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Part I

Introduction
In the on-going effort to build more efficient aircraft, the minimization of the structural weight
and the maximization of the aerodynamic efficiency usually lead to the design of very flexible and
highly loaded composite wings. Aeroelasticity thus plays an increasingly important role in preliminary
aircraft design. Current aeroelastic tailoring practice for early preliminary aircraft design relies on
linear aerodynamic modeling, which is unable to predict shocks and boundary layers. One solution is
to enhance the linear aerodynamic modeling methodology by supplementing the Panel Method with
a field module. The resulting Field Panel Method is then able to predict transonic flowfields while
having a low computational cost, thus allowing fast and reliable aerodynamic loads predictions for
aeroelastic computations.

This document presents an implementation of the Field Panel Method developed at the University of
Liège during the academic year 2016-2017. In the first part, the theory of the method is described. In
the second part, the implementation of the method is detailed. Finally, some computational examples
are given, illustrating the advantages of the method as well as its current limitations.
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Part II

Theory
The first part of the present report describes the theory behind the Field Panel Method (FPM).
The FPM can be considered as an extension of the Panel Method (PM) solving the Full (nonlinear)
Potential Equation (FPE). First, the Panel Method will be described, then the way it is extended
into the Field Panel Method will be explained.

1 The Full Potential Equation
The Full Potential Equation is obtained by assuming that the velocity, U , derives from a scalar
potential, φ. The continuity equation then reads,

∇ · (ρ∇φ) = 0. (1.1)

This form assumes that the flow is steady, inviscid and isentropic (hence irrotational). However, the
nonlinearities are retained through the density,

ρ = ρ∞

[
1 + γ − 1

2 M2
∞

(
1− (∇φ)2

)] 1
γ−1

, (1.2)

where M∞ is the freestream Mach number.
The assumption of the flow being isentropic is fully valid outside of the boundary layer, which is
very thin at high speed, and provided that the shockwaves present in the flow (if any) remain weak.
Since the entropy production across a shockwave is proportional to (1−Ms)3, this approximation is
usually considered to be valid if the maximum Mach number in front of the shockwave, Ms, is less
than 1.3.

The FPE can be written in Poisson’s form,

∇ · (∇φ) = σ,

σ = ρ

ρ∞
∇ρ ·∇φ,

(1.3)

and transformed through Green’s third identity into,

φ(x, y, z) = φ∞−
1

4π

∫
SB

[
σ

1
r
− µn ·∇(1

r
)
]
dS︸ ︷︷ ︸

ϕb

− 1
4π

∫
V

[
σ

1
r

]
dV︸ ︷︷ ︸

ϕf

, (1.4)

where r is the distance defined by
√
x2 + y2 + z2 and n is the unit normal vector to the surface of

the geometry.

In Equation 1.4, the potential can be considered as the superimposition of a freestream potential
φ∞, a surface induced potential ϕb, and a field induced potential ϕf . The freestream potential is
given by an uniform, undisturbed flow at a given angle of attack. The surface induced potential is
modeled by source singularities τ and doublet singularities µ. Their strength is computed by the



2 Panel Method 5

Panel Method. The field induced potential is modeled by field sources σ, which strength is given by
the second Equation of 1.3.
In summary, the system of Equations 1.3 needs to be solved iteratively by a panel method and a field
module.

2 Panel Method
The Panel Method solves the Linear Potential Equation (LPE),

∇φ = 0. (2.1)

Compared to the FPE, the LPE further assumes that the flow is incompressible and the continuity
equation then becomes linear. Consequently, it can be solved by a Boundary Element Method (BEM)
in which only the boundary of the geometry needs to be discretized. The theory concerning the PM
described in the present document mainly comes from Katz & Plotkin[1].

