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Abstract

This thesis delves into the pivotal question:

How can modelisation tools enhance decision-making processes?

In the midst of converging economic, social, and ecological crises, decision-makers
are confronted with intricate choices demanding thoughtful deliberation. While tools
such as mathematical programming offer a structured framework to rationalise these
choices, it is imperative to refine traditional methodologies to reflect the underlying
ideologies influencing these decisions. To this aim, this thesis explores the concept
of near-optimal space analysis through distinct prisms. Firstly, it introduces an
innovative methodology for near-optimal space exploration grounded on necessary
conditions. Next, it widens the scope of near-optimal space analysis to encompass
multi-objective optimisation. Lastly, it starts a reflection on the influence of model
complexity on near-optimal spaces and necessary conditions. Though the proposed
methodologies possess universal applicability, they are empirically tested through
case studies focused on the energy transition. Notably, the European electricity
grid and Belgium’s entire energy system were scrutinised to extract actionable
insights. Using these methods, we derived valuable decision-making insights on
aspects like the minimum capacities of technologies or necessary energy from diverse
sources to ensure constrained deviations from objectives such as cost and invested
energy. The insights garnered accentuate the pitfalls of exclusively emphasising the
optimal solution. They have also led to derive a list of promising research avenues,
which encompass harmonised approaches to tackle both parametric and structural
uncertainties, the quest for more efficient methods for near-optimal space analysis,
and their prospective extension into multi-objective and multi-stage programming.
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Résumé

Cette thèse se penche sur une question cruciale :

Comment les outils de modélisation peuvent-ils améliorer les processus de prise de
décision?

Au coeur de crises économiques, sociales et écologiques, les décideurs sont confron-
tés à des choix complexes. Bien que des outils tels que l’optimisation mathématique
offrent un cadre structuré pour rationaliser ces choix, il est impératif de perfec-
tionner les méthodologies traditionnelles pour mieux incorporer l’idéologie sous-
jacente à ces décisions. Dans cette optique, cette thèse explore l’analyse d’espaces
quasi-optimaux au travers de plusieurs prismes. Tout d’abord, elle introduit une
méthodologie novatrice pour l’exploration d’espaces quasi-optimaux basée sur le con-
cept de conditions nécessaires. Ensuite, elle élargit la portée de l’analyse des espaces
quasi-optimaux pour englober l’optimisation multi-objectif. Enfin, elle initie une
réflexion sur l’influence de la complexité du modèle sur les espaces quasi-optimaux
et les conditions nécessaires. Bien que les méthodologies proposées possèdent une
applicabilité universelle, elles sont testées à travers des études de cas axées sur la
transition énergétique. Notamment, le réseau électrique européen et l’ensemble
du système énergétique belge ont été examinés pour en extraire des perspectives
exploitables. En utilisant ces méthodes, nous avons déterminés des informations
utiles à la prise de décision sur des aspects tels que les capacités minimales de
technologies ou l’énergie nécessaire provenant de sources diverses pour garantir
des écarts contraints par rapport à des objectifs tels que le coût et l’énergie investie.
Ces informations ont mis en évidence les pièges d’une focalisation exclusive sur
la solution optimale. Elles ont également conduit à définir une liste de pistes de
recherche prometteuses, incluant des approches harmonisées pour aborder à la
fois les incertitudes paramétriques et structurelles, la recherche de méthodes plus
efficaces pour l’analyse d’espaces quasi-optimaux, et leur extension à l’optimisation
multi-objectif et multi-étape.
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In the bustling battlegrounds of the modern-day office, a legendary rivalry brews
with intensity and steams with controversy. A war so decisive it has divided break
rooms and polarised water coolers across the land. It is the battle between Coffee and
Tea. In this war, I found an ally who knows how to play both sides: Mister Arnaud
Delaunoy. Arnaud, thanks for all the tea I swiped from your office, always promising
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influencer who lured you there: Renaud Vandeghen. Renaud, you might be a great
colleague, and our chats have always been pleasant, but this lunchtime betrayal is a
treachery I cannot overlook. I will remember it every time I see an empty chair at
our table and a deck of cards at yours.

