
Software Impacts 17 (2023) 100563

U

B

Contents lists available at ScienceDirect

Software Impacts

journal homepage: www.journals.elsevier.com/software-impacts

Original software publication

Python Data Driven framework for acceleration of Phase-Field
simulations
Seifallah Fetni ∗, Jocelyn Delahaye, Anne Marie Habraken
EE Research Unit, University of Liège, Belgium

A R T I C L E I N F O

Keywords:
Python development
Deep learning
Image generation and processing
LSTM
PCA

A B S T R A C T

The passage describes the development of a numerical framework in Python to create and process a large
dataset for time-series prediction using Deep Learning algorithms. The dataset is generated by solving the
Cahn–Hilliard equation for spinodal decomposition of a binary alloy and is labeled to train the algorithms. Prior
to training, dimensionality reduction is performed using Auto-encoders and Principal Component Analysis.
The framework identifies three distinct latent dimensions/spaces for the datasets. The primary dataset was
generated by running up to 10,000 High-Fidelity Phase-Field simulations in parallel using High-Performance
Computing (HPC). The framework is compatible with all major operating systems and has been thoroughly
tested on Python 3.7 and later versions.

Code metadata

Current code version V1
Permanent link to code/repository used for this code version https://github.com/SoftwareImpacts/SIMPAC-2023-89
Permanent link to reproducible capsule https://codeocean.com/capsule/7854717/tree/v1
Legal code license 1 - This code is public under the Apache 2.0 permissive license.

2 - We warn users that we are using pyfftw
Code versioning system used gitlhub
Software code languages, tools and services used Python
Compilation requirements, operating environments and dependencies –
If available, link to developer documentation/manual
Support email for questions seifallah.el.fetni@gmail.com

1. Motivation and significance

The combination of Phase-Field (PF) and Machine Learning (ML)
has great potential for advancing scientific research in Materials Sci-
ence [1]. However, one of the main challenges faced by researchers in
this area is the lack of readily available data for training and testing ML
models [2]. Python provides an open-source development environment
that can be used to program PF simulations and generate rich datasets
for ML and also to deal with close topics [3,4]. Thus, it could be possible
to reproduce quantitative results and conduct advanced analyses.

However, despite the growing interest in PF and ML, there is
still limited literature on programming PF simulations, especially in
generating datasets for use in ML. As such, providing a complete

The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/). More information on the Reproducibility
adge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals.
∗ Corresponding author.
E-mail address: seifallah.el.fetni@gmail.com (S. Fetni).

example that addresses this challenge and generates PF datasets would
be of great interest to the scientific community. Such a comprehensive
example would lead to better understanding the complexities of PF sim-
ulations and the type of data they can generate, which could help spur
innovation and accelerate the implementation of novel approaches.

The developed python framework and the generated datasets can
be used to reproduce the work presented in the related article, and
the framework can be extended to other research areas such as crack
propagation in materials science or next-frame prediction. By making
these datasets available to the scientific community, which could con-
tribute to address some of the most pressing challenges in the associated
research line.
https://doi.org/10.1016/j.simpa.2023.100563
Received 9 March 2023; Received in revised form 27 July 2023; Accepted 1 August 2023

2665-9638/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.simpa.2023.100563
https://www.journals.elsevier.com/software-impacts
http://www.journals.elsevier.com/software-impacts
http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpa.2023.100563&domain=pdf
https://github.com/SoftwareImpacts/SIMPAC-2023-89
https://codeocean.com/capsule/7854717/tree/v1
mailto:seifallah.el.fetni@gmail.com
https://codeocean.com/
https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals
mailto:seifallah.el.fetni@gmail.com
https://doi.org/10.1016/j.simpa.2023.100563
http://creativecommons.org/licenses/by/4.0/

S. Fetni, J. Delahaye and A.M. Habraken Software Impacts 17 (2023) 100563
Fig. 1. Overview of the shared repository content: Data organization.

