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A Comparative Study of 3D and 1D Acoustic
Simulations of the Higher Frequencies of Speech
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Abstract—Articulatory synthesis generates speech sounds by
simulating the physical phenomena involved in speech produc-
tion. The accuracy of the physical modelling is expected to
affect the naturalness of the synthesis: the more realistic the
description is, the greater the naturalness is expected to be. In
this work, the accuracy of acoustic wave propagation in the vocal
tract was evaluated with two perceptual experiments. Sustained
vowels generated using a one-dimensional acoustic model, a
three-dimensional acoustic model and an artificial bandwidth
extension algorithm (without a physical basis) were compared.
Since the difference between the acoustic methods tested affects
mainly the frequencies above 4 kHz, we ensured that the low
frequency part of the stimuli, up to 4 kHz, was similar. Thus,
the participants’ responses were based only on the differences at
high frequency. The first experiment was a pair comparison, in
which the participants had to select the more natural sounding
stimuli. In the second experiment, the participants had to rate
the naturalness of the stimuli on a linear scale. The results
confirmed that a more accurate physical modeling leads to
greater naturalness. However, this was limited to the phonemes
/o/ and /u/, for which transverse resonances in the anterior
vocal tract may play an important role that only a 3D acoustic
simulation can accurately represent. It was also found that male
stimuli were perceived as significantly more natural than female
ones. However, voice quality did not affect naturalness.

Index Terms—Articulatory synthesis, wideband speech, multi-
modal method

I. INTRODUCTION

A. General background

Articulatory synthesis is a useful tool for speech research
[1] and has great potential for applications requiring natural
and expressive speech synthesis. It relies on the description of
the physical phenomena involved in speech production [2]–
[6]. It simulates sound generation due to vocal fold oscillation
and the aeroacoustic sound sources generated by turbulent
flow. These sound generation mechanisms interact with sound
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propagation in the vocal tract. Vocal tract resonances enhance
some parts of the radiated spectrum called formants, which
convey information such as the phoneme pronounced, speaker
characteristics or emotions.

Sound propagation is often simulated using the transmission
line model (TLM), which relies on the assumption that only
plane waves propagate along the vocal tract [2]. It allows
researchers to ignore the curvature and the precise cross-
sectional shape: a simple one-dimensional (1D) description
of area variation along the vocal tract (area function) is
sufficient. Another common simplifying assumption is that
sound generation and propagation mechanisms are indepen-
dent. This is the basis of the source-filter model. In reality,
these two mechanisms interact with each other [7]–[9], but
this simplification is commonly used as it makes it possible to
use simple glottal flow models such as the Liljencrants-Fant
(LF) model [10].

B. Limits of the TLM and potential impacts on the naturalness

The TLM is inaccurate above about 4 kHz (sometimes even
3 kHz) because, on one hand, it cannot take into account
the precise three-dimensional (3D) vocal-tract shape, and on
the other hand, it cannot describe the 3D aspects of the
acoustic field such as transverse resonances or the curvature at
areas where discontinuities are found. This leads to inaccurate
resonance frequencies, amplitudes and bandwidths. These in-
accuracies increase toward high frequencies (HF), amounting
to about 5% for the frequencies of the first four resonances
[11]. From 4 or 5 kHz on, the transverse resonances induce
additional peaks and troughs in the transfer function (TF)
which cannot be predicted by TLM [12].

More accurate acoustic models can account for the 3D
aspect of the acoustic field. Such models are based on finite
elements [13]–[15], finite differences [16], the multimodal
method [17] and 3D waveguide meshes [18]. However, these
methods have a much higher computational cost than TLM,
which explains why their application to speech synthesis has
been limited to isolated phonemes such as vowels, diphthongs
and consonants.

Since 3D acoustic models are more realistic than TLM,
they are expected to generate synthetic speech with greater
naturalness. The greatest impact is expected for HF above
4 kHz, where the difference between 3D acoustic models
and TLM is greatest. The lower frequency differences, con-
sisting mainly of small formant frequency deviations, are
not expected to have a significant impact on naturalness.
The accuracy of acoustic modeling has been examined by
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very few investigations so far, and none have specifically
targeted HF. To our knowledge, the only work investigating
this question is Gully’s PhD thesis [19]. Gully compared
synthetic diphthongs generated with TLM, a two-dimensional
(2D) and a 3D waveguide mesh methods using a perceptual
rating of naturalness. She found that the 3D stimuli were
perceived as significantly more natural than the TLM and
2D waveguide mesh stimuli. However, she reported that her
method had limitations regarding the modelling of losses at HF
because of the use of time-domain simulations. The version
of the TLM used may also not have been optimized for
naturalness, in contrast to articulatory synthesizers such as
VocalTractLab [4]. Krug et al. [20] showed that state-of-the-
art articulatory synthesis achieves a naturalness comparable to
other non-commercial synthesis systems, but is significantly
outperformed by commercial synthesis systems. Therefore, the
acoustic model’s accuracy is explored as a potential factor to
further improve the naturalness of articulatory synthesis.

