
Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

ARTICLE TYPE

Tracking Amplitude Extrema of Nonlinear Frequency Responses
using the Harmonic Balance Method†

Ghislain Raze* | Martin Volvert | Gaetan Kerschen

1Space Structures and Systems Laboratory,
Aerospace and Mechanical Engineering
Department, University of Liège, Belgium

Correspondence
*Ghislain Raze, Space Structures and
Systems Laboratory, Aerospace and
Mechanical Engineering Department,
University of Liège
Quartier Polytech 1 (B52/3), Allée de la
Découverte 9, B-4000 Liège, Belgium.
Email: g.raze@uliege.be

Summary

This work proposes a novel efficient method to track the evolution of amplitude
extrema featured by frequency responses of nonlinear systems using the harmonic
balance method. Means to compute the amplitude of a Fourier series are first out-
lined, and a set of equations characterizing a local extremum of a nonlinear frequency
response amplitude curve is derived. Efficient numerical procedures are used to eval-
uate these equations and their derivatives (including second-order ones) to embed
them in a predictor-corrector continuation framework. The proposed approach is il-
lustrated on three examples of increasing complexity, namely a Helmholtz-Duffing
oscillator, a two-degree-of-freedom system with a modal interaction, and a doubly
clamped von Kàrmàn beam with a nonlinear tuned vibration absorber.
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1 INTRODUCTION

The vibration analysis of nonlinear structural systems is of crucial interest to academia and industry. An extensive amount of
work has been carried out to provide strong theoretical1,2, numerical3,4 and experimental5 foundations to the field. Robust
tools now exist to compute the response of nonlinear systems to different excitations, but remain to this day rather numerically
expensive owing to the large dimensionality and nonlinearity of most systems of interest.

The last decades have witnessed a growing interest in the intentional use of nonlinearity, which has proven beneficial in a
number of cases. An important research avenue is the field of nonlinear vibration mitigation. Several solutions, such as nonlinear
energy sinks6,7, autoparametric vibration absorbers8,9, nonlinear tuned vibration absorbers10,11, friction devices12,13 and impact
dampers14,15,16 have demonstrated beneficial strengths over traditional linear solutions. Another, more recent trend consists in
adding nonlinear elements to a nonlinear structure in order to prescribe its characteristics, e.g., by linearizing its global behavior.
Examples include tailoring the bias voltage of electrostatic microresonators for response linearization17, optimizing normal
form coefficients18 and linearizing resonances19,20.

Computational tools are extensively used to assess nonlinear responses and to verify nonlinear designs. A number of open-
source software are able to solve the nonlinear equations at hand using, for instance, a shooting procedure3,21, orthogonal
collocation22,23,24,25 or the harmonic balance (HB) method4,26,27. Bifurcation tracking28,29,30 can provide great insight into the
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behavior of a nonlinear system with relatively limited effort. For instance, it was used as a means to characterize internal reso-
nances31 and to improve vibration absorbers designs32. A multiparametric recursive version allowed to control highly nonlinear
phenomena such as the occurrence of an isolated response33.

A typical quantity of engineering interest is the maximum amplitude that can be undergone by some degrees of freedom (DoFs)
of a structure under specific loading scenarios, and can be a performance measure in vibration mitigation. Robust algorithms
have been developed to find the global maximum amplitude for the response of linear systems34,35. This question is still an
open challenge for nonlinear systems. Petrov36 was the first to propose a numerical method that allowed to track the amplitude
resonance of a single harmonic for bladed discs subjected to friction. Liao and Sun37 cast the problem to an optimization one
and used a multistart gradient-based optimizer to find the worst-case maximum amplitude. Renault et al38 proposed a method
resembling bifurcation tracking and able to follow the single-harmonic amplitude resonances (and antiresonances) of nonlinear
frequency responses. Förster and Krack39 introduced an alternative phase resonance-based approach for primary resonances,
with the underlying assumption that amplitude resonance occurs for a fixed value of the phase lag, typically close to quadrature.
They illustrated the computational interest of this method for several lightly-damped examples. This approach is relatively easily
experimentally implemented if phase quadrature is sought40,41,42. The relevance of phase resonance for nonlinear modal analysis
was rigorously proven for weakly forced and damped structures43. Specific phase relations were also shown to characterize the
non-primary resonances of a Duffing oscillator44,45.

The extrema of a curve can be mathematically defined as the point at which the derivative of the curve with respect to
a bifurcation parameter is equal to zero. First derivatives thus typically appear in the nonlinear equations characterizing the
extrema. Newton-based methods are generally used to solve these equations and require their derivatives, and therefore second-
order derivatives of the problem at hand are involved. Bifurcation tracking algorithms work with the eigenvalues of the Jacobian
matrix in the characterizing equations and thus typically have similar requirements. These second-order derivatives are often
deemed complicated to obtain4. State-of-the-art methods typically resort to finite differences3,28,29,30,46 or in some cases include
the full computation of the third-order tensor of second derivatives46,47,48. Automatic differentiation4,49 constitutes another
interesting approach but is seldom used.

None of the aforementioned works provides a method able to efficiently and consistently track multi-harmonic amplitude
resonances, or, more generally, the local extrema of nonlinear frequency response amplitude of the displacement, velocity or
acceleration of arbitrary nonlinear systems. A first purpose of the present work is to fill this gap using the HB method. Such
an extremum tracking procedure can deal with arbitrarily high damping and with highly multi-harmonic responses, such as
non-primary resonances and acceleration responses in general. As stated in39, this approach requires second-order derivatives,
which can be cumbersome to compute. A second contribution of this work is thus to propose an efficient method to compute
the second-order derivatives of smooth nonlinearities based on the alternating frequency-time (AFT) approach50. This method
neither resorts to finite differences nor requires the explicit computation and storage of third-order tensors. However, it requires
the analytical knowledge of the second derivatives of the functional forms of the nonlinearities.

This work is organized as follows. Section 2 first reviews the basic features of the HB method and means to compute the multi-
harmonic amplitude of periodic solutions described by their Fourier series. Section 3 then introduces the equations characterizing
the extrema of the nonlinear frequency response amplitude based on a generalization of the formulation used in38. The equations
are solved using a predictor-corrector continuation scheme, and the computation of the necessary derivatives is presented. In
particular, a strategy to compute second-order derivatives is proposed in Section 4. Section 5 discusses additional numerical
features, namely stability assessment and computational complexity. Section 6 finally illustrates the proposed method with
several examples, namely a Helmholtz-Duffing oscillator, a two-DoF system, and a doubly clamped beam.

2 NONLINEAR FREQUENCY RESPONSE

A nonlinear system governed by the following second-order ordinary differential equations

𝐌�̈�(𝑡) + 𝐂�̇�(𝑡) +𝐊𝐱(𝑡) + 𝐟nl(𝐱(𝑡), �̇�(𝑡), 𝑡) = 𝜆𝐟ext(𝑡) (1)

is considered, where 𝐌, 𝐂 and 𝐊 are the structural mass, damping and stiffness matrices, respectively, 𝐱 is the vector of general-
ized DoFs, and 𝐟ext and 𝐟nl are the associated generalized loading vectors related to the external and nonlinear and/or parametric
forces, respectively. 𝜆 is a parameter used to describe the amplitude of the external forcing, and an overdot denotes derivation
with respect to time (𝑡).
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2.1 Harmonic balance formalism
To compute the periodic solutions of Equation (1) under a periodic external (or parametric) forcing, a classical HB formalism
is used4,29. 𝐱 is accordingly expressed as a truncated Fourier series using a vector of harmonic coefficients 𝐳

𝐱(𝑡) = (𝐐(𝜔𝑡)⊗ 𝐈) 𝐳, (2)

where 𝜔 is the fundamental angular frequency of motion (of which the external and parametric forcing frequencies are integer
multiples), 𝐐(𝜔𝑡) is a vector of 2𝑁ℎ + 1 harmonic functions‡

𝐐(𝜔𝑡) =
[ 1
√

2
sin(𝜔𝑡) cos(𝜔𝑡) ⋯ sin(𝑁ℎ𝜔𝑡) cos(𝑁ℎ𝜔𝑡)

]

, (3)

𝐈 is the identity matrix, and ⊗ denotes the Kronecker product. If 𝐱 is a column vector of length 𝑁𝑥, then 𝐳 is a column vector of
length 𝑁𝑧 = (2𝑁ℎ + 1)𝑁𝑥. Using a Galerkin procedure, Equation (1) may be expressed in the frequency domain as a set of 𝑁𝑧
nonlinear algebraic equations

𝐀(𝜔)𝐳 + 𝐛(𝐳, 𝜔) = 𝜆𝐛ext , (4)
where the matrix 𝐀 is associated to the linear forces and is given by

𝐀(𝜔) = 𝜔2𝛁2 ⊗𝐌 + 𝜔𝛁⊗ 𝐂 + 𝐈⊗𝐊 (5)

with the frequency-normalized differential operator

𝛁 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 𝟎

𝟎

⎡

⎢

⎢

⎢

⎢

⎣

1 0 ⋯ 0
0 2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑁ℎ

⎤

⎥

⎥

⎥

⎥

⎦

⊗
[

0 −1
1 0

]

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (6)

𝐛 and 𝐛ext may be obtained using an AFT procedure50 (see Section 3.3.1), although the latter can also be given directly. Once
these terms are determined, Equation (4) can be solved for 𝐳 using, e.g., a Newton-Raphson procedure. The full details to derive
the above HB equations with this formalism are given in29.

