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Vegetation models for climate adaptation and mitigation strategies require
spatially high-resolution climate input data in which the error with respect to
observations has been previously corrected. To quantify the impact of bias
correction, we examine the effects of quantile-mapping bias correction on the
climate change signal (CCS) of climate, extremes, and biological variables from the
convective regional climate model COSMO-CLM and two dynamic vegetation
models (LPJ-GUESS and CARAIB). COSMO-CLM was driven and analyzed at 3 km
horizontal resolution over Central Europe (CE) and the Iberian Peninsula (IP) for
the transient period 1980–2070 under the RCP8.5 scenario. Bias-corrected and
uncorrected climate simulations served as input to run the dynamic vegetation
models overWallonia. Main result of the impact of bias correction on the climate is
a reduction of seasonal absolute precipitation by up to −55% with respect to
uncorrected simulations. Yet, seasonal climate changes of precipitation and also
temperature are marginally affected by bias correction. Main result of the impact
of bias correction on changes in extremes is a robust spatial mean CCS of climate
extreme indices over both domains. Yet, local biases can both over- and
underestimate changes in these indices and be as large as the raw CCS.
Changes in extremely wet days are locally enhanced by bias correction by
more than 100%. Droughts in southern IP are exacerbated by bias correction,
which increases changes in consecutive dry days by up to 14 days/year. Changes in
growing season length in CE are affected by quantile mapping due to local biases
ranging from 24 days/year in western CE to −24 days/year in eastern CE. The
increase of tropical nights and summer days in both domains is largely affected by
bias correction at the grid scale because of local biases ranging within ±14 days/
year. Bias correction of this study strongly reduces the precipitation amountwhich
has a strong impact on the results of the vegetation models with a reduced
vegetation biomass and increases in net primary productivity. Nevertheless, there
are large differences in the results of the two applied vegetation models.
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1 Introduction

Climate changes are likely to influence the frequency and
intensity of extreme events which represent potential hazards for
natural systems and society such as agriculture, forestry, water
resources, transport, energy supply, and human health (IPCC,
2022). Extreme events such as heat waves and droughts result in
crop failure, forest dieback and forest fires (Nathan et al., 2019;
Lange et al., 2020). Heavy precipitations occurring at sub-daily scales
enhance the risk of floods and landslides (Breugem et al., 2020).
Frost events in the late spring can cause irreversible damages for
forestry and agricultural yields (Liu et al., 2018; Lamichhane, 2021).
Changes in such extremes, among others, are crucial for developing
adaptation and mitigation strategies.

Climate data from general circulation models (GCMs) are our
major source of knowledge about climate changes under different
climate scenarios (Representative Concentration Pathways (RCPs))
(Moss et al., 2010). However, the spatial resolutions of GCMs data is
too coarse to represent regional climate variations at the scales (few
kilometers or less) required by impact models.

Dynamical and statistical downscaling techniques represent
complementary methods, which have been developed to bridge
this scale gap. Dynamical downscaling is represented by the use
of regional climate models (RCMs) which dynamically simulate the
climate on a regional scale using the coarser GCMs as forcing data
(Giorgi, 2019). Several coordinated ensembles of climate simulations
with different RCMs and spatial resolution have been conducted for
the European domain. These are the PRUDENCE project
(horizontal resolution of about 50 km) (Christensen et al., 2007a;
Christensen et al., 2007b), the ENSEMBLES project (grid-spacing of
about 25 km) (van der Linden and Mitchell, 2009; Déqué et al.,
2012), the EURO-CORDEX (Jacob et al., 2014) andMED-CORDEX
(Ruti et al., 2016) initiatives with a spatial resolution of about 12 km.
Statistical downscaling approaches such as empirical quantile

mapping, weather generators, perfect prognosis, or model output
statistics assume, instead, the existence of statistical correlations
between climate variables retrieved from coarser models and local
climate variables representing a much smaller scale, e.g., catchment-
or site-scale (Maraun and Widmann, 2018).

Further refinement of the spatial resolution could be achieved
through the application of convection-permitting regional climate
models (CPRCMs) with typical grid spacing of 1–4 km. Our study
contributes to this line of research with the first-of-its-kind long-
term climate simulations with COSMO-CLM at convection-
permitting scale over the transient period 1980 to 2070 at an
horizontal resolution of about 3 km over the Iberian Peninsula
and Central Europe (see the domains in Figure 1). Such a long
simulation period and high resolution were achieved in a timely
manner by avoiding the multiple nesting steps for dynamical
downscaling (Coppola et al., 2020; Ban et al., 2021).

The major added value of CPRCMs is a more realistic simulation
of cloud dynamics and land-atmosphere interactions with better
representation of heavy precipitations, especially in summer at mid-
latitude where convective phenomena play a major role (Prein et al.,
2015; Coppola et al., 2020; Pichelli et al., 2021). CPRCMs are
therefore best suited for investigations about extreme
precipitation events. Due to their fine resolutions, CPRCMs
better represent the climate over complex terrains with strong
spatial heterogeneities such as mountainous regions or coastlines,
and might then become the tool to provide high-resolution input
data for impact studies. Yet, these models have biases compared to
observations (Ban et al., 2021). These errors can arise due to a variety
of factors, such as incomplete knowledge of the physics of the
climate system or errors in the representation of key processes.
This complicates the direct use of CPRCMs data by impact modelers
who require realistic unbiased climate data. Bias correction is a
statistical technique that is used, and often considered a necessary
step (Christensen et al., 2008), to adjust for the model output to

FIGURE 1
Orographic maps of the two considered domains for the climate simulations with COSMO-CLM: the Iberian Peninsula (IP) on the left and Central
Europe (CE) on the right. The red border defines the Wallonia (Belgium) study case for the simulations with the dynamic vegetation models LPJ-GUESS
and CARAIB. The analysis is restricted only to the land points of both domains.
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better match observed data and improve the accuracy of climate
projections.

Among the several bias correction methods in use (e.g., linear
scaling, variance scaling, local intensity scaling, weather generators,
quantile mapping, delta-change approach) (Maraun, 2016; Maraun
andWidmann, 2018), we choose here a quantile-mapping approach
(ISIMIP3) (Lange, 2019) which has the advantage of correcting the
whole statistic of climate variables for each quantile and allows for a
more robust bias correction of extreme quantiles (Lange, 2021a;
Lange, 2021b).

Bias correction introduces, nevertheless, additional sources
of uncertainty due to intrinsic assumptions such as the
independence among climate variables, the type of transfer
function chosen for each variable, or the bias stationarity
across different climate conditions (Chen et al., 2011; Haerter
et al., 2011; Ho et al., 2012; Van de Velde et al., 2022). These
assumptions influence trends and consequently the climate
change signal (Buser et al., 2009; Ehret et al., 2012), especially
for absolute threshold-based climate indices (Dosio, 2016). At the
local scale bias correction can even introduce corrections which
can be larger than the signal itself (Hagemann et al., 2011; Maurer
and Pierce, 2014).

For the latter reasons, this work aims to better understand the
uncertainty of bias correction of high-resolution climate
simulations. We, namely, investigate the impact of bias
correction on climate change signals (CCSs) simulated by
CPRCM by comparing raw and bias-corrected changes in climate
variables such as seasonal precipitation, temperature, and climate
extremes. It is also pivotal to understand how the uncertainty of bias
correction propagates in impact models which make use of climate
simulations. It is known, per example, that simulated precipitation is
largely overestimated with respect to observations, a fact that can
produce unrealistic results in climate change impact studies
(Hagemann et al., 2013; Papadimitriou et al., 2016). This work
adds to this discussion by analyzing the impact of bias correction on
the CCS of vegetation variables simulated by two dynamic

vegetation models, namely, LPJ-GUESS and CARAIB.
Understand the impact of bias correction on projected changes
of climate and vegetation variables is ultimately important for an
open communication of risk assessment with stakeholders and
policymakers.

The objectives of this manuscript are, namely, the following.

(1) What is the impact of bias correction on the CCS of seasonal
temperature and precipitation?

(2) What is the impact of bias correction on the CCS of annual
climate extreme indices?

(3) What is the impact of bias correction on the CCS of annual
dynamic vegetation variables?

The structure of this manuscript is as follows: Section 2 presents
the methodology, namely, the models used for climate and dynamic
vegetation simulations, the statistical bias correction method, the
analyzed climate and dynamic vegetation variables, and the
statistical analysis to test the significance of climate changes. The
methodology is summarized in the flow chart shown in Figure 2.
Section 3 presents the results answering the three main questions of
this manuscript. Section 3.1, Section 3.2, and Section 3.3 address,
respectively, the first, second, and third objective of the manuscript.
In Section 4 the results are discussed in the framework of impact
model implications and the main conclusions and outlook are
presented in Section 5.

2 Materials and methods

The two study areas of our analysis are shown in Figure 1 and
cover the Central Europe (CE) domain (42.82°N—55.28°N;
1.57°E—17.88°E) and the Iberian Peninsula (IP)
(34.34°N—46.80°N; 14.5°W—4.01°E). The IP domain includes
Spain, Portugal and part of southwestern France. The CE domain
includes Belgium, the Netherlands, Luxembourg, Germany,

FIGURE 2
Flow chart summarizing the methodology. In the first step EVAL and SCEN climate simulations are performed by dynamically downscaling CCLM
from the ERA5 reanalysis and the MPI-ESM GCM model, respectively. In the second step the ISIMIP3 method was used to bias correct SCEN based on
EVAL. In the third step the climate change signal for climate and vegetation variables was computed from both bias-corrected and non-bias-corrected
SCEN simulations. The vegetation metrics are the output variables from LPJ-GUESS and CARAIB forced by both bias-corrected and uncorrected
climate simulations.
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Switzerland, Austria, northern Italy, eastern France, Slovenia,
northern Croatia, Czechia, and western Poland.

The climate in these two regions is heterogeneous. The southern
part of CE is influenced by the Mediterranean climate with mild and
wet winters, and hot summers according to the Köppen-Geiger
climate classification (Beck et al., 2018). The central and northern
part of CE is characterized by the interaction between maritime and
continental air masses such that the climate ranges from temperate
in the west to cold in the east. Summers are warm with lower
temperatures than in southern CE. The IP domain has a complex
orography with several mountainous regions and due to its location
in a transition zone between extratropics and subtropics, it is
influenced by both Atlantic and Mediterranean climates.
Northern IP has a temperate climate similar to the western part
of CE with warm summers and without a dry season. The western
and southern parts of IP have a Mediterranean temperate climate
with dry and warm-to-hot summers. Central IP is instead more arid
and dominated by xeric Mediterranean shrub vegetation.

2.1 Models simulations

2.1.1 Climate model simulations
Table 1 lists the climate model simulations conduced in this

study over CE and IP. We have, namely, performed
convection-permitting climate simulations, at a daily
temporal resolution, by mean of the limited-area COSMO-
CLM (herein abbreviated as CCLM) v5.16 model (Rockel et al.,
2008; Baldauf et al., 2011).

The evaluation simulations (EVAL) were conducted for the
period 1979–2020 and driven by the ERA5 data which are global
reanalysis data provided by the European Center for Medium-range
Weather Forecast (ECMWF). ERA5 data have a time resolution of
1 h and an horizontal resolution of 0.25° (~30 km) (Hersbach et al.,
2018).