The B.

He is a professional
A padawan, then an angel

Always surprised of seeing me
Always tired of making D

Selling his tool around the world
GBOML, you know the words

Of PhD, he owns the game
After the B, his baby’s named
With BAV, does some rappin’

To the letters, add some mixin’
OLGMB, ain’t no hard feel

Oh Le Goat, Miftari Bardhyl
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In a faculty where, according to my recollection of a faculty meeting, less than 20% of
the workforce is female, the statistical enigma of having four women join our teams in
2020 stands out. It is an intriguing deviation from the norm that warrants investigation
– or at least a celebratory note.

The first of these women is among the early birds who make it to the office before
9 a.m. And until recently, Amina Benzerga was also the only woman on our
team. These facts alone deserve a tip of the hat. Amina, our midday debates were
sometimes heated, and we did not always see eye to eye, but I appreciated our
exchanges. I will also cherish the memories from our train journey to Rome, where
we took our conversations beyond the confines of our office walls. And let us not
forget the many PhD Meetings you graciously hosted – events that always hold a
special place in my heart. Speaking of which, a shout-out to Emeline Maréchal for
co-organising those enlightening gatherings. Your dedication and effort have not
gone unnoticed. During that Rome trip, I also enjoyed getting to know Géraldine
Brieven better. She played tour guide and made sure we did not miss out on the
city’s best spots. Géraldine, your commitment to education and unique insights on
the subject resonate with me. I wish we had found more opportunities to discuss our
shared passion. Lastly, I would like to mention Audrey Lempereur. While we might
not have had as many interactions, I am grateful for that ride back to the university
after we visited the “Les Pousses Poussent" community garden. Small gestures often
leave lasting impressions.

Wrapping up the newcomers for the year, a nod to our corridor’s resident post-doc,
Alireza Bahmanyar. Thanks for bringing that serene vibe to the hallway. And I will
always appreciate the genuine concern you showed when I took that tumble off my
bike.

2021

In the Montefiore ecosystem, beyond the age-old coffee versus tea rivalry, three prominent
tribes emerge: the energy-optimisers, the machine-learners, and the neuro-electronicers.
Interestingly, 2021 saw a surge of PhD candidates in all these tribes.

Amongst the few who still dare to dive head-on into the shrinking realm of energy at
Montefiore (being slowly eaten by the machine learners and the small but growing
faction of neuro-electronicers), there is Jocelyn Mbenoun. Jocelyn, there are a
couple of things about you that genuinely stand out. First, it is that ever-present
sunny disposition. Every single time I have stepped into your office, I have been
greeted with an infectious smile and a warm “hello", often punctuated minutes
later by your trademark hearty laugh. Granted, there have been times when its
echoes through the walls tickled my nerves, but the positivity always made up for it.
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Secondly, your commitment is commendable. You are steering the Fluxys project
ship steadfastly, even as many have disembarked. The way you have soldiered on,
unfazed, is truly inspiring. Your spirited presence and unwavering dedication have
been a beacon over the past two years. Cheers to you!

In the same faction but exiled in the B37, there is a pair who seem like they were
fated to find each other: the dynamic duo with a sense of humour so unique it is
mostly just them laughing while the rest of us scratch our heads. Yet, oddly enough,
I have come to cherish it. They are the guys who dream up the quirkiest challenges,
whether downing ten beers before a 3 a.m. bike ride or conquering every major
staircase they can find on Strava. Hanging out with them is never a dull moment,
whether we are sneaking coffee from Bertrand’s stash or grooving to live music
in a Porto bar. But the pièce de résistance? Their knack for coming up with the
zaniest nicknames. (QueenP is my personal favourite.) Antonin Colot or should I
say Johnny Cancer, Thomas Stegen, the Amerindian, it is only natural for me to
thank you by giving you a taste of your own wacky medicine!