2.2 Nonlinear frequency response amplitude
We now focus on a representation of the response of the nonlinear system defined by Equation (1) for an arbitrary time-dependent
DoF 𝑢 of interest, and in particular, on the amplitude of its nonlinear frequency response (NFR). This DoF is assumed to be
obtained from the 𝑟𝑡ℎ time derivative of 𝐱 using a localization vector 𝐰𝑢 of length 𝑁𝑥 as

𝑢(𝑡) = 𝐰𝑇
𝑢
𝑑𝑟𝐱(𝑡)
𝑑𝑡𝑟

= 𝐰𝑇
𝑢 (𝐐(𝜔𝑡)𝜔𝑟𝛁𝑟 ⊗ 𝐈) 𝐳, (7)

where superscript 𝑇 denotes a transposition. Typical values of 𝑟 are 𝑟 = 0, 1 and 2 for the displacement, velocity and acceleration,
respectively. Using twice a basic identity of the Kronecker product (𝐒⊗𝐔)(𝐓⊗𝐕) = (𝐒𝐓)⊗ (𝐔𝐕) for matrices of compatible
size, relation (7) can further be written

𝑢(𝑡) = (1⊗ 𝐰𝑇
𝑢 ) (𝐐(𝜔𝑡)𝜔𝑟𝛁𝑟 ⊗ 𝐈) 𝐳 = (𝐐(𝜔𝑡)𝜔𝑟𝛁𝑟)⊗

(

𝐰𝑇
𝑢 𝐈
)

𝐳 = 𝜔𝑟 (𝐐(𝜔𝑡)𝛁𝑟)⊗
(

1𝐰𝑇
𝑢

)

𝐳
= 𝜔𝑟(𝐐(𝜔𝑡)⊗ 1)

(

𝛁𝑟 ⊗ 𝐰𝑇
𝑢

)

𝐳 = 𝜔𝑟𝐐(𝜔𝑡)
(

𝛁𝑟 ⊗ 𝐰𝑇
𝑢

)

𝐳. (8)

The vector of 2𝑁ℎ + 1 harmonic coefficients associated with 𝑢 may also be determined through

𝐳𝑢 = 𝜔𝑟 (𝛁𝑟 ⊗ 𝐰𝑇
𝑢

)

𝐳 = 𝜔𝑟𝐁𝑢𝐳 (9)

and 𝑢(𝑡) can equivalently be expressed as a Fourier series from Equations (8) and (9) as

𝑢(𝑡) = 𝐐(𝜔𝑡)𝐳𝑢 = 𝜔𝑟𝐐(𝜔𝑡)𝐁𝑢𝐳. (10)

The NFR amplitude 𝑎 of 𝑢 is defined for a given value of 𝜔 as the maximum absolute value reached by 𝑢(𝑡) over a period.
Introducing a dimensionless time 𝜏 = 𝜔𝑡 (and replacing the 𝑡-dependence of 𝑢 by an equivalent 𝜏-dependence), the definition

‡This choice ensures that the harmonic functions have the same norm, i.e., 2 ∫ 2𝜋∕𝜔
0 𝐐𝑇 (𝜔𝑡)𝐐(𝜔𝑡)𝑑𝑡 = 𝐈.
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of 𝑎 is thus
𝑎(𝐳, 𝜔) = max

𝜏∈[0,2𝜋]
|𝑢(𝜏)| = max

𝜏∈[0,2𝜋]
|𝜔𝑟𝐐(𝜏)𝐁𝑢𝐳|. (11)

There are at least two possibilities to compute the amplitude of an NFR. The first one consists in sampling Equation (10) for
several values of 𝜏 ∈ [0, 2𝜋] and finding the maximum absolute value among the discrete set of computed values. An alternative
consists in solving Equation (11) semi-analytically. This procedure is detailed in the sequel.

Using the properties of the vector of harmonic functions derivatives

𝐐′(𝜏) = 𝐐(𝜏)𝛁, (12)

where a prime denotes a derivation with respect to 𝜏, a necessary condition on the dimensionless time at which the maximum
of amplitude occurs, 𝜏max(𝐳), is given by

𝑢′(𝜏)|
|𝜏=𝜏max(𝐳)

= 𝜔𝑟𝐐(𝜏max(𝐳))𝛁𝐁𝑢𝐳 = 0 (13)

and the corresponding amplitude is given by

𝑎(𝐳, 𝜔) = |𝜔𝑟𝐐(𝜏max(𝐳))𝐁𝑢𝐳|. (14)

Hence, by solving Equation (13) and inserting its solution into Equation (14), the amplitude can be computed. The procedure to
solve Equation (13) is explained in the next section.

2.3 Companion matrix and extrema of Fourier series
Equation (13) implicitly defines 𝜏max(𝐳) (and hence the amplitude of motion). It amounts to finding the roots of a Fourier series.
Using the fact that a trigonometric polynomial can be cast to a rational polynomial, Boyd51 showed that the roots of a Fourier
series can be computed from the eigenvalues of a so-called Fourier-Frobenius companion matrix, hereafter simply referred to
as "companion matrix" for conciseness.

We now consider that the generalized DoF of interest 𝑢 has harmonic coefficients

𝐳𝑇𝑢 =
[

𝑧0, 𝑧s,1, 𝑧c,1,⋯ , 𝑧s,𝑁ℎ
, 𝑧c,𝑁ℎ

]

(15)

so that the derivative of 𝑢 with respect to the dimensionless time 𝜏 is expressed as a Fourier series, and Equation (13) becomes

𝑢′(𝜏) =
𝑁ℎ
∑

𝑘=1

(

−𝑘𝑧c,𝑘 sin(𝑘𝜏) + 𝑘𝑧s,𝑘 cos(𝑘𝜏)
)

= 0 (16)

Following Boyd51, this trigonometric polynomial is converted to a rational polynomial of order 2𝑁ℎ of the complex variable
𝑠 = 𝑒i𝜏 , where i is the unit imaginary number (i2 = −1) as

𝑢′(𝜏) = 1
𝑒i𝑁ℎ𝜏

2𝑁ℎ
∑

𝑘=0
ℎ𝑘𝑒

i𝑘𝜏 = 1
𝑠𝑁ℎ

2𝑁ℎ
∑

𝑘=0
ℎ𝑘𝑠

𝑘, (17)

where the coefficients ℎ𝑘 are given by

ℎ𝑘 =

⎧

⎪

⎨

⎪

⎩

(𝑁ℎ − 𝑘)𝑧s,𝑁ℎ−𝑘 − i(𝑁ℎ − 𝑘)𝑧c,𝑁ℎ−𝑘, 𝑘 = 0,⋯ , 𝑁ℎ − 1
0 𝑘 = 𝑁ℎ
(𝑘 −𝑁ℎ)𝑧s,𝑘−𝑁ℎ

+ i(𝑘 −𝑁ℎ)𝑧c,𝑘−𝑁ℎ
, 𝑘 = 𝑁ℎ + 1,⋯ , 2𝑁ℎ

. (18)

The 2𝑁ℎ × 2𝑁ℎ companion matrix 𝐅 associated to this polynomial is then given by

𝐅 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 1

−
ℎ0

ℎ2𝑁ℎ

−
ℎ1

ℎ2𝑁ℎ

−
ℎ2

ℎ2𝑁ℎ

⋯ −
ℎ2𝑁ℎ−1

ℎ2𝑁ℎ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (19)

The eigenvalues 𝜇 of 𝐅 are the roots in 𝑠 of the ordinary polynomial in the numerator of Equation (17). Those lying on the
unit circle are linked to the real roots of the original Fourier series through 𝜏𝑘 = arg(𝜇𝑘) where arg is the complex argument
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function. This generally yields multiple values of 𝜏𝑘, since the Fourier series may have multiple extrema. The value of 𝜏 that
yields the NFR amplitude can eventually simply be determined by computing the response at (real-valued) 𝜏𝑘 for all values of
𝑘 with Equation (10) and selecting the one(s) with maximum absolute value.

A coefficient ℎ2𝑁ℎ
close or equal to zero can be problematic for the construction of the companion matrix (Equation (19)).

This occurs when the coefficients associated with harmonic 𝑁ℎ are small or zero as well in Equation (16). These coefficients
can thus be neglected if their absolute value is below a given threshold. An alternative using a generalized eigenvalue problem
formulation is also possible52.

We note that finding the roots of a Fourier series with strictly more than one harmonic corresponds to solving a polynomial
equation of order equal to or higher than five. Consequently, owing to the Abel–Ruffini theorem, no closed-form expression
of the amplitude as a function of the harmonic coefficients can be obtained for multi-harmonic Fourier series in general. The
proposed semi-analytic approach then comes as a practical way to compute this amplitude.

2.3.1 Discussion
Since two different approaches are available to compute the amplitude of a Fourier series, namely a direct sampling and the
companion matrix-based approach, one may wonder which one is the most advantageous.

On the one hand, the nonlinear forces and their associated derivatives are most often computed with an AFT procedure,
which requires to compute 𝐱 at different time instants. For an accurate computation of the nonlinear forces without aliasing
with polynomial nonlinearities, it was shown that the number of sampling points of this AFT, 𝑛, should grow linearly with the
number of harmonics and the maximum nonlinear exponent, i.e. 𝑛 ∼ 𝑂(𝑁ℎ)53,54. Hence, since one has to compute 𝑂(𝑁ℎ) dot
products of vectors of size 2𝑁ℎ+1 (Equation (10)), the computational complexity of this approach grows as 𝑂(𝑁2

ℎ). It can even
be brought down to 𝑂(𝑁ℎ log(𝑁ℎ)) if a fast Fourier transform is used. A first issue of this approach is that the extrema of the
Fourier series may not be located accurately. In addition, the estimated amplitude may feature a nonsmooth character when the
sampling point at which the maximum amplitude occurs changes as the system parameters are varied. However, their estimation
could be polished using a Newton-Raphson procedure starting from an initial guess51, thereby resolving these two issues.

On the other hand, the companion matrix-based method requires the computation of the eigenvalues of a matrix of size
2𝑁ℎ+1, therefore the computational complexity grows as 𝑂(𝑁3

ℎ). This approach is thus more expensive in general than a direct
sampling. However, it is more accurate and its cost is oftentimes dwarfed by that of the continuation procedure itself, especially
if the stability of the response is assessed (for which a much larger eigenvalue problem has to be solved).

Therefore, the two approaches seem viable and rather equivalent for an accurate computation of the NFR amplitude. For
problems requiring a very large number of harmonics, the sampling procedure might however be preferable.

3 TRACKING PROCEDURE

The response of nonlinear structural systems is often assessed with specific features of the NFR, such as the maximum amplitude
of the response. Since the latter is influenced by the forcing amplitude, multiple NFRs have to be computed at different forcing
levels, making this assessment procedure computationally expensive. A more direct and efficient approach consists in computing
only the amplitude extrema of the NFR.

Several procedures were previously proposed in the literature to locate and track amplitude extrema of NFRs. Petrov36 pro-
posed to incorporate an additional equation to Equation (4) expressing the extremal character of the amplitude with respect
to the frequency. This method was nonetheless found to be rather ill-conditioned in some cases39. This issue is discussed in
Appendix A. Subsequently, Renault et al38 showed that the extrema of an NFR are characterized by the singularity of the
Jacobian of an extended system by drawing a parallel with the characterization of fold bifurcations.

Both approaches in36,38 approximate the solution of the nonlinear dynamic equilibrium with a multi-harmonic balance
method, but compute the harmonic amplitude with a single harmonic. Furthermore, these approaches can only be applied to
track the extrema of displacement amplitudes. The aim of this section is to generalize their scope by addressing these two limi-
tations, using the formalism of Renault et al38. Furthermore, an efficient procedure based on the AFT50 is proposed to compute
the second derivatives appearing in the problem.
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3.1 Equations for an extremum
To characterize the amplitude extrema of the NFR, an additional mathematical condition for extremality 𝑔𝑝(𝐳, 𝜔) = 0 is appended
to Equation (4), yielding the extended system

𝐡(𝐳, 𝜔, 𝜆) =
[

𝐀(𝜔)𝐳 + 𝐛(𝐳, 𝜔) − 𝜆𝐛ext
𝑔𝑝(𝐳, 𝜔)

]

= 𝟎. (20)

The extremality condition 𝑔𝑝 may be the tangent of the NFR36 or the determinant of the Jacobian of an extended system38, as
shall be shown later. If the external amplitude 𝜆 is fixed, Equation (20) defines 𝑁𝑧 + 1 nonlinear algebraic equations for 𝑁𝑧 + 1
unknowns and can therefore be solved numerically using (for instance) a Newton-Raphson procedure to find the extrema of the
NFR amplitude. By letting 𝜆 vary, a one-parameter family of solutions can be computed using, e.g., a continuation procedure.
These solutions represent how the extrema of the NFR evolve with the parameter 𝜆.

