
Carlier et al. 2023 | https://doi.org/10.34133/plantphenomics.0083 1

RESEARCH ARTICLE

To What Extent Does Yellow Rust Infestation 
Affect Remotely Sensed Nitrogen Status?
Alexis  Carlier1*, Sebastien  Dandrifosse1, Benjamin  Dumont2†,  
and Benoît  Mercatoris1†

1Biosystems Dynamics and Exchanges, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, 

University of Liège, 5030 Gembloux, Belgium. 2Plant Sciences, TERRA Teaching and Research Center, 

Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium.

*Address correspondence to: alexis.carlier@uliege.be

†These authors contributed equally to this work.

The utilization of high-throughput in-field phenotyping systems presents new opportunities for evaluating 
crop stress. However, existing studies have primarily focused on individual stresses, overlooking the fact 
that crops in field conditions frequently encounter multiple stresses, which can display similar symptoms 
or interfere with the detection of other stress factors. Therefore, this study aimed to investigate the impact 
of wheat yellow rust on reflectance measurements and nitrogen status assessment. A multi-sensor mobile 
platform was utilized to capture RGB and multispectral images throughout a 2-year fertilization-fungicide 
trial. To identify disease-induced damage, the SegVeg approach, which combines a U-NET architecture and 
a pixel-wise classifier, was applied to RGB images, generating a mask capable of distinguishing between 
healthy and damaged areas of the leaves. The observed proportion of damage in the images demonstrated 
similar effectiveness to visual scoring methods in explaining grain yield. Furthermore, the study discovered 
that the disease not only affected reflectance through leaf damage but also influenced the reflectance of 
healthy areas by disrupting the overall nitrogen status of the plants. This emphasizes the importance of 
incorporating disease impact into reflectance-based decision support tools to account for its effects on 
spectral data. This effect was successfully mitigated by employing the NDRE vegetation index calculated 
exclusively from the healthy portions of the leaves or by incorporating the proportion of damage into the 
model. However, these findings also highlight the necessity for further research specifically addressing 
the challenges presented by multiple stresses in crop phenotyping.

Introduction

In field conditions, crops are exposed to several stresses at the 
same time. Whether biotic, such as pests and diseases, or abi-
otic, such as drought and nutrient deficiency, stresses result in 
the reduction of the quantity and/or the quality of the harvest. 
While agricultural inputs have historically been the primary 
means of mitigating these stresses on a large scale, their exten-
sive use has recently been the subject of many societal and 
environmental concerns. Moreover, the emergence of concur-
rent or sequential stresses can exacerbate their negative impact, 
altering the pattern of symptoms and further hindering crop 
productivity and stress identification [1,2]. On this basis, under-
standing how plants respond to multiple stresses is essential for 
improving crop yield and quality [2].

Stress identification and quantification have become com-
mon practices using remotely sensed data. Recent plant phe-
notyping methods offer new possibilities to screen plants in 
high-throughput, nondestructive, and objective way [3,4]. They 
have been identified as promising tools to assist plant improve-
ment [5–7]. Nonetheless, the diversity of data acquisition sys-
tems, data management, and analyses bring many challenges 
to the phenotyping community [8–10].

In this context, the investigation of abiotic stresses continues 
to be a prominent and ongoing subject of study [11]. One par-
ticular area of focus is the detection of nitrogen deficiency, which 
plays a crucial role in agricultural practices, particularly in rela-
tion to fertilization strategies [12,13]. Insufficient nitrogen avail-
ability in crops can result in reduced biomass growth and the 
manifestation of yellowing leaves, both of which are key indi-
cators of nitrogen deficiency. Spectral data analysis, facilitated 
by techniques such as machine learning, radiative transfer mod-
eling, and vegetation indices (VIs), either independently or in 
combination, has proven to be effective in tracking these symp-
toms across the entire crop areas [13–16]. Moreover, it is impor-
tant to acknowledge that the presence of background elements, 
such as soil, can introduce mixing and disturbances to the tar-
geted data associated with the specific plant under study. For 
instance, Song et al. [15] reported that the accuracy of nitrogen 
status estimation using a spectroradiometer was relatively lower 
during the early growth stage (GS) of crops compared to the 
subsequent vegetative phase. Consequently, certain researchers 
have effectively addressed this issue of spectral mixing at the 
canopy level. Wang et al. [17] proposed a novel approach known 
as abundance-adjusted VIs, which mitigates spectral mixing at 
the canopy level and enhances the accuracy of leaf nitrogen 
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concentration estimation. Noteworthy achievements have been 
attained by researchers who have focused their analysis on spe-
cific regions within the canopy. For instance, Jay et al. [18] suc-
cessfully estimated beet chlorophyll content by concentrating 
on the most illuminated pixels of green vegetation.

Under field conditions, the detection of diseases still comes 
up against many difficulties such as the similarity of symptoms, 
the possibility of observing them, and the diversity of plant 
responses [19]. Common methods include the use of spectral 
data [20] or RGB images [21]. For instance, Anderegg et al. [22] 
has quantified Septoria tritici blotch (STB) using spectral and 
temporal features from a spectroradiometer. Other image analysis 
methods, such as textural analysis from proximal multispectral 
images, were relevant to estimate the severity of wheat main dis-
eases [23]. Recently, deep learning algorithms are paving a new 
avenue for plant phenotyping [24–26]. In particular, convolu-
tional neural networks (CNNs) have indeed demonstrated their 
good performances in phenotyping task related to object detec-
tion [27], segmentation [28], or disease classification [29,30].

