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We study the relation between the linear programming re-
laxation of two classes of models for the Steiner tree prob-
lemwith hop constraints. One class is characterized by hav-
ing hop-indexed arc variables. Although such models have
proved to have a very strong linear programming bound,
they are not easy to use because of the huge number of
variables. This has motivated some studies with models in-
volving fewer variables that use, instead of the hop-indexed
arc variables, hop-indexed node variables.

In this paper we contextualize the linear programming
relaxation of these node-based models in terms of the lin-
ear programming relaxation of known arc-basedmodels. We
show that the linear programming relaxation of a general
node-based model is implied by the linear programming re-
laxation of a straightforward arc-based model.
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Consider a graphG = (N0,A) , with node set N0 = {0, 1, . . . , n } and arc set A, with a nonnegative cost ca associated to
each arc a ∈ A, an integer hop limit H , and a set of required terminal nodes R ⊆ N0 with 0 ∈ R . The hop-constrained
Steiner tree problem (HSTP) consists of determining an arborescence G ′ = (N ′,T ) rooted at 0, spanning a subset
N ′ ⊇ R , so that the unique path from 0 to each terminal r ∈ R contains at most H arcs, and the cost of selected
arcs c (T ) := ∑

a∈T ca is minimized. This problem was first introduced by Voß [16]. Besides its natural application in
telecommunications, studies on this problem and related ones have been of interest because they include state of the
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art research on so-called hop-indexed and/or layered graph formulations which are topical for problems with such
distance-like constraints, see, e.g., [1, 2, 4, 5, 9, 11, 12, 13, 14].

The hop-indexed models described in these works are characterized by having hop-indexed arc variables zh
i jindicating whether arc (i , j ) is in position h (that is, the single path from node 0 to node i contains h − 1 arcs) in the

solution. Although suchmodels have proved to have a very strong linear programming bound, they are not easy to use
because of the huge number of variables. This has motivated some studies with models involving fewer variables and
that use node variables v h

i
indicating whether node i is in position h, instead of the arc variables zh

i j
. Recently, Sinnl

and Ljubić [15] have presented one such model for the budget constrained hop constrained Steiner tree problem, first
introduced by Costa et al. [3], where the objective is the maximization of the revenue.

In this paper we want to contextualize the linear programming relaxation of the node-based model in terms of
the linear programming relaxation of known arc-based models. The arguments given next suggest that, in general, a
node-based model has a weak linear programming bound, at least when compared with an arc-based model. First,
observe that an arc variable provides more information than a node variable does; e.g., the node variable v h

i
indicates

whether node i is in position h and the arc variable zh
j i
indicates whether node i is in position h AND the arc entering

node i is coming from node j . Thus, defining a model with arc variables should be easier (or stronger in terms of the
linear programming relaxation bound) than writing a valid model with node variables. We can make this argument
more formal with equalities such as v h

i
=

∑
(k ,i )∈A zh

k i
, relating the two sets of variables. If we add such equalities to

an arc-based model, in theory we could project out the arc variables and obtain a model defined only on the node
variables with an equivalent LP relaxation. In several cases, it may not be easy to find the whole set of projected
inequalities, however we can obtain a subset of inequalities that still result in a valid model (although with a weaker
linear programming bound). In fact, this is what happens with the pair of models, gBNH and AH , discussed later in the
paper. The dominance of an arc-based model over a node-based model is a general observation: the linking equalities
allow any node-based model to be rewritten as an arc model simply by using them to replace the v h

i
variables by zh

i jvariables and thus by simple substitution the arc model is always as strong as the node model.
In this paper we show that the linear programming relaxation of the node-based model (including a large set of

generalized inequalities) is implied by the linear programming relaxation of a “simple" arc-based model that was pre-
sented formerly byGouveia [8] for the Spanning Tree Problem and easily adapted for themore general problem studied
in this paper. We have used the term “simple", because the inequalities defining this model are a weaker version of
a rather small subset of a more general class of inequalities, the so-called layered graph cuts that are included in the
model proposed in by Gouveia et al. [11]. This model is, as a far we know, the strongest model known for this problem.

To simplify the notation, and before presenting the formulations, we define the following sets: H1 := {1, . . . ,H },
H2 := {2, . . . ,H }, N1 := N0 \ {0} = {1, . . . , n }, R1 := R \ {0}.

1 | NODE-BASED HOP-INDEXED MODEL

In this section we discuss node-based hop-indexedmodels for the HSTP. We classify these models either as “forward"
models or “backward" models: a “forward" model is characterized by constraints forcing a node to be at distance h if
there is an arc entering the node coming from a node at distance h − 1; a “backward" model is characterized by con-
straints indicating that a node must be at distance h − 1 if there exists an arc leaving that node to a node at distance h.
We observe that although the more general models of the two classes are equivalent, there are a few relevant differ-
ences in the two modelling views. For this reason, we have divided this section into two subsections, dedicated to
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each one of the two classes.

1.1 | Forward models

Most of the material in this section is adapted from Sinnl and Ljubić [15] where the authors proposed several node-
based models for the Steiner tree problem with revenues, budget and hop-constraints. The model that we adapt here
for the HSTP uses binary variables yi to indicate if node i ∈ N1 belongs to N ′, binary variables xi j to indicate if arc
(i , j ) ∈ A belongs toT , and binary hop-indexed node variables v h

i
to indicate if node i ∈ N1 is at distance h ∈ H1 from

root node 0 in G ′. Consider also, the following set of constraints that all feasible solutions must satisfy
∑
(i ,j )∈A

xi j = yj j ∈ N1, (1)∑
h∈H1

v hi = yi i ∈ N1, (2)
v 1j = x0j j : (0, j ) ∈ A, (3)

v h−1i + xi j ≤ v hj + 1 (i , j ) ∈ A, i ∈ N1, h ∈ H2, (4)
vHi + xi j ≤ 1 (i , j ) ∈ A, i ∈ N1, (5)

yi = 1 i ∈ R1, (6)
xi j ∈ {0, 1} (i , j ) ∈ A, (7)
yi ∈ {0, 1} i ∈ N1, (8)
v hi ∈ {0, 1} i ∈ N1, h ∈ H1 (9)

Constraints (1) impose that each node, except the root node 0, has exactly one entering arc if it belongs to the set
of nodes selected in the solution, or zero otherwise. Constraints (2) state that any node, other than the root, belonging
to the solution is at a distance between 1 and H from the root, while constraints (3) impose that a node connected
directly to the root is at distance 1 from it. Constraints (4) state that if a node i is at distance h − 1 from the root, and
arc (i , j ) belongs to the solution, then node j is at distance h from the root. Similarly, constraints (5) forbid an arc
leaving a node which is at the maximum distance H from the root. Nodes in R1 are forced to belong to the solution
by constraints (6) (node 0 implicitly belongs to the solution) and constraints (7), (8) and (9) ensure that all variables are
binary.

