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High-throughput analysis of Fröhlich-type polaron models
Pedro Miguel M. C. de Melo 1,2✉, Joao C. de Abreu 2, Bogdan Guster 3, Matteo Giantomassi 3, Zeila Zanolli 1,
Xavier Gonze 3 and Matthieu J. Verstraete2

The electron–phonon interaction is central to condensed matter, e.g. through electrical resistance, superconductivity or the
formation of polarons, and has a strong impact on observables such as band gaps or optical spectra. The most common framework
for band energy corrections is the Fröhlich model, which often agrees qualitatively with experiments in polar materials, but has
limits for complex cases. A generalized version includes anisotropic and degenerate electron bands, and multiple phonons. In this
work, we identify trends and outliers for the Fröhlich models on 1260 materials. We test the limits of the Fröhlich models and their
perturbative treatment, in particular the large polaron hypothesis. Among our extended dataset most materials host perturbative
large polarons, but there are many instances that are non-perturbative and/or localize on distances of a few bond lengths. We find
a variety of behaviors, and analyze extreme cases with huge zero-point renormalization using the first-principles Allen-Heine-
Cardona approach.
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INTRODUCTION
The correct assessment of the electronic band gap and properties
of charge carriers is of primary importance in determining the
utility and applicability of semiconductors and insulators. Theore-
tical treatments usually only include the “frozen-ion” electronic
aspect of the problem. Over the past two decades it has become
clear that this is a severe limitation given the accuracy of both
measurements and more advanced theories1–9.
The most common band-gap calculations involve Kohn-Sham

Density Functional Theory (KS-DFT)10–12 or the GW approximation
from Many-body Perturbation Theory (MBPT), including different
degrees of accuracy in the interactions between electrons13,14.
MBPT computations are more computationally demanding than
KS-DFT, but can yield band-gap results that are within 2% to 10%
of experimental measurements2. However, both are zero-
temperature formalisms: a crucial and often ignored effect is the
electron–phonon interaction (EPI), which leads to a renormaliza-
tion of the band gap as a function of temperature. Even at T= 0 K,
EPI yields the so called zero-point renormalization of the band gap
(ZPRc+v), which combines conduction and valence band renor-
malizations (ZPRc and ZPRv).
Several theoretical approaches are available to calculate the

ZPRc+v, among which the Fröhlich model15 and the perturbative
approach proposed hy Allen, Heine and Cardona (AHC)16–18. In its
first-principles version, AHC is the current gold standard for
obtaining the ZPRc+v

3,4,6,7,9,19–24, although its computational load
is quite large. In order for the AHC approach to be valid, the EPI
should not be too strong, since it relies on a perturbative
treatment.
In the original Fröhlich model, the charge carrier dynamics is

described by a one-band isotropic and parabolic dispersion, and
couples to one dispersionless longitudinal optical phonon mode.
The EPI is accounted for in a rather coarse fashion with a fixed
analytic functional form, thanks to the hypothesis that the
electron–phonon interaction is dominated by the long-range
behavior of the Coulomb interaction, in effect washing out all

atomic details. Studies of this model have been numerous25–28,
and, depending on the EPI strength, can be done by perturbative
means (weak coupling limit) or by a self-consistent approach to
electron self-trapping by the phonon field (strong coupling limit).
Some well-established techniques allow to cover the entire
coupling strength range26,27, but are either difficult to generalize
to first-principles approaches or require enormous computational
resources.
Very recently, a unified approach to polarons and phonon-

induced band structure renormalization has been proposed,
covering the whole coupling strength range29,30. It has been
applied in both Fröhlich model and first-principles contexts.
Usually, the Fröhlich model is only considered for so-called

“large” polarons, for which the atomic details are ignored, while
the denomination “small polarons” corresponds to the case where
the localization of the electronic wavefunction is comparable to
interatomic distances, and self-trapping ubiquitous. As mentioned
above, large polarons can be self-trapped as well, but in this case
the self-trapping region is much larger than the interatomic
distance.
More recently Miglio et al.9 derived a generalized Fröhlich

model (gFr), capturing a more realistic physical picture than the
standard Fröhlich model (sFr), in which one accounts for
anisotropic and/or degenerate electronic dispersion, coupled to
multiple phonons modes, possibly anisotropic, but still preserving
the intrinsic continuum hypothesis (i.e. long-wavelength limit).
While for the Fröhlich model and its generalization only the

zone-center phonons are needed, the AHC formalism requires the
full phonon spectrum over the whole Brillouin Zone (BZ), and
involves the explicit calculation of EPI matrix elements, making it
computationally much more costly. ZPRc+v determined via the
generalized Fröhlich model have shown comparable results to the
AHC formalism for a set of materials that include oxides and II-VI
compounds. However, for less ionic materials, its predictions are
not on a par with AHC9.
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The materials studied in this work will be primarily polar, thus
the use of the (generalized) Fröhlich model is natural for two
reasons: they are expected to yield polarons, and the model is a
much less computationally costly estimation of the ZPRc+v. Given
the recent developments on the Fröhlich model9 and the
prevalence of polarons in different classes of insulating materi-
als31, a thorough evaluation of the standard and generalized
Fröhlich models over a broad range of materials is essential in
order to establish validity and limiting behaviors of each model.
One intrinsic aspect to the Fröhlich model is the continuum limit,
i.e. ignoring the crystal details while assuming that the polaron
wavefunction is much larger than the shortest distance between
atoms: the assumption is that one deals with large polarons. Other
models are more suitable to include some level of atomistic detail,
such as the Holstein model32,33, which is not discussed here.
Independently of the length-scale aspect of the polaron problem,
a qualitative criterion arises in the original Fröhlich model with
coupling strength α. In a weak-coupling perturbative treatment of
this model, at α ≈ 6 a breakdown occurs with the divergence of
the effective mass. This is to say that beyond this point simple
perturbation theories fail, and the polaron experiences an
intermediate or strong coupling with the crystal lattice deforma-
tions. Below this qualitative limit, in the weak coupling limit (α < 6),
the straight perturbative approach to the Fröhlich model is in
reasonably good agreement with more refined approaches such
as Feynman’s path integral variational approach26 or diagram-
matic Monte Carlo27. If the Fröhlich model for a given material
points to a breakdown of the perturbative approach, it is likely
that its AHC treatment is also bound to be unrealistic, since it is
based on a similar perturbative hypothesis.
The overall goal of this work is to exploit existing datasets from

the literature to evaluate the breadth of applicability of the
Fröhlich model(s), be it(them) limited by the continuum limit or by
the breakdown of perturbation theory. The latter has also a
bearing on the applicability of the AHC treatment.
The development of high throughput workflows and database

Application Programming Interfaces allows for fast queries of
available information, allowing one to perform quick higher-level
calculations and even train machine learning algorithms. In this
work, we rely on the database from ref. 34, which provides the
electronic band structure, geometry, dielectric tensors, and
phonon properties (e.g. mode frequencies and eigendisplace-
ments) for a set of 1521 insulating materials. These are selected
according to the following criteria: from two to five chemical
elements per unit cell; experimentally stable 3D structures; non-
magnetic; insulating materials with a minimal DFT band gap. The
missing data on band masses is computed via a high throughput
computational flow employing both AbiPy and ABINIT as
described in Sec. III D. In the end, 1260 materials have all needed
quantities to parameterize a Fröhlich model Hamiltonian. The
remaining 261 materials either have unstable phonon modes or
their band extrema are not located along high-symmetry lines in
the BZ, making automating the computation of the effective
masses extremely difficult. We do not believe that their inclusion
in this work would significantly alter the results shown herein.
We focus on indicators that could mark the potential of a

material as a system with large or small polarons. These may be
desirable (for optical properties) or undesirable (for transport) in
different applications: more is not necessarily better. The essential
quantities in the standard Fröhlich model α, and the parameters of
its generalized form9, are the dielectric tensor, the effective
masses at the band extrema, the Born effective charge tensor, and
the phonon frequencies, all of which are stored in the databases
mentioned above.
The paper is structured as follows: We present the high-

throughput results for the 1260 studied materials in Sec. II. We
follow with Sec. II C by performing an abinitio validation using the
AHC approach for selected materials, and we discuss outliers

found using the Fröhlich model, such as materials with large ZPR
and small coupling α, as well as materials with large ZPR and large
α. In these cases the Fröhlich model should be treated in the
strong-coupling limit, and the long-wavelength limit may fail
entirely (these are two distinct cases). In Sec. III A we recap the
theoretical background for the original Fröhlich model in
describing large polarons, while in Sec. III B we summarize the
recent developments of the generalized Fröhlich model.