Let us jump to the machine-learners starting with the one and only Yann Claes. Now,
Yann, I promise, when I stroll into your office every morning, it is not just about
those keys to infiltrate Damien’s office and grab my coffee. No. If it were my sole
reason, it would mean I hate you. And, if I genuinely despised you, I would throw
the coffee at your face and keep the keys so that I do not have to see it again. This
anecdote illustrates the quirky bit about Yann: most folks reading this might assume
I have lost my marbles or harbour some deep-seated grudge. But Yann? He would
probably nod in agreement, chuckle, and even sprinkle in a few zany anecdotes
of his own. And that is why I always know that when I am half asleep arriving at
work, coffee is not the only thing that will wake me up, but (Yann, I will let you add
mentally what would).

Yann’s partner in crime is Gaspard Lambrechts. Simply put, Gaspard is like a
Swiss Army knife of talent. First off, he is a math wizard. I mean, engaging in
marathon math debates with Adrien? That is some next-level stuff. Then there is his
impeccable taste in transport. Just like me, he is a Brompton enthusiast. Nothing
quite compares to the freedom of zipping around on one of those. Now, let us talk
about the music. Hand Gaspard an accordion, and he morphs into a maestro. A few
drinks might make most of us warble off-key, but not Gaspard. Nope, he will play a
melody with you, tapping your feet in no time. Lastly, the cherry on top: the man is
a veritable Sherlock Holmes. Sure, he leans a tad towards the conspiracy theory end
of things, but his detective skills? Spot on. Gaspard, thanks for the talents you have
brought into our lives over the past four years. Cheers to the genius and zest you
infuse into every day!

xvii



From the ranks of the machine learners emerges then François Rozet. While our
interactions have been fewer, it is undeniable that François marches to the beat of
his own drum. He might not be the first to grab a beer, but when it comes to being
passionate about machine learning, his enthusiasm is unmatched. His GitHub profile
tells you everything about his love for coding and diving deep into any subject that
piques his interest. François, your zeal and dedication are inspiring, so thank you
for your unquenchable enthusiasm!

Straddling the line between machine learning and neuro-electronics, we find Florent
De Geeter. Anchored firmly between these realms by his two promoters, crossing
paths with Florent in a corridor always adds a bright spot to the day. Florent is also,
with Anaëlle de Worm, part of the most bankable couple in Montefiore. Anaëlle, I
want to thank you for your cooperation in the probability class. Similarly, I enjoyed
working with Arthur Fyon, my student anchor, when I took over that class. To all
the students and colleagues who have collaborated with me on course organisation,
you have my gratitude. And, speaking of dynamic duos, we cannot forget Sven
Goffin, who shares office space with Anaëlle. Sven is among the few brave souls who
tackle the Sart-Tilman hill on a bike without an electric boost. Our shared moments,
whether during the Televie 24 hours or other activities, have always been a blast.
Cheers to you, Sven!

Of course, Montefiore is not just divided into the factions we have previously dis-
cussed. Tucked away in B37, Captain Laurent Mathy helms a team delving deep into
the intricacies of networks. In 2021, they welcomed aboard Vincent Rosetto, with
whom I had a couple of insightful discussions. Similarly, there is Morgan Diepart of
Microsys, but perhaps more notably, a stalwart member of the RUday team for two
years running. Collaborating with you on organising this event, Morgan has been a
great experience.

2022

Embarking in 2022, we were greeted by one of the most promising batches across
those four years. And how not to start by celebrating the person with the most
communicable laughter of all: Victor Dachet. Victor, I will, of course, never forgive
you for the coffee you made us miss at Colonster, but it is precisely such quirks that
define you. You wear your heart on your sleeve, embracing every emotion that comes
your way - from unabashed joy to nerve-wracking stress, from sheer wonder to raw
disappointment. Our time together is never dull, whether we are sipping Aperol
Spritz in Turin, listening to you doubling over with laughter from that unforgettable
kayak tale, or navigating the chaos of penning two papers at once. Victor, to put it
simply, you were probably my best friend discovery of 2022. For every memory we
have crafted and every moment shared, I am profoundly grateful.
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While our journey to Rome was the occasion to sip some cocktails with Victor, it
was also memorable for the other bonds it forged. In particular, I was pleasantly
surprised, and I think that is a shared feeling among all the team, to discover more
about the one and only Italian of the group, Maurizio Vassallo. Maurizio, beyond
your commendable personality and kind nature, you have a delightful sense of
humour and decisiveness that comes forth when needed. Your ability to step up and
guide us saved the day on more than one occasion during the trip. Heartfelt thanks
for being our unexpected anchor in Rome!