In the Panel Method, only the surface induced potential of Eq. 1.4 needs to be considered,

φ(x, y, z) = φ∞−
1

4π

∫
SB

[
τ

1
r
− µn ·∇(1

r
)
]
dS︸ ︷︷ ︸

ϕb

. (2.2)

Since the perturbation potential rapidly decays when moving away from the body, the farfield
boundary condition is automatically enforced by adding the freestream potential to the surface
induced potential. On the other hand, since the flow is inviscid, the only remaining boundary
condition is the impermeability of the surface of the geometry, that is (Neuman B.C.),

∇φb ·n = 0, (2.3)

or (Dirichlet B.C.),
φb = 0. (2.4)

Following the Dirichlet boundary condition, the potential inside the geometry φi is also equal to zero.
Moreover, the sources induce a discontinuity in the potential which is equal to ∂(φ−φi)

∂n . Therefore, if
source strengths are set to include the normal component of the freestream flow, the Dirichlet B.C.
can be recast into,

ϕb = 0. (2.5)

By discretizing the geometry into panels, onto which constant source and doublet singularities are
placed, equations 2.2 and 2.5 can then be combined in discrete form, yielding,

Aµ+ Bτ = 0, (2.6)

where A and B are the influence coefficient matrices, depending solely on the geometry.
Finally, wake panels are added to impose the Kutta condition, required for the flow to smoothly leave
the body and produce lift. These panels extend horizontally from the trailing edge to the farfield
behind the wing. To accurately represent the physics, the wake panels should be shed and follow the
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flow (thus representing a force-free wake) instead of being flat. However, flat wake and force-free
wake produce very similar results for steady flows. Each wake panel contains a constant doublet
singularity whose strength is equal to the difference of doublet strength of the trailing edge panels
on the suction and the pressure side. These wake panels thus contain no additional unknowns and
their influence coefficients can be included in the matrix A.

3 Field module
The field module supplements the Panel Method and model the compressibility of the flow by taking
into account the nonlinear terms in the right hand side of the Full Potential Equation written under
Poisson’s form (Eq. 1.3). The theory concerning the Field module of the FPM mainly comes from
Gebhardt et al.[2] and Chu et al.[3].

The field module is used to compute the volume integral in Equation 1.4. To represent the sources
σ, a rectangular parallelepipedic volume enclosing the nonlinearities in the flow around the geometry
is defined. This volume is then divided into uniform cells to form a Cartesian, non body-conforming,
grid. Each cell is treated as a field panel containing a constant source singularity distribution of
strength σ. These singularities are iteratively computed according to the second equation in 1.3, in
which the total potential in the field φf is computed by the discretized form of Equation 1.4,

φf = φ∞ + Afµ+ Bf τ + Cσ, (3.1)

where the surface singularities µ and τ are updated by the panel method. To close the iterative
procedure and to respect the impermeability boundary condition, the surface source singularities
must now include the normal component of the freestream velocity as well as the normal component
of the velocity induced by the field sources. The new boundary condition reads,

∇ϕb ·n = −∇(φ∞ + ϕf) ·n. (3.2)

4 Influence coefficients
This section gives the expression of the different Aerodynamic Influence Coefficients needed by the
panel method.

4.1 Surface AICs
The influence coefficients for the velocity potential induced by surface panels were derived by Hess
& Smith[4].
Notations
The computations are carried in the (flat) panel reference frame shown in Figure 4.1, whose collocation
point is noted (x0, y0), corner points (numbered cyclically) are noted by (xk, yk) with k = 1, 2, 3, 4
and surface is noted S. The target point onto which the potential is sought is denoted by P (x, y, z).
In order to perform the change of frame of reference, the rotation matrix is used to pre-multiply the
vector OP .



4 Influence coefficients 7

R =


ex · eX ex · eY ex · eZ

ey · eX ey · eY ey · eZ

ez · eX ez · eY ez · eZ ,

 (4.1)

Where ex, ey, ez is the reference frame attached to the panel and eX , eY , eZ is the inertial reference
frame.
To simplify the expression of the influence coefficients, the following variables are defined,

dij =
√

(xj − xi)2 + (yj − yi)2 (4.2)

mij = yj − yi
xj − xi

(4.3)

rk =
√

(x− xk)2 + (y − yk)2 + z2 (4.4)

ek = (x− xk)2 + z2 (4.5)

hk = (x− xk)(y − yk). (4.6)

Figure 4.1: Panel and notations[1].
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Constant quadrilateral source

