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Abstract
Given a curve in quantum spin state space, we inquire what is the relation
between its geometry and the geometric phase accumulated along it. Motivated
by Mukunda and Simon’s result that geodesics (in the standard Fubini-Study
metric) do not accumulate geometric phase, we find a general expression for the
derivatives (of various orders) of the geometric phase in terms of the covariant
derivatives of the curve. As an application of our results, we put forward the
brachistophase problem: given a quantum state, find the (appropriately nor-
malized) Hamiltonian that maximizes the accumulated geometric phase after
time τ—we find an analytical solution for all spin values, valid for small τ .
For example, the optimal evolution of a spin coherent state consists of a single
Majorana star separating from the rest and tracing out a circle on the Majorana
sphere.
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1. Introduction

The geometric phase accumulated during the evolution of a quantum system plays an essen-
tial role in a variety of physical phenomena, such as the nuclear dynamics in the Born–
Oppenheimer molecular theory [1, 2], physical properties of materials like polarization, mag-
netization, or in the various Hall effects [3–7], to mention but a few. Additionally, it has
been proposed as a key ingredient in the implementation of quantum computing through holo-
nomic quantum gates [8]. Moreover, several sets of universal quantum gates include a unitary
operation that imparts a generic geometric phase to a state [9]. The first formal deduction of
geometric phase in the quantum realm was given by Berry in 1984 [10], considering a sys-
tem in a non-degenerate Hamiltonian eigenstate, in the adiabatic approximation. Eventually,
the concept was generalized to non-abelian (Wilczek–Zee) geometric phases [11], nonadia-
batic evolutions [12, 13] and even in the case of non-cyclic curves [14], reaching its most
general form in the work of Mukunda and Simon in [15]. Nowadays, there is experimental
evidence of the geometric phase for both cyclic and non-cyclic curves [16, 17]. The math-
ematical characterization of the geometric phase as a holonomy of a connection dictated by
the Schrödinger evolution of the quantum state [18] underlies the generalizations mentioned
above. Following this geometrical point of view, we ask the following question: given a curve
in quantum state space, what geometrical properties of the curve give rise to the geometric
phase? A key result, within this mathematical framework, is that geodesic curves (in the nat-
ural Fubini-Study (FS) metric), i.e. curves without acceleration, do not accumulate geomet-
ric phase [15]. Consequently, the geometric phase associated with a curve, parametrized by
arclength, depends on the (covariant) derivatives of second and higher orders of the curve.
Spelling out in detail this relation is one of the main goals of the present work. A remark about
semantics might be appropriate at this point. We say the geometric phase is ‘accumulated’ by a
curve, which somehow might be perceived to imply that said phase is additively ‘piling up’ as
the curve is traced out. It is well known that this is not the case: the geometric phase accumu-
lated by a curve is not additive under curve concatenation, e.g. if a curve c1, going from point
A to point B, is glued to a curve c2, going from B to C, the geometric phase for the resulting
curve, going from A to C, is not the sum of the phases for the ci. This implies that the various
time derivatives of the geometric phase depend on the starting point, t= 0, of the curve—in
our analysis below said derivatives are calculated exactly at the starting point.

The experimental generation of geometric phases in quantum computation faces multiple
challenges, like decoherence and other systematic errors [19], necessitating the implementa-
tion of quantum gates in the shortest possible time, within the most efficient scheme. Several
scenarios have been studied in this context [19–21], exemplified in the well-known quantum
brachistochrone problem [22]: realize a quantum gate, or ‘control protocol’, in the shortest
possible time under suitable conditions. We contribute to this application-oriented direction by
first determining the Hamiltonian that maximizes the initial acceleration of a given state, and
then posing the brachistophase problem: for a given initial state, find the (time-independent)
Hamiltonian that maximizes the geometric phase accumulated after a given time τ . In the
general case, the problem seems rather hard, but we do manage to provide an approximate
solution by truncating the Taylor expansion of the geometric phase and keeping only the lead-
ing term—we also estimate analytically, and verify numerically, the range of validity of our
result.
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The paper is organized as follows: in section 2 we review pertinent geometrical aspects of
quantum state space. Covariant derivatives of a general curve in quantum state space are stud-
ied in section 3, including the particular case of a Schrödinger curve, i.e. a curve that evolves
according to the homonymous equation, with a time-independent Hamiltonian. Section 4 dis-
cusses the relation between the geometric phase and the covariant derivatives of the curve. The
maximization problems mentioned above are studied in section 5. A summary of our results
and some concluding comments are presented in section 6.

2. Mathematical preliminaries

2.1. Basic definitions and notation for the projective space

Let H≡ Cn+1 be the Hilbert space of a spin-s quantum system, where n= 2s. The elements
|ψ 〉 ∈ H that differ by a non-zero scalar factor, |ψ ′〉= λ|ψ 〉, with λ ∈ C−{0} form an equi-
valence class [ψ ]. The ket |ψ 〉 ∈ H is sent by the projection π to[ψ ], the latter being a point in
the complex projective space CPn, i.e. the space of complex lines through the origin in H,

π : H→ CPn, |ψ 〉= (ψ0,ψ1, . . . ,ψn)T 7→ [ψ ] = (z1, . . . ,zn), (1)

with the quantities zi = ψi/ψ0, together with their complex conjugates z̄i ≡ wi being coordin-
ates in the chart U0 of CPn, where ψ0 6= 0—we will denote them collectively by zA, with A
ranging over {1, . . . ,n, 1̄, . . . , n̄}, implying the slight abuse of notation zī ≡ z̄i ≡ wi.

We denote the group of unitary matrices of dimension n+ 1 and its corresponding Lie
algebra of hermitian matrices by U(n+ 1) and u(n+ 1), respectively (we follow the physi-
cists’ convention in which the structure constants are pure imaginary). CPn may be embedded
into u(n+ 1) as the U(n+ 1)−adjoint orbit of the density matrix ρ0 = diag(1,0, . . . ,0) (see,
e.g. [23]), the latter living naturally in u(n+ 1)∼= R(n+1)2 ,

ϕ : CPn → P ↪→ u(n+ 1) , [ψ ] 7→ ρψ =
|ψ 〉〈ψ |
〈ψ |ψ 〉

=∆−1


1 w1 . . . wn

z1 z1w1 . . . z1wn

...
...

zn znw1 . . . znwn

 , (2)

with ∆≡ 1+
∑n

i=1 z
iwi. We denote the image of CPn under ϕ by P⊂ u(n+ 1). The dimen-

sion of ρ is that of H, equal to n+ 1—we enumerate the components of |ψ 〉 and the rows
and columns of ρby greek indices ranging from 0 to n. We also use the notation (zµ) =
(1,z1, . . . ,zn), so that, e.g.

ρµν =∆−1zµwν . (3)

A ‘basis’ in the tangent space TρP is given by the matrices ρA ≡ ∂ρ/∂zA, with real tangent
vectors v constrained to satisfy vā = va, where vā denotes the component of v along ∂wa , v=
va∂za + vā∂wa ≡ va∂a+ vā∂ā. Note that the matrices ρA are not hermitean, and, hence, are not
by themselves tangent to P—to obtain tangent vectors to P we need to restrict to real ones,
satisfying the above constraint, a true basis in TρP is then given by, e.g.{ρi+ ρ̄i, i(ρi − ρ̄i)}).
Formulas for the FS metric, Christoffel symbols and the Riemann tensor in this ‘basis’ are
given in the appendix.
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2.2. Geometry of the embedding CPn ↪→ u(n+ 1)

The tangent space T|ψ ⟩H can be decomposed into parallel and normal subspaces, T|ψ ⟩H=
P|ψ ⟩H⊕N|ψ ⟩H, with corresponding projectors ρ and ρ̃≡ I− ρ. N|ψ ⟩H= ρ̃T|ψ ⟩H is iso-
morphic to TρψP via

π∗|N : N|ψ ⟩H 3 |v〉 7→ |v〉〈ψ |+ |ψ 〉〈v| ≡ X|v⟩. (4)

The FS metric g on P is obtained from the hermitean inner product inH via g(X|v⟩,X|u⟩) =
Re〈v|u〉. The complex structure onH given by J(|v〉) = i |v〉 induces a complex structure (also
denoted by J) on P given by

J(X|v⟩) = XJ(|v⟩) = Xi|v⟩ = i (|v〉〈ψ | − |ψ 〉〈v|)≡ X̃|v⟩. (5)

Note that i[X|v⟩,ρ] = X̃|v⟩, so that

J(·) = i [·,ρ] (6)

and, e.g. X|v⟩ =−J(X̃|v⟩) = i[ρ, X̃|v⟩] = [[X|v⟩,ρ],ρ]. An arbitrary matrix A ∈ u, considered as
Hamiltonian operating on H, generates the Schrödinger vector field |ψ̇〉=−iA|ψ 〉, which
projects to the fundamental field Â on P,

Â= π∗|ψ̇〉
= X−i ρ̃A|ψ ⟩

=−i(I− ρ)A|ψ 〉〈ψ |+ i |ψ 〉〈ψ |A(I− ρ)

=−iAρ+ iρAρ+ iρA− iρAρ

= i[ρ,A]. (7)

The natural metric in u is given by G(X,Y) = 1
2Tr(XY), which is invariant under the adjoint

action of U(n+ 1),

G(Adg(X),Adg(Y)) = G(X,Y), (8)

the infinitesimal version of which is

G([Z,X],Y)+G(X, [Z,Y]) = 0. (9)