RESULTS AND DISCUSSION
Standard Fröhlich model
As stated in Section I, we have 1260 insulators for which all
necessary quantities are present to compute the ZPRsFr and α
using Eqs. (3) and (9). In Fig. 1 we show the dispersion map of
these quantities for both valence and conduction band edges
(positive and negative values of the ZPR, respectively). The color of
each point indicates the presence of an element of a given group
of the periodic table (as shown in the inset), according to the
following order of precedence: blue for materials with an element
from group 17 (halogens); if no halogen is present, orange for
materials with elements from group 16 (chalcogenides); green for
materials with an element from group 15 (pnictogens). If no
element of any of these groups is present, the circle is brown.
Values of α for conduction states are almost entirely concen-

trated in the α < 5 region, while valence values extend further into
the 5 < α < 15 range. Plots of α correlation with the dielectric
constants, effective mass, and phonon frequency are shown in
Supplementary Fig. 9. The c/v difference comes from the
distributions of bare effective masses for conduction and valence
band edges35 (shown in the top panel of Fig. 2), since ϵ�sFr and ωsFr

eff
are the same for a given material. The bulk of the ZPR distribution

Fig. 1 Conduction (negative) and valence (positive) standard
Fröhlich model ZPRsFr and α values, for all but 10 (0) materials
where the valence (conduction) ZPRsFr exceeds 3000meV. The
ZPRsFr values are determined based on the full range coupling
strength described in Eq. (46). The color corresponds to chemical
elements from groups 15 to 17 of the periodic table (see inset), and
brown for all other compounds. Materials with compounds from
group 17 are more concentrated in the α < 5 domain, while
materials with compounds from groups 16 and 14 have wider
spreads. All classes of compound show outliers with very large α.
Valence values are distributed over a wider range of α, and
conduction values are more concentrated below α= 5. The vertical
dashed line is at α= 6. An equivalent figure based on the full range
α based on Feynman’s approach is provided in Supplementary Fig. 8.
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is within −500 meV (for conduction) and +1000 meV (for valence
states). Parabolicity and isotropy of the considered electronic
bands are fundamental hypotheses of the standard Fröhlich
model. These hypotheses are broken by electronic structures
presenting large effective masses (m⋆ > 10) in at least one
direction. Huge ZPR values (i.e. >3 eV) can be observed in such
cases.
The broad linear trend of the ZPR with respect to α in a family is

visible for both conduction and valence bands, reflecting the
simple proportionality through the ωsFr

eff frequency in the lowest
order of perturbation theory. Not all chemical families show the

same slope, even if the group of constituting element is taken into
account, because the nuclear mass and bonding vary within a
group and can strongly influence ωsFr

eff and ϵ0sFr.
By looking at Eqs. (4), (46), and (47), we split the descriptors into

two categories: the electronic properties 1=ϵ1sFr and m�
sFr; and the

vibrational properties 1=ϵ�sFr and ωsFr
eff . Of these, only m�

sFr and ωsFr
eff

show clear clustering or trends, see Fig. 2 for the effective mass
and phonon frequency. The data shown in these figures allows
one to further understand the dispersion of values shown in Fig. 1.
The dielectric constants can be found in the Supplementary Fig. 8
which have very similar behavior as in Supplementary Figs. 6 and
7 given by Eq. (7). The highest values of m�

sFr and 1=ϵ1sFr are
obtained in halides and chalcogenides, specificially in the
conduction band. High effective mass (flat bands), with the same
proportionality as the effective phonon frequency, are central to
the larger ZPR. The largest conduction band effective masses
come from transition metal halides with an empty d-band CBM,
isolated due to crystal field splitting, which can become extremely
flat (e.g. CaTiF6). Large ωsFr

eff does not mean high ZPR, as it can be
seen in Fig. 2, even if the ZPR is proportional to

ffiffiffiffiffiffiffiffi
ωsFr
eff

q
: other

quantities are cross-correlated with ωsFr
eff . Materials with one or

more halogens are concentrated at the lower end of the
distribution in phonon frequencies, but this is compensated by
the other (electronic) parameters which can lead to both large α
and ZPRsFr. The conduction bands of these materials do not
possess such heavy masses, and so the ZPRsFr ends up being
smaller.
A number of materials are beyond the α ≤ 6 limit of validity of

perturbation theory for the standard Fröhlich model, suggesting
the possible breakdown of the first-principles AHC approach as
well.
In addition to the analysis of the validity of perturbation theory

thanks to limits on α, the validity of the large polaron hypothesis
can also be assessed. This hypothesis is crucial for the Fröhlich
approach, be it in the standard form or in the generalized form.
For this purpose, the polaron radius, Eq. (14), is computed, in the
strong-coupling approximation. This is combined with the α data
for both conduction and valence band edges in Fig. 3. Histogram
distributions of α and aP values are shown. An indicative value of
aP= 10 Bohr has been chosen to draw the frontier between small
polarons and large polarons. Similarly, and as already discussed,
values of α larger than 6 loosely indicate the breakdown of
perturbation theory. Materials with small aP will not be well
reproduced with the long-range, large-polaron Fröhlich approx-
imation. See Supplementary Table VI for the statistics of both
electron and hole polarons. The number of cases yielding large
polarons that can be described by perturbation theory is quite
high: about 95% of the materials for electron and 65% for hole
polarons. The large polaron hypothesis breaks down for about 5%
of cases for electrons, and 35% of the hole polarons. The
population of the top right quadrant of the two center plots in
Fig. 3, namely materials for which the large polaron hypothesis is
valid, but for which perturbation theory breaks down, is very small,
below 1% both for electrons and holes. The opposite, bottom left
quadrant, is more common, with smaller polarons in materials
with modest α < 6. Here the Fröhlich model should not apply at all,
and the distinction for applying perturbation theory will be
different depending on the approach used to treat the small/
medium sized polaron.
The EPI enhancement of the bare electronic effective mass is

shown in Fig. 4 and the distribution over the effective mass in
Supplementary Fig. 5. The enhancement is determined based on
the diagrammatic quantum Monte Carlo calculation proposed by
Mishchenko et al. (see Fig. 5 in ref. 27). Considering the improved
generalized Fröhlich model, polaron anisotropy will shift many
materials to lower critical radii, and the breakdown of perturbation
theory can occur at lower α, as shown in ref. 36, where a similar

Fig. 2 Dispersion of conduction (negative) and valence (positive)
ZPRsFr energies versus the effective mass, m�

sFr (top), and effective
phonon frequency, ωsFr

eff (bottom) for all materials with ZPRsFr

below 3000meV. Same conventions as in Fig. 1. A rough square
root behavior (Equation (10)) governs the maximum accessible
ZPRsFr for a given mass, and a degree of clustering is visible of the
frequencies as a function of chemical period, with the lowest
frequencies for halides, followed by chalcogenides, then the
remaining materials. Dependence with the band effective mass
(Eq. (32)) shows a dominant linear behavior, with a wider dispersion
for valence bands when compared to the conduction band masses.
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analysis of the distribution of α and aP was performed for a much
smaller set of materials, all exhibiting cubic symmetry.
On this basis, the large polaron hypothesis with perturbative

treatment might still be appropriate to treat the electron
polaron for a majority of materials, but this might not be true
to treat the valence band. The breakdown of perturbation

theory for α > 6, implying also that first-principles AHC theory
would be inappropriate, is less often encountered, even for
valence bands.

