QGIS 12

Utilisation d'images Sentinel-2 dans QGIS

Novembre 2024

TABLE DES MATIERES

1.	INTR	ODUCTION	1
2.	PREF	PARATION DES DONNEES SATELLITAIRES	2
2	2.1.	PREPARATION A L'ACCES D'IMAGES SENTINEL-2	2
2	2.2.	RECHERCHE D'IMAGES SENTINEL-2	2
2	2.3.	CHARGEMENT D'IMAGES SENTINEL-2 DANS QGIS	5
2	2.4.	CREATION D'UN RASTER VIRTUEL	6

1. Introduction

- Cet exercice constitue une introduction à la préparation et à l'utilisation d'images satellitaires dans QGIS.
- L'exercice met plus particulièrement l'accent sur la préparation et l'utilisation d'images satellitaires de type Sentinel-2, provenant du programme Copernicus de l'Union Européenne. La mission Sentinel-2 a été conçue pour fournir des images de la surface terrestre à des fins de suivi de l'environnement, de gestion des ressources naturelles et d'observation des changements liés au climat (satellites Sentinel-2A et Sentinel-2B).
- Les données utilisées pour cet exercice sont rassemblées dans le répertoire « DATA_12 ».
- La préparation de données satellitaires en vue de leur utilisation dans un SIG comporte notamment les manipulations suivantes :
 - Extraction des fichiers fournis par le producteur d'images et assemblage (empilement) de ceux-ci dans un fichier unique (raster multi-bandes).
 - Découpage d'une scène aux limites d'une zone d'étude.
 - Réalisation d'une composition colorée et accentuation des contrastes (étirement).

2. Préparation des données satellitaires

2.1. Préparation à l'accès d'images Sentinel-2

• Afficher les couches **rdc_villes_wgs84.shp** et **tile_s2.shp**. Cette dernière décrit le découpage des images Sentinel-2 en tuile de 100 km x 100 km. Réaliser un zoom sur la région de Kisangani, localisée en République Démocratique du Congo et couverte par la tuile 35NKA.

_			_		_
	34NHG	35NKB		35NLB	
+					
	34NHF	Kisangani 35NKA		35NLA	
1					

• La tuile de référence pour Kisangani a donc la référence 35NKA.

2.2. Recherche d'images Sentinel-2

- Les images Sentinel-2 sont téléchargeables sur le site <u>https://dataspace.copernicus.eu/</u>.
 Cliquer sur le bouton « Login » en haut à droite de la page.
- Il est nécessaire de s'enregistrer pour pouvoir télécharger les données. Utiliser pour cela le bouton « Register » et compléter le « Register form ». Dans la section « Type of user », sélectionner l'option « Research & education organisation ». Accepter les termes et conditions.
- Une fois votre enregistrement validé, vous pouvez ouvrir votre boîte mail et cliquer sur « Verify email adress ».
- Cliquer sur la section « Explore data », puis sur « Go to browser ». Une nouvelle page web s'affiche.

 Déplacer la carte sur la région de Kisangani (Province Tshopo dans le Centre-Nord de la République Démocratique du Congo).

Cliquer ensuite sur le bouton puis sur le bouton pour activer la fonction de délimitation de la zone de recherche d'image. Délimiter cette zone comme dans la figure ci-dessous (rectangle bleu).

 Cliquer ensuite sur « Search » et définir les critères de recherche des images souhaitées. Dans le cas présent, nous recherchons une image Sentinel-2 acquise en 2017.

SEARCH CRITERIA:					
Product name					
To apply a location filter, please define an AOI/a POI					
DATA SOURCES:		TIME RANGE:			
SENTINEL-1	Filters \rightarrow	From:			
SENTINEL-2	Filters \rightarrow	< 2017-03-04	>	hh 00	\$
✓ MSI		Until:			
L1C L2A		< 2017-03-06	>	hh 23	٥
——— 100%		Filter by months			
Auxiliary Data File			Sear	ch	

- Une fois cette requête définie, lancer la recherche en cliquant sur le bouton Search .
- Dans la liste des images correspondant aux critères de recherche, localiser l'image acquise le 5 mars 2017 et correspondant à la tuile 35NKA. Les informations relatives à l'image sont reprises dans l'onglet ¹.