Despite all these stress detection possibilities, very few stud-
ies have addressed the effects of multi-stress and their interac-
tions on single trait estimation, as depicted by Berger et al. [19] 
and Zhang et al. [31]. The authors emphasized the need for 
further research to address this challenge. In fact, all mentioned 
studies related to nitrogen stress estimation have treated the 
question in optimal management practices, while it is known 
that diseases could substantially disturb the nitrogen dynamic 
[32]. The nutritional habit of the disease could induce a reduc-
tion in leaf nitrogen concentration [33], and thus induce a bias 
in the nitrogen status estimation. Hyperspectral systems appear 
as the most suitable sensor to face this challenge. For instance, 
Devadas et al. [34] was able to delimit stripe rust and nitrogen 
deficiency using specific VIs with a spectrometer. Another solu-
tion might be the use of multi-sensor approach. For instance, 
while symptoms associated with a pathogen were similar to 
those of water stress, Zarco-Tejada et al. [35] were able to dis-
tinguish between both stresses using the combination of hyper-
spectral and thermal sensors. Generally speaking, many biotic 
stresses manifest visible symptoms that can be segmented pro-
vided sufficient spatial resolution. In this context, close-range 
systems such as mobile platforms or gantries are good candi-
dates, as they can carry multiple sensors in close range and thus 
provide high-resolution data [36].

This paper presents an approach to investigate the impact of 
yellow rust (YR) on VIs that are usually used in the frame of 
nitrogen status retrieval. The hypothesis is that the diseases 
induce a bias in the estimation of nitrogen status not only 
through its visible symptoms but also through its biological inter-
action with the plant. To test this hypothesis, proximal RGB and 
multispectral images were acquired on a wheat field trial span-
ning 2 cropping seasons, where different fungicide applications 
and nitrogen inputs were combined. The methodology involved 
isolating the leaves within the images, segmenting disease symp-
toms (i.e., leaf damages), and using the resulting mask to study 
the correlation between VIs from healthy or diseased leaves, and 
nitrogen status variables of the plant.

Materials and Methods

Field experiments
A winter wheat trial was conducted during the cropping seasons 
2020–2021 and 2021–2022 in Lonzée, Belgium (50°33′50″N and 

4°42′00″E). The pedoclimatic context is characterized by a deep 
silt loamy soil and a temperate climate. In the trial, 15 treatment 
combinations that involved varying levels of nitrogen inputs 
and fungicide applications were completely randomized. These 
combinations can be viewed in Table 1. The total nitrogen inputs 
were split into 3 applications, during tillering phase (GS 23 to 
25), at stem elongation (GS 30), and at flag leaf (GS 39) stages. 
GSs are related to the BBCH-scale [37]. The fertilization scenarios 
were designed to test various levels of nitrogen input, ranging 
from the traditional recommendation of 3 inputs of 60 kgN ha−1 
to an excess of 260 kgN ha−1, a deficiency of 120 kgN ha−1, and 
a level designed to promote tillering 200 kgN ha−1. Ammonium 
nitrate (27%) was used. Several strategies of fungicide applica-
tions were conducted: no fungicide application (0F); a single 
fungicide application during the flag leaf stage GS 39 (1F); 2 
fungicide applications at the second node GS 32 and heading 
GS 55 stages (2F); and 3 fungicide applications at GS 32, GS 39, 
and grain development (GS 70) stages (3F). Fungicide mixtures 
were composed of triazole (Kerstrel, 1.25 L ha−1) at GS 30, tri-
azoles-pyrazoles-carboxamides (Librax, 1.5 L ha−1) at GS 39 and 
55, and triazole (Prosaro, 1 L ha−1) at GS 70. The susceptible 
cultivar “LG Vertikal” was sown on 2020 October 20 with a 
density of 275 seeds m−2, and the very susceptible cultivar 
“Bennington” was sown on 2021 October 28 with a density of 
300 seeds m−2. For both cropping seasons, the previous crop 
was potato. The experimental plots measured 1.95 m × 6 m, and 
the inter-row spacing was 0.14 m. Each treatment had 4 repli-
cates for the data acquisition, which represent 60 plots and 4 
more replicates only dedicated to final grain yield measurements 
using a combine harvester.

Different types of agronomic data were collected on June 2 
and 16 for 2021 at GS 39 and 65, respectively, and on April 11, 
May 2, 17, and June 2, 21 for 2022 at GS 30, 32, 39, 65, and 75, 
respectively. First, above-ground biomass was sampled in the 
3 central rows over 50 cm long. Samples were collected on 3 
replicates for the 7 treatments highlighted in bold in Table 1. 
Fresh wheat plants were manually divided into separate organs, 
i.e., stems, leaves, and ears. Plant materials were dried into an 
oven at 65 °C until constant weight. Dry organs were then 
weighted. Their nitrogen concentration (%N) was determined 
using the Dumas method. The nitrogen uptake (Nuptake) in 
kgN ha−1 was calculated by multiplying the dry matter and the 
corresponding nitrogen concentration. The nitrogen nutrition 

Table 1. Trial treatments that involve combinations of both the 
total nitrogen input and the number of fungicide applications. 
Treatment combinations in bold were dedicated to dynamic de-
structive data sampling.

2*Nitrogen 
input (kgN ha−1)

Number of fungicide application (F)

0F 1F 2F 3F

120 120_0F 120_1F 120_2F 120_3F
180 180_0F 180_1F 180_2F 180_3F

200 200_0F 200_1F / 200_3F

260 260_0F 260_1F 260_2F 260_3F
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index (NNI) was computed using the traditional approach from 
Justes [38]. All these reference measurements are summarized 
as nitrogen status variables in the rest of this paper. Finally, 
grain yields were obtained on the 4 other replicates for all treat-
ments. Unfortunately, violent storms affected the trial in 2021 
and many plots have lodged several weeks before harvest. Thus, 
2021 grain yield will not be studied in this research.