ϕτ = −τ4π

{[(x− x1)(y2 − y1)− (y − y1)(x2 − x1)
d12

log r1 + r2 + d12
r1 + r2 − d12

+(x− x2)(y3 − y2)− (y − y2)(x3 − x2)
d23

log r2 + r3 + d23
r2 + r3 − d23

+(x− x3)(y4 − y3)− (y − y3)(x4 − x3)
d34

log r3 + r4 + d34
r3 + r4 − d34

+(x− x4)(y1 − y4)− (y − y4)(x1 − x4)
d41

log r4 + r1 + d41
r4 + r1 − d41

]
−|z|

[
arctan

(
m12e1 − h1

zr1

)
− arctan

(
m12e2 − h2

zr2

)
+ arctan

(
m23e2 − h2

zr2

)
− arctan

(
m23e3 − h3

zr3

)
+ arctan

(
m34e3 − h3

zr3

)
− arctan

(
m34e4 − h4

zr4

)
+ arctan

(
m41e4 − h4

zr4

)
− arctan

(
m41e1 − h1

zr1

)]}
.

(4.7)

Constant quadrilateral doublet

ϕµ = µ

4π

[
arctan

(
m12e1 − h1

zr1

)
− arctan

(
m12e2 − h2

zr2

)
+ arctan

(
m23e2 − h2

zr2

)
− arctan

(
m23e3 − h3

zr3

)
+ arctan

(
m34e3 − h3

zr3

)
− arctan

(
m34e4 − h4

zr4

)
+ arctan

(
m41e4 − h4

zr4

)
− arctan

(
m41e1 − h1

zr1

)]
.

(4.8)

4.2 Field AICs
The influence coefficients for the potential and the velocity induced by field panels are taken
respectively from Seidov & Skvirsky[5] and Chu et al.[3].
Notations
A rectangular parallelepipedic field cell is considered. The origin of the frame of reference if located
at the cell center of gravity and the axes are aligned with respect to the cell edges. The field cell
is bound by the planes x = ξ1, x = ξ2, y = η1, y = η2, z = ζ1 and z = ζ2. If the cell hold a
constant source singularity of strength σ, the potential induced by this field cell at an arbitrary point
P (x, y, z) located inside or outside of the cell is given by,

φσ(x, y, z) = −σ4π

∫ ξ2

ξ1

∫ η2

η1

∫ ζ2

ζ1

1√
(x− ξ)2 + (y − η)2 + (zeta− ζ)2dζdηdξ. (4.9)

To simplify the result of this integral, the following variables are defined,
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A = x− ξi (4.10)

B = y − ηj (4.11)

C = z − ζk (4.12)

R =
√
A2 +B2 + C2. (4.13)

Potential

ϕσ = −σ4π

2∑
i,j,k=1

(−1)i+j+k
[
BC log (A+R)− A2

2 arctan BC
AR

+CA log (B +R)− B2

2 arctan CA
BR

+AB log (C +R)− C2

2 arctan AB
CR

] (4.14)

Velocities

ux,σ = ∂φσ
∂x

= σ

4π

2∑
i,j,k=1

(−1)i+j+k
[
B

2 log (R+ C)
R− C

+ C

2 log (R+B)
R−B

−A arctan BC
AR

]
(4.15)

uy,σ = ∂φσ
∂y

= σ

4π

2∑
i,j,k=1

(−1)i+j+k
[
C

2 log (R+A)
R−A

+ A

2 log (R+ C)
R− C

−B arctan CA
BR

]
(4.16)

uz,σ = ∂φσ
∂z

= σ

4π

2∑
i,j,k=1

(−1)i+j+k
[
A

2 log (R+B)
R−B

+ B

2 log (R+A)
R−A

− C arctan AB
CR

]
(4.17)
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Part III

Implementation
In this part of the document, the general organization of the implementation of the Field Panel
Method is first described. Then, the main features of the implementation are given.

5 Organization of the code
The code has been written in the high-level, scientific and efficient C++ language. Extensive usage
of structures has been made to keep the code organized and simple to use. The matrices are handled
by the user-friendly Eigen library[6]. Globally, the code is fairly modular and can be modified quite
easily if further development is needed.

