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Abstract

Direct policy optimization in reinforcement learning is usually solved with policy-gradient
algorithms, which optimize policy parameters via stochastic gradient ascent. This paper
provides a new theoretical interpretation and justification of these algorithms. First, we
formulate direct policy optimization in the optimization by continuation framework. The
latter is a framework for optimizing nonconvex functions where a sequence of surrogate
objective functions, called continuations, are locally optimized. Second, we show that op-
timizing affine Gaussian policies and performing entropy regularization can be interpreted
as implicitly optimizing deterministic policies by continuation. Based on these theoretical
results, we argue that exploration in policy-gradient algorithms consists in computing a
continuation of the return of the policy at hand, and that the variance of policies should
be history-dependent functions adapted to avoid local extrema rather than to maximize the
return of the policy.

1 Introduction

Applications where one has to control an environment are numerous and solving these control problems
efficiently is the preoccupation of many researchers and engineers. Reinforcement learning (RL) has emerged
as a solution when the environments at hand have complex and stochastic dynamics (Sutton & Barto, 2018).
Direct policy optimization and more particularly (on-policy) policy gradients are methods that have been
successful in recent years. These methods, reviewed by Duan et al. (2016) and Andrychowicz et al. (2020),
all consist in parameterizing a policy (most often with a neural network) and adapting the parameters with
a local-search algorithm in order to maximize the expected sum of rewards received when the policy is
executed, called the return of the policy. We distinguish two basic elements that determine the performance
of these methods. As first element, we have the formalization of the optimization problem. It is defined
through two main choices: the (functional) parametrization of the policy and the learning objective function,
which mostly relies on adding an entropy regularization term to the return. As second element, there is the
choice of the local-search algorithm to solve the optimization problem – we focus on stochastic gradient
ascent methods in this study.

The policy parameterization is the first formalization choice. In theory, there exists an optimal deterministic
policy (Sutton & Barto, 2018), which can be optimized by deterministic policy gradient (Silver et al., 2014)
with a guarantee of converging towards a stationary solution (Xiong et al., 2022). However, this approach
may give poor results in practice as it is subject to convergence towards local optima (Silver et al., 2014).
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It is therefore usual to optimize stochastic policies where this problem is mitigated in practice (Duan et al.,
2016; Andrychowicz et al., 2020). For discrete state and action spaces, theoretical guarantees of global
convergence hold for softmax or direct policy parameterization (Bhandari & Russo, 2019; Zhang et al.,
2021; Agarwal et al., 2020). In the general case of continuous spaces, these results no longer hold and only
convergence towards stationarity can be ensured under strong hypotheses (Bhatt et al., 2019; Zhang et al.,
2020b; Bedi et al., 2021). Recently, convergence under milder assumptions was established assuming that
the policy follows a heavy-tailed distribution, which guarantees a sufficiently spread distribution of actions
(Bedi et al., 2022). Nevertheless, most of the empirical works have focused on (light-tailed) Gaussian policies
(Duan et al., 2016; Andrychowicz et al., 2020) for which convergence is thus not ensured in the general case
(Bedi et al., 2022). The importance of a sufficiently spread distribution in policy gradient had already been
observed in early works and was loosely interpreted as exploration (Lillicrap et al., 2015; Mnih et al., 2016).
This concept originally introduced in bandit theory and value-based RL, where it consists in selecting a
suboptimal action to execute in order to refine a statistical estimate (Simon, 1955; Sutton & Barto, 2018),
is to our knowledge not well defined for direct policy optimization. Other empirical works also showed that
relying on Beta distributions when the set of actions is bounded within an interval outperformed Gaussian
policies (Chou et al., 2017; Fujita & Maeda, 2018). As a side note, another notable advantage of stochastic
policies is the possibility to rely on information geometry and use efficient trust-region methods to speed up
the local-search algorithms (Shani et al., 2020; Cen et al., 2022). In summary, no consensus has yet been
reached on the exact policy parameterization that should be used in practice.

The second formalization choice is the learning objective and more particularly the choice of entropy reg-
ularization. Typically, a bonus enforcing the uniformity of the action distribution is added to the rewards
in the objective function (Williams & Peng, 1991; Haarnoja et al., 2019). Intuitively, it avoids converg-
ing too fast towards policies with small spread, which are subject to being locally optimal. More general
entropy regularizations were applied for encouraging high-variance policies while keeping the distribution
sparse (Nachum et al., 2016) or enforcing the uniformity of the state-visitation distribution in addition to
the action distribution (Islam et al., 2019). Again, no consensus is reached about the best regularization to
use in practice.

The importance of introducing sufficient stochasticity and regularizing entropy is commonly accepted in
the community. Some preliminary research has been conducted to develop a theoretical foundation for this
observation. Ahmed et al. (2019) proposed an empirical analysis of the impact of the entropy regularization
term. They concluded that adding this term yields a smoothed objective function. A local-search algorithm
will therefore be less prone to convergence to local optima. This problem was also studied by Husain
et al. (2021). They proved that optimizing a policy by regularizing the entropy is equivalent to performing
a robust optimization against changes in the reward function. This result was recently reinterpreted by
Brekelmans et al. (2022) who deduced that the optimization is equivalent to a game where one player adapts
the policy while an adversary adapts the reward. The research papers that have been reviewed concentrate
solely on learning objectives in the context of entropy regularization, leaving unanswered the question of
the relationship between a policy’s return and the distribution of actions. This question is of paramount
importance for understanding how the formalization of the direct policy optimization problem impacts the
resulting control strategy.

In this work, we propose a new theoretical interpretation of the effects of the action distribution on the
objective function. Our analysis is based on the theory of optimization by continuation (Allgower & Georg,
1980), which consists in locally optimizing a sequence of surrogate objective functions. The latter are called
continuations and are often constructed by filtering the optimization variables in order to remove local
optima. Our main contributions are twofold. First, we define a continuation for the return of policies
and formulate direct policy optimization in the optimization by continuation framework. Second, based on
this framework, we study different formulations, i.e., policy parameterization and entropy regularization,
of direct policy optimization. Several conclusions are drawn from the analysis. First, we show that the
continuation of the return of a deterministic policy is equal to the return of a Gaussian policy. Second, we
show that the continuation of the return of a Gaussian policy equals the return of another Gaussian policy
with scaled variance. We then derive from the previous results that optimizing Gaussian policies using policy-
gradient algorithms and performing regularization can be interpreted as optimizing deterministic policies by
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continuation. In this regard, exploration as it is usually understood in policy gradients, consists in computing
the continuation of the return of the policy at hand. Finally, we show that for a more general continuation,
the continuation of the return of a deterministic policy equals the return of a Gaussian policy where the
variance is a function of the observed history of states and actions. These results provide a new interpretation
for the variance of a policy: it can be seen as a parameter of the policy-gradient algorithm instead of an
element of the policy parameterization. Moreover, to fully exploit the power of continuations, the variance of
a policy should be a history-dependent function iteratively adapted to avoid the local extrema of the return.

Optimization by continuation provides or aims to provide two main practical advantages to solve optimization
problems. First, these methods smooth the objective function and allow the application of gradient-based
optimization methods, as discussed in the literature on variational optimization (Staines & Barber, 2012)
and applied by Murray & Ng (2010) to discrete optimization problems. Second, it enables to compute the
global optimum of the optimization problem. This global optimum can be reached for example assuming
that the optimum of the first continuation is simple to compute, and that the path of local optima of each
continuation leads to the global optimum of the problem (Allgower & Georg, 1980). Theoretical guarantees
on convergence are still scarce in the literature. Several works focus on Gaussian continuations where
the continuations are convolutions of the objective function by Gaussian kernels (Mobahi & Fisher III,
2015). It is particularly useful when the objective function is concave, ensuring smoothness of the surrogate
optimization problems and providing convergence guarantees to the global optimal solution (Nesterov &
Spokoiny, 2017). Interestingly, a recent work links these continuations to concave envelopes (Mobahi &
Fisher, 2015). Another notable result holds for similar continuations relying on uniform kernels for building
the surrogate problems where convergence to the global solution is guaranteed under certain assumptions on
the objective function (Hazan et al., 2016). In the general case, finding the right sequence of continuations
for achieving convergence to the global optimum remains heuristic and problem-dependent. The framework
of optimization by continuation can nevertheless provide valuable insights, as will be further explored in this
work.

