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Abstract

Motivated by the lack of empirical evidence in favor of the uncovered interest rate parity

rule, we revisit the informational content of interest rate differentials (IRD) to explain

daily exchange rates variations. Proposing a novel version of a GARCH model, we allow

for the IRD to impact on the time-varying conditional asymmetry of the depreciation

rate. We find IRD to be a significant factor for the Euro (EUR), the Swiss franc (CHF),

the Swedish Krona, the Japanese Yen and the British Pound. These findings empirically

support currency crash theories, suggesting that the larger the difference between interest

rates, the more likely the high-yield currency appreciates on average but also exhibits

greater risk of a large depreciation. Compared to random walk and buy-and-hold bench-

marks, we document superior out-of-sample mean returns of a trading rule exploiting IRD

information for EUR and CHF.
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1 Introduction

The exact nature of the relationship between short-term interest rate differential (IRD) and currency

depreciation remains an ongoing debate. Economic theory postulates that IRD and foreign exchange

rates are linked over time via the uncovered interest rate parity (UIP) rule. In this framework, the

currency of the high yield economy is expected to depreciate. Empirically, however, we often observe

the opposite: several studies, among others Gabaix and Maggiori [2015], report an appreciation of the

high yield currency over long periods of time, which contradicts UIP.

This apparent contradiction is a long-standing question in the finance literature. Early on, Meese

and Rogoff [1983] noticed that models based on IRD cannot beat a simple random walk in predicting

future exchange rates, raising the question of their predictive content. Despite considerable progress

in terms of data availability and econometric techniques over the past 35 years, little has changed in

this regard.

Several theoretical reasons have been suggested for this lack of performance: most notably the

time-varying predictive content of the fundamentals such as IRD [Bacchetta and van Wincoop, 2013,

Berge, 2014, Ismailov and Rossi, 2018], but also the misspecifications of the models traditionally

employed to conduct these forecasts [Cheung et al., 2005, Rossi, 2013, Ismailov and Rossi, 2018, Amat

et al., 2018]. Indeed, whereas most empirical studies focus on conditional mean forecasts [Husted et al.,

2018], evidence suggests that exchange rates exhibit high-order dynamics and extremely weak mean

dynamics [Chung and Hong, 2007, Brunnermeier et al., 2008, Ismailov and Rossi, 2018]. Concentrating

on the second-order moment, Ulm and Hambuckers [2022] find a significant relationship between the

volatility of exchange rate returns and changes in the IRD, transmitted via carry trading activities.

Similarly, Ichiue and Koyama [2011] examine how exchange rate volatility is related to the failure of

uncovered interest rate parity.

In Figure 1, we illustrate the relationship in higher orders by relating the empirical skewness of the

residuals from a GARCH(1,1) model for the daily log-rate of change of the USD/EUR exchange rate

to the corresponding IRD. The solid blue line in the two graphs displays the empirical skewness as a

function of IRD for IRD being either negative (left graph) or positive (right graph). As a comparison,

the black lines reflect the average (solid) and the 95% confidence interval (dashed) for the empirical

skewness of the residuals of a GARCH(1,1) model, which was simulated independently of the IRD

process. If the true underlying data generating process has its random part independent of IRD, then

conditional skewness must be zero. The graphs, however, clearly suggest evidence of a relationship in

higher orders between exchange rate returns and IRD. As a consequence, producing mean forecasts

with tools such as vector autoregressive models might prove ineffective [Herwartz, 2017]. Instead,

other strategies such as modelling conditional skewness should be considered [Chung and Hong, 2007,

Brunnermeier et al., 2008, Anatolyev and Gospodinov, 2010, Liu, 2015].
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Figure 1: Solid blue line: Empirical skewness for residuals of a GARCH(1,1) computed on
daily returns of USD/EUR over the period 1999M1-2019M3, conditional on observing IRDs
being smaller(left panel) or larger (right panel) than zero. Dashed black line: 95% confidence
intervals for the empirical skewness of GARCH(1,1) data simulated independently of the IRD
process. Solid black line: average empirical skewness of GARCH(1,1) residuals independent
from IRD. The x-axis is the IRD (in percent) expressed as a proportion (i.e. .01 = 1%).

Following the intuition depicted in Figure 1, we propose an econometric model in which we allow

interest rates to convey information on the density of future depreciation rates. We focus in particular

on the modelling of its asymmetry, since it is the major factor in determining the likelihood of an

exchange rate depreciation. In our model, we refrain from establishing a link between the level of

future (log) depreciation rates and interest rates. Consequently, our set-up is less restrictive in its

assumptions, and allows us to test empirically general assertions such as “is a currency more likely

to appreciate when its interest rate is relatively high?”. In contrast to existing approaches that rely

on “static“ or empirical measures of skewness [Brunnermeier et al., 2008] or are employed in a two-

step analysis [Iseringhausen, 2020], we propose a one-step time-series approach to investigate whether

IRD carries predictive content for the direction of the change of exchange rates. Thus, we are able to

hypothesize and test whether a large IRD is indicative of a higher risk of some reverting mechanism, i.e.

of a future depreciation of the high yield currency, as suggested, e.g., by Farhi and Gabaix [2016]1. We

thereby assume the marginal effect of IRD to convey information on the likelihood of an appreciation

or depreciation, instead of on the exchange rate movement itself.

To capture the link between IRD and exchange rates in higher orders, we combine a GARCH

structure of the variance with a dynamic non-Gaussian distribution for the innovations, and let its

asymmetry parameter evolve according to a time-series process augmented with exogenous predictors.

1In a theoretical exercise portrayed in this paper, the authors link the time-varying probability of rare
economic disasters and the exposure of a country to such disasters to the risk of a depreciation. They argue
that relatively risky countries feature high interest rates because investors need compensation for a potential
depreciation in case of a disaster.
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Our approach thus allows us to investigate the link between asymmetry and IRD in a single step. We

outline it in more detail in Section 2.

We use the proposed model to study the depreciation rate of the US Dollar (USD) vis-a-vis two

major currencies: the Euro (EUR) and the Swiss Franc (CHF). We investigate whether IRD is an

important factor in the dynamic skewness of these currencies, and if economically meaningful forecasts

can be derived from it. We also consider additional control factors such as past innovations, past

skewness parameter, as well as the the CBOE volatility index (VIX), a measure of global uncertainty

found to impact on the predictability of interest rates [Ismailov and Rossi, 2018]. To assess the

economic significance of our findings, we look at the average return generated by a simple directional

trading strategy based on our model, and compare it to several benchmarks. We conduct a persistence

analysis to assess whether our results hold out-of-sample.

As highlighted by Hossfeld and MacDonald [2015], EUR and CHF are the only G10 currencies apart

from USD exhibiting the features of safe haven and hedging currencies. It is therefore expected that,

thanks to their economic fundamentals, the signal conveyed by IRD is magnified for these currencies

in case of a carry trade reversal as described in Farhi and Gabaix [2016]. Moreover, Hsu et al. [2016]

could only find mild or no evidence of profitable trading strategies at a daily frequency in earlier time

periods for these currencies. As such, these currencies form an interesting but challenging laboratory

to investigate the link between IRD and exchange rate skewness.

Based on our approach, we find that IRD is an important factor to model the dynamic skewness

of the daily depreciation rate for EUR and CHF. The forecasting exercises reveal that the predictive

performance of our model is statistically significant for both currencies. In contrast with previous

studies limited to a monthly frequency, we demonstrate this effect at a daily frequency. Moreover,

we find evidence of a trade-off between appreciation and the risk of a large depreciation: first, we

observe that the larger the IRD, the more likely the high-yield currency is to appreciate. However,

this comes at the cost of an increased likelihood of a currency crash, i.e. a large depreciation. In

a robustness analysis presented in the supplementary material, we find evidence of a similar trade-

off for three additional currencies (Japanese Yen, Swedish Krona and British Pound). Second, our

results reveal that a depreciation shock to the home or the foreign currency on a given day makes an

appreciation of the same currency more likely the next day. However, this shock is also associated

with an increase in the likelihood of an extreme depreciation. This observation suggests that some

self-fulfilling mechanism exists, in line with the findings of Habib and Stracca [2012]. Finally, for

EUR, we find that an increase in global uncertainty or risk aversion is positively associated with a

higher likelihood of appreciation. This also comes at the cost of an increasing risk of an extreme

depreciation. These three effects combined underline the existence of a crash-risk trade-off: the larger

the probability of an appreciation, the more likely we are to suffer an extreme depreciation.