Including 𝜆 as a variable, the Jacobian of the system defined in Equation (20) is

𝐉(𝐳, 𝜔) =
[𝜕𝐡
𝜕𝐳

(𝐳, 𝜔) 𝜕𝐡
𝜕𝜔

(𝐳, 𝜔) 𝜕𝐡
𝜕𝜆

]

=

⎡

⎢

⎢

⎢

⎣

𝐀(𝜔) + 𝜕𝐛
𝜕𝐳

(𝐳, 𝜔) 𝜕𝐀(𝜔)
𝜕𝜔

𝐳 + 𝜕𝐛
𝜕𝜔

(𝐳, 𝜔) −𝐛ext
𝜕𝑔𝑝
𝜕𝐳

(𝐳, 𝜔)
𝜕𝑔𝑝
𝜕𝜔

(𝐳, 𝜔) 0

⎤

⎥

⎥

⎥

⎦

, (21)

and can be used together with Equation (20) in, e.g., a predictor-corrector continuation scheme3,4,29,30. In the remainder of this
section, we show how the different parts of the Jacobian can be computed.

3.2 Derivatives of the matrix of linear forces
The matrix 𝐀(𝜔) being given in Equation (5), its first derivative is readily obtained as

𝜕𝐀(𝜔)
𝜕𝜔

= 2𝜔𝛁2 ⊗𝐌 + 𝛁⊗ 𝐂, (22)

and its second derivative (which shall be needed later) is
𝜕2𝐀(𝜔)
𝜕𝜔2

= 2𝛁2 ⊗𝐌. (23)

3.3 Alternating Frequency-Time procedure
We now turn to the computation of the nonlinear forces and their derivatives in the frequency domain. The computation of the
derivatives of 𝐛 is first treated using a classical AFT approach50. A dimensionless sampling time vector is formed

𝝉 =
[

𝜏0 𝜏1 ⋯ 𝜏𝑛−1
]𝑇 (24)

with 𝜏𝑘 = 2𝜋𝑘∕𝑛. Correspondingly, the matrix of sampled harmonic functions is given by

𝐐(𝝉) =
⎡

⎢

⎢

⎣

𝐐(𝜏0)
⋮

𝐐(𝜏𝑛−1)

⎤

⎥

⎥

⎦

. (25)

An operator to represent the inverse Fourier transform is used as in30

𝚪 = 𝐐(𝝉)⊗ 𝐈, (26)

and the time-sampled vector of generalized DoFs is computed through

�̃� = 𝚪𝐳 =
[

𝐱𝑇 (𝜏0),⋯ , 𝐱𝑇 (𝜏𝑛−1)
]𝑇 , (27)

where a tilde (⋅̃) denotes a quantity that is evaluated for each value of the sampling time vector 𝝉 .

3.3.1 Nonlinear forces and their first derivatives in the frequency domain
The vector of nonlinear forces (whose dependence on 𝑡 is equivalently expressed as a dependence on 𝜏) is readily evaluated in
the time domain and can eventually be re-projected in the frequency domain as

𝐛 = 𝚪†𝐟nl
(

�̃�, ̃̇𝐱, 𝝉
)

= 𝚪†𝐟nl (𝚪𝐳,𝚪(𝜔𝛁⊗ 𝐈)𝐳, 𝝉) , (28)
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where the superscript † denotes a pseudoinverse, which in this case is explicitly given by

𝚪† = 2
𝑛
𝚪𝑇 = 2

𝑛
𝐐𝑇 (𝝉)⊗ 𝐈. (29)

Using the chain rule and Equation (27)29,30,

𝜕𝐛
𝜕𝐳

= 𝚪†
(

𝜕𝐟nl
𝜕�̃�

𝚪 +
𝜕𝐟nl
𝜕 ̃̇𝐱

𝚪(𝜔𝛁⊗ 𝐈)
)

. (30)

The derivative of the nonlinear forces with respect to 𝜔 is also given by

𝜕𝐛
𝜕𝜔

= 𝚪† 𝜕𝐟nl
𝜕 ̃̇𝐱

𝚪(𝛁⊗ 𝐈)𝐳. (31)

3.3.2 Derivatives of matrix-vector products
As anticipated in the introduction and as shall be shown later, second derivatives will be needed to characterize the derivatives
of 𝑔𝑝. Before expressing these derivatives, we note that the derivative of a matrix product 𝐆𝐲, for an arbitrary matrix 𝐆 and
vector 𝐲, both functions of 𝐳, is given by

𝜕
𝜕𝐳

(𝐆(𝐳)𝐲(𝐳)) =
⟨𝜕𝐆
𝜕𝐳

(𝐳), 𝐲(𝐳)
⟩

2
+𝐆(𝐳)𝜕𝐲

𝜕𝐳
(𝐳). (32)

⟨⋅, ⋅⟩𝑛 denotes here the 𝑛−mode vector product of a tensor with a vector55. Specifically, for the cases treated in this work, the
2-mode vector product of any 𝑁1 ×𝑁2 ×𝑁3 array 𝐓 and vector 𝐮 of size 𝑁2 is given by

(

⟨𝐓,𝐮⟩2
)

𝑘𝑙 =
𝑁2
∑

𝑖=1
(𝐓)𝑘𝑖𝑙 (𝐮)𝑖 , 𝑘 = 1,⋯ , 𝑁1, 𝑙 = 1,⋯ , 𝑁3, (33)

and yields a two-dimensional array. The demonstration of Equation (32) is immediate using the index notation and Equation (33).
The fact that Equation (32) yields a matrix indicates that none of the three-dimensional arrays appearing in this work needs

be computed explicitly, but their 2-mode products with vectors do.

3.3.3 Second derivatives in the frequency domain
To compute the second derivatives of 𝐛, the chain rule can be used a second time with Equation (32), yielding

𝜕2𝐛
𝜕𝐳𝜕𝜔

= 𝚪†
(⟨

𝜕2𝐟nl
𝜕�̃�𝜕 ̃̇𝐱

,𝚪(𝛁⊗ 𝐈)𝐳
⟩

2
𝚪 +

𝜕𝐟nl
𝜕 ̃̇𝐱

𝚪(𝛁⊗ 𝐈) +
⟨

𝜕2𝐟nl
𝜕 ̃̇𝐱𝜕 ̃̇𝐱

,𝚪(𝛁⊗ 𝐈)𝐳
⟩

2
𝚪(𝜔𝛁⊗ 𝐈)

)

= 𝚪†
(

1
𝜔

⟨

𝜕2𝐟nl
𝜕�̃�𝜕 ̃̇𝐱

, ̃̇𝐱
⟩

2
𝚪 +

𝜕𝐟nl
𝜕 ̃̇𝐱

𝚪(𝛁⊗ 𝐈) +
⟨

𝜕2𝐟nl
𝜕 ̃̇𝐱𝜕 ̃̇𝐱

, ̃̇𝐱
⟩

2
𝚪(𝛁⊗ 𝐈)

)

,
(34)

𝜕2𝐛
𝜕𝜔2

= 𝚪†
⟨

𝜕2𝐟nl
𝜕 ̃̇𝐱𝜕 ̃̇𝐱

,𝚪(𝛁⊗ 𝐈)𝐳
⟩

2
𝚪(𝛁⊗ 𝐈)𝐳 = 1

𝜔
𝚪†

⟨

𝜕2𝐟nl
𝜕 ̃̇𝐱𝜕 ̃̇𝐱

, ̃̇𝐱
⟩

2
𝚪(𝛁⊗ 𝐈)𝐳 (35)

and, considering an arbitrary vector 𝐲 of length 𝑁𝑧,
⟨

𝜕2𝐛
𝜕𝐳𝜕𝐳

, 𝐲
⟩

2
= 𝚪†

(⟨

𝜕2𝐟nl
𝜕�̃�𝜕�̃�

,𝚪𝐲
⟩

2
𝚪 +

⟨

𝜕2𝐟nl
𝜕 ̃̇𝐱𝜕�̃�

,𝚪𝐲
⟩

2
𝚪(𝜔𝛁⊗ 𝐈)

+
⟨

𝜕2𝐟nl
𝜕�̃�𝜕 ̃̇𝐱

,𝚪(𝜔𝛁⊗ 𝐈)𝐲
⟩

2
𝚪 +

⟨

𝜕2𝐟nl
𝜕 ̃̇𝐱𝜕 ̃̇𝐱

,𝚪(𝜔𝛁⊗ 𝐈)𝐲
⟩

2
𝚪(𝜔𝛁⊗ 𝐈)

)

= 𝚪†
(⟨

𝜕2𝐟nl
𝜕�̃�𝜕�̃�

, �̃�
⟩

2
𝚪 +

⟨

𝜕2𝐟nl
𝜕 ̃̇𝐱𝜕�̃�

, �̃�
⟩

2
𝚪(𝜔𝛁⊗ 𝐈)

+
⟨

𝜕2𝐟nl
𝜕�̃�𝜕 ̃̇𝐱

, ̃̇𝐲
⟩

2
𝚪 +

⟨

𝜕2𝐟nl
𝜕 ̃̇𝐱𝜕 ̃̇𝐱

, ̃̇𝐲
⟩

2
𝚪(𝜔𝛁⊗ 𝐈)

)

,

(36)

where �̃� and ̃̇𝐲 are time-sampled vectors whose Fourier coefficients are 𝐲 and (𝜔𝛁⊗𝐈)𝐲, respectively. Each one of these derivatives
involves at least one product of a three-dimensional array with a vector. A strategy to compute these products is developed in
Section 4.
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3.4 Extremality condition as the singularity of a Jacobian
We now particularize the extremality condition. The formulation of Renault et al38 is adopted herein, and extended to the case
of a frequency-dependent amplitude (which is the case if one is interested in velocity or acceleration extrema). Introducing an
amplitude variable 𝛼 = 𝑎(𝐳, 𝜔), an extended system is defined from Equation (4) as

�̃�(𝐳, 𝜔, 𝛼) =
[

𝐀(𝜔)𝐳 + 𝐛(𝐳, 𝜔) − 𝜆𝐛ext
𝑎(𝐳, 𝜔) − 𝛼

]

= 𝟎. (37)

An amplitude extremum of the NFR is defined by the condition
𝑑𝑎
𝑑𝜔

= 𝑑𝛼
𝑑𝜔

= 0, (38)

with 𝜆 fixed. Taking the total derivative of Equation (37) with respect to the frequency and accounting for Equation (38),

𝑑�̃�
𝑑𝜔

= 𝜕�̃�
𝜕𝐳

𝑑𝐳
𝑑𝜔

+ 𝜕�̃�
𝜕𝜔

+ 𝜕�̃�
𝜕𝛼

𝑑𝛼
𝑑𝜔

= �̃�
[ 𝑑𝐳
𝑑𝜔
1

]

= 𝟎, (39)

where the Jacobian �̃� of the extended system

�̃�(𝐳, 𝜔) =
[

𝜕�̃�
𝜕𝐳

𝜕�̃�
𝜕𝜔

]

=
⎡

⎢

⎢

⎣

𝐀(𝜔) + 𝜕𝐛
𝜕𝐳

(𝐳, 𝜔) 𝜕𝐀(𝜔)
𝜕𝜔

𝐳 + 𝜕𝐛
𝜕𝜔

(𝐳, 𝜔)
𝜕𝑎
𝜕𝐳

(𝐳, 𝜔) 𝜕𝑎
𝜕𝜔

(𝐳, 𝜔)

⎤

⎥

⎥

⎦

(40)

has to be singular at an extremum of 𝑎 on account of Equation (39). Therefore, the extremality condition 𝑔𝑝 = 0 ⇔ det(�̃�) = 0,
det being the operator giving the determinant of a matrix38. It can be remarked that the procedure to compute the first 𝑁𝑧 rows
of �̃� has already been outlined for the computation of 𝐉.