Despite the lack of theoretical guarantees, optimization by continuation has found successful machine learning
applications, including image alignment (Mobahi et al., 2012), greedy layerwise training of neural networks
(Bengio, 2009), and neural network training by iteratively increasing the non-linearity of the activation
functions (Pathak & Paffenroth, 2019). To our knowledge, optimization by continuation has never yet been
applied to direct policy optimization. However, optimizing a distribution over the policy parameters rather
than directly optimizing the policy is a reinforcement learning technique that has been used to perform direct
policy optimization (Sehnke et al., 2010; Salimans et al., 2017; Zhang et al., 2020a). Among other things,
it decreases the variance of the gradient estimates in some cases. If this distribution over policy parameters
is a Gaussian, it is furthermore by definition equivalent to optimizing the policy by Gaussian continuation
(Mobahi & Fisher III, 2015). Another method, called reinforcement learning with logistic reward-weighted
regression (Wierstra et al., 2008; Peters & Schaal, 2007), consists in optimizing a surrogate objective of the
return. The surrogate is the expected utility of the sum of rewards. Originally justified relying on the field
of decision theory (Chernoff & Moses, 2012), it can equivalently be seen as an optimization by continuation
method.

The paper is organized as follows. In Section 2, the background of direct policy optimization is reminded.
The framework for optimizing policies by continuation is developed in Section 3 and theoretical results
relating the return of policies to their continuations are presented in Section 4. In Section 5, these results are
used for elaborating on the formulations of direct policy optimization. Finally, the results are summarized
and further works discussed in Section 6.

2 Theoretical Background

In this section, we remind the background of reinforcement learning in Markov decision processes and discuss
the direct policy optimization problem.
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2.1 Markov Decision Processes

We study problems in which an agent makes sequential decisions in a stochastic environment in order to
maximize an expected sum of rewards (Sutton & Barto, 2018). The environment is modeled with an infinite-
time Markov Decision Process (MDP) composed of a state space S, an action space A, an initial state
distribution with density p0, a transition distribution (dynamic) with conditional density p, a bounded reward
function ρ, and a discount factor γ ∈ [0, 1[. When an agent interacts with the MDP (S,A, p0, p, ρ, γ), first,
an initial state s0 ∼ p0(·) is sampled, then, the agent provides at each time step t an action at ∈ A leading
to a new state st+1 ∼ p(·|st, at). Such a sequence of states and actions ht = (s0, a0, . . . , st−1, at−1, st) ∈ H
is called a history and H is the set of all histories of any arbitrary length. In addition, at each time step t,
a reward rt = ρ(st, at) ∈ R is observed.

A (stochastic) history-dependent policy η ∈ E = H → P(A) is a mapping from the set of histories H to the
set of probability measures on the action space P(A), where η(a|h) is the associated conditional probability
density of action a given the history h. A (stochastic) Markov policy π ∈ Π = S → P(A) is a mapping from
the state space S to the set of probability measures on the action space P(A), where π(a|s) is the associated
conditional probability density of action a in state s. Finally, deterministic policies µ ∈ M = S → A
are functions mapping an action a = µ(s) ∈ A to each state s ∈ S. We note that for each deterministic
policy µ there exists an equivalent Markov policy, where the probability measure is a Dirac measure on the
action a = µ(s) in each state s. In addition, for each Markov policy, there exists an equivalent history-
dependent policy only accounting for the last state in the history. We therefore write by abuse of notation
that M ⊊ Π ⊊ E .

The function J : E → R is defined as the function mapping to any policy η the expected discounted cumulative
sum of rewards gathered by an agent interacting in the MDP by sampling actions from the policy η. The
value J(η) is called the return of the policy η and is computed as follows:

J(η) = E
s0∼p0(·)

at∼η(·|ht)
st+1∼p(·|st,at)

[ ∞∑
t=0

γtρ(st, at)
]

. (1)

An optimal agent follows an optimal policy η∗ maximizing the expected discounted sum of rewards J .

2.2 Direct Policy Optimization

Problem statement. Let (S,A, p0, p, ρ, γ) be an MDP and let ηθ ∈ E be a policy parameterized by the
real vector θ ∈ RdΘ . The objective of the optimization problem is to find the optimal parameter θ∗ ∈ RdΘ

such that the return of the policy is maximized:

θ∗ = argmax
θ∈RdΘ

J(ηθ) . (2)

In this work, we consider on-policy policy-gradient algorithms (Andrychowicz et al., 2020). These algorithms
optimize differentiable policies with local-search methods using the derivatives of the policies. They itera-
tively repeat two operations. First, they approximate an ascent direction relying on histories sampled from
the policy, with the current parameters, in the MDP. Second, they update these parameters in the ascent
direction.

Deterministic Policies. It is possible to approximate a solution of the optimization problem equation (2)
for a deterministic policy parameterized with a function approximator µθ ∈M by stochastic gradient ascent
using the deterministic policy gradient theorem (Silver et al., 2014). Nevertheless, optimizing deterministic
policies with inadequate exploration (i.e., without sufficient additional policy randomization) usually results
in locally optimal policies with poor performance (Silver et al., 2014).

Gaussian Policies. In direct policy optimization, most of the works focus on learning Markov policies
where the actions follow a Gaussian distribution whose mean and covariance matrix are parameterized
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function approximators (Duan et al., 2016; Andrychowicz et al., 2020). More precisely, a parametrized
Gaussian policy πGP

θ ∈ Π is a policy where the actions follow a Gaussian distribution of mean µθ(s) and
covariance matrix Σθ(s) for each state s and parameter θ, it thus has the following density:

πGP
θ (a|s) = N (a|µθ(s), Σθ(s)) . (3)

Affine Policies. A parameterized policy (deterministic or stochastic) is said to be affine, if the function
approximators used to construct the functional form of the policy are affine functions of the parameter θ.
Formally, each function approximator fθ of a history-dependent policy has the following form ∀h ∈ H:

fθ(h) = a(h)T θ + b(h) , (4)

where a and b are functions building features from the histories. Such policies are often considered in
theoretical studies (Busoniu et al., 2017) and perform well on complex tasks in practice (Rajeswaran et al.,
2017).

3 Optimizing Policies by Continuation

In this section, we introduce the optimization by continuation methods and formulate direct policy opti-
mization in this framework.

3.1 Optimization by Continuation

Optimization by continuation (Allgower & Georg, 1980) is a technique used to optimize nonconvex functions
with the objective of avoiding local extrema. A sequence of optimization problems is solved iteratively
using the optimum of the previous iteration. Each problem consists in optimizing a deformation of the
original function and is typically solved by local search. Through the iterations, the function is less and
less deformed. Such procedure is also sometimes referred to as graduated optimization (Blake & Zisserman,
1987) or optimization by homotopy (Watson & Haftka, 1989), as the homotopy of a function refers to its
deformation in topology.

Formally, let f : X → R be the real-valued function to optimize. Let g : Y → R be another real-valued
function used for building the deformation of f . Finally, let the conditional distribution function p : X →
P(Y) be the mapping from an optimization variable x ∈ X to the set of probability measures P(Y), such
that p(y|x) is the associated density function for any random event y ∈ Y given x ∈ X . The continuation of
the function f under the distribution p and deformation function g is defined as the function fp : X → R
such that ∀x ∈ X :

fp(x) = E
y∼p(·|x)

[g(y)] . (5)

For the optimization by continuation described hereafter, there must exist a conditional distribution p∗ for
which fp equals f in the limit as p approaches p∗. A typical example is to choose the function g equal to
f , and to use a Gaussian distribution with a constant diagonal covariance matrix for the distribution p. We
then have so-called Gaussian continuations (Mobahi & Fisher III, 2015).

Finally, optimizing a function f by continuation involves iteratively locally optimizing its continuation for a
sequence of conditional distributions approaching p∗ with decreasing spread. Formally, let p0 ≻ p1 ≻ · · · ≻
pI−1 be a sequence of conditional distributions (monotonically) approaching p∗ with strictly decreasing
covariance matrices1. Then, optimizing f by continuation consists in locally optimizing its continuation fpi

with a local-search algorithm initialized at x∗
i for each iteration i. This general procedure is summarized

in Algorithm 1. Particular instances of this algorithm are described by Hazan et al. (2016) and Shao et al.
(2019) for Gaussian continuations.

