Preparation of powders mixture of AISI S2 Tool Steel and Silicon Carbide for use in Laser Powder Bed Fusion

E. Saggionetto ${ }^{1}$, A. H. Seidou ${ }^{1}$, G. Roger Vila ${ }^{1}$, O. Dedry ${ }^{1}$, F. Boschini², J. T. Tchuindjang ${ }^{1}$, A. Mertens ${ }^{1}$ Metallic Materials Science (MMS), Aerospace and Mechanical Engineering Dpt., University of Liège ${ }^{2}$ GREEnMat Laboratory, University of Liège

Abstract

Mixing different powders is a promising way to broaden the choice of materials for Laser Powder Bed Fusion (LPBF). However powders for LPBF must present appropriate rheological properties. Indeed, if the initial batch of powders is not homogeneous, both spreadability and laser - powder interaction suffer, affecting the final part quality
This work thus focuses on the preparation of mixed AISI S2 tool steel and silicon carbide (SiC) powders for use in LPBF. To promote the complete dissolution of SiC in the melt pool, spray dried granules of SiC nanoparticles were selected. A combination of sieving, ball milling and thermal treatment was finally selected as it resulted in good rheological properties of the powders mixture and in a good quality of the final part.

Materials and Methods

GOAL
Achieve a fully dense, defect-free sample with a homogenous microstructure

Preliminary investigations

$\mathrm{S} 2+5 \% \mathrm{SiC}$ was manually mixed and processed by LPBF. After printing, undissolved SiC were detected within the microstructure, leading to inhomogeneity

Agglomeration of SiC at excessive milling time, undesirable due to inhomogeneity of the mixture

Adaptation of milling time depending on SiC amount due to easy agglomeration
\qquad

Conclusions

Manual mixing of $\mathrm{S} 2+\mathrm{SiC}$ resulted in undissolved SiC granules and inhomogeneous microstructure after LPBF.
$>$ An increase in SiC content implies a decrease of the milling time due to the tendency of SiC to agglomerate.
$>$ Adding SiC also leads to a decrease of both packability and cohesive index, while positively affecting the spreadability of the powders mixture.
$>$ The optimal preparation allows to achieve homogeneous layers during the recoating step of LPBF.
$>$ Samples obtained with the appropriate LPBF parameters exhibit a density > 99% and a homogeneous defect-free microstructure.

Optimal preparation

Sieving $\mathrm{S} 2+\mathrm{SiC}<63 \mu \mathrm{~m}$ To exclude any agglomerates that may have formed
 Choice of the appropriate LPBF parameters
 LPBF of samples with final density > 99\% and defect-free

Powders after optimal preparation

	$\begin{gathered} \rho[0] \\ {[\mathrm{g} / \mathrm{cm} 3]} \end{gathered}$	$\begin{gathered} \rho[\mathrm{n}] \\ {[\mathrm{g} / \mathrm{cm} 3]} \end{gathered}$	Hausner ratio ($\rho[0] / \rho[n]$)	$\begin{gathered} \text { Carr Index \% } \\ (\rho[\mathrm{n}]-\rho[0] / \rho[n]) \end{gathered}$
S2	3.96	4.74	1.20	16.5
S2 + 5\% SiC	3.84	4.44	1.16	13.5
S2 + 10\% SiC	3.50	4.16	1.19	15.8
S2 + 15\% SiC	3.24	3.93	1.20	16.3

Packability

The authors acknowledge GranuTools for GRANU•• the use of GRANUDRUM and GRANUPACK TOOLS"*

