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Abstract
Two words are k-binomially equivalent if each subword of length at most k occurs the same

number of times in both words. The k-binomial complexity of an infinite word is a counting
function that maps n to the number of k-binomial equivalence classes represented by its factors
of length n. Cassaigne et al. [Int. J. Found. Comput. S., 22(4) (2011)] characterized a family of
morphisms, which we call Parikh-collinear, as those morphisms that map all words to words
with bounded 1-binomial complexity. Firstly, we extend this characterization: they map words
with bounded k-binomial complexity to words with bounded (k + 1)-binomial complexity.
As a consequence, fixed points of Parikh-collinear morphisms are shown to have bounded k-
binomial complexity for all k. Secondly, we give a new characterization of Sturmian words with
respect to their k-binomial complexity. Then we characterize recurrent words having, for some
k, the same j-binomial complexity as the Thue–Morse word for all j ≤ k. Finally, inspired by
questions raised by Lejeune, we study the relationships between the k- and (k + 1)-binomial
complexities of infinite words; as well as the link with the usual factor complexity.
Keywords: Factor complexity, Abelian complexity, Binomial complexity, powers of the Thue–
Morse morphism, Sturmian words.
2020 Mathematics Subject Classification: Primary: 68R15. Secondary: 05A05.

1 Introduction
The combinatorial structure of an infinite word x ∈ AN over a finite alphabet A may reveal
important aspects of x itself. This structure is often studied through its language L(x), i.e., the
set of its factors, and in particular to inspect the set Ln(x) := L(x) ∩ An of factors of length n.
Even plain counting the cardinality of this set turns out to be a useful concept: with px the factor
complexity function defined as px : N → N, n 7→ #Ln(x), the celebrated Morse–Hedlund theorem
asserts that an infinite word x is aperiodic if and only if px(n) ≥ n+ 1 for all n ≥ 1. For instance,
the Thue–Morse word t = 01101001 · · · (also known as the Prouhet–Thue–Morse word), the fixed
point of the morphism φ : 0 7→ 01, 1 7→ 10, is aperiodic because its factor complexity is given by

pt(2
m + r) =

{
3 · 2m + 4(r− 1), if 1 ≤ r ≤ 2m−1;

4 · 2m + 2(r− 1), if 2m−1 < r ≤ 2m,
(1)
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for all m ≥ 0 [9, §4]. The factor complexity has proved its importance in a number of areas of
mathematics. For example, in number theory, Adamczewski and Bugeaud [2] proved that the
base-b expansion of a real algebraic irrational number has a factor complexity function satisfying

lim inf
n→∞ p(n)

n
= ∞.

As a consequence, the number having t as base-2 expansion is transcendental.
One can conversely define families of words using the factor complexity function. For example,

a word x is called Sturmian if px(n) = n+1 for all n. Such words, studied also in this note, turn out
to have many interesting properties. For general references about combinatorics on (Sturmian)
words, see, for instance, [5, 9, 32].

Many variations of the factor complexity have been introduced. Some of these counting
functions only take into account factors with specific properties such as palindromes or privileged
words [16, 37]. Other functions count subwords extracted along subsequences of prescribed forms
like maximal pattern or arithmetical complexities [25, 7]. Closely related to the subject discussed
in this paper, abelian, k-abelian or cyclic complexities are functions of the form n 7→ #(Ln(x)/∼)
for the quotient by a relevant equivalence relation ∼ [42, 26, 10]. For more on abelian combinatorics
on words (and related notions), we refer the reader to the recent excellent survey [18]. For each
of the above complexity functions usual questions naturally arise:

• What is the complexity of well-known families of words such as Sturmian, Arnoux-Rauzy,
automatic, (pure) morphic, or Toeplitz words?

• This leads to the more interesting problem of classifying or characterizing infinite words
with respect to their complexity. As an example, Coven and Hedlund in [15] show that
an infinite word is purely periodic if and only if its abelian complexity function attains the
value 1. Further, a binary aperiodic word has its abelian complexity function equal to the
constant function 2 if and only if it is Sturmian. Words with linear factor complexity are
characterized in [11].

• What are the possible growth rates of the complexity function?

• Which non-periodic words may achieved the lowest complexity?

These questions have intrinsic theoretical interests but also provide particular insight about the
combinatorial structure of the studied words. Depending on the properties of interest, one focuses
on the appropriate complexity function. Infinite words with specific combinatorial properties are,
for instance, sought to construct particular symbolic dynamical systems or tilings of the line. For
instance, the Thue–Morse minimal subshift is completely characterized by its factor complexity
together with its abelian complexity [40]. The Thue–Morse word, which is central in our paper,
plays an important role in many areas of mathematics, e.g., see [4, 3].

In this paper, the complexity function of interest is built from binomial coefficients of words.

Definition 1.1. Let u,w ∈ A∗. The binomial coefficient of u and w is the number of times w occurs
as a subword of u, i.e. writing u = u1 · · ·un with ui ∈ A,(

u

w

)
= #

{
i1 < i2 < · · · < i|w| : ui1ui2 · · ·ui|w|

= w
}
.

These binomial coefficients have proven to be useful in a variety of domains: generalizations
of Pascal-like triangles [31], algebra and topology [38, 8], formal languages or relationship with
the extensively studied Parikh matrices and Simon’s congruence [6, 20, 22]. For more on these
binomial coefficients, see, for instance, [32, §6].

We mention a well-known and actively researched problem related to binomial coefficients.
A word u is k-reconstructible whenever the knowledge of the binomial coefficients

(
u
v

)
, for all

subwords v of length k, uniquely determines u. Inspired by the problem of reconstructing graphs
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from vertex-deleted subgraphs, the famous reconstruction problem is to determine the function
f(n) = k where k is the least integer for which all words of length n (over a given alphabet) are
k-reconstructible. For articles on this problem, we mention [19, 24, 34] and references therein.

Let us now introduce our main object of study. Let k ≥ 1 be an integer. The k-binomial
complexity function introduced in [43] is the central theme of Lejeune’s thesis [28]. It is built
on the k-binomial equivalence where factors are distinguished with respect to the number of
occurring subwords.

Definition 1.2. Two words u, v ∈ A∗ are k-binomially equivalent, and we write u ∼k v, if(
u

x

)
=

(
v

x

)
, ∀ x ∈ A≤k.

As an example the words u = 0110 and v = 1001 are 2-binomially equivalent because for
z ∈ {u, v}(

z

0

)
= 2,

(
z

1

)
= 2,

(
z

00

)
= 1,

(
z

01

)
= 2,

(
z

10

)
= 2,

(
z

11

)
= 1

and u ̸∼3 v because 011 is a subword of u and not of v.
In [34, Lem. 1], it is observed that one may replace the condition ∀x ∈ A≤k with ∀x ∈ Ak as

soon as |u|, |v| ≥ k. Observe that the word u is obtained as a permutation of the letters in v if and
only if u ∼1 v. The latter relation is the abelian equivalence already introduced by Erdős [17]. This
leads to the following definition, introduced in [43].

Definition 1.3. Let k ≥ 1 be an integer. The k-binomial complexity function of an infinite word x is
defined as b(k)

x : N → N, n 7→ #(Ln(x)/∼k).

As an example, the first few values for the Thue–Morse word t are given in Table 1.

0 1 2 3 4 5 6 7 8 9 10

b(1)
t 1 2 3 2 3 2 3 2 3 2 3

b(2)
t 1 2 4 6 9 8 8 8 9 8 8
pt 1 2 4 6 10 12 16 20 22 24 28

Table 1: The first few values of b(1)
t , b(2)

t and pt.

It is clear that we have a series of refinements of the abelian equivalence: for all k ≥ 1, u ∼k+1 v
implies u ∼k v. Thus, for all n, we have the inequalities

b(1)
x (n) ≤ b(2)

x (n) ≤ · · · ≤ b(k)
x (n) ≤ b(k+1)

x (n) ≤ · · · ≤ px(n). (2)

The study of the k-binomial complexity function has so far been studied for restricted families
of words. For example, for k ≥ 2, the k-binomial complexity of Sturmian words coincides with
their factor complexity [43] (recalled here as Theorem 2.8) and the same property holds for the
Tribonacci word [30]. For any k ≥ 2, fixed points of Parikh-constant morphisms (see the next
part for a definition) are known to have bounded k-binomial complexity [43]. Recently, the k-
binomial complexities of the Thue–Morse word [29] (given in (3)) and the 2-binomial complexities
of generalized Thue–Morse words was also computed [33]. That is the extent to which the notion
has been studied.

We remark that a better understanding of the k-binomial complexity may give information
about the language L(x) of an infinite word x for which the reconstruction problem could be
solved. The aim is to restrict the reconstruction problem to the language of an infinite word
having a k-binomial complexity of the same order as its factor complexity. Indeed, if b(k)

x = px for
some k, then for any two distinct factors y, z of x, there exists a subword v of length k such that(
y
v

)
̸=
(
z
v

)
.
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Finally a parallel can be drawn between the k-abelian complexity introduced by Karhumäki
et al. [26] and the k-binomial complexity. In both cases, we have a series of refinements (2) of
the abelian equivalence. The fundamental difference is the following one. Two finite words u, v
are k-abelian equivalent if, for each word w of length at most k, we count the same number of
occurrences of the factor w in both words u and v. We thus make the important distinction
between a factor and a subword of a word. Many properties of the k-abelian complexity have
been recently and extensively studied such as growth and fluctuations, k-abelian palindromes,
variation of Morse–Hedlund theorem, etc. [13, 12, 27]. This is to be contrasted with the limited
knowledge we have on the k-binomial complexity function. Indeed, part of our motivation for
this work stems from this rather limited state of the art as described above.

1.1 Our Results
We present three kinds of results: a new characterization of Parikh-collinear morphisms and
links with bounded binomial complexities; a characterization of recurrent words with the same j-
binomial complexities as the Thue–Morse word for j = 1, . . . , k; study of the relationships existing
between b(k)

w and b(k+1)
w . This paper improves upon the preliminary conference version [44]: not

only do we provide proofs of results announced therein, but we also significantly extend them.
•Morphisms mapping all infinite words to words with bounded abelian complexity have been

characterized in [14]. Such a morphism f : A∗ → B∗ is said to be Parikh-collinear: for all letters
a, b ∈ A, there is ra,b ∈ Q such that Ψ(f(b)) = ra,bΨ(f(a)), where Ψ(u) denotes the Parikh vector
of a word u (see Section 2 for definitions). In Section 3, we obtain several new characterizations
of Parikh-collinear morphisms. Connecting this with the series of inequalities (2), we show with
Theorem 3.5 that a morphism is Parikh-collinear if and only if it maps all words with bounded
k-binomial complexity to words with bounded (k+ 1)-binomial complexity.

It is known that any fixed point of a prolongable Parikh-constant morphism f : A∗ → A∗, i.e.,
Ψ(f(a)) = Ψ(f(b)) for all letters a, b ∈ A, has a bounded k-binomial complexity [43]. Any Parikh-
constant morphism is obviously Parikh-collinear. As a direct consequence of our characterization
of Parikh-collinear morphisms, Corollary 3.6 extends the previous result: bounded k-binomial
complexity holds for any fixed point of a prolongable Parikh-collinear morphism.

• We then turn to words sharing their binomial complexities with the Thue–Morse word t.
From the above discussion (the Thue–Morse morphism φ is Parikh-constant), for all j ≥ 1, the
j-binomial complexity of t is bounded by a constant depending on j. But more is known, the exact
value of b(j)

t (n) computed in [29] is given by

b(j)
t (n) =


pt(n), if n < 2j;

3 · 2j − 3, if n ≡ 0 (mod 2j) and n ≥ 2j;

3 · 2j − 4, otherwise,
(3)

where the factor complexity pt of t is given by (1). Considering j = 1 in (3), words having the
same abelian complexity as the Thue–Morse words have been characterized in [40] as follows.
The abelian complexity of an aperiodic word x ∈ {0, 1}N is, for n > 0, b(1)

x (n) = 3 if n is even,
and b(1)

x (n) = 2 if n is odd, if and only if there exists a word y such that x = uφ(y) with
u ∈ {ε, 0, 1}. Sections 4 and 5 are about binomial properties of iterates of φ. We generalize the
latter result and obtain a characterization of words having the same j-binomial complexity as the
Thue–Morse word t for all j ≤ k. Except for a remark in [18] (see Theorem 2.9), such a result
together with Theorem 2.11 are the first where binomial complexity leads to the characterization
of combinatorial families of words. In this paper, with Theorem 2.11, we observe that a word x is
Sturmian if and only if b(2)

x (n) = n + 1, for all n. We make the statements about words sharing
the same j-binomial complexities as t more precise.

Let k be an integer and let y be an aperiodic binary word. With Theorem 4.2 we show that
for x = uφk(y) we have, for all j ≤ k, b(j)

x = b(j)
t which is given by (3), where u is a (possibly
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empty) proper suffix of φk(0) or φk(1). Conversely, with Theorem 5.2, if b(j)
x = b(j)

t for all j ≤ k
for a recurrent word x, i.e., each factor of x appears infinitely often, then x = uφk(y) where u is a
proper suffix of φk(0) or φk(1) and y is some aperiodic binary word.

• In general, not much is known about the general behavior or fluctuations that can be
expected for the k-binomial complexity of an infinite word. In particular, computing the k-
binomial complexity of a particular infinite word remains quite challenging. It would also be
desirable to compare in some ways the k- and (k+ 1)-binomial complexities of a word.

Definition 1.4. For two functions f, g : N → N, we write f ≺ g when the relation f(n) < g(n) holds
for infinitely many n ∈ N.

We define ≺ this way because for some words, the 2-binomial complexity attains the factor
complexity infinitely often while it is less than the factor complexity infinitely often. See end of
Section 7.1 for a discussion.

As an example, a consequence of Proposition 4.17 is that b(k)
x ≺ b(k+1)

x for x = φk(y) with y
aperiodic. Our reflection is here driven by the following questions inspired by Lejeune’s questions
[28, pp. 115–117] that are natural to consider in view of (2).

Question A. Does there exist an infinite word w such that, for all k ≥ 1, b(k)
w is unbounded and

b(k)
w ≺ b(k+1)

w ? If the answer is positive, can we find a (pure) morphic such word w?

From (2), notice that b(k)
w is unbounded, for all k ≥ 1, if and only if the abelian complexity b(1)

w

is unbounded. Even though the Thue–Morse word t is such that, for all k ≥ 1, b(k)
t ≺ b(k+1)

t , b(k)
t

remains bounded (3). So t is not a satisfying answer to Question A. However, in Section 6, we
provide several positive answers to this question.

Question B. For each ℓ ≥ 1, does there exist a word w (depending on ℓ) such that b(1)
w ≺ b(2)

w ≺
· · · ≺ b(ℓ−1)

w ≺ b(ℓ)
w = pw? If the answer is positive, is there a (pure) morphic such word w?

Putting together results from Sections 4 and 7 we fully answer Question B: Theorem 4.2 and
Proposition 4.17 provide a word x = φk(y) for which b(1)

x ≺ b(2)
x ≺ · · · ≺ b(k−1)

x ≺ b(k)
x ≺ b(k+1)

x ,
while assuming that y above is Sturmian, we show that b(k+2)

x = px. We remark that iterates of φ
applied to Sturmian words have been studied (among other words) in [21]. We observe that our
construction leads to words with bounded abelian complexity. Question B is then strengthened in
Section 7 where we ask for words with unbounded abelian complexity. We give a pure morphic
answer when ℓ = 3.