The tangent space Tρu, ρ ∈ P, can be decomposed in subspaces tangent and normal to P
respectively (in the metricG), Tρu= TρP⊕NρP, with TρP⊥ NρP. The vectors Â, with A ∈ u,
generate TρP, since the action of U(n+ 1) on P is transitive—symbolically,

TρP= i[ρ,u]. (10)

Note that both A and Â are matrices in u, and if A belongs to TρP then Â= J(A) also belongs
to TρP, and vice versa. As shown in [23], the normal space NρP is generated by matrices B ∈ u
such that [ρ,B] = 0. In view of (7), this means that the normal part, w.r.t. ρ, of an A ∈ u, does
not contribute to Â(ρ). For a given D ∈ u and ρ ∈ P, we define the even and odd part of D
(w.r.t. to ρ) by

De = ρDρ+ ρ̃Dρ̃, Do = ρDρ̃+ ρ̃Dρ, (11)

and D= De +Do. It can be shown that adDe maps TρP to TρP, and NρP to NρP, while adDo

maps TρP to NρP and vice-versa. Indeed, for a tangent vector [ρ,X], we have

[De, [ρ,X]] = [ρ, [De,X]]− [[ρ,De],X] = [ρ, [De,X]], (12)

4
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where, in the first equality we used the Jacobi identity, while in the second one the fact that
[ρ,De] = 0. Thus, adDe sends [ρ,X] ∈ TρP to [ρ, [De,X]] ∈ TρP. On the other hand, for a tangent
vector X|v⟩ = |v〉〈ψ |+ |ψ 〉〈v| (with 〈v|ψ 〉= 0), we have

[Do,X|v⟩] = ρD|v〉〈ψ |+ ρ̃D|ψ 〉〈v| − |v〉〈ψ |Dρ̃− |ψ 〉〈v|Dρ,

from which it easily follows that [ρ, [Do,X|v⟩]] = 0, implying that [Do,X|v⟩] ∈ NρP. Similarly,
for Z ∈ NρP, i.e. such that [ρ,Z] = 0, we have [ρ, [De,Z]] = [[ρ,De],Z] + [De, [ρ,Z]] = 0, so that
[De,Z] ∈ NρP. Also, for W ∈ NρP,

Tr(W[Do,Z]]) = Tr(WρDρ̃Z+Wρ̃DρZ−WZρDρ̃−WZρ̃Dρ)

= Tr(ρWDZρ̃+ ρ̃WDZρ− ρWZDρ̃− ρ̃WZDρ)

= 0,

where the fact that Z,W commute with ρ, ρ̃ was used. Thus, [Do,Z] is orthogonal to NρP, and,
hence, it belongs to TρP.

It can also be seen easily that the above decomposition of a general hermitean matrix D,
regarded as a tangent vector to u at ρ, coincides with the decomposition Tρu= TρP⊕NρP,
with Do ∈ TρP and De ∈ NρP. Indeed, [ρ,De] = 0 implies that De ∈ NρP, while for any Z ∈
NρP,

Tr(DoZ) = Tr(ρDρ̃Z+ ρ̃DρZ)

= Tr(ρDZρ̃+ ρ̃DZρ)

= 0,

so that Do ⊥ NρP, implying that Do ∈ TρP. Note that

Do = ρDρ̃+ ρ̃Dρ= [ρ, [ρ,D]], (13)

i.e. projection onto the tangent space of P is obtained by a double commutator with ρ. Another
way to obtain the last result is by writing D= De +Do, and noting that the normal (even) part
is filtered out in the first commutator, [ρ,D] = [ρ,Do] = i J(Do) so that the double commutator
just gives −J2(Do) = Do.

3. On the acceleration of curves in P

3.1. General curves in P

Consider any basis {Eµν} of Tu, with position-independent entries (Eµν)στ (we choose to
enumerate the (n+ 1)2 elements of the basis by the composite index µν). The metric G on
u, in that basis, has position-independent components, so that the Christoffel symbols vanish,
and, for a position-dependent matrix A, interpreted as a vector field on u, we have

(∇(G)
X A)µν = X .Aµν , (14)

where the right hand side above denotes the action of the differential operator X on the function
Aµν . In the vicinity of P in u one may choose coordinates for u complementing the 2 n coordin-
ates zA on P by n2 − 2n additional coordinates, transversal to P, and extending zA continu-
ously in a neighborhood of P. Then,∇(G)

a ρb = ∂aρb ≡ ρab and a short(ish) calculation, starting
from (3), shows that

(ρa)
µν =∆−2

(
∆δµaw

ν − zµwνwa
)
, (15)

(ρb̄)
µν =∆−2

(
∆δνbz

µ− zbzµwν
)
, (16)
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(ρab)
µν =∆−3

(
2zµwνwawb−∆

(
δµaw

bwν + δµbw
awν
))

, (17)

(ρab̄)
µν =∆−3

(
2zbzµwawν −∆

(
δµaz

bwν + δνbz
µwa+ δabz

µwν −∆δµaδ
ν
b

))
, (18)

(ρāb̄)
µν =∆−3

(
2zazbzµwν −∆

(
δνaz

bzµ+ δνbz
azµ
))
. (19)

Finally, we use (13), with a change in notation for Do → D∥ and De → D⊥, to obtain

ρ
∥
ab =−∆−1

(
waρb+wbρa

)
, (20)

ρ
∥
ab̄
= 0, (21)

ρ
∥
āb̄
=−∆−1

(
zaρb̄+ zbρā

)
, (22)

implying that (compare (20)–(A4)), for X, Y ∈ TρP,∇(g)
X Y= (∇(G)

X Y)∥. In other words, the
Levi–Civita covariant derivative for g on Pmay be obtained by projecting the ambient covari-
ant derivative (corresponding to the Euclidean G on u) onto the tangent space of P, as in the
standard treatment of e.g., surfaces in R3.

Given a curve ρt in P, its velocity is v= ρ̇t ∈ TρtPwhile v̇ (when ρt is viewed as a curve in u)

is v̇=∇(G)
t v= ρ̈t. The acceleration α of the curve in P may be obtained by projecting ρ̈ onto

the tangent space TρP, just like the acceleration of a curve on the 2-sphere S2, embedded in
R3, can be computed by first computing the 3D acceleration of the curve, and then projecting
onto the tangent plane to the sphere. Using the double commutator with ρ for the projection
(see equation (13)), and dropping the subscript t, we find

α≡∇(g)
t v=∇(g)

t ρ̇

=
(
∇(G)
t ρ̇

)∥
= ρ̈∥

= ρρ̈ρ̃+ ρ̃ ρ̈ρ. (23)

Note that for any A ∈ Tρu, with ρ ∈ P,

|A∥|2 = 1
2
Tr

((
A∥
)2
)
=

1
2
Tr
(
(ρAρ̃+ ρ̃Aρ)2

)
=<A2>−<A>2, (24)

so that

|α|2 =<ρ̈2>−<ρ̈>2 . (25)

The variance-like form assumed by the acceleration deserves an explanatory note. To begin
with, the above equation is just a special case of (24), so it has nothing in particular to do
with the acceleration, rather, it is a Pythagorean reminder on how to relate tangent vectors
in the Hilbert space to their projections in P. To see this, think of the operator A in (24) as a
Hamiltonian acting on the state |ψ 〉, so that |v〉=−iA|ψ 〉 is the velocity of |ψ 〉 (in H) under
Schrödinger evolution by A, with modulus squared 〈v|v〉= 〈ψ |A2|ψ 〉. This velocity may be
decomposed into a component along |ψ 〉 itself, |v〉∥ = 〈ψ |v〉|ψ 〉= i〈ψ |A|ψ 〉|ψ 〉, with modu-
lus squared ∥〈v|v〉∥ = 〈ψ |A|ψ 〉2, and another component |v〉⊥, perpendicular to |ψ 〉 (note that
in this paragraph, and this paragraph only, ‖ and ⊥ have a different meaning than in the rest
of the manuscript). When projecting H to P, the component |v〉∥ projects to zero, so the pro-
jection of |ψ 〉 in P has speed squared⊥〈v|v〉⊥ = 〈v|v〉− ∥〈v|v〉∥. Thus, (24) just says that the
speed squared in P is the speed squared in H minus the modulus squared of |v〉∥.

6
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It might prove useful to cast (23) in a ‘big matrix’ form. An arbitrary A ∈ u may be rep-
resented by a n2-dimensional vector |A〉 containing the entries Aµν in the standard order,
|A〉= (A11,A12, . . . ,Ann)T. Then (23) can be written as |α〉= P|ρ̈〉, with the n2 × n2 hermitean
matrix P given by

Pµν,αβ = δβνρ
µα+ δµαρ

βν − 2ρµαρβν , (26)

or, in matrix tensor product form,

P= ρ⊗ ρ̃T+ ρ̃⊗ ρT (27)

= ρ⊗ I+ I⊗ ρT− 2ρ⊗ ρT, (28)

with (A⊗BT)|C〉= |ACB〉. In this notation, 〈A|B〉= ĀµνBµν = AνµBµν = Tr(AB) =
2G(A,B). Being a projection operator, P satisfies P2 = P. Since projection onto the tan-
gent space of P is effected by a double commutator with ρ, we get P=R2, where
R= ρ⊗ I− I⊗ ρT is the adjoint representation of ρ, with R|A〉= |[ρ,A]〉, so that

α= [ρ, [ρ, ρ̈]] (29)

|α〉=R2|ρ̈〉. (30)

For the modulus squared of α we find

|α|2 = G(α,α) =
1
2
Tr(α2) =

1
2
〈α|α〉= 1

2
〈ρ̈|P|ρ̈〉= 1

2
〈ρ̈|R2|ρ̈〉= 1

2
|R|ρ̈〉|2, (31)

where P† = P and P2 = P were used.