Among the team’s anchors, we cannot go forth without mentioning Guillaume
Derval. Guillaume, I want first to congratulate you for your guts. It takes a certain
kind of bravery (or maybe a touch of madness) to join Damien’s team for a PhD. But
to come around for a post-doc? Now that’s next level. Anyhow, you managed to fit
in and take an essential role in our big, friendly team (even though you consistently
try to leave, applying left and right for more important jobs), bringing your own
flavour of fun and a heap of know-how to the mix. Every chat with you is a deep
dive into a world of ideas, and it is always a good time. So, cheers to you, Guillaume.
I am keeping my fingers crossed that our roads cross again, be it in Liège or under
the station in Namur.

Meanwhile, other teams have been growing, including my second favourite team
of the batch, the one exiled in B37. I already mentioned the inseparable couple,
Antonin and Thomas. To the relief of their promoter, Bertrand, the year 2022 saw
two new additions to the team: Geoffrey Bailey and Bastien Ewbank. Geoffrey,
I was honoured to be invited back then to be part of the discussion surrounding
your choice of thesis topic. I feel like, since then, you have embraced that subject, a
testimonial of it being the discussions you organised to create synergies between the
works of our two teams. Thank you for this dedication, and good luck in supporting
the two crazies for the coming years. But I guess that to support you, you also
have Bastien, who is probably one of the people with the best vibes in the whole
of Montefiore, the university, or even Liège? The kind of person who would never
trash-talk anyone, even when he has every right to do so. Bastien, I discovered in you
a man of many passions and action, from boys scouts to music to your supportive
act at the 24h Télevie and RUDay. Thank you for this memorable Decrescendo
performance on this party night or your incredible solo at RUDay.

As time passed, getting to know the new folks, especially those on different teams,
got trickier. Still, I did not want to let those quick hellos and short chats slip by
without giving them the nod they deserve. Every shared moment, no matter how
brief, added something special to my journey. So cheers to Boris Martin. Thank
you for accepting us, the noisy band, late at night into your home. Thank you Loris
Mendolia and Antoine Debor for the chats we had together; they were always
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pleasant. The same goes for Loic Champagne, but I must playfully chide you for
dodging the newcomers’ presentation at this year’s RUDay. You should have instead
taken inspiration from François Cubelier, who I greatly thank for the funniest visual
and auditory joke I ever witnessed in the history of RUDay.

2023

We are coming to the closing year of this long journey. In the eight months between
January and my last day at the university in September, there were four significant
additions to the team. The first one, and not the least, is my boy Matthias Pirlet,
the man who knows everyone, the friend who is always in for a drink. We have not
even known each other for a year, but it feels like I have always known you. I hope,
and I know, that even though we are separated professionally, we will have a lot of
moments to share personally. I know also that you will take good care of the baby I
have raised over those past years: the energy market class. (Please also take good
care of Adrien because, like Pascal, he does not know how to drink.) I hope you will
enjoy every moment of your PhD, and I will be there to see its achievement.

As I exited from Montefiore, a new trio was stepping in. Two of them even claimed
my old office as their own! Yes, I am talking about you, Laurie Boveroux and Lize
Pirenne. But do not get me wrong, I could not be prouder to pass the torch - or
rather, the keys - to you both. It is uplifting to see the team embrace more diversity.
I trust you will honour the best office in Montefiore. Work diligently, sneak in some
rest on the sofa when necessary, and remember, there is a Nintendo Switch ready
to help you unwind. Joined by Arthur Louette, a soul as kind as they come, I am
confident you will uphold the legacy Thibaut and I leave behind.