As pointed out by Sinnl and Ljubić [15], the formulation (1)-(9) is not sufficient to get a valid formulation for HSTP
as connectivity between the root and the required terminal nodes is not ensured, as illustrated in the example in
Figure 1. The example consists of a complete graph with 4 nodes (n = 3 plus the root node) with H = 3 and required
nodes, R = {0, 1, 3}. The arcs in the example correspond to the arc variables x01 = x23 = 1. The remaining variable
values are y1 = v 11 = 1, y3 = v 23 = 1 and zero for all other variables. This “solution" satisfies all constraints (1)-(9) but is
obviously not feasible as there is no path from the root node to node 3.

To enforce connectivity, one can still follow Sinnl and Ljubić [15] and add a set of the well-known generalized
cut constraints, or alternatively and as also pointed in their paper, we can add a smaller subset of generalized subtour
elimination constraints of size two:

xi j + xj i ≤ yi i , j ∈ N1 (10)
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F IGURE 1 Infeasible solution for the HSTP.

We refer to Theorem 1 in Sinnl and Ljubić [15] for a proof that this compact model is valid for the Steiner tree problem
with revenues, budget and hop-constraint, and which also applies for the Steiner version studied in this paper.

In fact, to ensure connectivity between the root node and any required node and to guarantee the validity of the
forward model (1)-(9), we only need to consider the following “weaker" version of constraints (10):

xi j ≤ yi i , j ∈ N1 (11)
Observe that in the example in Figure 1, this constraint is not satisfied for (i , j ) = (2, 3) and i = 2. We show next that
adding these constraints to the formulation (1)-(9) guarantees the connectivity of any solution to the HSTP.
Proposition 1 Formulation (1), (2), (3), (4), (5), (6), (7), (8), (9) and (11) is a valid formulation for the HSTP.

Proof We first observe that due to constraints (2) and (4), a solution to this model cannot contain circuits. To see this,
consider a circuit C = {i1, i2, . . . , ik }. Using constraints (4) in a circular fashion, starting from node i1 for example and
moving forward, we would obtain v h

i1
= v h+k

i1
= 1, for a given value of h. But this is in contradiction with constraint (2)

for node i1.
We show next that for any node j such that j ∈ R1, there exists a path P = {j1, j2, . . . , jk } such that j1 = 0 and

jk = j . We have yj = yjk = 1 since j ∈ R1. Constraints (1) guarantee that there must exist one and only one arc
entering node jk , say arc (jk−1, jk ) . If jk−1 = 0 we have found the required path. Otherwise, we have that yjk−1 = 1

either because jk−1 ∈ R1 or because of the new constraints (11). Repeating the process we find a node jk−2, such that
arc (jk−2, jk−1) ∈ A and either jk−2 is the root node or yjk−2 = 1. By repeating this process and sinceV is finite and the
solution cannot contain cycles we obtain a node y1 = 0 giving the required path.

Observe that this reasoning also applies to a node j < R1 such that yj = 1 and for which there is no arc emanating
from it. However, a solution containing such a node would not be optimal. Thus, a solution to this model must contain
a single path from the root node to any node in the solution. �

A strengthening of (4) and a generalization of the resulting strengthened inequality is also presented by Sinnl and
Ljubić [15]. The strengthening is as follows:

vHi + v
h−1
i + xi j ≤ yi + v hj i ∈ N1, (i , j ) ∈ A, h ∈ H2 (12)

Observe that constraints (12) are obtained from (4) by replacing 1 by yi on the right-hand side of (4) and adding vH
ion the left-hand side. One question is to know whether constraints (12), in place of (4) in model (1)-(9), are sufficient

to define a valid model or if, as before, we need to add extra constraints such as (11) or (10) to guarantee that any
required node is connected to the root. We will argue next, that from an integer point of view, if H ≥ 3, the new
constraints (12) imply constraints (11), that is, if xi j = 1 then yi = 1. Let us assume that for a given arc (i , j ) and a
position h, we have xi j = 1, yi = 0; then we must have v h

j
= 1 for every h ≥ 2 for the inequalities (12) (there are at least
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two) to hold. But this is inconsistent with constraint (2), since there can only be at most one v h
j
= 1. This argument

leads to the next result.
Proposition 2 Formulation (1), (2), (3), (12), (5), (6), (7), (8), (9) is a valid formulation for the HSTP when H ≥ 3.

Note that the disconnected solution in Figure 1 shows that this result is not valid for H = 2.
The generalization of constraints (12) is obtained by considering sets of variables associated to different distance
values, e.g., a specific subset of distance values, S ⊆ H2, leading to:

vHi +
∑
h∈S

v h−1i + xi j ≤ yi +
∑
h∈S

v hj i ∈ N1, (i , j ) ∈ A, S ⊆ H2 (13)

Observe that, when |S | = 1 we obtain the original inequalities (12). Also, by eliminating y variables with the help of
constraints (2), we obtain

xi j ≤
∑

h∈H2\S
v h−1i +

∑
h∈S

v hj i ∈ N1, (i , j ) ∈ A, S ⊆ H2 (14)

which is the form presented by Sinnl and Ljubić [15]. Although exponential in number, these inequalities can be
separated in polynomial time.