3.2. Schrödinger curves in P

By Schrödinger curves in P we mean curves ρt that are solutions to the Schrödinger equation,
ρ̇=−i [H,ρ]. We will limit our attention to the case where H does not depend on time, then
ρt = e−i tHρ0ei tH and

ρ̈=−[H, [H,ρ]] = 2HρH− ρH2 −H2ρ. (32)

We compute

ρ̈2 = (2HρH− ρH2 −H2ρ)2

= 4HρH2ρH+ ρH2ρH2 +H2ρH2ρ− 2HρHρH2 − 2ρH3ρH

− 2HρH3ρ− 2H2ρHρH+ ρH4ρ+H2ρH2, (33)

so that

<ρ̈2>= . . .= h4 − 4h1h3 + 3h22, <ρ̈>2 = 4(h21 − h2)
2 = 4h22 − 8h2h

2
1 + 4h41, (34)

and, finally, from (25) we get

|α|2 = . . .= h4 − 4h3h1 − h22 + 8h2h
2
1 − 4h41, (35)

where hm ≡ 〈ψ |Hm|ψ 〉.
In the ‘big matrix’ notation, |ρ̈〉=−H2|ρ〉, where H is the adjoint representation of H ∈ u

(see the first of (32)), H= H⊗ I− I⊗HT, so that

α=−[ρ, [ρ, [H, [H,ρ]]]] (36)

|α〉=−R2H2|ρ〉. (37)

7
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For the modulus squared of α we find

|α|2 = 1
2
〈ρ|H2PH2|ρ〉= 1

2
〈ρ|H2R2H2|ρ〉, (38)

whereH† = Hwas used. Introducing the ‘density matrix of the density matrix’ R= |ρ〉〈ρ|, the
above can also be written as

|α|2 = 1
2
Tr
(
RH2R2H2

)
. (39)

Finally, we may also define the acceleration a of the curve ρt as its second covariant deriv-
ative w.r.t. length s along the curve, rather than time. Since the modulus of the velocity v
of a curve ρt, describing time evolution generated by Schrödinger’s equation with a time-
independent Hamiltonian H is constant in time, ∂t|v|= 0, we get a= α/|ṡ|, with ṡ= ∂s/∂t,
and

|a|2 = ṡ−2|α|2 = (h2 − h21)
−1|α|2. (40)

Note that, in this case, the modulus of a is the curvature of the curve.

4. Geometric phase and covariant derivatives of curves in P

A generalization of the standard geometric phase, valid for open (i.e. non-cyclic) curves, is
given in [15]. As shown there, the geometric phase accumulated along a geodesic (in the FS
metric) is zero. On the other hand, geodesics are characterized by their vanishing acceleration.
It seems reasonable then to inquire about the relation between the acceleration of a curve and
the associated geometric phase—note that this relation ought to exist independently of the
Schrödinger dynamics.

Given a curve ρτ , 0⩽ τ ⩽ T, in P, the accumulated geometric phase up to a time 0⩽ t⩽ T
is [15],

ϕt = argTr(ρ0Ft) , (41)

where

Ft = Pexp
ˆ t

0
dτ ρ̇τ , (42)

and a dot denotes a time derivative, while Pexp a path-ordered exponential. By definition, this
means that Fτ satisfies the differential equation

Ḟτ = ρ̇τFτ , (43)

subject to the initial condition F0 = I. The open-curve phase ϕt has a simple geometrical inter-
pretation: it is the usual Berry phase of the closed curve obtained by gluing the curve ρτ ,
0⩽ τ ⩽ t to the geodesic that connects ρt with ρ0. In what follows, we find an explicit for-
mula for the derivatives of ϕt at t= 0 in terms of ρτ -quantities intrinsic to P. Before delving
into the computational aspects of our endeavor, though, we point out the local character of
our considerations—by this we mean that we limit our discussion to a neighborhood of the
starting point of the curve, so that we avoid the pathologies associated to ‘long’ geodesics. For
example, we mention above the geodesic connecting ρt to ρ0, implicitly assuming it is unique.
Amore careful phrasing would refer to the shortest geodesic, and that is where problemsmight
lurk. As long as the two points to be connected are close enough, said geodesic is unique, and,
importantly, depends continuously on the endpoints. When one of the points reaches the cut
locus of the other, the shortest geodesic in question may jump discontinuously, rendering,

8



J. Phys. A: Math. Theor. 56 (2023) 285301 C Chryssomalakos et al

e.g. the phase, discontinuous. Thus, the statement above that geodesics do not accumulate
geometric phase is to be understood locally, when the endpoints of the ‘closing’ geodesic are
sufficiently close together.

4.1. Explicit computation of derivatives of the geometric phase at t=0

4.1.1. The first three derivatives of the geometric phase. Using the notation 〈A〉t ≡
Tr(ρ0AFt) for an arbitrary time-dependent operator A, one gets ∂t〈A〉t = 〈Ȧ+Aρ̇〉t, so that,
e.g. (dropping the index t, and denoting the identity operator by I)

∂t〈I〉= 〈ρ̇〉, ∂2
t 〈I〉= 〈ρ̈+ ρ̇2〉, ∂3

t 〈I〉= 〈
...
ρ + 2ρ̈ρ̇+ ρ̇ρ̈+ ρ̇3〉. (44)

Note that, by (41), ϕt = Imlog〈I〉t. The reader worried about the multivaluedness of the
logarithm should take into account our remark above about the local character of our ana-
lysis. In a neighborhood of the starting point of the curve ρt, the phase will always be in
the interval [−π,π] and, in any case, phases outside this range are operationally indistin-
guishable from phases inside it, as they are defined only modulo 2π. Note also that, given,
e.g. two quantum states |a〉, |b〉, the state |a〉+ e−iα|b〉, in which |b〉 is multiplied by a ‘negat-
ive’ phase factor (taking α> 0), is projectively indistinguishable from the state eiα|a〉+ |b〉=
eiα(|a〉+ e−iα|b〉), in which |a〉 is multiplied by a ‘positive’ phase factor. It is also easily
seen that if a curve accumulates negative geometric phase, the same curve, followed back-
wards, will accumulate positive geometric phase. For these reasons, we may, for all practical
purposes, further restrict ϕ to the range [0,π]. We proceed now to compute

ϕ̇= Im
(
〈I〉−1〈ρ̇〉

)
(45)

ϕ̈= Im
(
〈I〉−2

(
〈I〉〈ρ̈+ ρ̇2〉− 〈ρ̇〉2

))
(46)

...
ϕ = Im

(
〈I〉−3

(
〈I〉2〈

...
ρ + 2ρ̈ρ̇+ ρ̇ρ̈+ ρ̇3〉− 3〈I〉〈ρ̇〉〈ρ̈+ ρ̇2〉+ 2〈ρ̇〉3

))
. (47)

At t= 0, 〈I〉0 = Tr(ρ0) = 1 and 〈ρ̇〉0 = Tr(ρ0ρ̇0) = 0, resulting in

ϕ̇0 = 0 (48)

ϕ̈0 = Im〈ρ̈+ ρ̇2〉0 (49)
...
ϕ0 = Im〈

...
ρ + 3ρ̇ρ̈+ ρ̇3〉0. (50)

All time derivatives of ρ are hermitean so, using cyclicity of the trace gives

ϕ̈0 = ImTr
(
ρ0ρ̈0 + ρ0ρ̇

2
0

)
=

1
2i

(
Tr
(
ρ0ρ̈0 + ρ0ρ̇

2
0

)
−Tr

(
ρ̈0ρ0 + ρ̇20ρ0

))
= 0, (51)

leading to the conclusion that the first two time derivatives of ϕt vanish, at t= 0, for every
curve ρt. Similarly,
...
ϕ0 = ImTr

(
ρ0(

...
ρ 0 + 2ρ̈0ρ̇0 + ρ̇0ρ̈0 + ρ̇30)

)
=

1
2i

(
Tr
(
ρ0

...
ρ 0 + 2ρ0ρ̈0ρ̇0 + ρ0ρ̇0ρ̈0 + ρ0ρ̇

3
0

)
−Tr

(...
ρ 0ρ0 + 2ρ̇0ρ̈0ρ0 + ρ̈0ρ̇0ρ0 + ρ̇30ρ0

))
=

1
2i

Tr(ρ0[ρ̈0, ρ̇0])

=
1
2i

Tr(ρ̇0[ρ0, ρ̈0]) . (52)

9
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The quantity in the r.h.s. of (52) is, for a general curve ρt, nonzero, so the first nonzero
derivative of ϕt for a general curve is the third one. The matrix ρ̈0 in (52) represents a vector
tangent to the ambient vector space u(n+ 1), but not to P—wemay remedy this noting that, for
a general curve ρt, only the part of ρ̈0 tangential to P, ρ̈∥0 ≡ α,contributes to

...
ϕ0 since [ρ0, ρ̈0] =

[ρ0, ρ̈
∥
0 ], so we may write (with ρ̇0 = v),

...
ϕ0 =

1
2i

Tr(v[ρ0,α])

=
1
2
Tr(vJ(α))

= g(v,J(α))

= ω(α,v), (53)

where (6) was used to obtain the second line, i.e.
...
ϕ0 is equal to the symplectic area of the

parallelogram spanned by the (initial) velocity and acceleration of the curve. It follows that,
for geodesics [24], where α= 0,

...
ϕ0 vanishes, a result that we extend below to derivatives of

all orders
For Schrödinger curves, a short calculation gives

...
ϕ0 =−1

2
Tr(ρ0 [[H, [H,ρ0]] , [ρ0,H]]) = h3 − 3h2h1 + 2h31, (54)

where hi, as defined in section 3.2, is evaluated at ρ0.