From 4 or 5 kHz on, 3D models differ substantially from the
TLM. HF (above 4 kHz) have been shown to be important for
naturalness [21]–[24]. Therefore, the accuracy of the acoustic
modeling of HF can have a strong impact on naturalness.
However, hearing sensitivity and the capacity to discriminate
frequencies reduce toward HF. Thus, it is not clear to what
extent the accuracy of acoustic modeling matters in this
frequency range, or even if an acoustic model is needed at
all to make stimuli sound natural. In fact, speech HF can be
generated from narrow-band speech signals such as telephone
signals using Artificial Bandwidth Extension (ABE) without
any physical model as a basis [25], [26]. These methods are
based on linear prediction and/or training of a deep neural
network on wide-band speech recordings.

The accuracy of acoustic modeling affects some phonemes
more than others. In [11], for example, more differences
between 1D TLM and a 3D multimodal method (MM) were
observed for /u/ than for /a/.

Since the differences due to acoustic modeling are expected
to affect mainly HF, the HF content of the sound source may
influence how they are perceived. Because a pressed voice
has more HF than a modal voice, more differences may be
perceived with pressed voice. Similarly, since a female voice
contains more HF than a male voice [27], more differences
may be perceived with a female voice.

C. Objective and outline

To investigate how the degree of physical accuracy of the
generation of HF affects the naturalness of synthesized vowels,
we generated synthetic vowels using ABE method, TLM and
3D simulations. The ABE was used as a reference alternative
for HF generation without physical insight. Since the objective
was to study HF, we made sure that the stimuli had the same
frequency content up to 4 kHz. The pressed voice was used in
addition to the normal voice because its stronger HF content
could better highlight the potential differences between the
different HF generation methods. The perceived naturalness
of the different synthesis methods was compared using a pair
comparison paradigm and evaluated using a metric scale.

Parameter Modal Pressed
female male female male

Amplitude 300 300 300 300
Open quotient 0.84 0.84 0.78 0.7
Shape quotient 1.9 2.15 1.99 2.18
Spectral tilt 0.04 0.04 0.01 0.01
Noise level (dB) -55 -65 -45 -50

TABLE I
PARAMETERS OF THE LF MODEL USED TO CREATE THE EXCITATION

SIGNALS. THE OPEN AND SHAPE QUOTIENTS WERE TAKEN FROM [31].
THE SPECTRAL TILT AND NOISE LEVEL WERE DETERMINED MANUALLY

TO CREATE ACCEPTABLY DISTINCT AND SUFFICIENTLY NATURAL
SOUNDING MODAL AND PRESSED VOICE QUALITIES.

The generation of stimuli and the perceptual experiments
are explained in the section II. The results are presented in
section III and discussed in section IV.

II. METHODS

A. Stimulus generation

To investigate the research questions posed above, we
needed a set of stimuli that contained a systematic variation
of the factors of interest in this study (voice quality, gender,
acoustic simulation method). To that end, we created excitation
signals and appropriate vocal tract transfer functions based
on both the MM and the TLM. By convolving the excitation
signals with the transfer functions, we obtained the final
synthetic speech samples. For reference, additional stimuli
were produced using ABE on narrow-band versions of the
MM stimuli. The Matlab script for the creation of the stimuli
and all the necessary data are provided in the supplementary
materials.1

1) Excitation: We created a male and a female excitation
signal, each with a modal and a pressed voice quality. The
excitation signals were created using the LF model [28],
[29] to generate glottal flow pulses. To mimic the aspiration
noise, these pulses were then superimposed with Gaussian
noise, with a spectral slope of −9.4 dB kHz−1 [30], obtained
using a finite impulse response filter, and temporally gated by
multiplying by the flow pulses amplitude. Table I summarizes
the parameters used in the generation of the flow pulses. The
f0 contours and the temporal envelope of the flow signals were
based on a natural reference utterance (male German native
speaker, 36 years, no discernible accent) of the phoneme /a/.
For the male excitation signal, the reference f0 contour was
used directly. For the female version, the f0 was shifted up
by one octave. The signals were calculated at four times the
intended sampling rate and then downsampled to 44.1 kHz to
avoid aliasing effects. All excitation signals were padded with
250 ms of silence on both ends.

2) Geometries: All transfer functions used in this study
were based on the standard VocalTractLab version 2.3 (VTL)
shapes for the vowels /a, e, i, o, u/. The speaker models in
VocalTractLab are detailed 3D models of real speakers’ vocal
tracts based on MRI data [4]. These vowels were chosen

1https://www.vocaltractlab.de/index.php?page=birkholz-supplements
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Fig. 1. Transfer function blending (here: the male /a/). The blended TF is the sum of the lowpass-filtered MM TF and the highpass-filtered TLM TF. The
responses of the lowpass and highpass filters add up to 1 (unity-gain crossover filter).

because they exist in many languages and their quality is
not very different between French (the language of the study
participants) and German (the native language of the speaker
on whose vocal tract the shapes are based [4], [32]). Since the
MM does not consider side branches, the piriform sinus was
excluded from the transfer function calculation. This led to
a shift in the formants of the standard vocal tract shapes. To
offset this shift, the 3D vocal tract geometries were manually
tweaked: the positions of the articulators were slightly moved
so that the first two resonance frequencies matched those of
the original geometries including the piriform sinus.