We believe that our results provide useful insights for investors and policymakers. A better un-
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derstanding of the exchange rate dynamics of a currency adds to the information available for risk

management or investment analysis. Moreover, similarly to the volatility forecasts of an exchange

rate [Poon and Granger, 2003], quantifying the risk of depreciation shocks may serve for monetary

authorities and policymakers as a barometer for assessing the vulnerability of financial markets.

We have structured the paper as follows: in Section 2, we detail the features of the statistical

model, the estimation approach, and the interpretation of the model. In Section 3, we perform the

empirical analysis and investigate the economic significance of our results in Section 3.3. We conclude

in Section 4.

2 Methodology

The fundamental feature of our econometric approach is a time-varying asymmetry of the depreciation

rate that is allowed to depend on explanatory variables.

To set up our model, we build on a classic GARCH model [Engle, 1982, Bollerslev, 1986], and relax

the usual assumptions of symmetric and time-constant distribution of the innovations (e.g. Gaussian

or t-distributed). Instead, we combine a GARCH-type model with a sinh-arcsinh distribution for the

innovations (SH, Jones and Pewsey [2009]), abbreviated GARCH-SH subsequently. Conveniently, the

standardized SH distribution has two parameters (ϵ and δ) with interpretable meanings (asymmetry

and shape), is centred on the Gaussian distribution (with ϵ = 0 and δ = 1), and has the single

constraint2 δ > 0. Moreover, it accounts also for lighter tails than the normal distribution, a feature

not possible with the skewed-t distribution. Finally, all its high-order moments exist without additional

restrictions. This feature is particularly appealing in the analysis of exchange rates, as the existence

of high-order moments is key to investigating the potential link between exchange rates and IRD.

In our suggested GARCH-SH approach, we allow the asymmetry parameter ϵ to evolve according to

an ARMAX structure, i.e. an autoregressive-moving average structure complemented by explanatory

variables. Thereby, we can link the conditional distribution of exchange rate returns with the IRD

as well as other relevant financial or economic factors, and account for dependence structures that go

beyond the first and second moments. Furthermore, we allow the volatility level to enter the mean

equation, defining a GARCH-in-mean model as in Glosten et al. [1993]. Empirically, the use of the

contemporaneous volatility in the mean equation is motivated by Ranaldo and Söderlind [2010] and

Menkhoff et al. [2012], who discovered a significant relation between the volatility and the expected

depreciation of a currency. We detail the model and its essential features in the following subsections.

2Another constraint, although classical, is the finiteness of the parameters, which is needed to ensure that
the distribution is proper.
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2.1 Model specification and interpretation

We specify the exchange rate model according to the following set of equations: denoting the nominal

exchange rate at time t by St, the log-rate of change Rt = log
(
St/St−1

)
follows a multiplicative

heteroscedastic process of the form

Rt = c+ λσt + rt, (1)

rt = σtzt, (2)

σ2
t = ω + ασ2

t−1 + βr2t−1, (3)

zt|It−1
iid∼ f(zt; ϵt, δ|It−1), (4)

ϵt = g(It−1), (5)

where c is a constant, σ2
t the conditional variance of rt, and zt the innovation at time t with mean zero

and unit variance. It denotes the information set up to time t, comprising all values of zt and vectors

of covariates xt up to time t. The probability density function (PDF) of the standardized sinh-arcsinh

distribution with parameters ϵt and δ, conditional on It−1 is denoted by f(z; ϵt, δ|It−1). Moreover,

g(·) is a parametric function linking the asymmetry parameter to past information. Expressions for

the PDF, the value of the location and scale parameters in the standardized case, as well as a detailed

discussion on the characteristics of the SH distribution can be found in the supplementary material.

Note that we assume the shape parameter δ to be constant over time. Without loss of generality, we

can relax this assumption to obtain a more flexible model, but prefer maintaining a more parsimonious

one. Nevertheless, since the kurtosis depends on ϵt as well, dynamic kurtosis is automatically implied

from our specification. Conditions stated in the supplementary material ensure that E(zt) = 0 and

E(z2t ) = 1, so that σ2
t can be interpreted as the conditional variance of rt.

More specifically, we define eq. (5) as a function of past innovations zt−1, lagged values ϵt−1, as

well as variables xt−1, such as IRDt−1, or other potential determinants of exchange rate asymmetry.

Eq. (5) is therefore reformulated as:

ϵt = g(It−1) = a0 + a1ϵt−1 + a2zt−1 + a3xt−1. (6)

This equation can be modified or restricted in several ways. For instance, assuming that all parameters

in (6) take the value zero, we are back to the symmetric case. Setting a1 = a2 = a3 = 0 leads to a

model without dynamics but including asymmetry, whereas assuming a1 and a3 to be zero leads to a

model in which only past innovations impact on the asymmetry. In the empirical analysis, a range of

different specifications for eq. (6) is investigated. An overview is available in Appendix A.
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2.2 Dynamic asymmetry and the currency crash risk

We employ (6) to study how the IRD, uncertainty (measured by the VIX), and past stochastic com-

ponents influence the distribution of exchange rate returns. In particular, we suggest looking at three

quantities: first, the probability of a positive shock (πt), indicative of the likelihood of a depreciation

of the home currency 3. Furthermore, for economic interpretation, we are interested in two measures

of currency crash risk, indicating the likelihood of a sudden large depreciation or large appreciation,

of the home currency. These measures are denoted ρ+t and ρ−t , respectively. Mathematically, the three

quantities are defined as

πt = P(zt > 0), (7)

ρ+t = P(zt > q+), (8)

ρ−t = P(zt < q−), (9)

where q+ > 0 is large and q− < 0 is small. In our empirical study, we use q+ = 2 and q− = −2, values

corresponding to a two-standard deviation event and used as a reference point in Chernov et al. [2018]

for currency crash risk. As such, ρ+t and ρ−t indicate the probability that the exchange rate suffers

from a random shock zt at least as large as two standard deviations in absolute values.

The marginal effect of a change in one component in eq. (6) on these quantities is deduced from

the sign of the regression coefficients. Table 1 summarizes the various scenarios for a variation in the

level of IRDt−1 and highlights the important connections between the asymmetry parameter (ϵt), the

likelihood of a depreciation (πt), and the crash risks (ρ+t and ρ−t ): if the density is positively skewed

(i.e. ϵt is positive), then an appreciation of the home currency is more likely than a depreciation (i.e.

πt < 0.5). If the asymmetry parameter becomes more positive, the density becomes more positively

skewed, and an appreciation is even more likely (πt becomes smaller). However, the risk of a large

depreciation increases (ρ+t increases). A similar reasoning holds for negative values of the asymmetry

parameter ϵt and the risk ρ−t of a large appreciation. Figure 2 illustrates these movements in the

PDF for a positive parameter ϵt. If the degree of skewness augments further (as indicated by the SH

distribution in blue), the crash risk computed as the integral of the density beyond the blue vertical

line increases.