4.1.2. The fourth and fifth derivative of the geometric phase. For the fourth time derivative
of ϕ we find

ϕ
(4)
0 =

1
2i

Tr
(
2ρ[

...
ρ ∥, ρ̇] + 3ρ[α, ρ̇2]

)
. (55)

We proceed to express this in terms of the covariant derivatives of v. From ρ2 = ρ one gets

ρρ̇+ ρ̇ρ= ρ̇ , (56)

which implies

ρρ̇= ρ̇ρ̃, ρ̃ρ̇= ρ̇ρ, (57)

so that ρρ̇2 = ρ̇2ρ, i.e. ρ̇2 ∈ NρP, and the second term in the r.h.s. of (55) vanishes. Putting

β ≡∇(g)
t α= α̇∥, and using

...
ρ ∥ = β− [ρ, [ρ̇, ρ̈]], (58)

we find from (55) (putting ρ̇→ v)

ϕ(4) =−iTr(ρ[β,v])+ iTr(ρ[[ρ, [v, ρ̈]],v]) . (59)

Note that

Tr(ρ[[ρ, [v, ρ̈]],v]) = Tr(v[ρ, [ρ, [v, ρ̈]]])

= Tr
(
v[v, ρ̈]∥

)
= Tr(v(ρvρ̈ρ̃+ ρ̃vρ̈ρ− ρρ̈vρ̃− ρ̃ρ̈vρ))

= Tr
(
ρ̃v2ρ̈+ ρv2ρ̈− ρ̃vρ̈v− ρvρ̈v

)
= Tr

(
v2ρ̈− vρ̈v

)
= 0,

10
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so that the second term in the r.h.s. of (59) vanishes, and we arrive at

ϕ
(4)
0 = 2ω(β,v). (60)

Next, we proceed with the fifth derivative. Denote by γ the third covariant derivative of v,

γ =∇(g)
t β. The fifth derivative of ϕ at t= 0 involves ρ(4)

∥
0 , which, in turn, can be expressed

in terms of γ and lower order t-derivatives. Expressing the latter in terms of β, α, we find

ϕ
(5)
0 =

1
2i

Tr
(
ρ
(
3[γ,v] + 2[β,α]− 10Tr(ρ(ρ̈+ ρ̇2))[α,v] + 5[β,v2] + 5[ρ̈2,v] + 2[α,v3]

))
. (61)

The first two terms on the right only involve covariant geometric quantities explicitly—the
rest need some work. From (56), taking one more derivative, one gets

ρ̈= ρρ̈+ ρ̈ρ+ 2ρ̇2. (62)

Multiplying by ρ and taking trace one finds

Tr(ρρ̈) =−2Tr(ρρ̇2), (63)

which makes the third term in the r.h.s. of (61) equal to 10Tr(ρρ̇2)[α,v]. On the other hand,
putting ρ= |ψ 〉〈ψ |, with 〈ψ̇|ψ 〉= 0, one gets ρ̇= |ψ 〉〈ψ̇|+ |ψ̇〉〈ψ |, so that

ρ̇2 = µρ+ |ψ̇〉〈ψ̇| (64)

ρ̇3 = µρ̇, (65)

where µ≡ 〈ψ̇|ψ̇〉. Note also that, from (64), it is easily inferred that

2Tr(ρρ̇2) = Tr(ρ̇2) = 2µ, (66)

so that the third and sixth terms in the r.h.s. of (61) sum to 12Tr(ρv2)[α,v] = 6Tr(v2)[α,v] =
12g(v,v)[α,v]. The fourth term in the r.h.s. of (61) is zero because [ρ,v2] = 0. For the fifth
term, start with

ρ̈= |ψ̈〉〈ψ |+ 2|ψ̇〉〈ψ̇|+ |ψ 〉〈ψ̈| (67)

ρ̈2 =−µ|ψ 〉〈ψ̈|+ 2〈ψ̈|ψ̇〉|ψ 〉〈ψ̇|+ 〈ψ̈|ψ̈〉ρ (68)

+ 2µ|ψ̇〉〈ψ̇|+ 2〈ψ̇|ψ̈〉|ψ̇〉〈ψ |+ |ψ̈〉〈ψ̈| −µ|ψ̈〉〈ψ | (69)

where 〈ψ̈|ψ 〉= 〈ψ |ψ̈〉=−µ has been used (derived by taking derivative of 〈ψ̇|ψ 〉= 0). A
straightforward calculation now shows that Tr(ρ[ρ̈2, ρ̇]) = 0, so that, finally,

ϕ
(5)
0 =

1
2i

Tr(ρ(3[γ,v] + 2[β,α] + 12g(v,v)[α,v]))

= 3ω(γ,v)+ 2ω(β,α)+ 12g(v,v)ω(α,v). (70)

As can be appreciated in the above examples, this line of attack quickly becomes
intractable—in the next section we follow an alternative approach that simplifies the calcu-
lation of higher order derivatives of the geometric phase.

4.2. Derivatives of the geometric phase in terms of integrals

Let ω be a time-independent p-form defined over a manifold. Consider the integral

It =
ˆ
Vt

ω, (71)

11
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where the domain of integration V t is flowing (as t varies) along the integral curves of a vector
field u, Vt = φut (V0), with ∂tφut (x)|t=0 = u(x). It can be shown that (see, e.g. [25]),

∂tIt =
ˆ
Vt

Luω, (72)

where Lu is the Lie derivative along u. We intend to use this formula to get an expression for
the various time derivatives of the geometric phase—a toy example illustrating the use of (72)
appears in appendix C.

Recall that ϕt is the usual Berry phase of the closed curve c ◦ h (with ◦ denoting concaten-
ation), where ct denotes the curve ρτ , 0⩽ τ ⩽ t, and ht is the geodesic that connects ρ0 with
ρt. By using the fact that the symplectic form ω is proportional to the Berry curvature [26], we
obtain (with the conventions for ω adopted above)

ϕt =−2
ˆ
Vt

ω, (73)

where V t is any surface with boundary c ◦ h—we choose as V t the surface swept out by the
geodesics hτ , 0⩽ τ ⩽ t.

In the sketch on the right, the black curve denotes ct, while the green curve is ht—we
take the latter parametrized by an affine parameter s, 0⩽ s⩽ 1, for all t. Assuming that the
various geodesics ht for distinct values of t only intersect at ρ0, we can use the coordinates
(t, s), 0⩽ t⩽ T,0⩽ s⩽ 1, to label the point corresponding to s on ht —the surface V t, which
is the hatched area in the figure, corresponds to the range 0⩽ τ ⩽ t,0⩽ s⩽ 1 and its boundary
is ∂Vt = ct− ht. Define the tangent vectors u≡ ∂t, v≡ ∂s. Note that parametrizing ht by the
affine parameter s implies that all the points on ct have s= 1, so that the vector field u is tangent
to ct. Also, note that the surface Vt+dt can be obtained by flowing the points of V t along the
integral curves of u, as assumed in (72).

Since ω is closed, by Cartan’s formula, Luω = iudω+ d(iuω) = d(iuω) (where iu denotes
the contraction with u) holds, giving,

∂tϕt =−2
ˆ
Vt

d(iuω) =−2
ˆ
ct

iuω+ 2
ˆ
ht

iuω = 2
ˆ
ht

iuω, (74)

where we used Stokes’ theorem for the second equality and the fact that iuω = 0 at the curve
ct, since the corresponding line element is along u by construction. Note that the integration in
the above formula is only along the geodesic ht—the curve ct affects the result via the vector
field u, which depends on it. By parametrizing ht with the coordinates (τ = t,s), 0⩽ s⩽ 1, we
obtain

∂tϕt = 2
ˆ 1

0
dsω(u(s, t),v(s, t)), (75)

12
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and by computing the time derivative k times,

∂k+1
t ϕt = 2∂kt

ˆ 1

0
dsω(u(s, t),v(s, t)). (76)

As shown below, the integral on the r.h.s. of the above equation can be computed exactly.
Given a point ρt, consider the state |ψt〉 such that ρt = |ψt〉〈ψt| and 〈ψ0|ψt〉= cosLt ⩾ 0,

where Lt is the distance between ρ0 and ρt. Then the geodesic ht can be parametrized by s as
follows

ht(s) = |ψts〉〈ψts| (77)

where

|ψts〉= cos(Lts)|ψ0〉+ sin(Lts)|ξt〉, (78)

with

|ξt〉=
1

sinLt
(|ψt〉− cosLt|ψ0〉) (79)

being the point of ht orthogonal to |ψ0〉. Defining ρts = ht(s) we may write

ρts = Utsρ0U
−1
ts , (80)

with Uts unitary. Given ρ0 and the point ρts, (80) does not determine Uts uniquely. We fix this
ambiguity by choosing Uts, for fixed t, to be the one-parameter subgroup,