3) Transfer functions: For each vocal tract shape, two
transfer functions were calculated: one using the MM [17]
and one using the TLM [33], [34] both implemented in
VocalTractLab3D.2 In addition to the obviously large HF
differences between the calculation methods, the transfer func-
tions also had slightly different formants in the low-frequency
range. At low frequencies (up to 4 or 5 kHz), small changes
in formant frequencies (2%-10%) are generally perceivable,
independently of the kind of simulation [35], [36]. Since the
objective was to evaluate differences in the HF range, it was
necessary to somehow ensure that the low-frequency part of
the TFs was identical across all conditions. Therefore, we used
a unity-gain crossover filter with a single crossover frequency
of 4 kHz and crossover slopes of 48 dB oct−1 to blend the
lower-frequency part of the MM TF and the high-frequency
part of the TLM TF. Figure 1 shows an example of the process.
The final transfer functions used for stimulus generation were
therefore the MM TFs and the blended MM-TLM TFs.

4) Audio synthesis: The sounds were synthesized by con-
volving the excitation signals with the impulse response corre-
sponding to the transfer functions and then shifting the result
by half the impulse response length to correct the introduced
lag. Before calculating the impulse responses, the transfer
functions were lowpass-filtered with a cutoff frequency of
12 kHz, because the audiometric device to screen the par-

2https://vocaltractlab.de/index.php?page=vocaltractlab-download

ticipants in the perception experiment was only validated
up to 12.5 kHz. All sounds were loudness-normalized to -
23 Loundness Unit Full Scale (LUFS) according to the EBU
R 128 standard and saved as a mono, 16-bit pulse code
modulation (PCM) wave file with a sampling rate of 44.1 kHz.

5) Artificial bandwidth extension: ABE is used to extend
narrow-band speech signals (e.g., telephone speech) to a wide-
band signal. These methods do not use an acoustic model
to calculate the missing frequency components, but instead
extrapolate from the narrow-band spectrum. This extrapolation
can be based on (among other methods) linear prediction (i.e.,
using the narrow-band linear prediction coefficients to find
the best-matching entry in a codebook of full-band linear
prediction coefficients) [26], or on deep learning and pre-
trained predictive modeling of the missing frequencies [25].
The ABE stimuli were created by first band-limiting the speech
signals created with the MM TFs to 4 kHz and then extending
this narrow-band signal first to 8 kHz [25] and then to 16 kHz
[26]. The parameters for the ABE algorithms were adopted
from the examples provided with the implementation and are
listed in Table II. They were not optimized in any way because,
as mentioned above, the study’s focus was not on evaluating
the quality of ABE. These samples were simply included as
an alternative, signal-processing-driven way of generating the
HF part of the speech signal with less physical correctness
than with TLM. Some minor, audible artifacts in the otherwise
silent sections of the stimuli were removed by forcing these
sections to zero using a Tukey window (with α = 0.1). Finally,
the ABE stimuli were upsampled to 44.1 kHz (to match the
sampling rate of the other stimuli). As with the synthesized
stimuli, the ABE stimuli were also low-pass filtered at 12 kHz,
loudness-normalized to −23 LUFS and saved as a mono, 16-bit
PCM wave file.

B. Perceptual experiment

1) Objectives and hypotheses: This perceptual experiment
was carried out to answer the following general research
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ABE from 4 kHz to 8 kHz [25] ABE from 8 kHz to 16 kHz [26]

Past frames: 1 LP order: 16
Future frames: 1 FFT length: 1024
Input features: logMFE, PCA Window length: 25 ms
Input dimension: 10 Gain: 1
Output dimension: 10
Model: pretrained

TABLE II
PARAMETERS USED FOR THE ABE ALGORITHMS (SEE [25], [26] FOR

DETAILS).

question: How does the degree of physical accuracy of the
generation of HF affect the naturalness of synthesized vowels
perceived by young adults? The high-frequency part of the
synthesized vowels was generated using three methods that
produce different degrees of physical accuracy:
(a) a 1D TLM acoustic model,
(b) a 3D MM acoustic model, and
(c) an ABE algorithm.

Sixty audio stimuli (3 synthesis methods × 5 vowels (/a, e, i,
o, u/) × 2 genders (male, female) × 2 voice qualities (modal,
pressed)) were synthesized. The experiment comprised two
tasks designed to assess the naturalness of the synthesized
vowels:
(a) a paired comparison paradigm, and
(b) an evaluation of each vowel using a metric scale ranging

from 0 to 100.
We hypothesized that, the more realistic the synthesis

method is in terms of acoustical modeling, the more natural
the vowels will be perceived as. More specifically,

(H1) the vowels generated with MM should be perceived as
more natural than those generated with TLM;

(H2) the vowels generated with MM should be perceived as
more natural than those generated with ABE;

(H3) the vowels generated with TLM should be perceived as
more natural than those generated with ABE.