Generalized Fröhlich model
We now compare our results to the generalized Fröhlich model
discussed in Section III B. Here we define the direction-dependent
dielectric tensor as ϵ1ðq̂Þ ¼Pαβq̂αϵ

1
αβq̂β, and take into account all

phonon modes with their respective direction dependence ω�
j0ðq̂Þ

and coupling, ϵ�j ðq̂Þ, and the direction-dependent effective mass
inside Eq. (17). To evaluate the directional dependence, all
quantities that depend on q̂ are computed on a sphere of radius
10−4 Bohr−1, using a total of 2000 points to sample the sphere.
The phonon frequencies and eigendisplacements are interpolated
on this grid using the anaddb tool in the ABINIT software package.
Note that all parameters (e.g. k-point grids, energy cutoffs, pseudo
potentials) are the same for the evaluation of all quantities
involved. Differences that arise will come only from the nature of
each method, namely that in the generalized model the angular
dependency of all quantities is taken into account and the effects
of all phonon modes are included, weighted by the mode-polarity
vectors.
For the generalized Fröhlich model, no all-range calculations of

the Feynman or DMC type have been performed until now. We
have thus to rely on the perturbative result, Eq. (25), to obtain the
ZPR. Coherently, the lowest order of perturbation, Eq. (10), is used
to compare with the standard Fröhlich model.
In Fig. 5 we show the comparison between the effective (i.e.

Hellwarth-modified) standard and the generalized Fröhlich model
ZPR, both obtained in low-order perturbation theory, that we
denote ZPRsFr and ZPRgFr, respectively, and α, that we denote αsFr

and αgFr, respectively. While it is not apparent to the naked eye,
ZPR values for binary cubic systems match in both the generalized
and standard models (see the file binarycubicZPRcomparison.json
provided as SI). From Fig. 5 it is apparent that the standard and
generalized models give very close results for the ZPR energy. This

Fig. 3 Polaron radii and α distributions for both holes -c- and electrons -b- within the standard Fröhlich model. Dashed lines are indicative
of the limits of Fröhlich perturbation theory (α= 6, perturbation theory breaking for larger values) and small polarons (indicatively aP= 10
Bohr). Hole polarons are clearly heavier and more localized, but the majority of both distributions are within the limits of validity of the
Fröhlich model and perturbation theory (upper left quadrants in b and c). Histograms -a, d, e, f- show the statistical and cumulative
distributions, with stacked bar graphs for the different chemical periods. See Supplementary Table V for the distribution of radii and coupling
strengths of both electron and hole polarons. Same color code as in Fig. 1.

Fig. 4 Number of occurences of inverse effective mass enhance-
ment, for both hole (upper part) and electron (lower part)
polarons within the standard Fröhlich model. Stacked bars
correspond to chemical period. On the right, the ratio between
polaron mass and bare mass is close to one, while on the left, the
polaron mass is much larger (in absolute value). The inset shows the
distribution for very heavy hole polarons with huge mass enhance-
ment. The effective mass enhancement is based on the mapping
provided by the Diagrammatic Monte Carlo results (see Fig. 5 in
ref. 27) and Eq. (12). Same color code as in Fig. 1.
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is a surprising result, given the simplicity of the expressions used
in the standard model, especially when one considers that there
are no explicit phonon frequencies involved in Eqs. (44) and (45)
(the LO frequencies are reconstructed from the Z* and the ϵ).
Nevertheless, the improvements brought by (1) a correct
accounting for the anisotropy of ϵ* and m�ðq̂Þ, and (2) the
inclusion of the Born effective charges and the atomic masses,
make the simpler method a good approximation when compared
to the generalized version. The fact that all these averaging
procedures are evaluated separately is less critical on average, and

explains some of the spread in Fig. 5. In Supplementary Fig. 10 we
show a comparison of the ZPR between the two models as a
function of the spread of the anisotropy of the effective masses.
Some outliers were identified in Fig. 1a, for which ∣ZPRsFr∣ <

∣ZPRgFr∣. For both the valence and conduction corrections these
materials are: K3NO3, CsNO2, RbNO2, NaNO2. These four materials
share a particular feature in their phonon dispersion: an extremely
flat phonon mode at around 800 cm−1, followed by dispersive
high frequency modes close to 1200 cm−1. The outliers point to an
interesting feature of the standard model: since the ωLO mode is
replaced by an effective frequency, the contributions from modes
with very high frequencies are diluted in the sum. However, the
generalized model is still sensitive to them, which then leads to
higher corrections.
Other interesting outliers were found when scanning through

the values of ZPR and α in both models for binary compounds,
including a family of alkali metal nitrides with the chemical
formula XN3. These are discussed in the next sections, together
with other materials which have large ZPR due to a high number
of fluorine ions, comparing to benchmark results from a fully first-
principles method.

Ab initio benchmarking
The generalized Fröhlich model is expected to be more physically
accurate than the standard model. In order to benchmark both
Fröhlich models, we compare them with fully ab initio (AHC)
calculations of the ZPR. As the latter are much more costly, we
have selected a limited set of representative and/or simple test
cases. Like the generalized Fröhlich model, the first-principles AHC
approach works in the lowest order of perturbation.
Previously, Miglio et al9 computed ZPR from first-principles for a

set of 30 materials and compared them with the generalized
Fröhlich model. Most of the stronger ionic compounds (oxides and
chalcogenides) were well described by the model, within 25%
error compared to the first-principles AHC approach. For nitrides,
the ZPR were less accurate but still within 50% error. Their ZPR
was twice larger in first-principles calculations than using the
generalized Fröhlich model. We calculate the valence band ZPR
for an intersecting subset of 19 materials (Supplementary Table
VII) based on the generalized ZPR for cubic materials, Eq. (31), to
establish the validity of the treatment for cubic materials where
electronic and lattice components can be essentially treated
independently. Moreover, the “cubic" aspect of the treatment
refers solely to the lattice component of the problem, which
makes the solution available away from crystal cubic symmetry, if
we can assume an isotropic dielectric tensor.
In addition, we have chosen specific systems with high ZPR

from our high throughput Standard Fröhlich survey, combined
with either low, medium, or high α. Despite our theories being
based on a perturbative approach, the stronger coupling cases are
nevertheless instructive as it is expected that the similarity or
difference within a common perturbative framework of the same
order will translate to a similarity or difference within more
elaborate frameworks that are able to tackle non-perturbative
behaviors. The first case of lower α are four ionic molecular crystal
azides: KN3 and RbN3 crystallize in a tetragonal system, LiN3 and
NaN3 in a monoclinic system; the following case contains the
trigonal system CsNO2 (medium α); and, for the final extreme case
we examine cubic Cs2NaScF6, tetragonal Li2CaHfF8 and trigonal
K2TiF6. Finally for very low α the Fröhlich model is not expected to
function, as non-polar modes will probably intervene. We will
discuss these below comparing to AHC.
The main parameters of the standard and generalized Fröhlich

approaches are shown in Supplementary Tables I and II,
respectively, for our benchmark materials. In Supplementary Table
III we compare the two models and the non-adiabatic AHC
calculated ZPRs, as also depicted in Fig. 6.