The 3 main leaf diseases, namely, STB, YR, and brown rust 
(BR), were graded on field according to the visual score (VS) 
scale commonly used by the regional experts, for all treatments 
(Table 2). The grade is based on the average intensity of the 
disease on the highest affected foliar floor and for a certain 
number of plants. It is a fast scoring method that represents the 
global incidence of the disease of the plot. It was rescaled fol-
lowing Eq. 1 so that a scaled visual score (sVS) equal to 0 means 
no disease and 1 corresponds to a very high level of disease 
pressure. In 2021, due to a low disease pressure, scoring has 
been performed only on 4 dates, on June 16, 25, and July 2, 9. 
In 2022, diseases appeared early during the season; thus, the 
trials were scored 10 times on April 19, 25, May 2, 9, 17, 23, 23, 
30, and June 2, 13, 21.

Image acquisition
A multi-sensor system was set on a cantilever beam of a mobile 
platform to acquire nadir images (Fig. 1). It was composed of 
a multispectral camera array, an incident light spectrometer, 
and one RGB camera. The multispectral camera array was 
Micro-MCA (Tetracam Inc., Gainesville, FL, USA) consisting 

of 6 monochrome cameras equipped with 1,280 × 1,024 pixel 
complementary metal oxide semiconductor (CMOS) sensor. They 
were mounted with narrow band-pass optical filters centered at 
490, 550, 680, 720, 800, and 900 nm. Each band had a width of 
10 nm, except for the 900-nm band, which had a width of 20 nm. 
The RGB camera was a GO-5000C-USB RGB camera (JAI A/S, 
Copenhagen, Denmark) with a 2,560 × 2,048 pixel CMOS sensor 
and an LM16HC objective (Kowa GmbH, Düsseldorf, Germany). 
Finally, the spectrometer was AvaSpec-ULS2048 equipped with 
a cosine corrector (Avantes, Apeldoorn, The Netherlands). The 
trigger of the different sensors was synchronized.

In addition to the images acquired on the same date as 
the biomass samples, the trials were monitored continuously 
throughout the cropping season, starting from tillering and con-
tinuing until full maturity. A total of 16 acquisition dates was 
recorded for the year 2021, and 13 dates for the year 2022. Four 
and 3 image acquisitions per plot were made on all treatments in 
Table 1 for 2021 and 2022, respectively. To ensure accurate and 
consistent image acquisition, the camera height was maintained 
at a constant level throughout each day of data collection. The 
goal was to position the sensors at a height of approximately 
1.6 m above the top of the canopy. This allowed for an observation 
area greater than 1 m2 and optimized the image registration pro-
cess, as detailed below.

Color image segmentation
SegVeg method
A robust RGB image segmentation technique, known as 
SegVeg, was utilized in this study, as described in the work 
by Serouart et al. [39]. To ensure accurate and reliable results, 

(1)sVS =
9 − VS

8

Table 2. Scale for the visual scoring of wheat fungal diseases. The scale is based on 3 criteria: (a) the affected foliar floor (L1 refers to the 
flag leaf, L2 to the second upper leaf, …), (b) the average intensity of the infection on a leaf (Lo = low, M = medium, and Hi = high), and (c) 
the distribution of the disease in the plot or within the plant leaves.
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the method employed a combination of 2 distinct techniques: 
(a) a deep learning approach for soil–vegetation segmentation 
and (b) a pixel-wise approach for green-yellow vegetation seg-
mentation. This approach allowed for the generation of a robust 
model that effectively removes soil, enables specific classifica-
tion of plant pixels, and reduces the effort of annotating them. 
Furthermore, employing a binary classification approach 
twice would not result in detrimental instances of misclassi-
fication, unlike a 3-class approach where a disease could poten-
tially be misidentified as soil.

The deep learning approach was based on the popular 
U-NET model, which has been successfully applied in various 
image segmentation tasks [40]. To leverage the benefits of pre-
trained models and accelerate training convergence, the U-NET 
structure utilized different predefined encoders, or backbones, 
that were pretrained on ImageNet [41]. The encoder, which is 
the down-sampling part of the U-NET, was implemented using 
2 state-of-the-art architectures—ResNet34 proposed by He et al. 
[42] and EfficientNetB2 proposed by Tan and Le [43]. The 
decoder, or the up-sampling part of the U-NET, was imple-
mented as a classical design.

The pixel-wise segmentation was carried out using features 
from the RGB images. Different color spaces and transforma-
tions were computed, namely, the normalized RGB channels, 
the HSV, the CIELab, and the Sobel filter. That made a total of 
10 features per pixel. Two models were tested: the support 
vector machine (SVM) widely used in phenotyping [44], and 
the eXtreme Gradient Boosting known as XGBoost, a bagging 
approach known for its performances and rapidity.

The implementation of the algorithms was done using the 
“Segmentation Models” package by Iakubovskii [45], Tensorflow 
2.4, XGBoost 1.7, and Scikit-learn 1.2.

Dataset preparation and training
The VegAnn dataset [46] has been enhanced with additional 
images from the current study. This dataset comprises a collec-
tion of RGB images along with corresponding binary masks 
for plant–soil segmentation. The VegAnn dataset encompasses 
3,775 multi-crop RGB images captured under diverse illumi-
nation conditions, using various systems and platforms, and 
representing different phenological stages.

To ensure the adequacy of the model to the present study, 
30 RGB images from the 2022 dataset and 8 from the 2021 
dataset have been selected. The RGB images have been manu-
ally segmented into 2 classes: soil and plant parts with and 
without damage. The masks were generated using the plug-in 
Labkit [47] from the Fiji software [48]. It is a user-friendly 
platform for manual and automated image segmentation. The 
segmentation process involved manually drawing the soil and 
plants on a few areas in the image, after which a fast random 
forest based pixel classifier was used to segment the entire 
image. The number of manually drawn areas varied depending 
on the annotator’s judgement and the heterogeneity of the 
image and comprised several dozens of pixels. This approach 
allowed for improving the integrated random forest by adding 
more labels to regions that were poorly predicted by the clas-
sifier. Although less accurate than manual labeling, this tool 
provided a faster way to generate masks.

