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Abstract. This study quantifies the effects of uncertainty raised from process parameters, material 
properties, and boundary conditions in the directed energy deposition (DED) process of M4 High-
Speed Steel using deep learning (DL)-based probabilistic approach. A DL-based surrogate model is 
first constructed using the data obtained from a finite element (FE) model, which was validated 
against experiment. Then, sources of uncertainty are characterized by the probabilistic method and 
are propagated by the Monte-Carlo (MC) method. Lastly, the sensitivity analysis (SA) using the 
variance-based method is performed to identify the parameters inducing the most uncertainty to the 
melting pool depth. Using the DL-based surrogate model instead of solely FE model significantly 
reduces the computational time in the MC simulation. The results indicate that all sources of 
uncertainty contribute to a substantial variation on the final printed product quality. Moreover, we 
find that the laser power, the convection, the scanning speed, and the thermal conductivity contribute 
the most uncertainties on the melting pool depth based on the SA results. These findings can be used 
as insights for the process parameter optimization of the DED process. 

Introduction 
Additive Manufacturing (AM) is a versatile technology to build complex three-dimensional 

objects by successively adding material layer by layer. Directed Energy Deposition (DED) is an AM 
technique adapted to repair operations. Currently, DED is widely used to fabricate metal components 
in many applications such as aerospace [1], bio-design [2]. 

Some of the barriers limiting the wide adaption of DED in many industrial sectors are their high 
upfront investment costs and the lack of consistent quality of the printed parts. In addition, during the 
DED process, various sources of uncertainty can affect the temperature evolution, which is an 
important parameter to determine the final microstructure [3] of the printed piece. Sources of 
uncertainty include properties of the input materials, process parameters, and environmental 
conditions [3, 4, 5]. 

A key to better analyze and resolve the above problem is using uncertainty quantification (UQ) 
during the DED process. However, a very large number of input-output pairs will be required in the 
propagation and optimization steps [5]. Therefore, using experiments and/or finite element (FE) 
simulation is impractical. Hence, Deep Learning (DL) is a promising tool to build a surrogate model 
to replace the role of the FE model [6]. 

The efforts of performing UQ in AM field are mainly observed at the laser powder bed fusion  
(L-PBF) process [7,8], and thus limits its generalization to other AM processes such as DED. Based 
on these backgrounds, we develop a DL-based probabilistic approach for the uncertainty 
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quantification in the DED process to investigate the influence of input uncertain parameters on the 
quality of the final printed products. 
     This paper is organized as follows: Firstly, the methodology including characterization and 
propagation of uncertainties are first introduced. Secondly, the verification of deep learning-based 
surrogate model is discussed. Thirdly, the propagation of uncertainty to obtain uncertain 
characteristics of the temperature field and melting pool size are performed. Finally, the sensitivity 
analysis result is presented. 

Methodology 
     This study focuses on bulk experiments of the M4 High-Speed Steel manufactured by the DED 
process. The probabilistic method uses mathematical techniques to characterize the DED process 
uncertainty sources as one or more random variables. The input uncertainty is then propagated to the 
output using a computational model. The temperature field can be expressed as 

𝑇𝑇 = 𝑓𝑓(𝒒𝒒,𝑿𝑿),                                                                      (1) 

where 

𝒒𝒒 = [𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡, 𝜇𝜇1 , . . . , 𝜇𝜇𝑀𝑀,𝜗𝜗1, . . . ,𝜗𝜗𝑃𝑃]                                            (2) 

is a multi-dimensional vector of spatial coordinates (𝑥𝑥,𝑦𝑦, 𝑧𝑧), time (𝑡𝑡), material properties 𝜇𝜇1 , . . . , 𝜇𝜇𝑀𝑀  
of the powder and process parameters 𝜗𝜗1, . . . ,𝜗𝜗𝑃𝑃 of the AM process and 𝑓𝑓 is the computational model. 
The probabilistic method is then used to model each uncertainty parameter 𝑿𝑿 in 𝒒𝒒 as the probability 
distribution and rely on the probability theory to determine their impact on the temperature field and 
melting pool depth. Hereafter, we present the essential ingredients of the probabilistic method as 
characterization of uncertainty and propagation of uncertainty. 
     Characterization of uncertainty 
The probabilistic method begins with characterizing the uncertain parameters as a random variable 
𝑿𝑿 = (𝑋𝑋1,𝑋𝑋2, . . . ,𝑋𝑋𝑛𝑛) with the values in ℝ𝑛𝑛 and represent them as a probability distribution function 
(PDF) as  

