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Abstract. High resolution and high signal-to-noise spectra of

about 20 metal-poor stars have been analysed. The correlations

between the relative abundances of 16 elements have been stud-

ied, with a special emphasis on the neutron-capture ones.

This analysis reveals the existence of two subpopulations of

field halo stars, namely Pop IIa and Pop IIb. They differ by the

behaviour of the s-process elements versus the α and r-process

elements.

A scenario for the formation of these stars is presented,

which closely relates the origin of field halo stars to the evolution

of globular clusters. According to this scenario, the two sub-

populations originate from two different stages in the globular

cluster’s chemical evolution.

1. Introduction

In traditional spectroscopic analyses of metal-poor stars, the

mean abundance ratio of the chemical elements is discussed as

a function of the overall metallicity, usually measured by the iron

abundance [Fe/H]. The results are then compared to predictions

from models of nucleosynthesis and chemical evolution of the

Galaxy, and they are used to provide constraints on the sites and

mechanisms for element synthesis. Unfortunately, these abun-

dance ratios show rather considerable star-to-star scatter, there-

fore providing only weak constraints on the models.

With the improvement of observing and spectroscopic anal-

ysis techniques, it is now possible to reduce considerably the

observational uncertainties in the abundance determinations,

therefore decreasing the scatter in the abundance ratios. If the

data are of sufficient quality, the remaining scatter is then mostly

a genuine cosmic scatter which can be measured and analysed.
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We can investigate the cosmic scatter in relative abundances at a

given metallicity and identify abundance correlations between

several elements. Since the elements which are strongly corre-

lated together have very likely been synthesized by the same

nucleosynthetic processes in the same kinds of objects, we now

have a new and efficient tool for identifying the sites and mech-

anisms of element synthesis at different stages of the galactic

evolution. This new tool leads us to propose a scenario for the

formation of field halo stars which links them to the globular

clusters evolution.

2. Quality of the spectroscopic data

We have analysed a sample of about 20 dwarf and subgiant

stars with [Fe/H] ∼ −1, i.e. one tenth of the solar metallicity.

This metallicity is generally assumed to correspond to the most

metal-rich part of the halo of our Galaxy. The spectra were ob-

tained with the Coudé Echelle Spectrometer (CES) fed by the

1.4m Coudé Auxiliary Telescope (CAT) at the European South-

ern Observatory (La Silla, Chile). Four spectral regions, chosen

to contain lines of neutron-capture elements, were observed.

The spectral resolution is of the order of 65 000 and the signal-

to-noise ratio in the continuum is ∼ 250 for each spectrum. In

order to reduce the analysis uncertainties, the lines were chosen

to have similar dependences on the stellar atmospheric param-

eters (effective temperature, surface gravity, microturbulence

velocity, overall metallicity) whenever possible. Moreover, the

analysis was carried out differentially inside the sample, i.e.,

each star was compared to all other stars in the sample.

The sample of stars, together with some key abundance ra-

tios and the total velocity with respect to the Local Standard at

Rest, are presented in Table 1.

Following the traditional abundance analyses (e.g. Magain

1989, Edvardsson et al. 1993) we would show for example

[Ti/Fe] as a function of [Fe/H]. The 1σ scatter in that plot for

our sample amounts to 0.08 dex (20%). Is this scatter real or

is it due to observational and/or analysis uncertainties? To an-

swer this question we compare in Fig. 1 the values of [Ti/Fe]

deduced from neutral lines with the ones deduced from lines of
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Table 1. Basic observational data, abundance ratios and total space

velocity.

HD b-y [Fe/H] [Ti/Fe] [Y/Fe] V(LSR)

22879 0.366 -0.892 +0.325 -0.033 131.4

25704 0.371 -0.894 +0.349 -0.174 132.2

59984 0.355 -0.755 +0.217 -0.195 52.2

61902 0.329 -0.727 +0.168 -0.264 87.0

63077 0.372 -0.831 +0.355 -0.070 152.1

63598 0.366 -0.856 +0.349 0.005 90.0

76932 0.360 -0.910 +0.332 0.045 120.9

78747 0.383 -0.730 +0.362 -0.050 29.5

79601 0.378 -0.668 +0.342 -0.151 42.0

97320 0.337 -1.220 +0.308 -0.150 91.0

111971 0.353 -0.737 +0.139 -0.218 31.9

126793 0.373 -0.800 +0.354 -0.102 10.8

134169 0.368 -0.804 +0.277 -0.193 40.8

152924 0.318 -0.708 +0.263 -0.196 45.0

189558 0.385 -1.129 +0.325 0.117 148.9

196892 0.346 -1.031 +0.342 0.048 126.2

199289 0.368 -1.074 +0.326 -0.138 72.5

203608 0.326 -0.677 +0.120 -0.223 51.0

215257 0.357 -0.804 +0.123 -0.309 77.5

the singly ionized species. We can see a very nice correlation

between those two values, with a scatter of only 0.026 dex (6%).