Fig. 5 Comparison of generalized and standard Fröhlich model
for ZPR (top) and α (bottom), from perturbation theory, for both
valence and conduction band edges. The insets show the
dispersion for the full range of values of ZPR and α. The standard
ZPR is usually slightly larger than the generalized Fröhlich model (at
most by a factor of 2), and the αsFr is slightly smaller than αgFr, with a
wider spread (up to a factor of 3 or more) and fewer exceptions
where αgFr < αsFr. This shows that different factors influence the ZPR
and α, in particular the frequency which switches between the
numerator and denominator.
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In Fig. 6, we see that overall the standard Fröhlich model gives
values similar to those of the generalized Fröhlich model, close to
the non-adiabatic AHC ZPR at low α and dispersed for higher α.
The methods rely on different averages over the LO-phonon
modes. The former averages global quantities, for example, the
Born effective charges, ionic masses, and the dielectric constants,
while the latter accumulates the microscopic contribution to the
ZPR over all directions as q→ 0. One observes that some error
cancellation occurs in the standard method giving sometimes
“better” results than the generalized one.
There are still important contributions missing from these

Fröhlich models, such as the non-polar and TO phonon modes,
but the dominant qualitative physics is already present in both
approaches. The difference between the modeled ZPRs and the
non-adiabatic AHC, as shown in Supplementary Table III, does not
allow us to draw any easy conclusion of which method is more
accurate. On one side, the standard Fröhlich is simple to calculate,
on the other side, the generalized Fröhlich model is physically
more accurate and insightful.
From Supplementary Table II, we can retrieve four compounds

with the highest discrepancy between the standard and the
generalized Fröhlich models, the RbN3 and CsNO2 systems,
followed by KN3 and Li2CaHfF8. The first three compounds have
a smaller sum of their inverse atomic masses with respect to the
others (Supplementary Table I). The Li2CaHfF8 compound has the
highest number of light atoms in the unit cell, in spite of this, it
has one of the most dispersed Born effective charges of the
selected systems, i.e., the polarizability and the atomic displace-
ments are not aligned. The same dispersion appears in CsNO2.
In the following Sections (II D for KN3 and II E for Cs2NaScF6), we

determine the features which produce differences between the
standard and generalized Fröhlich approaches, and with the non-
adiabatic AHC method.

Ab initio Azides: large ZPR, small α
Changes in the variables to calculate α and ZPR in the azides can
be mainly interpreted by trends in the ionic radius (decrease) and
in the electronegativity (increasing from Rb, K, Na, to Li)37, leading
to a decrease of the unit cell volume and the dielectric constant,
and an increase of the effective mass.
The average of the ωLO modes for both standard and

generalized Fröhlich methods are similar in the RbN3 and KN3

systems but start to differ for the NaN3 and LiN3. For the
generalized Fröhlich model, the frequencies decrease together
with the atomic mass, as opposed to the standard model. Since
there is a discrepancy between the averaged effective dielectric
constants, the opposite change of the frequencies leads to an
approximation between the generalized and standard ZPRs.
The calculations of the generalized Fröhlich ZPR relatively

improves at the CBM as the atomic masses of the cations decrease
and the opposite occurs for the VBM. Relative changes at the
standard model are less consequential, however, it has relative
high accuracy at the CBM and much less at the VBM.
In the standard Fröhlich model the value of α of KN3 is smaller

than, for example, the KF system. Even if both have a similar
fraction

ffiffiffiffiffiffi
m�p

=ϵ� (0.29 for KF and 0.23 for KN3) KN3 has a higher
range of phonon frequencies of 271 meV than KF (42 meV),
leading to an ωsFr

eff of 73 and 39meV, respectively. The very high
range of frequencies of KN3 comes from the resonances created
by the linear chains of N3 harmonic oscillators, where all three
atoms vibrate along the bonds. The same reasoning can be
applied to the other azides.
In the case of KN3 (with the electronic and phononic band

structure and density of states shown in Supplementary Figures 1
and 2), there are two active LO phonon modes in the generalized
Fröhlich approach (see bottom of Supplementary Table IV). The
phonon mode with highest contribution (76%) to the ZPR is LO
phonon mode j=15 with a frequency of 20 meV, and not the
highest LO mode (j=24) with a frequency of 260 meV.
The averaging over q̂ directions, overestimates the value of α

compared to the standard Fröhlich model.
Going beyond the generalized Fröhlich approach and decon-

structing the non-adiabatic AHC ZPR into its phonon mode
components (see top of Supplementary Table IV and Supplemen-
tary Figure 4), we find that the highest contribution of 26.14% to
the total ZPR comes from LO phonon mode 15 and that there are
non-LO phonon modes (20, 21 and 22, excluded from the Fröhlich
models) which have even higher contribution to the ZPR than the
highest frequency LO phonon mode 24.
Several factors contribute to the spread of the ZPR contribution

throughout the different phonon states. One key attribute is the
polarizability and eigenvectors of the modes. Phonon mode 15 in
KN3 has a stronger polarizability than the highest phonon mode,
which is mostly driven by the lightest atoms. Mode 15 has a mix of
contributions between the potassium and nitrogen atomic
vibrations, with larger dipoles, and hence a larger mode
polarizability.

Fig. 6 Comparison of the ZPR for some chosen systems. The VBM
(positive, right top part) and CBM (negative, left bottom part) ZPRs
were calculated using the standard and generalized Fröhlich models
and the non-adiabatic AHC approach.

Fig. 7 Spectral function, A(ω) (top) and the real part of the self-
energy, ℜeΣ(ω) (bottom) for KN3 at the CBM. The self-energy is
split by phonon mode for the largest contributions to the ZPRc as in
Supplementary Table III. Only phonon modes 15 and 24 are LO, the
others are non-LO.
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A second key factor is the inclusion of non-LO modes. In Fig. 7,
we show the electron self-energy of KN3 (bottom) and the spectral
function (top). The LO-phonons can be found in the self-energy
with characteristic Fröhlich peaks38. Specifically in KN3, the self-
energy terms for phonon modes 15 and 24 show a peak at their Γ
point phonon frequency (the KS energy is at 0.0 eV). Mode 17 is
also LO, but the peak amplitude is small, around 1 meV. In
addition to their contribution to the ZPR binding energy, the LO-
phonon modes are also responsible for satellites in the spectral
function visible in the top panel.
The non-LO phonon modes (either TO or non-polar) do not

show peaks but a type of plateau starting at their Γ point phonon
frequencies, linked to long-range quadrupole potential39,40 and/or
short-range fields41. At the KS energy, where the ZPR is evaluated,
their ℜeΣ(ε) is not negligible at all, with a net contribution larger
than that of the LO modes.
Another way to distinguish contributions to the ZPR is by

plotting their dependency on the phonon wavevector (norm), as
in Fig. 8. The two LO phonon modes have their main contributions
from wavevectors close to Γ, and correspond to long-range
electric dipole fields. The non-LO phonon modes (j= 17, 21, and
22) originate at the boundary of the Brillouin zone, and
correspond to interactions with shorter-range crystal fields. Note
that it is important in this analysis to avoid mixing LO and non-LO
band contributions when their frequencies cross away from Γ, by
following the irreducible representations and character of each
mode to attribute the ZPR(j, q) contributions.

Ab initio Cs2NaScF6: large ZPR, large alpha
The ZPRc of the Cs2NaScF6compound is much higher than the
azides with a value of -966.1 meV in the non-adiabatic AHC. In
addition to the small increase of the effective dielectric constant
contribution, there is also an approximately 8-fold increase of the
effective mass compared with the azides (Supplementary Table I).
The Cs2NaScF6electron band structure and the projected density
of states are shown in Supplementary Figure 3. The bottom
conduction band has very low dispersion which translates into a
large effective mass and localized electrons, which are found in
the Sc-F bonds. The main source of the high ZPR is the coupling
between the (high frequency) vibrations of F atoms and the
d-orbital conduction band of Sc.
For Cs2NaScF6the generalized and standard Fröhlich models are

not as simply ranked: gFr is better for the VBM, while sFr is slightly

better for the CBM. The ZPR calculated within the generalized
Fröhlich and non-adiabatic AHC can be split into phonon mode
contributions (Supplementary Table V) with the phonon band
structure shown in Supplementary Figure 4. Again unlike the case
of the azides, the highest ZPR contribution is the non-LO phonon
mode 29, contributing almost 45% and an αi of 9.20. Generalized
Fröhlich ignores the non-LO phonons, which, in this case, are close
to the ωLO. Part of this contribution is spread to lower LO phonon
modes leading to a worse ZPR.
The real part of the self-energy for phonon mode 29 is the most

important at the KS energy (0.0 in Fig. 9), and increases towards its
Γ-point phonon frequency (47.8 meV) but it has no peak. The
phonon mode with the highest frequency is a LO phonon mode,
showing a green peak in the self-energy figure, but has a smaller
contribution of around 28.5% to the total ZPR. The other phonon
modes shown in the figure are also LO phonon modes and have
small self-energy peaks at their Γ point phonon frequencies. The
spectral function shape is complicated by the presence of two
quasi particle solutions (not visible in the figure), which convolute
the full self-energy. This is more common in the electron–phonon
case (as opposed to electron-electron) as the self-energy
amplitude is of the same order of magnitude as the phonon
energies (or even larger).
The angle-integrated ZPR as a function of wavevector norm