The scenario simulations (SCEN) were forced by the output data
of the Max-Planck-Institute Earth SystemModel (MPI-ESM) model
in the low resolution (LR) configuration, and cover a transient
climatological period from 1979 to 2070. These GCM forcing data
have a grid spacing of 200 km (150 km) in the atmosphere (ocean)
and were provided within the framework of the Coupled Model
Intercomparison Project phase 5 (CMIP5) (Giorgetta et al., 2013;
Mauritsen et al., 2019). The historical experiment of
CMIP5 provides global climate data until 2005, while the data
from 2006 to 2070 have been obtained from the
RCP8.5 experiment of CMIP5, which provides future climate
projections under the RCP8.5 scenario (Giorgetta et al., 2012a;
Giorgetta et al., 2012b). This scenario corresponds to a high
radiative forcing (and concentration) pathway reaching more

than 8.5 W/m2 at the end of the 21st century (Meinshausen
et al., 2011; Riahi et al., 2011; Vuuren et al., 2011).

Both ERA5 reanalysis data and GCM data from MPI-ESM have
been directly downscaled with CCLM to a convection-permitting
horizontal resolution of approximately 3 km leading to the EVAL
and SCEN simulations, respectively. This first step is summarized on
the left of the flow chart in Figure 2. For analysis, the year 1979 was
discarded as spin-up year. CCLM is based on the fully compressible,
non-hydrostatic thermodynamic equations in a moist atmosphere
(Steppeler et al., 2003). These equations are numerically integrated
on a Arakawa-C staggered grid (Arakawa and Vivian, 1977) in
rotated coordinates with a Runge-Kutta RK3 time-splitting scheme
(Wicker and Skamarock, 2002). The model uses a vertical terrain-
following height coordinate (Doms and Baldauf, 2021). The
precipitation is parameterized by a one-moment microphysics
scheme which includes five categories of hydrometeors, i.e.,
cloud, rain, snow, ice and graupel (Doms et al., 2021), and soil
processes are resolved by the multi-layer soil model TERRA-LM
(Schulz and Vogel, 2020; Schrodin and Heise, 2001). Shallow
convection is parameterized using a modified Tiedtke
parameterization (Tiedke, 1989). The radiative transfer scheme is
based on Ritter and Geleyn, 1992, and a turbulent kinetic energy-
based surface transfer and planetary boundary layer
parameterization have been used (Raschendorfer, 2001). The
land-use classes are described by ECOCLIMAP (Masson et al.,
2003; Champeaux et al., 2006) and the soil type and depth by
HWSD TERRA (Smiatek et al., 2008).

2.1.2 Dynamic vegetation model simulations
Simulations with the dynamic vegetation model LPJ-GUESS

(v.4.1) (Smith, 2001; Smith et al., 2014) and CARAIB (Warnant
et al., 1994; Dury et al., 2011; Dury et al., 2018) were forced by the
climate SCEN simulations (uncorrected and bias corrected) over the
representative site of Wallonia in Belgium, see Figure 1.

Vegetation in LPJ-GUESS was simulated as potential natural
vegetation with species-specific parameterization including the most
common European tree species as well as typical shrub Plant
Functional Types (PFTs), with a standard setup (Hickler et al.,
2012). Nitrogen deposition input data were taken from (Tian et al.,
2018).

The CARAIB model was set up to be as close as possible to the
parameters of LPJ-GUESS. Vegetation in CARAIB is simulated as
potential natural vegetation with the most common tree species in
Wallonia. A 100-year spin-up is considered to reach equilibrium in
the carbon pools and the climate data prior to 1980 were taken from
the Global Soil Wetness Project Phase 3 (GSWP3) (Dirmeyer et al.,
2006).

In both models the atmospheric CO2 concentration data for
(1900–2070) were taken fromMeinshausen et al., 2011, and soil data

TABLE 1 List of climate model simulations conducted in this study. The year 1979 is considered as spin-up.

Symbol Atmospheric model Soil model Domain Resolution Forcing data Time period

EVAL COSMO-CLM TERRA-ML CE, IP daily, 0.0275° (~3 km) ERA5 1979–2020

SCEN COSMO-CLM TERRA-ML CE, IP daily, 0.0275° (~3 km) MPI-ESM-LR historical 1979–2005

SCEN COSMO-CLM TERRA-ML CE, IP daily, 0.0275° (~3 km) MPI-ESM-LR RCP8.5 2006–2070
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were derived by aggregating the harmonized world soil database
(Fischer et al., 2008). Since the simulated productivity of vegetation
models is highly affected by solar radiation (Li et al., 2015), we used
the raw solar radiation data in both simulations to investigate the
influence of bias correction of temperature and precipitation on the
output variables of LPJ-GUESS and CARAIB.

2.2 Statistical bias correction

Usual bias correction methods imply a statistical adjustment of
climate simulation data in order to reduce deviations from
observations. This adjustment is normally performed over a
training historical period, typically of 30 years or longer, where
observational data are available. For this study we have decided to
apply a novel approach by using observation-based simulations
instead of observational data as convection-permitting
simulations are in the range of observational errors (Ban et al.,
2021). We have, namely, bias corrected the scenario simulations on
daily scale based on the evaluation simulations as schematically
represented in the second step of the flow chart in Figure 2. Zhang
and Tölle, 2021, have evaluated EVAL with respect to the HYRAS
observational dataset over Germany (Razafimaharo et al., 2020), and
they concluded that both spatial patterns and variability of daily
precipitation and mean temperature are well represented by the
evaluation simulations.

This approach has two advantages: first, both EVAL and SCEN
have the same horizontal resolution such that they can be compared
grid-cell-by-grid-cell without introducing uncertainties associated
to statistical downscaling to the same grid spacing; second, the
comparison is physically consistent since both simulations integrate
deep-convection phenomena and share the same model
configuration of CCLM.

The chosen statistical bias correction algorithm is the one
provided within the Inter-Sectoral Impact Model
Intercomparison Project phase 3 (ISIMIP3) (v2.5) (Lange, 2019;
Lange, 2021b). The method is based on both parametric and non-
parametric quantile mapping approach (Piani et al., 2010), which (i)
adjusts biases in all percentiles of a distribution and (ii)
approximately preserves trends in these percentiles. The method
is independently applied to each variable (i.e., univariate bias
correction), grid cell and calendar month. In particular, daily
precipitation PR and mean temperature T are directly bias-
corrected, whereas daily minimum TN and maximum TX
temperature are indirectly corrected through daily temperature
range Trng = TX − TN and skewness Tsk = (T − TN)/Trng. This
procedure guaranties that relative errors for TN and TX have the
same order of magnitude as for T (Piani et al., 2010).

In this section we refer to xobs
hist and xsim

hist as, respectively, the
EVAL and SCEN in (1980–2020) for one climate variable, grid point
and specific calendar month. For the same variable, grid point and
month, xsim

fut and ysim
fut refer, respectively, to SCEN in (2021–2070)

and corresponding bias-adjusted simulations. The ISIMIP3 method
does not require that the future application period must be of the
same length as the historical training period since the algorithm, as
described below, is based on transfer functions. After training over
the historical period, the bias correction was applied to the future
period. Fobs/sim

p (x) and F̂
obs/sim
p (x) are the non-parametric (i.e.,

empirical) and parametric (i.e., fitted) cumulative distribution
functions in the period “p”, respectively. The inverse function of
F(x) (F̂(x)) is the quantile function Q(p) (Q̂(p)) such that, if p =
F(x) is the cumulative probability for the value x then x = Q(p).

First, pseudo future observations are generated, xobs
fut , by

transferring the simulated CCS between xsim
hist and xsim

fut to xobs
hist.

This is achieved by using a non-parametric transfer function for
every distribution quantiles rendering, therefore, the bias correction
method trend-preserving in all quantiles.1 Different trend
preservation is applied to different climate variable as specified in
Supplementary Table S1 in the Supplementary Material: it can be an
additive trend preservation as for T, a multiplicative trend
preservation or a combination of both as for PR and Trng. For
bounded variables like Tsk the trends are transferred respecting the
bounds.

Pseudo future observations obeying additive trend preservation
are generated via the following transformation

x′ � x + Δadd p( ), Δadd p( ) � Qsim
fut p( ) − Qsim

hist p( ). (1)
The transformation for multiplicative trend preservation reads

x′ � xΔmul p( ), Δmul p( ) � max 0.01, min 100,Δmul* p( ){ }{ },
(2)

where

Δmul* p( ) � 1 if Qsim
hist p( ) � 0,

Qsim
fut /Qsim

hist if Qsim
hist p( ) ≠ 0,

{ (3)

such that the relative simulated CCS,Qsim
fut /Q

sim
hist, is transferred to x

obs
hist

with Δmul(p) bounded between 0.01 and 100. Eq. 2 can produce very
large unrealistic values of x′ in case of very large negative simulation
biases, namely, when xobs

hist ≫ xsimhist. To avoid such circumstances,
pseudo future observations for PR and Trng are obtained through a
combination of Eqs 1, 2 according to

x′ � γ p( ) xΔmul p( ) + 1 − γ p( )( ) x + Δadd p( )( ), (4)
where

γ p( ) � 1 if Qsim
hist p( )≥Qobs

hist p( ),
1/2 + 1/2 cos π/8 Qobs

hist/Qsim
hist − 1( )( ) if Qsim

hist p( )<Qobs
hist p( )< 9Qsim

hist p( ),
0 if Qobs

hist p( )≥ 9Qsim
hist p( ).

⎧⎪⎪⎨⎪⎪⎩
(5)

The function γ(p) smoothly interpolates between a multiplicative
trend preservation in case of positive simulation biases and additive
trend preservation for large negative biases.

For bounded variables such as Tsk, the trend transfer function
reads

x′ �
Qsim

fut if Qobs
hist p( ) � Qsim

hist p( ),
a + x − a( ) · Qsim

fut − a( )/ Qsim
hist − a( ) if Qsim

fut p( )≤Qsim
hist p( )>Qobs

hist p( ),
b − b − x( ) · b − Qsim

fut( )/ b − Qsim
hist( ) if Qsim

fut p( )≥Qsim
hist p( )<Qobs

hist p( ),
x + Qsim

fut − Qsim
hist otherwise,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(6)

which preserves the a and b bounds.

1 For variables with at least one bound, the trend transfer is restricted to
values within threshold. This allows to avoid that trend transfer turns, e.g.,
many dry days into wet days thus profoundly modifying the distribution of
pseudo future wet-day precipitation. This choice helps to improve trend
preservation of wet-day precipitation intensity (Lange, 2021a).
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The second step consists of a parametric quantile mapping to
bias adjust future simulations xsim

fut to pseudo future observations
xobs
fut , and historical simulations xsim

hist to observations xobs
hist.

2 The
distributions used for this parametric quantile mapping are the
Gaußian distribution for T, the gamma distribution for PR, and the
Weibull distribution for Trng. The variables with both upper and
lower bounds, such as Tsk, are instead bias adjusted by using a non-
parametric (i.e., empirical) quantile mapping.3

For the variable T, the bias correction at each quantile is
obtained by applying a transfer function f(x) to, e.g., xsim

fut such
that the fitted cumulative distribution function for xsim

fut equals the
one for xobs

fut as

ysim
fut � f xsim

fut( ) � F̂
obs−1

fut ◦F̂
sim

fut xsim
fut( ), F̂

sim

fut xsim
fut( ) � F̂

obs

fut ysim
fut( ).