3.5 Bordered matrices
We now focus on ways to express the singularity of the Jacobian in Equation (40). Obtaining the determinant of a matrix may be
computationally intensive, and its derivatives are not easily expressed. In this work, the function 𝑔𝑝 is rather defined implicitly
by the solution of a bordered system, similarly to what was used in29 for bifurcation characterization. One can compute 𝑔𝑝, as
well as a pair of related vectors 𝐰 and 𝐯 by solving the bordered linear systems

[

�̃� 𝐩
𝐪𝐻 0

] [

𝐰
𝑔𝑝

]

=
[

𝟎
1

]

(41)

and
[

�̃�𝐻 𝐪
𝐩𝐻 0

] [

𝐯
𝑒𝑝

]

=
[

𝟎
1

]

, (42)

where superscript 𝐻 denotes a Hermitian transpose. When �̃� is singular and the bordered matrices are not,

det(�̃�) = 0 ⇔ 𝑔𝑝 = 0 ⇔ 𝑒𝑝 = 0. (43)

Furthermore, the bordered matrices are invertible when �̃� is singular if46

𝐩 ∉ range(�̃�), 𝐪 ∉ range(�̃�𝐻 ). (44)

These conditions are fairly unrestrictive; 𝐩 and 𝐪 can thus be chosen arbitrarily or randomly in general. A more systematic
selection procedure is detailed hereafter.

3.5.1 Derivatives of the solution of the bordered system
To compute the Jacobian, Equation (21) requires the derivatives of 𝑔𝑝. Taking the derivative of Equation (41) with respect to an
arbitrary parameter 𝜁 , multiplying it by 𝐯𝐻 and accounting for Equation (42),

𝐯𝐻 𝜕�̃�
𝜕𝜁

𝐰 − 𝑒𝑝
𝜕𝐪𝐻

𝜕𝜁
𝐰 +

𝜕𝑔𝑝
𝜕𝜁

+ 𝑔𝑝𝐯𝐻
𝜕𝐩
𝜕𝜁

= 0. (45)
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Two of these terms vanish if 𝐪 and 𝐩 do not depend on 𝜁 , or if 𝑒𝑝 = 0 and 𝑔𝑝 = 0. If either of these conditions hold, Equation (45)
simplifies to

𝜕𝑔𝑝
𝜕𝜁

= −𝐯𝐻 𝜕�̃�
𝜕𝜁

𝐰. (46)

Using Equations (21) and (46), the derivative of 𝑔𝑝 with respect to 𝜔 is given by

𝜕𝑔𝑝
𝜕𝜔

= −𝐯𝐻 𝜕�̃�
𝜕𝜔

𝐰 = −𝐯𝐻
⎡

⎢

⎢

⎢

⎣

𝜕𝐀
𝜕𝜔

+ 𝜕2𝐛
𝜕𝜔𝜕𝐳

𝜕2𝐀
𝜕𝜔2

𝐳 + 𝜕2𝐛
𝜕𝜔2

𝜕2𝑎
𝜕𝐳𝜕𝜔

𝜕2𝑎
𝜕𝜔2

⎤

⎥

⎥

⎥

⎦

𝐰. (47)

As for the derivative with respect to 𝐳, 𝐰 is first partitioned as

𝐰𝑇 =
[

𝐰𝑧, 𝑤𝜔
]𝑇 (48)

and then Equation (46) becomes, using Equation (32),

𝜕𝑔𝑝
𝜕𝐳

= −𝐯𝐻
⟨

𝜕�̃�
𝜕𝐳

,𝐰
⟩

2
= −𝐯𝐻

⎡

⎢

⎢

⎢

⎣

⟨

𝜕2𝐛
𝜕𝐳𝜕𝐳

,𝐰𝑧

⟩

2
+
(

𝜕𝐀
𝜕𝜔

+ 𝜕2𝐛
𝜕𝜔𝜕𝐳

)

𝑤𝜔

𝐰𝑇
𝑧
𝜕2𝑎
𝜕𝐳𝜕𝐳

+𝑤𝜔
𝜕2𝑎
𝜕𝜔𝜕𝐳

⎤

⎥

⎥

⎥

⎦

. (49)

The second derivatives of 𝐀, 𝐛 and 𝑎 are derived in Sections 3.2, 3.3.3 and 3.6, respectively.

3.5.2 Adaptation for the bordered matrices
There exists an optimal choice with respect to the condition number consisting in choosing 𝐩 and 𝐪 as base vectors of the kernels
of �̃�𝐻 and �̃�, respectively46. When 𝑔𝑝 ≈ 0 and 𝑒𝑝 ≈ 0, Equations (41) and (42) indicate that 𝐰 and 𝐯 are close to the kernel of �̃�
and �̃�𝐻 , respectively, making them ideal candidates for an adaptation of the bordered matrices.

The strategy adopted in this work thus consists in keeping 𝐩 and 𝐪 constant during a correction phase, which allows for using
Equation (46). At the end of this phase, 𝑔𝑝 and 𝑒𝑝 are close to zero, and 𝐩 and 𝐪 are set equal to 𝐯 and 𝐰 computed during
the last correction step, respectively, for the prediction phase. This makes them close to their optimal counterparts at the next
continuation step, thereby guaranteeing a near-optimal condition number and numerical stability. Since 𝑔𝑝 and 𝑒𝑝 are considered
equal to zero to working precision, Equation (46) is also valid for the predictor phase.

At the first continuation step, multiple possibilities can be considered to initialize 𝐩 and 𝐪. To work with real algebra, they
were chosen in this work as the left and right singular vectors, respectively, associated with the smallest singular value of �̃�.

3.6 Derivatives of the amplitude
To complete the computation of the derivatives of 𝑔𝑝 (and thus of the Jacobian), the derivatives of the amplitude remain to be
expressed. They can be computed regardless of the method used to determine it (sampling or companion matrix). The method
is similar to what was proposed in56 but is extended to the cases of all parameters of interest here (𝐳 and 𝜔). It is assumed that
𝜔 > 0. Differentiating Equation (14) with respect to 𝐳 once and twice, using the chain rule and Equation (12), and taking into
account the necessary condition on 𝜏max(𝐳) given in Equation (13), one gets

𝜕𝑎
𝜕𝐳

= 𝜔𝑟 sign(𝐐(𝜏max(𝐳))𝐁𝑢𝐳)𝐐(𝜏max(𝐳))𝐁𝑢 (50)

and

𝜕2𝑎
𝜕𝐳𝜕𝐳

= 𝜔𝑟 sign(𝐐(𝜏max(𝐳))𝐁𝑢𝐳)
(

𝐐(𝜏max(𝐳))𝛁2𝐁𝑢𝐳
(

𝜕𝜏max

𝜕𝐳

)𝑇 𝜕𝜏max

𝜕𝐳

+
(

𝐐(𝜏max(𝐳))𝛁𝐁𝑢
)𝑇 𝜕𝜏max

𝜕𝐳
+
(

𝜕𝜏max

𝜕𝐳

)𝑇

𝐐(𝜏max(𝐳))𝛁𝐁𝑢

)

, (51)

respectively. The latter equality assumes 𝑎 ≠ 0 in order to neglect the effect of the sign function and its differentiation issues at
zero, which holds true for most cases of interest. A notable exception concerns the antiresonances of conservative systems, for
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which the amplitude extremality condition can simply be replaced by the condition 𝑎 = 038. The derivatives with respect to 𝜔
are obtained from Equations (14) and (50) as

𝜕𝑎
𝜕𝜔

= 𝑟𝜔𝑟−1
|

|

𝐐(𝜏max(𝐳))𝐁𝑢𝐳|| , (52)

𝜕2𝑎
𝜕𝜔2

= 𝑟(𝑟 − 1)𝜔𝑟−2
|

|

𝐐(𝜏max(𝐳))𝐁𝑢𝐳|| (53)

and
𝜕2𝑎
𝜕𝜔𝜕𝐳

= 𝑟𝜔𝑟−1 sign(𝐐(𝜏max(𝐳))𝐁𝑢𝐳)𝐐(𝜏max(𝐳))𝐁𝑢. (54)
The last quantity to determine is the derivative of 𝜏max with respect to 𝐳. Writing out Equation (13) with an explicit dependence

of 𝜏max on 𝐳𝑢 reads
𝐐
(

𝜏max(𝐳𝑢)
)

𝛁𝐳𝑢 = 0 (55)
Taking the total derivative with respect to 𝐳𝑢 of this condition yields

𝐐
(

𝜏max(𝐳𝑢)
)

𝛁2𝐳𝑢
𝜕𝜏max

𝜕𝐳𝑢
+𝐐

(

𝜏max(𝐳𝑢)
)

𝛁 = 0. (56)

Hence
𝜕𝜏max

𝜕𝐳𝑢
= −

𝐐
(

𝜏max(𝐳𝑢)
)

𝛁
𝐐
(

𝜏max(𝐳𝑢)
)

𝛁2𝐳𝑢
. (57)

Since 𝐐
(

𝜏max(𝐳𝑢)
)

𝛁2𝐳𝑢 = 𝑢′′(𝜏max) and since we are interested in extrema of the Fourier series, this quantity is nonzero (except
in trivial or degenerate cases). Eventually, the derivative of 𝜏max with respect to 𝐳 may be expressed as

𝜕𝜏max

𝜕𝐳
=

𝜕𝜏max

𝜕𝐳𝑢
𝜕𝐳𝑢
𝜕𝐳

= 𝜔𝑟 𝜕𝜏max

𝜕𝐳𝑢
𝐁𝑢. (58)

There may be multiple values 𝜏max which satisfy Equation (13) while also corresponding to a maximum of amplitude. The
derivatives evaluated at these dimensionless times may differ and thus multiple derivatives values seem possible. This translates
the fact that the amplitude is not differentiable in such situations57. For a Fourier series with both even and odd harmonics, this
situation is nongeneric (i.e., there is generically only one amplitude maximum). However, this always occurs when the Fourier
series exclusively contains even or odd harmonics. The latter case is of relevance since it corresponds to symmetric responses
of systems with symmetric nonlinearities. Nevertheless, this differentiability issue only concerns the derivatives of harmonic
coefficient of different parity from the Fourier series, as is shown in B. Since for symmetric responses only the odd Fourier
coefficients are needed while the even ones are (theoretically) equal to zero, the problematic derivatives with respect to the latter
can be ignored. Thus, if multiple amplitude maxima occur, the practical approach used in this work is to select one of them
arbitrarily and use it to compute the derivatives.