The code is split into 3 main blocks: a pre-processor, a solver and a post-processor. The pre-
processor reads the user provided data, such as the grid points and the flow conditions, and creates
the matrices required by the solver. The solver first assembles the AIC matrices and iteratively calls
the panel method and the field module to solve the flow. The post-processor outputs the computed
flow variables into readable ASCII files.

Figure 5.1 illustrates the main blocks of the code as well as the different functions. They will be
further described in the next sections.
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Figure 5.1: Code flowchart.
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6 Pre-processor and input files
6.1 Input files
The code relies on two ASCII input files. The first is a .cfg file containing the freestream flow
quantities (Mach number and angle of attack) as well as the domain and the Cartesian grid definition
parameters. The second file (.pts) contains the points defining the geometry to be analyzed. These
points need to be provided in a structured way. The geometry is divided into (spanwise) stations.
Then, the points defining these stations are written in counter-clockwise order, starting from the
trailing edge. The first 2 numbers written at the beginning of the file (before the list of points) give
the number of points in a station and the number of stations.

6.2 Geometry handling
The main operation performed in the pre-processor is the creation of the surface and field panels and
their storage into matrices. The surface panels are flat quadrilateral surfaces defined by their 4 corner
points, their center of gravity, and 3 unit orthogonal vectors (longitudinal, transverse and normal).
Each of these quantities are stored into matrices. For example, the unit normal vectors are stored
into a p× 3 matrix, where p is the total number of panel and the x, y and z components are stored
in the different columns. The field panels are defined by their center of gravity and the cell size in
the x, y and z directions. Note that the mesh is uniform, i.e. the field panels all have the same size.
The surface and the field matrices are regrouped into 2 structures (body and field). If the code
needs to be extended to handle several networks of surface (or field) panels, these structures can be
easily vectorized.

The second operation performed by the pre-processor is the mapping of the field. Since the volume
grid is Cartesian and does not conform to the body, cells lying inside the body (i.e. internal cells)
must be distinguished from cells outside the body (i.e. external cells). Moreover, two adjacent
(external) cells may be separated by a wake surface or several body surfaces. This will be problematic
when using finite differences to compute the derivatives of the potential in the field and obtain the
source term, since the potential is discontinuous across these surfaces. In order to deal with this
problem while allowing complex geometries to be handled, several techniques can be used, such as:
jump relations, minigrid and cell sorting algorithm. The first technique consists in identifying cells
adjacent to any surface and implementing jump relations inside the finite differences. In this way, the
discontinuity in the potential is taken into account. The second technique will be described in one
of the following paragraphs. Finally, the third technique, which has been used in the present code,
consists in identifying the problematic cells and preventing the derivative in the given direction. In
order to identify the situation of a cell, a 3D adaptation of the Point In Polygon (PIP) algorithm is
used.
To check if the cell is inside or outside the body, the following algorithm is used:

• Cast a ray from the center of the cell in the x-direction (to infinity)

• Count the number of panels the ray pierces

– Check if the ray is not parallel to the plane containing the panel

– Check if the ray intersects this plane and compute the intersection
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– Check that this intersection is included in the panel

• If the number of valid intersections is even, the point lies outside the body

To check if the derivative can be computed in a given direction for any external cell, The above
algorithm is also used, except that the ray is cast from the center of the cell to the center of
adjacent cells. If one valid intersection is detected, the derivative in the given direction is immediately
prevented.

7 Solver
The solver mainly consists of an iterative loop including the Panel Method and the field module.
Before entering in the loop, the AICs matrices are assembled and the different variables are initialized.

7.1 Subpaneling
Figure 7.1 illustrates the effect of the subpaneling technique by showing the x-component of the
velocity at cells center located just above a NACA0012 wing. For large cell sizes, the solution is
not converged and the mesh must be refined. However, when the cell size is too small, oscillations
caused by the discontinuity in the surface singularities across body panels start to appear. Since the
velocity is used to compute the source term, which will in turn correct the panel method and drive
the solution process, these oscillations can lead to the divergence of the algorithm. These oscillations
can be effectively removed by the subpaneling technique, which is an adaptation of the subvortex
technique proposed by Maskew in 1977[7]. It consists in using a local, linear singularity strength
distribution instead of constant singularity values on each panel.

x/c
0 0.5

V
x

1

1.3

∆x/c = 0.08
∆x/c = 0.02
∆x/c = 0.02 (subpaneling)

Figure 7.1: Grid size and subpaneling effect on velocity for near-field cells.