(Fig. 10) shows the Fröhlich-like behavior close to ∣q∣= 0 for j= 18,
24, and 30. Mode 29 behaves as ∣q∣2 following the volume
contribution 4π∣q∣2 in the angular average, which means the ZPR
contributions are relatively constant throughout the Brillouin
zone.
As a summary, for the set of materials considered in the section

IIc, d, and e, we observe that the standard and generalized
Fröhlich models are both close to the full first-principles bench-
mark calculations. One characteristic of high-frequency range
materials, as in the azides, is the geometrical isolation of the
lighter atoms. The averaging of the LO frequencies are similar in
both Fröhlich models for homogeneous and heavy unit cells and
they differ for inhomogeneous and lighter unit cells. The
directional averaging in phonon wavevector overestimates α
when comparing to standard α that is dependent on tensors of
the macroscopic quantities. There is no direct way to determine
which method provides the closest results to non-adiabatic AHC

Fig. 8 Spherical accumulation of the ZPRc of KN3 as a function of
the norm of the vector ∣q∣ for each phonon mode. The calculations
were done using the 64 × 64 × 64 q-grid sampling. The norms of
selected high symmetry points are shown on the top axis. The
phonon modes 15 and 24 are LO polar mode, and all the others are
non-LO phonon modes.

Fig. 9 Spectral function, A(ω) (top) and the real part of the self-
energy, ℜeΣ(ω) (bottom) for Cs2NaScF6 at the CBM. The self-
energy is split by phonon mode for the largest contributions to the
ZPRc as in Supplementary Table IV. The frequency range is limited to
the satellites: the two QP peaks at −0.249 and 0.341 eV are not
visible in this range. The first peak in A(ω) comes from a mode with
low contribution to the full ZPR, which is only a small bump in the
total ℜeΣ(ω). The phonon modes 18, 24, and 30 are LO, and phonon
mode 29 is non-LO.
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for an arbitrary compound, because there are some error
cancellations in the standard Fröhlich method which can give
better results than by explicitly treating all of the LO phonons
through the generalized Fröhlich approach. In addition, ignoring
non-LO modes can worsen both models, especially if the non-LO
phonon mode is close to ωLO, exaggerating the importance of
lower frequencies and widening the distance from the non-
adiabatic AHC ZPR. One must keep in mind that the AHC theory is
not the final physical answer for very strong EPC, as small polarons
will be formed, but it is a well-defined and rigorous reference
point, and comparing to the Fröhlich model at large coupling it
seems all of these theories may function even at much higher
values of α.
Considering now the results in their globality, in our study, the

polaron binding energy, or zero point renormalization, is
evaluated in both standard and generalized Fröhlich models for
a database of 1260 materials. Lowest order perturbation theory is
used for the generalized Fröhlich model, while both perturbative
and all-range formulas are available for the standard model, once
the single parameter α is defined. In order to apply the standard
Fröhlich expression to complex solids, a set of averaging
procedures is proposed, for the effective phonon frequency,
mass, and dielectric constant, expanding on a previous work42 of
Hellwarth and Baggio.
A broad range of validity is found for both models: 58% of

valence bands and 91% of conduction band polarons are in the
Fröhlich limit of weak coupling and large radius. Our effective
standard and the generalized model ZPR are in good quantitative
agreement with fully ab initio spot checks using the Allen-Heine-
Cardona theory. The generalized Fröhlich model ZPR includes a
fully coherent directional averaging of the dielectric, phononic,
and electron band parameters, whereas the “effective standard”
Fröhlich model averages each parameter separately. One finds
distinctive trends depending on the material’s composition: more
electronegative compounds containing halogens or chalcogens
generally present higher ZPR associated with higher α. Com-
pounds containing group 13 elements show rather lower ZPR,
though there are outliers in all categories.
Given the broad range of behaviors in our set of materials, we

benchmark our studies with fully ab initio DFT-based non-
adiabatic AHC calculations of the ZPR. We focus on outlier
materials with different α (low, medium, and high) and high ZPR.
Both Fröhlich models follow the ZPR trend of the non-adiabatic
AHC quite closely. The residual difference between the Fröhlich
models and the AHC results is a combination of important non-LO
phonon modes, and the details of the mode and wavevector

distribution of the electron–phonon coupling. We wish to stress
that predicting a ZPR close to the full AHC value makes the
Fröhlich models useful, but does not mean that all of the physics is
captured: we show that non-polar modes can even dominate the
total ZPR.
The standard Fröhlich model can fail in more than one way: due

to essential non-LO phonons modes, anisotropy, or the break-
down of perturbation theory. However, regardless of the Fröhlich
method’s limitations, strong evidence is provided for the ubiquity
of Fröhlich-type large polaron formation, for the range of possible
behaviors and parameter space, and the importance of polarons in
providing reliable band gaps and effective masses. Interestingly,
for a small number of weak coupling cases, the estimated polaron
radius is small enough to call into question the applicability of
Fröhlich models.

METHODS
The standard Fröhlich model
The Fröhlich model15,43 assumes a system with a single parabolic
electron band of effective isotropic mass m* and a single non-
dispersive longitudinal optical phonon branch of frequency ωLO.
The electron–phonon interaction comes from the macroscopically
screened Coulomb interaction between electrons and the nuclei
moving along the optical phonon mode. While the latter
approximation is dominant and qualitatively correct for q ≈ 0, it
is assumed to be valid in the whole Brillouin zone, which
corresponds to a continuum treatment, in line with the
hypotheses of an isotropic electronic band and non-dispersive
phonons. This means that there are no Debye-Waller contributions
to the electron–phonon interaction, and transverse optical or
acoustic modes are ignored. This model also ignores band
degeneracies and the possibility of different band masses and
warping44. Although formulated initially for a conduction electron,
it can be easily applied to valence electrons, with a proper change
of sign in selected formulas.
For a material with non-degenerate isotropic band extrema and

isotropic dielectric function, one can write the following
Hamiltonian for the standard Fröhlich model45 for an electron
(in atomic units ℏ= 1, aBohr= 1, m= 1, and the Born and Huang
convention for q and− q phonon eigenvectors is followed46):

Ĥ
sFr ¼

X
k

k2

2m� ĉ
y
k ĉk þ

X
q

ωLOâ
y
qâq þ

X
k:q

gsFrðqÞĉykþqĉk âyq þ â�q

� �
; (1)

where the electron–phonon coupling constant is given by

gsFrðqÞ ¼ 1
q

2πωLO

ϵ�VBvK

� �1
2

¼ 1
q

2
ffiffiffi
2

p
π

VBvK

ωLO
3=2ffiffiffiffiffiffi
m�p α

� �1
2

; (2)

VBvK is the Born von Kármán supercell volume, the dimensionless
coupling parameter α is

α ¼ 1
ϵ�

ffiffiffiffiffiffiffiffiffiffi
m�

2ωLO

r
; (3)

where ϵ* is defined by

1
ϵ�

¼ 1
ϵ1

� 1
ϵ0

: (4)

As a side note, ϵ*, ϵ∞ and ϵ0 are independent of the nuclear
masses: ϵ∞ is purely electronic, while ϵ0 is obtained in the
adiabatic limit (low-frequency limit), so that the nuclei have time
to adjust adiabatically to the applied electric field, regardless of
their mass. ϵ* is always greater than ϵ∞. For polar compounds with
strong ionic screening, the difference in ϵ’s will be large and
ϵ*→ ϵ∞, whereas for purely covalent compounds or mono-atomic
compounds ϵ0≃ ϵ∞, and so ϵ*→∞, which runs counter to
intuition for habitual dielectric responses, but simply pushes α to 0
in the Fröhlich model.