4 NONLINEAR FORCES AND THEIR DERIVATIVES IN THE TIME DOMAIN

A procedure to compute the time-domain expression of the nonlinear forces and their derivatives is now outlined. In particular,
an efficient way to compute the 2-mode products is proposed. To make the expression of the derivatives as explicit as possible,
a generic form for a nonlinearity having no internal states is now introduced. It is given by

𝐟𝑝(𝐱(𝜏), �̇�(𝜏), 𝜏) = 𝐛𝑝𝑓𝑝
(

𝐂𝑝𝐱(𝜏),𝐃𝑝�̇�(𝜏), 𝜏
)

= 𝐛𝑝𝑓𝑝
(

𝜉1(𝜏),⋯ , 𝜉𝑚(𝜏), 𝜂1(𝜏),⋯ 𝜂𝑙(𝜏), 𝜏
)

, (59)

where 𝐛𝑝 is an 𝑁𝑥×1 vector that describes the spatial distribution of the nonlinear force on the structure, 𝐂𝑝 is an 𝑚×𝑁𝑥 matrix
that gives the local strain-like quantities 𝜉1,⋯ , 𝜉𝑚 in the nonlinear element, such that

𝐂𝑝𝐱 =
[

𝜉1,⋯ , 𝜉𝑚
]𝑇 = 𝝃 (60)

and 𝐃𝑝 is an 𝑙 ×𝑁𝑥 matrix that gives the local strain rate-like quantities 𝜂1,⋯ , 𝜂𝑙 in the nonlinear element, such that

𝐃𝑝�̇� =
[

𝜂1,⋯ , 𝜂𝑙
]𝑇 = 𝜼. (61)

The two latter matrices are used to compute the arguments of the nonlinear functional form 𝑓𝑝 given in Equation (59), which can
be an arbitrary function. Summing up multiple nonlinearities of this form allows for the representation of arbitrary structural
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nonlinearities. In particular, if there are 𝑁𝑥 such nonlinearities, and if for 𝑝 = 1,⋯ , 𝑁𝑥, 𝐛𝑝 = 𝐞𝑝 (the 𝑝th canonical basis vector
of ℝ𝑁𝑥), 𝐂𝑝 = 𝐈 and 𝐃𝑝 = 𝐈, the most general representation of a nonlinear vector function is retrieved:

𝐟nl(𝐱, �̇�, 𝜏) =
𝑁𝑥
∑

𝑝=1
𝐛𝑝𝑓𝑝(𝐂𝑝𝐱,𝐃𝑝�̇�, 𝜏) =

𝑁𝑥
∑

𝑝=1
𝐞𝑝𝑓𝑝(𝐱, �̇�, 𝜏) =

⎡

⎢

⎢

⎣

𝑓1(𝑥1,⋯ , 𝑥𝑁𝑥
, �̇�1,⋯ , �̇�𝑁𝑥

, 𝜏)
⋮

𝑓𝑁𝑥
(𝑥1,⋯ , 𝑥𝑁𝑥

, �̇�1,⋯ , �̇�𝑁𝑥
, 𝜏)

⎤

⎥

⎥

⎦

. (62)

This formulation is particularly attractive for localized nonlinearities, for which typically 𝐛𝑝 = 𝐂𝑝 and/or 𝐛𝑝 = 𝐃𝑝 is a Boolean
vector indicating the location of the nonlinear element4.

The focus is put on a single nonlinearity in the sequel, but the generalization to multiple nonlinearities is immediate by
summation. The nonlinear function can be evaluated at each of the 𝑛 time instants, yielding a vector 𝑓𝑝 = 𝑓𝑝(𝝉) of length 𝑛,
which can be related to the sampled nonlinear structural forces by

𝐟𝑝 = 𝑓𝑝 ⊗ 𝐛𝑝. (63)

The derivatives of 𝑓𝑝 with respect to 𝝃 are evaluated for each time instant and gathered in a block diagonal 𝑛×𝑛𝑚 matrix 𝜕𝑓𝑝∕𝜕�̃�,
which is linked to the derivatives of 𝐟𝑝 with respect to �̃� by

𝜕𝐟𝑝
𝜕�̃�

=

(

𝜕𝑓𝑝
𝜕�̃�

𝜕�̃�
𝜕�̃�

)

⊗ 𝐛𝑝 =
(

𝜕𝑓𝑝
𝜕�̃�

(𝐈⊗ 𝐂𝑝)

)

⊗ 𝐛𝑝. (64)

Similarly, for the derivatives of 𝐟𝑝 with respect to ̃̇𝐱,

𝜕𝐟𝑝
𝜕 ̃̇𝐱

=

(

𝜕𝑓𝑝
𝜕�̃�

𝜕�̃�
𝜕�̃�

)

⊗ 𝐛𝑝 =
(

𝜕𝑓𝑝
𝜕�̃�

(𝐈⊗ 𝐃𝑝)

)

⊗ 𝐛𝑝. (65)

Finally, to compute the second derivatives, the Hessian matrix of 𝑓𝑝 is first partitioned as

𝜕2𝑓𝑝
𝜕(𝝃, 𝜼)𝜕(𝝃, 𝜼)

=

⎡

⎢

⎢

⎢

⎢

⎣

𝜕2𝑓𝑝
𝜕𝝃𝜕𝝃

𝜕2𝑓𝑝
𝜕𝝃𝜕𝜼

𝜕2𝑓𝑝
𝜕𝜼𝜕𝝃

𝜕2𝑓𝑝
𝜕𝜼𝜕𝜼

⎤

⎥

⎥

⎥

⎥

⎦

, (66)

and the following row vector quantities are introduced

𝐇𝐱𝐱;𝐲(𝜏) =

(

𝜕2𝑓𝑝
𝜕𝝃𝜕𝝃

𝐂𝑝𝐲(𝜏)
)𝑇

, (67)

𝐇𝐱�̇�;𝐲(𝜏) =

(

𝜕2𝑓𝑝
𝜕𝝃𝜕𝜼

𝐃𝑝𝐲(𝜏)
)𝑇

, (68)

𝐇�̇�𝐱;𝐲(𝜏) =

(

𝜕2𝑓𝑝
𝜕𝜼𝜕𝝃

𝐂𝑝𝐲(𝜏)
)𝑇

, (69)

and

𝐇�̇��̇�;𝐲(𝜏) =

(

𝜕2𝑓𝑝
𝜕𝜼𝜕𝜼

𝐃𝑝𝐲(𝜏)
)𝑇

. (70)

These vectors can then be evaluated for each time instant and gathered in 𝑛×𝑚𝑛 and 𝑛× 𝑙𝑛 block diagonal matrices (similarly
to the first derivatives), denoted with a tilde over the corresponding quantities given in Equations (67)-(70). The required 2-mode
products are finally obtained as

⟨

𝜕2𝐟nl
𝜕�̃�𝜕�̃�

, �̃�
⟩

2
=
(

�̃�𝐱𝐱;𝐲(𝐈⊗ 𝐂𝑝)
)

⊗ 𝐛𝑝, (71)

⟨

𝜕2𝐟nl
𝜕�̃�𝜕 ̃̇𝐱

, �̃�
⟩

2
=
(

�̃�𝐱�̇�;𝐲(𝐈⊗ 𝐂𝑝)
)

⊗ 𝐛𝑝, (72)

⟨

𝜕2𝐟nl
𝜕 ̃̇𝐱𝜕�̃�

, �̃�
⟩

2
=
(

�̃��̇�𝐱;𝐲(𝐈⊗ 𝐃𝑝)
)

⊗ 𝐛𝑝, (73)
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and
⟨

𝜕2𝐟nl
𝜕 ̃̇𝐱𝜕 ̃̇𝐱

, �̃�
⟩

2
=
(

�̃��̇��̇�;𝐲(𝐈⊗ 𝐃𝑝)
)

⊗ 𝐛𝑝. (74)

5 ADDITIONAL NUMERICAL FEATURES

Before illustrating the proposed method with several examples, a few features of the continuation scheme are discussed.

5.1 Stability and bifurcation analysis
The local stability of the solutions obtained by continuation can be assessed as well. Since only the harmonic coefficients 𝐳 are
associated with dynamic governing equations in Equation (4), the stability analysis is identical to the classical one associated
with NFR computations. Hill’s method can thus be used4,29. As for bifurcation analysis, the same remarks hold if 𝜔 is considered
as the bifurcation parameter. It should nonetheless be noted that fold bifurcations are not associated with a vertical tangency of
the locus of extrema with respect to the frequency axis; the component of the tangent vector associated with the frequency can
thus no longer be used as a test function to detect fold bifurcations.

5.2 Computational complexity
Compared to the case of an NFR, we note that the computation of the system characterizing an extremum (Equation (20)) and
its Jacobian (Equation (21)) require the following additional significant operations:

1. the solution of two linear systems (Equations (41) and (42)), although the factorization of only one matrix is required, and

2. the computation of up to six 2-mode vector products (Equations (34)-(36)) during the AFT procedure.

The relative cost of these operations highly depends on the nature of the nonlinearities (in particular, whether they are distributed
or localized, and whether they depend simultaneously on 𝐱 and �̇�), but this cost will always be superior to that of an NFR
evaluation by a near-constant factor (this constant depending on the problem at hand).

6 EXAMPLES

The method is illustrated with three examples: a Helmholtz-Duffing oscillator, a two-DoF structure, and a doubly clamped
beam. In the first two examples, arbitrary units are used. In all examples, 𝑁ℎ = 9 harmonics are used with a number of AFT
points 𝑛 = 64 sufficient to avoid aliasing53,54. This choice was made after a convergence study, showing in all examples a
negligible relative difference in all quantities (less than 10−6) between further increments of the number of harmonics. The
adaptive scheme for the continuation step length proposed in58 was used with an ideal number of correction iterations 𝐾opt = 3,
an ideal hyperangle between tangent and secant predictors 𝜃opt satisfying 1 + cos(𝜃opt) = 1.999, and respective geometric
weighting parameters for the adaptation law 𝛽1 = 0.2 and 𝛽2 = 0.8.