In addition to the effect of the synthesis method, we studied
the effect of vowel, gender and voice quality.

2) Participants: The sample included 40 students (20
males, 20 females) recruited at the University of Liège. They
were all native speakers of French, aged 19 to 24 years old
(M = 21.9; SD = 1.5), and did not have any past or present
hearing problems. All participants had hearing thresholds
≤ 20 dB HL bilaterally at octave frequencies between 0.5 kHz
and 12.5 kHz. This was assessed with pure-tone audiometry
using a MADSEN Itera II audiometer with Sennheiser HDA
300 headphones.

3) Listening condition: The perceptual experiment was
conducted in an audiometry room in the University of Liège.
During the experiment, the participants were seated in front of
a table on which a computer allowed them to perform the per-
ceptual tasks through interfaces programmed with Octave. The
background noise in the experimental conditions (a computer
and 2 persons present in the room) was measured at 36 dB
SPL. The stimuli were played with a loudspeaker (XM6.D
sn 07-3301 from FAR by ATD) placed 1 m in front of the

participant’s head. A loudspeaker offers better control over
experimental conditions than headphones and better simulates
a real speaker as the sound is radiated from a distant sound
source. The level of the stimuli was adjusted to 70 dB SPL
at the location of the participant’s head. In order to control
the stimuli presented to the participants in the experimental
condition, the stimuli were recorded with a measurement mi-
crophone (G.R.A.S. 40CE, SN 217653) placed at the location
of the participant’s head. These recordings are provided in
the supplementary materials. The participants were instructed
to stay in the same position as much as possible during the
experiment, and in particular to try to keep their head in the
same position with respect to the loudspeaker to minimize
potential disturbances due to directivity effects.

Figure 2 presents the spectra of the stimuli generated using
the modal voice. As expected, the spectra of the MM and
TLM stimuli are identical up to about 4 kHz. Above 4 kHz,
they differ to various degrees depending on the phoneme. The
MM and TLM HF spectra are almost identical for /e/, and
significantly different for /o/ and /u/. The ABE stimuli start
to differ from the other stimuli at a slightly lower frequency
(from about 3.3 kHz). One can see a large overall difference
between MM and TLM at HF, in particular above about 7 kHz,
for the vowels /a/, /e/ and /i/. The differences are smaller
for /o/ and /u/. The stimuli in a female voice tend to have
more HF, as expected. However, this tendency is not observed
with ABE. Except in a few specific frequency ranges, most of
the energy of the stimuli is above the background noise. The
same observations can be made with the pressed voiced quality
(not shown): there is more energy at HF (see supplementary
materials).

4) Preliminary tasks: The ethics committee of the Faculty
of Psychology, Speech Therapy and Education Sciences (Uni-
versity of Liège, Belgium) approved this study. All participants
provided written informed consent after receiving a complete
description of the study.

The participants were tested individually in a single ses-
sion lasting approximately 1 hour. After completion of the
questionnaire and the audiometric screening, each participant
performed two listening tasks. Participants were given a break
between the two tasks to avoid fatigue.

Each task began with two practice trials using different
phonemes from the tasks. These practice trials were later
discarded from the statistical analysis. Within each task, audio
stimuli were presented randomly across participants. To eval-
uate intra-judge reliability, each vowel was presented twice at
different, randomly set times, referred to as test and retest. The
participants’ responses and the number of times they listened
to each stimulus were saved in .csv format for further statistical
analysis.

5) First perceptual experiment: This experiment was based
on a paired comparison paradigm. The participants listened to
each of the two stimuli as often as they wanted, by clicking on
the corresponding button. For each pair of stimuli presented,
participants had to select the sound they considered the most
natural. Each pair was composed of the same vowel, the same
gender, and the same voice quality (e.g., vowel [a] synthesized
with a female pressed voice). Only the synthesis method
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g) female /o/ h) male /o/ 

i) female /u/ j) male /u/ 
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ABE
TLM
Background noise

Fig. 2. Long-term average spectra of the stimuli generated using the modal voice recorded in the experimental conditions. A Hanning window of a length
of 512 samples (sample rate of 51,200 Hz) and an overlapping rate of 50% was used.

changed (i.e., ABE, TLM, MM). Based on this principle, the
following combinations of pairs were presented to participants
to test the three hypotheses set out above:

(H1) Two stimuli (same vowel, same gender, same voice
quality) generated with the MM and TLM methods (e.g.,
Sound 1: [a] synthesized with a female pressed voice
using the MM method; Sound 2: [a] synthesized with
a female pressed voice using the TLM method).