π𝑿𝑿 = π(𝑋𝑋1,𝑋𝑋2,...,𝑋𝑋𝑛𝑛).                                                                      (3) 

In this study, we consider the uncertainties from process parameters, material properties, and 
boundary conditions. 
For (i), we consider four process parameters: laser power, scanning speed, ambient temperature, and 
substrate preheating temperature, as observed in several studies [4,5]. 
For (ii), we consider the thermal conductivity and heat capacity as the uncertain parameters because 
the precise values of these properties at high temperatures are unknown [3]; computational models 
may have uncertainty due to these unknown macroscopic values. 
For (iii), we consider the convection and radiation of the clad as input uncertain parameters. Indeed, 
accurate measurement of these parameters is a challenge and is critical in modeling the AM processes 
[2,3]. 
We adopt a probabilistic framework to quantify the impact of uncertainties on the temperature field 
and melting pool depth. We model the input uncertain parameters followed by the uniform 
distribution. Their bounded range are listed in Table 1. 
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Table 1. Eight uncertain parameters and their bounded range 

Input uncertain parameter Notation Bounded range 
Process parameters Effective laser power 𝒫𝒫 [0.97, 1.03] 

Scanning speed 𝑣𝑣 [335, 365] 
Ambient temperature 𝑇𝑇a [284.15, 312.15] 

Substrate preheating 
temperature 

𝑇𝑇s [555.15, 591.15] 

Boundary conditions Convection ℎ [200, 300] 
Radiation 𝜀𝜀 [0.8, 1] 

Material properties Thermal conductivity 𝛼𝛼𝑘𝑘 [0.93, 1.07] 

Heat capacity 𝛼𝛼𝑐𝑐 [0.95, 1.05] 

     Propagation of uncertainty 
Once the input uncertain parameters are characterized, they will be propagated using the Monte-Carlo 
(MC) method accelerated by the DL-based surrogate model to obtain the distribution of temperature 
field and melting pool depth. Hereafter, we discuss the ML method and the DL-based surrogate 
model. 
          Monte-Carlo method 
In this study, the MC method is chosen based on its simplicity. The MC method generates n 
independent and identically distributed (i.i.d.) samples from the PDF π𝑿𝑿, and use the computational 
model f  to obtain the temperature distribution. After getting these i.i.d. samples, the mean mT and the 
variance 𝜎𝜎𝑇𝑇2 can be approximated as: 

𝑚𝑚𝑇𝑇 ≈
1
𝑛𝑛
�𝑇𝑇𝑖𝑖

𝑛𝑛

𝑖𝑖=1

,   𝜎𝜎𝑇𝑇2 ≈
1
𝑛𝑛
�(𝑇𝑇𝑖𝑖 − 𝑚𝑚𝑇𝑇)2
𝑛𝑛

𝑖𝑖=1

.                                          (4) 

The approximation accuracy in Eq. (4) depends on the square root of the number of samples 𝑛𝑛 [4]. 
Consequently, the MC method requires a very large number of simulations 𝑓𝑓 to ensure a good 
approximation. However, the computational cost of the FE model remains expensive. Therefore, a 
DL-based surrogate model is often constructed to gain computational efficiency. 
          DL-based surrogate model 
This section describes the DL-based surrogate model to approximate the relationship between the 
uncertain input variables and the quantity of interests (QoIs). The feedforward neural network 
(FFNN) model is chosen in this study, owing to its advantages in approximating complex functions 
over high dimensional spaces. The FFNN-based surrogate model has been developed in our previous 
study [6], which is applied for the only variation of 𝑄𝑄laser. In this study, we extend this model to 
account for the variation of eight input uncertain parameters as listed in Table 1. 
The FFNN-based surrogate model can be considered as a function 𝑔𝑔 such that 