2 Preliminaries
Let us now give precise definitions and notation. For any integer k, we let Ak (resp., A≤k; resp.,
A<k) denote the set of words of length exactly (resp., at most; resp., less than) k over A. We let A∗

(resp., A+) denote the semigroup of finite words (resp., non-empty finite words) over A equipped
with concatenation. We let ε denote the empty word. The length of the word w is denoted by
|w| and the number of occurrences of a letter a in w is denoted by |w|a. For binary words u, v
(always over {0, 1} in this note, unless otherwise stated), we refer to |u]1 as the weight of u and we
say that u is lighter (resp., heavier) than v whenever |u|1 < |v|1 (resp., |u|1 > |v|1). For instance, if
b(1)

y (n) = 2, then there are only two kinds of factors in y: the light ones and the heavy ones. A
language L is said to be balanced if, for all words u, v ∈ L of the same length and all letters a, we
have

∣∣|u|a − |v|a
∣∣ ≤ 1. In particular, an infinite word z is balanced if L(z) is balanced.

We let · denote the (binary) complementation morphism defined by a = 1 − a, for a ∈ {0, 1}.
Writing A = {a1, . . . , ak} and fixing the order a1 < a2 < · · · < ak on the letters, the Parikh vector
of a word w ∈ A∗ is defined as the column vector

Ψ(u) = (|w|a1
, |w|a2

, . . . , |w|ak
)⊺.
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Using a classical “length-n sliding window” argument or extending factors of length n to
factors of length n+ 1, one has the following.

Lemma 2.1 (Folklore). For any binary word y over {0, 1}, for all n ≥ 0, we have

b(1)
y (n) = 1+ max

u,v∈Ln(y)

∣∣|u|1 − |v|1
∣∣ and

∣∣b(1)
y (n+ 1) − b(1)

y (n)
∣∣ ≤ 1.

2.1 Binomial Equivalence
We first collect some useful results on k-binomial equivalence. Note that ∼k is a congruence,
i.e., for u, v, x y ∈ A∗, u ∼k v and x ∼k y implies ux ∼k vy. In particular, A∗/∼k is a monoid.
In fact, it is a cancellative monoid (see [29, Lemma 10]; cancellativity also follows from A∗/∼k
being isomorphic to a subsemigroup of the special linear group SL((k + 1)nk,Z) where n is the
cardinality of the alphabet A [43]):

Lemma 2.2 (Cancellation property). Let u, v,w be words over A. We have

v ∼k w ⇔ uv ∼k uw and v ∼k w ⇔ vu ∼k wu.

We will also need the following result characterizing k-binomial commutation among words
of equal length.

Theorem 2.3 ([48, Thm. 3.5]). Let k ≥ 2 and x, y ∈ A∗ such that |x| = |y|. Then xy ∼k yx if and only
if x ∼k−1 y.

A proof of the next result can be conveniently found in [29, Lem. 30].

Theorem 2.4 (Ochsenschläger [36]). Let φ : 0 7→ 01, 1 7→ 10 be the Thue–Morse morphism. For all
k ≥ 1, we have φk(0) ∼k φk(1) and φk(0) ̸∼k+1 φk(1).

The following result from [29, Lem. 31] will be of use. It can alternatively be proved using
Theorem 2.3 combined with Ochsenschläger’s result.

Lemma 2.5 (Transfer lemma). Let k ≥ 1. Let u, v, v ′ be three non-empty words such that |v| = |v ′|. We
have φk−1(u)φk(v) ∼k φk(v ′)φk−1(u).

It is an exercise to see that, for an arbitrary morphism f : A∗ → B∗, we have, for all u ∈ A∗,
e ∈ B∗,(

f(u)

e

)
=

∑
a1,...,aℓ∈A

ℓ≤|e|

(
u

a1 · · ·aℓ

) ∑
e=e1···eℓ

ei∈B+

ℓ∏
i=1

(
f(ai)

ei

)
. (4)

The next result will turn out to be useful in several places of the paper.

Lemma 2.6. Let x, y ∈ A∗ be two k-binomially equivalent words. For any integer n ≥ 0 and any word
e ∈ A∗ of length k+ 1, we have(

xn

e

)
−

(
yn

e

)
= n

[(
x

e

)
−

(
y

e

)]
.

In particular, for all n ≥ 1, x ∼k+1 y if and only if xn ∼k+1 yn.

Proof. For any words u, v,w ∈ A∗, we have(
uv

w

)
=

(
u

w

)
+

(
v

w

)
+

∑
w=w1w2

wi ̸=ε

(
u

w1

)(
v

w2

)
.
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To show the statement, we proceed by induction and we make use of the previous formula. The
statement is trivially true for n ∈ {0, 1}. By the previous formula (with (u, v,w) = (xn, x, e) and
(u, v,w) = (yn, y, e) respectively) and the induction hypothesis, we obtain(

xn+1

e

)
−

(
yn+1

e

)
= (n+ 1)

[(
x

e

)
−

(
y

e

)]
+

∑
e=e1e2
ei ̸=ε

[(
xn

e1

)(
x

e2

)
−

(
yn

e1

)(
y

e2

)]
.

Since x ∼k y and |e| = k + 1, the sum in the right-hand term is zero and we obtain the desired
result.

We recall the following lemma that appears in [48]; it is a straightforward generalization of an
observation in [46]. We give a proof for the sake of completeness.

Lemma 2.7. Let C ∈ A∗/∼1 be an abelian equivalence class of non-empty words with Parikh vector
(ma)a∈A. Then, for any word u ∈ A∗, we have

∑
w∈C

(
u
w

)
=

∏
a∈A

(
|u|a
ma

)
.

Proof. The sum on the left counts the number of ways one can choose a subword w of u so that
Ψ(w) = (ma)a∈A. On the other hand, for a vector (ma)a∈A, any choice of ma many distinct a’s
in u for each a ∈ A gives rise to a subword of u having Parikh vector (ma)a∈A. The number of
distinct such choices is the product on the right.

2.2 Binomial equivalence in Sturmian words
The following result links the factor complexity and the 2-binomial complexity of Sturmian words.

Theorem 2.8 ([43, Thm. 7]). For any Sturmian word s, we have b(2)
s = ps.

In particular, the theorem implies that for two distinct equal-length factors u, v of a Sturmian
word, we have either u ̸∼1 v, or

(
u
01

)
̸=
(
v
01

)
. It further implies that b(k)

s (n) = n + 1 for all
k ≥ 2. In the survey paper [18] on abelian combinatorics on words, Fici and Puzynina derive a
characterization of Sturmian words from Theorem 2.8:

Theorem 2.9 ([18, Rem. 80]). Let x be an infinite word. The following are equivalent:

1. x is Sturmian;

2. for all n ≥ 1 and some k ≥ 2, b(1)
x (n) = 2 and b(k)

x (n) = n+ 1;

3. for all n ≥ 1 and k ≥ 2, b(1)
x (n) = 2 and b(k)

x (n) = n+ 1.

In fact, the second property in the above can be weakened to “b(1)
x (n) = 2 for all n ≥ 1 and

supk,n∈N b(k)
x (n) = ∞” using the same arguments 1. In the following we show that the assumption

of balancedness can be removed from the second point; Sturmian words are characterized by their
k-binomial complexity for any fixed integer k ≥ 2. We first recall the following crucial observation,
which can be found in part of [15, Lem. 4.02’2]

Lemma 2.10. Let z be an infinite binary word. Let N ≥ 2 be such that

1. L(z) ∩A<N is balanced;

2. L(z) ∩AN is unbalanced;

3. pz(N) = N+ 1;

Then z is ultimately periodic.
1Indeed, the former property implies x is balanced and binary, and the latter implies that x is aperiodic.
2The statement has a fourth condition, which does not affect the conclusion appearing here.
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Theorem 2.11. Let z be an infinite word such that for some k ≥ 2, b(k)
z = n + 1 for all n. Then z is

Sturmian.

Proof. Assume that b(k)
z (n) = n + 1 for all n ≥ 0. In particular, z is binary and also aperiodic

because pz(n) ≥ b(k)
z (n) = n+1. This also implies b(1)

z (n) ≥ 2 for alln ≥ 1. To get a contradiction,
assume that z is unbalanced. Hence there exists a minimal integer N ≥ 2 such that b(1)

z (N) = 3.
There is a pair (u, v) of factors of z of length N such that |u|1 − |v|1 = 2. The minimality of N
implies that this pair is unique and of the form (1w1, 0w0). For details, see [15, Lem. 3.06].

Let |w|1 = r. Let x ∈ LN−2(z). If |x|1 = r−1, then 0x and x0 do not belong to LN−1(z). Indeed,
1w,w1 belong to the latter set and |1w|1 = |w1|1 = r+1 but by minimality of N, the set LN−1(z) is
balanced. In that case, x is preceded and followed by 1. Similarly, if y ∈ LN−2(z) and |y|1 = r+ 1,
then y is preceded and followed by 0. This means that LN(z) \ {0w0, 1w1} is a subset of

{1x1 : |x|1 = r−1, |x| = N−2}∪ {0y0 : |y|1 = r+1, |y| = N−2}∪
⋃

a∈{0,1}

{aza : |z|1 = r, |z| = N−2}

where all words have weight r+1. Now, observe that L(z)∩A<N is a balanced set (by minimality
of N) and that is also the case of LN(z) \ {1w1}. The union of these two sets is factorial. By [41,
Thm. 3.1], there exists a Sturmian word s such that

(L(z) ∩A<N) ∪ (LN(z) \ {1w1}) ⊂ L(s).

As a consequence of Theorem 2.8, any two distinct words in the left-hand side set are not k-
binomially equivalent. Also, 1w1 is not abelian (and thus not k-binomially) equivalent to any
word in LN(z) \ {1w1}. In particular, since b(k)

z (n) = n+ 1 for n ≤ N,

L(z) ∩A<N = L(s) ∩A<N

and #(LN(z)\{1w1}) = N. Therefore, #(LN(z)) = N+1. The word z now fulfills all the conditions
of Lemma 2.10 implying the contradiction that z is ultimately periodic.

3 Parikh-Collinear Morphisms via Binomial Complexities
In this section, we obtain a new characterization of Parikh-collinear morphisms and show that,
given an infinite fixed point of a prolongable Parikh-collinear morphism, itsk-binomial complexity
is bounded for each k. Note that the automaticity of such fixed points is discussed in [45].

Definition 3.1 (Parikh-collinear morphisms). A morphism f : A∗ → B∗ is said to be Parikh-collinear
if, for all letters a, b ∈ A, there is ra,b ∈ Q such that Ψ(f(b)) = ra,bΨ(f(a)).

Remark 3.2. Given a morphism f : A∗ → B∗, its adjacency matrix Mf is the matrix of size #B× #A
defined by (Mf)b,a = |f(a)|b for all a ∈ A, b ∈ B. Observe that f is a Parikh-collinear morphism
if and only if Mf has rank 1 (unless it is totally erasing). We observe that for any word u ∈ A∗,
we have that Ψ(f(u)) = MfΨ(u).

Example 3.3. The morphism fdefined by 0 7→ 000111; 1 7→ 0110 is Parikh-collinear sinceΨ(f(1)) =
2
3
Ψ(f(0)).

Theorem 3.4 ([14, Thm. 11]). A morphism f : A∗ → B∗ is Parikh-collinear if and only if it maps all
infinite words to words with bounded abelian complexity.

We extend the above theorem to the following one. We say that a morphism f : A∗ → B∗

satisfies Pk if f maps all words with bounded k-binomial complexity to words with bounded
(k + 1)-binomial complexity. Note that, for k = 0, 0-binomial complexity has to be understood as
the “equal length” equivalence relation. So the 0-binomial complexity of an infinite word is the
constant function 1 and Theorem 3.4 can be restated as f is Parikh-collinear if and only if f satisfies P0.
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Theorem 3.5. Let f : A∗ → B∗ be a morphism. The following are equivalent.

(i) The morphism f is Parikh-collinear.

(ii) For all k ≥ 0, f satisfies Pk.

(iii) There exists an integer k ≥ 0 such that f satisfies Pk.

Before proving this result in Section 3.2, let us mention a straightforward consequence, which
generalizes [43, Thm. 13] from Parikh-constant to Parikh-collinear morphisms. For example,
the Thue–Morse morphism is Parikh-constant and thus Parikh-collinear but the morphism of
Example 3.3 is Parikh-collinear but not Parikh-constant.

Corollary 3.6. Let z be a fixed point of a Parikh-collinear morphism. For any k ≥ 1 there exists a constant
Cz,k ∈ N such that b(k)

z (n) ≤ Cz,k for all n ∈ N.

Proof. Let f : A∗ → A∗ be a Parikh-collinear morphism whose fixed point is z. Since f(z) = z,
Theorem 3.4 implies that z has bounded abelian complexity. For any k ≥ 1, we have that
z = f(fk−1(z)) implying that z has bounded k-binomial complexity by induction and the previous
theorem.

Remark 3.7. We cannot relax the (implicit) assumption on the rank of the adjacency matrix Mf in
Corollary 3.6. For example, the morphism f : {0, 1, 2}∗ → {0, 1, 2}∗ defined by 0 7→ 0323, 1 7→ 03132,
2 7→ 240613 has an adjacency matrix of rank 2. The fixed point x starting with 0 is aperiodic as
fn(0) is readily seen to be right special for all n ≥ 0. Yet, its adjacency matrix has eigenvalues
θ1 = 5 +

√
13, θ2 = 5 −

√
13, and 0, and the former two are greater than 1. This means that the

word has unbounded abelian complexity. Indeed, a deep result of Adamczewski on balances in
primitive pure morphic words [1, Thm. 13(ii)] implies that the “lim sup”-growth of the function

n 7→ max
a∈Σ,u,v∈Ln(x)

{∣∣|u|a − |v|a
∣∣}

grows as Θ(n
log

θ1
θ2), where logθ1

θ2 ≈ 0,15448. It follows (see, e.g., [40, Lem. 2.2]) that b(k)
x is

unbounded for each k ≥ 1.

3.1 An Intermediate Characterization of Parikh-Collinearity
To prove Theorem 3.5, we give further characterizations of Parikh-collinear morphisms. To this
end, we require the following lemma where we define a map ge which is constant on any abelian
equivalence class. Notice that such a map appears within (4).

Lemma 3.8. Let A,B be finite alphabets with #A ≥ 2. Let f : A∗ → B∗ be a Parikh-collinear morphism.
For a word e = e1 · · · en of length n over B, define ge : A

n → N by

ge(a1 · · ·an) :=

n∏
i=1

(
f(ai)

ei

)
.

Then, for all words w,w ′ ∈ An with w ∼1 w ′, we have ge(w) = ge(w
′).

Proof. Write w = a1 · · ·an with ai ∈ A for all i ∈ {1, . . . , n}. For all α ∈ A and β ∈ B, define
I(α,β) := {i ∈ {1, . . . , n} | ai = α and ei = β}. We get

ge(w) =
∏
α∈A
β∈B

∏
i∈I(α,β)

(
f(α)

β

)
.
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The claim is trivial if f maps all words to ε, so let 0 ∈ A be a letter for which |f(0)| ̸= 0. Since
the morphism f is Parikh-collinear, for all α ∈ A and all β ∈ B, there exists rα ∈ Q such that(
f(α)
β

)
= rα

(
f(0)
β

)
. We now get

ge(w) =
∏
α∈A
β∈B

∏
i∈I(α,β)

(
f(α)

β

)
=

∏
α∈A
β∈B

∏
i∈I(α,β)

rα

(
f(0)

β

)

=

∏
α∈A
β∈B

∏
i∈I(α,β)

(
f(0)

β

)
∏

α∈A
β∈B

∏
i∈I(α,β)

rα

 .

For any letter β ∈ B, the definition of I(α,β) gives∏
α∈A

∏
i∈I(α,β)

(
f(0)

β

)
=

(
f(0)

β

)|e|β

.