(7)
In case of an exact match between fitted and empirical cumulative
distribution functions, the bias-corrected values ysim

fut would be equal
to the pseudo future observations xobs

fut . For the other considered
variables, the quantile mapping is more involved since, in addition to
biases in every quantiles, it also adjusts biases in the likelihood of
individual events, similar to the scaled distribution mapping method
introduced in (Switanek et al., 2017). In this case the bias-corrected
future simulations are obtained through the transfer function
defined via Eqs 10–14 in (Lange, 2019), which we do not report
here for simplicity. For further technicalities of the ISIMIP3 method
such as the conditional detrend for T, the randomization of values
beyond thresholds, and the use of running windows we refer the
reader to (Lange, 2019; Lange, 2021a).

2.3 Analyzed model output variables

The analyzed climate and vegetation variables are summarized
in the third step of the flow chart in Figure 2.

2.3.1 Analyzed climate variables
2.3.1.1 Seasonal temperature and precipitation

Temperature and precipitation have been analyzed in their
seasonal mean values and seasonal CCSs for both non-bias-
corrected (nBC) and bias-corrected (BC) scenario simulations.
Hereafter we will refer to the differences between BC and nBC
results as statistical biases or simply biases. Let Tij, TNij, TXij be the
daily mean, minimum, maximum temperature on day i in a year j,
respectively, and PRij the daily total precipitation amount. The
seasonal mean value of, e.g., a temperature metric X = (T, TN,
TX) in a period “p” is

〈〈 �Xij〉j ∈ p〉i∈season, (8)

where �X is the spatial mean over the land points of CE or IP
and the brackets 〈/ 〉 correspond to the temporal mean value.
The following three 30-year climatological periods are
assumed

base: j ∈ 1981 − 2010( ),
mid future: j ∈ 2021 − 2050( ),
far future: j ∈ 2041 − 2070( ), (9)

where the base period includes years belonging to the historical
and part of the RCP8.5 simulations of SCEN. This choice is
justified by the fact that the training historical period—identified
by the label “hist” in Section 2.2—used in the statistical bias
correction method is 1980–2020. This training period serves
therefore as reference period.

The seasonal CCS for temperature is computed as difference
between the mean over a future period and the mean over the base
period

〈〈Xij〉j ∈ future〉i∈season − 〈〈Xij〉j ∈ base〉i∈season. (10)
For precipitation, we consider both relative as well as absolute
seasonal differences with respect to the base period.

100 〈〈PRij〉j ∈ future〉i∈season − 〈〈PRij〉j ∈ base〉i∈season( )/
〈〈PRij〉j ∈ base〉i∈season, (11)

1
30

∑
i∈season

〈PRij〉j∈future − 〈PRij〉j∈base( ), (12)

Where the factor 1/30 averages over the duration (in years) of base
and future period.

2.3.1.2 Climate extreme indices
We additionally analyzed extreme events by computing the

ETCCDI indices—introduced by the Expert Team on Climate
Change Detection and Indices (Peterson et al., 1998; Karl et al.,
1999)—which describe moderate to extreme aspects in daily
temperature and precipitation statistics. These indices have been
extensively used to study changes of extreme weather in
observational data (Frich et al., 2002; Kiktev et al., 2003; Alexander
et al., 2006; Min et al., 2011; Morak et al., 2011), model simulations of
historical climate (Sillmann et al., 2013a) and for future climate
projections as well (Sillmann and Roeckner, 2007; Tebaldi et al.,
2007; Sillmann et al., 2013b; Rajczak and Schär, 2017; Putra et al.,
2020; Wei et al., 2022).

Table 2 and Supplementary Figure S2 show the list of analyzed
extreme indices with the corresponding definitions.
Precipitation-dependent indices are computed from PRij

whereas temperature-dependent indices are computed from
Tij, TNij, or TXij. Some of these indices, such as warm/cold
days and nights, are based on percentile thresholds rather
than absolute thresholds. The advantage of percentile
threshold-based indices is that they represent, at each location,
the same part of the probability distribution function and are
therefore more representative over larger regions with complex
topography and/or different climatological conditions
(Radinović and Ćurić, 2011).

We computed the whole set of indices for each year from 1980 to
2070 at each grid point of the two study domains. Given the annual
time series Ij for the index I we analyzed the inter-annual

2 In case of variables with at least one bound, a preliminary bias correction of
the frequencies of values beyond the thresholds α and/or β is required. The
parametric quantile mapping is subsequently applied to the remaining
values within thresholds (Lange, 2019; 2021a).

3 The previously used beta distribution in the parametric bias correction of
upper and lower bounded variables was suffering by occasionally fit
instability (Lange, 2021a).
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variability of �Ij and the spatial distribution of the climate change
signals.

CCS[I]mid−base � 〈Ij〉mid−future − 〈Ij〉base, (13)
CCS[I]far−base � 〈Ij〉far future − 〈Ij〉base. (14)

2.3.2 Analyzed vegetation variables
We additionally investigated the influence of bias correction

on the CCS of two dynamic vegetation variables, i.e., carbon mass
(cmass) and net primary productivity (NPP). With CARAIB, we

investigated also the annual water stress mortality (Mw)
coefficient which expresses the percentage of total biomass
subject to water stress mortality. As a representative case we
considered the site of Wallonia in Belgium, see Figure 1.

2.4 Test of significance of climate change
signals

We use the statistical non-parametric two-tailed Wilcoxon-
Mann-Whitney test to determine if there is a statistically

TABLE 2 List of analyzed extreme indices as recommended by the ETCCDI. TNij, TXij, and Tij represent, respectively, the daily minimum, maximum, and mean
temperatures on day i in the year j. I andW are the total number of days and wet days in the year j, respectively. The base period b has been chosen as the 30-year
reference period (1981–2010).

Symbol Index name Index definition Unit

TN10p Cold nights 100/I ·∑ii: TNij < TNib10 where TNib10 is the calendar 10th percentile centered on a 5-day window for the base period b %

TX10p Cold days 100/I ·∑ii: TXij < TXib10 where TXib10 is the calendar 10th percentile centered on a 5-day window for the base period b %

TN90p Warm nights 100/I ·∑ii: TNij > TNib90 where TNib90 is the calendar 90th percentile centered on a 5-day window for the base period b %

TX90p Warm days 100/I ·∑ii: TXij > TXib90 where TXib90 is the calendar 90th percentile centered on a 5-day window for the base period b %

WSDI Warm spell duration Count the number of days in year j where, in intervals of at least 6 consecutive days, TXij > TXib90 day

CSDI Cold spell duration Count the number of days in year j where, in intervals of at least 6 consecutive days, TNij < TNib10 day

TXx Max of TX maxi(TXij) °C

TXn Min of TX mini(TXij) °C

TNx Max of TN maxi(TNij) °C

TNn Min of TN mini(TNij) °C

FD Frost days ∑ii: TNij < 0 °C day

ID Ice days ∑ii: TXij < 0 °C day

SU Summer days ∑ii: TXij > 25 °C day

TR Tropical nights ∑ii: TNij > 20 °C day

GSL Growing season length Annual count of days between the first occurrence of at least 6 consecutive days with Tij > 5 °C and the first occurrence,
after the 1st of July, of at least 6 consecutive days with Tij < 5 °C

day

DTR Diurnal temperature range ∑I
i�1(TXij − TNij)/I °C

RX1day Max 1 day precipitation maxi(PRij) mm

RX5day Max 5 days precipitation maxk(PRkj) where PRkj � ∑k+2
i�k−2PRij mm

SDII Simple daily intensity (∑W
w�1PRwj)/W : PRwj > 1mm mm

R1mm Number of wet days ∑ii: PRij > 1 mm day

R10 mm Heavy precipitation days ∑ii: PRij > 10 mm day

R20 mm Very heavy precipitation
days

∑ii: PRij > 20 mm day

CDD Consecutive dry days Maximum number of consecutive days where PRij < 1 mm day

CWD Consecutive wet days Maximum number of consecutive days where PRij > 1 mm day

R95p Very wet days ∑W
w�1PRwj : PRwj >PRwb95 where PRwb95 is the 95th percentile on wet days over the base period b mm

R99p Extremely wet days ∑W
w�1PRwj : PRwj >PRwb99 where PRwb99 is the 99th percentile on wet days over the base period b mm

PRwetTOT Total wet-day precipitation ∑W
w�1PRwj : PRwj > 1mm mm
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significant change in climate variables (i.e., temperature,
precipitation, extreme indices). This test is also known as the
Mann-Whitney U test (Storch and Zwiers, 1999). It assess the
significance of differences between two data sets representing the
base and a future time periods. The test is based on the null
hypothesis that there is no difference between the two groups
being compared. It does not assume any particular distribution of
the data, making it suitable for non-normal or skewed data often
encountered in climate science. The test assigns ranks to the
combined data from both groups and calculates the sum of the
ranks for each group. The test statistic, U, represents the rank-
sum of one group relative to the other. If the p-value is below a
predetermined significance level (in this manuscript we use 0.05),
the null hypothesis is rejected, indicating that there is a
significant difference between the two groups in terms of the
climate variable being studied.

3 Results

When presenting the spatial distribution of the CCSs for
temperature, precipitation, and climate extreme indices we
consider only those grid-points characterized by significant
changes. The areas associated to non-significant changes are
colored in gray whereas the full spatial distributions are shown in
the Supplementary Material. For all tables showing the spatial mean
CCSs of climate and vegetation variables, we report the
corresponding p-value. Non-significant mean changes are
highlighted in gray.

3.1 Impact of bias correction on climatic
seasonal temperature and precipitation

3.1.1 Seasonal temperature
3.1.1.1 Mean seasonal values

The seasonal cycle of daily mean temperature over CE (IP) for
the base period (1981–2010) is shown in the upper (lower) row of
Figure 3, where a direct comparison between evaluation simulations
and scenario simulations is provided. The left panels show the
monthly mean values whereas the middle and right panels show
the time Probability Distribution Functions (t-PDFs) of daily mean
temperatures for winter (DJF) and summer (JJA), respectively. The
differences between raw and bias-corrected model data with
“observations” on spatial distribution in the historical period are
provided in the Supplementary Material, see Supplementary Figures
S3–S5.

The monthly mean temperatures obtained from the SCEN
simulations become closer in magnitude to the values computed
from EVAL after bias correction, with maximum differences of ±0.3
°C for CE and ±0.2 °C for IP, see left panels in Figure 3. The t-PDFs in
summer for the BC simulations are in fact shifted towards higher
temperatures with a good overlap with the t-PDFs for EVAL. This
shift is particularly pronounced in the upper tail of the probability
distribution for CE. Opposite situation occurs in winter, which
becomes cooler after bias correction with a shift towards lower
temperatures of the t-PDFs. This shift is less pronounced in IP than
CE. Similar conclusions can also be drawn for TN and TX as shown,
respectively, in Supplementary Figure S1 and Supplementary Figure
S2 in the Supplementary Material.

