Ultrafast time-of-flight imaging with SPAD and picosecond laser for validation of the stray light rejection in an optical calibration facility

L. Clermont ${ }^{1}$, P. Blain ${ }^{1}$, E. Mazy ${ }^{1}$, W. Khaddour ${ }^{2}$, W. Uhring ${ }^{2}$, M. Georges ${ }^{1}$
${ }^{1}$ Centre Spatial de Liège, STAR Institute, Liège Université, Belgium
${ }^{2}$ Université de Strasbourg, ICube Research Institute, Strasbourg, France

What is stray light?

- What is Stray Light (SL) ?

- Unwanted/parasitic light reaching the detector of an optical imaging system
- It comes from the field observed (in-field SL) or out of the field (out-of-field SL)
- Stray light degrades the images

Straight shots

Ghost reflection

Scattering on optical surfaces

Scattering on mechanical surfaces

- Innovative way to characterize SL
- Discrimination of SL components in function of their Optical Path Length (OPL)
- SL components reach the detector at specific time

$$
d t=N[p s] \quad \Leftrightarrow \quad O P L=0.3 N[\mathrm{~mm}]
$$

- Time-of-Flight imaging of SL components of an optical system
- Femtosecond laser (Ti:Sapph)

$$
d t=2 p s \quad \Leftrightarrow \quad O P L=0.6 \mathrm{~mm}
$$

- Streak camera

Centre spatal delege

- Space optical instruments

- Earth Observation instruments need to be characterized in term of SL
- The usual facilities are collimators illuminating the space optical instrument

FOCAL3 facility at CSL

FLEX mission spectro-imager

Motivation of this work

- Facilities for SL characterization

Source block $=$ Spectral lamp or cw laser

- Characterization of facility-linked SL by Time-of-Flight method

Characterize SL generated by the facility

- Characterization of facility-linked SL by Time-of-Flight method

Source Block
Picosecond laser

université
Experimental set-up

Test collimator

Single ToF acquisition

At the focal plane of the detection system, the SPAD measures a ToF spectrum from light coming within the iFOV ($\beta= \pm 0,0141^{\circ}$) of the imaging lens

OPL=f(time)

Laser

Angular scan

We rotate the detection system around its pupil and acquire a ToF spectrum at each angle. We measure the SL in the facility decomposed in the spatio-temporal dimensions

université
Université

- Full 2D reconstruction of SL components

- Angular scan along 2 directions $\theta_{x} \theta_{y}$
- A movie of $I_{S L}\left(\theta_{x}, \theta_{y}, O P L\right)$ is obtained
- Coarse angular scan: large FOV

SL from the optical fiber ($O P L=-1.1 \mathrm{~m}$)

SL from the first vane (OPL = 3.5m)

SL around the collimator and on the back wall ($O P L=4.33 \mathrm{~m}$)

université

Experimental Results

Université

- Refined angular scan (small FOV -field near the nominal peak)

Experimental Results

- Measurement at small angles (near-field)

We observe that the SPAD "sees itself" ! As the detection system is scanned angularly, light illuminates the surrounding of the SPAD and create a ghost \rightarrow A diaphragm will be used to hide the surrounding of the SPAD

Experimental Results

iCIJ3E

- Measurement at small angles (near-field)

A measurement at a single angle in the near field allows to decompose the different contributors:

Université
université

- Measurement at small angles (near-field)

SL vs angle for different contributors

Already in our preliminary measurements, we have achieved a dynamic range of $\mathbf{1 0}^{\mathbf{- 1 1}}$

We characterize the facility signature by acquiring ToF spectra in the near-field. We isolate:

- SL contribution from the facility alone (time t_{0})
- SL induced by the ToF detector assembly
université

- Straylight can be characterized by ToF imaging

- Every straylight contribution is characterized by its OPL
- ToF imaging allows separating them in time
- Picosecond resolution were obtained in the past based on
- Femtosecond laser
- Streak camera
- Application : SL in optical instruments (ghosts, scattering,...)

- In this study

- Lower temporal resolution is shown based on
- SPAD detector with 40 ps resolution
- Picosecond laser 40 MHz repetition rate
- Longer OPL
- Measurement range : a few meters
- Resolution : centimeters
- Application :
- European Space Agency requests now a verification of usual SL calibration facilities (not ToF based)
- ToF based method is recommended (one day mandatory ?)
- Low resolution presented here is the key
- SL inherent to facility could be separated to the one of the instrument