2.3 Estimation procedure and inference

We estimate the model by means of maximum likelihood procedures. Denoting by Θ the vector of all

parameters in equations 1 to 5, the time series of observed log-rate of change by yT = {Rt}t=1,...,T ,

3Throughout the paper, we use the direct quotation for exchange rates, i.e. we express one unit of the foreign
currency in terms of the home currency.
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Table 1: Effects of a change in IRDt−1

IRDt−1 ↗ IRDt−1 ↘

a3 > 0 a3 < 0 a3 > 0 a3 < 0

ϵt + - - +
πt - + + -
ρ+t + - - +
ρ−t - + + -

Note: signs of the effect on the asymmetry parameter (ϵt), the likelihood of a depreciation (πt), and the crash
risks (ρ+t and ρ−t ) resulting from a change in IRDt−1 captured by a3.
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Figure 2: Example of standardized SH distributions with ϵ = 0.1 (black) and ϵ = 0.7 (blue) (we
set δ = 0.85). Those values imply skewness levels of 0.25 and 1.3, respectively. The vertical
blue line indicates the threshold used for calculating the crash risk, i.e. the integral of the
density beyond this threshold.

and assuming conditional independence, the conditional log-likelihood function L(Θ;yT ) is given by

L(Θ;yT ) =
1

T

T∑
t=1

log

(
1

σt
f((Rt − c− λσt)/σt; ϵt, δ|It−1)

)
. (10)

An estimator Θ̂ of Θ is obtained by maximizing numerically (10) with respect to Θ:

Θ̂ = argmax
Θ

L(Θ;yT ), (11)

and subject to the constraints ω, α, β > 0, α + β < 1 and δ > 0. We do not set constraints on the

other parameters4. A simulation study of the finite-sample performance of the proposed estimation

method can be found in the supplementary material.

Under correct specification of the model and usual stationarity conditions, the Fisher information

4With regard to the choice of a starting value ϵ0, we use (a0 +
∑
j>2

aj x̄j)/(1− a1). We also check a posteriori

whether the estimated parameters ensure finite values of ϵt when T → +∞
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matrix H(Θ) of (10) at Θ̂ can be used to test the following null hypothesis:

H0 : θi = 0, (12)

where θi is the ith element of Θ. To do so, we use the Wald-type test statistic

wi = θ̂i/σ̂ii, (13)

where θ̂i is an estimator of θi and σ̂2
ii is the i

th diagonal element of H−1(Θ̂). Under H0, wi
as.∼ N(0, 1).

In the supplementary material, we report a simulation study demonstrating that this approximation

returns well-sized and respectably powerful tests. Similarly, restrictions in eq. (6) can be tested using

likelihood ratio (LR) test statistics of the type

LR = −2(L(Θ0;yT )− L(Θ1;yT )), (14)

with Θ0 being a restricted version of Θ1. Under the null hypothesis of the restricted model being the

true one, we have the usual result LR
as.∼ χ2

ν , ν being the number of restrictions.

2.4 Directional forecasting

As noted by Blaskowitz and Herwartz [2011], in the specific context of exchange rates, investors are

particularly interested in the direction of the change of the market since this knowledge helps to hedge

currency risk or devise an investment strategy. With the goal of assessing the economic significance

of the proposed model with respect to exchange rates exhibiting high-order dynamics, we therefore

focus on producing daily directional forecasts, and assess its directional accuracy. While in Section 3

we discuss in detail the results from an out-of-sample forecasting exercise, results from the in-sample

analysis are provided in the supplementary material.

2.4.1 Directional forecasting strategy

To assess the proposed model, we consider the performance of a directional forecasting exercise, as

found to be particularly appropriate to gauge the correctness of a time-varying asymmetry [Liu, 2015].

In a model without mean dynamics, a dynamically asymmetric distribution of the innovations implies

that tomorrow’s probability of a positive variation would be lower than a negative one. Similarly, the

probability of a negative variation would be greater than a positive one. Consequently, knowing the

degree and sign of asymmetry enables us to compute a probability of appreciation or depreciation,

and to derive a forecasting strategy. An easy analogy can illustrate this: at any point in time, we

bet on the tossing of a coin, heads or tails, in which the probabilities of each result are not equal and
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vary over time. Consequently, if we knew these probabilities, we could always bet on the most likely

outcome.

With this model, we can compute the probability that the home currency depreciates (i.e. that

Rt > 0) at each point in time, given the information set available at time t − 1. This probability is

denoted pt|t−1 and is obtained from

pt|t−1 = 1− P(Rt < 0|It−1), (15)

= 1− P(c+ λσt + σtzt < 0|It−1), (16)

= 1− P(zt < −c/σt − λ|It−1), (17)

= 1− F (−c/σt − λ; ϵt, δ|It−1), (18)

where F (·) denotes the SH cumulative distribution function. Estimates of p̂t|t−1, for t = 2, . . . , T,

are obtained by plugging the vector of estimated parameters Θ̂ into (18). Then, the final directional

forecast is obtained from the following indicator variable:

p̂∗t =


1 if p̂t|t−1 > 0.5,

−1 otherwise.

(19)

If p̂t|t−1 is larger than 0.5, we expect an increase in the exchange rate, and forecast an depreciation of

the home currency. Otherwise, we expect a decrease in the exchange rate, and therefore forecast an

appreciation of the home currency.

2.4.2 Trading strategy

To translate the directional forecasts into a trading strategy, we adopt the following rule: if the

likelihood of a depreciation of the home currency is above 0.5 (i.e. if p̂t|t−1 > 0.5), the investor takes

a short position or owns the foreign currency. On the contrary, if the likelihood of an appreciation

is above 0.5 (i.e. if p̂t|t−1 < 0.5), the investor takes a long position in the home currency, i.e. owns

USD. In the case of a constant asymmetry and negligible mean dynamics of the conditional density,

the best trading strategy is either always to be in a short position for a negative asymmetry or always

in a long position for a positive asymmetry.

2.4.3 Performance criteria

To assess the quality of these forecasts, we use a set of measures that account for different aspects of

the performance. First, we use the correct classification rate over h time periods (starting in t + 1),

10



given by

CR =
1

h

t+h∑
j=t+1

1(sign(Rj) = p̂∗j ), (20)

where p̂∗j is given by equation (19), 1(·) denotes an indicator function taking value 1 if the condition in

parentheses is met, and sign(.) denotes the sign function. This criterion measures the raw performance

of a model in a pure classification exercise. To assess the performance in terms of CR, we use the

independence test from Pesaran and Timmermann [2009], which accounts for serial correlation.

Second, we use the mean return obtained with our directional forecasts over the same period, given

by

m̂ =
1

h

t+h∑
j=t+1

p̂∗jRj . (21)

Diebold and Mariano [1995], Blaskowitz and Herwartz [2011], and Elliott and Timmermann [2016]

argue that employing a realized economic value is often more sensible than a statistical value in

evaluating the usefulness of a forecast. In particular, m̂ measures the economic usefulness of ”being

right”, i.e. it combines the correct prediction with the timing of a success [Blaskowitz and Herwartz,

2011, 2014]. Hence, if we predict the correct direction of change, we make a gross profit of Rj , whereas

a loss of the same amount is suffered if the prediction is wrong. Such a criterion is used throughout

the finance literature to assess trading rules; see Bajgrowicz and Scaillet [2012] for an example.

We compare the performance of the GARCH-SH model with the performance of random walk,

inverted random walk, always-short, and buy-and-hold approaches, as well as with the most relevant

sub-specifications of the dynamic skewness model. Random walk (RW+) directional predictions must

be understood as predicting tomorrow’s direction of change using today’s sign of the return. In

contrast, directional predictions by the inverted random walk (RW−) for tomorrow are based on the

opposite of today’s sign of the return. Always-short (AS) and buy-and-hold (BH) strategies always

predict an appreciation or a depreciation of the home currency, respectively.

The significance of the out-of-sample performance is stressed by means of the Diebold and Mariano

[1995] (DM) test, the conditional predictive ability test of Giacomini and White [2006], and the

fluctuation test of Giacomini and Rossi [2010]. The last two tests have the advantage of explicitly

covering loss functions that are based on direction of change, account for estimated parameters, and

enable both the comparison of nested and non-nested models. This allows their application to out-of-

sample versions of (20) and (21). These tests are denoted by GW and GR, respectively.
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3 Empirical results

We present the results of our empirical study on the asymmetry of exchange rates, as outlined in the

previous sections. We first describe the data in Section 3.1. In Section 3.2, we briefly present the final

model specification and discuss the empirical findings of including the IRD into the exchange rate

asymmetry. In Section 3.3, we discuss the detailed results from the out-of-sample forecasting exercise.