Similarly, for any letter α ∈ A, the definition of I(α,β) yields∏
β∈B

∏
i∈I(α,β)

rα = r|w|α
α .

Thus

ge(w) =

∏
β∈B

(
f(0)

β

)|e|β

(∏
α∈A

r|w|α
α

)
.

Observe that the first factor in this product only depends on (the Parikh vector of) e— in particular,
not on w — as the morphism f is fixed. Similarly, the second factor in the product depends solely
on the Parikh vector of w, not on the word w itself. The desired result follows.

We now characterize Parikh-collinear morphisms by means of binomial complexities.
Proposition 3.9. Let f : A∗ → B∗ be a morphism. The following are equivalent.

(i) The morphism f is Parikh-collinear.

(ii) For all k ≥ 2 and u, v ∈ A∗, u ∼k−1 v implies f(u) ∼k f(v).

(iii) There exists an integer k ≥ 2 such that for all u, v ∈ A∗, u ∼k−1 v implies f(u) ∼k f(v).

(iv) For all u, v ∈ A∗, u ∼1 v implies f(u) ∼2 f(v).
Proof. Clearly (ii) implies (iii). We show that (iii) implies (iv). There is nothing to prove if (iii)
holds for k = 2, so assume that k ≥ 3. We show that f also satisfies (iii) with k − 1 instead of k,
and hence, by repeating the argument, f satisfies (iii) with k = 2. Assume to the contrary that
there exists a pair u, v such that u ∼k−2 v but f(u) ̸∼k−1 f(v). Since u and v are abelian equivalent
(k− 2 ≥ 1) they have equal length, so by Theorem 2.3, we have that uv ∼k−1 vu. Then, since f has
the property for k, we have f(u)f(v) ∼k f(v)f(u). Furthermore, f(u) and f(v) have the same length
(due to u ∼1 v). This implies that f(u) ∼k−1 f(v) by the converse part of Theorem 2.3, contrary to
what was assumed.

Assuming (iv), we show that (i) holds. Let x, y be distinct letters from A. Since xy ∼1 yx, we
have f(xy) ∼2 f(yx) by assumption. In other words, for all s, t ∈ B we have, applying (4),

0 =

(
f(xy)

st

)
−

(
f(yx)

st

)
=

∑
a1,...,aℓ∈A

ℓ≤2

[(
xy

a1 · · ·aℓ

)
−

(
yx

a1 · · ·aℓ

)] ∑
st=b1···bℓ

bi∈B+

ℓ∏
i=1

(
f(ai)

bi

)

=
∑

a1,a2∈A

((
xy

a1a2

)
−

(
yx

a1a2

))(
f(a1)

s

)(
f(a2)

t

)
=

(
f(x)

s

)(
f(y)

t

)
−

(
f(y)

s

)(
f(x)

t

)
,
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where in the third equality we use
(
xy
a

)
=
(
yx
a

)
for all a ∈ A (since xy ∼1 yx). Summing over

s ∈ B, we get |f(x)|
(
f(y)
t

)
= |f(y)|

(
f(x)
t

)
for all t ∈ B. Now x and y were chosen arbitrarily from

the alphabet A. If |f(x)| = 0 for all x ∈ A, then f is clearly Parikh-collinear. If there is a letter x for
which |f(x)| > 0, we may write

((
f(y)
t

))
t∈B

= |f(y)|
|f(x)|

((
f(x)
t

))
t∈B

for each y ∈ A. In other words, f
is Parikh-collinear.

To complete the proof, we show that (i) implies (ii). So let f be a Parikh-collinear morphism
and u ∼k−1 v with k ≥ 2. We again apply (4): for any word e ∈ B∗, we have(

f(u)

e

)
−

(
f(v)

e

)
=

∑
a1,...,aℓ∈A

ℓ≤|e|

((
u

a1 · · ·aℓ

)
−

(
v

a1 · · ·aℓ

)) ∑
e=e1···eℓ

ei∈B+

ℓ∏
i=1

(
f(ai)

ei

)
.

Notice that for words e ∈ B<k, we have
(

u
a1···aℓ

)
=
(

v
a1···aℓ

)
since u ∼k−1 v, which in turn gives(

f(u)
e

)
=
(
f(v)
e

)
. So to show that f(u) ∼k f(v), it suffices to consider words e ∈ Bk. By assumption,

for ℓ < k, we again have
(

u
a1···aℓ

)
=
(

v
a1···aℓ

)
. Therefore, we have

(
f(u)
e

)
=
(
f(v)
e

)
if and only if

∑
a1,...,ak∈A

(
u

a1 · · ·ak

) k∏
i=1

(
f(ai)

ei

)
=

∑
a1,...,ak∈A

(
v

a1 · · ·ak

) k∏
i=1

(
f(ai)

ei

)
. (5)

Observe here that
∏k

i=1

(
f(ai)
ei

)
= ge(a1 · · ·ak) as defined in Lemma 3.8. Let C be an abelian

equivalence class in Ak/∼1. By Lemma 3.8, ge(·) is constant on C, so write ge(w) = gC,e for all
words w ∈ C. For each w ∈ C we may write Ψ(w) = (mC,a)a∈A. We now have

∑
w∈Ak

(
u

w

)
ge(w) =

∑
C∈Ak/∼1

∑
w∈C

(
u

w

)
ge(w) =

∑
C∈Ak/∼1

gC,e
∑
w∈C

(
u

w

)
=

∑
C∈Ak/∼1

gC,e
∏
a∈A

(
|u|a

mC,a

)
,

where the last equality is from Lemma 2.7. One obtains the same formula by replacing u with v,
and equality indeed holds in (5) as |u|a = |v|a for each letter a ∈ A. This concludes the proof.

Remark 3.10. In [34, Lem. 5], the authors show that, for a morphism f such that f(a) ∼h f(b)
for all a, b ∈ A, for all words u, v ∈ A∗ with u ∼k v we have that f(u) ∼k+h f(v). Towards the
converse, assume that f is a morphism for which the conclusion holds (for all k ≥ 1 but fixed
h ≥ 1). Then we necessarily have f(a)mf(b)n ∼h+1 f(b)nf(a)m for all a, b ∈ A, m,n ≥ 1. From
this we infer that, e.g., f(a)|f(b)| ∼h f(b)|f(a)| (as a corollary of Theorem 2.3). In particular, if f
is uniform, we have f(a) ∼h f(b) for all a, b ∈ A. It would be interesting to characterize the
non-uniform morphisms f with this property. For example, one can take any Parikh-collinear
morphism g; then f = gh is such a morphism. We highly suspect that these are not the only such
morphisms.

3.2 Proof of Theorem 3.5
We require the following technical result, which essentially appears in the proof of [14, Thm. 12].
We give a proof here for the sake of completeness.

Lemma 3.11. Let x be a an infinite word over A with bounded abelian complexity. Let f : A∗ → B∗ be a
morphism and assume y = f(x) is an infinite word. Then for all c ∈ N there exists Dx,c ∈ N such that if∣∣|f(u)|− |f(v)|

∣∣ ≤ c, for some u, v ∈ L(x), then
∣∣|u|− |v|

∣∣ ≤ Dx,c.

Proof. Assume without loss of generality that |u| ≥ |v| and write u = u ′v ′ with |v ′| = |v|. Let Mf

be the adjacency matrix of f. If
∣∣|f(u)|− |f(v)|

∣∣ ≤ c, we have by the reverse triangle inequality

c ≥
∣∣|f(u ′)|− |f(v)|+ |f(v ′)|

∣∣ ≥ |f(u ′)|−
∣∣|f(v ′)|− |f(v)|

∣∣ = |f(u ′)|− |⟨Mf(Ψ(v
′) − Ψ(v)), 1⃗⟩|,
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where ⟨· , ·⟩ denotes the inner product of vectors, and 1⃗ is the all-ones-vector. Recall that x has
bounded abelian complexity if and only if it is C-balanced for some C [40]. Hence, as v and v ′ are
factors of the same length, Ψ(v ′) −Ψ(v) attains finitely many distinct integer points (in particular,
belonging to [−C,C]#A). So does Mf(Ψ(v

′) − Ψ(v)). We therefore obtain |f(u ′)| ≤ D for some
D ∈ N. We deduce that u ′ is bounded in length as well: indeed, let a ∈ A be a letter occurring
infinitely often in x and for which f(a) ̸= ε (such a letter exists because f(x) is infinite). Since x
is balanced, we deduce that all long enough factors of x contain more than |u ′| occurrences of a.
We let Dx,c be this bound on |u ′| to conclude the proof.

We are now ready to prove the main result of this section, characterizing Parikh-collinear
morphisms in terms the property Pk defined at the beginning of Section 3.

Proof of Theorem 3.5. Let us first show that (i) implies (ii). Assume thus that f is Parikh-collinear.
Theorem 3.4 implies that f maps all words (i.e., all words with bounded 0-binomial complexity)
to words with bounded 1-binomial complexity. Let k ≥ 1 and let x be a word with bounded
k-binomial complexity. Let n ∈ N. Any length-n factor of f(x) can be written as pf(u)s, where
the word u is a factor of x, p is a suffix of f(a) and s is a prefix of f(b) for some letters a, b ∈ A.
Here n − 2m < |f(u)| ≤ n, where m := maxa∈A |f(a)|. The (k + 1)-binomial equivalence class of
pf(u)s is completely determined by the words p, s, and the k-binomial equivalence class of f(u),
which itself is determined by the abelian equivalence class of u by Proposition 3.9.

The former two words p and s are drawn from a finite set, as their lengths are bounded
by the constant m (depending on f). The length of u can be chosen from an interval whose
length is uniformly bounded in n. Indeed, assume we have equal length factors w = pf(u)s and
w ′ = p ′f(v)s ′. As observed above, n ≥ |f(u)| and |f(v)| > n − 2m, so that

∣∣|f(u)| − |f(v)|
∣∣ < 2m.

Applying Lemma 3.11 (by assumption, x has bounded k-binomial complexity and thus, x has
bounded abelian complexity by (2)) there exists a bound D such that

∣∣|u|− |v|
∣∣ ≤ D uniformly in n.

Since the number of k-binomial equivalence classes in x of each length is uniformly bounded by
assumption, and the number of admissible lengths for u above is bounded, we conclude that the
number of choices for the k-binomial equivalence class of u is bounded. We have shown that the
number of (k + 1)-binomial equivalence classes among factors of length n in f(x) is determined
from a bounded amount of information (not depending on n), as was to be shown. Consequently,
f satisfies Pk.

Notice that (ii) trivially implies (iii).
Let us turn to the last implication, namely (iii) implies (i). Assume (iii) holds, that is, for

some integer k ≥ 0, f satisfies Pk. If k = 0, then f maps all words to words with bounded
1-binomial complexity, so f is Parikh-collinear by Theorem 3.4. Assume that k ≥ 1, and towards a
contradiction, assume further that f is not Parikh-collinear. By Proposition 3.9, there exist words
u, v with u ∼k v and f(u) ̸∼k+1 f(v). Write U = f(u) and V = f(v). Now define the word
x = uvu2v2u3v3 · · ·unvn · · · and consider

f(x) = UVU2V2U3V3 · · ·UnVn · · · .

Below we show that x has bounded k-binomial complexity, while f(x) has unbounded (k + 1)-
binomial complexity, which is enough to contradict (iii).

Since u and v are k-binomially equivalent, b(k)
x is bounded. (To see this, one may apply

arguments similar to those developed in the first part of the proof.) Let us prove the second. For
each integer n, f(x) contains the factors UrVn−r with r ∈ {0, . . . , n}. These factors are actually
all (k + 1)-binomially inequivalent. Indeed, assume towards a contradiction that UrVn−r ∼k+1

UsVn−s for some r, s ∈ {0, . . . , n}with r > s. By the Cancellation property (Lemma 2.2), we obtain
Ur−s ∼k+1 Vr−s. Lemma 2.6 then implies that U ∼k+1 V , which is a contradiction. Consequently,
b(k+1)
f(x) is unbounded, as desired.
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4 Binomial Properties of the Thue–Morse Morphism, Part I
In this section, we consider binomial complexities of iterates of the Thue–Morse morphism φ on
aperiodic binary words. The section is split into three subsections. To state the main result, we
define the following.

Definition 4.1. Let x be a binary word and k ≥ 1 an integer. We say that x has property TMB(k)
if, for all 1 ≤ j ≤ k, we have b(j)

x = b(j)
t .

Recall that the exact values for b(j)
t were computed in [29, Thm. 6] (and are given by (3)). The

main result of Section 4.2 is the following theorem, which can be seen as a generalization of the
aforementioned result.

Theorem 4.2. Let k be an integer and let y be an aperiodic binary word. Then the word x = φk(y) (and
any of its suffixes) has property TMB(k).

The application of φk to a word changes the j-binomial complexity, j ≤ k, to that of the Thue–
Morse word. Putting this bluntly, the binomial complexities of the original word play no role in
the j-binomial complexities of the image word (for small j).

The topic of Section 4.3 is to characterize the k- and (k + 1)-binomial equivalence among
factors of words of the form φk(y) (Theorem 4.12 and Proposition 4.17). In the latter, we see that
structure of y already appears to affect the (k + 1)-binomial complexity of φk(y). This allows to
conclude, for example, that b(k) ≺ b(k+1) (Corollary 4.18) for words of this form. Throughout the
rest of this section we fix x and y to be as in Theorem 4.2.

We begin with a subsection introducing a convenient tool, called abelian Rauzy graphs, which
we use throughout the current and the following section.

4.1 Abelian Rauzy graphs
For an infinite word z ∈ AN, consider a sliding window of length n: as the window shifts, one
goes from heavier factors to lighter factors and vice versa. One can consider a directed labeled
graph G = (V, E) capturing its progress: the vertices are the Parikh vectors of factors of length n,
and there is an edge from x⃗ to y⃗ labeled with (a, b) ∈ A× A, if there exists aub ∈ Ln+1(z) such
that Ψ(au) = x⃗ and Ψ(ub) = y⃗. We call G the abelian Rauzy graph (of order n). Such graphs were
considered already in [39].

Remark 4.3. The abelian Rauzy graph G = (V, E) defined here is a quotient of the usual Rauzy
graph of z of order n. The latter one is defined as R = (V ′, E ′) where V ′ = Ln(z) and there is an
edge from au to ub of label (a, b) whenever aub ∈ Ln+1(z). The Parikh map Ψ : V ′ → V is a
morphism of graphs: any labeled path in R is mapped to a path in G with same label.

We describe some properties of abelian Rauzy graphs.

Observation 4.4. Let G = (V, E) be the abelian Rauzy graph of order n of an infinite word z ∈ AN.

• The number of vertices is #V = b(1)
z (n);

• An edge with label (a, b) corresponds to an increase in weight if and only if ab = 01;

• An edge with label (a, b) corresponds to a decrease in weight if and only if ab = 10;

• An edge is a loop if and only if a = b.

• A right special factor of lengthn gives rise to a right special vertex: a vertex with two outgoing
edges for which the labels have the same first component. If z is binary, then one of the two
edges is a loop.
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• Each vertex has at least one outgoing edge (possibly a loop). Furthermore, if the word z is
aperiodic, each vertex has at least one outgoing edge that is not a loop, and there is at least
one vertex with two outgoing edges. In particular, the graph has at least #V + 1 edges.

Example 4.5. Let us consider the abelian Rauzy graphs of the Thue–Morse word. For a fixed n,
we identify the vertices of G, that is, the Parikh vectors of factors of length n, with their second
components. Indeed, for a binary word u of a fixed length n, we have Ψ(u) = (n− |u|1, |u|1)

⊺. We
show that, for all m ≥ 1, G2m and G2m+1 take forms as depicted in Fig. 1.