The best interns

Before we bid farewell to Montef’, I want to acknowledge the work and moments
shared with three individuals who were our colleagues for a few months during their
internships. A hearty thank you to Adrien Orban for his pivotal role in our work
on EROI and the memorable times in Louvain-la-Neuve. Appreciation is also due
to Dilan Deniz Demir from Turkey. You entrusted me with the supervision of your
work, and I hope I lived up to those expectations. Lastly, expressing gratitude to
Antoine Larbanois is essential. You have integrated so seamlessly into our team that
it feels like you have always been here. Collaborating with you has been a delight
from day one, and I am confident that no matter the journey you embark on, success
is assured.
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If someone asks you what you do as a PhD student, you will probably answer research
and sometimes some teaching. And that is, indeed, mostly what you do inside the walls
of Montefiore. However, the world does not end at the wall of B28, and a PhD does not
resolve to research and teaching. It is composed of a multitude of experiences which
are not just add-ons. Instead, they are essential parts of the PhD experience, making it
something truly special. In the coming paragraphs, we honour all the people who have
not been mentioned yet and who are the roots of these experiences.

The AIM team

In 2023, I got lucky to meet the AIM team, a group mainly made up of super-talented
women (and a few great guys, too - but let us give credit where it is due; the women
were the stars here) who put together CIRED, a major conference in power systems.
I got pulled into this challenge by the B., and, at first, I was not sure what to expect.
Would it be fun or just a whole lot of work? Turns out, it was both. And a big part of
that was thanks to Louisa Kara, Céline Dizier, Michèle Delville, Fréderic Olivier
(I had already known him as an awesome researcher when we worked with Antoine
for Damien), Jérémie Delhaxhe, and Didier Basleer. Together, we dove into the
hectic but exciting world of organising a conference. It was tiring, sure, but every
day was filled with laughs and good moments that made all the hard work worth
it. Each brought something unique to the table, turning what could have been a
stressful experience into one I will remember fondly.

Training

During my time here, I have learned a ton — not just from my direct experiences
but also from the vast range of training opportunities our university offers. Firstly,
hats off to the amazing women who make these training happen, and in particular,
Célia Lejeune, Nadine Vandermeulen, and Anne Goffin. Also, a shout-out to my
buddy Jonathan, who introduced me to this treasure trove of knowledge, covering
various fascinating topics led by inspiring trainers. As my first trainer, a big thanks to
Evelyne Favart for sharing insights on building a harmonious relationship with my
supervisor. It put a lot into perspective for me. Thank you, Thérèse Dupont. While
your tips on daily thesis writing did not quite stick, I did take away some handy
tools from your session. Thanks to Eric Louard for teaching us how to spot signs
of psychosocial trouble among our peers and create a healthier work environment.
Thanks to Jean-Philippe Demaret for also improving this environment by providing
simple but efficient principles for a better ergonomy. Thanks to Stéphanie Franck
and Gaëlle Jeanmart for opening my eyes to how philosophy can be a formidable
tool to think about our citizenship, a subject which is very dear to me. Thank you
Laurence Dessart. Your LinkedIn tips were gold (I might have overused them just a
tad). Thank you Joseph Fléron. Who knew an old 50s movie could teach us so much
about negotiation? Thanks to Jean-Yves Girin for reinforcing our assertiveness and
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for helping me know myself a bit better. Thanks to Silvana Cappello and Joël
Michiels for these superb lessons on public speaking. You nearly made me want
to drop out to pursue an acting career (I better not). A special mention to Pascal
Detroz. While I did not attend many IFRES training sessions, your guidance on
using Eduflow for the probability class was invaluable. Lastly, a huge thank you to
everyone I encountered during these training sessions. You all played a significant
role in making them such enlightening experiences.

MT180

In my previous list, I unintentionally left out a particular training. This is not just any
training — it holds a special place in my heart. Of course, I am referring to MT180
(or “My Thesis in 180 Seconds"). I owe immense gratitude to the phenomenal team
that made this journey possible, especially the ever-smilling Virginie Christophe,
the vibrant Amaël Verbeure, and the orchestrator Martine Vanherck. I also extend
a warm thank you to all my fellow competitors: Alexandra Tits, Chloé Galland,
Alice Collignon, Aurore Gaspard, El Yamani Siham, Fabien Pille, Laurent Prunier,
Raphaël Peiffer, Sacha Pszenica, Séverine Renardy, Sophie Bekisz, and Justin
Martin. Thanks to you all, I journeyed through ancient Greek and German tales,
football championships, serious pharmaceutical games, neighbour disputes, frog-
infested ponds, confused markets, imaginative takes on Magritte, lecture mazes,
salmon races, algorithm vessels, and the intriguing house of a certain Mr Henri. The
“avatar" is grateful for all of these discoveries.