1.2 | Backward models

Using the same set of variables, a simple version of backward inequalities would be the symmetric version of (4)
v hj + xi j ≤ v h−1i + 1 i ∈ N1, (i , j ) ∈ A, h ∈ H2 (15)

As shown before, formulation (1)-(9) does not ensure connectivity between the root node and the required terminal
nodes. In contrast, and as proven in the following proposition, the backwards modelling approach, that is replacing
constraints (4) by (15), leads to a valid formulation without the need to add constraints such as (10) or (11):
Proposition 3 Formulation (1), (2), (3), (15), (5), (6), (7), (8), (9) is a valid formulation for the HSTP.

Proof As noted before, constraints (2) and (15), guarantee that a solution to this model cannot contain circuits. The
reasoning is similar to the one in the proof of Proposition 1, but this time in a backward way. Now, consider a node j

in R1 and let (i , j ) be the corresponding arc entering this node, that is, yj = 1 and xi j = 1. Also, due to constraint (2)
for node j , there exists a hop index h∗ ∈ H1 such that v h∗

j
= 1.

Assume i , 0 (if i = 0, we have a path from the root to node j ). Then constraint (15) for arc (i , j ) and h = h∗ becomes
1 ≤ v h

∗−1
i

and thus we have v h∗−1
i

= 1. Constraints (2) imply that yi = 1, and constraints (1) guarantee that there exists
an arc entering node i . By repeating the reasoning above, we conclude that a solution to this model must contain a
path from the root node to any node. �

Similarly to the strengthening of (4) presented in the previous section, constraints (15) can also be strengthened to
take into account border effects at distance 1 and as well as including the fact that some nodes may not be included
in the solution. This leads to

v 1j + v
h
j + xi j ≤ yj + v h−1i i ∈ N1, (i , j ) ∈ A, h ∈ H2 (16)
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Finally, in the same way that (12) are generalized into (13), the inequalities (16) can be generalized into
v 1j +

∑
h∈S′

v hj + xi j ≤ yj +
∑
h∈S′

v h−1i i ∈ N1, (i , j ) ∈ A, S ′ ⊆ H2 (17)

As the following proposition shows, these constraints can also be shown to be equivalent to (14) by using constraints
(2).

Proposition 4 In the presence of constraints (2), constraints (17) are equivalent to constraints (14).

Proof Consider constraint (17) for a given node i ∈ N1, an arc (i , j ) ∈ A and a subset S ′ ⊆ H2. After replacing yj in
(17) by the left-hand side of equality (2) for node j and cancelling equal terms we obtain constraint (14) for a subset
S = H2 \ S ′. �

Thus, we have proved that the three sets of constraints (13), (14) and (17) are equivalent. This proposition also gives
an indirect proof that the generalized backward inequalities (17) are valid.

Table 1 provides a general view of the main constraints from the two classes of models, in particular, the linking
constraints between the node variables yi and the node-hop variables v hi in each model. Constraints (14) stand as the
bridge between the two generalized strong models. That is, constraints (13) that characterize the forward generalized
strong model are shown to be equivalent to constraints (17) of the the backward generalized strong model via the
intermediate constraints (14).

constraints Forward Models Backward Models
common (1), (2), (3), (6), (7), (8), (9)

linking
weak (4)1 (15)
strong (12) (16)
generalized strong (13) (14) (17)

1 needs extra constraints such as (10) or (11) for validity
TABLE 1 Valid hop-indexed node models for the HSTP: Forward and Backward

In Section 3 we show that the generalized constraints (17) (alternatively, (13) and (14)) are implied by a compact
hop-indexed arc-based model.

2 | ARC-BASED HOP-INDEXED MODEL

The arc-based model presented in this section was first described by Gouveia [8] for the minimum spanning tree
problem with hop constraints. The main idea of the model, more precisely constraints (21) and (22) to be described
next, is to show that hop-indexed arc variables can easily be used to guarantee the hop limit as well as the connectivity
of the solution (by using a backwards chain reasoning from any arc to the root node). This “arc-based hop-indexed"
model is easily adapted for the HSTP. It uses variables yi and xi j as in the previous model and in addition, uses binary
variables zh

i j
to indicate if arc (i , j ) is in position h in the path from 0 to j .
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∑
(i ,j )∈A

xi j = yj j ∈ N1 (18)
z 10j = x0j j : (0, j ) ∈ A (19)∑

h∈H2

zhi j = xi j i ∈ N1, (i , j ) ∈ A (20)∑
(k ,i )∈A,k,0

zh−1k i ≥ zhi j i ∈ N1, (i , j ) ∈ A, h ∈ H2, h ≥ 3 (21)
z 10i ≥ z 2i j i , j ∈ N1 : (0, i ), (i , j ) ∈ A (22)

yi = 1 i ∈ R1, (23)
xi j ∈ {0, 1} (i , j ) ∈ A (24)
yi ∈ {0, 1} i ∈ N1 (25)
zhi j ∈ {0, 1} i ∈ N1, (i , j ) ∈ A, h ∈ H2 (26)
z 10j ∈ {0, 1} (0, j ) ∈ A (27)

Apart from constraints, (18), (23)-(25) that are the same as in the previous model, constraints (19) and (20) link
the hop-indexed arc variables zh

i j
with the arc variables xi j . Observe that each arc (0, j ) ∈ A can only be in position 1

in the solution and this is the reason why variables zh0j are defined only for h = 1. The remaining arcs in A can be in
any position from 2 to H , therefore, variables zh

i j
for (i , j ) ∈ A, are defined for h ∈ H2. Constraints (21) guarantee that,

if arc (i , j ) leaves node i ∈ N1 at position h ≥ 3, then one arc (k , i ) , (0, i ) enters that same node i at position h − 1.
Furthermore, since 2-cycles are not allowed, we can strengthen inequalities (21) by stating that (k , i ) , (j , i )

∑
(k ,i )∈A,k,0,j

zh−1k i ≥ zhi j i ∈ N1, (i , j ) ∈ A, h ∈ H2, h ≥ 3 (28)

Constraints (22) correspond to constraints (21) written for nodes directly connected to the root node. We denote by
AH the model defined by constraints (18)-(27) and by sAH the model equivalent to AH with constraints (21) replaced
by the stronger version, (28).

