction
- 2. Field observations
- 3. Petrography
- 4. Crystal chemistry and nomenclature
- 5. Hydrothermal experiments and stability
- 6. Conclusions

Intro.

Fillowite + alluaudite, Kabira pegmatite, Uganda

Johnsomervilleite, Loch Quoich, Scotland

Occurrence

-Granitic pegmatites -Metamorphic rocks -Meteorites

Chladniite, GRA 95209 meteorite

The Varuträsk pegmatite

Petro.

Varuträsk Skellefteå 5 km Paleoproterozoic (ca. 1.87 - 1.66 Ga) Paleoproterozoic (ca. 1.96 - 1.86 Ga) Revsund suite Acid to intermediate intrusive rocks Varuträsk formation Skellefte group Felsic to intermediate metavolcar Metabasic volcanic rocks (amphibolite, metabasalt) (granite, granodiorite) rocks (metarhyolite, metadacite, Bothnian / Vargfors group Metasedimentary rocks metaandesite) Paleoproterozoic (ca. 1.87 - 1.75 Ga) Metasedimentary carbonate rock Skellefte suite (calcitic to dolomitic marbles (metagreywackes, schists) Acid to intermediate intrusive rocks -Acid to intermediate intrusive rocks (granite, granodiorite) Deformation zone (granite, granodiorite) < Sunform - Anti

Field

Intro.

Stability

Crystallo.

Percy Quensel (1881-1966)

Brian Mason (1917-2009)

The alluaudite group

Petro.

Field

Intro.

Varulite, Na₂Mn₂Fe³⁺(PO₄)₃ Varuträsk, Sweden

François II Alluaud (1778-1866) Mayor of Limoges and mineralogist Chanteloube pegmatite Alluaudite, NaMnFe³⁺₂(PO₄)₃

Augustin-Alexis Damour (1808-1902)

Crystallo. Sta

Stability

Crystallo. Field Petro.

Stability

Genesis of alluaudites

Intro.

Oxidation mechanism

 $Na_2MnFe^{2+}Fe^{3+}(PO_4)_3 \rightarrow []NaMnFe^{3+}_2(PO_4)_3$ $Na^+ + Fe^{2+} \implies [] + Fe^{3+}$

Secondary origin Primary origin

Alluaudite, Kibingo pegmatite, Rwanda

Intro.

Petro.

Crystallo.

Stability

Let's go to the field!

Argentina

Crystallo.

Stability

Pegmatite zoning

Field

MINERALOGY AND GEOCHEMISTRY OF PHOSPHATES AND SILICATES IN THE SAPUCAIA PEGMATITE, MINAS GERAIS, BRAZIL: GENETIC IMPLICATIONS

MAXIME BAIJOT AND FRÉDÉRIC HATERT[§]

Laboratoire de Minéralogie, B18, Université de Liège, B-4000 Liège, Belgium

SIMON PHILIPPO

Section Minéralogie, Musée national d'histoire naturelle, Rue Münster 25, L–2160 Luxembourg, Grand-Duché de Luxembourg

<u>Fe-Mn phosphates in</u> <u>pegmatites</u>

Petro.

Field

Intro.

Crystallo.

Stability

Palermo #1 pegmatite, NH

Buranga pegmatite, Rwanda

Intro.

Field

Petro.

Crystallo. Stability

Back to the lab...

Fe-Mn phosphates

Petrography

Al phosphates

Thin sections

Intro.

Petro.

Crystallo. Stability

<u>The triphylite + sarcopside</u> assemblage

Intercroissances et inclusions dans les associations graftonite-sarcopside-triphylite

par ANDRÉ-MATHIEU FRANSOLET, Institut de Minéralogie, Université de Liège (¹).

Sarcopside (Fe,Mn)₃(PO₄)₂

<u>The alluaudite + fillowite</u> assemblage

Petro.

Field

Intro.

Crystallo.