In practice, the subpaneling is performed in 2 steps. First, if a field cell center is located too close
to the surface of the body, the panel is split into a user defined number of subpanels (with constant
singularity strength). Then, at each iteration, when the singularity strength is known on each panel,
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the singularity is interpolated linearly on the subpanels. The bilinear interpolation, also performed
in 2 steps, is illustrated on Figure 7.2. The contribution to the potential in the field at cell i by the
panel j (split in ns subpanels) can then be computed as,

ϕf |i, j =
ns∑
k

Af,kµk +Bf,kτk, (7.1)

where k is the subpanel index.

(a) Panel centers to panel
vertices.

(b) Panel vertices to subpanel
centers.

Figure 7.2: Singularity bilinear interpolation on subpanels.

7.2 AIC matrices assembly
An important step in the (Field) Panel Method is the assembly of the Aerodynamic Influence
Coefficients matrices. This is performed once before the iteration loop and these coefficients can be
reused later for other purposes, such as optimization. The FPM needs 4 groups of matrices, each
stored into different structures: body-to-body, body-to-field, field-to-field and field-to-body AICs.
Each element of theses matrices represents the influence of a panel onto another and depends solely
on geometric parameters. Note that the size of the matrices grows as N2, where N is the number
of panels. The number of panels should therefore be kept to a minimum.
When a body-to-field AIC of a panel that will be split needs to be computed, this AIC is set to
0 instead and the AICs of the corresponding subpanels are stored into another matrix. The AIC
matrices related to the subpanels are regrouped into a fifth structure.

7.3 Panel Method
The panel method is part of the iterative loop. At each iteration, the surface source singularities are
set to fulfill the modified impermeability condition on the body surface (Eq. 3.2). With the sources
and the AICs being known, the linear system (Eq. 2.6) can be solved to obtain the surface doublets.

7.4 Field variables computation
The field module is also part of the iterative loop. In the present implementation, it has been split
into 2 parts. The first part is responsible for the computation of the velocity and its related variables
(density and Mach number) in the field. The role of the second part is to compute the derivative of
the density to obtain the field sources.

Several options exist to compute the velocity in the field. Either, the potential can be computed first
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with Aerodynamic Influence Coefficients, then differentiated with finite differences on the Cartesian
grid,. Or the velocity can be computed directly with the AICs (these AICs are established analytically).
Both approaches have been implemented and tested in the present work.
The second approach is more accurate, but it involves the computation of three AIC matrices instead
of one (three components of the velocity instead of a scalar potential). Moreover, near the body
surface, the discontinuity between the singularity values on each panel induces oscillations in the
velocity distribution in the field, despite the subpaneling technique. On the other hand, if a sufficiently
fine grid is used, the finite differences of the potential give a very good approximation of the velocity
computed directly with the AICs. For all of these reasons, the potential formulation (potential
computed with the AICs and differentiated with finite differences) has been retained in the present
work.

The computation of the potential on the field is quite straightforward. However, the Equation 3.1
must be slightly modified to include the subpanels contribution. With the potential being known on
the field panels, the velocity can be derived by using finite differences. The density and the Mach
number can then be computed thanks to the isentropic formula. When the density is known, it can
be derived with finite differences to compute the field sources strength. The very last step is to
compute the field sources induced velocity on the surface of the geometry with appropriate AICs.

7.5 Minigrid
In order to compute the derivatives in the field, the simplest approach it to use finite differences on
the Cartesian grid. However, to increase the accuracy and to prevent the derivatives from passing
through the surface of the body or the wake, a minigrid technique, proposed by Gebhardt et al.[2],
can be used.
The minigrid technique consists in calculating the potential at several points inside a cell and
computing the derivatives from these points. In practice, the size of the minigrid is small compared
to the cell (∆xMG = 0.001×∆x) so that the derivatives do not intersect the body or wake surfaces.
Using a minigrid with such as small size is equivalent to computing the velocity directly the AICs
rather than using finite differences. On a minigrid, a typical derivative is computed as (see Fig. 7.3b),

∂ϕf
∂x
|i,j '

ϕf |i+∆xMG,j − ϕf |i−∆xMG,j

2∆xMG
, (7.2)

Instead of (see Fig. 7.3a),

∂ϕf
∂x
|i,j '

ϕf |i+1,j − ϕf |i−1,j
2∆x . (7.3)
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i; j i+ 1; ji− 1; j

i; j + 1

i; j − 1

∆x

∆y

(a) Regular grid.

i; j

∆xMG

∆yMG

(b) Minigrid.