3.1 Data

We use daily foreign exchange rates expressed as USD per unit of foreign currency, for the EUR and

CHF. The rates correspond to noon buying rates in New York for cable transfers payable and are

available from the Board of Governors of the Federal Reserve System. We compute the log-rate of

change Rt = log(St/St−1), where St is the nominal exchange rate at time t. The considered time

period ranges from 6 January 1999 to 25 March 2019. The final samples comprise 5,074 observations

for each currency. Dates for which exchange rate data were missing were removed from the analysis.

Interest rates are the three-month London Inter-Bank Offered Rate (LIBOR) for the respective

currencies5, as employed by Jordà and Taylor [2012], Ismailov and Rossi [2018] and Du et al. [2018].

All interest rate data were retrieved from the website of the Federal Reserve of St. Louis. Missing

LIBOR data are replaced by the previously observed rate. The interest rate differential IRDt is defined

as LIBORHome
t − LIBORForeign

t , so that positive values correspond to situations in which the home

currency is the investment currency. For negative values of IRD, the home currency becomes the

funding currency. Throughout this article, we define USD as the home currency. Furthermore, VIX

data are daily closing prices and are provided by the CBOE. Missing data have been replaced by the

first prior price available (54 occurrences).

Figures 3 and 4 display the exchange rate time series and the corresponding log-rate of change.

Figure 5 portrays interest rates and the VIX. Several events, such as negative LIBOR rates, the soar

of the VIX, the financial crisis, or the removal of the CHF ceiling rate 6, might indicate instabilities

in the relationship between exchange rates and IRD (please refer to the discussions in Giacomini and

Rossi [2010], Bacchetta and van Wincoop [2013], and Ismailov and Rossi [2018] for examples). This

observation motivates us to study the performance of the model using rolling-window estimates in

Section 3.3, as well as to repeat the main analysis on subsamples in the supplementary material. We

also report the result of a similar analysis for the Swedish Krona (SEK), the Japanese Yen (JPY),

5Although LIBOR has been involved in a manipulation scandal (see, e.g., Fouquau and Spieser [2015]), we
use this rate for consistency with previous studies. An avenue for further research in that respect would be to
consider other reference rates such as swap rates instead.

6In response to a continuously strong appreciation of CHF, a cap of 1.20 CHF/EUR was introduced by the
Swiss National Bank (SNB) on September 6, 2011. In light of the increasing difficulty for the SNB to defend
the ceiling, it was abandoned on January 15, 2015. These two events are responsible for the outliers visibles on
Figure 4.
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and the British Pound (GBP) in the supplementary material.
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Figure 3: (i) Daily exchange rate of EUR against USD, and (ii) log-returns (right) over the
period 6 January 1999 - 25 March 2019.
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Figure 4: (i) Daily exchange rate of CHF against USD, and (ii) log-returns over the period 6
January 1999 - 25 March 2019.

3.2 Model specification and economic interpretation

In the following, we briefly discuss the results of a detailed investigation into different specifications

for the general skewness equation (6) estimated on the full sample. In the rest of this section, we

concentrate on the results implied by the most relevant model specifications. Additional results for a

broader set of specifications can be found in the supplementary material. A detailed overview of the

different skewness specifications and their abbreviations henceforth used is provided in Table A1 in

Appendix A. Throughout this empirical analysis, we assume a GARCH-in-Mean process such that

Et(Rt) = c+ λtσt (22)
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Figure 5: (i) Three-month LIBOR rates (EUR: solid, CHF: dashed-dotted, USD: dashed) and
(ii) VIX. The dashed vertical lines indicate remarkable events: drop in the Dow Jones index by
445 basis points, dotcom bubble crash, liquidity crisis of 2007, banks bailout of 2008, and the
hike of federal fund rate in 2016 (red), establishment and removal of CHF ceiling (blue).

3.2.1 Model specification for EUR and CHF

Table 2 contains information on the model selection for the three most relevant specifications of the

skewness equation7. ARMAX(2), ARMAX(IRD), and MAX(IRD) display the lowest values for the

Bayesian information criterion (BIC) among all considered specifications for EUR. Using likelihood

ratio tests against simpler nested alternatives, we find the ARMAX(2)8 specification to be superior to

all considered alternatives for EUR. Hence, the presence of IRD in the skewness specification appears

necessary to provide a good fit, and it is well complemented by the informational content of the

VIX. Additional test results supporting this specification can be found in the Appendix, Table B3.

Moreover, we repeat the analysis conducted in the introduction for the residuals from the proposed

model. Figure 6 displays the empirical skewness of subgroups of residuals obtained from ARMAX(2)

and pooled by IRD levels. The skewness levels are close to zero for every IRD level, suggesting that

our dynamic asymmetry component captures well the high-order dependence.

Turning to CHF, we find the MAX(IRD) specification to be superior to all other considered

models in terms of BIC. Results from likelihood ratio tests comparing the more complex specification

ARMAX(2) against the simpler alternatives ARMAX(IRD) and MAX(IRD) do not provide evidence

that complementing the IRD information by the VIX and an autoregressive component would yield

a superior model. Repeating the preliminary analysis on the empirical skewness of the residuals for

MAX(IRD) in Figure 7, we find skewness levels close to zero for every IRD level and much smaller than

those obtained with a GARCH(1,1) model. In the next section, we provide an economic interpretation

of the ARMAX(2) model for EUR and the MAX(IRD) model for CHF, which are the best performing

7A more comprehensive overview of model selection criteria for the skewness specifications including interest
rates or the VIX are reported in Appendix B, Table B3.

8That is, the specification of eq. (6) including an autoregressive component, lagged innovation, and two
exogeneous predictors, namely IRDt−1 and V IXt−1. See Appendix A for more details.
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models based on model selection criteria. Estimated conditional volatility, skewness, and kurtosis for

these models are displayed in Figure 8.

Table 2: Model selection and specification criteria

EUR ARMAX(2) ARMAX(IRD) MAX(IRD)

BIC -37,960.02 -37,960.32 -37,964.14
LR - 8.24∗∗∗ 12.94∗∗∗

CHF

BIC -37,246.26 -37,254.44 -37,261.96
LR - 0.35 1.37

Notes: The line LR displays the likelihood ratio test statis-

tics between ARMAX(2) and the competing models. ***

denotes tests significant at the 1% level.
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Figure 6: Empirical skewness of USD/EUR residuals, conditional on observing IRD smaller
(resp. larger) than zero. Solid blue: residuals of a GARCH(1,1) model. Dashed blue: residuals
of ARMAX(2). Solid black: average empirical skewness of GARCH(1,1) residuals independent
of IRD. The x-axis is the IRD expressed as a proportion (i.e. .01 = 1%).

3.2.2 Effect of IRD on depreciation and currency crash risk

In Table 3, we report the estimated coefficients of the final specifications for the two currencies.

We start with an interpretation of the parameter a3, which captures the link between IRD and the

conditional distribution of the depreciation rate. In particular, we look at the marginal effect of

a change in IRD on the probability of a depreciation of USD, measured by πt, and on the crash

risks9, measured by ρ+t and ρ−t . We find a positive and significant regression effect of IRD for both

9As a reminder, ρ+t measures a sudden depreciation of USD, and ρ−t a sudden appreciation.
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Figure 7: Empirical skewness of USD/CHF residuals, conditional on observing IRD larger than
zero (dashed blue). Solid blue: residuals of a GARCH(1,1) model. See Figure 6 for more
explanations.

currencies10. As outlined in Section 2.2, this result implies that an increase in USD interest rates is

associated with an increase in the probability of an appreciation of USD. Analogously, an increase in

the foreign interest rate leads to a higher likelihood of an USD depreciation. It suggests also that

a large and positive IRD opens up the possibility of profitable carry trades, whereby USD is the

investment currency. In this setup, market participants could borrow the foreign currency at a low

rate, buy USD, invest them at a higher rate and still expect an appreciation of USD. These results fit

into the theoretical framework of Farhi and Gabaix [2016], in which the currency of the country with

high interest rates appreciates, conditional on no disaster occurring.