Uts = e−i sLtξt , χt ≡ i(|ξt〉〈ψ0| − |ψ0〉〈ξt|). (81)

It is easily seen that

Uts|ψ0〉= |ψts〉, (82)

with |ψts〉 defined in (78). Note thatUts evolves |ψ0〉 along a geodesic (for fixed t and varying s).
From (80) we get

u(t,s) = ρ̇ts =−i [X̂ts,ρts], v(t,s) = ρ ′
ts =−i [Ŷt,ρts], (83)

where a prime denotes the partial derivative ∂s and

X̂ts ≡ i U̇tsU
−1
ts , Ŷt ≡ i U ′

tsU
−1
ts = Ltχt. (84)

Substitution in (75) gives

∂tϕt =
1
2i

ˆ 1

0
dsTr(ρts[[X̂ts,ρts], [Ŷts,ρts]]) =

1
2i

ˆ 1

0
dsTr(ρts[X̂ts, Ŷts]) =

1
2i

ˆ 1

0
dsTr(ρ0[Xts,Yt]),

(85)

where

Xts ≡ i U−1
ts U̇ts, Yt ≡ i U−1

ts U
′
ts = Ltχt. (86)

We calculate now X̂ts explicitly. We start with the following expression for Uts,

Uts = I+ sinLtsχt+(1− cosLts)χ
2
t , (87)

which is easily derived by noting that (−iχt)3 = iχt, implying that the eigenvalues of−iχt are
0, ±i, and that Uts can be written as Uts = e−i sLtχt = I+ bχt+ cχ2

t , with b, c determined by
substitution of the above eigenvalues for χt. A straightforward calculation gives a somewhat

13
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lengthy expression for [Xts,Yts] (see (B21) of appendix B)—in projecting this result onto ρ0,
only terms proportional to ρ0 contribute, so that

Tr(ρ0 [Xts,Yts]) =−Ltbt sin2Lts, (88)

where we defined bt ≡ 〈ξt|ξ̇t〉. Finally, from the last equality of (85), we get

∂tϕt =
i
4
bt(1− cos2Lt) =

i
2
bt sin

2Lt. (89)

We cast now (89) in terms of the symplectic structure. To this end we find that

[Yt,∂tYt] = Lt [χt,∂t(Ltχt)] = L2
t [χt, χ̇t] = L2

t

(
|ξt〉〈ξ̇t| − |ξ̇t〉〈ξt|+ 2btρ0

)
, (90)

which projects to Tr(ρ0 [Yt,∂tYt]) = 2L2
t bt. Solving this for bt and substituting in the r.h.s.

of (89) gives,

∂tϕt =
i
4
sin2Lt
L2
t

Tr(ρ0 [Yt,∂tYt])

=−1
2
sin2Lt
L2
t
ωρ0 (Yt,∂tYt)

=−1
2
ωρ0

(
Ỹt,∂tỸt

)
, (91)

where we used that Y t can be regarded as an element of Tρ0P (as it can be verified by noting
that its normal part is zero) to obtain the second line, and defined,

Ỹt ≡
sinLt
Lt

Yt = sinLtχt. (92)

Higher order derivatives of the geometric phase are given by

∂k+1
t ϕt =−1

2

k∑
r=0

(
k
r

)
ωρ0

(
∂rt Ỹt,∂

k−r+1
t Ỹt

)
. (93)

We conclude this section by noting that Y t, regarded as an element of Tρ0P, has a precise
geometrical interpretation; a short calculation reveals that the geodesic exponential map of
−JYt is ρt by construction. Indeed, as noticed previously, for fixed t and varying 0⩽ s⩽ 1, ρts
gives the geodesic from ρ0 to ρt, and its tangent vector at s= 0 is −JYt, so −JYt is the inverse
of the exponential map of the curve ρt. If we assume it has expansion of the form,

−JYt =
∞∑
n=1

ṽ(n−1) t
n

n!
, (94)

where ṽ(n) is tangent vector in Tρ0P, and note that ωρ0(∂
r
t Yt,∂

k
t Yt) = ωρ0(∂

r
t JYt,∂

k
t JYt), we

obtain,

∂tϕ0 = 0 (95)

∂2
t ϕ0 = 0 (96)

∂3
t ϕ0 = ω(ṽ(1), ṽ(0)) (97)

∂4
t ϕ0 = 2ω(ṽ(2), ṽ(0)), (98)

∂5
t ϕ0 = 3ω(ṽ(3), ṽ(0))+ω(ṽ(2), ṽ(1))− 2g(ṽ(0), ṽ(0))ω(ṽ(1), ṽ(0)) (99)

14
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∂6
t ϕ0 = 4ω(ṽ(4), ṽ(0))+ 5ω(ṽ(3), ṽ(1))− 40

3
g(ṽ(0), ṽ(0))ω(ṽ(2), ṽ(0))

− 20g(ṽ(1), ṽ(0))ω(ṽ(1), ṽ(0)). (100)

The relation between ṽ(n) and the covariant derivatives (∇(g)
v )nv is as follows

v= ṽ(0) (101)

∇(g)
v v= ṽ(1) (102)

(∇(g)
v )2v= ṽ(2) (103)

(∇(g)
v )3v= ṽ(3) − g(ṽ(1), ṽ(0))ṽ(0) − 3ω(ṽ(1), ṽ(0))Jṽ(0) + g(ṽ(0), ṽ(0))ṽ(1), (104)

and so on for higher values of n.
Finally, note that the tangent vectors ṽ(n), n⩾ 1, are trivially zero for geodesics, making it

clear that all derivatives of the geometric phase (and hence, the phase itself) are zero in this
case.

5. The brachistophase

We study Schrödinger curves in P that accumulate the maximum possible geometric phase for
a given evolution time τ .

5.1. The Hamiltonian of maximal acceleration

As a warmup, we consider the following problem: find the time-independent Hamiltonian H
that, when used in Schrödinger’s equation, maximizes the initial acceleration of a given state
ρ0. From (35) we conclude that we need to maximize

fρ0(H) = h4 − 4h3h1 − h22 + 8h2h
2
1 − 4h41, (105)

with hm ≡ Tr(ρ0Hm) and where fρ0 is viewed as a function from u(n+ 1), where H lives, to
the nonnegative reals. Since fρ0(λH) = λ4fρ0(H), we need to fix the norm ofH to, e.g. unity, to
get a well-posed problem. Also, any component ofH along the unit matrix does not contribute
to the dynamics of ρ, so the solution to our problem should have zero such component—we
arrive then at the following two constraints

TrH= 0, (106)

1
2
TrH2 = 1, (107)

of which, we emphasize, the first is a derived property of the solutions to the maximization
problem. Both fρ0 and the constraints are invariant under the transformation

ρ→ ρ ′ = UρU−1, H→ H ′ = UHU−1, (108)

with U ∈ U(n+ 1). Since the above action of U(n+ 1) on P is transitive, we can solve the
problem for any conveniently chosen state ρ0, and then transform the solution as above, to solve
it for any other state ρ. We choose then as ρ0 the coherent state along z, and write accordingly
the Hamiltonian in the form

H=

(
b v†

v B

)
, (109)
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where b ∈ R , v ∈ Cn, and B ∈ u(n). The stability subgroup Gρ0 of the above ρ0 consists of
matrices of the form

V=

(
eiα 0
0 W

)
, (110)

withW ∈ U(n). Under a transformation by such a matrix, ρ0 remains invariant while H trans-
forms to H′ with

b ′ = b, v ′ = e−iαWv, B ′ =WBW−1, (111)

and the solution space for H, for a given ρ0, is the entire orbit Gρ0 .H0 of a particular solution
H0 under Gρ0 , together with the orbit of −H0, since the latter Hamiltonian clearly produces
the same (modulus of) acceleration.

Using the above form for H, we find

h1 = b (112)

h2 = b2 +β2 (113)

h3 = b3 + 2bβ2 + v†Bv (114)

h4 = b4 + 3b2β2 + 2bv†Bv+ v†B2v+β4, (115)

where β2 ≡ v†v, with β ⩾ 0, which leads to

fρ0(H) = v†(B− bI)2v= |(B− bI)v|2 ≡ |B̃v|2, (116)

while the constraints, expressed in terms of B̃, assume the form

(n+ 1)b+TrB̃= 0, (117)

1
2
b2 +

1
2
Tr
(
(B̃+ bI)2

)
+β2 = 1. (118)

We may use a Gρ0 transformation (as in (111)) to bring B(and, hence, B̃) in a diagonal
form, B̃= diag(λ1, . . . ,λn). To maximize the modulus of B̃v, we need to align v along the
eigenvector corresponding to the maximal (in the absolute sense) B̃-eigenvalue λ and then
make |λ|β (which gives the modulus of the resulting vector) the maximum possible. We may
assume, without loss of generality, that the maximal, in absolute sense, eigenvalue of B̃ is
λ1.The parameter space of the maximization problem is R, where b ranges, times u(n), where
B lives, times Cn, where v lives, modulo the constraints. Using Lagrange multipliers (µ1, µ2)
to incorporate the constraints, we get

fρ0(H) = λ1β+µ1

(
Tr
(
B̃+ bI

)2 − 2+ b2 +β2
)
+µ2

(
TrB̃+(n+ 1)b

)
= f(λ1, . . . ,λn,β,b,µ1,µ2). (119)