Figure 7.3: Grid types to compute derivatives.

Despite its advantages, the minigrid has two major drawbacks. The first is that the potential has to
be computed in several points inside the cell, hence requiring more than one AIC per cell (7 AICs
are required in 3D instead of 1 for a regular grid). The second drawback is that the oscillations
in the velocity close to the body caused by the discontinuity between the surface singularities are
amplified by the minigrid. Compared to the minigrid, the regular grid is coarser, it thus tends to
smooth the derivatives. Moreover, the accuracy of the results obtained on a coarse minigrid and on
a relatively fine regular grid (both grids were chosen to have the same computational cost) is almost
the same. To avoid the oscillations in the solution and to simplify the implementation, the regular
grid approach has been retained in the present work.

7.6 Supercritical flow handling
When the flow is supersonic, the information, traveling at the speed of sound in the fluid, cannot
propagate upstream. Consequently, the equation, elliptic in a a subsonic flow, becomes hyperbolic in
a supersonic flow. In the finite difference/element/volume methods, this change of physics should be
reflected by a change in the derivative discretization scheme. In the present work, three techniques
have been tested: derivative upwinding, artificial density and artificial viscosity.
7.6.1 Derivative upwinding
The simplest way to reflect the hyperbolic character of the equation is to use central differences in
subsonic regions and backward (upwind) differences in the supersonic region. The method converges
but the accuracy can be improved. Actually, in order to properly upwind the derivatives, backward
derivatives should be used in the local (streamline) direction of the flow. This condition gave rise to
the rotated difference scheme implemented by Jameson[8].
7.6.2 Artificial density and artificial viscosity
Under the rotated difference scheme, an artificial density or viscosity is effectively introduced in the
solution. The artificial density is be computed as,

ρ̃ = ρ− µ∂ρ
∂s

∆s, (7.4)

where µ = max
(
0, 1− 1

M2

)
(M is the local Mach number) and s is the local (streamline) direction

of the flow.
The derivative of ρ is usually approximated by,
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∂ρ

∂s
∆s = 1√

u2 + v2 + w2

(
u
∂ρ

∂x
∆x+ v

∂ρ

∂y
∆y + w

∂ρ

∂z
∆z
)
, (7.5)

where u, v and w are the x, y and z components of the velocity and ∆x, ∆y and ∆z are the local
cell sizes in the x, y and z directions.
To be consistent with the hyperbolic physics, the derivatives of the density should be upwinded.
Further details can be found in Hafez et. al.[9].

In a very similar way, an artificial viscosity can be directly added to the field source term (as shown
by Rottegermann and Wagner[10]),

σ̃ = σ + µ
∂σ

∂s
∆s. (7.6)

In the present work, both approaches have been tested and yielded similar results. The artificial
viscosity approach has been retained since it is more practical to implement.

7.7 Full solution procedure
This section describes the solution procedure currently implemented. Note that the field variables
are computed by setting that magnitude of the freestream velocity toV∞ = 1.
Initialization
After the geometry preprocessing, the matrices containing the influence coefficients are computed:
body to body (A and B), field to field (C), body to field (Af and Bf ) and field to body (Cx,b,
Cy,b, Cz,b). All the relevant variables (like σ̃ and un,σ) are also initialized to zero.
Step 1 - Surface sources
The first step of the iterative process consists in setting the surface source singularities τ to−(V ∞ ·n+
un,σ) so that they include the non-lifting normal velocity component, according to Eq. 3.2.
Step 2 - Surface doublets
The next step consists in solving the linear system of equations Aµ+ Bτ = 0 to obtain the surface
doublet singularities, µ.
Step 3 - Field variables
The next step consists in computing the different field variables. The total potential in the field is
computed from φf = φ∞ + Afµ+ Bf τ + Cσ̃, and differentiated to obtain the velocity in the field
Vf = [ux,f , uy,f , uz,f ]. The speed of sound a, the Mach number M and the density ratio ρ

ρ∞
are then

computed thanks to the following (isentropic) relations:

a2 = a2
∞ + γ − 1

2 − γ − 1
2 Vf

2

M = Vf
a

ρ

ρ∞
=
[
1 + γ − 1

2 M2
∞

(
1− Vf

2
)] 1

γ−1
.