2. Software impacts

The developed framework has had a significant impact on the re-
search area of phase-field simulations and machine learning. The frame-
work provides researchers with a powerful tool to generate datasets
from phase-field simulations, process the results, and train various
deep learning algorithms. This has enabled the development of so-
phisticated models with improved accuracy and predictive capability.
The framework has been used to get results for already published
works, especially [5,6], demonstrating its relevance and usefulness,
and ongoing ones. The dataset generated by the framework is based
on high-fidelity phase-field simulations and has been shown to be
suitable for training various deep learning algorithms, such as auto-
encoders, Long Short Term Memory (LSTM), Gated Recurrent Units
(GRU), and principal component analysis. The use of these algorithms
has led to significant dimensionality reduction and time-series anal-
ysis. For example, the application of LSTM neural networks in [6]
has shown the possibility of making next-frame predictions, allowing
for the acceleration of phase-field simulations without the need for
high computing resources. Moreover, the framework provides robust
Python codes that allow for customization and easy integration with
other tools. The provided scripts for running simulations under HPC
environments are particularly useful for researchers dealing with large
and complex datasets. In [5], various integration schemes to resolve
phase-field problems were tested and compared, and then an adaptive
stepping scheme is proposed to be a potential candidate to resolve
advanced PF problems while defining the appropriate time step during
the simulation. Additional works are now under consideration and de-
velopment to deal with the correlation between additive manufacturing
process parameters and the resulting mechanical properties of the built
materials. The framework’s impact is expected to grow even further as
it can be extended to other research areas, such as crack propagation
in materials science or next-frame prediction.

Overall, the developed framework has greatly facilitated the integra-
tion of PF simulations and ML and has led to new insights and advances
in the field.

3. Framework description

3.1. Description of generation and the nature of the original dataset

3.1.1. Description of generation and the nature of the original dataset
This code allows first the generation of data related to the spin-

odal decomposition of a given binary alloy. It is governed by the
Cahn–Hilliard equation [7] expressed as :
𝜕𝑋 = ∇.𝑀 ∇ 𝜕𝐺 (1)

Here G denotes the total free energy of the binary alloy, M the mobility
and X the molar fraction of an element of the alloy. If we neglect the
terms related to the elastic strain, the total free energy G could be
expressed as:

𝐺 (𝑋) = ∫

{

𝑔 (𝑋) + 1
2
𝜅 ∇𝑋2

}

𝑑𝑉 (2)

where g is the chemical bulk energy and 𝜅 is here the gradient en-
ergy coefficient. Details about programming a single PF simulation is
provided in [5].

The raw data is generated by running the python code in a Linux
or Windows environment (tested in both). Fig. 1 shows the data or-
ganization as follows. The repository ‘npy_data’ contains a collection
of datasets with different sizes (number of samples) or type (RGB or
binary images). The one used to conduct the work in the associated
research paper [6] is ‘dataset_7000.npy’, while the other datasets could
be used for different purposes: training on a relatively small dataset,
advanced analysis, trying other neural networks algorithms etc. The
‘encoded_datasets’ repository contains datasets in the latent spaces 𝜒1
and 𝜒2. A repository is dedicated to python scripts: the Jupyter Note-
book project (‘.ipynb’) contains the whole numerical implementation of
the framework (Figure 1 in [6]), while python files are associated with
pre and post-processing tasks as described hereafter. For computing in
HPC environments, some Simple Linux Utility for Resource Manage-
ment (SLURM) scripts are provided to get an idea about the required
computing resources. Similarly, some saved models after Deep Learning
(DL) training are stored in the corresponding repository (‘.h5’ format).

Fig. 2 describes the content of the raw data folder (‘sim_data’) before
transforming it into a ‘.npy’ file for ease of download and loading. This
description helps readers understand the data architecture, which is
necessary for pre- and post-processing, as well as extracting simulation
features for the time-series analysis phase (content of the folder ‘lists’).
Labeling data in this way is essential for efficient data management and
analysis.

Fig. 3 provides a detailed description of the labeling process for
each simulation. This labeling takes into account the concentration co-
efficient, the mobility coefficient, and the gradient coefficient, respec-
tively. The equations associated with these coefficients are described in
the Methods section.

3.1.2. Description of the encoded datasets (in two latent dimensions)
The repository ‘1st_encoding’ in Fig. 1 contains the data encoded

using the first auto-encoder. These data files have a ‘.txt’ format. The
associated name returns the number of samples and the size of the
output code of the encoder respectively, to reduce the dimensionality
of the data from the original space (𝜒) to the first latent space (1). As
an example, ‘encoded_data_4800_750.txt’ means that this data contains
4800 samples, and it is obtained by applying an auto-encoder with
𝜕𝑡 𝜕𝑋

2

S. Fetni, J. Delahaye and A.M. Habraken Software Impacts 17 (2023) 100563

i
d
r

3
d

p
t
r
e
e
s
o
r
u
t
n

4

g
d

Fig. 2. This illustration shows the contents of the dataset. Each simulation is associated with its key parameters or variables, and each image corresponds to the state of the
microstructure at a specific time step. Small details distinguish each frame from the others, and these details are important for Machine Learning to learn the evolution behavior.