Simultaneously, though, an increase in positive IRD has an opposite effect on ρ+t : it becomes more

likely to observe an extremely positive shock, synonymous with a large depreciation of USD11. This

observation is in line with Farhi and Gabaix [2016] and Jurek [2014], who associate IRD with the risk

of a currency crash: the larger the IRD, the greater the realignment pressures. Hence, we are more

likely to observe a reverting move or a crash on the exchange rate market. A potential explanation for

this effect is the increasing share of market participants involved in carry trades when IRDs are large

[Brunnermeier et al., 2008]: the larger the IRD, the more carry trade investors fear realignments of the

exchange rate. As a consequence, they may unwind their positions in the investment currency, leading

to the appreciations of the funding currency. This result also highlights the potential endogeneity

of the reverting mechanism, as suggested in Farhi and Gabaix [2016]: out of fear, investors turn

themselves into a force of realignment that leads to a sudden depreciation.

Figure 9 depicts the empirical connection between IRD and the probabilities πt, ρ
+
t , and ρ−t for

10A similar result is also obtained for CHF when using only the pre-capping period, i.e. up to 6 September
2011, which removes the two outliers displayed on Figure 4. For this period, we obtain a coefficient of 6.03,
significant at the 1% level. Full results are available upon demand.

11A similar reasoning holds if the foreign currency is the funding currency, leading to a increase in ρ−t when
IRD becomes more negative.
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Figure 8: Conditional variance, skewness and kurtosis for EUR (top) and CHF (bottom).
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EUR and CHF, as unraveled by the models: the larger the IRD, the lower the probability of an overall

depreciation of the home currency, but the higher the probability of a large depreciation. Thereby,

a change in the IRD implies a more than proportional increase in the risk of a large depreciation

compared with the expected change in the total probability of a depreciation. The estimates suggest

that while an increasing IRD favors the investment currency on average, it also increases more than

proportionally the crash risk of this currency.

Table 3: Parameter estimates for final model specifications

Time period 1999M1 - 2019M3

Currency Specification a0 a1 a2 IRD (a3) VIX (a4)

USD/EUR ARMAX(2) -0.043 ∗ 0.631 ∗∗∗ 0.042 ∗∗∗ 1.520 ∗ 0.171 ∗

(0.025) (0.184) (0.014) (0.813) (0.101)

USD/CHF MAX(IRD) -0.000 - 0.040∗∗∗ 3.448∗∗∗ -
(0.018) - (0.013) (0.890) -

Estimated coefficients for the constant, AR, and MA parameters (a0, a1, a2) in the skew-
ness equation (6). IRD and VIX refer to the estimated parameters of the corresponding
predictors. Standard errors are placed in parentheses. *, **, and *** denote Wald tests
significant at the 10%, 5%, and 1% test levels.
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Figure 9: Standardized effects of IRD on depreciation and currency crash risks, measured by
πt, ρ

+
t and ρ−t with q+ = 2 and q− = −2 (from left to right). Estimates are obtained from the

ARMAX(2) model for EUR (top) and MAX(IRD) for CHF (bottom).
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3.2.3 Effect of past unexpected shocks

We now look at the effect of past innovations on the asymmetry. We find a2 to be positive and

significant for all specifications and both currencies, with similar magnitudes. Hence, past positive

shocks have a positive effect on the likelihood of an appreciation of USD, but also a positive effect

on large depreciation. In other words, the larger an unexpected depreciation on one day, the more

likely the appreciation on the next day on average, but also the higher the likelihood of a very large

depreciation. We suggest that this effect is connected to the existence of self-fulfilling mechanisms, as

found by Habib and Stracca [2012]. According to them, exchange rates fluctuate around some equilib-

rium value. As a result, unexpected depreciation is followed by appreciation periods. However, large

unexpected depreciation may lead more and more economic agents to believe in a future depreciation

and to short USD, thus increasing the risk of a sudden USD crash. If this phenomenon takes place

at a time of high volatility, shocks will be amplified. Such a mechanism is consistent not only with

clustered volatility, but also with clustered signs.

3.2.4 Effect of uncertainty on USD/EUR

Besides IRD, the VIX was included in the model for USD/EUR as an additional predictor. The

corresponding coefficient a4 is found to be positive. Thus, for high values of the VIX, an appreciation

of USD against EUR becomes more likely. Simultaneously, though, the likelihood of a currency crash

increases as well. A higher likelihood of appreciation of USD over other currencies in times of financial

stress (as captured by the VIX) is in line with several findings related to safe haven currencies and

funding liquidity constraints: Habib and Stracca [2012] find that the larger the size of the economy,

relative to world GDP, the higher the currency excess returns in times of financial stress.

3.2.5 Crash-risk trade-off

Summarizing the analysis, we draw the following conclusions. First, the larger the difference between

interest rates, the more likely the high-yield currency is to appreciate. However, this “local” higher

appreciation of the high-yield currency comes with the cost of a greater likelihood of a currency

crash, i.e. of a large depreciation. Figure 10 illustrates this result, displaying the risk of an extreme

depreciation shock (ρ−t ) suffered by the foreign currency as a function of the probability of appreciation

of the foreign currency (πt) vis-a-vis the US Dollar. We observe a clear, upward relationship for both

EUR and CHF. Secondly, we observe that a large unexpected depreciation makes an appreciation more

likely the next day. The reciprocal situation applies for a large unexpected appreciation. Moreover, the

former is also associated with an increase in the likelihood of an extreme depreciation, suggesting the

existence of some self-fulfilling mechanism. Finally, an increase in global uncertainty or risk aversion,

as measured by the VIX, is positively associated with a higher likelihood of appreciation for the USD

19



against the EUR, albeit at the cost of an increasing risk of an extreme depreciation. These three effects

combined lead to a crash-risk trade-off: the larger the probability of an appreciation, the more likely

the currency will suffer an extreme depreciation (ceteris paribus). Additional results regarding the

estimated crash-risk measures, especially along the time dimension, can be found in the supplementary

material, Section 2.4.

In a robustness check challenging the generality of our findings and presented in details in the

supplement (Section 3), we repeat our analysis for three additional currencies, namely SEK, JPY

and GBP. Using the same time period, we find for these currencies that conditional skewness is well

described by the proposed model. In Table 9 of the supplement, we report BIC values and results

of likelihood-ratio tests suggesting that the MAX(IRD) and ARMAX(IRD) specifications should be

favored for all currencies, and are superior to the ARMA specification. Moreover, similarly to what

is depicted in Figures 6, 7 and 10, we observe a positive association between πt and ρ−t for these

three currencies. In Table 10 of the supplement, we report coefficient estimates for the MAX(IRD)

specification. All coefficients associated to IRD are found to be significantly positive at the 1% test

level and of similar magnitude than what is observed for EUR and CHF. This brings further evidence

of a crash risk trade-off also for currencies not considered as safe heaven or hedging currencies.
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Figure 10: Crash-risk trade-off between the probability of an appreciation (πt) and the proba-
bility of an extreme depreciation (ρ−t ) for the foreign currency.

3.3 Forecasting with dynamic asymmetry

In this section, we investigate the extent to which the proposed modeling approach translates into

economically and statistically significant forecasts. The questions to be answered are, hence: could

an investor have correctly guessed the direction of change of exchange rates using the suggested

framework? Is the dynamic skewness, and in particular the effect of IRD, sufficiently strong to be

exploited and yield an investment strategy with positive returns? In the following, we present the
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detailed results of an out-of-sample assessment. Results on the in-sample performance can be found

in the supplementary material.

3.3.1 Out-of-sample performance

Out-of-sample directional forecasts are obtained using rolling-window estimates of the parameters.

The initial training period ranges from 6 January 1999 to 1 December 2014 (3999 observations),

covering, hence, both non-crisis and crisis data, as well as information from the more recent period

with low interest rates. We re-estimate the parameters of the model every five days, and predict the

direction of change up to March 2019, resulting in one-step-ahead predictions for 1,075 days.