Then, the images and corresponding masks were partitioned 
into 20 nonoverlapping images of 512 × 512 pixels, similar to 
the VegAnn dataset. One-third of this dataset was used as the 
validation dataset, comprising a total of 260 patches.

For training, a batch size of 16 was set for 100 epochs. The 
Adam optimizer with default parameters of Tensorflow was 
used, and each image was scaled according to the corresponding 

Fig. 1. Mobile platform used in this study with the sensor pod fixed 1.6 m above the canopy.
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backbone, similar to the ImageNet preprocessing. The dice loss 
was chosen as the loss function as it presents better capacity to 
handle unbalanced dataset.

Second, to generate a comprehensive pixel-wise segmenta-
tion dataset, 120 RGB images from the 2022 dataset were 
selected for training, and 33 RGB images from the 2021 dataset 
were selected for validation. The manual annotations included 
a few pixels of both green and damaged parts to ensure a bal-
anced distribution of each class. This annotation was also done 
using the Labkit tool without applying the random forest clas-
sifier. The selection of images was based on the need to repre-
sent the heterogeneity of images encountered. Thus, the training 
dataset comprised approximately 15,000 pixels for each class, 
while the validation dataset contained around 2,500 pixels for 
each class.

Evaluation metrics
Models were evaluated using the accuracy as a standard metric 
(Eq. 3). A common other metric for semantic segmentation is 
the intersection over union (IoU) (Eq. 2) with a threshold of 
0.5. It is the ratio between the area formed by the overlap of the 
predicted and the labeled regions and the area formed by the 
set of these 2 regions. It ranges from 0 to 1. The lower the IoU, 
the worse the prediction result. The computing configuration 
was a NVidia Tesla V100 GPUs.

TP, TN, FP, and FN stand for the number of pixels of true 
positives, true negatives, false positives, and false negatives, 
respectively.

Image analysis pipeline
Processing of images
The developed image analysis pipeline is presented in Fig. 2. First, 
the RGB image was used to segment the soil, the green plant 
parts that were mainly leaves, and the damaged parts (see the 
“Color image segmentation” section). Then, wheat ears were 
detected using YOLOv5 and segmented within each bounding 
box by the Deep Mac model according to the procedure pro-
posed by Dandrifosse et al. [49]. Those masks were combined to 
build a mask with 4 classes: the soil, the ears, the damaged parts 
of the leaves, and the green parts of the leaves. Note that the leaves 
refer to the leaves complemented by the stem parts visible in a 
nadir view. Second, these masks were applied on the multispec-
tral images. Due to the proximity with the canopy and the spatial 
shift between the different lenses of the cameras, images needed 
to be aligned in a way that each pixel had the same position across 
all images. Therefore, image registration was computed following 
the algorithm from Dandrifosse et al. [50]. It used a B-Spline 
method to account for local deformations.

Furthermore, the high variability of sunlight conditions 
encountered was recorded by the incident light spectrometer. 
Using these data, the multispectral images could be normalized 
against the illumination conditions. Thus, the method proposed 
by Dandrifosse et al. [51] was carried out to compute an estima-
tion of bidirectional reflectance factor (BRF), more commonly 
called reflectance, from which VIs could be calculated. BRFs were 
also corrected at each date of acquisition using a known reflec-
tance panel before and after the trial acquisition. Consequently, 
BRFImage denotes BRF for the entire image, BRFLeaves denotes BRF 
for the entire leaves, and BRFGreen represents BRF for the green 
parts of the leaves.

Five VIs were selected for their demonstrated relationships 
with crop nitrogen status and plant health, disease, or senescence 
(Table S1). These VIs included the normalized difference red edge 

(2)IoU =
Intersection

Union
=

TP

FP + TP + FN

(3)Accuracy =
TP + TN

TP + FP + TN + FN

Green fraction
Damage index

800 nm 680 nm 550 nm

720 nm900 nm490 nm

Multispectral images 1280 × 1024 px

RGB image 2560 × 2048 px

Ear detection and segmentation: 
YOLOv5 & DeepMAC [49]

U-NET + pixel-wise segmentation

Mask 2048 × 2048 px

Aligned images and mask 855 × 594 px [50]

Soil
Ear
Green leaves
Damage
Registration
Normalization

BRF 490 Image/Leaves/Green
BRF 550 Image/Leaves/Green 
BRF 680 Image/Leaves/Green 
BRF 720 Image/Leaves/Green 
BRF 800 Image/Leaves/Green 
BRF 900 Image/Leaves/Green 

 [51]

SegVeg:

Fig. 2. Image analysis pipeline. RGB images were used to segment the scene into soil, ear, green leaf, and damage. Combined with multispectral images, the pipeline allows 
to extract the BRFs of each mentioned classes.
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(NDRE) index [52], the modified normalized difference blue 
index (mDNb) [18], and the chlorophyll index red edge (CIred-
edge) [53], which are known to be correlated with crop nitrogen 

status, and the normalized difference vegetation index (NDVI) 
[54] and the plant senescence reflectance index (PSRI) [55,56] 
for their sensitivity to plant health, disease, or senescence.

Table 3. IoU and accuracy of the SegVeg model. Soil-Plant results refer to the U-NET model, and the Green-Damage results refer to the 
pixel-wise classifier.

           Soil-Plant               Green-Damage

EfficienNetB2 ResNet34 XGBoost SVM

2*Training IoU 0.89 0.84 0.85 0.86

Accuracy 0.94 0.91 0.92 0.92

2*Validation IoU 0.76 0.67 0.78 0.79

Accuracy 0.87 0.83 0.88 0.88

Fig. 3. Examples of segmentation utilizing the SegVeg approach, which combines the EfficientNetB2 and XGBoost models, along with ear segmentation employing YOLOv5 
and DeepMAC on April 25, May 5, and May 30, respectively, from left to right. In the segmentation results, the soil regions are depicted in shades of gray, green plants in blue, 
ears in sky blue, and damages in red.