1In this work, we consider the L2-norm of functions and the Loewner order over the set of covariance matrices (Siotani,
1967).
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In practice, the optimization process can be approximated by performing a limited number of local-search
iterations at each step of the optimization by continuation. In the following sections, we consider that
each optimization of the continuation fpi is approximated with a single gradient ascent step and that the
continuation distribution sequence p0 ≻ p1 ≻ · · · ≻ pI−1 is constructed by iteratively reducing the variance
of the distribution pi. Note that if this variance reduction is sufficiently slow, and the stepsize is well chosen,
a single gradient ascent step enables to accurately approximate x∗

i .

Algorithm 1 Optimization by Continuation
1: Provide a sequence of I functions p0 ≻ p1 ≻ · · · ≻ pI−1
2: Provide an initial variable value x∗

0 ∈ X for the local search
3: for i = 0, 1, . . . , I − 1 do
4: x∗

i+1 ← Optimize the continuation fpi by local search initialized at x∗
i

5: end for
6: return x∗

I

3.2 Continuation of the Return of a Policy

The direct policy optimization problem usually consists in maximizing a nonconvex function. Optimization
by continuation is thus a good candidate for computing a solution. In this section, we introduce a novel
continuation adapted to the return of policies.

The return of a policy depends on the probability of a sequence of actions through the product of the density
ηθ(at|st) of each action at for a given parameter θ, see equation (1). We define the continuation of interest as
the expectation of the return where each factor in the product of densities depends on a different parameter
vector. This expectation is taken according to a distribution that disturbs these parameter vectors at each
time step with a variance depending on the history. Formally, using the notations from Section 3.1, we
optimize the function f that for all x = θ equals the return, f(θ) = J(πθ), over the set X = RdΘ . Let the
covariance function Λ : H → RdΘ×dΘ be a function mapping a history ht ∈ H to a covariance matrix Λ(ht).
Let the continuation distribution q be a distribution such that q(θt|θ, Λ(ht)) is the density of θt distributed
with mean θ and covariance matrix Λ(ht). Then, let Y =

(
S ×A× RdΘ

)N be the set of (infinite) sequences
of states, actions and parameters and let p and g, the two functions defining the continuation, be as follows:

p(y|x) = p(s0)
∞∏

t=0
ηθt

(at|ht)pθ(θt|ht)p(st+1|st, at) (6)

g(y) =
∞∑

t=0
γtρ(st, at) , (7)

where pθ(θt|ht) = q(θt|θ, Λ(ht)) such that the spread of pθ depends on the function Λ. Taken together, the
continuation fq

Λ = fp of the return of the policy ηθ ∈ E corresponding to the distribution q and covariance
function Λ, is defined ∀θ ∈ RdΘ as:

fq
Λ(θ) = E

s0∼p0(·)
θt∼q(·|θ,Λ(ht))

at∼ηθt (·|ht)
st+1∼p(·|st,at)

[ ∞∑
t=0

γtρ(st, at)
]

. (8)

Finally, the continuation equation (8) converges towards the return of ηθ in the limit as the covariance
function Λ approaches zero, as required in Section 3.1.

This continuation is expected to be well-suited for removing local extrema of the return for three main
reasons. First, marginalizing the variables of a function as in our continuation is expected to smooth this
function and therefore remove local extrema – the particular case of Gaussian blurring has been widely
studied in the literature (Mobahi & Fisher, 2015; Nesterov & Spokoiny, 2017). Second, we underline the
interest of considering a continuation in which the disturbance of the policy parameters may vary based on
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the time step. Indeed, changing the parameter vector of the policy at different time steps (and changing the
action distributions) may modify the objective function in significantly different ways. Third, we justify the
factorization of the conditional distribution pθ equation (6) by the causal effect of actions in the MDP. As
the actions only influence the rewards to come, the past history is expected to provide a sufficient statistic
for disturbing the parameters in order to remove local optima. We therefore chose parameter probabilities
conditionally independent given the past history. This history-dependency is encoded through the covariance
function Λ in equation (8).

Maximizing fq
Λ to solve the optimization problem from Algorithm 1 is a complicated task. A common

local-search algorithm used in machine learning is stochastic gradient ascent, which is known for performing
well on several complex functions depending on many variables (Bottou, 2010). The gradient of fq

Λ can be
computed by Monte-Carlo sampling applying the reparameterization trick (Goodfellow et al., 2016) for simple
continuation distributions or relying on the REINFORCE trick (Williams, 1992) in the more general case.
Due to the complex time dependencies of the random events, these vanilla gradient estimates have practical
limitations: the estimates may have large variance, the infinite horizon shall be truncated, and the direction
provided is computed in the Euclidean space of parameters rather than in a space of distributions (Peters &
Schaal, 2008). Finally, the evaluation of the continuation and its derivatives require one to sample parameter
vectors, which may be computationally expensive for complex high-dimensional distributions. The study
of different continuation distributions and the application of the optimization procedure from Algorithm 1
to practical problems is left for further works. In this work, we rather rely on the continuation to study
existing direct policy optimization algorithms. To this end, we show in the next section that maximizing
the continuation defined by equation (8) is equivalent to solving a direct policy optimization problem for
another policy, called a mirror policy.

4 Mirror Policies and Continuations

This section is dedicated to the interpretation of the continuation of the return of a policy. We show it equals
the return of another policy, called a mirror policy. The existence and closed form of mirror policies is also
discussed.

4.1 Optimizing by Continuation with Mirror Policies

Definition 1. Let (S,A, p0, p, ρ, γ) be an MDP and let ηθ ∈ E be a history-dependent policy parameterized
with the vector θ ∈ RdΘ . In addition, let fq

Λ be the continuation of the return of the policy ηθ corresponding to
a continuation distribution q and covariance function Λ as defined in equation (8). We call a mirror policy of
the original policy ηθ, under the continuation distribution q and covariance function Λ, any history-dependent
policy η′

θ ∈ E such that ∀θ ∈ RdΘ :
fq

Λ(θ) = J(η′
θ) . (9)

Let us assume we are provided with the continuation fq
Λ of the return of an original policy ηθ depending

on the parameter θ that shall be optimized. In addition, let us assume we can compute a mirror policy
η′

θ for the original policy ηθ. By Definition 1, the continuation of the original policy equals the return of
the mirror policy for all θ. In addition, under smoothness assumptions, all their derivatives are equal too.
Therefore, maximizing the continuation of an original policy by stochastic gradient ascent can be performed
by maximizing the return of its mirror policy by policy gradient. Applying state-of-the-art policy-gradient
algorithms on the mirror policies for optimizing the continuations in Algorithm 1 may alleviate several of
the shortcomings of the optimization procedure described earlier.

4.2 Existence and Closed Form of Mirror Policies

In this section, we first show that there always exists a mirror policy. In addition, several closed forms are
provided depending on the original policy, the continuation distribution, and the covariance function.

Theorem 1. For any original history-dependent policy ηθ ∈ E parameterized with the vector θ ∈ RdΘ and
for any continuation distribution q and covariance function Λ, there exists a mirror history-dependent policy
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η′
θ ∈ E of the original policy ηθ that writes as:

η′
θ(a|h) = E

θ′∼q(·|θ,Λ(h))
[ηθ′(a|h)] . (10)

Theorem 1 guarantees the existence of mirror policies. Such a mirror policy is a function depending on the
same parameters as its original policy but that has a different functional form and may therefore provide
actions following a different distribution compared to the original policy.

Theorem 1 leads to two important corollary results. First, as demonstrated in Theorem 2 in Appendix A,
let η′′ be a mirror policy of η′ and let η′ be a mirror policy of the original policy η of the form of equation
(10). Then, there exists a continuation for which η′′ is a mirror policy of the original policy η. It follows
that the return of the mirror policy of another mirror policy is itself equal to a continuation of the original
policy. Second, Theorem 1 also reveals that for a given original policy and continuation distribution, the
variance of the mirror policy is defined through the continuation covariance function Λ. Furthermore, we
remind that the variance of the continuation is an hyperparameter that shall be selected for each iteration of
the optimization by continuation, see Section 3. This choice of hyperparameter is thus reflected as the choice
of the variance of a mirror policy. The expert making this choice sees the effect of the disturbed parameters
on the environment through the variance of the mirror policy. From a practical perspective, it is probably
easier to quantify the effect on the local extrema depending on the variance of the mirror policy rather than
depending on the variance of the continuation.

Property 4.1. Let the original policy πθ ∈ Π be a Markov policy and let the covariance function depend
solely on the last state in the history. Then, there exists a mirror Markov policy π′

θ ∈ Π.