Now we compute the derivatives of f with respect to every variable (fixing the other vari-
ables) and we get

∂f
∂λr

= 2µ1(λr+ b)+µ2 = 0, r 6= 1, (120)

∂f
∂λ1

= β+ 2µ1(λ1 + b)+µ2 = 0, (121)

∂f
∂b

= 2µ1TrB̃+ 2µ1b+ 2µ1nb+(n+ 1)µ2 = 0, (122)
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∂f
∂β

= λ1 + 4µ1β = 0, (123)

∂f
∂µ1

= Tr
((
B̃+ bI

)2)− 2+ b2 + 2β2 = 0, (124)

∂f
∂µ2

= TrB̃+(n+ 1)b= 0, (125)

where we consider that, for fixed v and b,B̃ has to lie on the TrB̃=−(n+ 1)b hyperplane in
u(n+ 1), satisfy additionally

Tr
(
(B̃+ bI)2

)
= (λ1 + b)2 + . . .+(λn+ b)2 = 2− b2 − 2β2, (126)

and also have its first eigenvector along v. Substituting TrB̃ from (125) in (122) we find that
µ2 = 0. Now substituting µ2 = 0 in (120) we obtain

2µ1(λ1 + b) = 0, r 6= 1. (127)

If µ1 = 0, by (121) we get that β= 0, and then f = 0 (its the minimum acceleration),
hence we assume that µ1 6= 0 and λr =−b for r= 2, . . . ,n. Now from (125) we have λ1 −
(n− 1)b+(n+ 1)b= λ1 + 2b= 0, thus λ1 =−2b. Substituting in (121) we get that β =
−2µ1(λ1 + b) =−2µ1(−2b) = 2µ1b. Then, from (123), we have

λ1 + 4µ1β =−2b+ 4µ1(2µ1b) = 0 → 2b(−1+ 4µ2
1) = 0. (128)

If b= 0, H= 0, then we assume that b 6= 0 and −1+ 4µ2
1 = 0, i.e. µ1 =± 1

2 , and, accord-
ingly, β =±b. Finally, from (124), we get

b2 − 2+ b2 + 2b2 = 0 → b=
1√
2
. (129)

Thus, the general form of H that maximizes the initial acceleration of ρ0 is given by

H=
1√
2


±1 1 0 . . . 0
1 ∓1 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

 . (130)

Example 1 (Maximum acceleration for a spin-1/2 state). For s= 1
2 we have the maximum

value of f given by α
( 1
2 )

max = 1, for H 1
2
= 1√

2
(±σz+σx), i.e. in physical terms, to a magnetic

field at an angle of 45 (or 135) degrees w.r.t. the z-axis. The stability subgroup action rotates
the direction of the magnetic field around the z-axis. □

5.2. The brachistophase Hamiltonian

5.2.1. Statement of the brachistophase problem. We now consider the following problem:
given an initial state ρ0, find a time-independent HamiltonianH, still satisfying (106) and (107),
such that, after a fixed time τ of evolution generated by H, the geometric phase ϕτ accumu-
lated by the state is maximal. Since the phase is only defined modulo 2π, we assume τ is
sufficiently small for the phase to be less than π at all times. Define the function ΦH,ρ0(t) to
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be the geometric phase accumulated by the initial state ρ0 when it is evolved for time t by the
Hamiltonian H. A Taylor expansion of ΦH,ρ0 around t= 0 gives

ΦH,ρ0(τ) =
∞∑
k=3

τ k

k!
∂kt ϕt|t=0, (131)

where we used the fact thatϕt and its first two derivatives at t= 0 vanish, while its higher-order
derivatives can be computed with the help of (93).

5.2.2. Truncation up to k=3. Truncating the expansion to only include the k= 3 term, we
need to maximize ∂3

t ϕt|t=0. Note that (54) gives directly the third time derivative of the phase,
so,proceeding as before, we find (to order τ 3)

ΦH,ρ0(τ) =
τ 3

6
∂3
t ϕt|t=0

=
τ 3

6
(h3 − 3h2h1 + 2h31)

=
τ 3

6
v†B̃v

=
τ 3

6
β2λ1, (132)

where, in the last step, v has been assumed aligned as before. Using the Lagrange multipliers
method as before we have

gρ0(H) =
β2

6
λ1 +µ1

(
Tr
(
B̃+ bI

)2 − 2+ b2 + 2β2
)
+µ2

(
TrB̃+(n+ 1)b

)
= g(λ1, . . . ,λn,β,b,µ1,µ2). (133)

Calculating the partial derivatives of g with respect to every variable we note that (120),
(122), (124) and (125) are still valid, thus µ2 = 0 still holds, and additionally we have

∂g
∂λ1

=
β2

6
+ 2µ1(λ1 + b)+µ2 = 0, (134)

∂g
∂β

=
1
3
βλ1 + 4µ1β = 0, (135)

from (120) and (134) we conclude that λr =−b, for r= 2, . . . ,n, and from (125) we have
λ1 =−2b. Now using (134) we obtain

β2

6
=−2µ1(λ1 + b) = 2µ1b → β =

√
12µ1b. (136)

Substituting in (135) we get

1
3

√
12µ1b(−2b)+ 4µ1

√
12µ1b= 0 →

√
12µ1b

(
−2

3
b+ 4µ1

)
= 0, (137)

and, since we know that µ1 and b are not 0, we have µ1 =
1
6b, and finally, substituting in (124)

leads to

b2 − 2+ b2 + 4b2 = 0 → b=
1√
3
. (138)
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Therefore, the general form of H, solution to the brachistophase problem, is given by

H=
1√
3


∓1

√
2 0 . . . 0

√
2 ±1 0 . . . 0

0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

 . (139)

Example 2 (Spin-1/2 brachistophase). The corresponding Hamiltonian for s= 1/2 is

H(1)
max =

1√
3

(
−1

√
2√

2 1

)
, (140)

where we use the negative root b=−1/
√
3, because in this way ΦH,ρ0 is positive (actually

there is no problem with the positive root due to we are interested in the absolute value of
the geometric phase, but it is convenient to use positive quantities). The evolution under this
Hamiltonian describes a magnetic field with its axis at θ(

1
2 ) = arctan

√
2≈ 55◦ w.r.t. the z-

axis—the trajectory of the Majorana star is a circle with its plane perpendicular to the field,
see figure 1 on p 20 (more details about the Majorana representation of spin-s states as 2s
points on the sphere may be consulted in [27, 28]).

Example 3 (Spin-s brachistophase). Considering the optimal Hamiltonian given by (139),
the corresponding evolution operator is

U(t) = e−i tH =



cos t+ i√
3
sin t −i

√
2
3 sin t 0 . . . 0

−i
√

2
3 sin t cos t− i√

3
sin t 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1


, (141)

the first column of which gives the time-evolved state |ψt〉 ∼ (1,
√
2/(−1+

i
√
3cot t),0, . . . ,0)T. The correspondingMajorana polynomial isP|ψt⟩ = ζ2s−

√
2s
√
2/(−1+

i
√
3cot t)ζ2s−1, with a single nonzero root at ζt = 2

√
s/(−1+ i

√
3cot t). Note that ζt−

√
s

has modulus equal to
√
s (independent of t) so ζ t traces a circle in the complex plane with

center at
√
s and radius

√
s. The Majorana constellation of |ψt〉 is obtained by stereographic

projection of the roots found above, from the south pole, onto the unit sphere. The zero roots
clearly end up at the north pole, and stay there for all t. On the other hand, it is well known that
stereographic projection sends circles on the complex plane to circles on the sphere, so that
the image of the above found ζ t traces a circle on the sphere, starting, at t= 0, on the north
pole—we call that a ‘falling star’ and a simple calculation shows that the perpendicular to the
plane of that circle makes an angle θ(s) = arctan(2

√
s) w.r.t. the z-axis. □

Proceeding in a similar fashion, we find that the evolution of a spin-s coherent state, under
the Hamiltonian that maximizes acceleration, consists of 2s− 1 stars staying at the north pole
and a falling star which also traces a circle, but, in this case, the perpendicular to the plane of
that circle makes an angle greater than the corresponding one of the brachistophase problem.

5.2.3. How good is the third order approximation?. When higher order terms are included
in the Taylor expansion of the geometric phase, each proportional to a different power of τ , the
relative weight of each term depends on τ . For example, for sufficiently small τ , the cubic term
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Figure 1. Falling stars for the cases s= 1/2, 1, 3/2 for maximum acceleration (left)
and for the brachistophase problem (right).

dominates all higher terms, and the optimal Hamiltonian must then maximize the coefficient
of τ 3—this leads to the results found above. For larger values of τ , the problem is particularly
complicated, as all terms in the expansion contribute comparably. It is clear then that when two
or more terms are kept in the truncation, the optimal Hamiltonian depends on τ , the only case
of τ -independent solution being the single (cubic) term truncation considered above. Note that
for Schrödinger curves the even-order derivatives at t= 0 vanish, so the next simplest example
involves the fifth order term. Working with the third order approximation implies that the H
found to solve the brachistophase problem is a valid solution for small values of time—the
question now is when is τ small? Truncating the expansion up to the next order gives

ΦH,ρ0(τ) =
τ 3

3!
∂3
t ϕt

∣∣∣∣
t=0

+
τ 5

5!
∂5
t ϕt

∣∣∣∣
t=0

+O
(
τ 7
)
. (142)

The third order approximation becomes inadequate when the term corresponding to the
fifth derivative becomes comparable to that of the third derivative. We compute the time τ 0 for
the two terms to become equal,

ατ 30 = βτ 50 , (143)

where α= 1
3!∂

3
t ϕt and β = 1

5!∂
5
t ϕt. We get τ0 =

√
α
β , which, for the optimal H, is equal to

τ0 = 1.732—the above approximation is then good for τ � τ0.
Maximizing the exact expression of the geometric phase through a set of random

Hamiltonians generated numerically, we see that for t< 1.5 the third order approximation is
excellent, while for t> 1.5 the exact (numerical) geometric phase starts becoming significantly
larger than the truncated result, see figure 2.