Since the neutral and ionized lines have different dependences

on the stellar atmospheric parameters, this shows that the scat-

ter in element abundances due to analysis uncertainties does

not exceed 6%. Therefore, the scatter in the abundance of Ti

relative to Fe is real cosmic scatter. We will now investigate the

cosmic scatter in the relative abundances of the other chemical

elements.

3. Highlights of the abundance correlations

We find a close correlation between [Mg/Fe], [Ca/Fe] and

[Ti/Fe], as illustrated in Fig. 2. This indicates that the so-called

α-elements were synthesized by the same process in the same

objects. We find a similar correlation between the abundances

of Cr, Ni and Fe relative to Ti, indicating a common origin for

these iron-peak elements.

We have also carried out this analysis for the neutron-capture

elements, because we wanted to identify the sites and mecha-

nisms for the synthesis of these elements in a relatively early

phase of the galactic evolution. A first hint was put forward by

Zhao and Magain (1991) who found that the elements Y and

Zr are better correlated with Ti than with Fe. They suggested

that this indicates that massive stars played a dominant role in

the early nucleosynthesis of Y and Zr. Our results confirm their

findings. For example, while the scatter of [Y/Fe] amounts to

0.12 dex (30%), the scatter of [Y/Ti] is only 0.07 dex (18%). Our

new data allow us to go further than just compare the scatters,

as shown in Fig. 3 where the values of [Y/Fe] versus [Ti/Fe] are

plotted for each star in our sample. We see that [Y/Fe] is indeed

correlated with [Ti/Fe], but this correlation is not simple. We

Fig. 1. Comparison of the values of [Ti/Fe] deduced from neutral lines,

[Ti/Fe]I, with those deduced from ionized lines, [Ti/Fe]II

Fig. 2. Plot of [Ca/Fe] versus [Ti/Fe]

can see two separate behaviours. For one subsample of the stars,

the value of [Ti/Fe] increases with increasing [Y/Fe], while for

the other subsample [Ti/Fe] is constant (and maximum) while

[Y/Fe] increases. We find similar results when any of the ele-

ments Sr, Y and Zr is compared to any of the α-elements.

A very clean result is presented in Fig. 4, where the abun-

dance of the prototypical r-process element Eu is compared to

the Ti abundance. The correlation is nearly perfect. It allows us

to conclude that, in general, the r-process element Eu is synthe-

sized in the same objects as theα-elements, i.e. most probably in

the supernova explosion of massive stars, confirming the gen-

erally accepted scenario. We notice the absence of a vertical

feature similar to the one obtained for [Y/Fe]. Instead, it is re-
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Fig. 3. Plot of [Y/Fe] versus [Ti/Fe]

Fig. 4. Plot of [Eu/Fe] versus [Ti/Fe]

placed by a clumping of the points at the maximum value of

[Ti/Fe] and [Eu/Fe].

4. Tentative scenario

According to the results presented above, we can distinguish

between two separate stellar populations. Roughly 50% of the

stars in our sample show a range of moderate overabundances of

theα-elements and a slowly varying abundance of the s-process

elements relative to the iron peak. The other 50% of the stars

in the sample show a constant (and maximum) overabundance

of the α-elements relative to the iron-peak elements, and vary-

ing s-process abundances. This behaviour must be related to

nucleosynthesis processes.

The first interpretation which comes to mind is to relate one

of these populations to the most metal-rich part of the halo and

the other to the most metal-poor part of the disk. This interpre-

tation is somewhat similar to what has been recently proposed

by Nissen and Schuster (1997). However, upon examination of

the kinematical data for our sample, there is no clear distinction

between these populations on this basis alone, both populations

containing high velocity stars typical of halo kinematics.

We therefore propose an alternative interpretation in which

the halo stars can be divided into two sub-classes of Pop II stars,

namely Pop IIa and Pop IIb, forming the two branches in Fig. 3.

