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Problem statement

Goal: Evaluate different robust regression methods in inference when
missing data are present

Procedure: Simulations

Framework: Let X ∈ Rn×p be the design matrix containing n observations
and p predictor variables. Let β ∈ Rp be the vector of regression
coefficients.
The dependent variable y ∈ Rn is defined according to the linear model as

y = Xβ + ε

where ε is a vector from Rn with entries independent and identically
distributed with E[ε] = 0 and Var [ε] = σ2.
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Comparison of robust linear regressions in inference

Comparison criteria:
Bias of the regression coefficients
Standard error of the regression coefficients
Mean Squared Prediction Error
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Simulation procedure

1 Generate the starting train and test sets
2 Contaminate the train set
3 Ampute the train set and the test set by deleting a selection of values
4 Impute the train set using MICE to obtain 5 complete imputed train

sets
5 Impute the test set using the same models as created in the previous

step to obtain 5 complete imputed test sets
6 Fit a linear model on the 5 train sets to get 5 models and pool the

results → inference performance
7 Predict the response variable for the 5 test sets with the 5 fitted

models from the previous step and pool the results → prediction
performance
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Overview of the simulation procedure
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Generation of the train and test sets

The simulation setup follows the one proposed by Öllerer, Alfons and Croux
[10]:

p = 15 variables; n = 300 observations for the train set and n = 100
for the test set
Regression coefficients: βj = j/p for j = 1, . . . , p
Correlation:

Independent case: Σ = Ip the covariance matrix, σ2 = 0.52 the error
variance
Dependent case: Σij = 0.5|i−j|, σ2 = 0.812

Generate X according to Np(0,Σ)
Generate ε according to N (0, σ2)

Define yi = x ′iβ + εi for i = 1, . . . , n
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Contamination of the train set

Cellwise contamination
Dense cluster: xcontij ∼ N (50, 1)
Dispersed outliers: xcontij ∼ N (0, 1002)

Wide cluster: xcontij ∼ N (50, 102)

Rowwise contamination
Dense cluster: xconti ∼ Np(50,Σ)
Dispersed outliers: xconti ∼ Np(0, 1002Σ)
Wide cluster: xconti ∼ Np(50, 102Σ)

Response contamination
Vertical outliers: εconti ∼ N (50, σ2)

→ Percentage of contamination :
0%, 5% or 10%.
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Dispersed outliers
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Wide cluster
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Overview of the simulation procedure
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Imputation methods – Robust against rowwise outliers

S-estimators [6]
β̂S = arg min

β∈Rp
s(r1(β), . . . , rn(β))

where s(r1, . . . , rn) is a solution of
1
n

∑n
i=1 ρ(ri/s) = δ, δ = Eϕ[ρ] and (r1, . . . , rn) are the

residuals.

MM-estimators [9]
β̂MM is any solution of

n∑
i=1

ρ′
(

ri (β)

s(r1(βS ), . . . , rn(βS ))

)
xi = 0

which verifies S(βMM) ≤ S(βS ) where S(β) =
∑n

i=1 ρ

(
ri (β)

s(r1(βS ), . . . , rn(βS ))

)
Least trimmed squares [4, 5]
For a fixed h with [ n+p+2

2 ] ≤ h ≤ n,

β̂LTS = argmin
β̂

h∑
i=1

(r2)i :n

where (r2)1:n ≤ . . . ≤ (r2)n:n are the ordered squared residuals
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Imputation methods – Robust against cellwise outliers

Shooting-S [10]
Combine the coordinate descent algorithm with regression S-estimation to obtain the
following objective function, ∀j ∈ {1, . . . , p}:

β̂j = arg min
β∈R

σ̂j (β)

with
1
n

n∑
i=1

ρ

(
ỹ
(j)
i − xijβ

σ̂j (β)

)
= δ

and wik = w

(
|ỹ (j)

i − xik β̂k |
σ̂k (β̂k )

)

where

ỹ
(j)
i = yi −

∑
k ̸=j

(
wikxik + (1 − wik )x̂ik

)
β̂k

and x̂ik =
ỹ
(k)
i

β̂k

Cellwise robust M regression (CRM) [2]
1 Center and scale the data
2 Use a starting robust regression estimator (MM) to flag observations as casewise

outliers if their absolute standard residuals exceed z0.95. Apply SPADIMO to
separate cellwise and casewise outliers. Cellwise outliers are deleted and then
imputed

3 Apply an IRLS procedure to improve efficicency of the estimates

C. Baum, H. Cevallos-Valdiviezo, A. Van Messem Robustness under missing data 10/18



Inference methods

S-estimators
MM-estimators
Least trimmed squares

Shooting-S estimator
Cellwise robust M regression
Linear regression (classical)

But How to compute the standard deviation of the regression parameters ?