FIGURE 3
Season cycle of daily mean temperature T for Central Europe (upper row) and the Iberian Peninsula (lower row) over the base period (1981–2010).
The left panels show the monthly mean values for bias-corrected (BC) and non-bias-corrected (nBC) scenario simulations (SCEN) as well as for
evaluation simulations (EVAL). The middle and right panels represent the time probability distribution functions in winter (DJF) and summer (JJA),
respectively.
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Supplementary Table S3 reports the seasonal mean values for
T, TN and TX in the three climatological periods over CE and IP
for both raw and bias-corrected scenario simulations. The winter
mean temperature values in CE are reduced after bias
correction by about range − 1.3–1.1 °C in all periods while the
reduction of winter mean temperatures in IP is less pronounced
ranging within −0.9 ÷ 0 °C. Only the winter mean value of TX in
IP is not affected by bias correction, which is in agreement with
the nearly unchanged t-PDF of TX in DJF shown in
Supplementary Figure S2. In summer, the mean temperature
values are higher in the BC simulations compared to the raw
climate simulations. The mean warm bias in summer is within 0.8
÷ 2.7 °C in CE and 0.4 ÷ 1.9 °C in IP with the warmest bias for TX.
Bias correction introduces a warm bias also in spring/autumn in
IP for all temperature metrics. In CE bias correction increases TX

and decrease TN in spring/autumn by about half a degree Celsius
with nearly no impact for T.

3.1.1.2 Mean seasonal CCSs
Despite the presence of biases in the absolute mean seasonal

temperature values, the impact of bias correction on the mean
seasonal CCSs is negligible as the difference between raw and
bias corrected mean changes does not exceed 0.1 °C in all
seasons, temperature metrics, and both domains. This is shown
in Table 3 where the mean and standard deviation for the seasonal
CCSs of temperature metrics in both domains is reported.

Table 3 shows that under RCP8.5 scenario, seasonal
temperatures are projected to increase with a stronger warming
in the far future period than mid-future. Over the CE domain,
summer and autumn will experience the strongest warming across

TABLE 3 Mean ± sd (standard deviation) for the spatial distribution of changes CCSmid-base and CCSfar-base for the metrics T, TN, and TX for winter (DJF), spring
(MAM), summer (JJA), and autumn (SON) over both domains. Results are rounded to the precision of 0.1 °C and computed for both nBC and BC scenario simulations.
The p-value of the two-tails Wilcoxon-Mann-Whitney test shows the significance of mean changes: non-significant mean CCSs (p-value >0.05) are highlighted in
bold.

Dom CCS DJF MAM JJA SON Unit

nBC BC nBC BC nBC BC nBC BC

CE CCS[T]mid-base 0.4 ± 0.2 0.4 ± 0.2 0.7 ± 0.1 0.7 ± 0.1 1.1 ± 0.2 1.0 ± 0.3 1.1 ± 0.2 1.1 ± 0.1 °C

p-value 0 0 0 0 0 0 0 0 –

CE CCS[T]far-base 1.4 ± 0.2 1.4 ± 0.2 1.2 ± 0.2 1.2 ± 0.2 1.9 ± 0.5 2.0 ± 0.5 2.1 ± 0.2 2.1 ± 0.2 °C

p-value 0 0 0 0 0 0 0 0 –

CE CCS[TN]mid-base 0.5 ± 0.2 0.5 ± 0.2 0.7 ± 0.1 0.7 ± 0.1 1.1 ± 0.2 1.0 ± 0.2 1.0 ± 0.1 1.0 ± 0.1 °C

p-value 0 0 0 0 0 0 0 0 –

CE CCS[TN]far-base 1.5 ± 0.2 1.5 ± 0.2 1.2 ± 0.1 1.2 ± 0.1 1.8 ± 0.4 1.8 ± 0.4 2.0 ± 0.2 2.0 ± 0.2 °C

p-value 0 0 0 0 0 0 0 0 –

CE CCS[TX]mid-base 0.4 ± 0.2 0.4 ± 0.2 0.6 ± 0.2 0.5 ± 0.2 1.1 ± 0.3 1.1 ± 0.3 1.1 ± 0.2 1.1 ± 0.2 °C

p-value 0 0 0 0.09 0 0 0 0 –

CE CCS[TX]far-base 1.4 ± 0.2 1.4 ± 0.2 1.1 ± 0.3 1.1 ± 0.4 2.1 ± 0.6 2.1 ± 0.6 2.3 ± 0.3 2.3 ± 0.3 °C

p-value 0 0 0 0 0 0 0 0 –

IP CCS[T]mid-base 0.8 ± 0.1 0.8 ± 0.1 0.9 ± 0.2 0.9 ± 0.2 1.4 ± 0.3 1.4 ± 0.3 1.5 ± 0.2 1.5 ± 0.2 °C

p-value 0 0 0 0 0 0 0 0 –

IP CCS[T]far-base 1.5 ± 0.2 1.6 ± 0.2 1.5 ± 0.4 1.5 ± 0.4 2.5 ± 0.3 2.5 ± 0.3 2.5 ± 0.2 2.5 ± 0.2 °C

p-value 0 0 0 0 0 0 0 0 –

IP CCS[TN]mid-base 0.8 ± 0.1 0.8 ± 0.1 0.7 ± 0.2 0.6 ± 0.1 1.3 ± 0.3 1.2 ± 0.3 1.3 ± 0.2 1.3 ± 0.2 °C

p-value 0 0 0 0 0 0 0 0 –

IP CCS[TN]far-base 1.5 ± 0.2 1.5 ± 0.2 1.2 ± 0.2 1.2 ± 0.2 2.2 ± 0.3 2.2 ± 0.3 2.2 ± 0.2 2.1 ± 0.2 °C

p-value 0 0 0 0 0 0 0 0 –

IP CCS[TX]mid-base 0.9 ± 0.1 0.9 ± 0.1 1.1 ± 0.4 1.1 ± 0.4 1.6 ± 0.4 1.6 ± 0.4 1.7 ± 0.2 1.8 ± 0.2 °C

p-value 0 0 0 0 0 0 0 0 –

IP CCS[TX]far-base 1.6 ± 0.2 1.6 ± 0.2 1.9 ± 0.6 1.9 ± 0.6 2.8 ± 0.4 2.9 ± 0.4 2.8 ± 0.2 2.9 ± 0.3 °C

p-value 0 0 0 0 0 0 0 0 –
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all seasons with a far future increase of all temperature metrics
between 1.8 ÷ 2.3 °C, while the far future warming in winter and
spring ranges within 1.1 ÷ 1.5 °C. The increase of temperatures over
the Iberian Peninsula is stronger than in CE with also summer/
autumn seasons more affected than winter/spring. The far future
increase of temperatures over IP is about 2.2 ÷ 2.8 °C in summer/
autumn and 1.2 ÷ 1.9 °C in winter/spring.

3.1.1.3 Spatial variability of seasonal CCSs
Figure 4 shows the spatial patters of the seasonal CCSs for TX

between far future and base period. The CCS is statistical significant
in all grid-points and seasons.

The warming of TX in CE is characterized by a general south-
north gradient across all seasons with stronger warming in the
southern regions. This gradient is particular emphasized in summer
where the warming ranges from 1.2 °C in northern CE to 3.6 °C in
southeastern France with peak values of 4.6 °C (out of the color
scale) over the Alps. The Alps feature the strongest warming within
the CE domain also in spring and autumn with an increase of TX by
more than 2 °C and 3 °C, respectively.

The CCS for TX in winter over IP shows an orographic
dependence with the strongest warming (within 2.2 ÷ 3 °C) over
the Pyrenees and Baetic System in southern Spain. The warming of
TX in spring has a south-north gradient ranging from 1 °C in

southwestern France and Spanish Atlantic coast to 3 °C in southern
Spain. The increase of TX in summer and autumn in IP is generally
lower along the coastal areas than in the hinterland. The highest CCS
in JJA is of 3.4 °C in limited areas in central eastern Spain while the
highest CCS in SON is of 3.2 °C in southern Spain.

The local biases on the seasonal far future CCSs are generally
negligible ranging within ±0.2 °C in both domains. Bias correction
slightly enhances the warming of TX in summer and autumn over
CE, and in all seasons over IP. The highest biases have been found in
spring over the Pyrenees and Maritime Alps, where the warming is
enhanced by 0.3 °C and in summer over the western and central
Alps, where bias-corrected CCS is higher by approximately 0.5 °C.

Supplementary Figure S3 and Supplementary Figure S4 in the
Supplementary Material show the spatial patters of the far future
seasonal CCSs for daily mean and minimum temperatures,
respectively. All differences are statistical significant. The
warming of TN is lower than TX over both domains, indicating
that changes in the upper tail of temperature distribution are larger
than changes in the lower tail. Similarly to TX, the seasonal CCSs of
T and TN are larger over high mountainous regions and the
warming of T and TN in summer is characterized by a south-
north gradient in CE. The impact of bias correction on the seasonal
CCSs of T and TN is negligible ranging within ±0.15 °C across both
domains.

FIGURE 4
Spatial distributions of seasonal climate change signals (CCSs) between (2041–2070) and (1981–2010) for daily maximum temperature TX over the
Iberian Peninsula (left panels) and Central Europe (right panels). The CCSs are computed for the bias-corrected (BC) and non-bias-corrected (nBC)
scenario simulations (SCEN). Biases are measured as differences between BC and nBC results. The CCS at every grid points is significant (p-value ≤0.05).
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3.1.2 Seasonal precipitation
3.1.2.1 Mean seasonal values

Figure 5 shows the seasonal cycle (left panels) as well as the time
probability distribution function in winter and summer (middle and
right panels, respectively) for daily precipitation sum over CE (upper
row) and IP (lower row) for the base period (1981–2010). The
differences between raw and bias-corrected model data with
“observations” on spatial distribution in the historical period are
provided in the Supplementary Material, see Supplementary
Figure S6.

The raw SCEN simulations overestimate monthly mean
precipitation by a factor of 1.4÷2.5 with respect to EVAL, see the
left panels in Figure 5. Bias correction not only reduces the absolute
amount of rainfall but also adjusts the inter-monthly variability
especially for CE with peak values in May-June, see upper left panel
in Figure 5. After bias correction the monthly mean daily
precipitation of SCEN are similar in magnitude to the values of
EVAL; yet small differences within −12 ÷ + 4% for CE and −14 ÷ +
11% for IP are still present. Due to the reduction in magnitude of PR
after bias correction, the t-PDFs are squeezed toward lower
precipitation values with a consequent increase in the frequency
of low-intensity precipitations, see middle and right panels of
Figure 5. Bias correction thus increases the frequency of dry
events in agreement with the EVAL simulations.

The reduction in magnitude of precipitation due to bias
correction also holds for the future periods as reported in
Supplementary Table S4, which shows the seasonal daily mean
values of PR for both domains and both raw and corrected
scenario simulations. In Central Europe, the simulated daily
precipitation amounts are reduced by about −45 ÷ − 37% and in
IP by approximately −55 ÷ − 40% after bias correction. The strongest

impact of bias correction on the magnitude of precipitation is in
winter for both domains.

3.1.2.2 Mean seasonal CCSs
Table 4 shows the spatial distribution properties (mean and

standard deviation) of the seasonal CCSs for PR computed over the
land points where the mean daily precipitation in the base period is
above 1 mm/day in order to exclude drizzle. The CCS is computed
both as relative and absolute difference with respect to the base
period according to Eqs 11, 12.