Property 4.1 is an intermediate result providing sufficient assumptions on the continuation for having mir-
ror Markov policies. Note that for this type of continuation, the parameters of the policy are disturbed
independently of the history followed by the agent.

Property 4.2. Let the original policy πGP
θ ∈ Π be a Gaussian policy as defined in equation (3) with affine

function approximators. Let the covariance function depend solely on the last state in the history and let the
distribution q be a Gaussian distribution. Then, there exists a mirror Markov policy π′

θ ∈ Π such that for all
states s ∈ S, it converges towards a Gaussian policy in the limit as the affine coefficients of the covariance
matrix Σθ(s) approaches zero (∥∇θΣθ(s)∥ → 0):

π′
θ(a|s)→ N (a|µθ(s), Σ′

θ(s)) , (11)

where Σ′
θ(s) = Cθ(s) + Σθ(s) and Cθ(s) = ∇θµθ(s)T Λ(s)∇θµθ(s).

Under the assumptions of Property 4.2, a mirror policy can be approached by a policy that only differs from
the original one by having a variance which is increased by the term Cθ(s) proportional to the variance of
the continuation. In particular, when the variance of the original policy πGP

θ is solely dependent on the
state, then ∥∇θΣθ(s)∥ = 0 and π′

θ(a|s) = N (a|µθ(s), Σ′
θ(s)). In this case, for any θ, the covariance matrix

of this mirror policy is additionally bounded from below such that Σ′
θ(s) ⪰ Cθ(s).

Property 4.3. Let the original policy µθ ∈M be an affine deterministic policy. Let the covariance function
depend solely on the last state in the history and let the distribution q be a Gaussian distribution. Then, the
Markov policy πGP

θ

′ ∈ Π is a mirror policy:

πGP
θ

′(a|s) = N (a|µθ(s), Σ′
θ(s)) , (12)

where Σ′
θ(s) = ∇θµθ(s)T Λ(s)∇θµθ(s).

Therefore, under some assumptions, disturbing a deterministic policy and optimizing it afterwards can be
interpreted as optimizing the continuation of the return of this policy.

Property 4.4. Let the original policy µθ ∈M be an affine deterministic policy. Let the distribution q be a
Gaussian distribution. Then, the policy η′

θ ∈ E is a mirror policy:

η′
θ(a|h) = N (a|µθ(s), Σ′

θ(h)) , (13)
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where Σ′
θ(h) = ∇θµθ(s)T Λ(h)∇θµθ(s).

Property 4.4 extends Property 4.3 to more general continuation distributions. This extension is used later to
justify the interest of optimizing history-dependent policies in order to optimize an underlying deterministic
policy by continuation. The theorem and properties are shown in Appendix A.

5 Implicit Optimization by Continuation

In this section, two formulations, i.e., a parameterized policy and a learning objective each, used by several
policy-gradient algorithms are analyzed relying on original and mirror policies. In Section 5.1, we show
that optimizing each formulation by local search corresponds to optimizing a continuation. The optimized
policy is thus the mirror policy of an unknown original policy. We show the existence of the corresponding
continuation and original policy and discuss their closed form. This analysis provides a novel interpretation
of the state-of-the-art algorithms for direct policy optimization. We discuss the role of stochastic policies in
light of this interpretation in Section 5.2.

5.1 Gaussian Policies and Regularization

The policy-gradient literature has mainly focused on optimizing two problem formulations by local search –
typically with stochastic gradient ascent and (approximate) trust-region methods. First, the vast majority
of works focuses on optimizing the return of Gaussian policies (Duan et al., 2016; Andrychowicz et al.,
2020). Second, in many formulations this objective function is extended by adding a bonus to the entropy
of the optimized policy (Williams & Peng, 1991; Haarnoja et al., 2019). We show that when optimizing
a policy according to these formulations, there exists an (unknown) deterministic original policy and a
continuation under which the optimized policy is a mirror policy. Provided with the local-search algorithm
from the policy-gradient method, we conclude that optimizing both formulations is equivalent to implicitly
optimizing a deterministic policy by continuation.

First, we remind that under Property 4.3, for any affine deterministic policy µθ, there exists an affine
Gaussian mirror policy πGP ′

θ as defined by equation (12). In Property 5.1, the converse of Property 4.3
is stated, which answers to the question: under which conditions a Gaussian policy is the mirror policy
of an (unknown) deterministic policy. For this converse statement to be true, the transformation between
covariance functions in Property 4.3 must be surjective, which is guaranteed if dA ≤ dΘ and ∇θµθ(s) is full
rank. The first assumption is always met in practice and the second is met when no action is a deterministic
function of the others.

Property 5.1. Let πGP ′

θ be an affine Gaussian policy with mean function µθ, and with covariance function
Σ′

θ = Σ′ constant with respect to the parameters of the policy (i.e., a function depending solely on the state).
If dA ≤ dΘ and if ∇θµθ(s) is full rank, then, there exists a continuation, with covariance Λ proportional to
Σ′, for which πGP ′

θ is a mirror policy of the original policy µθ.

Entropy regularization ensures that the variance of the policy remains sufficiently large during the opti-
mization process.2 Similar objectives are pursued with maximum entropy reinforcement learning (Haarnoja
et al., 2019) or with (approximate) trust-region methods where the trust-region constraint is dualized (Schul-
man et al., 2015; 2017). Let us consider an affine Gaussian original policy πGP

θ with constant covariance
Σθ = Σ. Under Property 4.2, there exists another affine Gaussian policy πGP ′

θ that is a mirror policy of πGP
θ .

This mirror policy has the same mean function and a covariance function bounded from below by Cθ = C.
Property 5.2 provides the converse and answers to the question: under which conditions a Gaussian policy
with sufficiently large covariance is the mirror policy of an (unknown and Gaussian) policy. Similar to the
previous property, this is guaranteed when dA ≤ dΘ and ∇θµθ(s) is full rank.

2Formally, for two matrices A and B, we have that A ⪰ B ⇒ |A| ≥ |B| (Siotani, 1967). As the entropy of a Gaussian
policy is a concave function of the determinant of the covariance matrix, a bounded covariance matrix implies a bounded
entropy. The entropy-regularization learning objective can therefore be interpreted as the Lagrangian relaxation of the latter
entropy-bounded optimization problem.
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Property 5.2. Let πGP ′

θ be an affine Gaussian policy with mean function µθ, and with covariance function
Σ′

θ = Σ′ ⪰ C constant with respect to the parameters of the policy (i.e., a function depending solely on
the state) and bounded from bellow by C. If dA ≤ dΘ and if ∇θµθ(s) is full rank, then, there exists a
continuation, with covariance Λ proportional to C, for which πGP ′

θ is a mirror policy of an original Gaussian
policy πGP

θ with the same mean function µθ and with constant covariance function Σ ⪯ Σ′.

The two previous properties indicate that a Gaussian policy is guaranteed to be a mirror policy of another
policy, Gaussian or deterministic, under some assumptions. If we furthermore guarantee that the continuation
covariance decreases during the optimization, policy-gradient algorithms optimizing affine Gaussian policies
can be interpreted as algorithms optimizing an original policy by continuation.

Let us consider two cases, each corresponding to a problem formulation, where we optimize by policy gradient
an affine Gaussian policy πGP ′

θ with covariance function constant with respect to the parameters of the
policy. First, we consider the case where its covariance matrix decreases during the optimization through a
manual scheduling. In this context, under property 5.1, there exists an original deterministic policy and the
covariance of the continuation decreases through the optimization, such that the policy-gradient algorithm
optimizes this policy by continuation. Second, we consider the case where the entropy is regularized with a
decreasing regularization term (e.g., by scheduling the Lagrange multiplier). Then, as entropy regularization
can be seen as a constraint on the covariance of the policy, under property 5.2, there exists an original
Gaussian policy and the covariance of the continuation decreases through the optimization, such that the
policy-gradient algorithm optimizes this stochastic policy by continuation. Finally, as stated previously and
shown in Theorem 2 in Appendix A, optimizing the return of the mirror policy of another mirror policy
is equivalent to optimizing a continuation of the original policy. Therefore, policy-gradient algorithms that
optimize affine Gaussian policies with both discounted covariance and decreasing regularization by local
search can also be interpreted as algorithms optimizing the mean function (i.e., a deterministic policy) of
this policy by continuation.