G2m: m−1 m m+1

(0, 1)

(1, 0)

(0, 1)

(1, 0)

(0,0)
(1,1)

G2m+1: m m+1

(0, 1)

(1, 0)

(0,0)
(1,1)

(0,0)
(1,1)

Figure 1: The abelian Rauzy graphs of the Thue–Morse word at even and odd lengths.

Let us write t = 01101001 · · · = a0a1a2 · · · . We first consider G2m. It is well-known and plain
to see that t is closed under complementation; for all u ∈ L(t), we have u ∈ L(t). Let au, a ∈ {0, 1},
au ∈ Lm(t), be right special in t. Consequently, φ(au)a ∈ L(t); hence G2m contains the loop
m

(a,a)−−−→ m. By complementing such a factor, we also find m
(a,a)−−−→ m in G2m. To see that, e.g.,

there is no loop at m− 1, we note that any m− 1-factor is of the form 0φ(u ′)0, and appears at an
odd position in t. Hence there is certainly no loop with label (1, 1) at m− 1. Neither can there be
a loop with label (0, 0), as 00 is not the image of a letter.

We then inspect G2m+1. The following statements are easy to prove using, e.g., the automatic
prover Walnut [35]. For a comprehensive take on the usage of Walnut, we recommend the book
[47].

• For all m ≥ 1 there exists a length-(2m+2) factor u starting at an even index in t, and which
begins and ends with 1.
The following Walnut formula returns ’TRUE’:
eval OddL11 "Am (m>0) => Ej T[2*j]=@1 & T[2*j+2*m+1]=@1";

• For all m ≥ 0 there exists a length-(2m + 2) factor starting at an odd index in t, and which
begins and ends with 0.
The following Walnut formula returns ’TRUE’:
eval OddL00 "Am Ej j>0 & T[2*j-1]=@0 & T[2*j+2*m]=@0";

Then the first item implies that G2m+1 contains the loop m
(1,1)−−−→ m. Indeed, the length-(2m+ 1)

prefix of u in the first item has weight m (because u = φ(u ′)01 for some |u ′| = m). Similarly
the second item implies that m has a loop with label (0, 0). Recalling that t is closed under
complementation, G2m+1 is seen to be of the claimed form.

We show the structure of the abelian Rauzy graphs of Sturmian words in Proposition 7.8.
We shall make use of the following general lemma, a part of which appears as [40, Lem. 3.2.]

Lemma 4.6. Let z be an aperiodic binary word. Then, for every n ≥ 1, the set of edge labels of the abelian
Rauzy graph Gn contains (0, 1), (1, 0), and either (0, 0) or (1, 1). Furthermore, if (a, a) does not appear
as a label of a loop in Gn, then Gn+1 contains a loop with the label (a, a).

Proof. Since z is aperiodic, it must have a connected component containing a loop (a right special
vertex) and at least two vertices (by a theorem of Coven and Hedlund [15]). An edge from a
lighter vertex to a heavier one has label (0, 1), and (1, 0) appears as the label from the heavier to
the lighter one.

Assume that Gn does not contain a loop with label (0, 0). Consider the walk W in Gn defined
by z: in particular, consider the strongly connected subgraph of Gn comprising the vertices and
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edges that W traverses infinitely many times. There is an edge from the second lightest vertex to
the lightest one l, labeled with (1, 0). This means that the factor of length n+ 1 corresponding to
this edge begins with 1 and ends with 0. Since (0, 0) does not appear as a label in Gn and from
the lightest vertex there is no outgoing edge with label (1, 0), the edge that W takes from l has
label (·, 1). Thus the factor of length n + 2 begins and ends with 1. This gives an edge in Gn+1

with label (1, 1).

4.2 The First k Binomial Complexities
We begin by defining the notion of φj-factorizations of factors of x. This will be used throughout
this and the next section.

Definition 4.7. For any factor u of φj(y) of length at least 2j − 1 there exist a, b ∈ {0, 1} and
z ∈ {0, 1}∗ with azb ∈ L(y) such that u = pφj(z)s for some proper suffix p of φj(a) and some
proper prefix s of φj(b). (Note that z could be empty.) The triple (p,φj(z), s) is called a φj-
factorization3 of u. The word azb (resp., zb; az; z) is said to be the corresponding φj-ancestor of u
when p, s are non-empty (resp., p = ε and s ̸= ε; p ̸= ε and s = ε; p = s = ε).

Since the words φj(0) and φj(1) begin with different letters, we notice that if s ̸= ε in a
φj-factorization of a word, then the letter b is uniquely determined. Similarly the jth images of
the letters end with distinct letters (for j fixed), whence the letter a is uniquely determined once
p ̸= ε.

p φj(z) s

a z b

Figure 2: A φj-factorization and its φj-ancestor.

The following lemma says that an aperiodic word of the form φk(y) has the same short factors
as the Thue–Morse word.

Lemma 4.8. For an aperiodic binary word y and integer k, we have Ln(φ
k(y)) = Ln(t) for all n ≤ 2k.

Proof. Let x = φk(y). The claim is trivial for k = 0 so assume k ≥ 1. Any factor of x of length
at most 2k appears as a factor of φk(v), where v ∈ L2(y). Since L2(t) = {0, 1}2, all such factors
appear in φk(t) = t. In particular we have shown Ln(x) ⊆ Ln(t) for n ≤ 2k.

Since y is aperiodic it contains both 01 and 10 and either of 00 and 11. If y contains all
factors of length 2, then clearly the considered languages are equal. So assume without loss of
generality that 11 does not appear in y. Consider the factors of length at most 2k of φk(11) =
φk−1(1)φk(0)φk−1(0). Such a factor is either a factor of φk−1(1)φk(0) or φk(0)φk−1(0), both of
which are factors of φk(00). Hence all factors of length at most 2k appearing in t appear in x as
well; this concludes the proof.

We are in the position to prove the main result of this subsection.

Proof of Theorem 4.2. Let j ∈ {1, . . . , k}. We first prove the claim for x (and afterwards the claim
for any of its suffixes). As the factors of length at most 2j of x = φj(φk−j(y)) coincide with those

3We warn the reader that the term φ-factorization has a different meaning in [29]. Our φj-factorization corresponds
to their “factorization of order j”.
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of t by the above lemma, the j-binomial complexity of x coincides with that of the Thue–Morse
word’s for n < 2j.

In the remaining of the proof we let n ≥ 2j. We show that Ln(t)/∼j = Ln(x)/∼j by double
inclusion, which suffices for the claim since Theorem 4.2 holds true for x = t.

Let u ∈ L(x); we show that there exists v ∈ L(t) such that u ∼j v. To this end, let z = φk−j(y)
so that x = φj(z). Let u have φj-factorization pφj(u ′)s with φj-ancestor au ′b ∈ L(z). The
Thue–Morse word contains a factor av ′b, where |v ′| = |u ′| (see, e.g., [29, Prop. 33] or the abelian
Rauzy graphs in Example 4.5). It follows that t contains the factor v := pφj(v ′)s. Now u ∼j v
because φj(u ′) ∼j φ

j(v ′) by Theorem 2.4.
Let then u ∈ L(t) have φj-factorization pφj(u ′)s with φj-ancestor au ′b ∈ L(t). As before we

show that there exists v ∈ L(x) such that u ∼j v. As a consequence of Lemma 4.6, z contains,
at each length, factors from both the languages 0A∗1 and 1A∗0. Hence, if a and b above are
distinct, we may argue as in the previous paragraph to obtain the desired conclusion. Assume
thus that a = b. Again Lemma 4.6 implies that z contains a factor of length |u ′| + 2 in the
language 1A∗1 ∪ 0A∗0. Assume without loss of generality that it contains a factor from 0A∗0.
Then, if a = b = 0, we may again argue as in the previous paragraph. So assume now that
a = b = 1 and L|u| ′+2(z) ∩ 1A∗1 = ∅. Notice that Lemma 4.6 implies that L|u| ′+2(z) ∩ 0A∗0 ̸= ∅
and, further, L|u| ′+2±1(z) ∩ 0A∗0 ̸= ∅. To conclude with the claim for x, we have four cases to
consider depending on the length of p and s which can be less or equal, or greater than 2j−1.

Case 1: Assume that p is a suffix of φj−1(0) and s is a prefix of φj−1(1). For all v ′ such
that |v ′| = |u ′| − 1, φj(u ′) ∼j φj(v ′1) by Theorem 2.4. By the Transfer Lemma (Lemma 2.5),
φj(v ′1) ∼j φ

j−1(1)φj(v ′)φj−1(0). Consequently

u ∼j pφ
j−1(1)φj(v ′)φj−1(0)s =: v,

where pφj−1(1) is a suffix ofφj(0) andφj−1(0)s is a prefix ofφj(0). Hence v is a factor ofφj(0v ′0).
Recall that a factor of the form 0v ′0 appears in z by assumption, and thus φj(0v ′0) appears in x.
To recap, we have shown a factor v of x j-binomially equivalent to u.

Case 2: Assume that p = p ′φj−1(0) where p ′ is a suffix of φj−1(1) and s is a prefix of φj−1(1).
For all v ′ such that |u ′| = |v ′|, applying Theorem 2.4 and Lemma 2.5,

u ∼j p
′φj(v ′)φj−1(0)s =: v.

Hence v is a factor of φj(0v ′0), and such a factor appears in z by assumption. We conclude as
above.

Case 3: Assume that p is a suffix of φj−1(0) and s = φj−1(1)s ′ where s ′ is a prefix of
φj−1(0). For all v ′ such that |u ′| = |v ′|, applying Theorem 2.4 and Lemma 2.5, we have that
u ∼j pφ

j−1(1)φj(v ′)s ′ =: v and the conclusion is the same as in the previous case.

Case 4: Assume that p = p ′φj−1(0) and s = φj−1(1)s ′ where p ′ is a suffix of φj−1(1) and s ′

is a prefix of φj−1(0). For all v ′ such that |v ′| = |u ′|+ 1, applying Theorem 2.4 and Lemma 2.5,

u ∼j p
′φj−1(0)φj−1(1)φj(u ′)s ′ ∼j p

′φj(w ′)s ′ =: v,

Hence v is a factor of φj(0w ′0) and the conclusion is similar to Case 1.

To conclude the proof, we consider the case of a suffix w of x. Now w has a suffix of the form
φk(y ′), where y ′ is a suffix of y. Notice now that L(x) ⊇ L(w) ⊇ L(φk(y ′)). The theorem applies
to both x and φk(y ′) by the previous part. Hence w has property TMB(k) also.

Remark 4.9. If y is an aperiodic infinite word, then for all a, b ∈ {0, 1} and n ≥ 2 we have
Ln(φ(y)) ∩ aA∗b ̸= ∅. Indeed, for a ̸= b the claim follows from Lemma 4.6. For a = b, we
observe the following: for even length factors n = 2ℓ, ℓ ≥ 1, a factor aya of y of length ℓ+1 (which
exists by Lemma 4.6) gives a factor aaφ(y)aa in z, hence we have the factor aza with |z| = 2ℓ− 2.
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For odd length factors n = 2ℓ + 1, ℓ ≥ 1, we have that a factor of the form cyc, |y| = ℓ − 1, of y
(such a factor exists for some c ∈ {0, 1} by Lemma 4.6) gives ccφ(y)cc. Consequently z contains a
factor in aA∗a of length n as well.

Applying this observation in the above proof to z when j < k, we have Ln(z) ∩ 1A∗1 ̸= ∅ for
all n ≥ 2, and thus case analysis at the end of the proof is only necessary for the case j = k.

4.3 On the k- and (k+ 1)-Binomial Equivalence
The previous subsection was dealing with the j-binomial equivalence in x = φk(y), where y is an
aperiodic binary word and j ≤ k. Here, we are concerned with the (k+ 1)-binomial equivalence
in such words. To this end, we need to have more control on the k-binomial equivalence in x.
First, we have a closer look at the φj-factorizations of a word and in particular at the associated
prefixes and suffixes.

Definition 4.10 ([29, Def. 43]). Let j ≥ 1. Let us define the equivalence relation≡j onA<2j ×A<2j

by (p1, s1) ≡j (p2, s2)whenever there existsa ∈ A such that one of the following situations occurs:

1. |p1|+ |s1| = |p2|+ |s2| and

(a) (p1, s1) = (p2, s2);

(b) (p1, φ
j−1(a)s1) = (p2φ

j−1(a), s2);

(c) (p2, φ
j−1(a)s2) = (p1φ

j−1(a), s1);

(d) (p1, s1) = (s2, p2) = (φj−1(a), φj−1(a));

2.
∣∣|p1|+ |s1|− (|p2|+ |s2|)

∣∣ = 2j and

(a) (p1, s1) = (p2φ
j−1(a), φj−1(ā)s2);

(b) (p2, s2) = (p1φ
j−1(a), φj−1(ā)s1).

The next lemma is essentially [29, Lem. 40 and 41] (except that with an arbitrary word y instead
of the Thue–Morse word t, we cannot use the fact that t is overlap-free, so factors such as 10101
may appear in y). To each φj-factorization there is a natural corresponding φj−1-factorization,
though two φj-factorizations may correspond to the same φj−1-factorization. The next lemma
also describes how such factorizations are related.

Lemma 4.11. Let j ≥ 1. Let u be a factor of φj(y) such that |u| ≥ 2j − 1. Then u has at most two
φj-factorizations. Let further u have a φj-factorization of the form (p,φj(z), s) and z0zzn+1 being the
corresponding φj-ancestor (where according to Definition 4.7 z0, zn+1 or z could be empty). The factor u
has a unique φj-factorization if and only if the word z0zzn+1 contains both letters 0 and 1. Moreover, if
there is another φj-factorization (p ′, φj(z ′), s ′) with φj-ancestor z ′0z ′z ′m+1, then (p, s) ≡j (p

′, s ′) with∣∣|p|− |p ′|
∣∣ = ∣∣|s|− |s ′|

∣∣ = 2j−1, z0zzn+1 = an+2, and z ′0z
′z ′m+1 = am+2 for some a ∈ {0, 1}.

Otherwise stated, the φj-factorization is not unique if and only if u is a factor of φj−1(x) with
x ∈ (01)∗ ∪ (10)∗ ∪ 1(01)∗ ∪ 0(10)∗.

Proof. Since |u| ≥ 2j − 1, u has a factor of the form φj−1(a) and thus at least one φj-factorization
of the prescribed form exists with z = z1 · · · zn and n ≥ 0 (n = 0 if z = ε).

We first prove the claim for uniqueness by induction on j. For j = 1, assume that u =
z0φ(z1) · · ·φ(zn)zn+1 with z0, zn+1 ∈ {0, 1, ε}. Suppose, as in the statement, that both letters 0
and 1 occur in z0 · · · zn+1. Then we have zizi+1 = 01 (or similarly 10) for some i. This means
that u contains the factor 11 forcing uniqueness of this kind of a factorization: 11 ̸∈ {φ(0), φ(1)}.
Assume that the property holds true up to j−1 and prove it for j ≥ 2. Let u = pφj(z1) · · ·φj(zn)s
be a φj-factorization and assume that zizi+1 = 01 for some i. To this factorization, we have a
corresponding factorization of the form

u = pφj−1(z1)φ
j−1(z1) · · ·φj−1(zn)φ

j−1(zn)s.
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Notice that p is a suffix of φj−1(z0) if |p| < 2j−1 and otherwise, p = p ′φj−1(z0) with p ′ a suffix of
φj−1(z0). Similarly, s is a prefix of φj−1(zn+1) if |s| < 2j−1 and otherwise, s = φj−1(zn+1)s

′ with
s ′ a prefix of φj−1(zn+1). Observe that zizizi+1zi+1 = 0110. So by the induction hypothesis,
the φj−1-factorization of u is unique. There are at most two φj-factorizations corresponding to a
φj−1-factorization. But since φj−1(1)φj−1(1) /∈ {φj(0), φj(1)}, the claimed uniqueness follows.