In Central Europe, precipitation is projected to significantly
increase by about 8% in winter in the far future in the BC
simulations. Contrary to this, summer precipitation in CE is
projected to significantly decrease by about −8% and −5% in the
far future in the nBC and BC simulations, respectively.

Over the Iberian Peninsula, precipitation is projected to
significantly decrease in spring, summer, and autumn in both
nBC and BC simulations. The uncorrected simulations project,
namely, a far future reduction of rainfalls over IP by about
−64 mm/year (−22%) in spring, −34 mm/year (−19%) in summer,
and −43 mm/year (−14%) in autumn.

The impact of bias correction on the relative mean seasonal
changes in precipitation is small over both domains. In particular the
projected decrease of summer precipitation over CE (IP) is reduced
in absolute value by about 34)% after bias correction due to a small
wet, i.e., positive, bias contribution.

3.1.2.3 Spatial variability of seasonal CCSs
Figure 6 shows the spatial patterns of significant seasonal

changes in precipitation over both domains for the far future
period. The gray areas are characterized by non-significant

FIGURE 5
As in Figure 3 but for daily precipitation sum PRij.
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changes, whereas the stippled areas correspond to those grid points
with a mean daily precipitation in the base period below the dry/wet
threshold of 1 mm/day. Supplementary Figure S16 shows the far
future seasonal CCSs of precipitation at all grid points.

Northern and southern Spain are characterized by a significant
reduction of winter precipitations with stronger decreases of −28%
in southeastern Spain. A significant increase in winter precipitations
of about 30% is simulated over few areas in eastern Austria and
northeastern Spain.

Spring precipitations are projected to significantly decrease
across the whole IP domain with strongest CCSs in eastern Spain
of about −50 ÷ − 40% (out of the color scale). On contrary
simulations over CE suggest a significant increase of precipitation
in MAM in northern/central Germany and Poland (with highest
values about 20 ÷ 30%) and a significant decrease in northern Italy
(with lowest values of about −30%).

In summer, the precipitation is projected to significantly
decrease over most of the CE domain and in northern IP. The
dry regions in southern/central IP (stippled area in Figure 6)
remain dry also in the far future due to further significant
decreases in precipitation. The strongest significant decrease of
summer precipitation lower than −30% is simulated in
northwestern IP and southeastern CE. On contrary, a
significant increase of summer precipitation up to 20% is
projected in western Poland.

Autumn precipitation is projected to significantly decrease
across most of the IP domain with the lowest values of about
−40% in southwestern IP. Few areas in eastern Spain exhibit a
significant increase up to 40% in autumn precipitation. The decrease
of autumn precipitation in northern CE is also significant but less
severe than IP and not lower than −20%. A small significant increase

of autumn precipitation in CE is simulated in Germany, Poland, and
Austria over mountainous regions.

Bias correction mostly introduces a wet (positive) contribution,
which locally does not exceed 12%. Small dry biases, instead, are
found in western IP during spring and autumn. The stippled area in
IP obtained from BC simulations is larger compared to raw
simulations in all seasons. This is because the reduction in
magnitude of precipitation after bias correction turns many wet
days into dry days.

3.2 Impact of bias correction on the CCS of
climate extreme indices

3.2.1 Temperature-dependent ETCCDI indices
3.2.1.1 Inter-annual variability

Figure 7 shows the inter-annual variability for the annual
maximum values of TX, frost days, growing season length,
tropical nights, summer days, and warm days for both nBC and
BC simulations. For each index the upper (lower) plot refers to
CE (IP).

The annual maximum values of TX (TXx) can increase by up to
4 °C by the end of the investigation period in both domains. Bias
correction slightly projects higher future values of TXx in CE, yet not
more than 0.5 °C.

Frost days (FD) decrease up to −25 (−12) days/year in CE (IP) by
2070. Bias-corrected simulations project up to 5 frost days per year
less than raw simulations which can be explained by the warm bias
of TN in winter, see Supplementary Figure S4.

The thermal growing season is projected to last longer in a
warmer climate with an increase of its duration by up to 35 (20)

TABLE 4 As in Table 3 but for mean changes in seasonal precipitation sum. The CCSs are given both as relative differences and anomalies with respect to the base
period according to Eqs 11, 12. The grid-points with mean precipitation lower than 1 mm/day (dry/wet threshold) in the base period are excluded from the
calculation of mean and std values. These grid-points are stippled in Figure 6. Non-significant mean changes (p-value >0.05) are highlighted in bold.

Dom CCS DJF MAM JJA SON Unit

nBC BC nBC BC nBC BC nBC BC

CE PRmid-base −1.4 ± 5.9 −0.4 ± 6.3 2.4 ± 6.4 3.7 ± 7.1 −2.2 ± 7.1 0.5 ± 7.6 1.4 ± 5.4 3.2 ± 5.9 %

CE PRfar-base 6.6 ± 5.0 8.3 ± 5.3 4.6 ± 9.8 6.5 ± 10.8 −8.4 ± 7.8 −5.3 ± 8.3 2.1 ± 8.5 4.6 ± 9.2 %

CE PRmid-base −8 ± 21 −2 ± 12 6 ± 25 6 ± 15 −8 ± 28 3 ± 19 4 ± 24 6 ± 14 mm/year

p-value 0.03 0.07 0.82 0.62 0.15 0.62 0.43 0.61 –

CE PRfar-base 21 ± 21 15 ± 11 9 ± 43 10 ± 26 −34 ± 36 −12 ± 21 6 ± 30 10 ± 21 mm/year

p-value 0.07 0.05 0.9 0.79 0 0 0.07 0.18 –

IP PRmid-base −1.2 ± 7.8 −0.2 ± 9.0 −12.8 ± 7.9 −11.8 ± 7.9 −11.0 ± 9.1 −5.0 ± 9.9 −10.6 ± 7.1 −8.9 ± 8.0 %

IP PRfar-base 7 ± 10 11 ± 10 −22 ± 10 −21 ± 9 −19 ± 9 −15 ± 8 −14 ± 9 −12 ± 11 %

IP PRmid-base −12 ± 29 −3 ± 15 −37 ± 25 −20 ± 14 −17 ± 18 −6 ± 14 −32 ± 26 −15 ± 15 mm/year

p-value 0.01 0.02 0 0 0 0 0 0 –

IP PRfar-base 27 ± 39 18 ± 19 −64 ± 39 −38 ± 20 −34 ± 19 −20 ± 11 −43 ± 32 −20 ± 20 mm/year

p-value 0.86 0.89 0 0 0 0 0 0 –
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days/year in CE (IP) at the end of the investigation period. Bias
correction slightly reduces the future positive trend of GSL over
CE, while it enhances the trend over IP. The annual mean
differences between nBC and BC values do not exceed
±5 days/year.

The increases of tropical nights (TR) and summer days (SU) are
more severe over IP than CE. Uncorrected SCEN simulations project
an increase up to 7 (20) days/year for TR and 20 (35) days/year for
SU in CE (IP). Bias correction further increases the projected future
values of TR and SU by up 5 days/year, which can be explained by
the warm bias in the summer daily temperatures, see Figure 4 and
Supplementary Figure S3.

The positive trends in warm days (TX90p) indicate that the
upper tail of the distribution function for TX is shifted toward
warmer temperatures in the future. The exceedance rate of warm
days is projected to increase from the nominal value of 10% in the
base period to 25 (30)% by 2070 over CE (IP) with a negligible
impact of bias correction.

Supplementary Figure S5 and Supplementary Figure S6 show
the inter-annual variability for the remaining temperature
indices. The annual extreme values of TN and TX show large
inter-annual oscillations with respect to their mean positive
trends, especially in CE. The increase of GSL leads to an

earlier start of the growing season which is anticipated by
about 20 (12) days in CE (IP). Bias correction slightly shifts
GSS later (earlier) in time over CE (IP), which is consistent with
the impact of bias correction on GSL. The inter-annual variability
for warm spell duration (WSDI), number of warm spell (nWSDI),
and warm nights (TN90p) is qualitatively similar to TX90p shown
before. Cold nights and days (TN10p and TX10p, respectively)
decrease from the nominal 10% in the base period to 2 ÷ 3% by the
end of the investigation period. Both upper and lower tails of the
distribution of TX and TN are thus projected to move towards
warmer temperatures. The impact of bias correction on the inter-
annual variability of cold/warm nights, cold/warm days and cold/
warm spell duration is negligible.

Generally, the variability of temperature indices is not modified
by bias correction. The bias correction has minimal impact on the
mean climate change signal of percentile indices, as the difference
between the raw and bias-corrected simulation data is small. Yet,
quantile mapping modifies the magnitude of changes for those
indices based on absolute thresholds.

3.2.1.2 Mean climate change signals
The spatial mean and standard deviation for the CCSs of all

temperature indices are summarized in Supplementary Table S5 and

FIGURE 6
As in Figure 4 but for daily precipitation sum PR. The stippled area corresponds to the regions where the mean daily precipitation in the base period
(1981–2010) is below 1 mm/day (dry/wet threshold). Grid-points with non-significant changes are colored in gray.
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Supplementary Table S6. The significance (p-value) of the mean
changes are also reported.

Under RCP8.5 scenario, temperature indices such as warm days/
nights, warm spell duration, summer days, tropical nights, and growing
season length have significant positive future trends while indices such
as cold days/nights, ice and frost days are projected to significantly
decrease over both domains. The far future CCSs are also larger, in
absolute value, than the mid-future changes.

The warming of temperatures belonging to the upper tail of the
time distribution is stronger than the warming of the lower tail. The
mean increase of warm days/nights of about 12 ÷ 17% is in fact
larger than the mean decrease of cold days/nights of −6%. The
warming of extreme maximum temperatures (TXx and TNx) is also
larger than the corresponding warming of extreme minimum
temperatures (TXn and TNn).

The impact of bias correction on the spatial mean changes of
temperature indices is marginal. In fact, the mean biases do not
exceed 0.8%, 0.2 °C, and 4 days/year for percentile indices, indices
measuring temperatures, and duration indices, respectively.

3.2.1.3 Spatial variability of climate change signals
Figure 8 shows the spatial patterns of significant mid- and far

future changes for the annual maximum of TX (TXx), growing
season length (GSL), summer days (SU), and tropical nights (TR).
For completeness, Supplementary Figure S17–Supplementary
Figure S19 show changes at all grid-points.

The far future warming of TXx is significant over both domains
and reaches about 5 °C with the strongest signal simulated in
northern Spain, southwestern and eastern France. Peaks of 5 ÷ 6
°C are simulated in limited area over the Swiss Alps. Statistical biases
range mainly within ±0.4 °C with larger positive values of about 1 °C
located in eastern France, Belgium, the Netherlands, and in
southwestern France. Large biases of about 2 °C (outside the
color scale) are found over small areas in the western and central
Alps, where the far future increase of TXx can reach up to 8 °C in BC
simulations.