(7.7)

Step 4 - Field sources
The next step consists in updating the field source singularities according to σ = ∇

(
ρ
ρ∞

)
·Vf . The

artificial viscosity is then added using Eq. 7.6.
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Step 5 - Boundary condition update
The normal component of the field source induced velocity can now be recomputed as un,σ =
[Cx,bσ̃,Cy,bσ̃,Cz,bσ̃] ·n
Step 6 - Stopping criterion
Steps 1 to 5 are repeated until convergence. The stopping criterion is defined as max |σ̃n−σ̃n−1| < ε,
where n is the iteration counter and ε is a user-defined tolerance.
Finalization
The last step is to compute the surface velocity and the pressure coefficient. The surface velocity is
the sum of the freestream velocity V∞, the surface perturbation velocity ub and the field perturbation
velocity uf . The latter has already been calculated to update the boundary condition. The surface
perturbation velocity can be computed by differentiating the potential on the surface. If l, m and n
are the axes of the frame attached to a panel, then

ul,b = −∂µ
∂l

um,b = − ∂µ
∂m

un,b = σ̃.

(7.8)

The obtained velocity vector is then rotated to the global axis and used to compute the total surface
velocity,

Vb = V∞ + ub + uf . (7.9)

The pressure coefficient can subsequently be computed as,

Cp = 2
γM2
∞

{[
1 + γ − 1

2 M2
∞(1− V 2

b )
] γ
γ−1
− 1

}
. (7.10)

8 Post-processor and output files
8.1 Output files
The results produced by the FPM are written in 2 ASCII formatted .dat files. One file contains
the coordinates of the center of all body panels as well as the corresponding pressure coefficient.
The other file contains the coordinates of the center of all field cells as well as the corresponding
field variables. Additionally, the code generates 2 ASCII .pos files, containing the Mach number in
the field and the pressure coefficient on the wing surface. They can be viewed using gmsh, a free
open-source cross-platform software.
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Part IV

Computational examples
In this part, the implemented FPM is illustrated on several computational examples to demonstrate
its accuracy and its range of validity.

9 Incompressible flow
Figure 9.1 shows the pressure distribution at the mean aerodynamic chord of the NACA0012 and
the Onera M6 wings at incompressible airspeed (Mach 0). The results for lifting and nonlifting flows
perfectly match those obtained with Panair, hence demonstrating the validity of the implemented
Panel Method.
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(a) NACA0012: α = 0◦, M = 0.0.
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Panair

(b) Onera M6: α = 3◦, M = 0.0.

Figure 9.1: Pressure distribution around NACA0012 and Onera M6 at incompressible speed.

10 Subcritical flow
Figure 10.1 shows the pressure distribution around the NACA0012 and the Onera M6 submersed
in a compressible flow. The angle of attack of the NACA0012 is set to 0◦ to obtain a nonlifting
flow while the angle of attack of the M6 is set to 2◦. The Mach number is chosen so that the flow
remains subcritical for both wings.
Globally, the FPM shows excellent agreement with Tranair except near the suction peak, which is
underestimated. The solution is also improved compared to Panair.
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(a) NACA0012: α = 0◦, M = 0.7.
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(b) Onera M6: α = 2◦, M = 0.65.

Figure 10.1: Pressure distribution around NACA0012 and Onera M6 at subcritical speed.