𝑔𝑔(𝒒𝒒,𝑿𝑿|𝑾𝑾) ≈ 𝑓𝑓(𝒒𝒒,𝑿𝑿),                                                                   (5) 

where 𝑾𝑾 denotes the weights and biases of the model. The FFNN-based surrogate model is trained 
on the training dataset 𝑫𝑫𝑇𝑇 consisted of different FE simulations as 5, 10, 15, 18, 21, 25, and 28, with 
different values of DED uncertain parameters (𝑋𝑋1,𝑋𝑋2, . . . ,𝑋𝑋8). 
Once the surrogate model is built and validated against the computational model, the MC method 
maps the uncertain input variable distribution through this FFNN-based model to obtain the 
temperature field distribution. Consequently, the statistical descriptions of the temperature T can be 
approximated as 
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where the subscript g serves to distinguish the surrogate model from the FE numerical simulation. To 
assess the global and local performance of the FFNN-based model, we use the R2 metric and relative 
error 𝛼𝛼, respectively defined as 

𝑅𝑅2 = 1 −
∑ �𝑔𝑔�𝒒𝒒(𝑗𝑗),𝑿𝑿(𝑗𝑗)� − 𝑇𝑇(𝑗𝑗)�

2𝑁𝑁𝑉𝑉
𝑗𝑗=1

∑ �𝑇𝑇 − 𝑇𝑇(𝑗𝑗)�
2𝑁𝑁𝑉𝑉

𝑗𝑗=1

, ��𝒒𝒒(j),𝑿𝑿(𝑗𝑗)�,𝑇𝑇(𝑗𝑗)� ∈ 𝑫𝑫V,                   (7) 

where 𝑁𝑁𝑉𝑉 is the size of the validation set 𝑫𝑫V and 𝑇𝑇 is the mean temperature. 

     Sensitivity analysis using variance-based method 
This section presents the sensitivity analysis (SA) using the variance-based method. Performing the 
SA can help characterize which uncertain parameters contribute the most to the uncertainty of the 
quantity of interests. This study performs the SA using the variance-based method [4, 5] owing to its 
straightforward interpretation. We perform the SA only on the melting pool depth for demonstrating 
the framework.  

Results and Discussion 
This section presents the verification of the FFNN-based surrogate model, the results obtained from 
the uncertainty propagation, the computational efficiency assessment, and the SA to identify the most 
impact input uncertain parameter to the melting pool depth. 
     Verification of the FFNN-based surrogate model 
In order to choose a least number of FE simulations in the training data while still maintaining a good 
accuracy, we train seven independent FFNN models with different FE simulations as 5, 10, 15, 18, 
21, 25, and 28. Fig. 1 shows the range and mean of 𝑅𝑅2 values evaluated within data obtained the 
testing dataset 𝑫𝑫𝜏𝜏 of these seven models. As shown in Fig. 1, the mean 𝑅𝑅2 value converges with the 
𝑛𝑛FE ≥ 21. Consequently, we choose 𝑛𝑛FE = 21 to construct the FFNN-based surrogate model to 
predict the temperature evolutions with acceptable accuracy. 

 
Fig. 1. The range and mean of 𝑅𝑅2 values evaluated within the testing dataset 𝑫𝑫𝜏𝜏 
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     Propagation of uncertainties 
This section presents the results obtained by the uncertainty propagation step. First, we check the 
convergence analysis of MC simulation. Then, we show the obtained uncertainty characteristics of 
the temperature field and melting pool depth. Finally, we assess the computational efficiency of the 
FFNN model.  
          Convergence analysis of MC simulation 
Fig. 2 shows the standard deviation of the maximum melting pool depth (i.e., the one in last layer) 
with respect to the number of MC simulations (𝑛𝑛MC). As observed in Fig. 2, the standard deviation 
does not change much after 𝑛𝑛MC = 1000, and thus, we choose 1000 as the number of MC simulations 
to perform the uncertainty propagation. 