Over the IP domain, changes in GSL larger than 8 days/year are
significant in both future periods. In Central Europe, the mid-future
changes of GSL are significant in northern and southern CE while

FIGURE 7
Inter-annual variability of the spatial mean value (over land points only) for some of the temperature-dependent ETCCDI indices given in Table 2.
Except for the percentile index TX90p, differences with respect to the average over the (1981–2010) base period are displayed. To smooth the trends, a
centered 11 years running mean filter is applied. The solid blue (red) line shows the results for the uncorrected (bias-corrected) scenario simulations.
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the far future changes of GSL are significant over the whole domain.
The significant increases in GSL reach up to 36 (44) days/year in the
mid-future and 52 (60) days/year in the far future over CE (IP). The

growing season is, namely, projected to be 1 month longer in the far
future across most of the CE domain with large changes simulated in
northeastern Germany, western Poland, the Alps, and small areas

FIGURE 8
Spatial distribution of significant mid- and far future changes for annual maximum of TX (TXx), growing season length (GSL), summer days (SU), and
tropical nights (TR). Results are shown for bias-corrected (BC) and uncorrected (nBC) scenario simulations, while the impact of bias correction is shown
as difference between BC and nBC results. Grid-points with non-significant changes are displayed in gray.
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across Germany, Austria, eastern France, and southern Belgium.
Mountainous regions in IP are characterized by a strong increase of
GSL up to 44 days/year in the mid-future and 60 days/year in the far
future. Statistical biases have a large spatial variability over both
domains ranging within ±24 (±14) days/year over CE (IP) in the far
future. Large warm biases are found over lower terrains in western/
southern CE while negative biases are mainly in central and eastern
CE. Consequently, the highest changes in GSL over CE are shifted
towards the western regions. Over the IP domain, bias correction
introduces a cooling effect (i.e., a decrease of CCS) over
mountainous regions and a warming effect elsewhere.

The summer days index is projected to significantly increase in
both domains except over the Alps. The largest increases are
simulated in southeastern France, hillsides of the Italian Alps and
Apennines, southeastern regions of CE, eastern and southern Spain
where changes in SU reach up to 26 days/year in the mid-future and
40 days/year in the far future. Bias correction modifies the spatial
distribution of the CCS for summer days due to the large variability
of statistical biases ranging within ±14 days/year. Positive biases are
found across the whole CE domain (except for the southern regions)
and over the lower terrains in northern and western IP.

The significant mid-future changes of tropical nights in CE is
less than 10 days/year across the whole domain except for the Po
valley where increases of TR ranging within 14 ÷ 24 days/year are
simulated. This positive trend over the Po valley is exacerbated in the
far future when the CCS reaches up to 44 days/year at the Adriatic
coast. Easter France and southeastern regions in CE experience an
increase of TR between 14 ÷ 30 days/year in the far future. Tropical
nights increase across the whole IP domain except for mountainous
regions. The highest significant changes in IP are simulated over the
Mediterranean coasts and Balearic Islands, where TR increases by up
to 30 days/year in the mid-future and 46 days/year in the far future.
The hillsides of Sierra Morena along the Guadalquivir River in
southern Spain and the Ebro valley in northern Spain show also
large increases of TR by up to 26 days/year in the mid-future and
38 days/year in the far future. Biases mitigate by up to −8 days/year
the increase of TR over the Po valley and Mediterranean Spanish
coasts. The largest positive biases are found in southeastern France,
the hillside regions of the Italian Alps, and central/northeastern
Spain where biases can reach up to 10 days/year in the mid-future
and 16 days/year in the far future.

Supplementary Figure S7–Supplementary Figure S10 show
the spatial patterns of significant changes for the remaining
temperature indices. Changes in the percentile indices warm
days/nights and warm spell duration are significant at all grid
points. The CCSs for warm days (TX90p) have a south-north
gradient over both domains with greater positive values in the
southern regions, see Supplementary Figure S7. The exceedance
rate of warm days is projected to increase the most over the Alps,
Pyrenees, Baetic System, and Sierra Morena where the CCS is
higher than 22% in the far future. Similar conclusions can be
drawn warm nights (TN90p). Bias correction slightly mitigates
the increase of warm days/nights across most of the CE domain
and in northeastern IP. An additional positive contribution to the
CCS of warm days/nights up to 4% due to bias correction is found
in southern Spain and along the coastal areas of the Ligurian Sea.
Changes in warm spell duration (WSDI) and number of warm
spells (nWSDI) are qualitative similar to those for warm days. In

particular, the strongest CCSs of WSDI are simulated over the
Alps, Pyrenees, Baetic System and Sierra Morena where the far
future increase of WSDI reaches about 50 days/year in the far
future for nBC simulations and about 60 days/year after bias
correction. The decreases in frost days (FD) lower than −8 days/
year are significant in both domains. The changes of FD show a
strong orographic dependence in the nBC simulations reaching
up to −48 days/year in the far future over the Alps, Pyrenees, and
Baetic System, see Supplementary Figure S9. These strong
decreases are attenuated by bias correction, which introduces
up to 12 frost days per year compared to nBC simulations. On
contrary, bias correction reduces frost days on lower terrains by
further decreasing FD up to −10 days/year in central Spain, Ebro
valley, eastern France, and Belgium compared to nBC
simulations.

The warm bias in southern IP found for temperature indices
such as warm days/nights, warm spell duration, summer days and
tropical nights can be associated to the dryer conditions, especially in
summer, in the BC simulations, see Figure 6. More extended areas
with water scarcity can in fact induce warmer daily and nocturnal
conditions due to a reduction in evapotranspiration that can last
longer in time.

3.2.2 Precipitation-dependent ETCCDI indices
3.2.2.1 Inter-annual variability

Figure 9 and Supplementary Figure S11 show the inter-annual
variability for the precipitation indices. The changes in those indices
measuring precipitation amounts and counting days or dry/wet
periods are expressed as relative and absolute differences with
respect to the base period average, respectively.

The number of wet days (R1mm) is projected to decrease over
both domains up to −15 days/year by 2070 for nBC simulations, see
Figure 9. Bias correction introduces more wet days in the future
projections but not more than 6 days/year. The total annual
precipitation on wet days (PRwetTOT) is projected to decrease in
IP up to −10% by 2070 with peak of −20% in the mid-future while it
oscillates within ±5% in CE.

The mean daily precipitation on wet days (SDII) is projected to
increase over both domains. In particular, the positive trend of SDII
in IP indicates that the decrease of wet days is stronger than the
decrease of annual precipitation on wet days.

The decrease in wet days leads to increases of consecutive
dry days (CDD) especially over the IP domain where CDD
reaches up to +12 days/year by 2070 for nBC simulations.
Bias correction further exacerbates the future projected values
of CDD over the IP domain which is explained by the larger dry
areas (especially in summer) in BC simulations as previously
shown in Figure 6.

Extreme precipitation events are projected to increase over both
domains as shown by the indices R99p, RX5day in Figure 9 and by
the indices R95p, RX1day in Supplementary Figure S11. These
positive trends are stronger in CE than IP but the inter-annual
variability is larger in IP than CE. For example, the increase of R99p
in the far future is about 40 ÷ 50% in CE while it oscillates between
−4 ÷ + 40% in IP for nBC simulations. Bias correction further
exacerbates the projected increases of extreme precipitations due to
statistical biases which can reach up to 20% for R99p, 9% for R95p,
6% for RX1day, and 4% for RX5day.
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Generally, bias correction does not modify the inter-annual
variability of precipitation indices but modifies their magnitude
amplifying projected relative changes. This is due to the reduction in
magnitude of daily precipitation over the base period resulting in
larger relative future changes and to the wet bias in the seasonal
precipitation changes.

3.2.2.2 Mean climate change signals
Table 5, Supplementary Figure S6 and Supplementary Figure S7

summarize the mean values and standard deviations of the spatial
distribution of the CCSs for precipitation indices. All grid points
over land are considered and the significance of mean changes is also
reported.

We can generally observed that, under the RCP8.5 scenario,
precipitation events are generally projected to become less frequent
but more intense, especially in CE, with an exacerbation of dry
conditions in both domains. The number of wet days is projected in
fact to significantly decrease while the annual precipitation above the

99th percentile of the base period is projected to significantly
increase in the far future over both domains. Central Europe is
also characterized by a significant increase of further indices
associated to extreme events such as the maximum precipitation
in one/5 days and the annual precipitation above the 95th percentile
of the base period. Consecutive dry periods are expected to become
longer in the far future due to a significant increase of CDD
especially over the Iberian Peninsula.

Bias correction introduces a wetting condition on the CCSs for
extreme precipitations especially over the CE domain. The spatial
mean biases for R95p and R99p are, namely, 8 4)% and 16 (16)% in
CE (IP), respectively. The mean impact of bias correction on the
other precipitation indices is small and does not exceed 3% for
percentile indices and 5 days/year for duration indices.

3.2.2.3 Spatial variability of climate change signals
Figure 10 shows the spatial distribution of significant changes

in the number of wet days (R1mm), mean wet-day precipitation

FIGURE 9
Inter-annual variability of the spatial mean value (over land points only) for some of the precipitation-dependent ETCCDI indices given in Table 2.
R1mm and CDD are shown as anomalies with respect to the average over the (1981–2010) base period. PRwetTOT, SDII, R99p, and RX5day are shown as
relative difference with respect to the base period average. To smooth the trends, a centered 11 years running mean filter is applied. The solid blue (red)
line shows the results for the non-bias-corrected (bias-corrected) scenario simulations.
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(SDII), consecutive dry days (CDD), and total annual
precipitation on extremely wet days (R99p). Changes in
precipitation amounts are expressed as relative differences
with respect to the base period. For completeness,
Supplementary Figure S22–Supplementary Figure S25 show
changes at all grid-points. Differently from temperature
indices, the CCS for precipitation indices is significant only
over few regions. This is because precipitation indices have
locally a large inter-annual variability such that a statistical

analysis for seasonal time-series might be more informative.
Some areas can in fact be characterized by significant changes
in precipitation only for specific seasons. We leave this analysis
for further studies.

The number of wet days is projected to significantly decrease
over both domains especially over mountainous regions. The
reduction is stronger in IP than CE and can reach up to −20 days/
year for uncorrected simulations. In the bias-corrected
simulations, the reduction of R1mm remains significant over

TABLE 5 Mean ± std (standard deviation) for the spatial distribution of mid- and far future changes of precipitation-dependent ETCCDI indices computed over the
land points of Central Europe (CE) and the Iberian Peninsula (IP). The bias is computed as difference between bias-corrected (BC) and uncorrected (nBC) CCSs. The
p-values of the two-tails Wilcoxon-Mann-Whitney test on the spatial mean CCSs are also reported. Non-significant mean changes (p-value >0.05) are highlighted in
bold.