We then prove the claim for non-unique factorizations. Assume that z0 = z1 = · · · = zn+1 = 0.
Then

u = pφj(0) · · ·φj(0)s = pφj−1(0)φj−1(1) · · ·φj−1(0)φj−1(1)s

with p (resp., s) a suffix (resp., prefix) of φj(0). If |p| ≥ 2j−1, then p = p ′φj−1(1) with p ′ a suffix
of φj−1(0) (and thus, a suffix of φj(1)), otherwise set p ′ = pφj−1(0). Similarly, if |s| ≥ 2j−1, then
s = φj−1(0)s ′ with s ′ a prefix of φj−1(1), otherwise s ′ = φj−1(1)s. Notice that the corresponding
φj−1-factorization of u is unique since the φj−1-ancestor is not a power of a letter: if n ̸= 0 then
the claim is clear. Otherwise |u| = |ps| ≥ 2j − 1; this implies that either |p| ≥ 2j−1 or |s| ≥ 2j−1.
Assuming the latter (the other case being symmetric), we have that s = φj−1(0)s ′ with s ′ a prefix
of φj−1(1). If s ′ ̸= ε, then the φj−1-ancestor contains both letters. If s ′ = ε, then p ̸= ε, and then
again the φj−1-factorization contains both letters.

Now u can also be written as

p ′φj−1(1)φj−1(0) · · ·φj−1(1)φj−1(0)s ′ = p ′φj(1) · · ·φj(1)s ′.

There are no other φj-factorizations due to the uniqueness of the φj−1 factorization of u. To
conclude the claim in this case, a straightforward case analysis shows that (p, s) ≡j (p

′, s ′) with∣∣|p|− |p ′|
∣∣ = ∣∣|s|− |s ′|

∣∣ = 2j−1:
If |p| ≥ 2j−1 and if |s| ≥ 2j−1, then (p, s) = (p ′φj−1(1), φj−1(0)s ′).
If |p| ≥ 2j−1 and if |s| < 2j−1, then (p,φj−1(1)s) = (p ′φj−1(1), s ′).
If |p| < 2j−1 and if |s| ≥ 2j−1, then (pφj−1(0), s) = (p ′, φj−1(0)s ′).
If |p| < 2j−1 and if |s| < 2j−1, then (pφj−1(0), φj−1(1)s) = (p ′, s ′).

We have the following theorem, the proof of which is essentially the proof of [29, Thm. 48].
Indeed, the lemmas in [29] leading to its proof do not require that the factors u and v are from
the Thue–Morse word, only that they have φj-factorizations. We note that [29, Thm. 48] is stated
for j ≥ 3. However, the statement holds also for j = 1 (trivially) and for j = 2 as it is essentially a
restatement of [29, Thm. 34] obtained by closely inspecting its proof.

Theorem 4.12. Let y be an aperiodic binary word. Let k ≥ j ≥ 1. Let u and v be equal-length factors
of x = φk(y) with φj-factorizations u = p1φ

j(z)s1 and v = p2φ
j(z ′)s2. Then u ∼j v if and only if

(p1, s1) ≡j (p2, s2).

We then turn to the (k + 1)-binomial equivalence in x. A straightforward consequence of (4)
together with the identities

∑
x∈Aℓ

(
u
x

)
=
(
|u|
ℓ

)
, ℓ ≥ 1, is the following observation.

Lemma 4.13. Let u ∈ {0, 1}∗. Then(
φ(u)

0

)
= |u|;

(
φ(u)

01

)
= |u|0 +

(
|u|

2

)
;

(
φ(u)

011

)
=

(
u

01

)
+

(
|u|0

2

)
+

(
|u|

3

)
.

Proof. Observe that
(
φ(a)
011

)
= 0 =

(
φ(a)
11

)
for both a ∈ {0, 1}. Similarly

(
φ(a)
b

)
= 1 for letters

a, b ∈ {0, 1}. Therefore(
φ(u)

011

)
=

∑
x1,x2∈A

(
u

x1x2

) ∑
011=e1e2

ei∈A+

(
φ(x1)

e1

)(
φ(x2)

e2

)
+

∑
|x|=3

(
u

x

)

=

(
u

00

)
+

(
u

01

)
+

(
|u|

3

)
.

and the claim follows.
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The next technical lemma has an important role in studying the (k+ 1)-binomial equivalence.

Lemma 4.14. Let u, v be two binary words of equal length. For k ≥ 1, we have(
φk(u)

01k

)
−

(
φk(v)

01k

)
= 2(k−1)(k−2)/2(|u|0 − |v|0).

In particular, u ̸∼1 v implies φk(u) ̸∼k+1 φk(v). Moreover, if u ∼1 v, for k ≥ 1, we have(
φk(u)

01k+1

)
−

(
φk(v)

01k+1

)
= 2(k−1)(k−2)/2

((
u

01

)
−

(
v

01

))
.

In particular, u ̸∼2 v implies φk(u) ̸∼k+2 φk(v).

Proof. The case k = 1 is deduced from Lemma 4.13. Then assume k ≥ 2. We encourage the reader
to refer to [29] for details that would be too long to reproduce here. From [29, Rem. 23], we have
the following expression(

φk(u)

01k

)
−

(
φk(v)

01k

)
=

∑
x∈fk(01k)

mfk(01k)(x)

[(
u

x

)
−

(
v

x

)]
,

where the map f is defined to take into account the multiple ways factors 01 or 10 may occur in
a word: f(u) is a multiset of words of length shorter than u; see [29, Def. 15 and 17]. We let the
coefficient mfk(01k)(x) denote the multiplicity of x as an element of the multiset fk(01k). It can
be shown that the multiset fk(01k) only contains the elements 0 and 1. Therefore we obtain(

φk(u)

01k

)
−

(
φk(v)

01k

)
= mfk(01k)(0) (|u|0 − |v|0) +mfk(01k)(1) (|u|1 − |v|1) .

To conclude the proof, we use two facts. The first is that |u|1 − |v|1 = −(|u|0 − |v|0) since u, v have
equal length. The second is that

mfk(01k)(0) −mfk(01k)(1) = mfk−1(01k)(01) −mfk−1(01k)(10) = 2(k−1)(k−2)/2,

which follows from [29, Prop. 28]. For the second part, the same reasoning may be applied to
obtain(

φk(u)

01k+1

)
−

(
φk(v)

01k+1

)
=

∑
x∈fk(01k+1)

mfk(01k+1)(x)

[(
u

x

)
−

(
v

x

)]
.

The multiset fk(01k+1) only contains 0, 1, 00, 01, 10, 11. But since it is assumed that u ∼1 v, the
only (potentially) non-zero terms in the sum correspond to x ∈ {01, 10}. Then the observation(
u
01

)
−
(
v
01

)
=
(
v
10

)
−
(
u
10

)
following from Lemma 2.7 suffices to conclude.

Next we consider the structure of factors of the image of an arbitrary binary word y.

Definition 4.15. For n ≥ 1 we let S(n) = Ln(y). Further, for all a, b ∈ {ε, 0, 1} such that ab ̸= ε,
we define Sa,b(n) = Ln+|ab|(y) ∩ aA∗b. We call these sets factorization classes of order n.

Consider now a factor u of φ(y). We associate with u some factorization classes as follows.
Let aφ(u ′)b be the φ-factorization of u with φ-ancestor au ′b ∈ L(y). If ab = ε, we associate
the factorization class S(|u ′|). For ab ̸= ε, we have that u is a factor of φ(au ′b). In this case we
associate the factorization class Sa,b(|u

′|). If u is associated with a factorization class T , we write
u |= T , otherwise we write u ̸|= T .

Observe that u |= S(n) implies that |u| = 2n. Also, for ab ̸= ε, u |= Sa,b(n) implies that |u| =
2n + |ab|. Notice also that a factor u of φ(y) can be associated with several factorization classes:
take, e.g., (10)ℓ1 = 1(01)ℓ which is associated with both Sε,1(ℓ) and S0,ε(ℓ), or (01)ℓ+1 = 0(10)ℓ1
which is associated with both S(ℓ+ 1) and S1,1(ℓ).
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Lemma 4.16. For two 2-binomially equivalent factors u, v ∈ L(φ(y)), if u |= T for some factorization
class T , then v |= T . Furthermore, a factor u of y is associated with distinct factorization classes if and
only if u ∈ L = (01)∗ ∪ (10)∗ ∪ 1(01)∗ ∪ 0(10)∗.

Proof. Even-length factors. Let u ∼2 v with |u| = 2n. If u |= Sa,a(n− 1) with a ∈ {0, 1}, then u is
of the form aφ(x)a with |x| = n − 1, whence |u|a = n + 1. Factors v ′ ̸|= Sa,a(n − 1) of length 2n
have |v ′|a ≤ n by inspection. Hence also v |= Sa,a(n − 1). The above arguments also show that
u is associated with exactly one factorization class. For the latter claim, we note that u has even
length and begins and ends with the same letter, so it cannot appear in the language L.

Assume then that u ̸|= Sa,a(n− 1), a ∈ {0, 1}. Then v ̸|= Sa,a(n− 1), a ∈ {0, 1} by the previous
observation. Notice that we may assume n ≥ 2 as otherwise we have |u| = 2 and the claim
is trivial (2-binomial equivalence is equality in this case). We compare the values of

(
y
01

)
for y

associated with S1,1(n− 1), S0,0(n− 1), and S(n), respectively.

Case 1: y |= S1,1(n − 1). We have
(
y
01

)
≥
(
n
2

)
+ n, and equality holds for y = (01)n. Indeed,

say y = 0φ(x)1 for some x ∈ {0, 1}n−1. Then we have by Lemma 4.13(
y

01

)
=

(
φ(x)

01

)
+ |φ(x)|0 + |φ(x)1|1 = |x|0 +

(
|x|

2

)
+ 2|x|+ 1 = |x|0 +

(
n

2

)
+ n,

since |x| = n− 1. Equality now holds when |x|0 = 0, i.e., x = 1n−1.

Case 2: y |= S0,0(n − 1). We have
(
y
01

)
≤
(
n
2

)
, and equality holds when y = (10)n. Indeed,

say y = 1φ(x)0 for some x ∈ {0, 1}n−1. Then(
y

01

)
=

(
φ(x)

01

)
= |x|0 +

(
|x|

2

)
= |x|0 +

(
n

2

)
− (n− 1).

Since |x| = n− 1, we have
(
y
01

)
≤
(
n
2

)
. Equality holds when x = 0n−1.

Case 3: y |= S(n). We have
(
n
2

)
≤
(
y
01

)
≤
(
n
2

)
+ n. The former equality is attained with

y = (10)n and the latter with y = (01)n. Indeed, say y = φ(x ′) for some x ′ ∈ {0, 1}n. We have(
y
01

)
=
(
n
2

)
+ |x ′|0 from Lemma 4.13. Therefore,

(
n
2

)
≤
(
y
01

)
≤
(
n
2

)
+ n. The former equality is

attained with x ′ = 1n and the latter with x ′ = 0n.

We conclude thatu and v are associated with a common factorization class. In fact, the latter claim
is also implied from the above: a word can be associated with two (and only two) factorization
classes if and only if it appears in L. This concludes the proof in the case of even length factors.

Odd-length factors. Assume without loss of generality that u |= Sa,ε(n) with u = aφ(u ′) of
length 2n + 1. Recalling that |φ(u ′)|0 = |u ′| = n, if u ∼2 v with u and v associated with distinct
factorization classes, then necessarily v ∈ Sε,a, say v = φ(v ′)a. We show that this is impossible,
unless u = v ∈ L.

Indeed, assuming that we have 2-binomial equivalence, we have(
aφ(u ′)

01

)
=

(
φ(u ′)

01

)
+ δ0(a)

(
φ(u ′)

1

)
= |u ′|0 +

(
n

2

)
+ δ0(a)n (6)

which is equal to(
φ(v ′)a

01

)
=

(
φ(v ′)

01

)
+ δ1(a)

(
φ(v ′)

0

)
= |v ′|0 +

(
n

2

)
+ δ1(a)n (7)

where δa(b) = 1 if a = b, otherwise δa(b) = 0. Rearranging, we get |u ′|0 − |v ′|0 = (δ1(a) −
δ0(a))n ∈ {±n}. This implies, without loss of generality, that u ′ = 0n, v ′ = 1n, and a = 1. But
then u = 1(01)n = (10)n1 = v ∈ L, as claimed.

The next result characterizes (k+ 1)-binomial equivalence in x = φk(y) when y is an arbitrary
binary word.
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Proposition 4.17. Let u and v be factors of length at least 2k− 1 of x = φk(y) with the φk-factorizations
u = p1φ

k(z)s1 and v = p2φ
k(z ′)s2. Then u ∼k+1 v and u ̸= v if and only if z ∼1 z ′, z ′ ̸= z, and

(p1, s1) = (p2, s2).

Notice that the proposition claims that those factors of x having at least two φk-factorizations
are (k+ 1)-binomially equivalent only to themselves (in L(x)).

Proof. The “if”-part of the statement follows by a repeated application of Proposition 3.9 on the
Thue–Morse morphism together with the fact that the morphism is injective.

Let us assume that u ∼k+1 v for some distinct factors. It follows that u ∼k v, which implies
that (p1, s1) ≡k (p2, s2) by Theorem 4.12. Next we show that (p1, s1) = (p2, s2) and z ∼1 z ′. We
have the following case distinction from Definition 4.10:

(1)(a): We have that (p1, s1) = (p2, s2). By deleting the common prefix p1 and suffix s1, we
are left with the equivalent statement φk(z) ∼k+1 φk(z ′). If z ̸∼1 z ′, then we have a contradiction
with Lemma 4.14. The desired result follows in this case.

In the remaining cases, we assume towards a contradiction that (p1, s1) ̸= (p2, s2).
(1)(b): Suppose that (p1, s2) = (p2φ

k−1(a), φk−1(a)s1). Deleting the common prefixes p2

and suffixes s1, we are left with φk−1(aφ(z)) ∼k+1 φk−1(φ(z ′)a). Now aφ(z) ∼1 φ(z ′)a,
but aφ(z) ̸∼2 φ(z ′)a by Lemma 4.16 (otherwise aφ(z) = φ(z ′)a and thus u = v contrary to
the assumption). Lemma 4.14 then implies that φk−1(aφ(z)) ̸∼k+1 φk−1(φ(z ′)a), which is a
contradiction.

(1)(c): Suppose that (p2, φ
k−1(a)s2) = (p1φ

k−1(a), s1). This is symmetric to the previous
case.

(1)(d): Suppose that (p1, s1) = (s2, p2) = (φk−1(a), φk−1(a)). We thus have directly

φk−1(aφ(z)a) ∼k+1 φk−1(aφ(z)a).

The claim follows by an argument similar to that of in Case (1)(b).
(2)(a): Suppose that (p1, s1) = (p2φ

k−1(a), φk−1(ā)s2). After removing common prefixes
and suffixes, we are left with φk−1(aφ(z)a) ∼k+1 φk−1(φ(z ′)). We have that aφ(z)a ∼1 φ(z ′),
but by Lemma 4.16 aφ(z)a ̸∼2 φ(z ′) (otherwise z = aℓ and z ′ = aℓ+1, implying that u = v, a
contradiction). This is again a contradiction by Lemma 4.14.

(2)(b): Suppose that (p2, s2) = (p1φ
j−1(a), φj−1(ā)s1). This is symmetric to the previous

case.