11 Supercritical flow
Figure 11.1 shows the pressure distribution around the NACA0012 and the Onera M6 submersed
in a compressible flow. The angle of attack of the NACA0012 is set to 0◦ to obtain a nonlifting
flow while the angle of attack of the M6 is set to 3◦. The Mach number is chosen so that the flow
becomes supercritical for both wings.
When the flow exhibits a shock, the accuracy of the method is degraded. Figs. 11.1a and 11.1b both
show that the FPM tend to predict a smeared shock displaced upstream compared to Tranair’s
full potential solution. Fig. 11.1a also shows that the present solution follows the same trend than
the solution obtained by Gebhardt et al.[2] (the last known people to have worked on a Field Panel
implementation). Even if the FPM solution shows significant improvement over the linear potential
solution predicted by Panair, this is at the cost of the computational time and memory required
to compute and store the AICs. A Fast Multipole Method could be implemented to reduce the
computational requirements for transonic flows.
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(a) NACA0012: α = 0◦, M = 0.8.
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(b) Onera M6: α = 3◦, M = 0.84.

Figure 11.1: Pressure distribution around NACA0012 and Onera M6 at supercritical speed.



13 Challenge and attempted solution 21

12 Typical aircraft wing
The last computational example to be studied in the present work is a typical business aircraft wing.
The wing features a NASA SC(2)-0712 supercritical airfoil, a taper ratio of 0.4, a leading edge sweep
angle of 25◦ and a dihedral angle of 5◦. The tip airfoil is also twisted of −2◦ to create a washout.
The span of the wing is 8m.
Figure 12.1 shows the pressure distributions around the wing computed by Tranair, the FPM and
Panair at a Mach number of 0.79. The angles of attack used in the different models have been
set to produce a lift coefficient of 0.4. They are respectively −1.3◦, −1◦, and −1.7◦. At this Mach
number, the flow is supercritical, but the shocks are still weak (the maximum Mach number in front
of the shock is around 1.2). The FPM solution is rather close to Tranair solution despite the
smearing of the shock. It is also improved compared to the linear potential Panair solution.
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Figure 12.1: Pressure distribution around the NASA SC(2)-0712 wing at supercritical speed.

13 Challenge and attempted solution
As shown in Figure 11.1, the current implementation tends to smear the pressure peak at the leading
edge and to displace and smear the shock.
The smearing of the pressure peak only happens on certain geometries (e.g. it is clearly visible on the
Onera M6, but nearly absent on a NACA0012 wing) and, hence, could be due to an insufficient local
grid refinement. Moreover, the pressure peak is still captured and its smearing does not influence
too much the pressure distribution.
The impossibility to capture the shock properly poses a serious problem though. Several solutions
have been attempted among which, an adaptation of the artificial viscosity, and an adaptation of the
AIC matrices. The adaptation of the artificial viscosity consisted in scaling the µ factor in Eq. 7.6
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by the magnitude of the gradient of the density. The adaptation of the AIC matrices consisted in
removing the coefficients of influencing panels or cells located upstream of the target cell. However,
both solutions failed.
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Part V

Conclusion
The goal of the Field Panel Method implementation presented in this document is to solve compressible
aeronautical flows quickly.

In the first part of the report, the theory and the formulation of the Field Panel Method were
presented. The FPM has been chosen to solve the Full Potential Equation because it only needs to
rely on a (non conforming) Cartesian grid to predict transonic aeronautical flows with weak shocks.
Moreover, the computed Aerodynamic Influence Coefficients can be reused later for optimization.

In the second part, the implementation of the method was described. The main choices and features
of the code, such as the potential formulation, the subpaneling technique and the artificial viscosity
were also detailed.

Finally, in the last part, computational examples were given. The FPM was first compared to
Panair’s linear potential and Tranair’s full potential solutions on the NACA0012 and the Onera
M6 in incompressible, subcritical and supercrtical conditions. The comparison in an incompressible
flow allowed to validate the implementation of the Panel Method. For a subcritical flow, the
agreement between the different solutions is excellent, except near the pressure peak, which tend
to be underestimated by the Field Panel Method. This could be due to an insufficient local grid
refinement. When the flow is supersonic, the solution is improved compared to the linear potential
prediction but the captured shock tends to be displaced upstream and smeared. In order to reduce
the computational requirements for transonic flows, a Fast Multipole Method could be implemented.
This would enable the FPM to remain competitive with the Panel Method and allow it to be used
in aeroelastic tailoring for preliminary aircraft design.
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