We now illustrate how policy-gradient algorithms implicitly optimize by continuation. We take as example
an environment in which a car moves in a valley and must reach its lowest point (positioned in xtarget)
to maximize the expected sum of rewards gathered by the agent, see Appendix B. We assume we want to
find the best K-controller, i.e., a deterministic policy µθ(x) = θ × (x − xtarget), where x is the position
of the car. Directly optimizing such a policy is in practice subject to converging to a local extremum, as
explain hereafter. We thus consider the Gaussian policy πGP

θ (a|x) = N (a|µθ(x), σ′), where µθ(x) and σ′

are the mean and variance of the policy, respectively. This policy is a mirror policy of the deterministic
policy µθ under a continuation of variance λ = σ′/(x − xtarget)2, see Property 4.3. As can be seen in
Figure 1, for each value of σ′, the return of the mirror policy equals the smoothed return of the original
deterministic policy µθ. Consequently, optimizing by policy gradient the Gaussian policy is equivalent to
optimizing the deterministic policy by continuation. For a well-chosen sequence of σ′, with a fixed scheduling
or with adequate entropy regularization, the successive solutions found by local search will escape the basin
of attraction of the suboptimal parameter for any initial parameter of the local search – whereas optimizing
the deterministic policy directly would provide suboptimal solutions.

In this section, we have established an equivalence between the optimization of some policies by policy
gradient and the optimization of an underlying policy by continuation. It opens up new questions about
the hypothesis space of the (mirror) policy to consider in practice in order to exploit the properties of
continuations at best. These considerations are made in the next section. We finally recall that a central
assumption in the previous results is the affinity of policies. Seemingly restrictive, such policies allow to
optimally control complex environments in practice (Rajeswaran et al., 2017) and give first-order results for
non-affine policies.

5.2 Continuations for Interpreting Stochastic Policies

In practice, we know that optimizing stochastic policies tends to converge to a final policy with low vari-
ance and better performance than if we had directly optimized a deterministic policy. Practitioners often
justify this observation by the need to explore through a stochastic policy. Nevertheless, to our knowledge,
this concept inherited from bandit theory is not well defined for direct policy optimization. The previous
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Figure 1: Illustration of the return of the policies N (a|µθ(x), σ′), where µθ(x) = θ×(x−xtarget), for different
σ′ values. The darker the curve, the smaller σ′, and the darkest one is the return of the deterministic policy
µθ. The green dots represent the global maxima and the red dots the local maxima. For some sufficiently
large value for σ′, the return of the policy has a single extremum. For a well chosen schedule of decreasing
σ′, a local-search algorithm will track the sequence of global extrema and converge towards the optimal
deterministic policy.

analysis establishes an equivalence between optimizing stochastic policies with policy-gradient algorithms
and optimizing deterministic policies by continuation. Furthermore, as explained in Section 3.2, the contin-
uation equation (8) consists in smoothing the return of this deterministic policy through the continuation
distribution. Local optima tend to be removed when the variance of the continuation is sufficiently large.
Optimizing stochastic policies and regularizing the entropy, as in most state-of-the-art policy-gradient algo-
rithms, is therefore expected to avoid local extrema before converging towards policies with small variance.
We thus provide a theoretical motivation for the performance reached by algorithms applying exploration as
understood in direct policy optimization.

The relationships between optimization by continuation and policy gradient in Section 5.1 have been estab-
lished relying on Property 4.2 and Property 4.3. They assume continuations where the covariance matrix
depends only on the current state and not on the whole observed history. In the general case, Property 4.4
allows one to extend these results by performing an analysis similar to Section 5.1. To be more specific,
let us assume an affine Gaussian policy πGP ′

θ , where the mean µθ is a function of the state and where the
covariance Σθ = Σ is a function of the history and is constant with respect to θ. Under this assumption, if
dA ≤ dΘ and ∇θµθ(s) is full rank, the return of the policy πGP ′

θ is equal to a (unknown) continuation of
the mean function µθ (i.e., a deterministic policy). Furthermore, optimizing the Gaussian policy by policy
gradient while discounting the covariance can be interpreted as optimizing the deterministic policy µθ by
continuation. In practice, this result suggests to optimize history-dependent policies by policy gradient to
take advantage of the most general regularization of the objective function through implicit continuation.
A similar observation was recently made by Mutti et al. (2022) who argued that history-dependent policies
are required when more complex regularizations are involved. In parallel, Patil et al. (2022) also discussed
the potential advantage of using history-depend parameterized policies for approximating correctly optimal
policies using little representation power.

Finally, a last point has been left open in the previous discussions, namely the update of the covariance
matrix of the mirror policies. The latter is defined through the covariance of the continuation. Therefore,
the covariance must decrease through the optimization and must be chosen to avoid local optima. One
direction to investigate in order to select a variance that removes local extrema is to update the parameters
of the policy by following a combination of two directions: the functional gradient of the optimized policy’s
return with respect to the policy mean and the functional gradient of another measure (to be defined) with
respect to the policy variance. An example of heuristic measure for smoothness might be the entropy of the
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actions and/or states encountered in histories. This strategy obviously does not follow the classical approach
when optimizing stochastic policies where the covariance is adapted by the policy-gradient algorithm to
locally maximize the return and the exact procedure for updating the variance will require future studies.
However the empirical inefficiency of this classical approach has already been highlighted in previous works
that improved the performance of policy-gradient algorithms by exploring alternative learning objective
functions (Houthooft et al., 2018; Papini et al., 2020).

6 Conclusion

In this work, we have studied the problem formulation, i.e., policy parameterization and reward-shaping
strategy, when solving direct policy optimization problems. More particularly, we established connections
between formulations of state-of-the-art policy-gradient algorithms and the optimization by continuation
framework (Allgower & Georg, 1980). We have shown that algorithms optimizing stochastic policies and
regularizing the entropy inherit the properties of optimization by continuation and are thus less subject to
converging towards local optima. In addition, the role of the variance of the policies is reinterpreted in
this framework: it is a parameter of the optimization procedure to adapt in order to avoid local extrema.
Additionally, to inherit the properties of generic continuations, it may be beneficial to consider variances
that are functions of the history of states and actions observed at each time step.

Our study leaves several questions open. Firstly, our results rely on several assumptions that may not
hold in practice. Specifically, it is unclear how our findings can be generalized to non-affine policies and
alternative to Gaussian policies. Nonetheless, our results can be extended in cases where we can obtain an
analytic expression for the mirror policy outlined in Theorem 1. While finding such an expression may be
challenging in general, we can easily extend our conclusions to non-affine policies by considering the first-
order approximation. Additionally, our study is focused on Gaussian policies, which are commonly used in
continuous state-action spaces. However, for discrete action spaces, a natural choice of policy is a Bernoulli
distribution over the actions (or a categorical distribution for more than one action). If the state space is also
discrete, this distribution may be parameterize by a table providing the success probability of the Bernoulli
distribution for each state. In the case of a Beta continuation distribution, a mirror policy can be derived
where actions follow a Beta-binomial distribution in each state, a result known in Bayesian inference as the
Beta distribution is a conjugate distribution of the binomial distribution (Bishop & Nasrabadi, 2006). An
analysis of this mirror policy would allow us to draw conclusions equivalent to those of the continuous case
studied in this paper. Secondly, the study focused on entropy regularization of the policy only. Recent works
have underlined the benefits of other regularization strategies that enforce the spread of other distributions
as the state visiting frequency or the marginal state probability (Hazan et al., 2019; Guo et al., 2021; Mutti
et al., 2022). Future research is also needed to better understand the effect of these regularizations on the
optimization procedure.

Finally, we give a new interpretation for the variance of policies that suggests it shall be updated to avoid
local extrema rather than to maximize the return locally. A first strategy for updating the variance is
proposed in Section 5.2, which opens the door to further research and new algorithm development.

7 Acknowledgments

The authors would like to thank Csaba Szepesvári for the discussion on some mathematical aspects that
allowed to increase the quality of this study. We also thank our colleagues Gaspard Lambrechts, Arnaud
Delaunoy, Pascal Leroy, and Bardhyl Miftari for valuable comments on this manuscript. Adrien Bolland
gratefully acknowledges the financial support of a research fellowship of the F.R.S.-FNRS.

12



Published in Transactions on Machine Learning Research (10/2023)

References
Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. Optimality and approximation with

policy gradient methods in markov decision processes. In Conference on Learning Theory, pp. 64–66.
PMLR, 2020.

Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi, and Dale Schuurmans. Understanding the impact of
entropy on policy optimization. In International Conference on Machine Learning, pp. 151–160. PMLR,
2019.

Eugene L Allgower and Kurt Georg. Numerical continuation methods: an introduction, volume 13. Springer
Series in Computational Mathematics, 1980.

Marcin Andrychowicz, Anton Raichuk, Piotr Stańczyk, Manu Orsini, Sertan Girgin, Raphael Marinier,
Léonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, et al. What matters in on-policy
reinforcement learning? a large-scale empirical study. arXiv preprint arXiv:2006.05990, 2020.

Amrit Singh Bedi, Anjaly Parayil, Junyu Zhang, Mengdi Wang, and Alec Koppel. On the sample complexity
and metastability of heavy-tailed policy search in continuous control. arXiv preprint arXiv:2106.08414,
2021.

Amrit Singh Bedi, Souradip Chakraborty, Anjaly Parayil, Brian M Sadler, Pratap Tokekar, and Alec Koppel.
On the hidden biases of policy mirror ascent in continuous action spaces. In International Conference on
Machine Learning, pp. 1716–1731. PMLR, 2022.

Yoshua Bengio. Learning deep architectures for ai. Foundations and Trends in Machine Learning, 2(1):
1–127, 2009.

Jalaj Bhandari and Daniel Russo. Global optimality guarantees for policy gradient methods. arXiv preprint
arXiv:1906.01786, 2019.

Sujay Bhatt, Alec Koppel, and Vikram Krishnamurthy. Policy gradient using weak derivatives for rein-
forcement learning. In Conference on Decision and Control (CDC), volume 58, pp. 5531–5537. IEEE,
2019.

Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning, volume 4.
Springer, 2006.

Andrew Blake and Andrew Zisserman. Visual reconstruction. MIT press, 1987.

Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of COMP-
STAT’2010, pp. 177–186. Springer, 2010.

Rob Brekelmans, Tim Genewein, Jordi Grau-Moya, Grégoire Delétang, Markus Kunesch, Shane Legg, and
Pedro Ortega. Your policy regularizer is secretly an adversary. arXiv preprint arXiv:2203.12592, 2022.

Lucian Busoniu, Robert Babuska, Bart De Schutter, and Damien Ernst. Reinforcement learning and dynamic
programming using function approximators. CRC press, 2017.

Shicong Cen, Chen Cheng, Yuxin Chen, Yuting Wei, and Yuejie Chi. Fast global convergence of natural
policy gradient methods with entropy regularization. Operations Research, 70(4):2563–2578, 2022.

Herman Chernoff and Lincoln E Moses. Elementary decision theory. Courier Corporation, 2012.

Po-Wei Chou, Daniel Maturana, and Sebastian Scherer. Improving stochastic policy gradients in continuous
control with deep reinforcement learning using the beta distribution. In International Conference on
Machine Learning, pp. 834–843. PMLR, 2017.

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep reinforcement
learning for continuous control. In International Conference on Machine Learning, pp. 1329–1338. PMLR,
2016.

13



Published in Transactions on Machine Learning Research (10/2023)

Yasuhiro Fujita and Shin-ichi Maeda. Clipped action policy gradient. In International Conference on Machine
Learning, pp. 1597–1606. PMLR, 2018.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, Alaa Saade, Shantanu Thakoor, Bilal Piot,
Bernardo Avila Pires, Michal Valko, Thomas Mesnard, Tor Lattimore, and Rémi Munos. Geometric
entropic exploration. arXiv preprint arXiv:2101.02055, 2021.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash Kumar,
Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and applications. arXiv
preprint arXiv:1812.05905, 2019.

Elad Hazan, Kfir Yehuda Levy, and Shai Shalev-Shwartz. On graduated optimization for stochastic non-
convex problems. In International Conference on Machine Learning, pp. 1833–1841. PMLR, 2016.

Elad Hazan, Sham Kakade, Karan Singh, and Abby Van Soest. Provably efficient maximum entropy explo-
ration. In International Conference on Machine Learning, pp. 2681–2691. PMLR, 2019.

Rein Houthooft, Yuhua Chen, Phillip Isola, Bradly Stadie, Filip Wolski, OpenAI Jonathan Ho, and Pieter
Abbeel. Evolved policy gradients. Advances in Neural Information Processing Systems, 31, 2018.

Hisham Husain, Kamil Ciosek, and Ryota Tomioka. Regularized policies are reward robust. In International
Conference on Artificial Intelligence and Statistics, pp. 64–72. PMLR, 2021.

Riashat Islam, Zafarali Ahmed, and Doina Precup. Marginalized state distribution entropy regularization
in policy optimization. arXiv preprint arXiv:1912.05128, 2019.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In Inter-
national Conference on Machine Learning, pp. 1928–1937. PMLR, 2016.

Hossein Mobahi and John W Fisher. On the link between gaussian homotopy continuation and convex
envelopes. In International Workshop on Energy Minimization Methods in Computer Vision and Pattern
Recognition, pp. 43–56. Springer, 2015.

Hossein Mobahi and John Fisher III. A theoretical analysis of optimization by gaussian continuation. In
Conference on Artificial Intelligence, volume 29. AAAI, 2015.

Hossein Mobahi, C Lawrence Zitnick, and Yi Ma. Seeing through the blur. In Conference on Computer
Vision and Pattern Recognition, pp. 1736–1743. IEEE, 2012.

Walter Murray and Kien-Ming Ng. An algorithm for nonlinear optimization problems with binary variables.
Computational optimization and applications, 47(2):257–288, 2010.

Mirco Mutti, Riccardo De Santi, and Marcello Restelli. The importance of non-markovianity in maximum
state entropy exploration. arXiv preprint arXiv:2202.03060, 2022.

Ofir Nachum, Mohammad Norouzi, and Dale Schuurmans. Improving policy gradient by exploring under-
appreciated rewards. arXiv preprint arXiv:1611.09321, 2016.

Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions. Foundations
of Computational Mathematics, 17(2):527–566, 2017.

Matteo Papini, Andrea Battistello, and Marcello Restelli. Balancing learning speed and stability in policy
gradient via adaptive exploration. In International conference on artificial intelligence and statistics, pp.
1188–1199. PMLR, 2020.

14



Published in Transactions on Machine Learning Research (10/2023)

Harsh Nilesh Pathak and Randy Paffenroth. Parameter continuation methods for the optimization of deep
neural networks. In International Conference on Machine Learning And Applications (ICMLA), volume 18,
pp. 1637–1643. IEEE, 2019.

Gandharv Patil, Aditya Mahajan, and Doina Precup. On learning history based policies for controlling
markov decision processes. arXiv preprint arXiv:2211.03011, 2022.

Jan Peters and Stefan Schaal. Reinforcement learning by reward-weighted regression for operational space
control. In International conference on Machine learning, volume 24, pp. 745–750, 2007.

Jan Peters and Stefan Schaal. Reinforcement learning of motor skills with policy gradients. Neural networks,
21(4):682–697, 2008.

Aravind Rajeswaran, Kendall Lowrey, Emanuel V Todorov, and Sham M Kakade. Towards generalization
and simplicity in continuous control. Advances in Neural Information Processing Systems, 30, 2017.

Calyampudi Radhakrishna Rao. Linear statistical inference and its applications, volume 2. Wiley New York,
1973.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a scalable
alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy
optimization. In International Conference on Machine Learning, pp. 1889–1897. PMLR, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. arXiv preprint arXiv:1707.06347, 2017.

Frank Sehnke, Christian Osendorfer, Thomas Rückstieß, Alex Graves, Jan Peters, and Jürgen Schmidhuber.
Parameter-exploring policy gradients. Neural Networks, 23(4):551–559, 2010.

Lior Shani, Yonathan Efroni, and Shie Mannor. Adaptive trust region policy optimization: Global con-
vergence and faster rates for regularized mdps. In Conference on Artificial Intelligence, volume 34, pp.
5668–5675. AAAI, 2020.

Weijia Shao, Christian Geißler, and Fikret Sivrikaya. Graduated optimization of black-box functions. arXiv
preprint arXiv:1906.01279, 2019.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller. Determin-
istic policy gradient algorithms. In International Conference on Machine Learning, pp. 387–395. PMLR,
2014.

Herbert A Simon. A behavioral model of rational choice. The quarterly journal of economics, 69(1):99–118,
1955.