5.2.4. Evolution of GHZ and tetrahedral states. Using (108) we find the optimal Hamiltonian
for the spin-3/2 GHZ and spin-2 tetrahedral states. These are particularly ‘popular’ states, with
remarkable properties. For example, they are both anticoherent [29], i.e. they have zero spin
expectation value, while the tetrahedral also maximizes entanglement, when considered as a
symmetrized state of spin-1/2 subsystems (see, e.g. [30]).
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Figure 2. Geometric phase corresponding to the numerically determined optimal
Hamiltonian (dotted blue curve) and the third order approximation (continuous red
curve).

We have |ψGHZ〉= 1√
2
(1,0,0,−1)T and |ψtetra〉= 1√

3

(
1,0,0,

√
2,0
)T

. From (87) we find

UGHZ =


1√
2

0 0 1√
2

0 1 0 0
0 0 1 0

− 1√
2

0 0 1√
2

 , Utetra =



1√
3

0 0 −
√

2
3 0

0 1 0 0 0
0 0 1 0 0√
2
3 0 0 1√

3
0

0 0 0 0 1

 , (144)

resulting in

H ′
GHZ =


− 1

2
√

3
1√
3

0 1
2
√

3

1√
3

1√
3

0 − 1√
3

0 0 0 0
1

2
√

3
− 1√

3
0 − 1

2
√

3

 , H ′
tetra =



− 1
3
√

3

√
2

3 0 −
√

2
3

3 0
√

2
3

1√
3

0 2
3 0

0 0 0 0 0

−
√

2
3

3
2
3 0 − 2

3
√

3
0

0 0 0 0 0


.(145)

The evolution of the above quantum states is given by

|ψGHZ(t)〉=

(
cos(t)√

2
+
i sin(t)√

6
,−i
√

2
3
sin(t),0,−cos(t)√

2
− i sin(t)√

6

)T

(146)

|ψtetra(t)〉=

(
cos(t)√

3
+

1
3
i sin(t),−i

√
2
3
sin(t),0,

1
3

(√
6cos(t)+ i

√
2sin(t)

)
,0

)T

, (147)

with plots appearing in figures 3 and 4, respectively.
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Figure 3. Optimal time evolution for a spin-3/2 GHZ state: shown is the Majorana con-
stellation for t= 0, 0.5, 1, 1.5, 2, 3.2 (left-to-right, top-to-bottom). The red points
represent the original constellation, the curves in blue describe the trajectory of the stars
during the evolution, while the triangles shown help visualize the constellation at the
given time t.

Figure 4. Optimal time evolution for the spin-2 tetrahedral state: shown is the Majorana
constellation for t= 0, 0.5, 1, 1.5, 2, 3.2 (left-to-right, top-to-bottom). The red points
represent the original constellation, the curves in blue describe the trajectory of the stars
during the evolution, while the polyhedra shown help visualize the constellation at the
given time t. Note that the star in the north pole (closest to the reader) is fixed, the one
to the right traces a circle, while the remaining two are permuted in the final frame.
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6. Summary and concluding remarks

We have studied the relation between geometric phase and covariant derivatives for a smooth
curve in quantum state space. We found that the various derivatives of the geometric phase
are proportional to the symplectic area of the parallelograms generated by various pairs of
covariant derivatives, e.g. the first nonvanishing derivative of the phase (of the third order)
is exactly equal to the symplectic area of the parallelogram generated by the velocity and
the acceleration of the curve (see (53)). When the curve in question corresponds to evolution
generated by a time-independent Hamiltonian, the time derivatives of the phase can be related
to the expectation values of powers of the Hamiltonian (see, e.g. (54)). A general formula for
the various time derivatives of the phase is given in (93).

As an application of our geometric analysis, we discussed two maximization problems:
given an initial state, find the (appropriately normalized) Hamiltonian that maximizes (i) the
modulus of its initial acceleration and (ii) (the modulus of) the geometric phase accumulated
after a fixed time τ . Both problems were solved with the initial state being a coherent state
along ẑ (see (130) and (139)). For both problems, the solution for the maximizing Hamiltonian
is not unique—given a particular solution, one obtains more solutions by acting on it with
the stability subgroup of the initial state, while the time evolution of the state is independent
of the particular optimal Hamiltonian chosen. Starting with a coherent state along ẑ, the time
evolution generated by any optimal Hamiltonian consists of a single star leaving the north pole
and tracing out a circle, the characteristics of which are different for the two problems, and also
depend on the spin of the state—a few examples are depicted in figure 1. The time evolution for
other initial states is then easily obtained using the transitive action of the unitary group on the
state space—see (145) and figures 3 and 4, for the brachistophase solution for the spin-3/2GHZ
and the tetrahedral state. Note that the optimal Hamiltonian for the brachistophase problem
depends, in general, on the time τ . Our analytic solution is valid for appropriately defined
small times, where the cubic term (in τ ) dominates. In this approximation the solution does
not depend on τ—including higher-order terms seems like a rather hard problem analytically
and should probably be attempted with numerical methods.

There are several open problems that we are currently pursuing as a follow up to the present
paper’s considerations. In particular, we would like to elucidate the physical significance of
the modulus of the various covariant derivatives of a state, appropriately averaged over the
driving Hamiltonians. There is empirical evidence that the functions on state space so defined
can be used as measures of interesting physical properties, like entanglement (when the spin-s
state is considered as a symmetrized state of 2 s spin-1/2 subsystems)—this points to possible
connections with the ‘total variance’ concept in [31, 32].
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Appendix A. Fubini-Study metric on P and related formulas

In the ‘basis’ {ρA}, the Fubini-Study (FS) metric and its inverse have components

gab̄ =
1
2
∆−2(∆δab− zbwa), gab̄ = 2∆(δab+ zawb), (A1)

with gb̄a = gab̄ (i.e. gAB is symmetric), and gbā = ḡab̄ (i.e. (gab̄) is hermitean) and similar state-
ments holding true for the inversemetric. Note that the fact that g comes from aKähler potential
(K= 2log∆) implies that gab̄,c = gcb̄,a and gab̄,̄c = gac̄,b̄.

The Christoffel symbols are found to be [33]

Γcab = gc̄r∂agb̄r =−∆−1(δcbw
a+ δcaw

b), Γc̄āb̄ =−∆−1(δcbz
a+ δcaz

b), (A2)

with all mixed components vanishing, while the Riemann tensor is given by

Rab̄cd̄ =
1
2
(gab̄gcd̄+ gad̄gcb̄), (A3)

all other independent components being zero [33]. Accordingly,

∇(g)
b ρa =−∆−1(waρb+wbρa), ∇(g)

b̄
ρa = 0, ∇(g)

b ρā = 0, ∇(g)
b̄

ρā =−∆−1(zaρb̄+ zbρā).

(A4)

Appendix B. A miscellany of identities

We gather here several identities that we found useful in deriving the results of this paper.
We compute

U−1
ℓs = I− sin s̃χℓ− (1− cos s̃)(ρ0 +σℓ) (B1)

U̇ℓs = ˙̃scos s̃χℓ+ sin s̃χ̇ℓ− ˙̃ssin s̃(ρ0 +σℓ)− (1− cos s̃)σ̇ℓ (B2)

U ′
ℓs = UℓsLℓχℓ , (B3)

U−1
ℓs U̇ℓs =

˙̃sχℓ+ sin s̃ χ̇ℓ− (1− cos s̃)σ̇ℓ+ 2(1− cos s̃)|ξℓ〉〈ξ̇ℓ|+ sin2 s̃ bℓρ0
− sin s̃(1− cos s̃)bℓτℓ+(1− cos s̃)2bℓσℓ , (B4)

U−1
ℓs U

′
ℓs = Lℓχℓ , (B5)

U̇ℓsU
−1
ℓs = ˙̃sχℓ+ sin s̃ χ̇ℓ− (1− cos s̃)σ̇ℓ+ 2(1− cos s̃)|ξ̇ℓ〉〈ξℓ| − sin2 s̃ bℓρ0

− sin s̃(1− cos s̃)bℓτℓ− (1− cos s̃)2bℓσℓ , (B6)

U ′
ℓsU

−1
ℓs = Lℓχℓ , (B7)

where bℓ ≡ 〈ξℓ|ξ̇ℓ〉=−〈ξ̇ℓ|ξℓ〉, and use was made of the identities

χℓχ̇ℓ =−|ξℓ〉〈ξ̇ℓ| − bℓρ0, χ̇ℓχℓ =−|ξ̇ℓ〉〈ξℓ|+ bℓρ0 (B8)