Fig. 3. Illustration of the data labeling process.

output code (750,) on the original dataset ‘dataset_4800.npy’. Similarly,
the dataset ‘encoded_data_7000_750_250.txt’ belongs to the second la-
tent space (2). It is obtained by applying two successive auto-encoders
n a serial-way (or an auto-encoder followed by a PCA) on the original
ataset ‘dataset_4800.npy’ with output code sizes (750,) and (250,)
espectively.

.2. Description of the main functions of the different Python scripts of the
eveloped framework

It is worth noting that the entire framework in the Jupyter Notebook
roject ‘.ipynb’ can be run by the user after loading the dataset in
he first latent space (e.g. ‘encoded_data_7000_750.txt’). However, it is
ecommended to split the ‘.ipynb’ project into python scripts (.py) to
nable serial execution of different phases of the framework in HPC
nvironment. This can be achieved by submitting batch jobs for each
cript. For this purpose, we specify the main function, its inputs, and its
utputs for each python script in Table 1. To perform post-processing of
esults obtained from each script or to perform sensitivity analysis, the
ser can upload the desired outputs to the Jupyter Notebook project on
heir local machine. This approach offers a flexible way to execute the
umerical framework.

. Limitations and future improvements

Despite the success achieved with the developed framework and
enerated datasets, there are still some limitations that could be ad-

Autoencoders (VAEs) as an alternative to standard Autoencoders for
encoding phase-field simulation data. VAEs can provide significant
dimensionality reduction while using smaller dataset sizes compared
to traditional autoencoders. Additionally, the application of Denoising
Autoencoders at the end of the pipeline can improve the reconstruction
of the data, leading to better results in downstream ML applications.
Implementing these techniques could result in even more efficient and
accurate training of deep learning models for phase-field simulation
data.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

Computational resources have been provided by the Consortium
des Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la
Recherche Scientifique de Belgique (F.R.S.-FNRS), Belgium under Grant
No. 2.5020.11 and by the Walloon Region, Belgium. A special thank to
Mr. David Colignon for his availability and great support to successfully
achieve computational tasks.

Ethics statements

This work did not involve human subjects, animal experiments, or

ressed in future work. One possibility is to implement Variational data collected from social media platforms.

3

S. Fetni, J. Delahaye and A.M. Habraken Software Impacts 17 (2023) 100563
Table 1
Specification of the input(s) and output(s) of each python script.

Operation Python script Input Output Remarks

Data transformation data_to_npy.py Repository Containing
all simulations

One single ‘.npy’ file (transformed
data)

We remind that the appellation ‘dataset_N.npy’
means that the raw data contains N simulations

Generation of the
simulations names
List

list_names.py Idem A ‘.txt’ file containing the names
of all simulations

We remind that this file would be useful to extract
simulations characteristics to ensure better training
of the LSTM/GRU

Data verification load_data.py The raw data (‘.npy’)
format

A sample image To check that the ‘.npy’ file was correctly
generated during the previous operation

Auto-encoder 1
training

encoder_decoder_1.py The raw data (‘. npy’) Saved models (encoders and
decoders), training and validation
loss

A saved auto-encoder model
‘encoder_7000_750.h5’ means an encoder

trained on the dataset ‘dataset_7000.npy’ with the
output code size (750,)

Data encoding (1st
encoder) X 1

data_to_txt.py Transformed data +
Saved Auto-encoder 1

Reduced dataset (latent
dimension 1)

Example of input:
‘dataset_4800.npy’

Example of output:
‘encoded_data_4800_750.txt’

Auto-encoder 2
training

encoder_decoder_2.py Dataset in latent space
(1) (‘.txt’)

Saved models (encoders and
decoders), training and validation
loss

A saved auto-encoder model
‘encoder_7000_750_250.h5’ means an encoder

trained on the dataset ‘dataset_7000_750.txt with
the output code size (250,)

Data encoding (2nd
encoder) 1 2

data_to_txt_2.py Dataset in latent space
(1) + Saved
Auto-encoder 2

Reduced dataset (latent
dimension 2)

Example of output:
‘encoded_data_4800_750_250.txt’