Notice that Theorem 4.2 and Proposition 4.17 have the following corollary:

Corollary 4.18. Let x = φk(y), where y is an arbitrary aperiodic binary word. We have

b(1)
x ≺ b(2)

x ≺ · · · ≺ b(k)
x ≺ b(k+1)

x .

Proof. Recall that y contains arbitrarily long factors of the form aza, a ∈ {0, 1}, by Lemma 4.6.
Therefore x contains the k-binomially equivalent (by Lemma 2.5) factors φk−1(a)φk(z) and
φk(z)φk−1(a). However, by Proposition 4.17 these factors are either not (k + 1)-binomially
equivalent, or φk−1(a)φk(z) = φk(z)φk−1(a). The latter happens when φk(z) = φk−1(a)ℓ for
some ℓ ≥ 0, and thus only when ℓ = 0 and z = ε. (Indeed, it is not hard to prove that if w is
primitive so is φ(w).) This observation suffices for showing b(k)

x ≺ b(k+1)
x . The rest of the claim

follows by Theorem 4.2.

5 Binomial Properties of the Thue–Morse Morphism, Part II
In this section we consider a complementary result to Theorem 4.2, which partially extends the
following theorem of Richomme, Saari, and Zamboni [40].

Theorem 5.1 ([40, Thm 3.3]). Let x be an aperiodic word. Then b(1)
x = b(1)

t if and only if there exists a
binary word y and a ∈ {ε, 0, 1} such that x = aφ(y).
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Notice that Theorem 4.2 is a generalization of the “if”-direction. The following Theorem 5.2 is
a partial generalization in the other direction. It is proved in Section 5.2. Recall Definition 4.1: For
an integer k ≥ 1, a binary word x has property TMB(k) if, for all 1 ≤ j ≤ k, we have b(j)

x = b(j)
t .

Theorem 5.2. Let x be a recurrent binary word having property TMB(k) for some k ≥ 1. Then there
exists a binary word y such that x = uφk(y), where u is a proper suffix of φk(0) or φk(1).

To prove the theorem, we first derive a formula for counting (k + 1)-binomial equivalence
classes of words that are of the form φk(y) for y aperiodic in Section 5.1.

5.1 A formula for counting (k+ 1)-binomial complexities
For a binary word y we define

Xy(n) := {(a,Ψ(u), b) : a, b ∈ {0, 1}, aub ∈ Ln+1(y)},
Yy,L(n) := {(a,Ψ(u)) : a ∈ {0, 1}, au ∈ Ln+1(y)},
Yy,R(n) := {(Ψ(u), a) : a ∈ {0, 1}, ua ∈ Ln+1(y)},
Yy(n) := Yy,L ∪ Yy,R.

Observation 5.3. Let Gn = (V, E) be the abelian Rauzy graph of y (of order n).

• E is in one-to-one correspondence with Xy(n), namely, x⃗ (a,b)−−−→ y⃗ is identified with (a, x⃗ −
Ψ(a), b). In particular, #E = #Xy(n).

• The set Yy,R(n) is in one-to-one correspondence with E/≡R, where ≡R is the equivalence
relation defined by the (surjective) mapping E → Yy,R(n) (meaning, the equivalence classes
are the full preimages of elements of Yy,R(n)),(

x⃗
(a,b)−−−→ y⃗

)
7→ (⃗x, b).

In particular, #Yy,R(n) ≤ #E. Similarly Yy,L(n) is in one-to-one correspondence with E/≡L,
where ≡L is the equivalence relation defined by the (surjective) mapping(

x⃗
(a,b)−−−→ y⃗

)
7→ (a, y⃗).

In particular, #Yy,L(n) ≤ #E.

• Each equivalence class in E/≡L contains at most two elements: two edges are equivalent if
their target vertices and the first components of the labels are equal. Hence the equivalence
relation can only identify a non-loop edge with a loop.

• Note that any loop at a vertex v with label (0, 0) can only be equivalent under either ≡L or
≡R to an edge between v and a lighter vertex. Similarly a loop with label (1, 1) can only be
equivalent to an edge between v and a heavier vertex. In particular, a loop with (0, 0) (resp.,
(1, 1)) on the lightest (resp., heaviest) vertex is not equivalent to any other edge under either
≡L or ≡R.

Example 5.4. Recall the abelian Rauzy graphs of the Thue–Morse word from Example 4.5. The
edges correspond exactly to Xt(n). The equivalence classes of E/≡R (resp., E/≡L) corresponding
to Yt,R(n) (resp., Yt,L(n)) containing at least two elements are listed below:

n = 2m: Yt,R :

{
m

(0,0)−−−→ m,m
(1,0)−−−→ m− 1

}
,

{
m

(1,1)−−−→ m,m
(0,1)−−−→ m+ 1

}
;

Yt,L :

{
m

(0,0)−−−→ m,m− 1
(0,1)−−−→ m

}
,

{
m

(1,1)−−−→ m,m+ 1
(1,0)−−−→ m

}
.
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n = 2m− 1: Yt,R :

{
m

(1,1)−−−→ m,m
(0,1)−−−→ m+ 1

}
,

{
m+ 1

(0,0)−−−→ m+ 1,m+ 1
(1,0)−−−→ m

}
;

Yt,L :

{
m

(1,1)−−−→ m,m+ 1
(1,0)−−−→ m

}
,

{
m+ 1

(0,0)−−−→ m+ 1,m
(0,1)−−−→ m+ 1

}
.

We may now establish a formula for counting the (k+1)-binomial complexity of the kth image
of a word y under the Thue–Morse morphism. This will turn out to be key in proving a converse
to Theorem 4.2.

Proposition 5.5. Let y be an infinite binary word and let x = φk(y) with k ≥ 1. Let m = max{n ∈
N : 0n and 1n ∈ L(y)} and m ′ = max{n ∈ N : 0n or 1n ∈ L(y)}, where we allow m and m ′ to equal∞. We have b(k+1)

x (r) = pt(r) for all 0 ≤ r < 2k. Setting Z(n, 0) := (2k − 1)#Xy(n) + b(1)
y (n), for all

n ≥ 1 we have

b(k+1)
x (2kn) = Z(n, 0) −


2k, if n < m;

1, if n = m < m ′;

0, otherwise.
(8)

For all n ≥ 1 and 0 < r < 2k, setting Z(n, r) := (r− 1)#Xy(n+ 1) + (2k − r− 1)#Xy(n) + #Yy(n),
we have

b(k+1)
x (2kn+ r) = Z(n, r) −


2k, if n+ 1 < m;

(2k − r+ 1), if n+ 1 = m < m ′;

(2k − 2(r− 1)), if n+ 1 = m = m ′ and r ≤ 2k−1;

0, otherwise.

(9)

Proof. Lemma 4.8 implies the formula for lengths less than 2k. The proof strategy to establish
formulas (8) and (9) is as follows. Forn ≥ 1 and 0 ≤ r < 2k, we first obtain an upper boundZ(n, r)

on b(k+1)
x (2kn + r) by counting the different φk-factorizations up to the equivalence implied by

Proposition 4.17. Then we establish the exact formula by subtracting the number of (k + 1)-
binomial classes that admit several φk-factorizations as counted above. To do so, we use the
following argument. By Proposition 4.17 and the observation made right after its statement,
those factors of x that admit several φk-factorizations are (k + 1)-binomially equivalent only to
themselves. In fact, such factors are well-understood by Lemma 4.11; they only admit two distinct
φk-factorizations. Hence, counting the number of factors that have two φk-factorizations and
subtracting that number from the term Z(n, r) gives the number of (k+ 1)-binomial equivalence
classes.

We first prove formula (8) by inspecting factors of length 2kn for some n ≥ 1. They are of the
following two forms: either φk(u), with |u| = n, or pφk(v)s, with |v| = n− 1, p and s non-empty.
Each abelian equivalence class in Ln(y)/∼1 gives a (k+ 1)-equivalence class of factors of the first
form by Proposition 3.9 (recall that φ is Parikh-collinear). Hence the term b(1)

y (n) in Z(n, 0).
For the factors of the second form, we notice the following. Such a factor has the φk-ancestor
avb, with (a,Ψ(v), b) ∈ Xy(n). On the other hand, any (a,Ψ(v), b) ∈ Xy(n) gives rise to (2k − 1)
(k+ 1)-binomial equivalence classes, namely, those represented by the words

suffi(φ
k(a)) φk(v) pref2k−i(φ

k(b)), 1 ≤ i < 2k,

where, for a word w and i ∈ {1, . . . , |w|}, we let prefi(w) (resp., suffi(w)) denote the length-i prefix
(resp., suffix) of w. Hence the term (2k − 1)#Xy(n) in the formula. Therefore we have established
the upper bound b(k+1)

x (2kn) ≤ Z(n, 0), with Z(n, 0) = (2k − 1)#Xy(n) + b(1)
y (n).

As explained at the beginning of the proof, we now examine factors admitting several φk-
factorizations and subtract their number from Z(n, 0) to establish formula (8). Let x be such a
factor. Then it has, by Lemma 4.11, exactly two φk-factorizations, and we may write

pφk(u)s = x = p ′φk(u ′)s ′. (10)
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Here we note that |ps| = 2k if and only if p or s non-empty. Moreover, the corresponding
φk-ancestors are powers of letters, and given in Table 2.

fact. ancest. conditions on p, s 2nd fact. ancest.
pφk(an)s an |p| = 0 = |s| φk−1(a)φk(an−1)φk−1(a) an+1

pφk(an−1)s an+1 p = φk−1(a), s = φk−1(a) φk(an) an

pφk(an−1)s an+1 |p| > 2k−1, 0 < |s| < 2k−1 p ′φk(an−1)φk−1(a)s an+1

pφk(an−1)s an+1 0 < |p| < 2k−1, |s| > 2k−1 pφk−1(a)φk(an−1)s ′ an+1

Table 2: Factors of length 2kn of x admitting two φk-factorizations and their potential φk-
ancestors. In the third row p ′ is defined by p = p ′φk−1(a), and in the fourth row, s ′ is defined by
s = φk−1(a)s ′.

In particular, for x to have two φk-factorizations (and so for a class to have been counted
twice), an and an both must appear in y, and at least one of an+1 and an+1 has to also appear in
the word. We divide the proof into three cases.

Case 1. If n > m or when n = m = m ′, then as concluded above, there is no factor having
several φk-factorizations, and the formula holds.

Case 2. Assume now that n < m, so both an+1 and an+1 appear in y. Reusing Table 2 above,
we see that any equivalence class corresponding to a factor having φk-ancestor an+1 (or an) has
been counted twice (and corresponds to a word with φk-ancestor an+1 or an). There are 2k of
those, whence the formula for n < m.

Case 3. Assume finally thatn = m andm ′ > m. Assume without loss of generality that am+1

appears in y. Therefore am+1 does not appear in y. Thus, if x has two φk-ancestors, one of them
is am. There is only one such factor, and this proves the remaining case in the formula.

We now turn to the proof of formula (9), and consider factors of the length 2kn + r , with
n ≥ 1 and 0 < r < 2k. Let us first establish the upper bound Z(n, r) on b(k+1)

x (2kn + r). Each
element of Yy(n) gives rise to a unique (k+ 1)-factorization; for example, (a,Ψ(u)) gives the class
represented by suffr(φ

k(a))φk(u). Hence the term #Yy(n) in Z(n, r). Each element of Xy(n + 1)
gives rise to r− 1 many (k+ 1)-factorizations as follows: (a,Ψ(u), b) gives

suffi(φ
k(a)) φk(u) prefr−i(φ

k(b)), 1 ≤ i < r.

Similarly each element of Xy(n) gives 2k − r− 1 elements, namely (a,Ψ(u ′), b) gives

suffi(φ
k(a)) φk(u ′) pref2k+r−i(φ

k(b)) r < i < 2k.

Hence b(k+1)
x (2kn+ r) ≤ Z(n, r) with Z(n, r) = (r− 1)#Xy(n+ 1) + (2k − r− 1)#Xy(n) + #Yy(n).

We again face the problem of over-counting. As previously, we count the number of factors
that have two φk-factorizations. Let again x have two φk-factorizations as in (10), where now
ps and p ′s ′ are both non-empty. The φk-ancestor of each factorization is given in Table 3. We
conclude that, for x to have two φk-factorizations (and so for a class to have been counted twice),
we must have n+ 1 ≤ m. We divide the proof into three cases.

Case 1. Assume that n + 1 > m. As concluded above, there is no factor having several
φk-factorizations, and the formula holds.

Case 2. Assume that n+1 < m. In this case we have 1n+2 and 0n+2 appearing in y. We claim
that any factor with a φk-ancestor an+2 or an+1 has also a φk-ancestor an+2 or an+1, and we
show there are 2k such factors. Hence the formula follows.
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fact. ancestor conds. on p, s

pφk(u)s
an+2

an+1

if |ps| = r and p, s ̸= ε
if |ps| = r with p = ε or s = ε, or if |ps| > r

p ′φk(u ′)s ′
an+2

an+1

if |p ′s ′| = r and p ′, s ′ ̸= ε
if |p ′s ′| = r with p ′ = ε or s ′ = ε, or if |p ′s ′| > r

Table 3: Factors of x of length 2kn+ r, 0 < r < 2k, admitting two φk-factorizations together with
their potential φk-ancestors.

conditions on p, s φk-fact. φk-ancestor
|p|, |s| < 2k−1 p ′φk(an−1)s ′ an+1

|p| ≥ 2k−1 and |s| < 2k−1 p ′φk(an)φk−1(a)s an+2

|p| < 2k−1 and |s| ≥ 2k−1 pφk−1(a)φk(an)s ′ an+2

Table 4: The accompanying second φk-factorization of a factor pφk(an)s, |ps| = r, having two
φk-factorization. Here p ′ and s ′ are suitably chosen; for example, in the first row we have
p ′ = pφk−1(a) and s ′ = φk−1(a)s.

First, if x = pφk(an)s, with |ps| = r, we have x = pφk−1(a)φk(an−1)φk−1(a)s. The other φk-
factorization of x is given in Table 4. (Observe that |p| ≥ 2k−1 and |s| ≥ 2k−1 cannot simultaneously
hold as |ps| = r < 2k.)

Second, if x = pφk(an−1)s with |ps| = 2k + r, r < |p| < 2k, the other φk-factorization of x is
given in Table 5, where p ′ and s ′ are again suitably chosen. This concludes the proof for this part,

conditions on p, s φk-fact. φk-ancestor
|p| ≥ 2k−1, |s| < 2k−1 p ′φk(an−1)φk−1(a)s an+1

|p| = 2k−1, |s| = 2k−1 + r φk(an)s ′ an+1

|p|, |s| > 2k−1 p ′φk(an)s ′ an+2

|p| = 2k−1 + r, |s| = 2k−1 p ′φk(an) an+1

|p| < 2k−1, |s| ≥ 2k−1 pφk−1(a)φk(an−1)s ′ an+1

Table 5: The accompanying secondφk-factorization of a factor pφk(an−1)s, |ps| = 2k+r, r < |p| <
2k, having two φk-factorizations. Here p ′ and s ′ are again suitably chosen and can be inferred
from the other φk-ancestor and the length constraints.

as we have exhibited 2k distinct factors, and there are no other possibilities. (Indeed, there are
r− 1 factors having an+2 as a φk-ancestor, and 2k − r+ 1 factors having an+1 as such.)

Case 3. Assume finally that n+ 1 = m. We divide the proof into two subcases.

Case 3.1. Assume that m < m ′. Let us assume that an+1 appears in y but an+2 does not.
Then an+2 does under the assumption. Notice that in the previous case there were exactly r − 1
factors havingan+2 as aφk-ancestor. Under our current assumption, these factors do not have this
ancestor, but have instead the ancestor an+2. They thus have only one φk-factorization. However,
as before, the 2k−1 − r + 1 factors with φk-ancestor an+1 have a second φk-factorization. We
conclude that the formula holds also in this case.