(H2) Two stimuli (same vowel, same gender, same voice
quality) generated with the MM and ABE methods (e.g.,
Sound 1: [e] synthesized with a female pressed voice
using the MM method; Sound 2: [e] synthesized with
a female pressed voice using the ABE method).

(H3) Two stimuli (same vowel, same gender, same voice
quality) generated with the TLM and ABE methods (e.g.,
Sound 1: [i] synthesized with a male modal voice using
the TLM method; Sound 2: [i] synthesized with a male
modal voice using the ABE method).

Each pair of stimuli was presented twice (test and retest).
Experiment 1 included a total of 120 pairs to evaluate (3
combinations × 5 vowels × 2 genders × 2 voice qualities
× 2 times).

The following instructions were given to participants orally
(in French) before the experiment: “You’re going to listen to
two sounds and then you must indicate which one seems more
natural to you. To listen to the sounds, click on ‘sound 1’ or
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‘sound 2.’ Then choose the sound that seems more natural to
you by clicking on ‘sound 1 is more natural’ or ‘sound 2 is
more natural.’ To move on to the next pair, click on ‘next pair.’
However, once you’ve clicked on ‘next pair,’ you will no longer
be able to go back. First, we’re going to do a trial run with
two pairs of sounds. During the experiment, you’ll have 120
pairs of sounds to compare. After the trial run, don’t hesitate
to ask any questions you may have.”

6) Second perceptual experiment: Participants had to assess
the naturalness of 120 audio stimuli (3 synthesis methods × 5
vowels × 2 genders × 2 voice qualities × 2 times) presented in
isolation. The participants listened to each stimulus as often
as they wanted. Then they evaluated its naturalness using a
metric scale ranging from 0 (not natural at all) to 100 (totally
natural).

The following instructions were given to participants orally
before the experiment: “You’re going to listen to 120 sounds,
one after the other. To listen to a sound, click on the ‘listen’
button. For each sound, indicate its naturalness by moving
the cursor on the scale ranging from 0 ‘not natural at all’
to 100 ‘totally natural.’ ‘Not natural at all’ means that the
sound you’re listening to resembles an artificial voice, very
different from a real voice. ‘Totally natural’ means that the
sound you’re listening to resembles a real voice. Once you’ve
clicked on the ‘next’ button, you will no longer be able to go
back. We will do a trial run with two sounds, and after that
you can ask any questions you may have.”

C. Statistical analysis

The participants’ responses in the paired comparisons ex-
periment were fitted using loglinear Bradley-Terry models
(LLBT) [37]–[41]. Conceptualized by Bradley and Terry [42],
LLBT was specifically developed to analyze paired compar-
isons designs and has been commonly used in several research
domains [43]–[45]. LLBT provides preferences values (worth
parameters) and the associated estimated probability of being
preferred for all items. Thus, the worth parameters π of each
stimulus were estimated quantifying the relative positions of
the stimulus on a standardized latent scale from 0 to 1. A
higher worth value is indicative of that stimulus’s greater
preference relative to another stimulus (the sum of all values is
1.0). All analyses were performed using the software R 4.2.0
[46], with the prefmod [47] and gnm [48] R packages. Due to
the experimental design, all factors (phonemes, gender, voice
quality) were analyzed separately.

The participants’ responses to the evaluation of the nat-
uralness of the stimuli were fitted using a linear mixed-
effects model (LME). As recommended by many authors [49]–
[51], we preferred to perform mixed-effects models instead of
repeated measures analyses of variance in the case of repeated-
measures data. LME have numerous advantages. For example,
LME can properly account for correlation between repeated
measurements on the same subject; they provide flexibility
and can model individual characteristics. For the specification
of the model, a random effect of participant was used and the
fixed effects were the acoustic model (ABE, TLM or MM), the
type of phoneme (/a, e, i, o, u/), the speaker’s gender (female
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Fig. 3. Stacked estimate worth of the different methods in the pairwise
comparison (experiment 1) for different conditions. The estimate worth is
similar to the probability of choice, and therefore, the sum of the estimate
worth of all the methods is 1. The larger the estimate worth, the more likely it
is that the corresponding method will be selected. The method that dominates
the preference score is indicated by an * symbol. The values 0.33 and 0.66
are indicated by dashed lines.

or male), the voice quality (modal or pressed) and the time
of the test (two times: test and retest). The model included
each main factor, and all the interactions between the factors.
Contrasts were performed between the levels of the factors and
interactions that were significant in the analysis of the models.
The Holm method of alpha adjustment was used to correct for
multiple testing. These analyses were performed using the R
packages car [52], tidyverse [53], lme4 [54], lmerTest [55],
emmeans [56] and multcomp [57].

III. RESULTS

A. Pair comparison (experiment 1)

This section describes the results obtained with the pair
comparison. Figure 3 shows the estimate worth of the different
methods. The estimate worth is similar to the probability of
choice of one of the methods.