Fig. 4. Scaled visual score and damage index curves during the 2022 season. Shaded bands represent standard deviation.

D
ow

nloaded from
 https://spj.science.org at U

niversite de L
iege on Septem

ber 07, 2023

https://doi.org/10.34133/plantphenomics.0083


Carlier et al. 2023 | https://doi.org/10.34133/plantphenomics.0083 7

Foliar damage quantification
On the basis of the RGB segmentation, the proportion of 
pixels representing green and damaged parts of the plants 
were computed. The green fraction (GF) was defined as the 
number of green plant pixels divided by all pixels in the image; 
meanwhile, the damage index (DI) was calculated as the pro-
portion of damage pixels relative to the sum of the green plant 
and damage pixels. The study made the assumption that the 
observed damage was primarily attributed to disease and that 

no other sources of damage, such as physiological or insect- 
related damages, were observed throughout the experiment.

To correctly assess the disease importance throughout the 
growing season and take into account the temporal dynamics 
of the severity of the disease, the area under the disease 
progression curve (AUDPC) was computed following the 
procedure proposed by Simón et al. [32]. Thus, AUDPCsVS 
was calculated from the sVS scores observed within plots, 
whereas AUDPCDI was computed from DI extracted from 
the mask.

Statistical analysis
The study employed a comprehensive data analysis approach 
that integrated various statistical methods. An analysis of vari-
ance (ANOVA) was conducted to assess the impact of treat-
ments on both image features and agronomical data. However, 
it was important to exclude the 180_1F treatment from the 
agronomic data analysis. This exclusion was necessary because 
this specific nitrogen treatment had only one fungicide factor, 
which could introduce bias into the statistical analysis. Therefore, 
to ensure accurate interpretation of the results, it is crucial to 
consider this exclusion. Furthermore, a post hoc Tukey honest 
significant difference (HSD) test was performed to identify any 
differences in the data.

In addition, Pearson correlation coefficient (r) was utilized 
to explore the relationship between image features and agro-
nomical data. The study also employed a multiple linear 
regression to determine the added value of image features in 
modeling agronomical data, with the calculation of coefficient 

Fig. 5. Pearson correlation between the 2022 grain yield, and both AUDPC sVS and 
AUDPCDI.

Fig. 6. Boxplot of the bidirectional reflectance factor according to its source, i.e., from the entire image, only the leaves and only the green elements at different growth stages.
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of determination R2. The hypothesis was that GF and DI were 
good indicators of plant health and could improve the estima-
tion model performances.

Finally, paired t tests were conducted to compare BRFs and 
VIs obtained from the leaves with those obtained from the 
entire image and green elements.

Results

Disease pressure
The EfficientNetB2 backbone demonstrated the best perfor-
mance, achieving an IoU of 0.76 and an accuracy of 0.87 for soil 
segmentation on the validation set (Table 3). In terms of distin-
guishing between green elements and damaged ones, both pix-
el-wise classifiers showed high accuracy and IoU. Notably, the 
XGBoost model was selected over the SVM due to its speed, 
being approximately 10 times faster. Consequently, the SegVeg 
model was formulated by combining the EfficientNetB2 and 
XGBoost models to effectively segment the entire dataset. This 
unified model facilitated highly accurate segmentation of soil, 
green elements, and damaged regions, even in difficult strong 
direct sunlight conditions, as visually demonstrated in Fig. 3.

When the SegVeg approach was applied throughout the 
entire cropping season, it became apparent that the 2021 season 
was characterized by a relatively low disease pressure. However, 
during the grain filling period, there was a slightly increased 
incidence of diseases, although specific data are not presented. 
Among the diseases affecting wheat, STB was the primary con-
cern, with only a few treatments reaching an average severity 
value score (sVS) of 0.625 in early July. YR was detected on less 
than 20% of the plots and had a maximum average sVS of 0.625.

In contrast, the climatic conditions experienced in 2022 
resulted in the early onset of YR at the end of April, specifically 
at GS 30. Subsequently, the disease exhibited significant devel-
opment across all experimental plots during the stem elonga-
tion period, as depicted in Fig. 4. Notably, the 0F treatment 
displayed the highest sVS and DI throughout the season, with 
DI reaching a maximum of approximately 60%. Conversely, the 
1F treatment effectively managed the disease pressure through 
the application of fungicide on May 17, resulting in a stabiliza-
tion of sVS and a decrease in DI. The 2F and 3F treatments 
exhibited similar dynamics of disease pressure until the end of 
May, as illustrated in Fig. 4 and Table S2. However, after the 
flowering stage, the effectiveness and timing of application of 
the 3F treatment became evidently discernible.

The calculation of the area under the disease progress curve 
(AUDPC) serves as a reliable indicator of the overall disease 
pressure throughout the cropping season, offering an advantage 
over single-point notations such as sVS or DI. The correlation 
between AUDPC sVS and AUDPC DI and the final grain yield 
indicates that as the season progressed, the correlations became 
stronger (in absolute value), as depicted in Fig. 5. Notably, both 
AUDPC measurements exhibit a high correlation after the flow-
ering stage. However, the proposed method, AUDPC DI, demon-
strates a higher correlation compared to AUDPC sVS, which 
tends to reach a plateau earlier in the season, around May 30. 
Furthermore, prior to any fungicide applications, the AUDPC DI 
values for the lower fertilization treatment were statistically 
different from those of the higher nitrogen treatments, as indi-
cated in Table S2. In a broader sense, it can be observed that the 
Tukey HSD grouping was initially determined based on the 
nitrogen treatment at the beginning of the season and subse-
quently based on the fungicide treatment, which transitioned 
from May 9 to May 17. This observation reveals that the differ-
ences initially arose from variations in nitrogen input and sub-
sequently from variations in disease pressure.