Case 3.2. Finally assume that m ′ = m. Then we have that neither an+2 nor an+2 appears
in y, while both an+1 and an+1 do. We thus need to count those factors that have both an+1
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and an+1 as φk-ancestors. Looking at the previous table, only the center row gives an+2 as a
φk-ancestor. Such factors appear when |ps| = 2k + r with 2k−1 < |p| < 2k−1 + r, i.e., there are
r − 1 of them whenever r ≤ 2k−1 (recall that |p|, |s| < 2k). Symmetric arguments apply to factors
having φk-ancestors an+1 (i.e., exchanging the role of a and a). We conclude that the number of
factors having two φk-factorizations is 2k − 2(r− 1) when r ≤ 2k−1, as is claimed in the formula.

We are left with the case that r > 2k−1. Here we show that no factor has two φk-factorizations
with respect to y. Since r > 2k−1, we have |ps| = 2k + r > 2k + 2k−1 with |p|, |s| < 2k. It follows
that for such φk-factorizations we must have |p|, |s| > 2k−1, which only leaves the center row of
the previous table. But, we already discarded these factors, so the proof is completed.

5.2 A converse to Theorem 4.2
As announced at the beginning of the section, we now obtain a partial converse statement to
Theorem 4.2. Before giving the proof, which is quite long and technical, we give a brief sketch
of it. The proof is by induction on k. The induction hypothesis allows to conclude that x in the
statement is essentially the kth image of a recurrent word z. We then show that z has property
TMB(1) using several times the formulas established in Proposition 5.5. The word z having
property TMB(1) allows to show that x is essentially the (k + 1)st image of another binary word
y which then suffices for the claim by Theorem 5.2.

Proof of Theorem 5.2. Observe first that x is aperiodic; we shall implicitly use this fact through-
out the proof. Indeed, if it was not aperiodic, it would be purely periodic by the recurrence
assumption. However, purely periodic words have b(1)(n) = 1 for infinitely many n. This would
contradict the assumption that x has property TMB(1).

We shall prove the claim by induction. So let first k = 1. Then Theorem 5.1 asserts that there
exist a ∈ {ε, 0, 1} and a binary word y such that x = aφ(y), which was to be proven. Assume then
that the claim holds for some k and assume further that x has property TMB(k + 1). It follows
that x = u ′φk(z), where u ′ is a proper (possibly empty) suffix of φk(0) or φk(1).

Claim 1. If z has property TMB(1), then x is of the form x = uφk+1(y) with u a suffix of φk+1(0) or
φk+1(1).

Proof of claim: The assumption implies that z = bφ(y) for some b ∈ {ε, 0, 1}, whence x =
u ′φk(b)φk+1(y). Let y be a prefix of y that contains both letters 0 and 1. Then the factor
Y = φk+1(y) has a unique φk+1-factorization by Lemma 4.11. Now u ′φk(b)Y appears also
in φk+1(y) due to x being recurrent. In particular, it admits a φk+1-factorization, and since
Y has a unique φk+1-factorization, we conclude that u ′φk(b) must be the suffix of φk+1(0) or
φk+1(1). ■

To prove the theorem, it is thus enough to show that z has TMB(1). Indeed, then x is a suffix
of the word of the form φk+1(y) with y aperiodic, and Theorem 4.2 gives the claim. Notice that
b(k+1)

x = b(k+1)

φk(z) again due to recurrence of x. This fact is again used throughout the rest of the
proof.

Notice now that z is also recurrent: if it is not recurrent, then it has a prefix w, containing both
letters, which appears only once in z. Let us write z = wz ′. However, φk(w) appears in φk(z ′)
by the recurrence of x. Since w contains both letters, the φk-factorization of φk(w) is unique. But,
since φk is injective, we must find w in z ′, a contradiction.

Let us assume towards a contradiction that z does not have TMB(1), and let n be the least
integer for which

b(1)
z (n) ̸= b(1)

t (n) =

{
2, if n is odd;
3, if n is even.

We now divide the proof into two cases, depending on the parity of n. As it appears, the case
where n is even is easier to handle.
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5.2.1 n is even

By definition of n, b(1)
z (n − 1) = b(1)

t (n − 1) = 2 and b(1)
z (n) ̸= 3. Note however that b(1)

z (n) ̸= 1

because z is aperiodic. Since b(1)
z can increase or decrease by at most 1 between consecutive

values, we conclude that b(1)
z (n) = 2.

Claim 2. We have n > m, where m is as in Proposition 5.5.

Proof of claim: If n > 2 (i.e., n ≥ 4), then m = 2 (and m ′ = 2) because b(1)
z (2) = 3 implies that 00,

11 ∈ L(z) while b(1)
z (3) = 2 implies that 000, 111 /∈ L(z). If n = 2 then m = 1. ■

We next show that #Xz(n) ≤ 5. To this end, let Mn = max{|u|1 : u ∈ Ln(z)}, i.e., the maximum
weight among length-n factors of y. Assume first that Mn−1 = Mn. Then any factor v ∈ Ln−1(z)
with |v|1 = Mn−1 is followed and preceded by 0 (except possibly for the prefix, which is still
followed by 0), as otherwise Mn ̸= Mn−1. We conclude that

Xz(n) ⊆
{
(0, Ψ(v), 0)

}
∪
(
{0, 1}×

{
Ψ(v) + (1,−1)

}
× {0, 1}

)
,

so the claim follows.
Assume second that Mn−1 = Mn − 1. Then each factor v ∈ Ln−1(z) with |v|1 = Mn−1 − 1 is

followed and preceded by 1; this is because b(1)
z (n− 1) = 2 = b(1)

z (n). In this case

Xz(n) ⊆
{
(1, Ψ(v), 1)

}
∪
(
{0, 1}×

{
Ψ(v) + (−1, 1)

}
× {0, 1}

)
.

We have shown #Xz(n) ≤ 5. This however leads to a contradiction: applying formula (8), we find

3 · 2k+1 − 3 = b(k+1)
t (2kn) = b(k+1)

x (2kn) = b(k+1)

φk(z)(2
kn) ≤ 5 · (2k − 1) + 2 = 3 · 2k+1 − 2k − 3,

where the leftmost equality follows from n being even and (3). We hence move to the case where
n is odd.

5.2.2 n is odd

We have that n ≥ 3 is odd (as z is binary). Since b(1)
z (n− 1) = 3, we have b(1)

z (n) ∈ {3, 4} arguing
as in the case when n was even.

Claim 3. We have b(1)
z (n) = 3.

Proof of claim: Assume for a contradiction that b(1)
z (n) = 4. As z recurrent, the abelian Rauzy

graph Gn has a subgraph of the form depicted in Fig. 3. Further, since z is also aperiodic, it must

x1 x2 x3 x4
(0, 1)

(1, 0)

(0, 1)

(1, 0)

(0, 1)

(1, 0)

Figure 3: A subgraph of the order-n abelian Rauzy graph of z in Claim 3.

have at least one loop (at a right special vertex). We conclude that Gn has at least seven edges,
that is, #Xz(n) ≥ 7. Since n is odd we have, using (8) and recalling that b(k+1)

x = b(k+1)

φk(z)

3·2k+1−4 = b(k+1)
t (2kn) = b(k+1)

x (2kn) ≥ #Xz(n)(2
k−1)+b(1)

z (n)−2k ≥ 6·2k−3 = 3·2k+1−3,

which is absurd. ■

Recall the entities m and m ′ from Proposition 5.5.

Claim 4. We have m = 2. If n ≥ 5, then m ′ = 2 also. Otherwise n = 3 and m ′ > 2.
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Proof of claim: For n ≥ 5 one may proceed as in the proof of Claim 2. When n = 3, we still have
that b(1)

z (2) = 3 implies that both 00 and 11 appear in the word. However, b(1)
z (3) = 3 implies that

one of 000 or 111 appears in z while the other does not. ■

Claim 5. We have that k = 1 and #Xz(n) = 5.

Proof of claim: Consider b(k+1)
x (2kn); applying (8) (using the previous claim) we have

(2k − 1)#Xz(n) + b(1)
z (n) = b(k+1)

x (2kn) = b(k+1)
t (2kn) = 3 · 2k+1 − 4

because n is odd. By Claim 3, this is equivalent to

(6− #Xz(n))2
k + #Xz(n) = 7.

Since z is aperiodic and recurrent and the abelian Rauzy graph Gn has three vertices, Gn must
have at least five edges, i.e., #Xz(n) ≥ 5. The only way to satisfy the above equality is when k = 1
and #Xz(n) = 5. Indeed, the function x 7→ (6 − x)2k + x is strictly decreasing (as k ≥ 1), and for
x = 6, it yields 6 which is less than the right-hand side in the above equation. Therefore we must
have #Xz(n) ≤ 5. We conclude that #Xz(n) = 5. Plugging this into the above equation, we find
that k = 1, as claimed. ■

The previous claim shows that Gn is a graph with three vertices and five edges. Since z is
recurrent and aperiodic, Gn can be obtained, without loss of generality, by adding one loop to
the graph depicted in Fig. 4.

l m h
(0, 1)

(1, 0)

(0, 1)

(1, 0)

Figure 4: A subgraph of the order-n abelian Rauzy graph Gn of z; Gn is assumed to have three
vertices and five edges. Here the leftmost vertex l corresponds to the lightest abelian equivalence
class, the rightmost vertex h to the heaviest, and the center vertex m to the remaining class.

For any vertex v ∈ {l, m, h} ofGn, we shall refer to factors of lengthn having their Parikh-vector
corresponding to v as v-factors.

Recall that Mn is defined as the maximum weight among factors of length n.

Lemma 5.6. The graph Gn contains either the loop h (0,0)−−−→ h or the loop l (1,1)−−−→ l.
Proof. Assume first that Mn = Mn−1. This implies that all the heaviest factors of length n − 1
are surrounded by 0s in z (meaning, preceded and followed by 0; notice that by assumption that
the prefix is not a heavy factor). Hence, there is a factor 0u0 in z which corresponds to the loop
Ψ(0u)

(0,0)−−−→ Ψ(u0), where 0u is an h-factor, because |u0|1 = |u|1 = Mn−1 = Mn.
Assume then that Mn = Mn−1 + 1. Since b(1)

z (n) = b(1)
z (n − 1) = 3, we must have that the

minimum weight of factors of length n is one greater than that of factors of length n − 1; thus
all length-(n − 1) minimum-weight factors are surrounded by 1s in z. (The only exception is the
prefix, which is still followed by 1.) So any non-prefix occurrence of such a factor (recall z is
recurrent) gives a loop on lwith label (1, 1) similar to the above.

Applying (9) with r = 1 and n+ 1 ≥ 4 > 2 = m (by Claim 4), we have

#Yz(n) = b(2)
φ(z)(2n+ 1) = b(2)

x (2n+ 1) = b(2)
t (2n+ 1) = 8.

We show that this is impossible. Recall that we add either of the loops h (0,0)−−−→ h or l (1,1)−−−→ l to
the graph Gn. In either case we note the following: all l-factors are followed by 1 and all h-factors
are followed by 0. In particular, inspecting factors of length n + 1, we only have two distinct
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Parikh-vectors. Therefore, the graph Gn+1 has only two vertices, i.e., b(1)
z (n+1) = 2. The number

of edges of such a graph is at most six: both vertices can have two loops and one outgoing edge
to the other vertex. However, applying (8) (with n+ 1 > m), we find #Xz(n+ 1) + 2 = 9 because
n + 1 is even. But then #Xz(n + 1) = 7, which is impossible. This final contradiction proves that
n cannot be odd either. This concludes the proof of Theorem 5.2.

6 Several Answers to Question A
In this section, we are interested in Question A. Namely, does there exist an infinite word w such
that, for all k ≥ 1, b(k)

w is unbounded and b(k)
w ≺ b(k+1)

w ? If the answer is positive, can we find a
(pure) morphic such word w?

One can give a rather direct answer to this question. Indeed, let c be the binary Champernowne
word, that is, the concatenation of the binary representations of the non-negative integers: 0, 1,
10, 11, 100, 101, 110, 111, . . . . Notice that c contains all binary words. For each k, there exist
two binary words u, v such that u ∼k v and u ̸∼k+1 v (see, for instance, Theorem 2.4). Therefore,
the same properties hold for ux and vx, for all x ∈ {0, 1}∗, thus b(k)

c ≺ b(k+1)
c for all k. Clearly

b(1)
c (n) = n+ 1 is unbounded and so is b(k)

c for k ≥ 2.
Observe that c is not morphic, nor uniformly recurrent (a word x is uniformly recurrent if for

each x ∈ L(x) there exists N ∈ N such that x appears in all factors in LN(x)). Therefore in the rest
of the section we provide more “structured” words answering Question A.

6.1 A Non-Binary Pure Morphic Answer
Consider the morphism g : {a, 0, 1, b}∗ → {a, 0, 1, b}∗ defined by

a 7→ a0b, 0 7→ φ(0), 1 7→ φ(1), b 7→ b2

where φ is the Thue–Morse morphism. We have g = gω(a) = a
∏∞

j=0 φ
j(0)b2j . We show that

the word g answers Question A:

Proposition 6.1. The abelian complexity of g is unbounded and b(k)
g ≺ b(k+1)

g for all k ≥ 1.

Proof. The abelian complexity of g is (at least) linear, since

{|u|b : u ∈ Ln(g)} = {0, . . . , n}.

Furthermore, for each k ∈ N there exist infinitely many words un, vn ∈ L(g) such that un ∼k vn

but un ̸∼k+1 vn: by Theorem 2.4, take un = φk(0)bn and vn = φk(1)bn. Consequently b(k)
g ≺

b(k+1)
g for all k ≥ 1.

6.2 A Binary Morphic Answer
Consider the word τ(g), where g is the word defined in the previous subsection, and τ is the
coding a 7→ ε, 0 7→ 0, 1 7→ 1, and b 7→ 1. We have the following:

Proposition 6.2. The abelian complexity of τ(g) is unbounded and b(k)
τ(g) ≺ b(k+1)

τ(g) for all k ≥ 1.

Proof. The word τ(g) has unbounded abelian complexity: it contains arbitrarily long words u for
which |u|1 = ⌊|u|/2⌋ (take factors of the Thue–Morse word for instance). Similarly it contains
arbitrarily long powers of 1. Consequently, the word has unbounded abelian complexity (recall
Lemma 2.1).

To show b(k)
τ(g) ≺ b(k+1)

τ(g) for all k, we notice that the same arguments as in the case of g can be
applied verbatim with τ(un) and τ(vn).
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6.3 A Binary Uniformly Recurrent Answer
We note that none of the above words are uniformly recurrent. A natural candidate for such
a word is one that has relatively high factor complexity. Uniformly recurrent words having
positive topological entropy4 were studied by Grillenberger in [23]. A construction for uniformly
recurrent positive entropy words appears in [9, §4.4.3]; this construction is simpler than that of
Grillenberger’s, though some properties are lost (see [9, §4.4.3] for a discussion). We recall this
construction here. To attain a word with entropy between 0 and logd, define D0 = {0, 1, . . . , d−1}
and let (qk)k≥0 be a sequence of positive integers. Assuming Dk is constructed, let uk be the
product of words of Dk in lexicographic order (assuming, e.g., 0 < 1 < . . . < d − 1). Define then
Dk+1 := ukD

qk

k . The sequence (uk)k∈N converges to a uniformly recurrent word u having, with
a suitable choice of (qk), the prescribed entropy. We consider the word with d = 2 and qk = 2
for all k (and are not interested in the entropy). Hence for us u = 0100010101100111 · · · .