🔹 🔞 🗖 📔 Explore data Copernicus Data Sj: 🗙 C Copernicu	us Browser × +		- @ ×
\leftarrow C ($$ https://browser.dataspace.copernicus.eu/?zoom=	7⪫=0.71775&lng=25.58716&themeId=DEFAULT-THEME&visualiza	tionUrl=U2 aぁ ☆ 🗋	G C= 🍫
	vakona	Q Go to Place	♦ i
VISUALIZE SEARCH	Nord-Ubangi	🖞 11629.95 km² 🗙 🛟 🔟	upper uere
Go to search Showing 18 results	Bura	Isiro	8
S2A_MSIL1C_20170305T083001_N0500_R021_T35NKA _20230914T140343.SAFE	Mongala		••••••••••••••••••••••••••••••••••••••
Mission: SENTINEL-2 Instrument: MSI Size: 722MB Sensing time: 2017-03-05T08:30:01.026000Z	Bumba		ø
Visualize SENTINEL-2 MSI S2MSI1C			Ituri
S2A_MSIL1C_20170305T083001_N0204_R021_T35MKV _20170305T084558.SAFE	Basoko		-0
Mission: SENTINEL-2 Instrument: MSI Sensing time: 2017-03-05T08:30:01.026000Z	Toppo	• J	Ben E
Visualize SENTINEL-2 MSI S2MSI1C	Kisamcani	1	Butembo 3D
S2A_MSIL2A_20170305T083001_N0500_R021_T35MKV 20230915T123848.SAFE			
Mission: SENTINEL-2 Instrument: MSI Size: 1042MB Sensing time: 2017-03-05T08:30:01.026000Z	the first of the		[<u>ad</u>
Visualize SENTINEL-2 MSI S2MSI2A 1 🗘 🕀 📑 📩	Tshuapa	Lubutu	North Kivu
S2A_MSIL2A_20170305T083001_N0500_R021_T35NKA 20230915T123848.SAFE	and the second	hart	i fini
Mission: SENTINEL-2 Instrument: MSI Size: 1054MB Sensing time: 2017-03-05708:30:01 0260007		La Z / J	Musanze
Visualize SENTINEL-2 MSI S2MSI2A () 🕀 📑 📩			Gisenyi Rwand
S2A_MSIL1C_20170305T083001_N0204_R021_T34MHE			Southern Ro
Coernicus Cesa About Support		Int 4 OF4 Int	Bukavu Rwi
v1.13.0	Leaflet © OpenStreetMap contributors - Disclaimer	Lat: -1.051, Lng: 2	23.687 100 km

⚠

Ne pas télécharger l'image. Elle est déjà présente dans le jeu de données pour la suite de l'exercice (le bouton $\stackrel{l}{\checkmark}$ permet le téléchargement de l'image).

2.3. Chargement d'images Sentinel-2 dans QGIS

• Le jeu de données de l'exercice contient un dossier baptisé :

S2A_MSIL1C_20170305T083001_N0204_R021_T35NKA_20170305T084558.SAFE

- Ce dossier contient l'ensemble des bandes spectrales de la tuile Sentinel-2 pour la date du 5 mars 2017. Le chemin d'accès est : GRANULE\L1C_T35NKA_A008884_20170305T084558\IMG_DATA. Dans ce dossier, vous trouverez les images pour chaque bande spectrale de la tuile spécifiée.
- Les fichiers sont au format .jp2 (JPEG 2000), qui est un format de compression adapté aux images géospatiales. Les numéros des bandes apparaissent comme suffixe dans les noms des fichiers (par exemple, _B10 pour la bande 10).