Constraints (19) and (20) can also be used to the remove variables xi j from the formulation, thus obtaining a
model with fewer variables. These constraints are not needed to provide a valid formulation for the problem. They
are included here in order to establish the relation proved in the next section.

3 | RELATIONS BETWEEN THE FORMULATIONS

In this sectionwe compare the linear programming relaxation of themodels presented in the previous sections, namely,
the AH model defined by constraints (18) - (27) and the generalized Backward Node-based Hop-indexed (gBNH ) model
presented in Section 1, defined by constraints (1), (2), (3), (17), (5), (6), (7), (8), (9).

LetModelL be the linear programming relaxation of a givenModel and F eas (ModelL ) its set of feasible solutions.
Also, for a given polyhedron Q ⊆ Òn×m , the projection of Q in the subspace Òn is defined as pr oj (x )Q = {x ∈ Òn :
\y ∈ Òm such that (x , y ) ∈ Q }.

The following proposition, which is the main result of the paper, relates the AHL model with the gBNHL model.
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For that purpose, we add the following linear equalities to model AH , defining the v h
j
variables in terms of the zh

i jvariables
v hi =

∑
(k ,i )∈A,k,0

zhk i i ∈ N1, h ∈ H2 (29)
v 1i = z 10i i ∈ N1 (30)

and the v h
i
domain constraints (9). We denote by AH+ the model AH augmented with these equalities. Observe that

(29) and (30) are only definitional and adding them to model AH does not change the LP value. Model AH+ was
created to formalize a relation between the two models, AHL and gBNHL .

Proposition 5 The projection of F eas (AH+L ) onto the variable space of gBNH is contained in F eas (gBNHL ) ,

pr oj (x ,y ,v ) (F eas (AH+L )) ⊆ F eas (gBNHL )

Moreover, this inclusion can be strict.

Proof Wewill show next that the constraints of model gBNHL are implied by the constraints of model AH+L , namely
constraints (2), (3), (17) and (5) (the remaining constraints are straightforwardly satisfied).

• Constraints (3) are implied by constraints (19) and (30).
• For a given node i ∈ N1, adding constraints (29) for all h ∈ H2 together with (30) results in

∑
h∈H2

v hi + v
1
i =

∑
h∈H2

∑
(k ,i )∈A,k,0

zhk i + z
1
0i

On the other hand, adding (20) for all (i , j ) ∈ A, i ∈ N1 together with (19) and using (18) results in
∑

(i ,j )∈A,i,0

∑
h∈H2

zhi j + z
1
0j =

∑
(i ,j )∈A,i,0

xi j + x0j = yj

Thus, constraints (2) are also satisfied for every i ∈ N1.
• For a given node i ∈ N1 and an arc (i , j ) , constraints (29) together with (21) and constraints (30) together with

(22) imply that zh
i j
≤ v h−1

i
, h ∈ H2. Adding ∑

(k ,j )∈A,k,0,i z
h
k j

to both sides of these inequalities and using (29) we
obtain

v hj ≤ v h−1i +
∑

(k ,j )∈A,k,0,i
zhk j

For a given set S ⊆ H2, adding the previous inequalities for h ∈ S we obtain
∑
h∈S

v hj ≤
∑
h∈S

v h−1i +
∑

(k ,j )∈A,k,0,i

∑
h∈S

zhk j

From constraints (20), we have ∑
h∈S zh

k j
≤ xk j , k ∈ N1, (k , j ) ∈ A, therefore the right-hand side of the previous
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inequality can be lifted up (using constraints (18), (19) and (30))
∑
h∈S

v hj ≤
∑
h∈S

v h−1i +
∑

(k ,j )∈A,k,0,i
xk j =

∑
h∈S

v h−1i + yj − xi j − x0j =
∑
h∈S

v h−1i + yj − xi j − z 10j =
∑
h∈S

v h−1i + yj − xi j − v 1j

therefore constraint (17) is also satisfied for any i ∈ N1 and S ⊆ H2.
• For a given node i ∈ N1 and arc (i , j ) ∈ A, adding (21) for all h ∈ H2, h ≥ 3 together with (22) and using (20) yelds

∑
h∈H2,h≥3

∑
(k ,i )∈A,k,0

zh−1k i + z
1
0i ≥

∑
h∈H2,h≥3

zhi j + z
2
i j = xi j

Note that the left-hand side can be rearranged and using the previous proof that constraints (2) are satisfied,
∑

h∈H2,h≥3

∑
(k ,i )∈A,k,0

zh−1k i + z
1
0i =

∑
(k ,i )∈A,k,0

∑
h∈H2

zhk i −
∑

(k ,i )∈A,k,0
zHk i + z

1
0i = yi −

∑
(k ,i )∈A,k,0

zHk i

Therefore, using equality (29) for node i and h = H we obtain xi j ≤ yi − vHi ≤ 1 − vH
i

and thus constraint (5) is
satisfied and we conclude the proof of inclusion. �

To show that this inclusion can be strict, consider an example (see Figure 2) consisting of a complete graph with four
nodes and the root node, with required nodes 2 and 4, and H = 3. A feasible solution to gBNHL may be represented
by the subgraph where the values close to the arcs represent the xi j values, the values close to the required nodes
represent the v h

i
values for h = 1, 2, 3, respectively, and y2 = y4 = 1. All other variables have a zero value.

0
1 2 [

1
3 ,

1
3 ,

1
3

]

3
4 [

1
3 ,

1
3 ,

1
3

]

1
3

1
3

2
3

2
3

F IGURE 2 Feasible solution to gBNHL .

No feasible solution to AH+L can be obtained from this solution
(x , y ,v ) from F eas (gBNHL ) . In fact, from constraints (19) and (20)
we have z 102 = 1

3 , z 104 = 1
3 , z 224 + z 324 = 2

3 and z 242 + z
3
42 = 2

3 .On the other hand, from constraints (21) we have z 324, z
3
42 ≤ 0,

therefore z 224 = z 242 = 2
3 which violates constraints (22) for the root

arcs
1

3
= z 102 ≥ z 224 =

2

3
and

1

3
= z 104 ≥ z 242 =

2

3
�

One relevant observation is that this result shows that we obtained strict dominance over the node model gBNH

using the weaker arc model AH . Thus, one other question is to know what can be obtained by using the stronger
model sAH defined by constraints (18) - (20), (28), (22) - (27). The next result gives a partial answer to this question
by showing that the generalized subtour elimination constraints of size two (10) are implied by the stronger model
sAH .
Proposition 6 The generalized subtour elimination constraints of size two (10) are redundant if included in the sAH model.