We compare these results to a series of naive benchmarks: the BH and AS strategies are similar

to forecasting exchange rates with a momentum strategy using the training data to determine the

direction of the momentum. The RW+/RW−strategies can also be regarded as a one-day momentum

strategy. To account for the effect of choosing the side of the benchmark (i.e. if we use the long or

short side of the BH/AS and RW+/RW− strategies), we use the best performing benchmark during

the in-sample period to conduct out-of-sample forecasts.

The forecasting strategies are assessed based on the performance criteria defined in Section 2.4.

Moreover, to test for significant differences in forecasting abilities, we use the DM, GW, and GR tests

discussed in Section 3.2. In particular, the GR test allows to control for variations in forecasting

performance over time, contrary to other tests that only take the average performance into account.

EUR out-of-sample performance

Table 4 contains the performance criteria for selected skewness specifications. Using the AR-

MAX(2) specification for the skewness parameter yields an average performance m̂ of 5.20% in equiv-

alent yearly rate over the forecast horizon. This is the best result across all tested models, with

ARMAX(IRD) being the second best performing model with a profit of 2.76%.12 Figure 11 illustrates

the compounded value over time of investing 1 USD at the beginning of the forecasting period accord-

ing to trading rules defined by either ARMAX(2) or ARMAX(IRD). Although there are losses at the

onset of the period, we rapidly make a profit between 2017 and 2018. On the contrary, both benchmark

models return a negative performance with −1.26% for the random walk strategy and −2.26% for the

momentum strategy, as indicated by column 3 in Table 4. Looking at a more complex benchmark,

such as the ARMA specification which does not include IRD (Table B4 in Appendix B.3), we find

the ARMAX(IRD) specification to be still superior, delivering a 20% increase in profit. Nevertheless,

this result suggest the importance of the ARMA structure in the dynamic skewness. It also poten-

tially points out to a fluctuating predictability of IRD, consistent with the pocket-of-predictability

phenomenon [Farmer et al., 2023].

12Detailed out-of-sample results for all tested specifications can be found in Appendix B.3.
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In terms of classification performance displayed in columns 1 and 2 in Table 4, ARMAX(IRD)

obtains a correct classification rate of 52.09%, and is the only model with a sign forecasting ability

found significant by the test of Pesaran and Timmermann [2009]. Moreover, we test whether the

out-of-sample profit m̂ obtained with ARMAX(2) and ARMAX(IRD) is significantly different from 0.

To do so, we use the GR test for several τ ∈ [.1, .85]. The loss function used for the test is given by

eq. (21). We reject the null hypothesis of no profit at the 5% test level for ARMAX(2). These results

are displayed in Figure 12, upper panels. 13 The results in columns 4 and 5 in Table 4 indicate that

the GW and DM tests are inconclusive.

Table 4: Out-of-sample forecasting performance of selected skewness specifications

USD/EUR (2014M12 - 2019M3)

Classification average profit average excess performance

Specification CR PT09 m̂ DM GW ∆m̂ DM GW

ARMAX(2) 51.16% 0.30 5.20% 1.21 4.73 6.46% 0.94 2.59
ARMAX(IRD) 52.09% 4.08∗∗ 2.76% 0.64 0.92 4.02% 0.58 0.57

RW+/RW− 48.00% 0.00 -1.26% -0.34 0.16 - - -
BH/AS 47.81% - -2.26% -0.55 0.31 - - -

Table entries denote correct classification rate (CR), average profit (m̂), and average excess
performance over the random walk benchmark (∆m̂) for selected specifications of the skewness
parameter. Entries for PT09, DM, GW display the respective test statistics. ∗∗ indicates tests
significant at the 5% level.
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Figure 11: For EUR, compounded value of an initial investment of 1 USD in the trading rules
derived from ARMAX(2) (solid blue), ARMAX(IRD) (dotted blue), random walk (dashed
black), and momentum (solid black).

Furthermore, it is of interest whether there are significant differences with respect to the momentum

13Similar figures for the ARMAX(IRD) specification can be found in the supplementary material.
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benchmark. Therefore, we repeat the procedure using the following loss function:

L
(1)
∆ =

1

h

t+h∑
j=t+1

(p̂∗j − p̂∗,RW
j )Rj , (23)

where p̂∗,RW
j is the sign forecast obtained from the random walk benchmark. The results displayed in

Figure 12 (lower panel) indicate that the performance of the ARMAX(2) model is significantly better

than the benchmark for some periods of time. Comparable results are obtained for the ARMAX(IRD)

model and are displayed in the supplementary material 14.

We conclude that the IRD and the VIX prove useful to predict the future direction of change of

the USD/EUR exchange rate. In particular, a changing IRD intensity as observed over the period

2016-2018, carries economically significant predictive power.

CHF out-of-sample performance

We produce similar out-of-sample forecasts for CHF. The various indicators are reported in Table

5 for the main specifications. The skewness specifications based on IRD or mixing both IRD and

VIX prove to perform better than the others. In particular, MAX(2), MAX(IRD) and ARX(IRD)

exhibit an average profit m̂ ranging between 6.49% and 7.64% in equivalent yearly rates (Table 5).

To illustrate these results, we display the compounded value over time of investing 1 USD in our

trading rules in December 2014 in Figure 13. Most of the performance seems to be concentrated at

the beginning of the period, i.e. between 2015 and mid 2016. All models including the IRD were

successful in correctly betting on the surge in CHF value on 15 January 2015, partially explaining

the relatively high profit compared to EUR. The random walk benchmark was also successful in that

respect but, contrary to dynamic skewness models, its performance decreased substantially later on,

and the final profit is close to zero. A more stringent comparison with the ARMA specification of the

skewness parameter reveals a profit of 2.75%, which is still 56% to 64% smaller than the ones obtained

with the models including IRD. As for EUR, this model exhibits also less desirable features, such as

a larger maximum drawdown (see Appendix B.3, Table B7). The positive performance of the ARMA

model confirms the important of the autoregressive and moving average components in the skewness

dynamics.

We report the results of the GR test for the MAX(IRD) specification but comparable results are

obtained for the alternative specifications including IRD information in the supplementary material.

The upper panels in Figure 14 display the GR statistics used to test the null hypothesis H0 : |m̂| ≤

0. We reject this hypothesis at the 5% test level for various values of τ . As suggested by Figure

14Similar results are achieved when the loss function is adapted to test for superior sign predictability. We
also conducted these tests using the best (ex-post) BS/AS benchmark (in this case, this is the AS benchmark,
with a correct classification rate of 51.35%), i.e. without accounting for in-sample benchmark selection. The
results stay unchanged for ARMAX(2). Results are provided in the supplementary material.
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(i) GR test for ARMAX(2) (H0 : |m̂| ≤ 0)
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(ii) GR test for ARMAX(2) (H0 : |∆m̂| ≤ 0)

Figure 12: For EUR, GR test statistic (blue) with τ ∈ [.1, .85] using (i) m̂ and (ii) L
(1)
∆ as

loss functions. If the statistic is above the rejection threshold (dashed red), we reject the null
hypothesis (i) H0 : |m̂| ≤ 0 (upper panel) or (ii) H0 : |∆m̂| ≤ 0 (lower panel). ∆m̂ is the
average difference in profit with respect to the random walk benchmark. Dashed black: test
statistic for the RW strategy.

13, the significant performance always occurs in 2015-2016. Using L
(1)
∆ as loss function and testing

H0 : |∆m̂| ≤ 0, we obtain similar results as displayed in the lower panels of Figure 14. Overall, these

results highlight that the out-of-sample predictive ability of the models augmented with IRD benefits

from the sharp appreciation of the CHF at the beginning of 2015.