Lemma 6.3. Let k ≥ 1. If, for some j ≥ 0, Dj contains two words u, v, such that u ∼k v and u ̸∼k+1 v,
then Dj+1 contains words x, y, z and w such that

• x ∼k y but x ̸∼k+1 y;

• z ∼k+1 w but z ̸∼k+2 w.

Proof. By definition, the setDj+1 contains the words x = ujuu, y = ujvv, z = ujuv, andw = ujvu.
We first consider the pair x, y. Since ∼k is a congruence, x ∼k y. To see that x ̸∼k+1 y, assume

the contrary, so that this equivalence reduces to uu ∼k+1 vv by Lemma 2.2. Lemma 2.6 implies
u ∼k+1 v, a contradiction.

Next we have uv ∼k+1 vu by Theorem 2.3, and thus z = ujuv ∼k+1 ujvu = w by Lemma 2.2.
Similarly z ∼k+2 w would imply uv ∼k+2 vu and thus u ∼k+1 v by Theorem 2.3, a contradiction.
The claim follows.

Theorem 6.4. The abelian complexity of u is unbounded and b(k)
u ≺ b(k+1)

u for all k ≥ 1.

Proof. First we show that b(1)
u is unbounded. Assume, for some j ≥ 0, that Dj contains words u, v

with |u|0 − |v|0 = 2j (this holds for j = 0). Then by definition Dj+1 contains the words x = ujuu
and y = ujvv, for which |x|0 − |y|0 = 2(|u|0 − |v|0) = 2j+1. This observation suffices for the claim
by Lemma 2.1.

We then prove the second part of the statement. Observe that D1 contains the words 0101 and
0110, which are abelian equivalent, but not 2-binomially equivalent (as

(
0101
01

)
= 3 and

(
0110
01

)
= 2).

The above lemma then implies that for all k ≥ 1 and for all j ≥ k, the set Dj contains words that
are k-binomially equivalent, but not (k+ 1)-binomially equivalent. The claim follows.

Remark 6.5. It can be shown that the word u above has topological entropy equal to 0. By
modifying the arguments above suitably, the statement of the above theorem holds for any choice
of d and (qk) in the construction—as long as qk > 1 for infinitely many k. Note that to attain
a word with positive entropy, the sequence (qk) must satisfy this property. Hence we have: For
any positive real number h there is a uniformly recurrent d-ary word (with d = max{2, ⌊h⌋ + 1}) having
entropy h, unbounded b(1), and b(k) ≺ b(k+1) for all k.

7 Answer to Question B and Beyond
In this section, we are interested in Question B. Namely, for each ℓ ≥ 1, does there exist a word
w (depending on ℓ) such that b(1)

w ≺ b(2)
w ≺ · · · ≺ b(ℓ−1)

w ≺ b(ℓ)
w = pw? If the answer is positive, is

there a (pure) morphic such word w?
The word 0ω gives b(1) = p. The Fibonacci word f = 0100101001001010010 · · · , the fixed

point of the morphism 0 7→ 01, 1 7→ 0, is a pure morphic word such that 2 = b(1)
f ≺ b(2)

f = pf by
Theorem 2.8.

4The topological entropy of a word x is defined as the quantity lim
n→∞ log px(n)

n
, which exists for any x (see [9, §4.3.2]).
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Remark 7.1. We notice that b(1)
x = px cannot be attained for an aperiodic word x (indeed, there

must exist a factor ava, with a ∈ A and v containing a letter different to a, whence av ∼1 va with
av ̸= va). In fact, the only ultimately periodic words over an m-letter alphabet {a1, . . . , am} for
which the equality holds are of the form an1

1 an2

2 · · ·aω
m, ni ∈ N (up to permutation of the letters).

To answer Question B for larger values of k, we take images of a Sturmian word s by a power
of the Thue–Morse morphism φ and we prove the following result.

Theorem 7.2. Let φ be the Thue–Morse morphism. Let s be a Sturmian word. For each k ≥ 0, the word
sk := φk(s) has

b(1)
sk ≺ b(2)

sk ≺ · · · ≺ b(k+1)
sk ≺ b(k+2)

sk = psk .

In particular, putting the Fibonacci word for s gives a morphic positive answer to Question B.

Proof. Observe that sk has bounded (k + 1)-binomial complexity as a straightforward applica-
tion of Theorem 3.5 (because s has bounded abelian complexity), and thus b(k+1)

sk ≺ psk . By
Corollary 4.18, we need only to show that b(k+2)

sk = psk .
Let u and v be distinct factors of sk. Assume they are (k + 2)-binomially equivalent. By

Proposition 4.17, we have that u = pφk(z)s, v = pφk(z ′)s with z ∼1 z ′. If z ̸= z ′, then z ̸∼2 z ′ by
Theorem 2.8. But then Lemma 4.14 implies thatφk(z) ̸∼k+2 φk(z ′), contradicting the assumption.
Hence we deduce that z = z ′, but then u = v contrary to the assumption.

Remark 7.3. In the above proof, since s is Sturmian, Theorem 2.8 says distinct factors are not
2-binomially equivalent. This means that Theorem 7.2 applies to and only to aperiodic words
s such that b(2)

s = ps. The “only if”-part of the statement follows by a repeated application
of Proposition 3.9 on the Thue–Morse morphism together with the fact that the morphism is
injective.

7.1 Strengthening Question B
We answered Question B by providing a word with bounded abelian complexity. We can therefore
strengthen the question with the following extra requirement.

Question C. For each ℓ ≥ 1, does there exist a word w (depending on ℓ) such that b(1)
w is

unbounded and

b(1)
w ≺ b(2)

w ≺ · · · ≺ b(ℓ−1)
w ≺ b(ℓ)

w = pw?

If the answer is positive, can we find a (pure) morphic such word w?

The following word answers the question for ℓ = 3 in the positive.

Theorem 7.4. The word h = 0112122122212222122222 · · · fixed point of the morphism 0 7→ 01, 1 7→ 12,
and 2 7→ 2 is such that its abelian complexity b(1)

h is unbounded and b(1)
h ≺ b(2)

h ≺ b(3)
h = ph.

We obtain the previous theorem by combining the following two results.

Proposition 7.5. The abelian complexity b(1)
h of h is unbounded and b(1)

h (n) < b(2)
h (n) < ph(n) for all

n ≥ 6.

Proof. We claim that b(1)
h is of the order Θ(

√
n). Clearly it suffices to show the claim for the word

h ′ = 0−1h, as removing the first zero always removes exactly one abelian equivalence class: the
only one that contains a zero. The resulting word h ′ is effectively a binary word; it is evident that
the maximal number of 1’s in a word of length n is attained by the prefix of h ′. This value equals
the maximal m for which

∑m
i=1 i =

(
m+1
2

)
≤ n. Clearly m = Θ(

√
n). By Lemma 2.1, we conclude

that the abelian complexity of h is Θ(
√
n).
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Since the abelian complexity of h if unbounded, so is its 2-binomial complexity. However, the
2-binomial complexity does not equal the factor complexity at lengths n ≥ 6: h contains both the
factors 12n−21 and 212n−412 which are readily seen to be 2-binomially equivalent. (One may also
invoke a result from [20] for binary alphabets.)

Finally observe that the abelian complexity does not coincide with the 2-binomial complexity
either: the factors 2x12y with x+y = n−1 are abelian equivalent but not 2-binomially equivalent.
This ends the proof.

Proposition 7.6. We have b(3)
h = ph.

Proof. We may again discard the first 0 of h, as the prefix is the only factor containing a zero.
Assume to the contrary that there exist 3-binomially equivalent distinct factors u1 and u2 in
h ′ = 0−1h. The two factors must contain the same number of 1’s, and hence at least one under
the assumption that they are distinct. If the factors are of the form ui = 2xi12yi with x1 ̸= x2,
then the factors are not even 2-binomially equivalent. So the words contain at least two 1’s. By the
structure of h, we may write ui = 2xi12ai12ai+11 · · · 12ai+t12yi for some t ≥ 0, ai ∈ N, xi < ai

and yi ≤ ai+ t+ 1 for all i ∈ {1, 2}. If a1 = a2, then x1 ̸= x2, and we again deduce that the factors
are not even 2-binomially equivalent. So we must have a1 < a2 without loss of generality. We
show that in this case the factors are not 3-binomially equivalent. Indeed, consider the coefficient( ·
121

)
. For i = 1, 2, we clearly have(

ui

121

)
=

(
vi

121

)
, (11)

where vi = 12ai12ai+11 · · · 12ai+t1 is obtained from ui by deleting a prefix and a suffix. But,
since a1 < a2, notice now that v1 is a proper subword of v2, meaning that each occurrence of 121
in v1 has a corresponding occurrence in v2. Clearly v2 will have more occurrences of 121. This
combined with (11) gives the claim.

Remark 7.7. Consider the morphic words hk = fωk (0), where fk : {0, . . . , k} → {0, . . . , k}∗ is defined
by i 7→ i(i + 1) for i < k, and k 7→ k. It can be shown that each of the words hk, k ≥ 2, has the
property b(1) ≺ b(2) ≺ b(3) = p (this was shown for h2 in the above). Indeed, one may proceed
by induction on k; we find all factors of fk in fk+1 (up to renaming the letters i 7→ i + 1), so the
first two relations hold immediately. To show the equality between b(3) and p, one may proceed
as in Proposition 7.6. If two factors were 3-binomially equivalent, they should contain at least
one occurrence of 1 (otherwise they are factors of 1

∏m
i=0 f

i
k(2) for some large enough m, and are

factors of fk−1 = 0
∏ω

i=0 f
i
k−1(1) after renaming letters). If they contain exactly one occurrence of

1, then inspecting the coefficients
( ·
1j

)
, j ≥ 2, reveals that the maximal suffixes not containing a 1

must be of the same length. Since they are both prefixes of the same word (
∏m

i=0 f
i(2) for some

large enough m), they must be equal. Hence, by cancellativity, we may remove the common suffix
starting from 1 and keep 3-binomial equivalence, which is a contradiction. If the words contained
at least two 1s, then inspecting the coefficients

( ·
121

)
would reveal that the first occurrence of

1 in both words must correspond to the same occurrence of 1 in hk (much like in the proof of
Proposition 7.6). Inspecting the coefficients

( ·
1j

)
, one can proceed as in the case where only one 1

was assumed to conclude with a contradiction.

A complete answer to Question C is far from obvious; especially if one wishes to obtain a
pure morphic word. Conversely, for a non-periodic morphic word w which is not the fixed point
of a Parikh-collinear morphism, one can wonder about the existence of a minimal value m for
which the binomial and factor complexities would coincide. Does there exists m ∈ N such that
b(m)

w = pw?
Even with an apparently simple situation, it is far from obvious. As stated in the introduction,

computing the k-binomial complexity of a particular infinite word remains challenging. The
period-doubling word pd = 01000101010001 · · · , the fixed point of σ : 0 7→ 01, 1 7→ 00, can be
proved to have the following properties. Its abelian complexity b(1)

pd is unbounded [27, Lem. 4].
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For the 2-binomial complexity, we have b(2)
pd (2n) = ppd(2

n) for all n, but b(2)
pd (n) < ppd(n) for all

n ̸= 2m [28, Prop. 4.5.1]. Otherwise stated, b(1)
pd ≺ b(2)

pd ≺ ppd. Computer experiments show that
b(3)

pd ≺ ppd and suggest that b(4)
pd = ppd.

7.2 Completing the Binomial Complexities of φk Applied to a Sturmian word
For any k ≥ 1, the results presented so far imply that we have the exact j-binomial complexity
function of φk(s), with s a Sturmian word, for each j ̸= k + 1. As a bonus, we compute the
(k + 1)-binomial complexity in Proposition 7.9. We first analyze the abelian Rauzy graphs of
Sturmian words, after which we may apply Proposition 5.5 to obtain the exact (k + 1)-binomial
complexity as well.

A Sturmian word s has b(1)
s (n) = 2 for all n ≥ 1. Hence its abelian Rauzy graph has two

vertices.

Proposition 7.8. Let Gn = (Vn, En). We have #E1 = 3 and #En = 4 for all n ≥ 2. For all n ≥ 1, we
have #En/≡L + #En/≡R = 6.

Proof. Sturmian words are aperiodic, so the graph Gn is always strongly connected. It also always
has a right special vertex.

The claim is plain to verify for G1. Indeed, only one of the vertices can have a loop, and this
loop can only be labeled with (a, a), where a is the letter corresponding to the vertex in question.
The second claim is straightforward to check in this case.

We next consider Gn, n ≥ 2. Since Gn is strongly connected and has a right special vertex, we
conclude that Gn is obtained by adding (possibly zero) loops to one of the graphs in Fig. 5

x⃗ y⃗
(0, 1)

(1, 0)

(0, 0)

or x⃗ y⃗
(0, 1)

(1, 0)

(1, 1)

Figure 5: Possible subgraphs of a Sturmian word’s abelian Rauzy graph.

By symmetry, we may assume it is the one on the left. We claim that we add exactly one loop
to this graph. More precisely, the added loop is either x⃗ (1,1)−−−→ x⃗ or y⃗ (0,0)−−−→ y⃗.

First off, we cannot add the loop y⃗
(1,1)−−−→ y⃗; otherwise we have the factors x0 and y1, where x

is an x⃗-factor and y is a y⃗-factors, for which we have |y1|1 − |x0|1 = 2 contradicting balancedness
at n+ 1. Towards a contradiction, we consider whether we add neither or both of the remaining
admissible loops.

Assume first that we add both loops. Then we have that length n + 1 factors 1x1 and 0y0,
where 1x, x1 are x⃗-factors and 0y, y0 are y⃗-factors, having |1x1|1 = |0y0|1. However, we then have
|y|1 − |x|1 = 2, which gives a contradiction with balancedness at n− 1.

To complete the proof of the first claim, suppose we add neither of the loops. Inspecting Gn,
we see that a factor of length n is an x⃗-factor if and only if it begins with 0. Consider the right
special factor 0v of length n (i.e., |v| = n− 1 ≥ 1) (it begins with 0 by the form of the graph). Since
v1 is a y⃗-factor, we deduce that v begins with a 1. But then v0 is a x⃗-factor beginning with 1, a
contradiction.

The second part of the claim is now straightforward. The edges in the left-hand graph in
Fig. 5 are all pairwise inequivalent under both ≡L and ≡R. Both of the admissible loops to
be added to the graph to obtain Gn are equivalent to the non-loop edges of the graph. Hence
#En/≡L + #En/≡R = 6.

For a Sturmian word s, we have, by Proposition 7.8, Xs(1) = 3, Xs(n) = 4 for all n ≥ 2, and
Ys(n) = 6 for all n ≥ 1. We also have that 1 = m < m ′ using the notation of Proposition 5.5.
Hence, applying the proposition, we have:
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Proposition 7.9. For all n ≥ 0 and 0 ≤ r < 2k

b(k+1)

φk(s) (2
kn+ r) =


pt(r), if n = 0 and 0 ≤ r < 2k;

3 · 2k − 2, if n = 1 and r = 0;

3 · 2k + r− 1, if n = 1 and r > 0;

2k+2 − 2, otherwise.

(12)

We thus conclude the following. For any k ≥ 1 and a Sturmian word s, we have b(j)

φk(s) = b(j)
t

if 1 ≤ j ≤ k (Theorem 4.2); b(k+1)

φk(s) is as in (12); and b(j)

φk(s) = pφk(s) if j ≥ k + 2 (Theorem 7.2).
The exact value for pφk(s)(n) is given by pt(n) when n ≤ 2k (Lemma 4.8), and by n+ 2k+1 − 1 for
n > 2k. The latter can be deduced by using the methods described in [21, §4.1].
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