Proof For a given arc (i , j ) , we start by adding the term zh−1
j i

to both sides of the inequalities (28), the "missing" term
on the summation corresponding to arc (j , i ) , leading to the following constraints that might be viewed as a kind of
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hop-indexed subtour elimination constraint of size 2,
∑

(k ,i )∈A,k,0
zh−1k i ≥ zhi j + z

h−1
j i , h ∈ H2, h ≥ 3

Next, we add these inequalities for all h ∈ H2, h ≥ 3 together with constraint (22) for arc (i , j ) leading to,
z 10i +

∑
(k ,i )∈A,k,0

∑
h∈H2,h≥3

zh−1k i ≥ z 2i j +
∑

h∈H2,h≥3
zhi j +

∑
h∈H2,h≥3

zh−1j i

Using the equality constraints (19) and (20) on the above inequality we obtain
x0i +

∑
(k ,i )∈A,k,0

(
xk i − zHk i

)
≥ xi j +

(
xj i − zHj i

)
Finally, using the indegree constraint (18) we obtain constraint (10) for the set S = {i , j },

yi ≥ xi j + xj i − zHj i +
∑

(k ,i )∈A,k,0
zHk i = xi j + xj i +

∑
(k ,i )∈A,k,0,j

zHk i ≥ xi j + xj i

�

Other inequalities of interest can probably be derived from the stronger model sAH . This is an open question that we
leave for the future work.

4 | COMPUTATIONAL RESULTS

In this section, we compare some of themodels introduced in the previous sections in terms of the Linear Programming
(LP) relaxation bounds and CPU times to obtain the optimal integer solution. The tests were performed on a PC Intel
Core i5-9400, 2.90 GHz with 8 GB of RAM. All models were implemented using ILOG CPLEX Optimization Studio
12.9.

A summary of the models that were tested is the following:
BNH : Backward Node Hop-indexed model defined by constraints (1), (2), (3), (15), (5), (6), (7), (8) and (9).
sBNH : strong Backward Node Hop-indexed model defined by constraints (1), (2), (3), (16) , (5), (6), (7), (8) and (9).
gBNH : generalized Backward Node Hop-indexed model defined by constraints (1), (2), (3), (17), (5), (6), (7), (8) and (9).
AH : Arc Hop-indexed model defined by constraints (18), (19), (20), (21), (22), (23), (24), (25), (26) and (27).
sAH : strong Arc Hop-indexed model defined by constraints (18), (19), (20), (28), (22), (23), (24), (25), (26) and (27).

And also for three of these models, sBNH , gBNH and AH , we tested a version including the Generalized Subtour
Elimination constraints of size two (10), sBNH ∗, gBNH ∗ and AH ∗, respectively.

For this experiment we used a set of graphs already used in the computational experience in several previous
works for the HSTP, e.g., in the work by Gouveia [7]. In these graphs, the coordinates of (n + 1) points were first
randomly generated in a square grid. The cost of a candidate edge is then taken as the integer part of the Euclidean
distance between the points defining the endpoints of the edge. The edge set E of the graph was then defined as
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follows: i) all the edges incident to the root node were included in E (this ensures that the problem has at least one
feasible solution) and ii) the m least cost candidate edges not incident to the root, were also included in E . Thus, for
each graph, we have |E | = n + m for appropriate values of n and m , leading to fairly sparse graphs, which is typical
in telecommunications networks. The original set contained two classes of graphs, depending on the location of the
root node on the square grid: either located at the center (TC class) or at the corner (TE class). The two classes were
used in our experiments.

The arc set is then build by considering every arc (0, j ), j ∈ {1, . . . , n }, and arcs (i , j ), (j , i ) , for every {i , j } in the
edge set. In order to reduce the size of each instance, we used a standard arc elimination test (as far as we know first
used by Gouveia [6]), that consists in removing every arc (i , j ), i , 0, such that ci j ≥ c0,j . Table 2 shows the different
values for n , m , |E |, |A | and the number of arcs after the elimination test for the TC and TE classes (note that this
reduction is small, due to the sparsity of the graphs and the way they were built).

n 60 80 100 120 160
m 150 200 250 300 400
|E | 210 280 350 420 560
|A | 360 480 600 720 960

r educed |A | (T C ) 340 449 571 705 956
r educed |A | (T E ) 355 476 595 720 959

TABLE 2 Instances graph sizes

For each graph, we tested four values for the number of required nodes: 25%, 50%, 75% and 100%, respectively
of the total number of nodes (this last case corresponds to a hop-constrained spanning tree problem) and for the hop
limit we tested, as in previous works, the following values H = 3, 4, 5, thus obtaining a total of 60 instances in each
class.

4.1 | The LP performance of the models

Table 3 presents the gaps for the linear programming relaxations of the eight models. The format of the table is as
follows: the first three columns define the instance size in terms of the number of nodes beside the root node (n), the
number of required nodes beside the root node ( |R1 |) and the hop limit (H ). The following eight columns contain the
LP gaps (in percentage) for the TC class of instances and the next eight columns contain the LP gaps for the TE class of
instances. Figures 3 and 4 report the same results in the form of a performance profile graph for TC and TE instances,
respectively. For each model, a curve represents the number of instances for which the gap is lower than a given
value. The higher the curve, the better. A few observations can be derived from the reported results.

• The performance profile graphs clearly show that we can cluster the models in three groups: the arc models sAH ,
AH ∗ and AH , in this order, are the best ones, a second group is composed of gBNH ∗, gBNH and sBNH ∗, and
finally sBNH and BNH are clearly the worst models with regards to LP bounds.