Some results obtained by the extremum tracking approach are compared to phase resonance, in a similar spirit to39. However,
a conventional definition of phase resonance as phase quadrature is used herein. The proposed procedure is also compared to its
single-harmonic counterpart38, which can be obtained from the framework of this paper by selecting specific lines of the matrix
𝐁𝑢 (Equation (9)).

6.1 Helmholtz-Duffing oscillator
A Helmholtz-Duffing oscillator is taken as a first example to illustrate the results. The equation of motion reads

𝑚�̈� + 𝑐�̇� + 𝑘𝑥 + 𝑘2𝑥
2 + 𝑘3𝑥

3 = 𝜆 sin(𝜔𝑡), (75)

with 𝑚 = 1, 𝑐 = 0.1, 𝑘 = 1, 𝑘2 = 1.6, and 𝑘3 = 1. The response of the system is analyzed for five different forcing amplitudes
𝜆 linearly increasing up to 0.15. Figure 1 displays the NFRs of the system under different forcing amplitudes, as well as the
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results of the proposed tracking procedure applied to the primary resonance amplitude. In Figure 1a, one observes that the locus
of resonant peaks corresponds indeed to the place where the NFR amplitude has a horizontal tangent, and that the softening-
hardening character of the oscillator is well captured. In Figure 1b, one can clearly see that this locus traces the maximum of
the NFR amplitude, as expected.

0 0.5 1 1.5 2

0

0.5

1

1.5

2

a

(a)

0 0.05 0.1 0.15

0

0.5

1

1.5

2

a

(b)

Figure 1 Set of NFRs of the Helmholtz-Duffing oscillator ( ) and locus of resonant peaks ( ): projection on the (𝜔, 𝑎) plane (a)
and projection on the (𝜆, 𝑎) plane (b). : stable solution, : unstable solution.

The single-harmonic approach36,38 and phase resonance approach39 yield sensibly similar results to the proposed approach
in this case. They are not displayed in Figure 1 because the curves are indistinguishable at this scale. The agreement between
the different methods can be understood by looking at the NFR features for an external forcing amplitude of 0.15 in Figure 2.
Figure 2a compares the multi-harmonic amplitude (Equation (11)) to the harmonic amplitudes defined by

𝑎0 = |𝑧0|, 𝑎𝑛 =
√

𝑧2s,𝑛 + 𝑧2c,𝑛, 𝑛 ≥ 1, (76)

and shows that the participation of harmonics to the response is non-negligible. However, the multi-harmonic amplitude max-
imum occurs for a frequency which is very close to that of the maximum amplitude of the first harmonic, explaining why the
single-harmonic approach performs well in spite of the multi-harmonic nature of the motion. Figure 2b highlights the closeness
of the amplitude resonance frequency with that of the phase resonance frequency where the phase of the first harmonic, given by

𝜃 = arctan
(−𝑧c,1

𝑧s,1

)

, (77)

reaches 𝜋∕2.

6.2 Two-degree-of-freedom system
A second example is a two-DoF system governed by the following equations:

{

𝑚1�̈�1 + 𝑐1�̇�1 + 𝑐12(�̇�1 − �̇�2) + 𝑘1𝑥1 + 𝑘12(𝑥1 − 𝑥2) + 𝑘3𝑥31 = 𝜆 sin(𝜔𝑡)
𝑚2�̈�2 + 𝑐2�̇�2 + 𝑐12(�̇�2 − �̇�1) + 𝑘2𝑥2 + 𝑘12(𝑥2 − 𝑥1) = 0

, (78)

with 𝑚1 = 𝑚2 = 1, 𝑘1 = 𝑘2 = 1, 𝑘21 = 7 and 𝑘3 = 0.5. The viscous damping coefficients 𝑐1, 𝑐2 and 𝑐12 are adapted to prescribe
a desired modal damping on the two modes of the underlying linear system.

The conservative system is first studied by setting 𝑐1 = 𝑐2 = 𝑐12 = 0 and 𝜆 = 0. We note that the two (undamped) natural
frequencies of the underlying linear system are 𝜔1 = 1 and 𝜔2 = 3.87. Figure 3a presents the frequency-energy plot obtained
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Figure 2 NFR of the Helmholtz-Duffing oscillator at 𝜆 = 0.15: multi-harmonic amplitude ( ), amplitude of the zeroth ( ),
first ( ), second ( ) and third ( ) harmonics (a), and phase of the first harmonic against multi-harmonic amplitude (b). :
stable solution, : unstable solution.
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Figure 3 Frequency-energy plot (a) and backbone curve for the first DoF (b) of the conservative two-DoF system: first mode
( : frequency multiplied by one, : frequency multiplied by three), second mode ( ).

by computing the nonlinear normal modes of the system with the HB-based method described in59. The energy is computed as

𝐸 = 1
2
𝑚1�̇�

2
1(0) +

1
2
𝑚2�̇�

2
2(0) +

1
2
𝑘1𝑥

2
1(0) +

1
2
𝑘2𝑥

2
2(0) +

1
2
𝑘12(𝑥1(0) − 𝑥2(0))2 +

1
4
𝑘3𝑥

4
1(0). (79)

The frequency-energy plot clearly highlights the occurrence of modal interactions. The 3:1 modal interaction occurring around
𝐸 = 10 and signaled by the 𝛼-shaped loop of the first mode is of particular interest here. Figure 3b indicates that such a modal
interaction can be expected when the frequency of excitation reaches 𝜔 ≈ 1.35 and the amplitude of 𝑥1 reaches 𝑎 ≈ 2.4 in the
forced, damped system, as long as the damping is kept low enough to make the results of this analysis relevant.

Moving on to the forced, damped system, a first lightly-damped case is studied, where the modal damping on both modes
is set to 0.5%. The amplitude of the first DoF is considered under forcing amplitudes going up to 𝜆 = 1. Figure 4 depicts the
NFRs of the system, as well as the results of multiple tracking procedures applied to both modes, namely, single-harmonic and
multi-harmonic amplitude extrema tracking, and phase resonance tracking. Stability information and bifurcations are not always
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Figure 4 Set of NFRs of the first DoF of the two-DoF system with 0.5% modal damping ( ), single-amplitude extrema ( ),
multi-amplitude extrema ( ) and phase resonance ( ).

displayed throughout the discussion of this example given the complexity of the curves. All methods agree almost perfectly for
the second mode. However, the amplitude extrema tracking procedures do not appear to follow the primary resonance of the
first mode in this case, whereas the phase resonance tracking procedure does.

1.51.5
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Figure 5 Set of NFRs of the first DoF of the two-DoF system with 0.5% modal damping ( : main branch, : isola), single-
harmonic amplitude extrema ( ) and multi-harmonic amplitude extrema ( ), close-up on the modal interaction (a) and NFR
at 𝜆 = 1: multi-harmonic amplitude ( ), amplitude of the first ( ), third ( ) and fifth ( ) harmonics (b). : stable solution,

: unstable solution.

A close-up on the NFRs around the extrema tracking curves is shown in Figure 5a. The multi-harmonic version proposed
herein tracks a local maximum that occurs on a small loop, whereas the single-harmonic tracking procedure does not appear
to localize any amplitude extremum accurately. This situation can be better understood by looking at the harmonics for, e.g.,
𝜆 = 1 in Figure 5b. One can see that the amplitude of the first harmonic drops in favor of the third one, which is a signature
of a 3:1 superharmonic resonance, in this case of the second mode. This drop causes the single-harmonic tracking procedure
to be stuck before the superharmonic resonance, at the local maximum of the first harmonic amplitude. The multi-harmonic
tracking stays on the amplitude peak associated with the superharmonic resonance. The two procedures switch from the primary
resonance of the first mode to the superharmonic resonance of the second mode when these two resonances meet, i.e., at the
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internal resonance. This example serves as a reminder that the proposed procedures are merely able to track local extrema of
the amplitude. Of course, when restarted on the main peak beyond the internal resonance, these two procedures are also able to
track the amplitude maxima of the first mode.

0
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2

2

a

3

1
54320 1

Figure 6 Set of NFRs of the first DoF of the two-DoF system with 7.5% modal damping ( ), single-harmonic amplitude
extrema ( ), multi-harmonic amplitude extrema ( ) and phase resonance ( ).

The effect of the internal resonance can be mitigated when the structural damping is increased. Figure 6 presents the results
of the tracking procedures when the modal damping on both modes is increased to 7.5%. In this case, while single-harmonic
tracking is not able to overcome the internal resonance, the proposed multi-harmonic version does, and accurately tracks the
maxima associated with the first mode beyond the internal resonance. It can also be observed that the phase resonance becomes
less accurate to characterize the amplitude resonance, given the moderate amount of damping in the structure.
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Figure 7 Set of NFRs of the first DoF of the two-DoF system with 0.5% modal damping and a nonlinear cubic damping element
( ), single-harmonic amplitude extrema ( ) and multi-harmonic amplitude extrema ( ).

The influence of the superharmonic resonance can also be mitigated in the presence of nonlinear damping. When a cubic
damping element is added between the two DoFs, i.e., when Equation (78) is replaced by

{

𝑚1�̈�1 + 𝑐1�̇�1 + 𝑐12(�̇�1 − �̇�2) + 𝑐3(�̇�1 − �̇�2)3 + 𝑘1𝑥1 + 𝑘12(𝑥1 − 𝑥2) + 𝑘3𝑥31 = 𝜆 sin(𝜔𝑡)
𝑚2�̈�2 + 𝑐2�̇�2 + 𝑐12(�̇�2 − �̇�1) + 𝑐3(�̇�2 − �̇�1)3 + 𝑘2𝑥2 + 𝑘12(𝑥2 − 𝑥1) = 0

, (80)
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with 𝑐3 = 0.0025, Figure 7 shows that the proposed multi-harmonic tracking procedure is once again able to track the amplitude
maxima associated with the first mode, whereas the single-harmonic one stays locked onto the superharmonic resonance. The
shape of this curve is relatively complex due to the dynamics exhibited by the structure at the modal interaction. It can show up to
seven simultaneous extrema for a given forcing level. An example is given in Figure 8a with the NFR of the system at 𝜆 = 1.05.
In addition, the method also reveals the presence of a peculiar isola due to the 3:1 superharmonic resonance of the second mode,
inside the main resonance peak of the first mode, that can be observed in Figure 8b when the system is forced with 𝜆 = 1.1. We
note that this internal isola also exists without nonlinear damping, but is then not captured by the proposed tracking method.
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Figure 8 NFRs of the first DoF of the two-DoF system with 0.5% modal damping and a nonlinear cubic damping element ( )
at 𝜆 = 1.05 (a) and 𝜆 = 1.1 (b) and extrema found by the tracking procedure (×). : stable solution, : unstable solution.
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Figure 9 Set of NFRs of the displacement (a) and acceleration (b) associated with the second DoF of the two-DoF system with
0.5% modal damping ( ), multi-harmonic displacement extrema ( ), multi-harmonic acceleration extrema ( ) and phase
resonance ( ).