χℓσ̇ℓ =−bℓ|ψ0〉〈ξℓ| − |ψ0〉〈ξ̇ℓ|, σ̇ℓχℓ =−bℓ|ξℓ〉〈ψ0|+ |ξ̇ℓ〉〈ψ0|, (B9)

(ρ0 +σℓ)χ̇ℓ = bℓ|ξℓ〉〈ψ0| − |ψ0〉〈ξ̇ℓ|, χ̇ℓ(ρ0 +σℓ) = bℓ|ψ0〉〈ξℓ|+ |ξ̇ℓ〉〈ψ0|, (B10)

(ρ0 +σℓ)σ̇ℓ = bℓσℓ+ |ξℓ〉〈ξ̇ℓ|, σ̇ℓ(ρ0 +σℓ) =−bℓσℓ+ |ξ̇ℓ〉〈ξℓ|, (B11)
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(ρ0 +σℓ)χℓ = χℓ, χℓ(ρ0 +σℓ) = χℓ, (B12)

(ρ0 +σℓ)
2 = ρ0 +σℓ, (B13)

the last two of which express the fact that ρ0 +σℓ is a projection operator onto the plane
spanned by |ψ0〉, |ξℓ〉. We also compute some useful commutators,

[χ̇ℓ,χℓ] = |ξℓ〉〈ξ̇ℓ| − |ξ̇ℓ〉〈ξℓ|+ 2bℓρ0, (B14)

[τℓ,χℓ] = 2(ρ0 −σℓ), (B15)[
|ξℓ〉〈ξ̇ℓ|,χℓ

]
= |ψ0〉〈ξ̇ℓ| − bℓ|ξℓ〉〈ψ0|, (B16)[

|ξ̇ℓ〉〈ξℓ|,χℓ
]
= |ξ̇ℓ〉〈ψ0|+ bℓ|ψ0〉〈ξℓ|, (B17)

[ρ0,χℓ] =−τℓ, (B18)

[σ̇ℓ,χℓ] = τ̇ℓ− bℓχℓ, (B19)

[σℓ,χℓ] = τℓ, (B20)

so that

−L−1
ℓ [Xℓs,Yℓs] = [U−1

ℓs U̇ℓs,χℓ]

= sin s̃
(
|ξℓ〉〈ξ̇ℓ| − |ξ̇ℓ〉〈ξℓ|+ 2bℓρ0

)
− 2sin s̃(1− cos s̃)bℓ(ρ0 −σℓ)

+ 2(1− cos s̃)
(
|ψ0〉〈ξ̇ℓ| − bℓ|ξℓ〉〈ψ0|

)
− sin2 s̃ bℓτℓ− (1− cos s̃)(τ̇ℓ− bℓχℓ)+ (1− cos s̃)2bℓτℓ, (B21)

and

−L−1
ℓ [X̂ℓs, Ŷℓs] = sin s̃

(
|ξℓ〉〈ξ̇ℓ| − |ξ̇ℓ〉〈ξℓ|

)
+ bℓ sin(2s̃)ρ0 + 2bℓ cos s̃(1− cos s̃)τℓ

− (1− cos s̃)τ̇ℓ+ bℓ(1− cos s̃)χℓ+ 2(1− cos s̃)|ξ̇〉〈ψ0|
+ 2bℓ(1− cos s̃)|ψ0〉〈ξℓ|+ 2bℓ sin s̃(1− cos s̃)σℓ. (B22)

We now compute the commutators

[ρ0,χℓ] =−τℓ, [ρ0,σℓ] = 0, (B23)

[ρ0, χ̇ℓ] =−τ̇ℓ, [ρ0, σ̇ℓ] = 0, (B24)

[ρ0, τℓ] =−χℓ, [ρ0, |ξℓ〉〈ξ̇ℓ|] = 0, (B25)

[ρ0, τ̇ℓ] =−χ̇ℓ, [ρ0, |ξ̇ℓ〉〈ξℓ|] = 0, (B26)

which allow the computation of the tangential part of X̂ℓs, Ŷℓs at ρ0,

−i X̂∥0

ℓs = [ρ0, [ρ0, U̇ℓsU
−1
ℓs ]] =

˙̃sχℓ+ sin s̃χ̇ℓ− sin s̃(1− cos s̃)bℓτℓ, (B27)

Ŷ∥0

ℓs = Ŷℓs, (B28)
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with X∥
ℓs = X̂∥

ℓs, Y
∥
ℓs = Ŷ∥ℓs. Note that the commutator of the tangential parts (at ρ0) reproduces

exactly the normal part (at ρ0) of the commutator in (B22),

[X̂∥0

ℓs , Ŷ
∥0

ℓs ]
⊥0 = [X̂ℓs, Ŷℓs]

⊥0 , (B29)

in accordance with our earlier discussion of even and odd parts, and the fact that Ŷ⊥0
ℓs = 0.

Clarifying this last point, we have

[X,Y] = [X∥ +X⊥,Y∥ +Y⊥]

= [X∥,Y∥] + [X⊥,Y⊥]︸ ︷︷ ︸
[X,Y]⊥

+[X∥,Y⊥] + [X⊥,Y∥]︸ ︷︷ ︸
[X,Y]∥

,

where the sum of the first two terms gives [X,Y]⊥ while the last two sum to [X,Y]∥. Since
Y⊥ = 0, we get [X,Y]⊥ = [X∥,Y∥].

The above discussion relates to the tangent space at ρ0. Referring to the first of (85) we
would like to derive a similar statement at ρℓs. To this end, note that if 〈a|b〉= 0, then

|a〉〈b| − |b〉〈a|= |ã〉〈b̃| − |b̃〉〈ã| with |ã〉= cosα|a〉− sinα|b〉, |b̃〉= sinα|a〉+ cosα|b〉.
(B30)

Applying this to χℓ we get

χℓ = |ξℓ〉〈ψ0| − |ψ0〉〈ξℓ|
= |ξ̃〉〈ψℓs| − |ψℓs〉〈ξ̃|, (B31)

with |ξ̃〉= cos s̃|ξℓ〉− sin s̃|ψ0〉, which shows that χℓ and, hence, Ŷℓs, are tangent to P at ρℓs,
for all s. Invoking the above argument we then get

Tr
(
ρℓs

[
X̂ℓs, Ŷℓs

])
= Tr

(
ρℓs

[
X̂ℓs, Ŷℓs

]⊥ℓs)
= Tr

(
ρℓs

[
X̂∥ℓs
ℓs , Ŷ

∥ℓs
ℓs

])
= 2iωℓs

(
X̂∥ℓs
ℓs , Ŷ

∥ℓs
ℓs

)
. (B32)

Appendix C. A toy example of equation (72)

In this appendix, we illustrate how to work with equation (72) with a very simple example:
finding the area of a circular arc in the plane.

Consider the circular arc in the sketch in the right, and take as V t the cross-hatched area
in green, defined by the arc itself and the chord OP, with P moving along the circle with unit
velocity v(α), |v(α)|= 1, and O fixed at the origin. The time evolution of V t can be put in
the form Vt = φut (V0) with u(x) being the velocity of a point x′ on OP when it crosses x. By
considering the angle OCP (where C denotes the center of the circle) and some elementary
geometry, it is easy to show that the length ofOP is 2sinα, so u(s,α) = sv(α)/(2sinα), where
polar coordinates (s,α) are being used. The 2-form ω we will consider is the area form, ω =
sdsdα, with dω = 0, so that It is just the area of V t. For any (necessarily closed) 2-form η =
f(s,α)dsdα we have, by Cartan’s formula,
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Luη = diuη+ iudη = diuη =
(
(u11 + u22)f+ u1f1 + u2f2

)
dsdα, (C1)

where subindices denote partials. Since ω and u are both time-independent, (72) may be iter-
ated to give

∂kt It =
ˆ
Vt

(diu)
kω. (C2)

In Cartesian coordinates (x, y), v(α) = cos(2α)∂x+ sin(2α)∂y (with α= arctan y
x ).

Changing to polar coordinates (s,α), we get

u(s,α) =
s
2
cotα∂s+

1
2
∂α. (C3)

Putting (diu)kω = sfkdsdα, we find, after some algebra,

f0 = 1, f1 = cotα, f2 =
1
2
(cot2α− 1), f3 =−cotα, (C4)

which implies all higher-k results (since f3 =−f1).
Note that (C2) can be cast in the form (using Stokes’ theorem)

∂kt It =
ˆ
∂Vt

iu(diu)
k−1ω. (C5)

The integration is now along the boundary of V t, consisting of the circular arcOP, followed
by the chord PO. On the circular arcOP, the integrand is zero, since the line element is along
u, and the 2-form (diu)k−1ω has already been evaluated along u in its first entry, so the only
contribution to the integral is from the chord PO,

∂kt It =
ˆ
PO

iu(diu)
k−1. (C6)

By (C4) and (C3)

iu(diu)
k−1 =

s
2
f k−1(scotαdα− ds) , (C7)

so the integral is,

∂kt It =
s
2
f k−1
ˆ 2sinα

s=0
dss= sin2αf k−1. (C8)

For the first three derivatives, (C8) gives

∂tIt = sin2α, ∂2
t It = cosαsinα, ∂3

t It =
1
2
− sin2α. (C9)

This is the correct result, as can be seen when comparing with the known result It = α−
cosαsinα that can be computed by geometrical means.
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