Fig. 10 Spherical accumulation of the ZPRc of Cs2NaScF6 as a
function of the norm of the vector ∣q∣ for each phonon mode. The
calculations were done using the 64 × 64 × 64q-grid sampling. The
high-symmetry k-points K and U are between X and W. The phonon
modes 18, 24, and 30 are LO polar modes, contrarily the mode 29 is
non-LO phonon mode.

P.M.M.C. de Melo et al.

8

npj Computational Materials (2023)   147 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



The Hamiltonian in Eq. (1) can be simplified by using a different
choice of units:

Ĥ
sFr ¼

X
k

k2

2
ĉyk ĉk þ

X
q

âyqâq þ
X
k:q

1
q

2
ffiffiffi
2

p
πα

VBvK

� �1
2

ĉykþqĉk âyq þ â�q

� �
;

(5)

where the energies, momenta, and length were rescaled by
factors of ωLO, ðωLOm�Þ1=2, and ðωLOm�Þ�1=2, respectively. With this
choice, it becomes clear that the sole free parameter α
characterizes the strength of the electron–phonon interaction
with respect to the intrinsic electron and phonon terms.
Perturbation theory can be used to treat the Hamiltonian Eq. (5)

in the limit of small α, delivering the polaron binding energy (ZPR)
(again in atomic units) as

EP ¼ �ωLOðαþ 0:0159α2 þ :::Þ: (6)

A more accurate approach based on the Feynman path
integral26 can be employed, covering the whole range of coupling
strengths, as follows:

EP ¼ �ωLOðαþ 0:98ðα=10Þ2 þ 0:60ðα=10Þ3
þ 0:14ðα=10Þ4Þ; for α � 5;

EP ¼ �ωLOð0:106α2 þ 2:83Þ; for α � 5:

(7)

With the same perturbative treatment, it is possible to show
that the ratio between the effective masses of the polaron, m�

P,
and the electron is approximately given by

m�
P

m� ¼ 1� α

6
þ 0:00417α2 þ :::

� ��1
: (8)

At the lowest order of perturbation theory, one obtains the well-
known formula

EP � �αωLO; (9)

or more explicitly,

EP ¼ � 1
ϵ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�ωLO

2

r
; (10)

where ωLO contains the only dependence on nuclear masses. At
this order in the expansion Eq. (8) yields the following polaron
mass:

m�
P

m� � 1� α

6

� ��1
; (11)

with the immediate consequence that at α= 6 the polaron mass
diverges and this low-order perturbation theory approach is no
longer valid. This parameter thus also provides a breakdown point
for the lowest-order perturbative treatment of the Fröhlich model.
A large α is physically associated with the appearance of self-

localization of the electron due to the phonon response, a non-
perturbative phenomenon that can be treated, alternatively, in the
so-called “strong-coupling” limit of the Fröhlich model. Thus the
α= 6 value suggests a change of regime for the Fröhlich polaron
(nothing abrupt, though). Nevertheless, the occurrence of the
wide range of behaviors present in our set of 1260 materials
demands a more careful treatment in describing the polaron
effective mass in the standard Fröhlich model: we make use of the
results based on the Diagrammatic Monte Carlo method applied
to the standard Fröhlich model27, by mapping the corresponding
electronic and polaronic effective masses in the available range of
α (see Fig. 5 in ref. 27). Outside of the available range we fit a
smooth and continuous quartic function with a resulting best fit as
follows:

m�
P

m� ¼ 1:07α4 � 160:53
� ��1

: (12)

The self-localization of the electron in the strong-coupling
regime yields the notion of a “polaron radius”, aP. For instance,
with a Gaussian ansatz for the electronic wavefunction, in the
adiabatic limit one obtains:

ϕðrÞ ¼ 1
aP

ffiffiffi
π

p
� �3

2

exp � r2

2 a2P

� �
; (13)

with

aP ¼ 3

ffiffiffi
π

2

r
ϵ�

m� : (14)

Coherently, aP is defined only in terms of quantities that do not
depend on the nuclear masses. When aP is on the order of the
distance between equivalent atomic sites in the crystals, the
Fröhlich model cannot be a good representation of the real
material, as it is based on a continuum hypothesis for the
vibrational degrees of freedom.

The generalized Fröhlich model
The standard Fröhlich model, valid under very restrictive
hypotheses (isotropy, one phonon branch, one electronic band),
can be generalized to include systems with degenerate and
anisotropic band extrema, multiple phonon branches, and
anisotropic dielectric functions9. Bands are still assumed to be
parabolic in each direction and phonon energies are still constant
with respect to the wavevector length q, but all might depend on
its direction q̂. As in ref. 36, we treat both conduction and valence
bands thanks to the integer variable σ, that is 1 for the conduction
band (or electron polarons), and− 1 for the valence band (or hole
polarons). The Hamiltonian is then similar to that of Eq. (1),

Ĥ
gFr ¼P

kn

σk2

2m�
nðk̂Þ

ĉyknĉkn þ
P
qj
ωj0ðq̂Þâyqj âqj

þ P
qj;kn0n

ggFrðqj; kn0nÞĉykþqn0 ĉkn âyqj þ â�qj

� �
;

(15)

with m�
nðk̂Þ the direction-dependent effective masses, k the

electron wavevector, n the band index, ωj0ðq̂Þ the direction-
dependent phonon frequency, q the phonon wavevector and j the
phonon branch index. The electron–phonon coupling constant is
given by

ggFrðqj; kn0nÞ ¼ i
q

4π
Ω0

1
2ωj0ðq̂ÞVBvK

� �1=2 q̂�pjðq̂Þ
ϵ1ðq̂Þ

´
P
m
sn0mðk̂0Þðsnmðk̂ÞÞ�:

(16)

In these equations, the sum over n, n0 and m runs only over the
bands that connect to the degenerate extremum, that are
renumbered from 1 to ndeg. The electron–phonon part also
depends only on few quantities: the Born effective charges
(entering the mode-polarity vectors pj which are the Born charge
weighted phonon displacement vectors), the macroscopic dielec-
tric tensor ϵ∞, and the phonon frequencies ωj0, the primitive cell
volume Ω0, the Born-von Karman normalization volume VBvK
corresponding to the k and q samplings. The snm tensors are
symmetry-dependent unitary matrices, similar to spherical har-
monics. Finally, k0 ¼ k þ q.
In this generalized model, the ZPR for a band extremum can be

obtained also at lowest order of perturbation theory, as

ZPRgFr ¼ �
X
jn

σffiffiffi
2

p
Ω0ndeg

Z
4π
dq̂ m�

nðq̂Þ
� �1=2 ´ ωj0ðq̂Þ

� ��3=2 q̂ � pjðq̂Þ
ϵ1ðq̂Þ

� �2

:

(17)

When comparing with the expression for the renormalization
energy from the standard Fröhlich model, Eq. (9), we see that it is
possible to re-write Eq. (17) in a similar way, highlighting the fact
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that this expression originates from an average over q̂ directions,
and summation over the contributions from different phonon
branches;

ZPRgFr ¼ �σ
X
j

αjðq̂Þωj0ðq̂Þ
	 


q̂; (18)

where

f ðq̂Þh iq̂ ¼ 1
4π

Z
4π
dq̂ f ðq̂Þ (19)

is an average over q̂ directions.
The αjðq̂Þ parameters are defined by

αjðq̂Þ ¼ 4πffiffiffi
2

p
Ω0

1
ndeg

Xndeg
n¼1

m�
nðq̂Þ

� �1=2 !
´ ωj0ðq̂Þ
� ��1=2 q̂ � pjðq̂Þ

ϵ1ðq̂Þωj0ðq̂Þ
� �2

;