The local nature of the proposed method is not always an issue depending on the objective at hand. For instance, when the
amplitude extrema of the second DoF are followed starting from the second mode, the proposed method yields the results
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displayed in Figure 9a. The NFR shows a peculiar shape, where the peak of the second mode bends and eventually folds and
decreases in amplitude. This behavior is due to the localization of the second mode on the first DoF as the forcing amplitude
increases. This creates an amplitude maximum, whose amplitude is higher than the tip of the peak indicated by the phase
resonance. The tracking procedure is able to accurately follow this maximum which, if one is interested in the worst-case
amplitude around the second mode resonance, is a relevant feature to track.

The folded peak does not appear in the acceleration of the second DoF. Figure 9b then shows that the proposed tracking
method (with 𝑟 = 2 in Equation (8)) is able to follow the locus of acceleration peaks, which is much closer to phase resonance.
This example also shows that displacement and acceleration amplitude extrema may not be close in all cases.

6.3 Doubly clamped beam
The last example is a doubly clamped steel beam with a rectangular cross section excited at one fifth of its span and featuring a
distributed geometrical nonlinearity. The dynamics of the bare beam are first analyzed, and a nonlinear tuned vibration absorber
(NLTVA)10 is then added to the system in an attempt to reduce the vibrations of the system.

6.3.1 Model
The beam is modeled using Euler-Bernoulli kinematics. In the considered examples, the beam features transversal displacements
of the order of its thickness; a von Kàrmàn formulation was thus adopted to express the nonlinear strain. Figure 10a depicts the
beam, and its geometrical and material characteristics are gathered in Table 1.

𝑚𝑎
𝑘𝑎 𝑐𝑎 𝑘3,𝑎𝑣𝜆 sin(𝜔𝑡)

𝑥0
𝑥𝑎

(a)

𝑣𝑒,1 𝑣𝑒,2𝑓𝑒,2 −𝑓𝑒,2

𝑢𝑒,1 𝑢𝑒,2
𝑓𝑒,1 −𝑓𝑒,1

𝜃𝑒,1𝑓𝑒,3

𝜃𝑒,2 𝑓𝑒,4

(b)

Figure 10 Schematic representation of the doubly clamped beam (a) and of a beam element (b); quantities in blue and red denote
generalized DoFs and loadings, respectively.

Young’s modulus Density Length Width Thickness 𝑥0 𝑥𝑎
210 GPa 7800 kg/m3 500 mm 20 mm 1 mm 100 mm 400 mm

Table 1 Material and geometrical parameters of the doubly clamped beam.

A finite element formalism as proposed in60 was used to model the beam. Each element has six DoFs (the axial and transversal
displacements and the rotations of both nodes), as depicted in Figure 10b, which are assumed to be identified from the global
DoFs with a localization (Boolean) matrix 𝐋𝑒, i.e.,

[

𝑢𝑒,1 𝑣𝑒,1 𝜃𝑒,1 𝑢𝑒,2 𝑣𝑒,2 𝜃𝑒,2
]𝑇 = 𝐋𝑒𝐱. (81)

Linear and cubic shape functions are adopted for the axial and transversal displacements, respectively. To each element are
associated four nonlinear forces, representing the axial and transversal forces across the element, and the two moments at the
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nodes, as shown in Figure 10b. The quantities for the formalism of Equation (59) for the nonlinear forces for each element are

[

𝐛𝑒,1 𝐛𝑒,2 𝐛𝑒,3 𝐛𝑒,4
]

= 𝐋𝑇
𝑒

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0
0 1 0 0
−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐂𝑒,𝑖 = 𝐋𝑒, 𝑖 = 1, 2, 3, 4. (82)

The expressions of the nonlinear forces are given in60 (Equation (A.16), lines 1, 2, 3 and 6 therein). The Jacobian and the two-
mode vector products of the Hessian were symbolically computed in Wolfram Mathematica. The resulting expressions were
then exported to an in-home MATLAB code. Owing to the rather long character of these expressions, they are not reported here.

The beam was discretized with 10 elements, thereby yielding a system with 27 DoFs (accounting for the boundary conditions)
for the bare beam, plus one for the absorber. Proportional modal damping of 0.5% for the first two bending modes was added to
the structure.

6.3.2 Uncontrolled beam response
Figure 11a depicts the NFR of the transversal DoF collocated with the forcing evaluated at 𝜆 = 0.02 N, as well as the results from
the phase resonance and extremum tracking procedures. Both approaches yield indistinguishably accurate results to characterize
the amplitude resonance of the structure. For a better assessment of the accuracy, Figure 11b compares the phase resonance and
extremum tracking approaches through the relative error of the former with respect to the latter. In this case, phase resonance
appears to be an excellent substitute for extremum tracking, given its overall small error of the order of 0.025%. The small dip
in the error around 𝜆 = 0.01 N occurs near a weak 5:1 modal interaction of the first and third bending modes.
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Figure 11 NFR of the doubly clamped beam at 𝜆 = 0.02 N ( ), phase resonance ( ) and extremum tracking ( ) (a); relative
error of the phase resonance amplitude 𝑥𝑃𝑅 with respect to the extremum 𝑥𝐸𝑇 (b).

To illustrate the merit of the different tracking approaches, Table 2 gathers their computational times. Similarly to30, all CPU
times are normalized with respect to the average CPU time for a step of the NFR computation. For a fair assessment of the benefits
of the proposed AFT approach for second derivatives, a comparison is also made where the derivatives of 𝑔𝑝 are evaluated using
finite differences (whereas the 𝑁𝑧 first lines of Equation (21) are computed with the standard analytical sensitivity formulas).
To do so, Equation (46) is used, but the derivatives of �̃� are evaluated using forward finite differences, similarly to what was
done in29.

Phase resonance appears to be largely advantageous in this case, in accordance with the rationale behind39. Not only is one
continuation step almost as cheap to compute as an NFR computation, but the method can also take large steps within the
adaptive scheme. The extremum tracking procedure is more computationally expensive, owing to the need for second derivative
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Method NFR PR ET (AFT) ET (FD)
Normalized average CPU time per step 1 1.17 5.68 349.29

Continuation steps 195 66 100 104
Total normalized CPU time 195 77.53 567.78 36326.59

Table 2 Computational cost of the different methods used to compute the response of the doubly clamped beam (PR stands for
phase resonance, ET for extrema tracking, and FD for finite differences).

evaluations. Moreover, the adaptation scheme imposes smaller steps. These two aspects result in a total computational time about
seven times larger than the phase resonance approach for this example. Nevertheless, substantial savings are obtained thanks to
the proposed AFT procedure since the approach using finite differences takes a much longer time per step (by a factor of about
60).

6.3.3 Controlled beam response
Phase resonance may not always be suitable to characterize amplitude resonances. As an illustration, a case where the beam
is equipped with an NLTVA with a cubic spring to mitigate its vibration amplitude around the first resonance is considered10.
The mass of the absorber was selected to be 5% of that of its host. The parameters of the absorber were then tuned following
the approach in61 (i.e., the linear parameters were first optimized numerically, and the coefficient of the cubic spring was tuned
based on a perturbation method). The resulting design features two peaks of equal amplitude in linear regimes of motion, much
lower that of the uncontrolled host’s resonance. The nonlinearity of the absorber aims to enforce this property for nonlinear
regimes of motion as well10.

As shall be shown, the direct application of the approach in61 improves performance, albeit not optimally in nonlinear regimes
of motion. This comes from the presence of quadratic nonlinearities and in particular from the effect of mid-plane stretching on
bending dynamics. The presence of quadratic nonlinearities invalidates the assumption of61 that there are only odd nonlinearities
in the system, explaining why a direct application of the method fails to provide an optimal design.

It is nonetheless possible to obtain an optimal tuning if the membrane effects are correctly accounted for through an effective
value of the cubic nonlinear bending stiffness. To obtain this, the implicit condensation method was used62. The first four
undamped modes of the controlled structure (which are all bending modes) were retained. Associated external static modal
loadings were then applied to the structure. The resulting nonlinear forces were fitted with quadratic and cubic monomials
in the retained modal coordinates. The external modal loadings amplitudes were selected so as to result in a maximum static
displacement of the order of the thickness of the beam. Because the beam is straight, the effective quadratic nonlinearities should
theoretically be zero and were indeed negligible in front of the effective cubic ones. This allowed to construct a new expression of
the nonlinear forces containing only effective cubic nonlinearities wherein the nonlinear membrane strain effects were correctly
accounted for. This effective nonlinearity was then used to tune the absorber based on the method in61. The resulting parameters
are given in Table 3.

𝑚𝑎 𝑐𝑎 𝑘𝑎 𝑘3,𝑎
0.0039 kg 0.09 kg/s 68.3503 N/m 1.3764×107 N/m3

Table 3 Parameters of the NLTVA.

Figure 12 depicts the NFR of the controlled beam in quasi-linear (𝜆 = 0.03 N) and strongly nonlinear (𝜆 = 0.15 N) regimes
of motion. As expected, the former features two peaks of (almost) equal amplitude. In the strongly nonlinear regime of motion,
the merging of an isola with the rightmost peak leads to a substantial increase of the maximum amplitude, as can be seen in
Figure 12a. Figure 12b shows that no specific phase relation can be used to approximate the loci of resonant peaks. This result
is to be expected, given the close frequencies and high modal damping of the two resonances of the controlled system.

Figure 13a presents the NFRs of the system at multiple forcing amplitudes, up to 𝜆 = 0.15, along with the results of the
proposed tracking method. Once again, the peaks are accurately tracked, which gives a direct assessment of the absorber’s
performance. The birth and merging with the rightmost peak of the isola is also highlighted by the peaks locus.
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Figure 12 Normalized NFRs of the controlled beam at 𝜆 = 0.03 ( : NFR, ×: amplitude peaks) and 𝜆 = 0.15 ( : NFR, ×:
amplitude peaks): normalized multi-harmonic amplitude (a), and phase of the first harmonic (b).
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Figure 13 Set of NFRs of the controlled beam ( ) and multi-amplitude extrema ( ) (a) and loci of extrema of different
designs: linear absorber ( ), optimal NLTVA ( ) and NLTVA tuned ignoring nonlinear membrane effects ( ) (b).

Figure 13b presents the tracked extrema in the (𝜆, 𝑎) plane. The optimal design is compared to two other cases, namely a linear
absorber (𝑘3,𝑎=0) and a NLTVA tuned ignoring the nonlinear membrane effects on bending (𝑘3,𝑎 = 1.9127 × 107 N/m3). The
proposed method allows for a quick performance assessment of different designs. It can be seen that the optimal design leads
to the lowest maximum amplitude up to 𝜆 ≈ 0.1 N, and this (near-)optimal character can be recognized by the (near-)tangency
of the two branches of the peak locus at 𝜆 = 0 N, indicating that the amplitudes of the peaks remain (nearly) equal in spite of
the nonlinearity of the host10,61. The dynamics of the system around the controlled resonance qualitatively resemble those of a
single-DoF host. More detailed analyses of the dynamics of this system can be found in10,32,33.