LSTM/GRU Training ‘encoder_decoder_LSTM_
2_enc_dec_layers.py’
OR
‘encoder_decoder_LSTM_
1_enc_dec_layer_PCA. py’

Reduced dataset (latent
dimension 2)

Saved models (LSTM/GRU),
training and validation loss

Example of output:
‘lstm_7000_750_pca_200.h5’

an LSTM model correspondent to a dataset 2:
- Original dataset : 7000 samples
- Encoder 1 reduction : (750,)
- PCA reduction :200 components

References

[1] C. Hu, S. Martin, R. Dingreville, Accelerating phase-field predictions via recurrent
neural networks learning the microstructure evolution in latent space, Comput.
Methods Appl. Mech. Engrg. 397 (2022) 115128, http://dx.doi.org/10.1016/j.
cma.2022.115128.

[2] K. Choudhary, et al., Recent advances and applications of deep learning methods
in materials science, npj Comput. Mater. 8 (1) (2022) 59, http://dx.doi.org/10.
1038/s41524-022-00734-6.

[3] A. Teurtrie, et al., Espm: A python library for the simulation of STEM-
EDXS datasets, Ultramicroscopy 249 (2023) 113719, http://dx.doi.org/10.1016/j.
ultramic.2023.113719.

[4] M.Y. Toriyama, J. Qu, L.C. Gomes, E. Ertekin, VTAnDeM: A python toolkit
for simultaneously visualizing phase stability, defect energetics, and carrier
concentrations of materials, Comput. Phys. Comm. 287 (2023) 108691, http:
//dx.doi.org/10.1016/j.cpc.2023.108691.

[5] S. Fetni, J. Delahaye, L. Duchêne, A. Mertens, A.M. Habraken, Adaptive time
stepping approach forphase-field modeling of phase separation and precipitates
coarsening in additive manufacturing alloys - COMPLAS 2021, in: COMPLAS 2021-
16th Int. Conf. Comput. Plast. Fundam. Appl, 2021, pp. 1–12, http://dx.doi.org/
10.23967/complas.2021.009.

[6] S. Fetni, et al., Capabilities of auto-encoders and principal component analysis of
the reduction of microstructural images; application on the acceleration of phase-
field simulations, Comput. Mater. Sci. 216 (2023) 111820, http://dx.doi.org/10.
1016/j.commatsci.2022.111820.

[7] D. Montes de Oca Zapiain, J.A. Stewart, R. Dingreville, Accelerating phase-
field-based microstructure evolution predictions via surrogate models trained by
machine learning methods, npj Comput. Mater. 7 (1) (2021) http://dx.doi.org/
10.1038/s41524-020-00471-8.
4

http://dx.doi.org/10.1016/j.cma.2022.115128
http://dx.doi.org/10.1016/j.cma.2022.115128
http://dx.doi.org/10.1016/j.cma.2022.115128
http://dx.doi.org/10.1038/s41524-022-00734-6
http://dx.doi.org/10.1038/s41524-022-00734-6
http://dx.doi.org/10.1038/s41524-022-00734-6
http://dx.doi.org/10.1016/j.ultramic.2023.113719
http://dx.doi.org/10.1016/j.ultramic.2023.113719
http://dx.doi.org/10.1016/j.ultramic.2023.113719
http://dx.doi.org/10.1016/j.cpc.2023.108691
http://dx.doi.org/10.1016/j.cpc.2023.108691
http://dx.doi.org/10.1016/j.cpc.2023.108691
http://dx.doi.org/10.23967/complas.2021.009
http://dx.doi.org/10.23967/complas.2021.009
http://dx.doi.org/10.23967/complas.2021.009
http://dx.doi.org/10.1016/j.commatsci.2022.111820
http://dx.doi.org/10.1016/j.commatsci.2022.111820
http://dx.doi.org/10.1016/j.commatsci.2022.111820
http://dx.doi.org/10.1038/s41524-020-00471-8
http://dx.doi.org/10.1038/s41524-020-00471-8
http://dx.doi.org/10.1038/s41524-020-00471-8

	Python Data Driven framework for acceleration of Phase-Field simulations
	Motivation and significance
	Software impacts
	Framework description
	Description of generation and the nature of the original dataset
	Description of generation and the nature of the original dataset
	Description of the encoded datasets (in two latent dimensions)

	Description of the main functions of the different Python scripts of the developed framework

	Limitations and future improvements
	Declaration of competing interest
	Acknowledgments
	Ethics statements

	References