Disease effects on bidirectional reflectance factor
In Fig. 6, the blue boxplot represents the entire image signal, 
which includes soil reflectance. Comparing the blue boxplot to 
the boxplots of leaf and green element reflectance, significant 
differences were observed across most dates for all BRFs, except 
for the dates specified in Table S4. Furthermore, the differences 
in BRFs were more pronounced early in the season when the 
canopy cover was low. For BRF 800, the maximum variation 
rate, calculated as the percentage difference between the mean 
BRF 800 and the mean BRF 800 of leaves, reached up to 41.8% 
(Table 4).

The first hypothesis of this study posited that diseases or any 
damaging stress could impact the BRFs of the crop, primarily 
due to the presence of lesions and the potential signal distur-
bance caused by soil. The results revealed that BRFs obtained 
from the leaves and those derived from the green elements 
exhibited similar values; however, a paired t test revealed statis-
tically significant differences between them, with a few excep-
tions (refer to Table S3). Notably, BRF 680 demonstrated higher 
variation compared to BRF 800, which was minimally affected 
(Table 4). For instance, in 2022-GS65, disease led to a reduction 
of 12.5% in between BRF 680 of the leaves and of the green 
elements.

Table 4. Rate of change between BRFs of image and leaves, and between leaves and green elements in %.

BRF 490 BRF 550 BRF 680 BRF 720 BRF 800

Image-
Leaves

Leaves-
Green

Image-
Leaves

Leaves-
Green

Image-
Leaves

Leaves-
Green

Image-
Leaves

Leaves-
Green

Image-
Leaves

Leaves-
Green

2022-GS30 0.40 −1.70 16.28 −0.70 −23.30 −3.22 32.42 −0.49 41.81 0.35

2022-GS32 −1.08 −1.47 9.55 −2.332 −28.00 −3.60 19.87 −1.81 26.60 −0.29

2022-GS39 20.83 −1.36 20.15 −3.444 −15.37 −10.56 22.23 −2.57 31.04 1.08

2022-GS65 20.15 −3.77 23.17 −5.77 4.47 −12.53 25.08 −4.89 26.94 −0.68

2022-GS73 11.72 −2.744 6.74 −3.06 10.15 −9.63 8.72 −2.67 16.59 0.51

D
ow

nloaded from
 https://spj.science.org at U

niversite de L
iege on Septem

ber 07, 2023

https://doi.org/10.34133/plantphenomics.0083


Carlier et al. 2023 | https://doi.org/10.34133/plantphenomics.0083 9

Moreover, a strong correlation was observed between the 
discrepancy in BRFs derived from the leaves and those from 
the green elements, and DI, representing the extent of disease 
(see Table S5). The majority of these correlations exceeded 0.5 
in absolute value, with values as high as 0.9 observed during 
periods of heightened disease pressure. These findings were 
consistent when analyzing VIs as well. It can be concluded that 
the discrepancy of BRFs was clearly influenced by the amount 
of damages in this study.

The second hypothesis of this study proposed that diseases 
affect not only visibly symptomatic plant parts but also symp-
tomless ones, with varying impacts depending on the nutritional 
strategy of the disease [32]. Consequently, this phenomenon 
could potentially disrupt the measurement of green element 
BRFs. To exemplify this effect, NDRE was selected as a well- 
established VI associated with nitrogen status. ANOVA revealed 

that NDRE green, computed on healthy areas, was influenced not 
only by fertilization but also by the fungicide treatment (refer 
to Table 5).

Furthermore, during GS39 in 2022, the NDRE green value for 
the 120_3F treatment was found to belong to the same group 
as the other 3F treatments, but not with the 120_0F treatment 
(Fig. 7). This discrepancy indicates that the presence of disease 
impacted the NDRE green value for the 120_3F treatment differ-
ently compared to the 120_0F treatment.

Additionally, it was observed that the difference (Δ3F − xF), 
which represents the variation between the values obtained 
from full protection and those obtained with reduced protec-
tion under constant nitrogen input, exhibited a strong corre-
lation with DI for both BRFs green and VIs green. Specifically, the 
correlation between Δ3F − xF of NDRE green and DI exceeded 0.70 
starting from May 17, as indicated in Table S6.

Table 5. P values (ANOVA) of NNI, %N leaves, Nuptake leaves, %N total, and Nuptake total at different growth stages, where “total” refers 
to the entire plant.

Source of vari-
ation

2021-
GS39

2021-
GS65

2021-
GS89

2022-
GS30

2022-
GS32

2022-
GS39

2022-
GS65

2022-
GS75

2022-
GS89

NNI

  Fertilization
  (N)

<0.01 <0.01 <0.01 0.08 <0.01 <0.01 <0.01 0.197 <0.05

  Fungicide (F) 0.199 0.531 0.429 0.404 0.965 0.414 0.676 0.055 <0.05

  N × F 0.814 0.198 0.553 0.328 0.579 0.914 0.058 0.185 0.473

%N leaves

  Fertilization
  (N)

<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.05 <0.01

  Fungicide (F) 0.55 0.456 <0.01 0.96 0.815 <0.05 <0.01 <0.01 <0.01

  N × F 0.845 <0.05 0.642 0.355 0.263 0.679 0.056 0.169 0.535

Nuptake leaves

  Fertilization
  (N)

0.27 <0.01 <0.01 0.562 <0.01 <0.01 <0.01 <0.01 <0.01

  Fungicide (F) 0.392 0.631 0.074 0.156 0.904 0.225 <0.05 <0.01 <0.01

  N × F 0.445 0.237 0.706 0.451 0.672 0.724 0.285 0.538 0.385

%N total

  Fertilization
  (N)