One can see that the hypotheses are generally verified, since
overall the stimuli synthesized with MM are most preferred,
whereas the stimuli generated with ABE are overall least
preferred. This effect is significant for the three types of pairs
tested:

• H1 (MM more natural than TLM)
z = 5.02, p < 0.0001

• H2 (TLM more natural than ABE)
z = 11.15, p < 0.0001

• H3 (MM more natural than ABE)
z = 15.89, p < 0.0001

When the analysis is restricted to the modal and pressed
voices, we find very similar distributions of estimate worth,
and the effect remains significant. For the modal voice:

• H1, z = 3.04, p = 0.0024
• H2, z = 8.54, p < 0.0001
• H3, z = 11.40, p < 0.0001
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/a/ /e/ /i/ /o/ /u/
Hypothesis z-value p-value z-value p-value z-value p-value z-value p-value z-value p-value

H1 (MM > TLM) -2.869 0.0041 -1.117 0.26 -0.4699 0.64 6.433 < 0.0001 8.714 < 0.0001
H2 (TLM > ABE) 12.42 < 0.0001 7.958 < 0.0001 9.094 < 0.0001 0.1854 0.85 -5.636 < 0.0001
H3 (MM > ABE) 10.13 < 0.0001 6.938 < 0.0001 8.683 < 0.0001 6.606 < 0.0001 3.337 0.0008

TABLE III
Z-SCORE AND p-VALUE OF THE HYPOTHESIS TESTED FOR EACH PHONEME; SIGNIFICANT VALUES ARE HIGHLIGHTED IN BOLD.
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Fig. 4. Average naturalness rating per method and phoneme; the error bars
indicate the standard error of measurement.

And for the pressed voice:
• H1, z = 4.05, p < 0.0001
• H2, z = 7.23, p < 0.0001
• H3, z = 11.08, p < 0.0001

Note that there is a slightly greater difference between MM
and TLM with the pressed voice.

When the analysis is done for each specific phoneme, we
find different distributions of the preferences, which do not
systematically verify the hypotheses. The z-score and the
p-values obtained for each method and each phoneme are
presented in Table III. For /a/, TLM is considered more
natural than MM, contrary to expectations (H1). There are
no significant differences between TLM and MM for /e/ and
/i/, so hypothesis H1 cannot be verified or contradicted. For
/o/, there is no significant difference between TLM and ABE,
so H2 (TLM more natural than ABE) cannot be verified or
contradicted. H2 is contradicted for /u/, as ABE is considered
more natural than TLM.

B. Naturalness rating (experiment 2)

The average naturalness ratings normalized between 0 and
1 are presented in Figs. 5 and 4 for different categories.

The time of the test (test or retest) did not significantly im-
pact the naturalness rating (F (1, 4641) = 0.0947 p = 0.758).

On the other hand, the method significantly impacted the
naturalness rating (χ2 = 52.203, p < 0.0001). Similarly to
the pair comparison experiment, hypotheses H1, H2 and H3
are generally verified since the average naturalness rating for
MM is higher than the rating for TLM, which itself is higher
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Fig. 5. Overall average naturalness rating per gender and phoneme; the error
bars indicate the standard error of measurement.

than the rating for ABE. These differences between methods
are significant, as illustrated by the linear contrasts:

• H1, z = 5.67, p < 0.0001
• H2, z = 7.69, p < 0.0001
• H3, z = 13.36, p < 0.0001

Gender also significantly impacted the naturalness rating
(χ2 = 37.60, p < 0.0001): on average, the male stimuli
were rated higher than the female ones (see Fig. 5). This is
confirmed by a significant linear contrast between the male
and female stimuli (z = 22.43, p < 0.0001). However, there
was no significant interaction between gender and method
(χ2 = 5.85, p = 0.054). There was also no significant
interaction between the listener’s gender and the gender of
the stimuli (χ2 = 0.683, p = 0.409). More generally, no
significant effect was associated with the listener’s gender.

Voice quality had no significant impact on the naturalness
rating (χ2 = 0.72, p = 0.39). However, listener had a sig-
nificant impact (χ2 = 584.99, p < 0.0001). This corresponds
mainly to variations in the amount of differences between the
naturalness rating of the different categories: for example, the
difference between ABE and TLM can be small for some
subjects and bigger for others. In some cases, the ordering
of the values differs: for example, some subjects rate ABE
higher than TLM.

Phoneme significantly affected the naturalness rating (χ2 =
27.425, p < 0.0001). The average naturalness ratings of the
different phonemes for each method are presented in Fig. 4. /o/
has the highest average naturalness rating (0.52), whereas /i/
has the lowest (0.44). The linear contrasts highlight significant
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/a/ /e/ /i/ /o/ /u/
z-value p-value z-value p-value z-value p-value z-value p-value z-value p-value

H1 (MM > TLM) 1.38 1.00 0.0032 1.00 -0.24 1.00 4.77 0.00012 6.76 < 0.0001
H2 (TLM > ABE) 8.87 < 0.0001 8.79 < 0.0001 5.13 < 0.0001 -0.63 1 -4.96 < 0.0001
H3 (MM > ABE) 10.2 < 0.0001 8.80 < 0.0001 4.89 < 0.0001 4.14 0.0022 1.8 1.00

TABLE IV
LINEAR CONTRASTS BETWEEN THE METHODS FOR EACH VOWELS; SIGNIFICANT VALUES ARE HIGHLIGHTED IN BOLD.