Stability

Alluaudite + fillowite, Kabira, Uganda

Stability

The triphylite + alluaudite assemblage

PETROGRAPHIC EVIDENCE FOR PRIMARY HAGENDORFITE IN AN UNUSUAL ASSEMBLAGE OF PHOSPHATE MINERALS, **KIBINGO GRANITIC PEGMATITE, RWANDA**

ANDRÉ-MATHIEU FRANSOLET AND FRÉDÉRIC HATERT

Laboratoire de Minéralogie, Département de Géologie, Université de Liège, Bâtiment B18, Sart Tilman, B-4000 Liège, Belgique

Laboratoire de Minéralogie, Université Paul-Sabatier de Toulouse, 39, Allées Jules-Guesde, F-31000 Toulouse, France

Hagendorfite, alluaudite, and heterosite, Kibingo pegmatite, Rwanda

Complex assemblages from Sapucaia

Petro.

Intro.

Field

Crystallo.

Stability

Single-crystal X-ray diffraction

Petro.

Crystallo.

Stability

4-circle diffractometer

Field

Intro.

Diffraction spots

Structure determination

PIETRO VIGNOLA,¹ Frédéric Hatert,^{2,*} André-Mathieu Fransolet,² Olaf Medenbach,³ Valeria Diella,¹ and Sergio Andò⁴

NaFe²⁺PO₄

a = 4.882(1), b = 10.387(2), c = 6.091(1) Å Pbnm

Karen Louise Webber

Malpensata pegmatite, Italy

Field

Stability

<u>Zavalíaite, a new mineral...</u>

FRÉDÉRIC HATERT§

Laboratoire de Minéralogie, Département de Géologie, Université de Liège, Bâtiment B18, Sart Tilman, B-4000 Liège, Belgium

ENCARNACIÓN RODA-ROBLES

Departimento de Mineralogía y Petrología, Universidad del País Vasco/EHU, Apdo. 644, E-48080 Bilbao, Spain

a = 6.088(1) Å b = 4.814(1) Å c = 10.484(2) Å β = 89.42(3)° S.G. P2₁/c

$Mn_3(PO_4)_2$

Florencia Márquez Zavalía

The alluaudite structure

Petro.

Field

Intro.

A(2)': gable disphenoidA(1): distorted cubeM(1): very distorted octahedronM(2): distorted octahedron

Crystallo.

Stability

 $[A(2)A(2)'][A(1)A(1)'A(1)''2]M(1)M(2)_2(PO_4)_3$

Crystal chemistry of natural alluaudites Moore & Ito (1979)

 $\begin{array}{l} A(2)' \Rightarrow \operatorname{Na^{+}}, \, {}^{\bullet} \operatorname{K^{+}} \\ A(1) \Rightarrow \operatorname{Na^{+}}, \, \operatorname{Mn^{2+}}, \, \operatorname{Ca^{2+}}, \, {}^{\bullet} \\ M(1) \Rightarrow \operatorname{Mn^{2+}}, \, \operatorname{Fe^{2+}}, \, \operatorname{Ca^{2+}}, \, \operatorname{Mg^{2+}} \\ M(2) \Rightarrow \operatorname{Fe^{3+}}, \, \operatorname{Fe^{2+}}, \, \operatorname{Mn^{2+}}, \, \operatorname{Mg^{2+}}, \, \operatorname{Li^{+}} \end{array}$

Fransolet et al. (1985, 1986, 2004)

Oxidation mechanism:

Na⁺ + Fe²⁺ \Rightarrow • + Fe³⁺

 $Na_{2}MnFe^{2+}Fe^{3+}(PO_{4})_{3} \Rightarrow \bullet NaMnFe^{3+}_{2}(PO_{4})_{3}$ $Na_{2}Fe^{2+}_{2}Fe^{3+}(PO_{4})_{3} \Rightarrow \bullet NaFe^{2+}Fe^{3+}_{2}(PO_{4})_{3}$

Stability

LIÈGE université

Eur. J. Mineral. 2019, **31**, 807–822 Published online 8 July 2019

To Christian Chopin, for 30 years of dedicated service to EJM

A new nomenclature scheme for the alluaudite supergroup

New nomenclature for alluaudites

FRÉDÉRIC HATERT*

Laboratory of Mineralogy, B18, University of Liège, 4000 Liège, Belgium *Corresponding author, e-mail: fhatert@uliege.be