<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.269 <0.01

  Fungicide (F) 0.322 0.463 0.313 0.96 0.9 0.461 0.476 0.487 0.342

  N × F 0.379 0.098 0.242 0.355 0.383 0.985 0.254 0.179 0.736

Nuptake total

  Fertilization
  (N)

0.232 <0.01 <0.05 0.562 <0.01 <0.01 <0.01 0.151 <0.05

  Fungicide (F) 0.385 0.62 0.36 0.156 0.857 0.467 <0.05 <0.01 <0.01

  N × F 0.384 0.349 0.769 0.451 0.722 0.867 0.09 0.238 0.346

NDRE green

  Fertilization
  (N)

<0.01 <0.01 0.409 <0.01 <0.01 <0.01 0.682

  Fungicide (F) <0.01 <0.05 0.512 0.568 <0.01 <0.01 <0.01

  N × F 0.417 0.891 0.72 0.258 0.248 0.905 0.352
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Analysis and modeling of nitrogen status variables 
under fertilization and fungicide treatments
The ANOVA revealed only one significant interaction term for 
all nitrogen status variables (see Table 5)—%N leaves 2021-
GS65. However, values close to 0.05 were also observed for 
2022-GS65 for NNI and %N leaves. Therefore, while the 2 fac-
tors can be analyzed separately, caution must be exercised when 
drawing conclusions.

The fertilization factor significantly impacted most variables, 
with %N leaves and %N total showing significance at tillering 
(2022-GS30). However, no effect was observed on Nuptake 
leaves and Nuptake total for 2021-GS39, as well as on NNI, 
Nuptake total, and %N total for 2022-GS75.

Fungicide did not affect NNI and %N total, except for the 
maturity GS. However, Nuptake leaves and Nuptake total were 
significantly influenced by fungicide starting from 2022-GS65. 
%N leaves were affected earlier, at 2022-GS39.

NDREgreen displayed a similar trend to %N leaves in 2022 
regarding the impact of fungicide application. However, it was 
not affected by fertilization at GS75. In 2021, it was influenced by 
both fertilization and fungicide. Additionally, NDREgreen exhib-
ited a stronger correlation with leaf nitrogen status than NDREleaves 
when disease was present, specifically from GS 39 to 75 in 2022 
(Fig. 8) . Meanwhile, the correlation with NNI was much lower 
in 2022 compared to 2021 for GS 39 and 65. It is noteworthy that 
there was a decrease in the correlation between %N of leaves and 
plant nitrogen status variables, such as NNI and %N total, during 
periods of high disease pressure. Moreover, an interesting result 
is that the correlation between NDREleaves and NDREgreen was 
perfect, while the values may differ (see the above section).

Finally, some multiple regression analyses were conducted 
using features from both RGB and multispectral imagery. The 
inclusion of GF and DI improved most of the model perfor-
mances for dates with high disease pressure (Table S7). Moreover, 
it also improve general model that encompasses all data, i.e., 
dates and plots.

Discussion and Conclusion

CNN as a promising damage detection tool
Plant diseases are commonly identified through the observation 
of visible symptoms, a process conducted by agronomists to 
assess the plant’s resistance capabilities. However, this approach 
can be time-consuming, labor-intensive, and susceptible to sub-
jectivity. To address these limitations, a scoring method named 
SegVeg was proposed by Serouart et al. [39] for evaluating non-
green elements, predominantly characterized as disease symp-
toms in the present study. The SegVeg model employed a 2-step 
methodology that involved generating a mask with 3 distinct 
categories: soil, green plant parts, and damaged parts. This 
approach utilized a U-NET architecture in conjunction with a 
pixel-wise classifier. While the model yielded satisfactory seg-
mentation masks, it was found that misclassified pixels could 
arise under direct sunlight conditions [39]. To mitigate this issue, 
additional data encompassing various illumination conditions 
were incorporated into the VegAnn dataset as part of the current 
study. Nevertheless, due to the inherent scattered nature of the 
wheat canopy, particularly in intense sunlight conditions, the 
creation of accurate masks became more challenging, as exem-
plified in the left image of Fig. 3. Specifically, the lower regions 

Fig. 7. NDRE green according to the treatment for major growth stages. Letters represent the groups created by the post hoc Tukey HSD test.
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of the canopy tended to exhibit significant darkness. The utili-
zation of a high dynamic range (HDR) camera presents a poten-
tial solution to alleviate the aforementioned issues.

Both visual scoring and the SegVeg method have demon-
strated their efficacy in characterizing the impact of fungicide 
treatment on wheat plants. In contrast to the study conducted 
by Koc et al. [57], these 2 methods are distinct and yield differ-
ent outputs. However, they can be utilized for similar purposes, 
such as estimating the effect of disease on yield loss. The SegVeg 
method lead to DI that objectively quantifies the extent of dam-
age in a nadir view, providing a 2D assessment. On the other 
hand, visual scoring considers the disease intensity on the most 
significant leaves. In our study, DI indicated very high levels of 
infestation, exceeding 50% in the zero protection treatment, 
which resulted in a completely devastated plot even under nat-
ural inoculation. Conversely, the well-protected treatment, with 
minimal disease observed by human assessors, yielded a DI 
value of 10%, suggesting a slight overestimation by the models. 
The current nadir view system restricts observations to visible 
symptoms on the upper leaves, limiting its capacity to assess 
diseases such as STB that primarily develop in the lower canopy. 
To address this limitation, a potential solution could involve 
implementing a system that opens the canopy, similar to the 
manual manipulation performed by human assessors during 
visual scoring. This approach could be combined with an object 
detection CNN to detect and quantify disease spots, as demon-
strated by Schirrmann et al. [58]. Furthermore, extending the 
pixel-wise annotation to include damage classification could 

offer enhanced insights into the nature of the damage. However, 
this would require substantial efforts in image acquisition and 
annotation tasks.