Liège Créative and beyond

Speaking well in public is a valuable skill. However, without opportunities to present,
it would not be handy. Fortunately, there is a space within the university where ideas
converge and academics and industry professionals interact through presentations
and beyond. That place is Liège Créative. A heartfelt thank you to Delphine Buchet,
Anne Peters, and Marie-Eve Noiset for the beautiful conferences they organise.
I am also grateful for their invitations to animate climate and digital fresks with
Jonathan and François. Liège Créative has offshoots around the region, like the Hub
créatif de Seraing. That is where Aurore Falla comes from, and I want to thank her
for spearheading the fantastic “Révons Liège 2030" project. There are also visionaries
in Arlon. Under the leadership of Christelle Gillet, they host numerous enlightening
conferences to which I am grateful for having added my contribution.

The Green Office

While the previously mentioned team seeks to broaden the horizons of individuals of
all ages, their primary audience primarily comprises professionals. However, there
is another group dedicated to transforming the university from within, and whose
current primary target is the other half of the equation: the students. This other
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entity, ruled, once again, by women, is the university’s Green Office. Thank you
Cécile Van de Weerdt, Sarah Robinet and Laura Germain for all the eco-friendly
initiatives and the positive changes you are instigating within our institution. I also
want to give a shout-out to the students involved in this endeavour, particularly to
the one I am familiar with and the sole (?) male member of the team, Louis Noel.

Pot’Ingé and ReD

On the Sart-Tilman campus, we have roads, parking spaces, buildings, classrooms,
restaurants, and vast stretches of woods. However, four years ago, a fresh biome
sprouted, steadily expanding its reach, rallying more people, and becoming an inte-
gral part of the campus’s vibrant life. This biome is a vegetable garden, charmingly
named Pot’Ingé, born and raised by a reckless team of PhD candidates. A word of
caution: while I might inadvertently omit some names from the extensive list of
this project’s promoters, I extend my gratitude to everyone who made this beautiful
adventure pop in the middle of our PhD life. So, let us start with the ones I already
mentioned: François, Kathleen, Alexandra, and Sophie; thank you for this too.
Bertrand Bastin, a special thanks to you for initiating the market gardening course
and for your unforgettable dance moves at parties. You made me discover that Victor
Mangeleer is the best (or the worst ?) classmate. Thank you, Eva Joskin, for your
strong convictions so eloquently expressed in that outstanding opinion piece. Thanks
also to Romin Tomasetti, Chloé Stevenne, Gilles Quabron, Alexis Feutry, Robin
Glaude, Chloé Beaugendre, Solal Thomas, Astrid Cantamessa, Cyril Geortay,
Victoria Collignon, Laura Balzani, Benjamin Delvoye, and Laura Müller for all
your involvement, but also for the parties, the discussions, the laughs, for all those
moments shared.

A brief shout-out to those also involved in the Réseaux des Doctorants, which
organises fantastic events like the brunch and, notably, the Doc’Trail. Special thanks
to three individuals I have not previously mentioned who were, or still are, part of
the organising team: Aline Moreau, Maxime Amodei, and Caroline Minne.

Sustainable teachers

Discussing sustainability provides the perfect opportunity to acknowledge several
professors and key figures at the university who are effecting change in their unique
ways. Beginning with the most distant contributor, hailing from Gembloux, a
heartfelt thank you to Aurore Degré for pioneering the university’s first sustainable
development mega class. Thank you to Felix Scholtes for championing change
within the medicine faculty and extending your influence to the broader university
rectorate, and thank you to your rector co-advisor, Sybille Mertens as well. Gratitude
to Angélique Léonard for your passionate advocacy of sustainability concepts and
your ability to dispel misconceptions. Thanks Xavier Fettweis for your exemplary
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work on the local impacts of climate change. Similarly, Sébastien Doutreloup, your
efforts in making climate science accessible to all through your engaging MOOC are
commendable. Lastly, a salute to Patrick Jacquemin, whose relentless commitment
to mobility issues stands as a beacon of positive change within our institution.