0 2 4 6 8 10 12

f(kHz)

-40

-20

0

20

M
ag

n
it
u
d
e 

(d
B
)

TLM

MM

a) b)

-60

-80
1 3 7 9 115

Glottis

Subllingual
cavity

Lip channel

0 dB

-16 dB

-32 dB

-48 dB

-64 dB

Fig. 6. (a) Transfer functions of the male vowel /u/ computed with MM and TLM; (b) acoustic field computed with VocalTractLab3D in the mid-sagittal
plane and a transverse plane in the middle of the sublingual cavity at the frequency of the first transverse resonance of the sublingual cavity corresponding
to the deep trough at 5.71 kHz in the MM TF.

differences between most of the phonemes, except between /u/
and /a/, /e/ and /i/ and /e/ and /a/.

There is a significant interaction between phoneme and
gender (χ2 = 33.795, p < 0.0001). This is illustrated in
Fig. 5. The average naturalness rating is distributed differently
for the male, female and overall stimuli. For male stimuli, the
highest naturalness rating is obtained for /a/ (0.60), and the
lowest for /e/ (0.45). In contrast, for female stimuli, the highest
naturalness rating is obtained for /e/ (0.46) and the lowest for
/i/ (0.34). However, the male stimuli are rated significantly
higher than the female ones, except for /e/ for which no
significant differences are observed (z = 0.75, p = 1).

There is also a significant interaction between phoneme and
method (χ2 = 51.740, p < 0.0001). This is illustrated in
Fig. 4. The linear contrasts between methods for each phoneme
are presented in Table IV. The results are similar to those for
the pair comparison experiment, except for

• /a/, for which no significant difference is found between
TLM and MM;

• and /u/, for which no significant difference is found
between MM and ABE.

In addition, hypothesis H2 (TLM more natural than ABE), is
also contradicted for /u/ in this experiment.

IV. DISCUSSION

The hypothesis that more realistic acoustic modeling of
HF results in greater naturalness is generally verified by
both experiments. This is in agreement with the results of
Gully [19], and the fact that our results were obtained using
completely different methods and better modeling of HF losses
reinforces this conclusion.

However, a closer look at the individual phonemes reveals
that, in the comparison of TLM and MM, the better naturalness
of MM is due only to the vowels /o/ and /u/. This may be
related to the larger spectral differences observed for these
phonemes (see Section II-B3 and Fig. 2). The HF amplitude
is generally higher for TLM. In particular, peaks are present
in the TLM spectra in the 4 to 6 kHz interval and absent or
much smaller in the MM spectra. This might be related to a
greater difference between the acoustic fields computed with
a 1D simplifying assumption and a more realistic 3D method.
In fact, transverse resonances occur at lower frequencies for
/o/ and /u/ than for /a/, /e/ and /i/. This is due to the
sublingual cavity, which is connected to the outside space by
a narrow lip channel (see Fig. 6b). The lip channel acts like
a side hole in a wind instrument: it induces a low acoustic
pressure in the middle of the sublingual cavity, which favors
transverse resonance at relatively low frequency. As illustrated
in Fig. 6b for /u/, the nodal line (minimum acoustic pressure
appearing in blue) of the transverse resonances created is
aligned with the lip channel. This configuration considerably
reduces the transmission of acoustic energy because the main
direction of propagation is transverse to the lip channel. The
consequence is a deep trough in the transfer function, as can
be seen in the 4 to 6 kHz interval in Fig. 6a. There are other
more complex transverse resonances at higher frequencies with
a similar but smaller effect that reduces sound transmission
overall. This explains why the TLM spectra have a generally
higher amplitude at HF. Thus, the participants may perceive
the presence of spectral peaks in the 4 to 6 kHz interval as
unnatural, and the HF level of /o/ and /u/ generated by TLM as
too high. Furthermore, people’s hearing abilities are better in
this frequency range than at higher frequencies, which induces
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a higher perceptual impact. It may be possible to make an
improved 1D model which could generate an effect similar to
this transverse resonance. This could be achieved, for example,
by adding a branch to the main tract as in [23].

In the first experiment, the vowel /a/ was perceived as more
natural with TLM. This does not change the overall difference
between methods and it was not observed in the second
experiment. Thus, this effect is smaller than the differences
observed for /o/ and /u/. However, it may be related to a
higher spectral amplitude of MM in the 8 to 10 kHz range (see
Figs. 2a and 2b). This might indicate that TLM is accidentally
slightly more realistic than MM in this frequency range.
Another explanation might be that proper modeling of the
radiation is more important for the vowel /a/ as it corresponds
to a larger mouth opening than the other vowels. Even though
MM describes the internal acoustic field more accurately, the
approximation made in the description of the radiation (no
lips, a baffled exit, and no diffraction by the head and torso)
may be more detrimental when a 3D model is used than with
a simpler 1D model. However, according to Arnela et al. [58],
the inclusion of the lips does not reduce the amplitude of HF;
on the contrary, it increases it. Thus, the reason for this small
difference is not clearly understood and may require a better
modeling of all the phenomena involved in the radiation.