7 CONCLUSION

This work proposed a numerical method to track the amplitude extrema of nonlinear frequency responses. Semi-analytical
procedures were reviewed to compute the maximum amplitude of a multi-harmonic Fourier series. These results were then
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incorporated into a continuation procedure tracking the amplitude extrema. Combined with the use of bordered matrices and an
alternating frequency-time procedure, the proposed method was shown to be accurate and efficient through various examples.

Compared with its state-of-the-art counterparts, namely, single-harmonic amplitude extrema tracking36,38 and phase reso-
nance tracking39, the proposed method is able to follow accurately the amplitude extrema of the multi-harmonic balance method
results. Phase resonance is an excellent method to characterize the primary resonances of lightly-damped systems, but can be
less accurate when applied to systems with moderate damping and/or closely-spaced resonant frequencies. The proposed method
comes in as an adequate, albeit more computationally expensive substitute. It can also detect isolas similarly to fold bifurcation
tracking procedures29,33 for a similar computational cost while not requiring a fold bifurcation to initiate the continuation.

The proposed AFT procedure for second derivatives may also find direct applications for bifurcation tracking29,30. Its two
main limitations come from smoothness requirements on the functional forms that are necessary to compute second derivatives
and its intrusive character. Although a large class of commonly-used nonlinearities do not respect the smoothness conditions,
this issue can be circumvented with regularization. Alternatively, the ideas proposed in47,63 could be extended to/exploited for
the case of second derivatives. The intrusive character of the method will generally prevent its use with commercial codes, but
this issue could be mitigated using reduction or hyper-reduction methods64.

The method could also be generalized in multiple ways. For instance, the extrema of more general quantities than DoFs can be
tracked (such as nonlinear forces or energy quantities), as long as their Fourier series (and sensitivities) are available. Considering
a continuation parameter 𝜆 other than the external forcing could also constitute an interesting tool to evaluate different designs.
Finally, the ideas developed in this manuscript could be adapted for other methods than HB. Shooting-based procedures could
rely on the integration of second-order variational equations48 (or some adaptation of it), whereas collocation-based procedures
would likely follow similar developments as the HB-based method.
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APPENDIX

A ALTERNATIVE FORMULATION FOR EXTREMUM TRACKING

This appendix presents an alternative formulation for an extremum tracking procedure based on the method proposed by
Petrov36. It will be shown that this formulation leads to ill numerical conditioning when the extrema are close to fold bifurcations.

A.1 Extrema tracking using a horizontal tangent equation
An extremum of the NFR amplitude is simply a point whose total derivative of the amplitude with respect to 𝜔 (with fixed 𝜆) is
zero. Hence, the following necessary condition must be met to characterize a peak of the NFR

𝑑𝑎
𝑑𝜔

= 𝑑
𝑑𝜔

(

|

|

𝐐(𝜏max(𝐳))𝐁𝑢𝐳||
)

= sign
(

𝐐(𝜏max(𝐳))𝐁𝑢𝐳
)

𝐐(𝜏max(𝐳))𝐁𝑢
𝑑𝐳
𝑑𝜔

= 0, (A1)
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where Equation (13) has been used. This condition features the total derivative of 𝐳 with respect to 𝜔 (with fixed 𝜆), which is
obtained by differentiating Equation (4), yielding

(

𝐀(𝜔) + 𝜕𝐛
𝜕𝐳

) 𝑑𝐳
𝑑𝜔

+
𝜕𝐀(𝜔)
𝜕𝜔

𝐳 + 𝜕𝐛
𝜕𝜔

= 𝟎, (A2)

that is, if 𝐀(𝜔) + 𝜕𝐛∕𝜕𝐳 is nonsingular,
𝑑𝐳
𝑑𝜔

∶= 𝐳𝜔 = −
(

𝐀(𝜔) + 𝜕𝐛
𝜕𝐳

)−1 (𝜕𝐀(𝜔)
𝜕𝜔

𝐳 + 𝜕𝐛
𝜕𝜔

)

. (A3)

The minimally augmented set of equations that characterize a peak of the NFR amplitude is thus given by combining Equation (4)
with the horizontal tangent requirement in Equation (A1) as

{

𝐀(𝜔)𝐳 + 𝐛(𝜔, 𝐳) − 𝜆𝐛ext = 𝟎
sign

(

𝐐(𝜏max(𝐳))𝐁𝑢𝐳
)

𝐐(𝜏max(𝐳))𝐁𝑢𝐳𝜔(𝐳, 𝜔) = 0
. (A4)

This set of 𝑁𝑧 + 1 equations is to be solved for 𝑁𝑧 + 2 unknowns (𝐳, 𝜔 and 𝜆). A classical continuation procedure can be used.

A.2 Singularity issues
𝐳𝜔 and its derivatives can be obtained using Equation (A3) provided that the matrix 𝐀(𝜔) + 𝜕𝐛∕𝜕𝐳 is not singular. Two notable
exceptions to this requirement are fold and branch point bifurcations.

At a fold bifurcation, the system in Equation (A2) does not have a solution because3

𝜕𝐀(𝜔)
𝜕𝜔

𝐳 + 𝜕𝐛
𝜕𝜔

∉ range
(

𝐀(𝜔) + 𝜕𝐛
𝜕𝐳

)

. (A5)

This issue comes from the fact that a point on the (𝜔,𝑎) graph of the NFR should at the same time feature a vertical and horizontal
tangent. The only cases which somewhat conciliate these conflicting requirements occur when the tangent is undefined, e.g.,
when the curve forms a cusp, or at the birth of an isola. NFR curves in situations close to these degenerate cases feature large
variations of the tangent orientation for small variations of the parameters. When the extrema are close to fold bifurcations,
the method proposed in36 is thus expected to be ill-conditioned. We note that fold bifurcations can occur close to amplitude
maxima, especially in lightly-damped geometrically nonlinear structures, which may explain why this method was found to be
rather inefficient in39.

A.3 Illustration with the NLTVA
The example of an NLTVA controlling a Duffing oscillator with a mass ratio of 5% is taken from10. A figure in appearance in
all points similar to Figure 13 can be obtained with the multi-harmonic generalization of36. However, looking closely at the
steps taken by the continuation procedure, a discrepancy between the two formulations can be observed. Figure A1a plots the
evolution of 𝜆 (the forcing amplitude) of the extremum tracking procedure when the rightmost peak is tracked and compares it
for the different formulations. The method based on the formulation of38 reaches the final value (𝜆 = 0.25) in about four times
less continuation iterations than that of36.

The continuation procedures were run using finite differences to compute the derivatives as well. As can be seen in Figure A1a,
while there is no observable change for the continuation procedure with finite differences for the formulation of38, there is a
clear difference for that of36. The continuation procedure with finite differences does not even terminate at the correct final value
of 𝜆 because the adaptive continuation step becomes too small, which results in an abortion of the procedure when it reaches
the maximum number of continuation steps (in this case 500, although the last 200 steps were not plotted because they feature
no significant evolution).

Figure A1b shows the condition number of the tangent prediction matrix used in the predictor-corrector scheme. This con-
firms that the stagnation of the continuation procedure occurs when the system is ill-conditioned. We note that this stagnation
phenomenon happens close to the extremal values of 𝜆, which correspond to the merging and birth of the isola. In these situ-
ations, the NFR features a cusp and reduces to a single point, respectively, thereby corresponding to the situations described
previously. This example thus illustrates the ill conditioning of a method based on that of36 close to fold bifurcations, and the
more robust character of that of38.
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Figure A1 Evolution of the continuation procedure using the formulation of38 with analytical derivatives ( ) or finite dif-
ferences ( ) and the formulation of36 with analytical derivatives ( ) or finite differences ( ): forcing amplitude (a) and
condition number of the tangent prediction matrix (b).

B DIFFERENTIABILITY OF THE AMPLITUDE OF FOURIER SERIES WITH ODD TERMS

A Fourier series with only odd terms can be written as

𝑢(𝜏) =
⌞(𝑁ℎ+1)∕2⌟

∑

𝑘=1

(

𝑧s,2𝑘−1 sin((2𝑘 − 1)𝜏) + 𝑧c,2𝑘−1 cos((2𝑘 − 1)𝜏)
)

. (B6)

Since in this case 𝑢(𝜏) = −𝑢(𝜏 +𝜋), if a value 𝜏max is found for an extremum, another amplitude extremum necessarily occurs
at 𝜏max + 𝜋. Odd Fourier series thus always have at least two amplitude extrema. It is possible to show that this multiplicity of
extrema is an issue for the derivatives of 𝑎 with respect to the even harmonic coefficients, but not for the odd ones.

To show this, we investigate if the derivatives differ when they are evaluated at 𝜏max,1 or 𝜏max,2 = 𝜏max,1 + 𝜋. We first note that
since the second time derivative of 𝑢 is also an odd Fourier series, 𝑢′′(𝜏max,1) = −𝑢′′(𝜏max,1 + 𝜋) = −𝑢′′(𝜏max,2).

Using Equation (57), the derivative of 𝜏max with respect to an odd cosine coefficient
𝜕𝜏max,1

𝜕𝑧c,2𝑘−1
=

(2𝑘 − 1) sin((2𝑘 − 1)𝜏max,1)
𝑢′′(𝜏max,1)

=
−(2𝑘 − 1) sin((2𝑘 − 1)𝜏max,2)

−𝑢′′(𝜏max,2)
=

𝜕𝜏max,2

𝜕𝑧c,2𝑘−1
(B7)

is identical whether it is evaluated at 𝜏max,1 or 𝜏max,2. The same property holds for a derivative with respect to an odd sine
coefficient. However, the derivatives with respect to an even cosine coefficient are

𝜕𝜏max,1

𝜕𝑧c,2𝑘
=

2𝑘 sin(2𝑘𝜏max,1)
𝑢′′(𝜏max,1)

=
2𝑘 sin(2𝑘𝜏max,2)
−𝑢′′(𝜏max,2)

= −
𝜕𝜏max,2

𝜕𝑧c,2𝑘
. (B8)

This non-uniqueness of the derivative of 𝜏max results from the nonsmooth character of the amplitude. The same issue occurs
for derivatives with respect to an even sine coefficient. The converse can also be shown, that even Fourier series are nonsmooth
when derivatives with respect to odd harmonic coefficients are considered, but is not detailed here.

As a simple illustration, the amplitude of 𝑢(𝜏) = 𝑧c,0 + 𝑧c,1 cos(𝜏) is 𝑎 = |𝑧c,0|+ |𝑧c,1|, which is nonsmooth at 𝑧c,0 = 0 (and at
𝑧c,1 = 0). However, when 𝑧c,0 ≠ 0 and 𝑧c,1 ≠ 0, there is only one amplitude maximum for the Fourier series, and the amplitude
is a smooth function of its arguments.
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