 
Fig. 2. The standard deviation of the maximum melting pool depth with respect to the number of 

MC simulations 
          Uncertainty characteristics of the temperature field 
This section shows the obtained uncertainty characteristics of the temperature field assessed at two 
clad points, as 𝑃𝑃1 (located at the middle of the first printed layer) and 𝑃𝑃2 (located at the middle of the 
9th printed layer). 
Figs. 3(a) and 3(b) show 1000 MC samples of the temperature evolutions at the two selected points, 
including points 𝑃𝑃1 and 𝑃𝑃2. As shown in Fig 3, the considered uncertainties presented in Sec. 2.2 
contribute to a potent variation of the temperature evolutions. In paricular, the variation ups to 9.4% 
compared with their mean values. Moreover, the temperature standard deviation increases with the 
layer number, which is due to the uncertainty accumulation. 

  
Fig. 3. 1000 MC samples of the temperature evolutions of point 𝑃𝑃1 and 𝑃𝑃2. The horizontal axis 

expresses the cumulative distance of the laser assuming one track per layer 
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          Uncertainty characteristics of the melting pool depth 

This section shows the obtained uncertainty characteristics of the melting pool depth (𝑀𝑀𝑑𝑑). Fig. 4 
shows the empirical distribution of the melting pool depth with 1000 MC simulations. The results 
show that the melting pool depth range increases significantly when increasing the layer number. As 
a consequence, in the DED process, it is challenge to obtain a steady melting pool depth [3].  

 
Fig. 4. Empirical distribution of the melting pool depth with 1000 MC simulations 

          Computational efficiency assessment 
Table 2 compares the computational cost needed to perform a direct MC simulation, which uses the 
FE and FFNN-based surrogate models. For one MC simulation, the FFNN-based surrogate model 
only takes 12 s to compute the statistical description of the temperature field, which reduces 181 
compared with the FE model. As a consequence, 3.3 hours are required for 1000 MC simulations 
with the surrogate model, whereas the FE model requires 600 hours (25 days). In summary, using the 
FFNN-based surrogate model instead of the FE model reduces the computational cost significantly 
in the MC simulation. 

Table 2. Computational costs needed to perform a direct MC 
simulation, which uses the FE and FFNN-based surrogate model 

Number of MC 
simulation 

FE model 
(h) 

FFNN-based surrogate model 
(h) 

1 0.6 0.0033 (12 s) 
1000 600 3.3  

In brief, the proposed framework allows quantifying the variation of the temperature field and melting 
pool depth with the uncertainty raised from the process parameters, material properties, and boundary 
conditions. 
     Sensitivity analysis 
This section presents the results obtained by the sensitivity analysis. Fig. 5 shows the Sobol indices 
for the melting pool depth in the final layer of the product. As observed in Fig. 5, convection, laser 
power, scanning speed, and thermal conductivity induce the most uncertainties to the final product 
quality. A focus on these properties should be presented while optimizing the manufacturing process 
because it determines the microstructure genesis, which is responsible for part properties. 
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Fig. 5. The Sobol indices for each input uncertain parameter in inducing the uncertainties in the 

melting pool depth 

Summary 
In this paper, the effects of uncertainty in process parameters, material properties, and boundary 
conditions on the directed energy deposition (DED) process of M4 High-Speed Steel are quantified 
using deep learning (DL)-based probabilistic approach. A DL-based surrogate model is first 
constructed using the data obtained from a finite element (FE) model, which was validated against 
the experiment. The DL-based surrogate model reduces the computational cost significantly while 
assuring the accuracy of 99% compared with the FE model. Then, the uncertainty characteristic of 
the temperature field and melting pool depth is quantified with the uncertainty from process 
parameters, material properties, and boundary conditions. The results indicate that all sources of 
uncertainty lead to a potent variation of the temperature field and melting pool depth. Moreover, the 
sensitivity analysis results show that the convection, laser power, scanning speed, and thermal 
conductive induce the most uncertainty to the melting pool depth. These findings would provide 
valuable insights for the process parameter optimization of the DED process to improve the quality 
of the printed parts. The process optimization under uncertainty to get the steady melting pool will be 
performed for future works. 
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