Explorateur	ØX
→ ☐ GRANULE	
L1C_T35NKA_A008884_20170305T084558	
AUX_DATA	
🔻 🛅 IMG_DATA	
T35NKA_20170305T083001_B01.jp2	
T35NKA_20170305T083001_B02.jp2	
T35NKA_20170305T083001_B03.jp2	
T35NKA_20170305T083001_B04.jp2	
T35NKA_20170305T083001_B05.jp2	
T35NKA_20170305T083001_B06.jp2	
T35NKA_20170305T083001_B07.jp2	
T35NKA_20170305T083001_B08.jp2	
T35NKA_20170305T083001_B09.jp2	
T35NKA_20170305T083001_B10.jp2	
T35NKA_20170305T083001_B11.jp2	
T35NKA_20170305T083001_B12.jp2	
T35NKA_20170305T083001_B8A.jp2	
T35NKA_20170305T083001_TCI.jp2	
► C QI DATA	-
4	P

- Le fichier avec le suffixe _TCI est une image en couleur naturelle (ou *True Color Image*). Cette composition colorée est créée à partir des bandes 2, 3 et 4 de Sentinel-2, correspondant aux longueurs d'onde du bleu, vert et rouge, respectivement (RGB : 432).
- Cette image _TCI permet de visualiser le paysage tel qu'il apparaît à l'œil humain, en utilisant une combinaison des bandes du spectre visible.

Bande	Nom	Plage de longueurs d'onde (nm)
1	UVA	433-453
2	Blue	490-510
3	Green	560-570
4	Red	665-675
5	Red Edge 1	705-715
6	Red Edge 2	740-760
7	Red Edge 3	775-795
8	Near Infrared	840-880
8A	Near Infrared 1	855-875
9	Water Vapor	935-955
10	Cirrus	1360-1390
11	Short-Wave Infrared	1610-1680
12	Short-Wave Infrared	2190-2260

2.4. Création d'un raster virtuel

Utiliser les données Sentinel-2 pour produire une composition colorée multispectrale « infra-rouge fausses couleurs » reprenant les bandes 8, 4 et 3 de Sentinel-2 (RGB : 843). Produire cette composition colorée sous la forme d'un raster virtuel.

• Afficher les bandes 8, 4 et 3 de l'images Sentinel-2 au départ du dossier de l'exercice.

• Afficher l'interface de l'outil « Construire un raster virtuel » (librairie GDAL) de la boîte à outils de traitement.

	Journal			
nput layers				
3 entrées sélect	ionnées			<u> </u>
Resolution				
Average				-
✓ Place each ir	nput file into a separate band —	2°		
Allow project	tion difference	-		
Paramètres	s avancés			
/irtuel				
C:/geomatique/	QGIS_12_image_satellite/result_12	/S2_kisangani.v	/rt 📢	×
✓ Ouvrir le fich	ier en sortie après l'exécution de l'	algorithme		
Console GDAL/O	GR			
7428c02b17904	;/Users/Asus/AppData/Local/Temp, 579b1921e5742ef2f69/buildvrtInpu	tFiles.txt C:/geo	omatique/	
	0%	†		Annul
Avancé 🔻 🖪	xécuter comme processus de lot	Exécuter	Fermer	Aide
Construire ur	n raster virtuel			\times
			1b°	
Toput lavors	Journal			
				_
✓ T35NKA_20	0170305T083001_B03 [EPSG:3263	35]	Sélectionner to	ut
J T35NKA 20		2.21		
 ✓ T35NKA_20 ✓ T35NKA_20 	0170305T083001_B08 [EPSG:3263	35]	Annuler la sélect	ion
 ✓ T35NKA_20 ✓ T35NKA_20 ✓ T35NKA_20 	0170305T083001_B08 [EPSG:3263 0170305T083001_TCI [EPSG:3263	5]	Annuler la sélecti Inverser la sélect	ion
 ✓ T35NKA_20 ✓ T35NKA_20 ✓ T35NKA_20 ✓ T35NKA_20 	0170305T083001_B08 [EPSG:3263 0170305T083001_TCI [EPSG:3263	5]	Annuler la sélecti Inverser la sélect Ajouter Fichier(s	ion ion)
 ✓ T35NKA_2/ ✓ T35NKA_2/ ✓ T35NKA_2/ 	0170305T083001_B08 [EPSG:3263 0170305T083001_TCI [EPSG:3263	5]	Annuler la sélecti Inverser la sélect Ajouter Fichier(s jouter un réperto	ion ion)
 ✓ T35NKA_2I ✓ T35NKA_2I ✓ T35NKA_2I 	0170305T083001_B08 [EPSG:326: 0170305T083001_TCI [EPSG:3263	5]	Annuler la sélect Inverser la sélect Ajouter Fichier(s jouter un réperto OK	ion ion)
 ✓ T35NKA_2i ✓ T35NKA_2i ✓ T35NKA_2i 	0170305T083001_B08 [EPSG:3263 0170305T083001_TCI [EPSG:3263	5]	Annuler la sélect Inverser la sélect Ajouter Fichier(s jouter un réperto OK	ion ion) ire
 ✓ T35NKA_2i ✓ T35NKA_2i ✓ T35NKA_2i 	0170305T083001_B08 [EPSG:3263 0170305T083001_TCI [EPSG:3263	5] [Annuler la sélect Inverser la sélect Ajouter Fichier(s jouter un réperto OK	ion ion)
 ✓ T35NKA_2i ✓ T35NKA_2i ✓ T35NKA_2i 	0170305T083001_B08 [EPSG:3263 0170305T083001_TCI [EPSG:3263	5] [] []	Annuler la sélect Inverser la sélect Ajouter Fichier(s jouter un réperto OK	ion) ire
 ✓ T35NKA_2i ✓ T35NKA_2i ✓ T35NKA_2i 	0170305T083001_B08 [EPSG:3263 0170305T083001_TCI [EPSG:3263	5] 5]	Annuler la sélect Inverser la sélect Ajouter Fichier(s jouter un réperto OK	ion) ire
 ▼ T35NKA_2i ▼ T35NKA_2i ■ T35NKA_2i 	0170305T083001_B08 [EPSG:3263 0170305T083001_TCI [EPSG:3263	5] [] []	Annuler la sélect Inverser la sélect Ajouter Fichier(s jouter un réperto OK	ion) ire
 ▼ T35NKA_2I ▼ T35NKA_2I ▼ T35NKA_2I 	0170305T083001_B08 [EPSG:3263 0170305T083001_TCI [EPSG:3263	5] 5] [Annuler la sélect Inverser la sélect Ajouter Fichier(s jouter un réperto OK	ion) ire