Let us step beyond the university’s confines and venture into the broader world, or
at least Belgium, for now. From collaborations that directly enriched the content of
this thesis to volunteer efforts that shaped its philosophy, a host of individuals deserve
gratitude for their invaluable contributions and insights.

A great collaboration

In 2021, Jonathan, in collaboration with Gauthier Limpens from the Catholic
University of Louvain, laid the groundwork for a partnership that flourished over
the next two years. Because of their initiative, I was introduced to several brilliant
researchers from that university. I had the pleasure of collaborating with Paolo
Thiran and Pierre Jacques. I also enjoyed insightful discussions and the occasional
beer with Martin Colla and Xavier Rixhon. Additionally, professors like Francesco
Contino and Hervé Jeanmart generously shared their time with us. This partnership,
which resulted in at least three joint seminars, also brought me closer to researchers
from my university, such as Sylvain Quoilin and Thibaut Résimont. Interacting
with these peers was among the most enriching experiences of the past four years,
and I extend my heartfelt thanks to everyone involved.

Another collaboration, independent yet equally enriching, stemmed from the energy
market class. As the chief assistant, I had the pleasure of collaborating with Sandra
Belboom from Helmo Gramme to strike the right balance between course content
and load. Thank you for your commendable efforts over the past three years.

The Fresks

I have previously mentioned the climate and digital fresks, and among the people
listed above, there are numerous facilitators. However, there remain many who have
not yet been acknowledged and who truly merit recognition. Some of them, like the
brothers Adrien Corman and Gilles Corman, Renaud Franssen, Alexis Courtejoie,
Eléonore Dayez or Alison Delhasse, are fellow volunteers. Others, such as Martin
Hüberland and Sébastien Morant, introduced me to new fresks, including the one
on circular economy. I would, by the way, like to also express my gratitude to the
leading duo of Polygons for the inspirational work they undertake in their enterprise.
Lastly, a heartfelt thanks goes out to the educators at HEPL, especially Jacqueline
Somma, for massively incorporating this outstanding educational tool into their
institution.
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Les Shifters

I have also devoted significant time and energy to another association, almost as
much as I have to my PhD, if not more. I must candidly admit that this group, the
Shifters, provided the motivation and drive I needed, especially during times when I
questioned the purpose of my work.

Mainly, I must highlight the project, Education4Climate, which consumed countless
hours but rewarded me immensely, along with the remarkable team behind it. While
I have frequently acknowledged them on social media, I would like to once again
extend heartfelt thanks to Quentin Vantieghem, François Collard, and Quentin
Lancrenon for steering this project from the outset. I am also grateful to everyone
who contributed at various stages. Names like Noël Schneider, Olivier Bailly,
Noémie Mairesse, Mathieu Lecouturier, Yohan Courbe, Robin De Gernier, Aric
Wizenberg, Axelle Gortz, Chantal Winter, Hülya Altinok, Aymeric Lamant, Denis
Lebailly, Julien Descampe, and John De Dryver come to mind, though there are
undoubtedly many I have missed. Special appreciation goes to Thierry Van de
Merckt for coordinating the ULB field projects with us and to the students who
participated, including Hakim Amri, Yanis Triaa, Cedric Jansens, Yannick-Andre
Pambu-Kita-Phambu, Elio Sarkis, Maxime Couasnard, Hamida Takali, and Olav
de Clerck. Lastly, a grand thank you to Camille Tasseroul for paving the way to
introduce the tool in Italy.

I also had the privilege of being part of the Noyau d’Olive, witnessing firsthand the
growth and structuring of such an organisation. It was an enlightening experience
to connect with extraordinarily inspiring individuals like Dominique Martin, David
Grimaldi, Thomas Wansart, Cécile Levan, Grégory Filou, Jérémy Pontif, Olivier
Alsteens, Philippe Dejardin, Vincent Cordier, Amandine Paulet, Isabelle Hoberg,
Perrine Wohlfrom, Catherine Lalain, Paul Van osselaer, orThomas Legast.