The nadir view perspective can also explain the observed 
decrease in DI when new green leaves emerge. This phenom-
enon led to the utilization of the AUDPC as a metric to account 
for the negative impact of disease throughout the season, which 
proves to be a suitable measure for studying its influence on 
grain yield. As the season progresses, the treatments became 
more distinguishable from one another, and their correlation 
with the final grain yield has strengthened. Similar findings 
were reported by Zhou et al. [59] using GF. Toward the end of 
the season, computer vision techniques surpassed the visual 
scoring method, likely because sVS reaches its maximum value 
early on and can no longer differentiate between the different 
treatments. Notably, foliar diseases have a detrimental effect 
on carbon accumulation by reducing the green leaf area until 
senescence occurs [33,32]. However, the fungicide mixture, 
consisting of triazoles-pyrazoles-carboxamides, may also sig-
nificantly impact the green leaf area, while the last triazole 
appeared to have no effect. This fungicide interaction adds 
complexity to the already complex relationship between nitro-
gen plant fluxes and rust severity [60]. In fact, biotrophic path-
ogens like YR usually benefit from high nitrogen availability 
[32]. However, in this study, no statistically significant differ-
ences were observed in DI to confirm this statement.

Last, it is worth noting that the grouping of AUDPCDI in 
Table S2 initially focused on nitrogen input and subsequently 

Fig. 8. Correlation matrix between NDRE and nitrogen status variables at different growth stages.
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on fungicide treatment. This suggests that distinguishing 
between different nitrogen treatments may not be possible 
beyond a certain level of disease pressure, as the plant is unable 
to fully recover from the damage.

Disease affects reflectance in 2 ways
The findings of this study highlight the importance of accu-
rately differentiating the elements present in multispectral 
imagery of crops. Specifically, the removal of soil and other 
background elements from crop scenes is crucial for the proper 
evaluation of crop phenotypes, as shown in Table 4.

Similar conclusions can be drawn regarding the impact of 
diseases. Diseases, through their symptoms, lead to a reduc-
tion in healthy areas [33]. The results of the study indicate 
that damage symptoms have a significant effect on BRFs, with 
the 680-nm wavelength exhibiting a particularly pronounced 
impact. This suggests that spectral data at this specific wave-
length can serve as a valuable tool for distinguishing between 
healthy and diseased plants [22,61,62]. Furthermore, a strong 
correlation was observed between variations in BRFs and the 
extent of damage caused by the disease, indicating that as 
the disease progresses, the differences in BRFs become more 
pronounced.

The study also revealed that diseases affect the BRFs of the 
green area of the plant. It was hypothesized that diseases can 
significantly impact the biophysical and biochemical properties 
of wheat plants, thereby influencing the measurement of BRFs 
and subsequent VIs [32]. In the presence of disease, the meas-
urement of NDRE green showed a stronger correlation with 
nitrogen status variables compared to NDRE leaves. Specifically, 
it exhibited a high correlation with leaf nitrogen concentration 
and leaf nitrogen uptake, but not with other nitrogen status 
parameters. However, the nitrogen status of the leaves appeared 
also to deviate from other nitrogen parameters such as the NNI 
and the overall plant nitrogen concentration. This deviation is 
likely due to the complex influence of diseases on the overall 
nitrogen status of the plants [32]. In fact, YR was found to 
impact the photosynthetic capacity of the green elements, but 
not the nitrogen content of the stem [33]. Therefore, while spec-
tral measurements, which primarily capture information from 
leaves, may effectively represent the nitrogen status of the leaves, 
they may not necessarily reflect the nitrogen status of the entire 
plant. This has important implications for fertilization decision-
making tools. It was observed that a single value of NDREgreen 
could represent different nitrogen input levels (Fig. 7), which 
could potentially result in misleading interpretations. This is 
particularly relevant when considering the last fertilization 
input made at GS 39 in Belgium.

To address this issue, it is important to carefully consider 
disease quantification in nitrogen estimation models based on 
spectral data. The use of NDREgreen, or the addition of features 
from the RGB image, such as DI, could aid in modeling nitro-
gen status variables. In addition, on each individual date, we 
observed a strong and significant correlation between both 
NDRE values. It is important to clarify that this correlation 
does not imply that the values are identical, but rather indi-
cates a high degree of association between them. Consequently, 
using these NDRE measurements in relative terms may not 
pose any issues. However, in the context of a larger case study 
or when considering absolute values, it is possible that discrep-
ancies or challenges may arise. In fact, it can be challenging 

to develop a model that accurately represents the nitrogen 
concentration for all GSs, while the total nitrogen uptake is 
more easily assessed across all dates [63]. Hyperspectral sys-
tems have an advantage in distinguishing between nitrogen 
deficiency and rust infection, as they use narrower wavebands 
[34]. Additionally, from a nadir view, they are more effective 
at detecting diseases that develop in the canopy by sensing 
overall plant health [64]. However, their use in the field may 
be limited due to practical constraints, higher costs, and equip-
ment complexity

Last, during the research, an unsupervised clustering model 
was tested using all image features. Initially, the model clustered 
the plots based on nitrogen levels, and subsequently, from the 
middle of May, it differentiated them according to fungicide 
treatment, even when utilizing RGB features (data not shown). 
This further supports our earlier assertion that above a certain 
threshold of disease pressure, accurately determining the nitro-
gen treatment of a plot without historical information becomes 
challenging. It became evident that studying temporal features 
emerged as a reliable approach for disentangling stress factors 
[19,22]. Therefore, based on these findings, it is recommended 
to conduct further research on nitrogen stress modeling using 
spectral data in the presence of disease. It is worth noting that 
different diseases may exhibit distinct interactions with plant 
nitrogen status, as explained by Simón et al. [32], implying that 
the observations made in this study for YR may not necessarily 
apply to other diseases such as Septoria.
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