1° Sélectionner les fichiers raster à assembler.

2° Cocher l'option de stockage des fichiers dans des bandes séparées. Cette option permet l'empilement de fichiers pour produire un raster multi-bandes.

1a°

3°

3° Définir le nom et l'emplacement du fichier de sortie. Nommer celui-ci S2_kisangani.vrt.

4° Exécuter la commande avec le bouton « Exécuter ».

- Construire ensuite la composition colorée « infra-rouge fausses couleurs » (RGB : 843) avec un rehaussement de contraste.
- Essayer de réaliser cette manipulation sans aide. Consulter ensuite les explications de la page suivante.
- La figure suivante présente les modalités de construction de la composition colorée.

Q F	ro	priétés de la	a cou	iche — S2_kisangani —	Symbologie								\times
Q	▼	Rendu des	ban	des raster									
<i>i</i>		Type de rend	u Co	ouleur à bandes multiples	•								
သူ့		Bande rouge	Ban	de 3									•
~~			Min	1803,02		Max 3241,63							
~		Bande verte	Ban	de 2									•
			Min	293,294		Max							
<u>~</u>		Bande bleue	Ban	de 1									•
*			Min	628,632		Max	932,844						
		Amélioration du contraste	Étire	er jusqu'au MinMax									•
1		🔻 Paramè	tres	de valeurs Min/Max									
		🔘 Défini j	par l'u	utilisateu <u>r</u>									
		O Bornes des val	d'ex leurs	clusion extrêmes	2,0	-	- \$	98,0				\$	%
		○ <u>M</u> in / n	nax										
 		Moyen écart- <u>t</u>	ne +/ ype ×	- <				2,00				\$	
		Statistique	s de l	'emprise	Raster entier							•	
Q		Précision			Estimation (plus rapide)							•	
	▶	Rendu de d	coucl	he									_
	▼	Ré-échant	illonr	nage									
	4												•
		Style 🔻						Ж	Annuler	Applique	er	A	\ide

• La figure suivante illustre un rendu en infra-rouge fausses couleurs pour l'image Sentinel-2 sur la zone de Kisangani.