 $\frac{\text{Type 1: }^{M(2)}M^{2+} < 0.5}{\text{Na}M^{2+}\text{Fe}^{3+}_{2}(\text{PO}_{4})_{3}\text{: ALLUAUDITES}}$ $= \text{Na}M^{2+}\text{Mn}^{3+}_{2}(\text{PO}_{4})_{3}\text{: ROOT1}$ $\frac{\text{Type 2: } 0.5 < ^{M(2)}M^{2+} < 1.5}{\text{Na}_{2}M^{2+}\text{Fe}^{2+}\text{Fe}^{3+}(\text{PO}_{4})_{3}\text{: HAGENDORFITES}}$ $\text{Na}_{2}M^{2+}\text{Mn}^{2+}\text{Fe}^{3+}(\text{PO}_{4})_{3}\text{: VARULITES}}$ $\text{Na}_{2}M^{2+}\text{MgFe}^{3+}(\text{PO}_{4})_{3}\text{: ROOT2}$

<u>Hydrothermal experiments</u>

Petro.

Opened gold capsules

Field

Hydrothermal lab

Intro.

Gold tubes

Stability

Crystallo.

Hydrothermal bomb

P = 1 kbar T = 400-800°C

<u>Stability of the triphylite +</u> sarcopside assemblage

Petro.

Field

Intro.

Crystallo.

Stability

 $LiFe^{2+}_{2.5}(PO_4)_2$

Decrease of the Li-content of triphylite, from 0.72 *a.p.f.u.* at 400°C, to 0.48 *a.p.f.u.* at 600°C
Increase of the Li-content of sarcopside, from 0.01 *a.p.f.u.* at 400°C, to 0.05 *a.p.f.u.* at 600°C
1-phase domain above 700°C Calculation of crystallisation temperatures for natural assemblages

800 700 - × Triphylite 600 Sacopside 500 -T (°C) 400 300 Triphylite + sarcopside 200 100 0 0.40 0.00 0.20 0.60 0.80 1.00 Li p.f.u.

Fe/(Fe+Mn) ratio of natural triphylites and sarcopsides close to 0.800

Phase diagram for the LiMn_{0.5}Fe²⁺₂(PO₄)₃ starting composition

Cañada 35 % sarcopside and 65 % triphylite T ~ 500°C

Tsoabismund 15 % sarcopside and 85 % triphylite T ~ 350°C

Intro.

Field

• $\underline{Mn} \Rightarrow \text{fillowite } [NaMn_4(PO_4)_3]$ No maricite [NaFePO₄] in pegmatites Varulite $Na_2Mn_2Fe^{3+}(PO_4)_3$ 350-400°C

> **Hagendorfite** $Na_2MnFe^{2+}Fe^{3+}(PO_4)_3$ 450-500°C

Ferrohagendorfite $Na_2Fe^{2+}_2Fe^{3+}(PO_4)_3$ 550-600°C

Frédéric Hatert · André-Mathieu Fransolet · Walter V. Maresch

system

an experimental investigation of the Na2(Mn2-2xFe1+2x)(PO4)3

Ki = Kibingo, Rwanda

<u>The Na-in-triphylite</u> geothermometer

Field

Intro.

850 **Triphylite** Maricite 800 750 700 T (°C) 650 600 550 500 0.2 0.4 0.6 0.8 0

Petro.

Experimental investigation of the alluaudite + triphylite assemblage, and development of the Na-in-triphylite geothermometer: applications to natural pegmatite phosphates

Frederic Hatert · Luisa Ottolini · Peter Schmid-Beurmann

•In triphylite, Na can reach 0.08 *a.p.u.f.* at 800°C

•In maricite, Li can reach 0.10 *a.p.u.f.* at 700°C

•No partitioning below ca. 550°C

Geothermometer!

Stability

- Phosphates are « exotic » minerals, forming large masses in the most evolved parts of granitic pegmatites
- They are of great interest for pegmatologists, to:
- Understand pegmatite evolution during the post-magmatic stages (HT and LT hydrothermal, meteoric)
- ✓ Definine the T and oxygen fugacity conditions of pegmatites
- For mineralogists and solid-state scientists:
- They provide an infinite source of new mineral species
 Their exciting crystal structures are an inspiration for the development of new materials (alluaudites and triphylites in Li-ion batteries)