• As expected, TE instances have worse gaps than the TC instances although this observation is less evident in
larger instances. This difference in the two classes is also seen later, when we report the CPU times to to obtain
the optimal solutions (see Table 4).



12 B. Fortz, L. Gouveia and P. Moura

TC instances TE instances
n |R1 | H BNH sBNH sBNH ∗ gBNH gBNH ∗ AH AH ∗ sAH BNH sBNH sBNH ∗ gBNH gBNH ∗ AH AH ∗ sAH

3 51 51 17 15 14 10 8 8 83 83 61 54 54 41 35 35
7 4 52 52 18 26 18 18 14 13 82 82 57 65 57 50 47 45

5 53 53 18 26 18 22 17 15 81 81 53 64 53 53 48 46
3 55 55 27 24 23 19 16 16 70 70 51 49 49 27 25 23

15 4 54 54 25 32 25 23 19 19 69 69 47 54 47 39 36 34
5 53 53 23 31 22 26 20 19 67 67 41 52 41 41 37 35
3 41 41 26 23 23 12 11 11 57 57 44 44 43 20 18 15

30 4 36 36 19 21 18 12 11 9 52 52 35 41 35 25 22 19
5 33 33 14 19 14 13 10 9 49 44 29 37 29 27 23 20
3 23 23 23 23 23 6 6 4 40 39 39 39 39 14 14 10

60 4 19 19 16 17 16 8 7 5 38 38 32 34 31 19 18 14

60

5 14 14 10 13 10 7 7 3 32 32 25 31 25 20 18 15

3 63 63 29 24 24 19 16 16 82 82 66 62 62 43 38 37
10 4 61 61 28 32 27 24 21 19 81 81 62 68 62 53 51 48

5 60 60 26 31 26 27 23 22 80 80 60 68 60 59 55 53
3 49 49 28 24 24 15 13 13 71 71 55 52 52 31 27 26

20 4 46 46 26 30 25 21 18 18 67 67 48 53 48 39 36 34
5 44 44 23 29 23 23 20 19 67 67 47 53 47 45 42 40
3 39 39 27 26 26 11 10 9 60 60 48 48 47 24 22 20

40 4 35 35 22 25 22 16 15 13 55 55 39 44 39 29 27 24
5 31 31 18 22 18 16 15 13 52 52 35 42 35 32 29 26
3 23 23 23 23 23 7 7 6 45 45 45 45 45 17 17 14

80 4 17 17 17 17 17 9 9 8 39 39 35 37 35 21 20 17

80

5 12 12 12 12 12 9 8 6 34 34 29 34 29 23 22 18

3 67 67 38 33 31 26 22 22 81 81 64 60 60 42 37 32
12 4 64 64 34 38 33 30 27 26 80 80 60 66 60 51 47 44

5 63 63 31 36 31 32 28 27 80 80 58 65 58 57 52 50
3 50 50 33 30 29 19 16 15 71 71 55 54 54 32 29 26

25 4 46 46 28 32 27 23 20 19 67 67 46 52 46 37 34 31
5 42 42 22 29 22 23 19 18 67 67 45 53 45 44 40 38
3 37 37 26 24 24 11 10 9 60 60 46 46 46 23 21 18

50 4 30 30 19 21 19 12 11 10 55 55 37 42 37 28 25 23
5 25 25 14 17 13 12 10 8 52 52 32 39 32 30 26 24
3 22 22 22 22 22 7 7 5 47 47 47 47 47 17 17 14

100 4 15 15 15 15 15 9 9 7 43 43 38 40 38 22 22 18

100

5 10 10 10 10 10 8 8 6 36 36 30 35 30 23 22 18

3 76 76 55 51 51 37 32 31 86 86 73 70 70 51 45 43
15 4 77 77 52 60 52 46 43 40 86 86 72 77 71 64 61 57

5 77 77 51 61 51 52 47 44 85 85 67 74 67 66 62 59
3 71 69 47 44 43 29 24 22 82 79 66 64 63 41 37 32

30 4 69 69 42 51 42 34 31 29 80 80 61 68 61 50 46 43
5 68 68 39 51 39 41 34 32 78 78 58 66 58 56 52 49
3 57 55 43 41 41 20 19 17 72 70 61 60 60 32 30 25

60 4 55 55 35 43 35 26 24 21 68 68 54 59 54 41 38 34
5 54 53 31 42 31 31 26 23 66 66 49 57 49 46 43 40
3 36 35 35 35 35 13 13 10 49 48 48 48 48 20 20 14

120 4 35 35 29 31 28 17 16 13 46 46 42 44 42 27 26 23

120

5 31 31 23 29 23 19 17 13 43 43 37 42 37 31 30 27

3 80 79 62 59 58 36 31 30 85 81 69 66 66 39 35 30
20 4 77 77 55 61 53 43 39 34 84 84 69 73 68 56 52 45

5 77 76 52 61 52 50 45 42 82 82 64 70 64 58 55 49
3 77 76 61 60 59 36 32 30 83 80 70 68 68 40 37 34

40 4 74 74 54 61 54 44 40 35 81 81 67 72 67 54 51 45
5 73 72 50 60 50 48 43 39 78 78 61 69 61 57 53 48
3 65 62 51 51 50 24 21 19 72 71 64 63 63 31 29 24

80 4 63 63 44 51 43 33 29 21 73 73 61 65 61 47 44 38
5 61 61 42 52 41 38 33 25 69 69 54 61 54 48 46 41
3 46 43 43 43 43 13 13 9 55 53 53 53 53 18 17 12

160 4 50 50 41 45 41 26 24 17 59 59 54 56 54 36 35 28

160

5 45 45 35 43 35 29 26 18 54 54 47 53 47 40 38 32

TABLE 3 LP gaps (%) for the TC and TE instances (LP CPU times are less than 2 sec.)
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F IGURE 3 LP gaps (%) for the TC instances

F IGURE 4 LP gaps (%) for the TE instances



14 B. Fortz, L. Gouveia and P. Moura

• As expected, the node-based models produce LP bounds that are worse than the ones produced by the arc-
based models. We observe that there is a clear improvement in LP bounds from the sBNH model to the gBNH

model (on average 14% and 10% decrease on the TC and TE instances, respectively). This improvement is more
significant in the case where not all of the nodes are required nodes. The inclusion of the generalized subtour
elimination constraints of size two (10) in these models further reduces the gaps, but in this case the differences
between the lower bounds of the enhanced models, sBNH ∗ and gBNH ∗, are smaller indicating that the effect of
these inequalities is more effective on the weaker model.