Robustness analysis: out-of-sample performance for SEK, JPY and GBP
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Table 5: Out-of-sample forecasting performance for selected specifications

USD/CHF (2014M12 - 2019M3)

Classification average profit average excess performance

Specification CR PT09 m̂ DM GW ∆m̂ DM GW

MAX(2) 50.79% 0.31 7.64% 1.33 2.97 6.69% 0.86 1.18
MAX(IRD) 50.60% 0.12 6.49% 1.22 2.70 5.54% 0.71 0.65
ARX(IRD) 50.79% 0.58 7.63% 1.46 4.62∗ 6.68% 1.09 1.45

RW+/RW− 47.72% 0.00 0.95% 0.18 1.22 - - -
BH/AS 47.07% - -0.69% -0.13 0.80 - - -

Please refer to the notes of Table 4 for explanations on the table entries.

In Section 3, Table 11 of the supplement, we report detailed results of an out-of-sample performance

analysis for SEK, JPY and GBP. In contrast to EUR and CHF, we do not produce a significantly

positive out-of-sample profit for these currencies. For SEK, however, out-of-sample profit is large

(up to 4.31%) and substantially higher than for benchmark models (1.28% for ARMA, -5.17% for

RW). For JPY and GBP, the out-of-sample performance is negligible or even negative. These results

suggest that, although IRD explains well the dynamic skewness in the regression analysis, its effect is

not strong enough to generate economically useful forecasts with our model.

Following Hossfeld and MacDonald [2015], these discrepancies might stem from the nature of

the currency: CHF and EUR are considered safe heaven and hedge currencies, that are expected

to appreciate even in times of global market downturn. On the contrary, SEK was found to be a

speculative currency, i.e. a currency depreciating during stock market downturn. Neither JPY nor

GBP exhibited any specific features. Our results may, hence, reflect that the predictive content of IRD

is modulated by factors such as market state or market stress level. We let this question be answered

in future research.
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Figure 13: For CHF, compounded value of an initial investment of 1 USD in the trading rules
derived from the models MAX(2) (blue), MAX(IRD) (brown), ARX(IRD) (dark grey), random
walk (solid black) and constant asymmetry (light grey).
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(i) GR test for MAX(IRD) (H0 : |m̂| ≤ 0)
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(ii) GR test for MAX(IRD) (H0 : |∆m̂| ≤ 0)

Figure 14: For CHF, GR test statistic (blue) with τ ∈ [.1, .85] using (i) m̂ and (ii) L
(1)
∆ as

loss functions. If the statistic is above the rejection threshold (dashed red), we reject the null
hypothesis at the 5% test level. Dashed black: test statistics for the RW benchmark.
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4 Conclusion

Using a model that allows for conditional dynamic asymmetry, we revisit the link between interest

rate differentials and daily exchange rate returns. Applying this approach to the study of EUR and

CHF daily exchange rates vis-a-vis the US Dollar, we discover that the larger the difference between

interest rates, the more likely the high-yield currency is to appreciate. However, it occurs at the cost

of an increase in the likelihood of a large depreciation. In robustness checks, we find similar dynamics

for SEK, JPY and GBP. This result is consistent with the theoretical framework of Farhi and Gabaix

[2016] and Brunnermeier et al. [2008], in which a brutal unwinding of carry trade positions generates

a currency crash.

Furthermore, when accounting for the effect of financial uncertainty, we find that USD is more

likely to appreciate with respect to EUR when the VIX increases, but also that it is then exposed to

a higher risk of a currency crash. These results are in line with Menkhoff et al. [2012], Bekaert et al.

[2013] and Habib and Stracca [2012], who suggest that liquidity shortage and increasing risk aversion

lead investors towards buying USD, but also that this increasing uncertainty leads to an increase in

the likelihood of a large USD depreciation.

We use our model to predict the direction of change in exchange rates and use these forecasts to

build a transparent and theoretically motivated trading strategy. The detected effects are sufficiently

large to generate statistically significant economic gains for EUR and CHF, both in- and out-of-

sample. A limitation of the present analysis is that we do not account for the selection of the model

itself. Therefore nothing guarantees that one could have obtained a profit ex ante, as assessed, e.g.

in Bajgrowicz and Scaillet [2012]. However, as discussed in Inoue and Kilian [2005], in-sample results

typically exhibit a higher power in performance tests. Hence, the consistency between in-sample and

out-of-sample tests limits the risk of our findings being spurious.

From a policy standpoint, our results suggest that favoring an increase in IRD correlates with

systemic issues such as a high likelihood of a large depreciation. They also highlight the importance of

self-fulfilling mechanisms and volatility in currency crashes, suggesting that preventing depreciation

or appreciation shocks in periods of high uncertainty would reduce crash risk. Future research could

extend this approach to the currencies of emerging markets in which monetary policy authorities are

faced with both large IRD with the USD and substantial exchange rate fluctuations. Other potential

mitigating factors, such as TED spreads or corporate bond spreads, could be investigated to challenge

the robustness of our findings.
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A Overview of skewness specifications

In our empirical analysis, we consider up to 12 specifications of the general skewness equation given

by (6). In Table A1, we detail these equations.

Table A1: Tested specifications of the skewness equation.

Specification number Name Equation

(1) CST ϵt = a0.
(2) ARX(VIX) ϵt = a0 + a1ϵt−1 + a3VIXt−1.
(3) ARX(IRD) ϵt = a0 + a1ϵt−1 + a4IRDt−1.
(4) ARX(2) ϵt = a0 + a1ϵt−1 + a3IRDt−1 + a4VIXt−1.
(5) MA ϵt = a0 + a2zt−1.
(6) ARMA ϵt = a0 + a1ϵt−1 + a2zt−1.
(7) MAX(VIX) ϵt = a0 + a2zt−1 + a3VIXt−1.
(8) MAX(IRD) ϵt = a0 + a2zt−1 + a4IRDt−1.
(9) MAX(2) ϵt = a0 + a2zt−1 + a3IRDt−1 + a4VIXt−1.
(10) ARMAX(VIX) ϵt = a0 + a1ϵt−1 + a2zt−1 + a3VIXt−1.
(11) ARMAX(IRD) ϵt = a0 + a1ϵt−1 + a2zt−1 + a4IRDt−1.
(12) ARMAX(2) ϵt = a0 + a1ϵt−1 + a2zt−1 + a3IRDt−1 + a4VIXt−1.

Rows indicate the different versions of the skewness equations that are considered in the empir-
ical analysis.

B Additional results

B.1 In-sample results

In this section, we display the performance measures of the in-sample analysis, for EUR/USD (Table

B1) and CHF/USD (Table B2). Additional performance measures and computational details of the

in-sample analysis can be found in the supplementary material. The columns Full. SSPA and Int.

SSPA give the p-values of the stepwise superior predictability test of Hsu et al. [2010], including either

all models, or only the most sophisticated ones. The column p-val. contains the p-value of a bootstrap

test of no superior performance for a single model.
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B.2 Robustness and additional test results

In this section, we display additional results related to the specification tests of Berkowitz [2001],

Doornik and Hansen [2008], and Anderson-Darling in Table B3 for both EUR and CHF.

Table B3: Model selection and specification criteria.

EUR ARMAX(2) ARMAX(IRD) ARMAX(VIX) MAX(2) MAX(IRD) MAX(VIX)

LLF -19,026.94 -19,022.82 -19,019.48 -19,024.26 -19,020.47 -19,017.16
AIC -38,031.88 -38,025.64 -38,018.96 -38,028.52 -38,022.94 -38,016.32
BIC -37,960.02 -37,960.32 -37,953.64 -37,963.20 -37,964.14 -37,957.53
LR - 8.24∗∗∗ 14.92∗∗∗ 5.36∗∗ 12.94∗∗∗ 19.56∗∗∗

BK 0.702 0.758 0.840 0.252 0.735 0.770
DH 2.885 3.030 3.217 2.758 2.895 3.019
AD 0.353 0.371 0.328 0.369 0.339 0.357

CHF ARMAX(2) ARMAX(IRD) ARMAX(VIX) MAX(2) MAX(IRD) MAX(VIX)

LLF -18,670.06 -18,669.88 -18,662.59 -18,669.52 -18,669.38 -18,661.98
AIC -37,318.11 -37,319.77 -37,305.18 -37,319.05 -37,320.75 -37,305.97
BIC -37,246.26 -37,254.44 -37,239.86 -37,253.73 -37,261.96 -37,247.18
LR - 0.35 14.94∗∗∗ 1.07 1.37 16.15∗∗∗

BK 3.32 3.36 3.06 3.39 3.41 3.13
DH 18.63∗∗∗ 18.74∗∗∗ 16.57∗∗∗ 18.95∗∗∗ 19.04∗∗∗ 16.90∗∗∗

AD 1.08 1.09 1.07 1.12 1.12 1.11

LLF denotes the value of the negative log-likelihood function. The line LR displays the likelihood ratio
test statistics between ARMAX(2) and the competing models. The lines labelled BK, DH and AD
report the test statistics for Berkowitz [2001], Doornik and Hansen [2008] and Anderson-Darling tests,
respectively. *** denote tests significant at the 1% level.