The stars belonging to the disk do not exhibit such correlations

in their element abundances, unless they are very metal-poor.

We will discuss these points in more details in a subsequent

paper. In the following, we propose a scenario explaining the

origin of the two sub-classes of halo stars.

4.1. General picture

First we assume a burst of star formation with at least some

massive stars. As these massive stars evolve and end their lives

in supernova (SN) explosions, α-elements and r-process ele-

ments are ejected in the surrounding interstellar matter (ISM).

A second generation of stars will form out of this continuously

enriched ISM. These stars will form the Pop IIa stars, with values

of [α/Fe] and [r/Fe] increasing with time. The slope in [Y/Fe]

versus [Ti/Fe] for Pop IIa stars indicates an overproduction of

Y relative to Fe in massive stars. Our results show the same

tendency for Sr and Zr.

Assume now that after this burst phase no more massive

stars are formed. The lower mass stars are either still reaching

the main sequence or in a more evolved phase, maybe already

processing s-elements. These elements will be ejected through

stellar wind or superwind events and will contaminate the sur-

rounding ISM. After the SN phase, the ISM was already en-

riched in α and r-process elements, showing a unique [α/Fe]

and [r/Fe]. The interstellar matter will continue to condense in

new stars, now with a constant value of [α/Fe] and increasing

values of [s/Fe]. These stars will form the Pop IIb stars.

Note that [Eu/Fe] shows a perfect correlation with [α/Fe] in

Pop IIa stars, as expected. The points representative of Pop IIb

stars are clumped at the maximum value of [α/Fe] and [r/Fe],

i.e. at the values reached at the end of the massive stars outburst.

This shows that, if produced by lower mass stars, it must be in

the same proportions as Fe.

4.2. Globular clusters and EASE scenario

We now suggest that the formation of the field halo stars takes

place in the globular clusters (GCs). This requires two reason-

able assumptions. The first one is that the evaporation of low

mass stars from GCs happens since the early phases of the evo-

lution of the cluster and accounts for the field Pop II stars. The

second one is that the matter ejected by SNe and stellar winds,

although generally assumed to be mostly expelled from the

cluster, nevertheless contributes to the enrichment of the lower
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Fig. 5. EASE scenario. Here, tevap is the time elapsed between the

cluster formation and the evaporation of the star from the cluster

mass stars, first by mixing with the ISM and then by accretion

at the surface of already formed stars. The possibility of self-

enrichment by SNe has been discussed by Smith (1986, 1987)

and Morgan and Lake (1989).

In the early phase of the GC evolution, massive stars will

form SNe until all stars more massive than about 8M� have

completed their evolution. This fixes the end of the α and r

elements synthesis and the maximum value of [α/Fe] observed

in Fig. 3. The second phase will lead to a relative enrichment of

s elements only.

Our two phases scenario nicely explains the features ob-

served in Fig. 3. Pop IIa stars are evaporated during the massive

stars outburst, [α/Fe] increasing with time, and the Pop IIb stars

escape later in the evolution of the cluster, after the end of the

SN phase. The stars located at the top of the vertical branch

are those which have escaped the cluster in the most advanced

phases of its evolution. A schematical illustration is given in

Fig. 5.

The range of metallicity at a given location in Fig. 3 cor-

responds to stars evaporated from clusters of various global

enrichments (due to different initial mass functions) and, thus,

different present day metallicity. As the evolution time for a star

of a given mass is about the same in all GCs, it is no surprise that

the abundance ratios, contrary to the metallicity, do not depend

on the cluster from which the halo stars have evaporated.

The similar numbers of Pop IIa and Pop IIb stars suggest

that either the evaporation was much more efficient in the early

phases of the GC evolution or that a large fraction of Pop IIa

stars originate from GCs which have been disrupted during the

massive stars outburst. This is in agreement with the view that

GCs with a flat mass function are weakly bound (Meylan and

Heggie, 1997). This is also in agreement with the recent work

of Brown et al. (1995), where they develop a model for the early

dynamical evolution and self-enrichment of GCs.

The EASE (Evaporation/Accretion/Self-Enrichment) sce-

nario also nicely explains the larger metallicity range cov-

ered by the field halo stars, extending to much lower

metallicities than the GCs. The very metal-poor stars

would be evaporated from the GCs at a very early stage of the

outburst phase, when the self-enrichment of the cluster was still

very low.
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