• Comparing the node-based versus arc-basedmodels, theweakest arc-basedmodel,AH , outperforms the strongest
node-based model, gBNH , in every instance (on average 11% and 17% decrease on the TC and TE instances, re-
spectively). This observation still remains when we add the constraints (10) to these two models and it is more
relevant for the larger instances in both classes, TC and TE.

• When comparing the two arc-based models, we observe that the stronger one outperforms the weaker one in
every instance, with a decrease of 5% on average, most significantly for the larger instances. Adding constraints
(10) to the weakest arc-based model reduces the average gap difference between the two models. Note also
that the corresponding CPU times and the results of the next section indicate that even after this reduction, the
strong arc model is preferable to the weak arc model with the subtour elimination constraints (10).

4.2 | Obtaining the optimal (integer) solutions

Although the LP values are important indicators for an overall comparison between all the models in our experiment,
they are not sufficient to allow us to assess what is the best (faster) model to obtain the optimal integer solution. Since
other factors need also to be considered, e.g, the size of the models as well as unknown factors of the ILP package
used to solve the instances. In Table 4 we provide the CPU times (in seconds) to obtain the optimal integer solutions
taken from all the models described before (the time limit was set to one hour). The format of the table is identical to
the one in Table 3. The designation “O.M." indicates a model that could not be solved due to an “Out of Memory" issue
and the designation “T.L." indicates a model that reached the “Time Limit" of one hour, before obtaining an optimal
solution (or proving the optimality of the best found solution). Performance profile graphs for the same results are
presented in Figures 5 and 6, showing the number of instances solved within a given CPU time (on a logarithmic time
scale). Again, a higher curve corresponds to a better model.

As in previous works, the TC class instances are easier to solve rather than the TE class instances. Since the size
of the models strongly depends on the hop limit, it is also expected that the CPU times increase when the value of H
increases. Also, although for H = 3, the CPU times are insignificant, for H = 5 the CPU times are significantly larger,
specially for the node-based models.

From the performance profile graphs in Figure 5 and 6, we can observe the following interesting fact: the addition
of inequalities (10) to a model (sBNH ∗, gBNH ∗ or AH ∗), although contributing to a reasonable improvement in the
corresponding LP gaps, does not necessarily lead to models with better CPU times to obtain the optimal solutions. In
fact, the performance profile graphs for CPU times show that the line corresponding to an enhanced model (sBNH ∗,
gBNH ∗ and AH ∗) is below the line corresponding to the original model without enhancements most of the time (this
is more evident for models AH and AH ∗). However, when comparing an enhanced model versus the corresponding
original model, the increase in CPU times is usually not greater than 5 minutes and there are even some cases where
the original model did not find the optimal solution within the time limit whereas the enhanced model did.

The comparison between the models AH , AH ∗ and sAH is also interesting since it allows us to provide some
model improvement insights. As specified before, the model AH ∗ is obtained from the model AH by adding a set of
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TC instances TE instances
n |R1 | H BNH sBNH sBNH ∗ gBNH gBNH ∗ AH AH ∗ sAH BNH sBNH sBNH ∗ gBNH gBNH ∗ AH AH ∗ sAH

3 1 0 0 0 0 0 1 0 1 1 3 1 1 0 1 0
7 4 1 1 1 1 1 0 0 0 10 12 15 13 28 1 6 1

5 1 1 1 2 1 1 1 0 85 45 41 110 79 19 26 28
3 1 1 1 1 0 1 1 0 2 2 3 2 2 1 1 1

15 4 3 3 2 3 2 1 1 1 35 21 30 36 27 12 13 2
5 7 6 3 18 8 3 4 0 55 73 64 195 112 28 102 25
3 1 1 1 1 1 1 1 1 2 2 2 2 2 1 1 1

30 4 2 3 3 3 4 1 1 1 6 4 14 15 16 2 3 1
5 10 7 4 13 20 1 1 0 57 57 30 59 135 14 13 5
3 1 1 1 1 1 1 1 0 2 1 1 2 1 1 1 1

60 4 5 2 4 4 8 1 1 1 3 2 2 5 5 2 2 1

60

5 6 4 5 18 18 2 1 0 40 19 14 93 138 16 23 5

3 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1
10 4 4 5 2 3 4 1 1 1 8 8 30 85 25 2 3 1

5 10 11 9 18 9 3 4 0 53 48 31 135 55 5 69 21
3 1 1 2 1 1 1 1 1 1 1 5 3 3 1 1 1

20 4 3 2 6 4 7 1 1 1 12 17 105 70 45 4 4 2
5 13 12 25 33 16 6 4 0 292 157 160 235 132 68 240 37
3 2 1 2 3 3 1 1 1 3 2 3 2 3 1 1 1

40 4 10 25 32 63 69 2 2 1 12 16 29 41 27 3 3 2
5 32 93 63 98 331 11 14 0 126 216 250 359 543 16 63 75
3 3 2 2 2 1 1 1 1 2 2 1 1 2 1 1 1

80 4 6 7 7 16 41 3 2 2 13 12 4 22 31 3 3 3

80

5 43 10 29 166 447 10 11 0 29 42 59 758 1229 72 16 8

3 2 4 4 9 8 1 1 1 2 3 7 5 8 1 1 1
12 4 29 76 79 75 57 15 14 2 119 523 499 715 287 5 19 10

5 541 434 325 433 401 195 171 24 T .L. T .L. 2059 3255 2048 T .L. 3479 418
3 2 6 6 6 6 1 1 1 7 6 23 8 10 2 2 1

25 4 23 88 86 84 82 6 5 2 102 413 413 230 1059 14 7 3
5 203 126 101 86 78 29 27 4 O .M . T .L. T .L. T .L. T .L. 3571 T .L. 1438
3 5 5 5 6 6 1 1 1 5 6 11 11 9 3 2 2