(20)

and can also be re-written to look similar to Eq. (3),

αjðq̂Þ ¼
ðm�

nðq̂ÞÞ
1
2

D E
n

ϵ�j ðq̂Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωj0ðq̂Þ

p (21)

where

1
ϵ�j ðq̂Þ

¼ 4π
Ω0

q̂ � pjðq̂Þ
ϵ1ðq̂Þωj0ðq̂Þ
� �2

(22)

replaces Eq. (4), while

ðm�
nðq̂ÞÞ

1
2

D E
n
¼ 1

ndeg

Xndeg
n¼1

m�
nðq̂Þ

� �1=2 (23)

highlights that the effective mass entering Eq. (21) is an average
over bands that are degenerate at the extremum. For α in the
generalized Fröhlich model, we employ the expression

αgFr ¼
X
j

αjðq̂Þ
	 


q̂; (24)

with αjðq̂Þ given by Eq. (21).
To summarize, in the lowest order of perturbation theory

treatment, the multiband, multibranch, anisotropic generalization
of the simple Eq. (3) can be structured in the same way, with the
band contribution being averaged, the branch contributions
being summed, and the anisotropy being treated by an average
over q̂ directions. The polaron formation energy writes

EP ¼ �
X
j

ðm�
nðq̂ÞÞ

1
2

D E
n

ϵ�j ðq̂Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωj0ðq̂Þ

2

r* +
q̂

: (25)

Note that σ does not appear in EP.
A generalization of α to anisotropic, multibranch systems, αjðq̂Þ,

had been tentatively defined by C. Verdi, see ref. 47, Eq. (4.12) page
62, however lacking both effective mass and phonon frequency
dependencies on direction, and ignoring the possible electronic
degeneracy.
From Eq. (25) one might examine the relevance of the following

approximate decoupling between electronic and vibrational and
dielectric contributions:

EP � � ðm�
nðq̂ÞÞ

1
2

D E
q̂n

X
j

1
ϵ�j ðq̂Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωj0ðq̂Þ

2

r* +
q̂

0
@

1
A: (26)

The factorization of the ðm�
nðq̂ÞÞ

1
2

D E
q̂n

term appears naturally and

is exact in the cubic case, as shown below.

The generalized Fröhlich model in cubic systems
For a cubic system, even with several phonon branches, there is
no dependence on the direction of q for the phonon frequencies

and dielectric properties. The Hamiltonian becomes36,46

Ĥ
cFr ¼P

kn

σk2

2m�
nðkÞ ĉ

y
knĉkn þ

P
qj
ωjLOâ

y
qj âqj

þ P
kn0n;qj

gcFrðqj; kn0nÞĉykþqn0 ĉkn âyqj þ â�qj

� �
;

(27)

with a slightly simplified electron–phonon coupling constant
given by

gcFrðqj; kn0nÞ ¼ 1
q
4π
Ω0

1
2ωjLOVBvK

� �1=2 pjLO
ϵ1

´
P
m
sn0mðk̂0Þðsnmðk̂ÞÞ�:

(28)

The suppression of the “i” prefactor from Eq. (16) to Eq. (28) is
related to the Born and Huang convention46. Still working in the
lowest order of perturbation theory, Eq. (18) can be re-written as a
linear combination of αj parameters and phonon frequencies at Γ,

ZPRcFr ¼ �σ
X
j

αjωjLO; (29)

with each αj being

αj ¼
ðm�

nðq̂ÞÞ
1
2

D E
q̂n

ϵ�j
ffiffiffiffiffiffiffiffiffiffiffi
2ωjLO

p (30)

The numerator is purely electronic, and independent of the j
index, while the denominator is purely dielectric and dynamical.
This simplification appears only for the cubic crystallographic
system. A similar decoupling appears for the polaron energy:

EP ¼ � ðm�
nðq̂ÞÞ

1
2

D E
q̂n

X
j

ffiffiffiffiffiffiffiffiffi
ωjLO

p
ϵ�j

ffiffiffi
2

p
 !

: (31)

These equations shed light on the relationship between the
standard and generalized Fröhlich model. They will provide
guidance for the choice of the parameters for the standard
Fröhlich model, which follows below.

Parameterization of the standard Frohlich model
Because of its simplicity, and since a vast amount of results have
been gathered for the standard Fröhlich model, the treatment of
real materials using this model is very desirable, even in cases
where its basic hypotheses do not apply. The standard Fröhlich
model relies on the ωLO frequency, the m* effective mass and the
ionic part of the (isotropic) dielectric tensor, ϵ*, actually a scalar.
They combine to deliver the α parameter, and to predict a polaron
formation energy EP (or ZPR) obtained in the full range of values
from diagrammatic Monte Carlo or Feynman path integral
approaches26,27.
In order to define a standard Fröhlich model for any given

material, we must extract a single effective electronic mass m�
sFr,

an effective dielectric constant ϵ�sFr, and a single effective LO
phonon frequency, ωsFr

eff . Such oversimplification applies exactly
only to a few materials, namely binary (and some ternary cubic)
materials with the electron or hole pockets situated at Γ. In this
section, we define such parameters for general systems, inspired
by the simplifications happening for cubic material above, and
also from previously existing averaging procedures from the
literature.
As concerns the electronic effective mass, for the standard

Fröhlich model, we will use the directional average of effective
masses,

m�
sFr ¼ ðm�

nðq̂ÞÞ
1
2

D E
q̂n

� �2

; (32)
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where, coherently with Eqs. (19) and (23)

ðm�
nðq̂ÞÞ

1
2

D E
q̂n

¼ 1
4π

Z
4π
dq̂

1
ndeg

Xndeg
n¼1

m�
nðq̂Þ

� �1=2
: (33)

For cubic systems, this expression accounts exactly for the
anisotropy in the effective masses and for the possible
degeneracies, as discussed in Sec. III C. For non-cubic systems,
there is no such decoupling of the effective mass factor from the
dielectric and dynamical ones, as Eq. (26) is not exact.
The anisotropy of the dielectric constants (ϵ∞, ϵ0, and ϵ*) is

suppressed by the generic definition

1=ϵsFr ¼ Trðϵ�1Þ=3: (34)

For the effective LO frequency, both the multibranch character
and the directional dependence must be suppressed. It might be
possible to use the largest LO frequency. Of course this is exact for
cubic binary materials, for which there is only one LO frequency. In
moderately complex cubic materials, it is also expected that the
largest LO frequency should be the one with the biggest effective
IR activity, hence dominating the electron–phonon coupling
behavior. But one can imagine systems for which an average
over different LO phonon frequencies should be made. In isotropic
case, Hellwarth and Biaggio42 have proposed a way to average
over all LO modes, considered in the context of Feynman’s
variational path integral approach26.
We focus first on the isotropic situation. Hellwarth and Biaggio42

proposes two approaches to define an effective LO phonon
frequency in the isotropic multiphonon case. We follow a similar line
of thought, although slightly simplified (i.e. it corresponds to the high-
temperature regime of the first approach), and with an additional
approximation. Then, a plausible generalization to the anisotropic
Born effective charge case is proposed, still based on isotropic
dielectric tensors. This generalization is used in the main text.
Following ref. 42, one first introduces Wi, the coupling between

the LO phonon number i and a single electron in the conduction
band. The square of the effective coupling between the effective
LO phonon mode and that electron, W2

e , is obtained by summing
the square of the specific couplings,

W2
e ¼

Xm
i¼1

W2
i : (35)

The square of the effective LO frequency is obtained as the
harmonic average of the square of the phonon frequencies,
weighted by the ratio between the square of each coupling and
the sum of the squares of the couplings,

1

Ω2
e

¼
Xm
i¼1

W2
i

W2
e

� �
1

Ω2
i

: (36)

Being the sum of positive quantities multiplied by positive weights
summing to one, the effective phonon frequency must be
between the minimal and the maximal LO phonon frequencies.
Hellwarth and Biaggio42 also shows how to treat the dielectric

response of the material, in the infra-red range, by the adiabatic
approximation, giving

1
ϵ1

� 1
ϵðωÞ ¼

Xm
i¼1

W2
i

Ω2
i � ω2

: (37)

The low-frequency limit yields the effective dielectric function
as in Eq. (37) of ref. 42,

1
ϵ�

¼ 1
ϵ1

� 1
ϵðω ¼ 0Þ ¼

Xm
i¼1

W2
i

Ω2
i

¼ W2
e

Ω2
e

: (38)

The ratio between the two effective quantities is thus fixed by
the knowledge of ϵ*.