→ For LTS and the classical regression : given in the output
→ Other methods: use bootstrap samples ⇒ Fast and robust bootstrap

[7]
Already computed and implented in R for S and MM-estimators
Need to be adapted for CRM and Shooting-S
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Fast and robust bootstrap (FRB) [7]

Let θ̂n ∈ Rp be the robust parameter estimates of interest and Zn be a
sample. FRB can be used if θ̂n can be represented as a solution of
fixed-point equations :

θ̂n = gn(θ̂n)

where gn generally depends on the sample Zn.
Given a boostrap sample Z ∗

n , the recalculated estimates θ̂∗n then solves

θ̂∗n = g∗
n (θ̂

∗
n).

Instead of computing θ̂∗n, we can compute the approximation

θ̂1∗
n := g∗

n (θ̂n).

But θ̂1∗
n underestimate the variability of θ̂n. To remedy this, they define a

linearly corrected version of θ̂1∗
n :

θ̂R∗
n := θ̂n + [I +∇gn(θ̂n)]

−1(θ̂1∗
n − θ̂n)
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FRB applied to shooting-S

Note ỹ
(j)
i = yi −

∑
k ̸=j

(
wikxik + (1 − wik )x̂ik

)
β̂k , the objective function of shooting-S,

∀j ∈ {1, . . . , p}, can be written as

1
n

n∑
i=1

ρ

(
ỹ
(j)
i − xij β̂j

σ̂j (β̂j )

)
= δ (1)

1
n

n∑
i=1

ρ′

(
ỹ
(j)
i − xij β̂j

σ̂j (β̂j )

)
xij = 0 (2)

Equations (1) and (2) can be rewritten as

β̂j =

(
n∑

i=1

zijx
2
ij

)−1 n∑
i=1

zijxij ỹ
(j)
i (3)

σ̂j =
n∑

i=1

vij (ỹ
(j)
i − xij β̂j ) (4)

where zik =
ρ′(rik/σ̂k )

rik
, vik =

σ̂k

nδ

ρ(rik/σ̂k )

rik
and rik = ỹ

(j)
i − xij β̂j .
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FRB applied to cellwise robust M regression

Cellwise robust M regression:
1 Center and scale the data
2 Use a starting robust regression estimator (MM) to flag observations as casewise outliers

if their absolute standard residuals exceed z0.95.
Apply SPADIMO to separate cellwise and casewise outliers. Cellwise outliers are deleted
and then imputed

3 Apply an IRLS procedure to improve efficicency of the estimates

Output of the method:
β̂ : The regression coefficients

X̃ : The imputed design matrix

Ω : A diagonal matrix containing the weights on the diagonal

Bootstrap procedure:
1 Compute the clean and weighted sample : yω = Ωy and Xω = ΩX̃

2 Draw bootstrap samples (X∗
ω , y

∗
ω) from (Xω , yω)

3 Bootstrap regression estimates are obtained by fitting a linear regression on that clean
bootstrap sample:

y∗
ω = X∗

ω β̂
∗
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Preliminary results

Simulation settings:
Independent case
Percentage of missing values: 10%
Imputation method: MM-regression

Prediction error:

Cellwise - Dense cluster Rowwise - Dense cluster Response
0% 5% 10% 0% 5% 10% 0% 50% 10%

Lin. Reg 0.67 31.48 95.40 0.67 8.41 1.97 0.66 12.53 35.44
MM-Reg 10.74 1013 2763 10.69 7431 15856 10.78 10.81 10.71
S-Reg 0.63 26.83 74.55 0.64 7.70 2.06 0.62 0.6 0.58
LTS 10.52 1025 2779 10.81 7404 15825 10.72 10.84 10.82
Shooting-S 0.62 21.82 77.27 0.62 7.96 1.89 0.62 0.61 0.63
CRM 0.65 25.83 75.67 0.63 7.75 2.20 0.59 0.62 0.62
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Preliminary results
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