Minoru Siotani. Some applications of loewner’s ordering on symmetric matrices. Annals of the Institute of
Statistical Mathematics, 19:245–259, 1967.

Joe Staines and David Barber. Variational optimization. arXiv preprint arXiv:1212.4507, 2012.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Layne T Watson and Raphael T Haftka. Modern homotopy methods in optimization. Computer Methods
in Applied Mechanics and Engineering, 74(3):289–305, 1989.

Daan Wierstra, Tom Schaul, Jan Peters, and Juergen Schmidhuber. Episodic reinforcement learning by
logistic reward-weighted regression. In International Conference on Artificial Neural Networks, pp. 407–
416. Springer, 2008.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine learning, 8(3-4):229–256, 1992.

15



Published in Transactions on Machine Learning Research (10/2023)

Ronald J Williams and Jing Peng. Function optimization using connectionist reinforcement learning algo-
rithms. Connection Science, 3(3):241–268, 1991.

Huaqing Xiong, Tengyu Xu, Lin Zhao, Yingbin Liang, and Wei Zhang. Deterministic policy gradient:
Convergence analysis. In Conference on Uncertainty in Artificial Intelligence, volume 28, 2022.

Jiaxin Zhang, Hoang Tran, Dan Lu, and Guannan Zhang. A novel evolution strategy with directional
gaussian smoothing for blackbox optimization. arXiv preprint arXiv:2002.03001, 2020a.

Junzi Zhang, Jongho Kim, Brendan O’Donoghue, and Stephen Boyd. Sample efficient reinforcement learning
with reinforce. In Conference on Artificial Intelligence, volume 35, pp. 10887–10895. AAAI, 2021.

Kaiqing Zhang, Alec Koppel, Hao Zhu, and Tamer Basar. Global convergence of policy gradient methods to
(almost) locally optimal policies. SIAM Journal on Control and Optimization, 58(6):3586–3612, 2020b.

16



Published in Transactions on Machine Learning Research (10/2023)

A Theoretical Results on Mirror Policies

Theorem 1. For any original history-dependent policy ηθ ∈ E parameterized with the vector θ ∈ RdΘ and
for any continuation distribution q and covariance function Λ, there exists a mirror history-dependent policy
η′

θ ∈ E of the original policy ηθ that writes as:

η′
θ(a|h) = E

θ′∼q(·|θ,Λ(h))
[ηθ′(a|h)] . (14)

Proof. The continuation fq
Λ is defined in equation (8) as the expectation of the function (7) over the

distribution (8) such that:

fq
Λ(θ) = E

s0∼p0(·)
θt∼q(·|θ,Λ(ht))

at∼ηθt (·|ht)
st+1∼p(·|st,at)

[ ∞∑
t=0

γtρ(st, at)
]

(15)

=
∫ (

p(s0)
∞∏

t=0
ηθt(at|ht)q(θt|θ, Λ(ht))p(st+1|st, at)

)( ∞∑
t=0

γtρ(st, at)
)

ds0da0dθ0 . . . . (16)

For the sake of simplifying the notations, let h = (s0, a0, s1, a1, . . . ) ∈ H be a history and let R(h) be the
discounted sum of rewards computed from this history. Let us reorder the terms of the integral and change
the order of integration such that:

fq
Λ(θ) =

∫ (
p(s0)

∞∏
t=0

ηθt
(at|ht)q(θt|θ, Λ(ht))p(st+1|st, at)

)
R(h) dhdθ0 . . . (17)

=
∫ ( ∞∏

t=0
ηθt

(at|ht)q(θt|θ, Λ(ht))
)(

p(s0)
∞∏

t=0
p(st+1|st, at)

)
R(h) dhdθ0 . . . (18)

=
∫ (∫ ∞∏

t=0
ηθt

(at|ht)q(θt|θ, Λ(ht))dθ0 . . .

)(
p(s0)

∞∏
t=0

p(st+1|st, at)
)

R(h) dh . (19)

In the inner integral over the parameters, each term of the product depends solely on the parameter at a
single time step such that the integral of the product simplifies to the product of the integrals as follows:

fq
Λ(θ) =

∫ ( ∞∏
t=0

∫
ηθt

(at|ht)q(θt|θ, Λ(ht)) dθt

)(
p0(s0)

∞∏
t=0

p(st+1|st, at)
)

R(h) dh (20)

=
∫ ( ∞∏

t=0
η′

θ(at|ht)
)(

p0(s0)
∞∏

t=0
p(st+1|st, at)

)
R(h) dh . (21)

By definition, the latter equation is equal to the return J(η′
θ) of the policy η′

θ for any parameter vector θ.
Therefore, η′

θ is a mirror policy of the original policy ηθ under the process q and covariance matrix Λ.

□

Theorem 2. Let q be a continuation distribution and let Λ be a covariance function as defined in Section
3.2. In addition, let ηθ, η′

θ and η′′
θ be three parameterized history-dependent policies such that:

η′
θ(a|h) =

∫
ηθ′(a|h)q(θ′|θ, Λ(h)) dθ′ (22)

η′′
θ (a|h) =

∫
η′

θ′′(a|h)q(θ′′|θ, Λ(h)) dθ′′ . (23)

Then, η′
θ is a mirror policy of the original policy ηθ and η′′

θ is a mirror policy of the original policy η′
θ under

continuation distribution q and covariance function Λ. In addition, there exists a continuation for which η′′
θ

is a mirror policy of the original policy ηθ.
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Proof. First, η′
θ is a mirror policy of the original policy ηθ and η′′

θ is a mirror policy of the original policy
η′

θ under continuation distribution q and covariance function Λ, see Theorem 1. Then, let us substitute
equation (22) in equation (23):

η′′
θ (a|h) =

∫
η′

θ′′(a|h)q(θ′′|θ, Λ(h)) dθ′′ (24)

=
∫ (∫

ηθ′(a|h)q(θ′|θ′′, Λ(h)) dθ′
)

q(θ′′|θ, Λ(h)) dθ′′ (25)

=
∫

ηθ′(a|h)
(∫

q(θ′|θ′′, Λ(h))q(θ′′|θ, Λ(h)) dθ′′
)

dθ′ . (26)

We thus have that:

η′′
θ (a|h) =

∫
ηθ′(a|h)pθ(θ′|h) dθ′ (27)

pθ(θ′|h) =
∫

q(θ′|θ′′, Λ(h))q(θ′′|θ, Λ(h)) dθ′′ . (28)

The distribution pθ is a continuation distribution with a spread depending on the history h through the
covariance function Λ. By Theorem 1, η′′

θ is a mirror policy of the original policy ηθ.

□

Property 4.1. Let the original policy πθ ∈ Π be a Markov policy and let the covariance function depend
solely on the last state in the history. Then, there exists a mirror Markov policy π′

θ ∈ Π.

Proof. By hypotheses, the covariance matrix only depends on the last state st of the history ht, therefore:

q(θt|θ, Λ(ht)) = q(θt|θ, Λ(st)) . (29)

In addition, the original policy πθ is a Markov policy, therefore :

ηθ(at|ht) = πθ(at|st) . (30)

The closed form of the mirror policy, provided by equation (14), can thus be simplified as:

η′
θ(at|ht) =

∫
ηθt(at|ht)q(θt|θ, Λ(ht)) dθt (31)

=
∫

πθt
(at|st)q(θt|θ, Λ(st)) dθt . (32)

The previous equation is independent of ht knowing st, there thus exists a Markov mirror policy π′
θ ∈ Π

respecting Theorem 1 such that:

η′
θ(at|ht) = π′

θ(at|st) . (33)

□

Property 4.2. Let the original policy πGP
θ ∈ Π be a Gaussian policy as defined in equation (3) with affine

function approximators. Let the covariance function depend solely on the last state in the history and let the
distribution q be a Gaussian distribution. Then, there exists a mirror Markov policy π′

θ ∈ Π such that for all
states s ∈ S, it converges towards a Gaussian policy in the limit as the affine coefficients of the covariance
matrix Σθ(s) approaches zero (∥∇θΣθ(s)∥ → 0):

π′
θ(a|s)→ N (a|µθ(s), Σ′

θ(s)) , (34)

where Σ′
θ(s) = Cθ(s) + Σθ(s) and Cθ(s) = ∇θµθ(s)T Λ(s)∇θµθ(s).
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Proof. First, the existence of a Markov mirror policy results from Property 4.1 and is provided by equation
(33):