50 4 21 76 76 53 50 5 4 2 174 1358 1385 956 608 18 6 4
5 73 187 138 166 156 15 14 3 T .L. T .L. T .L. T .L. T .L. 1132 T .L. 138
3 4 3 3 5 5 2 2 2 7 4 5 9 8 2 2 2

100 4 31 30 31 16 17 7 7 4 82 22 22 107 30 38 17 25

100

5 2750 1098 974 T .L. T .L. 70 60 36 544 385 387 1824 400 933 1713 178

3 3 3 4 10 12 1 2 1 3 2 5 19 20 2 2 2
15 4 40 64 86 141 266 4 9 3 1379 1665 2054 T .L. T .L. 9 16 6

5 2274 2160 1188 2153 T .L. 190 709 145 T .L. T .L. T .L. T .L. T .L. 506 T .L. 128
3 5 8 10 15 27 2 2 1 13 11 26 67 46 2 5 2

30 4 168 460 433 T .L. 660 8 31 5 118 1175 2811 T .L. 2621 15 205 18
5 T .L. T .L. T .L. T .L. T .L. 316 T .L. 128 T .L. T .L. T .L. T .L. T .L. 918 T .L. 182
3 6 9 9 25 17 2 2 2 8 4 11 46 27 3 2 2

60 4 464 124 310 1853 1609 6 16 5 321 448 265 2787 3533 18 41 6
5 T .L. T .L. T .L. T .L. T .L. 719 T .L. 219 T .L. T .L. T .L. T .L. T .L. T .L. 2076 474
3 6 5 4 15 32 2 3 2 12 6 7 42 32 3 3 3

120 4 183 94 44 392 188 10 21 6 38 43 26 98 138 18 40 27

120

5 T .L. T .L. T .L. T .L. T .L. 511 1714 98 T .L. T .L. T .L. T .L. T .L. T .L. T .L. T .L.

3 8 4 8 25 21 3 4 2 12 8 23 48 55 3 4 2
20 4 1035 361 442 700 398 9 50 6 42 54 1020 622 641 31 61 6

5 T .L. T .L. T .L. T .L. T .L. 3017 T .L. 190 T .L. T .L. T .L. T .L. T .L. 200 293 56
3 107 154 346 443 446 4 8 3 20 24 31 99 76 4 4 3

40 4 T .L. T .L. T .L. T .L. T .L. 327 1154 94 T .L. T .L. T .L. T .L. T .L. 359 1126 171
5 T .L. T .L. T .L. T .L. T .L. 2787 T .L. 493 T .L. T .L. T .L. T .L. T .L. T .L. T .L. 285
3 212 111 181 305 458 14 21 6 151 94 111 224 394 8 10 7

80 4 746 T .L. T .L. T .L. T .L. 300 518 103 T .L. T .L. T .L. T .L. T .L. 66 147 182
5 T .L. T .L. T .L. T .L. T .L. T .L. T .L. T .L. T .L. T .L. T .L. T .L. T .L. T .L. T .L. T .L.
3 47 50 45 111 129 7 7 13 39 37 53 84 109 15 17 10

160 4 T .L. T .L. T .L. T .L. T .L. 329 T .L. 564 651 455 750 T .L. 2379 72 258 77

160

5 T .L. T .L. T .L. T .L. T .L. T .L. T .L. 1554 T .L. T .L. T .L. T .L. T .L. T .L. T .L. T .L.

TABLE 4 CPU times (sec.) for solving the IP models
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F IGURE 5 CPU times (sec.) for the TC instances

F IGURE 6 CPU times (sec.) for TE instances
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constraints ((10) in this case). The model sAH is obtained from strengthening (lifting) a set of inequalities in model AH .
As proved in Proposition 6, themodel sAH implies the extra constraints inmodelAH ∗. This explains the improvements
in the lower bounds when going from model AH to model AH ∗ and then to model sAH . However, these relations
are not necessarily “propagated" to the integer CPU times since model AH ∗ has more constraints than model AH ,
while model sAH is of the same size as model AH . The main conclusion from this analysis is that whenever possible,
strengthening a constraint (which implies the original constraint plus a new set), besides strengthening the LP bounds,
leads to a more efficient model to be solved, at least when compared with the original model plus the extra set of
constraints.
As a conclusion, we observe that the best three models are the arc-based models with sAH clearly dominating, and
AH better than AH ∗ despite the better bounds of AH ∗. It is also noteworthy to observe that gBNH ∗, despite being
the best node model in terms of LP gap, becomes the worst one for TC instances, and the next to worst one for TE
instances, with respect to CPU times for solving the problem to optimality.

5 | CONCLUSIONS

In this paper we have contextualized the linear programming relaxation of a hop-indexed node-based model (and also
of a variant including a large set of generalized inequalities) in terms of a simple hop-indexed arc-based model. More
precisely we have shown that the linear programming relaxation of the first model is implied by the linear programming
relaxation of the second model. We observe that the result “arc model implies node model" is not surprising due to
the equalities relating the arc variables with the node variables. This theoretical dominance was then evaluated,
in practice, with the results taken from a computational experiment. The results indicate that despite using more
variables, the arc-based models might be preferable to the node-based models when solving instances of the HTSP.
This might be explained by the difference in gap values reported in the computational experiment. There are two
points worth discussing. First, the time-dependent models can be viewed as models in a layered graph where different
layers correspond to different positions. Also the inequalities (28) defining the strong arc model can be viewed as
“simple" cut-set inequalities in the layered graph (see, e.g., the work by Gouveia, Leitner and Ruthmair [10]) and one
wonders what inequalities in the space of the node variables are implied by the more general cut-set inequalities.
Second, it would be interesting to try to “enlarge" the relations established in this paper by adding relations or non-
dominance relations with other node-based models such as, for instance, the "weak" LP based Miller-Tucker-Zemlin
model. Despite having a weak LP bound, this model is very compact and can allow the determination of optimal
integer solutions with reasonable computing times, with current ILP packages, in cases where theoretically stronger
models might fail, due to a large number of variables (such as in the time-dependent model).
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