The determination of W2
e can be obtained by considering Eq.

(37) for large values of ω (albeit lower than the electronic
excitations). We get

W2
e ¼

Xm
i¼1

W2
i ¼ lim

ω large

ω<Egap

ω2 1
ϵðωÞ �

1
ϵ1

� �� �
:

(39)

The dielectric function can alternatively be formulated in terms
of LO and TO frequencies and the different dielectric quantities.
Indeed, the difference of inverse of dielectric responses present in
Eqs, (37)–(39) can be re-written thanks to Eq. (64) of ref. 48,

1
ϵðωÞ �

1
ϵ1

¼ 1
ϵ1

Ym
i¼1

ω2
i ðq ¼ 0Þ � ω2

ω2
i ðq ! 0Þ � ω2

� �
� 1

 !
; (40)

where ωiðq ¼ 0Þ are TO phonon frequencies, and ωiðq ! 0Þ ¼ Ωi
are LO frequencies. Then, the limit of Eq. (40) multiplied by ω2 is
taken for large ω,

lim
ω large

ω<Egap

ω2 1
ϵðωÞ �

1
ϵ1

� �� �
¼ 1

ϵ1
Xm
i¼1

ω2
i ðq ! 0Þ � ω2

i ðq ¼ 0Þ� �
:

(41)

This equation is inserted back into Eq. (39), then Eq. (38) is used
to determine the effective frequency in terms of difference of
squares of LO and TO phonon frequencies, with dielectric
rescaling.

Ω2
e ¼

ϵ�

ϵ1

� �Xm
i¼1

ω2
i ðq ! 0Þ � ω2

i ðq ¼ 0Þ� �
: (42)

This result is obtained without approximation, in the case of an
isotropic multiphonon system.
Furthermore, in case we neglect mode mixing (so, supposing

that LO and TO modes have the same eigenvectors), we can
connect the effective frequency to the macroscopic parameters of
our system and to the isotropic Born effective charges Zκ of
nucleus κ, using Eq. (63) of ref. 48, namely,

Ω2
e ¼

ϵ�

ϵ1ð Þ2
4π
Ω0

X
κ

Z2
κ

Mκ
(43)

where Ω0 is the primitive cell volume, and Mκ the mass of the
nucleus κ.
We finally generalize this formula to the anisotropic Born

effective charge case, to obtain our effective LO phonon
frequency ωsFr

eff ,

ðωsFr
eff Þ

2 ¼ ϵ�

ϵ1ð Þ2
4π
Ω0

X
καβ

Z�
κ;αβ

� �2
3Mκ

(44)

where α and β runs over the three cartesian directions. This
formula might seem strange, as it does not take the form of an
average over LO modes. However, simplifying for the case of
isotropic dielectric behavior we obtain

ðωsFr
eff Þ

2 ¼ ϵ�sFr
ðϵ1Þ2

4π
Ω0

X
k

ðZ�
kÞ2
Mk

; (45)

Like for the isotropic case, it is expected that ωsFr
eff never exceeds

the biggest LO phonon frequency along all possible directions,
and also that ωsFr

eff is never lower than the smallest LO phonon
frequency along all possible directions, although we have not tried
to prove this assertion.
Noteworthy, the use of an effective LO frequency provides

coherence in treating systems more complex than binary ones
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when a global dielectric constant is used in expressing polaron
properties. Therefore, in the standard Fröhlich model, the ZPR and
coupling constant α are considered as follows from now on:

EP � �αsFrωsFr
eff ; (46)

and

αsFr ¼ 1
ϵ�sFr

ffiffiffiffiffiffiffiffiffiffi
m�

sFr

2ωsFr
eff

s
: (47)

An automatic python workflow has been created to obtain the
electronic effective masses and store them in a database. The input
files for ABINIT49,50 were generated using AbiPy49,50 by inserting the
ground-state parameters from the Materials Project database. The
valence band maximum (VBM) and conduction band minimum
(CBM) were then determined by AbiPy by producing the electronic
band structure along the high-symmetry paths of each system’s
Brillouin zone. The effective mass tensors at these points were
determined by calculating the second-order derivative of the VBM
and CBM eigenenergies with respect to the wavevector k, including
the effect of band degeneracies and warping44, within Density
Functional Perturbation Theory (DFPT)51, as implemented in ABINIT.

Non-adiabatic Allen-Heine-Cardona methods
From the high-throughput calculations within the Fröhlich model
we focus on a few materials calculated within the non-adiabatic
Allen-Heine-Cardona (AHC)16,17 theory. Comparing the two
approaches, the former only includes long-wavelength fields of
longitudinal optical phonons, while excluding short-range fields,
non-LO vibration modes, second-order coupling to the atomic
displacements, also known as the Debye-Waller (DW) self-energy,
inter-band contributions, and non-parabolic effective masses
which are included in the latter.
The electronic and phonon properties were calculated using

ABINIT. To quantify the interaction between phonons and
electrons we apply the lowest order of many-body perturbation
theory which is sufficient52 to describe the electron–phonon
interactions in the quasi-particle self-energy. The self-energy
contains two terms: the static Debye-Waller (DW)53, and the
dynamic Fan (FAN)54 terms,

ΣknðωÞ ¼ ΣDWkn þ ΣFANkn ðωÞ: (48)

The non-adiabatic AHC ZPR is obtained directly from the real
part of the self-energy evaluated at the Kohn-Sham (KS) using
Density Functional Theory (DFT) electronic energy εkn in a state
defined by the wave-vector k and the band n,

ZPRkn ¼ <eΣ ω ¼ εknð Þ: (49)

The non-adiabatic method includes the contribution of the
phonons frequencies to the Fan denominator, representing the
retarded movement of the electrons forced by the ionic motion,
and at 0 K temperature it can be described as

ΣFankn ðωÞ ¼ 1
Nq

PBZ
q

P
j

P
n0

k þ qn0 Hð1Þ
qj

 knD E 2
´ 1�f kþqn0

ω�εkþqn0 �ωqjþiη þ
f kþqn0

ω�εkþqn0 þωqjþiη

h i
:

(50)

The phonon’s contributions to the self-energy are included in the
sum of the phonon frequencies, ωqj, over the phonon wavevectors
q in the Brillouin Zone and the phonon modes j. There is also the
contribution of the scattering of electron from state knj i to the
state k þ qn0j i due to the perturbation H(1) of the qj phonon.
These terms are determined within Density Functional Perturba-
tion Theory (DFPT). The scattered potentials in H(1) is first
calculated in a coarse q-mesh grid and then interpolated to a
finer q-mesh. In this Fourier-based interpolation, we removed the

dipole term before the interpolation to treat the non-analytical
behavior at long wave-length and added them after, more details
can be found in refs. 39,40.
In Section IV, we will split ΣFankn into its wave-vector q or phonon

mode j components and remove the sum in Eq. (50) of the
correspondent component. The self-energy becomes ΣFanqkn or ΣFanjkn ,
respectively. Separating the FAN self-energy by each phonon
mode allow us to verify which mode contributes the most to the
ZPR. In addition, introducing the phonon frequencies at Γ, except
the acoustic modes, we can compare the coupling strength for
each mode as it is done in the generalized Fröhlich model,

ZPRkn ¼
X
j

αjωj0 (51)

where αj= ZPRjkn/ωj0.
The DW self-energy is determined using the acoustic sum rule

within the rigid-ion approximation16, and its formulation is
detailed in ref. 7.
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