Symbol Domain CCS (2021–2050)−(1981–2010) CCS (2041–2070)−(1981–2010) Unit

nBC BC Bias nBC BC Bias

RX1day IP 1.9 ± 10.5 5.0 ± 8.8 3.1 ± 7.0 3.0 ± 10.6 5.8 ± 8.8 2.8 ± 6.8 %

p-value 0.67 0.07 0.63 0.06 –

CE 5.1 ± 10.8 8.7 ± 9.8 3.6 ± 5.7 10.7 ± 12.3 13.1 ± 11 2.4 ± 5.8 %

p-value 0.02 0 0 0 –

RX5day IP 0.1 ± 9.0 1.7 ± 8.7 1.6 ± 5.4 3.2 ± 9.2 4.4 ± 8.6 1.2 ± 5.2 %

p-value 0.92 0.73 0.55 0.28 –

CE 3.7 ± 8.8 6.9 ± 8.8 3.2 ± 4.2 7.3 ± 10.5 10 ± 10.7 2.7 ± 4.2 %

p-value 0.06 0 0 0 –

SDII IP 1.6 ± 3.2 2.4 ± 3.5 0.9 ± 2 4.7 ± 3.8 4.7 ± 3.8 0.0 ± 2.2 %

p-value 0.42 0.28 0.05 0.02 –

CE 2.9 ± 2.6 4.4 ± 2.8 1.5 ± 1.2 5.8 ± 2.8 7.1 ± 3.1 1.3 ± 1.4 %

p-value 0 0 0 0 –

R1mm IP −10.3 ± 2.8 −6.8 ± 2 3.5 ± 1.4 −13.5 ± 3.4 −8.8 ± 2.7 4.8 ± 1.5 days/year

p-value 0.02 0.04 0 0 –

CE −5.1 ± 2.5 −3.0 ± 2.1 2.1 ± 1.3 −8.1 ± 3.2 −4.2 ± 2.5 3.9 ± 1.7 days/year

p-value 0.05 0.12 0.01 0.08 –

CDD IP 4.0 ± 3.8 4.8 ± 4.4 0.8 ± 3.8 8.6 ± 5.1 10.4 ± 6.5 1.8 ± 4.3 days/year

p-value 0.12 0.11 0 0 –

CE 0.6 ± 1.6 1.0 ± 2.2 0.4 ± 1.5 1.3 ± 2.0 1.9 ± 2.7 0.6 ± 1.6 days/year

p-value 0.55 0.28 0.05 0.02 –

R95p IP −1 ± 11 4 ± 14 5 ± 8 2 ± 14 6 ± 15 4 ± 8 %

p-value 0.98 0.65 0.77 0.5 –

CE 8 ± 11 16 ± 13 7 ± 6 16 ± 13 23 ± 14 8 ± 6 %

p-value 0.03 0 0 0 –

R99p IP 7 ± 28 23 ± 37 16 ± 24 14 ± 30 30 ± 38 16 ± 25 %

p-value 0.64 0.08 0.32 0.05 –

CE 17 ± 26 32 ± 32 16 ± 16 32 ± 29 47 ± 35 16 ± 17 %

p-value 0.01 0 0 0 –
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FIGURE 10
Same as in Figure 8 but for the number of wet days (R1mm), mean daily precipitation onwet days (SDII), consecutive dry days (CDD), and total annual
precipitation on extremelywet days (R99p). Significant changes in precipitation amounts are shown as relative differenceswith respect to the base period.
Grid-points with non-significant changes are displayed in gray.
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mountainous regions even though the magnitude is reduced due
to wet (positive) biases.

The mean daily precipitation on wet days is projected to
increase in the far future by up to 14 (20)% in CE (IP) as for nBC
simulations. This increase is significant over most of the CE
domain, while in IP it is significant in central/southern Spain. In
Central Europe SDII is further augmented by bias correction due
to wet biases up to 10%.

The consecutive dry days index is projected to significantly
increase in northern/southern IP and western CE with more
severe changes in IP. Over these regions, bias correction
exacerbates the duration of dry periods due to biases up to
14 days/year. Droughts are more sever in southern IP where
BC simulations project a far future increase of CDD up to
40 days/years (out of the color scale). This might be due to
the dryer condition in summer over IP, see Figure 6.

The total annual precipitation above the 99th percentile of the
base period has a significant increase over mountainous regions in
CE and central IP with a raw CCS up to 120% in northern Italy,
Austria, southern/eastern Germany, and central IP. Bias correction
intensifies these changes due to wet biases that can locally reach up
to 100%. Similar conclusions are also valid for other extreme
precipitation indices such as the total precipitation above the
95th percentile of the base period or the maximum precipitation
amount in 1- or 5-day, which also display significant increases over
mountainous regions in central IP and CE, see Supplementary
Figure S13.

The spatial patterns of significant changes for the remaining
precipitation indices are shown in Supplementary Figures S14-S16
and in Supplementary Figure S12 and Supplementary Figure S13.

3.3 Impact of bias correction on the CCS of
dynamic vegetation model output variables

Table 6 shows the spatial mean and standard deviation of the
bias-corrected and uncorrected CCSs for total carbon vegetation

mass (cmass) and net primary productivity (NPP) over Wallonia
(see Figure 1) as simulated by LPJ-GUESS and CARAIB. The
significance of mean changes is also reported.

The impact of bias correction on the CCSs of cmass and NPP
is consistent between both vegetation models. Bias correction,
namely, reduces the changes in total vegetation carbon mass that
can be explained by the lower productivity and carbon
accumulation within the BC simulations. The projected future
significant increase in net primary productivity is instead slightly
enhanced by bias correction.

Supplementary Figure S15 shows the inter-annual
variability of cmass and NPP with respect to the base period
average. The negative contribution to cmass due to bias
correction is much stronger in CARAIB than in LPJ-GUESS.
The uncorrected positive trend of cmass simulated by CARAIB
turns, in fact, into negative trend after bias correction while
both BC and nBC trend of cmass simulated by LPJ-GUESS are
positive. This can be explained by the higher sensitivity of
CARAIB to droughts and droughts-induced mortality (Dury
et al., 2011). Due to the strong reduction of precipitation in the
BC simulations compared to nBC climate data, the CARAIB
model crosses more often the mortality threshold due to
droughts resulting in larger simulated water stress mortality
compared to nBC simulations. In fact, as shown in the right
panel of Supplementary Figure S15, the projected water stress
tree mortality is up to 4 times higher in BC simulations
compared to nBC simulations. The projected increase of
NPP across the whole investigation period has a larger inter-
annual variability in CARAIB than LPJ-GUESS, which is
related to the large variability of tree mortality simulated by
CARAIB.

4 Discussion

In this work, we used the ERA5-driven EVAL simulations as
“observations” to train the quantile-mapping bias correction

TABLE 6 Mean ± std (standard deviation) for the spatial distribution of the mid- and far future changes for total biomass (cmass) and total annual primary
productivity (NPP) over the study site of Wallonia (Belgium) simulated by LPJ-GUESS and CARAIB. The bias is computed as difference between bias-corrected (BC)
and raw (nBC) changes. Non-significant mean changes (p-value >0.05) are highlighted in bold.

Model Symbol CCS (2021–2050)−(1981–2010) CCS (2041–2070)−(1981–2010) Unit

nBC BC Bias nBC BC Bias

LPJ-GUESS cmass 1.105 ± 0.013 1.045 ± 0.016 −0.060 ± 0.003 1.732 ± 0.028 1.627 ± 0.052 −0.105 ± 0.024 kgC/m
2

p-value 0 0 0 0

CARAIB cmass 1.70 ± 0.14 −0.28 ± 0.45 −1.98 ± 0.42 2.46 ± 0.17 −0.21 ± 0.82 −2.67 ± 0.69 kgC/m
2

p-value 0 0.12 0 0.24

LPJ-GUESS NPP 0.019 ± 0.006 0.023 ± 0.003 0.004 ± 0.003 0.040 ± 0.018 0.052 ± 0.016 0.012 ± 0.002 kgC/m
2
yr

p-value 0.09 0.05 0 0

CARAIB NPP 0.065 ± 0.072 0.071 ± 0.147 0.006 ± 0.097 0.087 ± 0.086 0.109 ± 0.140 0.022 ± 0.069 kgC/m
2
yr

p-value 0 0 0 0
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method. The advantage of this choice is that, since EVAL and
SCEN simulations have the same horizontal resolution, any
issues related to statistical downscaling, such as the inflation
problem (Maraun, 2013), are avoided. Moreover EVAL and
SCEN simulations share the same model configuration such
that same climate variables are physically consistent. Yet,
intrinsic assumptions in the bias correction method such as
the independence among climate variables, the type of transfer
functions, or the bias stationarity can influence trends. Bias
correction can, namely, alter the climate change signal (Buser
et al., 2009; Ehret et al., 2012; Dosio, 2016), with biases larger
than the signal itself in some regions (Hagemann et al., 2011;
Maurer and Pierce, 2014). This aspect represented our
motivation to investigate the impact of bias correction on the
CCS for the output variables of climate and dynamic vegetation
models.

4.1 Impact of bias correction on the CCS of
seasonal temperature and precipitation

We have shown that over both domains the simulated winter
temperatures are overestimated in comparison with the EVAL
simulations while simulated summer temperatures are
underestimated. The underestimation of simulated summer
temperatures is in agreement with the known problem of colder
summer in the family of CCLM models (Tölle et al., 2018). The
misrepresentation of “observations” is even worse for precipitation,
which is strongly overestimated by climate simulations. Bias
correction, namely, reduces absolute seasonal precipitation by up
to −45% (−55%) in CE (IP), see Supplementary Table S4. This
reduction in magnitude of daily precipitation following bias
correction turns many wet days into dry days (PR < 1 mm/day)
such that the extension of dry regions is larger in BC simulations
compared to raw simulations, see the stippled area over the IP
domain in Figure 6.

Nevertheless, the impact of bias correction on the seasonal
CCSs of temperature and precipitation is small with local
biases ranging within ±0.2 °C and ±10% for changes in
temperature and precipitation, respectively. In particular,
bias correction introduces a small warm bias to changes of
summer and winter temperature, and a small wet contribution
(about 3 ÷ 4%) to summer precipitation changes, see Table 4.
This wetter condition induced by bias correction is in
agreement with studies conducted, e.g., over Germany
(Tölle et al., 2013).

The simulated warming (under the RCP8.5 scenario) of daily
mean temperature in (2041–2070) with respect to (1981–2010) is
approximately 1.3 (1.5)°C in winter/spring and 2.0 (2.5)°C in
summer/autumn over CE (IP), see Table 3. This asymmetry in
the warming across seasons with stronger changes in summer than
in winter and stronger warming in IP than CE is well known for the
Mediterranean region (Giorgi and Lionello, 2007; Somot et al.,
2008).

Under RCP8.5 scenario summer precipitation is projected to
significantly decrease by about −5% (−15%) over CE (IP) after
bias correction, see Table 4. This is qualitative in agreement with
results from multi-model ensemble of RCMs as shown, e.g., in

(Hübener et al., 2017; Rajczak and Schär, 2017; Coppola et al.,
2020). The stronger decrease of summer precipitations in IP than
CE suggests that future summer droughts will be likely more
severe in IP. Moreover, southern IP is characterized by a
significant reduction of rainfalls across all seasons, which may
intensify drought and desertification conditions already taking
place in some areas and may amplify local water shortages
(Fernández-González et al., 2012; Santos et al., 2016). The
significant reduction of spring precipitations in IP and
northern Italy could further enhance the risk of water scarcity
availability in summer.

4.2 Impact of bias correction on the CCS of
climate extreme indices

Our result show that quantile mapping largely affect local
changes in climate extreme indices due to biases which can be of
the same magnitude as the CCS itself. This is consistent with
other studies showing that bias correction can alter the climate
change signal (Buser et al., 2009; Ehret et al., 2012; Dosio, 2016),
with biases larger than the signal itself in some regions
(Hagemann et al., 2011; Maurer and Pierce, 2014).
Nevertheless, the spatial mean changes over both domains are
marginally affected by quantile mapping such that spatial mean
changes of the analyzed climate indices are robust with respect
quantile mapping.