B.3 Out-of-sample forecasting performance

In this section, we provide additional results for the out-of-sample analysis discussed in Section 3. In

Tables B4 to B7, we display the detailed out-of-sample performance results for each tested skewness

specification.
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Table B4: Out-of-sample forecasting performance for EUR

USD/EUR (2014M12 - 2019M3)

Classification average profit average excess performance

Specification CR PT09 m̂ DM GW ∆m̂ DM GW

ARMAX(2) 51.16% 0.30 5.20% 1.21 4.73 6.46% 0.94 2.59
ARMAX(IRD) 52.09% 4.08∗∗ 2.76% 0.64 0.92 4.02% 0.58 0.57
ARMAX(VIX) 50.23% 1.99 1.62% 0.37 0.62 2.88% 0.44 0.97
MAX(2) 49.40% 0.15 -0.60% -0.14 0.08 0.66% 0.09 0.14
MAX(IRD) 49.30% 0.02 -2.77% -0.64 0.53 -1.51% -0.21 0.05
MAX(VIX) 47.72% 1.00 -2.89% -0.67 0.73 -1.63% -0.24 0.07
ARMA 51.16% 2.32 2.27% 0.50 0.25 3.53% 0.49 0.23
MA 48.47% 0.22 -2.70% -0.61 0.63 -1.44% -0.20 0.05
ARX(2) 49.21% 0.18 -1.59% -0.36 0.16 -0.33% -0.05 1.43
ARX(IRD) 48.28% 0.29 -4.18% -0.99 1.05 -2.92% -0.50 0.38
ARX(VIX) 47.72% 0.11 0.37% 0.08 0.00 -1.63% 0.29 0.09
CST 47.44% 1.63 -3.05% -0.74 0.85 -1.79% -0.31 0.23

RW+/RW− 48.00% 0.00 -1.26% -0.34 0.16 - - -
BH/AS 47.81% - -2.26% -0.55 0.31 - - -

Table entries denote correct classification rate (CR), average profit (m̂), and
average excess performance over the random walk benchmark (∆m̂). Entries
for PT09, DM, GW display the respective test statistics. ∗∗ indicates tests
significant at the 5% levels.

Table B5: Additional out-of-sample measures for USD/EUR

USD/EUR (2014M12 - 2019M3)

Specification Sharpe Skew AUC AUC∗ G/L Max. Draw.

ARMAX(2) 0.59 0.03 0.53 0.53 1.10 0.17
ARMAX(IRD) 0.31 -0.04 0.53 0.51 1.05 0.17
ARMAX(VIX) 0.18 0.10 0.53 0.52 1.03 0.16
MAX(2) -0.07 0.05 0.51 0.52 0.99 0.20
MAX(IRD) -0.31 0.08 0.52 0.51 0.95 0.23
MAX(VIX) -0.33 0.06 0.51 0.51 0.95 0.22
ARMA 0.26 0.04 0.53 0.51 1.04 0.20
MA -0.31 0.05 0.52 0.51 0.95 0.23
ARX(2) -0.18 -0.10 0.50 0.50 0.97 0.29
ARX(IRD) -0.47 -0.10 0.50 0.50 0.92 0.24
ARX(VIX) 0.04 0.20 0.49 0.50 1.01 0.13
CST -0.35 0.09 0.50 0.51 0.94 0.21

RW+/RW− -0.14 -0.28 0.48 0.49 0.98 0.24
BH/AS -0.26 0.09 - - 0.96 0.18

Additional out-of-sample performance measures for the profit
of the trading rules derived from the different models
(USD/EUR). The column entries denote the Sharpe ratio, the
skewness of the daily profit, the area under the correct classi-
fication frontier (AUC), its return-weighted version (AUC∗) of
Jordà and Taylor [2012], the gain-loss (G/L) ratio of Bernardo
and Ledoit [2000] and the maximum drawdown on the com-
pounded profits.
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Table B6: Out-of-sample forecasting performance for CHF

USD/CHF (2014M12 - 2019M3)

Classification average profit average excess performance

Specification CR PT09 m̂ DM GW ∆m̂ DM GW

ARMAX(2) 51.16% 1.27 5.16% 1.07 1.21 4.21% 0.54 4.95∗

ARMAX(IRD) 51.53% 0.92 5.10% 1.06 1.12 4.15% 0.52 5.70∗

ARMAX(VIX) 51.26% 2.26 3.32% 0.59 1.87 2.37% 0.24 1.18
MAX(2) 50.79% 0.31 7.64% 1.33 2.97 6.69% 0.86 1.18
MAX(IRD) 50.60% 0.12 6.49% 1.22 2.70 5.54% 0.71 0.65
MAX(VIX) 51.26% 3.55∗ 1.71% 0.32 1.18 0.76% 0.08 0.91
ARMA 52.47% 3.20∗ 3.21% 0.55 1.77 2.26% 0.23 1.18
MA 51.72% 4.71∗∗ 2.60% 0.48 1.51 1.65% 0.17 1.03
ARX(2) 51.16% 1.47 6.85% 1.31 3.76 5.90% 1.01 1.26
ARX(IRD) 50.79% 0.58 7.63% 1.46 4.62∗ 6.68% 1.09 1.45
ARX(VIX) 50.70% 0.15 3.19% 0.62 2.22 2.24% 0.39 0.57
CST 48.56% 0.32 3.72% 0.75 2.00 2.77% 0.48 0.43

RW+/RW− 47.72% 0.00 0.95% 0.18 1.22 - - -
BH/AS 47.07% - -0.69% -0.13 0.80 - - -

Please refer to the notes in Table B4 for explanations on the table entries. ∗

and ∗∗ indicate tests significant at the 10% and 5% levels.

Table B7: Additional out-of-sample forecasting performance for CHF

USD/CHF (2014M12 - 2019M3)

Specification Sharpe Skew AUC AUC∗ G/L Max. Draw.

ARMAX(2) 0.48 6.02 0.50 0.51 1.10 0.11
ARMAX(IRD) 0.47 6.04 0.51 0.52 1.10 0.11
ARMAX(VIX) 0.31 -6.79 0.50 0.50 1.07 0.18
MAX(2) 0.71 6.20 0.51 0.52 1.16 0.13
MAX(IRD) 0.60 6.17 0.51 0.53 1.13 0.12
MAX(VIX) 0.16 -6.82 0.51 0.50 1.03 0.18
ARMA 0.30 -6.89 0.53 0.50 1.06 0.18
MA 0.24 -6.84 0.51 0.50 1.05 0.18
ARX(2) 0.63 6.25 0.52 0.55 1.14 0.16
ARX(IRD) 0.71 6.15 0.51 0.55 1.16 0.12
ARX(VIX) 0.30 6.21 0.53 0.52 1.06 0.19
CST 0.34 6.30 0.52 0.51 1.08 0.10

RW+/RW− 0.09 6.87 0.49 0.51 1.02 0.31
BH/AS -0.06 6.86 - - 0.99 0.19

Please refer to the notes in Table B5 for explanations on the
table entries.
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