The lesser naturalness of ABE for /a/, /e/ and /i/ can easily
be related to the much higher spectral amplitude at HF (see
Figs. 2a-f). Distortions between 3.3 and 4 kHz may also play
a role in some cases (male /a/, female /e/ and male /i/, see
Figs. 2b, 2c and 2f). ABE has significantly better naturalness
for /o/ and /u/, which is comparable to TLM for /o/ and
MM for /u/. This might also be related to the HF spectral
amplitude, which is comparable to the other models for these
phonemes, and even lower than TLM for /u/. The absence
of pronounced peaks in the range 4 to 6 kHz range for /u/
probably explains why it is more natural than with TLM.
Thus, for some specific phonemes, ABE’s naturalness can be
as good as when a physical model is used to generate HF.
The algorithms used in this study may not be the optimum
state of the art since the motivation was to compare TLM and
MM to a baseline without physical input and not to evaluate
an ABE method. Better ABE implementations and/or methods
may have even better naturalness compared to physics-based
speech synthesis.

At HF, the difference between the modal and pressed voice
consists mainly in a difference of global HF level. The absence
of impact of the voice quality can be interpreted in two
complementary ways:

• perception of naturalness is not simply related to the
overall HF level but to finer spectral cues. This is in
agreement with the better naturalness obtained for /o/
and /u/ with MM and ABE, which seems to be related
to spectral peaks that are absent and/or less pronounced
than with TLM.

• participants may adapt their natural speech reference to
the voice quality that they hear.

The significantly poorer naturalness of the female voice may
have several, potentially coexisting, causes:

• The main difference between the glottal flow model used
for the male and the female voices is the fundamental
frequency. Generating a proper female voice may require
one to adapt other parameters, such as the intonation
curve.

• The parameters of the articulatory model used for the
female vocal tract shapes may have been less accurately
fitted on the magnetic resonance images (MRI).

• Beyond the gender difference, what is observed could
represent an inter-individual difference. In this regard, it
might be interesting to conduct a similar experiment with
more than two speakers.

The difference in the distribution of the naturalness rating over
the phonemes for both genders indicates that the phoneme
dependency of naturalness is potentially related to gender-
specific or individual-specific vocal tract geometries, and/or
voice source features. This could be clarified by conducting a
similar experiment using the same voice source with different
speaker geometries.

The significant effect of participant may indicate that partic-
ipants based their judgements on different internal references
for naturalness and/or that they had different concepts of
naturalness.

Generally, the three methods tested were rated close to
0.5, which is far from perfectly natural. This may be due to
multiple complementary factors:

• The material tested, isolated phonemes, is intrinsically
not natural, as we are not used to hearing phonemes in
isolation. In this regard, it would have been interesting
to include recordings of actual human speech sounds as
stimuli to evaluate how they would have been rated in this
context and how the synthetic stimuli differ. This should
be done in future work.

• Although MM describes the acoustic field more ac-
curately, it still neglects and/or simplifies many other
aspects of the physics of speech. This include the ab-
sence of side cavities, the imperfection of the radiation
modeling, and the simplification of the sound generation
mechanisms, which, among other phenomena, neglects
the coupling between vocal folds and vocal tract.

• Although it was carefully fitted on MRI, the vocal tract
geometry used may not be totally realistic. In particular,
the asymmetries of real vocal tracts interact significantly
with transverse modes [12]. Thus, it would be interesting
to use vocal tract geometries obtained directly from MRI
in future work.

It is also questionable whether the results would have
been different if the low frequency differences had also been
included. These differences consist mainly in small formant
frequency deviations. It is clear that they can be perceived [35],
[36]. However, we did not find any evidence in the literature
that this affects the naturalness of the synthetic sounds. As a
matter of fact, the formants of a given vowel in actual human
production show substantial variation while sounding equally
natural. Thus, we would not expect very different results if
low frequency differences had been included.

It is also possible that the transfer function blending process
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affects naturalness. Future work should therefore compare pure
TLM stimuli with stimuli obtained with the blending process.

V. CONCLUSION

Our results confirm that HF contribute to speech naturalness
and that the accuracy of the physical modeling of speech
HF impacts the naturalness of synthetic speech. The most
prominent differences were observed for the vowels /o/ and
/u/, for which it appears to be important to account for the
3D aspects of the acoustic field. For these vowels, some
transverse resonances present in the sublingual cavity probably
significantly affect the naturalness. As a non-physical ground
truth, ABE confirms that even a simplified 1D acoustic model
improves naturalness. However, this is not the case for every
phoneme tested, and better ABE implementations or methods
may have improved naturalness.
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