π′
θ(at|st) =

∫
πθt

(at|st)q(θt|θ, Λ(st)) dθt . (35)

In addition, πθt
and q are Gaussian distributions by hypotheses:

πθt(at|st) = N (at|µθt(st), Σθt(s)) (36)
q(θt|θ, Λ(st)) = N (θt|θ, Λ(st)) , (37)

where µθt
(st) and Σθt

(st) are affine functions of θt. Therefore, these functions can be written as follows:

µθt
(st) = (∇θt

µθt
(st)) θt + µ′(st) (38)

Σθt
(st) = (∇θt

Σθt
(st)) θt + Σ′(st) . (39)

For any state st, in the limit as affine coefficients of the covariance approaches zero, the covariance is such
that:

lim
∥∇θt Σθt (st)∥→0

Σθt
(st) = Σ′(st) . (40)

In this limit, equation (35) consists in marginalizing a conditional linear Gaussian transition model with a
Gaussian prior and is such that (Bishop & Nasrabadi, 2006):

lim
∥∇θΣθ(st)∥→0

π′
θ(at|st) = N

(
at| (∇θµθ(st)) θ + µ′(st), (∇θµθ(st))T Λ(st) (∇θµθ(st)) + Σ′(st)

)
(41)

= N
(

at|µθ(st), (∇θµθ(st))T Λ(st) (∇θµθ(st)) + Σθ(st)
)

. (42)

□

Property 4.3. Let the original policy µθ ∈M be an affine deterministic policy. Let the covariance function
depend solely on the last state in the history and let the distribution q be a Gaussian distribution. Then, the
Markov policy πGP

θ

′ ∈ Π is a mirror policy:

πGP
θ

′(a|s) = N (a|µθ(s), Σ′
θ(s)) , (43)

where Σ′
θ(s) = ∇θµθ(s)T Λ(s)∇θµθ(s).

Proof. The statement results from the particularization of Property 4.2 to the case of deterministic policies.
Let πGP

θ ∈ Π be an affine Gaussian policy with constant covariance matrix for any state Σθ(st) = C. In that
case, we have by Property 4.2 that π′

θ ∈ Π is a mirror policy as follows:

π′
θ(at|st) = N

(
at|µθ(st), (∇θµθ(st))T Λ(st) (∇θµθ(st)) + Σθ(st)

)
(44)

= N
(

at|µθ(st), (∇θµθ(st))T Λ(st) (∇θµθ(st)) + C
)

. (45)

Taking the limit of πGP
θ as the constant covariance matrix C approaches zero, we get that the original policy

from Property 4.2 converges to the one of Property 4.3, namely the deterministic policy µθ. This implies
that the policy πGP

θ

′ ∈ Π provided by the limit of the mirror policy from Property 4.2, see equation (45), is
a mirror policy of the original policy µθ from Property 4.3:

πGP
θ

′(at|st) = lim
C→0

π′
θ(at|st) = N

(
at|µθ(st), (∇θµθ(st))T Λ(st) (∇θµθ(st))

)
. (46)

□
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Property 4.4. Let the original policy µθ ∈ M be an affine deterministic policy. Let the distribution q be
a Gaussian distribution. Then, the policy η′

θ ∈ E is a mirror policy:

η′
θ(a|h) = N (a|µθ(s), Σ′

θ(h)) , (47)

where Σ′
θ(h) = ∇θµθ(s)T Λ(h)∇θµθ(s).

Proof. The policy µθt is an affine function of the parameter vector θt and can thus be written as follows:

µθt
(st) = (∇θt

µθt
(st)) θt + µ′(st) . (48)

In addition, the samples drawn from the process q are distributed according to a Gaussian distribution:

q(θt|θ, Λ(ht)) = N (θt|θ, Λ(ht)) . (49)

The closed form of the density of the mirror policy, provided by equation (14), is thus simplified as:

η′
θ(at|ht) =

∫
ηθt(at|ht)q(θt|θ, Λ(ht)) dθt (50)

=
∫

ηθt
(at|ht)N (θt|θ, Λ(ht)) dθt , (51)

where ηθt is the policy where each action respecting equation (48) has a probability one. The policy is a
degenerated Gaussian distribution (Rao, 1973), it provides a dirac measure to each state, and its (generalized)
density function may be approached as follows:

ηθt(at|ht) = lim
∥Σ∥→0

N (at| (∇θtµθt(st)) θt + µ′(st), Σ) . (52)

By substitution, we therefore get that the mirror policy η′
θ writes as follow:

η′
θ(at|ht) =

∫
ηθt(at|ht)N (θt|θ, Λ(ht)) dθt (53)

=
∫

lim
∥Σ∥→0

N (at| (∇θt
µθt

(st)) θt + µ′(st), Σ)N (θt|θ, Λ(ht)) dθt . (54)

The product of the Gaussian prior over parameters and the linear Gaussian transition model of the actions
provides a joint Gaussian distribution of actions and parameters (Bishop & Nasrabadi, 2006), which is
degenerated but has a density for the (marginal) Gaussian distribution of actions (Rao, 1973). The density
of the mirror policy η′

θ can thus be computed taking the limit of the marginalization:

η′
θ(at|ht) = lim

∥Σ∥→0

∫
N (at| (∇θt

µθt
(st)) θt + µ′(st), Σ)N (θt|θ, Λ(ht)) dθt (55)

= lim
∥Σ∥→0

N
(

at| (∇θµθ(st)) θ + µ′(st), (∇θµθ(st))T Λ(ht) (∇θµθ(st)) + Σ
)

(56)

= lim
∥Σ∥→0

N
(

at|µθ(st), (∇θµθ(st))T Λ(ht) (∇θµθ(st)) + Σ
)

(57)

= N
(

at|µθ(st), (∇θµθ(st))T Λ(ht) (∇θµθ(st))
)

. (58)

We note that this result can be obtained without working on degenerated Gaussian distributions. The policy
is an affine function of the parameters, which follow a Gaussian distribution, the marginal distribution of
actions is thus also a Gaussian distribution of the form of equation (58). This distribution is furthermore
the one of a mirror policy, see Theorem 1.

□
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B Description of the Car Environment

In this section, we formalize the reinforcement learning environment that models the movement of a car in
a valley with two floors separated by a peak, as depicted in Figure 2. The car always starts at the topmost
floor and receives rewards proportionally to its depth in the valley. An optimal agent drives the car from
the initial position to the lowest floor in the valley by passing the peak. In the following, we describe each
element composing the environment.
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Figure 2: Valley in which the car moves.

State Space. The state st ∈ R2 of the environment is composed of two scalar values, namely the position
xt ∈ R of the pointmass representing the car and its tangent speed vt ∈ R.

Action Space. At each time step, the agent controls the force applied on the car through the actions
at ∈ R it executes.

Initial Position. The car always starts at the topmost floor xinitial = −3 in the valley at rest. The initial
state distribution thus provides a probability one to the state

x0 = xinitial (59)
v0 = 0 . (60)

Transition Distribution. The continuous motion of the car in the valley is derived for Newton’s formula.
The valley’s analytical description is provided by the function h, the car’s mass is denoted by m = 0.5,
gravitational acceleration by g = 9.81, and damping factor by e = 0.65. The position x and speed v of the
car follow the subsequent continuous-time dynamics as a function of the force a:

ẋ = v (61)

v̇ = a

m(1 + h′(x)2) −
gh′(x)

1 + h′(x)2 + v2h′(x)h′′(x)
1 + h′(x)2 − ev2 . (62)

The position and force are furthermore bounded to intervals as part of the dynamics such that

x ∈ [xm, xM ] = [−4, 5] (63)
a ∈ [am, aM ] = [−10, 10] . (64)

Clamped force values are therefore used in equation (62). Similarly, the position is clamped in equation (61).

In discrete time, the state st+1 is computed through Euler integration of the continuous-time dynamics, con-
sidering an initial position given by the current state st. The force a remains constant during a discretization
time ∆ = 0.1 and is equal to the action at, with an additive noise drawn from N (·|0, 1) and clamped before
integration.
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Reward Function. The rewards correspond to the depth of the valley at the current position. The reward
function thus solely depends on the position

ρ(st, at) = −h(xt) . (65)

Discount Factor. The discount factor equals γ = 0.99 and the horizon is curtailed to T = 100 in each
numerical computation.
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