The SCEN simulations show significant increases in warm
days/nights, summer days, tropical nights, warm spell duration,
growing season length, and significant decreases in cold days/
nights, frost/ice days and cold spell duration. These general
trends have already been detected in observation data over the
last half of the century and in future climate projections, e.g.,
(Sillmann et al., 2013a; Sillmann et al., 2013b). Moreover, our
simulations show stronger warming for temperatures belonging
to the upper tail of the distribution with respect to the lower tail.
This is clear from the larger changes of TX90p, TN90p, TXx, and
TNx in comparison with TX10p, TN10p, TXn, and TNn,
respectively, see Supplementary Table S5 and Supplementary
Table S6.

The significant increase of warm days/nights and warm
spell duration is particularly severe in southern and central
Spain and southwestern CE, see Supplementary Figure S7. Here
TX90p/TN90p increase from the nominal 10% to more than
30% and WSDI increases by more than 40 days/year in the far
future. These regions characterized by large CCSs in warm
days/nights and warm spell duration are vulnerable to severe
heat stress, especially in summer, leading to increases in
intensity, duration, and number of heat waves, as shown
by Viceto et al. (2019) for IP. The number of tropical nights
is also projected to largely increase in southern Spain and over
the Po valley, where the far future CCS is generally above
30 days/year.

The biases in the seasonal temperature changes, even though
small, can affect changes in temperature indices based on
absolute thresholds (Dosio, 2016). The warm bias for summer
temperature can explain, e.g., the lager number of summer days
and tropical nights (up to 14 days/year) in the bias-corrected
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simulations compared to raw simulations. The warm bias for
winter temperatures can explain, e.g., the larger decrease of frost
and ice days for BC simulations. In addition, changes in duration
indices such as the growing season length can be locally largely
affected by bias correction. We have, namely, shown that local
biases on changes in GSL range within ±24 days/year in CE
where large positive biases are found over lower terrains in
western CE, see Figure 8.

In warmer climate conditions the thermal vegetation growth
is projected to start earlier in the year, on the one hand, and the
occurrence of frost days is projected to decrease, on the other
hand. Yet, the exposure to frost events occurring after the
growing season start can increase especially in those regions,
such as Central Europe, with a large increase of GSL. Late-
spring frost events represent severe hazards as they can
negatively affect the growth and health of plants and,
ultimately, cause important economic losses for agricultural
sectors (Liu et al., 2018).

The intensification of drought conditions in IP is
corroborated by a significant increase of consecutive dry days
in the northern and southern regions, which is in agreement with
the results from, e.g., Pereira et al., 2019. In Central Europe CDD
is projected to significantly increase in the western regions but to
a lesser degree with respect to IP. The more extended dry region
in IP for bias-corrected simulations (see Figure 6) can explain the
positive bias in changes of CDD, which can be up to 14 days/year
in southern IP. Surface moisture deficits due to dryer conditions
are also a relevant factor for the occurrence of hot extremes
(Mueller and Seneviratne, 2012). This fact may explain the warm
bias in southern IP for changes in temperature indices such as
warm days/nights, warm spell duration, summer days and
tropical nights.

Our results show a significant decrease in wet days and
increase of mean daily precipitation on wet days. In particular,
extreme precipitations on wet days are projected to significantly
increase over mountainous regions in few areas in central Spain
and over more extended regions in CE. In Central Europe, e.g.,
very wet days (R95p) and extremely wet days (R99p) are
projected to increase in the far future, respectively, by about
16% and 32% for the uncorrected simulations. Bias correction
enhances these mean changes by 8% for R95p and 16% for
R99p. At the local scale, biases can be much larger and
increase the raw CCS of R95p by up to 40% and R99p by up
to 100%. The projected increase of extreme precipitation over the
European domain is qualitatively in agreement with the results of
Hübener et al., 2017.

4.3 Impact of bias correction on the CCS of
dynamic vegetation model variables

Both the LPJ-GUESS and CARAIB dynamic vegetation
models showed variations in biomass and productivity
following bias correction of the climate data. Vegetation in
Europe is strongly impacted by the availability of
precipitation during the growing season (Ivits et al., 2016). A
reduction in biomass is therefore expected because of strongly
reduced precipitation with bias correction. The more sensitive

the vegetation model is to dry conditions, the greater the
variations in the vegetation indices. This shows the
importance of bias correcting climate model outputs before
these data are used for subsequent impact models
(Christensen et al., 2008). Apparently, in LPJ-GUESS
the effects of bias correction are small and positive effects on
climate change and CO2 fertilization prevail in the future
(Hickler et al., 2015). CARAIB responds much stronger to
bias correction, including longer periods with increased
tree mortality in the future. The increased mortality also
explains why longer-term climate change effects on NPP
can be positive, without positive effects on biomass (higher
biomass turnover). These large differences in simulated
impacts between the vegetation models indicates large
uncertainties.

Generally, the bias-correction effect on winter temperatures
influences the establishment of species and plant functional types
in the vegetation models as establishment is commonly limited by
winter coldness. A longer growing season might increase the plant
productivity and enable establishment further to the north.
Moreover, it advances bud burst and can increase
evapotranspiration.

However, the 2018 drought has led to unprecedented
increases in tree mortality in Central Europe (Schuldt et al.,
2020) and forest disturbances are increasing across Europe (Senf
et al., 2018). Longer, drier and hotter growing seasons, here also
because of bias correction, will also increase fire weather
severity. This underlines the importance of a correct
representation of the climatic input variables in order for
impact models to be able to simulate such events at all.
Despite the fact that bias correction adds another layer of
uncertainty (Hagemann et al., 2011), the application of
climate model outputs without any form of bias correction as
input to impact models is essential to ensure comparability with
observed data and to best represent impacts of climatic
extremes. Efforts to test and improve the models with recent
observations are ongoing.

5 Conclusion

This study has presented the impact of bias correction on the
climate change signals (CCSs) for the output variables of
climate and dynamic vegetation models. We have, namely,
compared and discussed differences between raw and bias-
corrected changes in seasonal precipitation/temperature,
annual climate extreme indices, carbon mass, and net
primary productivity.

The climate simulations have been performed by dynamically
downscaling GCM data with COSMO-CLM directly to a
convection-permitting scale of about 3 km. Convection-
permitting climate simulations are, in fact, best suited to provide
more reliable climate input data for impact models. This is because
deep-convection phenomena are explicitly resolved and therefore
the climate variability over complex terrain is better represented.
We have considered RCP8.5 as future climate scenario, Central
Europe (CE) and the Iberian Peninsula (IP) as domains. A quantile-
mapping approach (ISIMIP3) has been chosen to bias correct
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the climate scenario simulations where the ERA5-driven evaluation
simulations served as “observations”. The analyzed transient
period is 1980–2070 with 1979 used as spin-up. The dynamic
vegetation models LPJ-GUESS and CARAIB were forced
using raw and bias-corrected climate simulations as input.
We have considered far future (2041–2070) and mid-future
(2021–2050) changes with respect to the base period
(1981–2010).

We have shown that bias correction reduces simulated winter
temperature by up to −1.5 °C and increases simulated summer
temperature by up to +2.7 °C. The simulated seasonal
precipitation is strongly reduced by up to −55% after bias
correction. Despite this large impact of bias correction on
absolute seasonal temperature and precipitation, the
differences between raw and bias-corrected CCS of seasonal
temperature and precipitation are small. Bias correction
introduces, namely, a small warm bias ( < 0.1 °C) to mean
changes of summer and winter temperature, and a small wet
contribution (3 ÷ 4%) to mean changes of summer precipitation.
The increase of mean temperature is asymmetric across seasons
with stronger warming in summer/autumn (about 2 °C in CE and
2.5 °C in IP) than in winter/spring (about 1.3 °C in CE and 1.5 °C
in IP). Summer precipitation is projected to significantly decrease
in the far future by about −5% (−15%) over CE (IP) in the bias-
corrected simulations.

The spatial mean changes over CE and IP of climate extreme
indices are robust with respect to quantile mapping. Yet, the local
difference between bias-corrected and raw CCS for these indices can
be large and of the same magnitude as the uncorrected signal, which
is consistent with other studies, e.g., (Hagemann et al., 2011; Dosio,
2016).

We have, namely, shown that bias correction can further
augment or reduce the significant increase of summer days and
tropical nights by up to 2 weeks per year. The significant far
future increase of growing season length in CE is strongly
affected by bias correction at the grid scale due to biases
ranging from +24 days/year in western CE to −24 days/year
in central/eastern CE. In the bias-corrected simulations, the
significant increase of consecutive dry days in southern/
northern IP and western CE can be up to 14 days/year larger
than in raw simulations. The dryer conditions in southern IP for
bias-corrected simulations can explain the warm bias in the
changes of extremes such as warm days/nights, warm spell
duration, and tropical nights. Surface moisture deficit is, in
fact, a relevant factor for the occurrence of hot extremes
(Mueller and Seneviratne, 2012). Bias corrected simulations
reveal significant increases of extremely wet days over both
domains, which are larger by about 16% compared to
uncorrected simulations. Locally, differences between bias-
corrected and raw changes in extremely wet days can be
much larger and reach up to 100%.

We have also shown that the CCS of total vegetation carbon
mass simulated by LPJ-GUESS and CARAIB are reduced by bias
correction while the CCS of total net primary productivity is slightly
enhanced. With precipitation levels closer to those observed,
vegetation drought thresholds can be more easily reached
resulting in larger water stress tree mortality compared to raw

climate simulations. This result corroborates the importance to
bias correct climate simulations data before their use by dynamic
vegetation models.

The corroboration of our results could be further
investigated with a multi-model ensemble approach, which
is generally believed to be superior to single model analysis
as it yields a more appropriate estimate of model uncertainties
(Jacob et al., 2007; Weigel et al., 2008; Buser et al., 2009).
Using a multi-model ensemble is also advised when assessing
the impact of bias correction on the climate change
signal. Maurer and Pierce, 2014 showed, in fact, that
different models can respond differently to bias correction
since regions of enhancement/reduction of CCS may not be
coherent across models. This can in turn reduce the impact
of bias correction on the CCS when models are combined
into an ensemble. Tölle et al., 2013 showed, for example,
that the sensitivity of the Standardized Precipitation Index
to the model precipitation bias is small compared to the
range of the CCSs within their studied model ensemble.
Whether the same conclusions hold for the analyzed
variables in a multi-model ensemble of CPRCMs, such as
the CORDEX-FPS (Coppola et al., 2020), is a subject for
future studies.

An intercomparison analysis of the impact of different bias
correction methods on the CCS of extremes computed from
CPRCMs is encouraged. The different assumptions implicitly
made from different bias corrections can in fact lead to various
impacts on the CCSs, representing therefore an additional
source of uncertainty for impact models using climate
simulations as input (Teutschbein and Seibert, 2010;
Casanueva et al., 2020). It is important to note that
bias correction is not a panacea, and that it cannot correct
for all sources of error in climate models. There is also the
necessity to improve climate models at convection-permitting
scales.

We conclude that sensitivity studies on the CCS of extremes with
respect to both model uncertainty and bias correction approaches is
pivotal for climate change impact studies at local scales and
ultimately for an open communication of risk assessment with
stakeholders and policymakers.
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