Lastly, a nod to the team of Shifters in Liège, which includes familiar names such as
François and Victor, but also others like Martin Castin and Gil. I am committed to
expanding our network in our vibrant city.

ClimACTES

In 2021, I embarked on a journey that combined two of my passions: education
and the environment. This journey was the inaugural edition of ClimACTES, a
two-week summer school dedicated to combating climate change through education
and the creation of socially responsible enterprises. While my group did not suc-
cessfully launch a company, the experience was invaluable, and I encountered many
remarkable individuals. A heartfelt thanks to the organising committee, particularly
Philippe Gilson, Dominique Owieczka, Damien Dallemagne, Danielle Borsu,
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Isabelle Jonlet, Jean-Marc Bourdouxhe, Josiane Carré, Christiane Theunissen,
Christine Mainguet, Anne-Marie Schoenaerts, and Stéphanie Brunet, for turning
this event into reality. Special appreciation goes to the education team: Thibaut
Crismer (a huge shout-out to you for introducing me to the PJWB), Elise Franssen,
Nathalie Noël, Louis Vinckenbosch, Harmonie Lecomte, Julie Ghes, Jonathan,
Thibaut, and Adrien. Our brainstorming sessions and discussions were invaluable.
Lastly, a big thank you to my fellow participants, including Juliette Falkenberg,
Pauline Carbonnelle, Arnaud Van Der Cam, Michael Horevoets, Tatiana Malchair,
Tania Noël, Clara François, Loïc Strivay, Manon Duchatel, Lionel Delchambre,
and Lino Paoletti, for making this experience unforgettable.

Youth for Change

Before concluding these acknowledgements, I would like to extend my gratitude to
three groups of dynamic young individuals making a significant impact.

Firstly, I express my heartfelt thanks to the enthusiastic individuals I have had the
honour to engage with through the activities of the Forum des Jeunes. Whether
it was collaborating on your initiatives, presenting E4C, or joining forces at the
European Parliament, each moment was truly memorable. I am deeply grateful to
Loïc Perrin, Antoine Chavanne, Sean Nart, Elisabeth Hosszù, Emmanouela Tzani,
Zoé Noël, Louise Lebichot, and Manon Breda for these enriching experiences.

I also want to shine a spotlight on the dedicated team at Plas’Kot. Special thanks to
Jennifer Buxant and Louis Natalis for providing us the platform to showcase the
work of the Shifters.

Lastly, I am grateful to the passionate team at PJWB. Your acceptance and inclusion,
despite me being a bit senior in age, have been deeply inspiring. This experience has
not only paved a new direction in my career but has also allowed me to cross paths
with many outstanding individuals.

The Jury

Although I have meandered through time in this chapter, it is fitting to conclude this
journey by acknowledging those who will officially put an end to it: the jury.

Thank you to its four membres Pr Francesco Contino, Pr Sylvain Quoilin, Dr
Gauthier Limpens, Dr Jonathan Dumas, its president Pr Louis Wehenkel and my
promoter Pr Damien Ernst for dedicating their time to review my work and provide
invaluable feedback both on the manuscript and during my final defence. You are
all integral to this significant milestone in my academic journey.
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While some may find it extravagant to pen 21 pages of acknowledgements, as I embarked
on this chapter, I felt compelled to be thorough. Mentioning just a handful of names or
expressing gratitude in broad strokes would not do justice to the myriad of connections
I have made. So, I crafted this chapter with a future intention in mind: to revisit it and
rekindle memories of the moments I shared with you all.

Given the vast scope of a PhD journey with countless collaborations and discoveries, I
endeavoured to mention everyone I have engaged and/or been inspired by within and
around the context of this thesis.

For the sake of brevity, however, I have intentionally left out my family and long-
standing friends. This does not mean their roles are less significant; quite the opposite.
I am immensely grateful to you all for being part of the greater picture, of which this
small but fulfilling journey is just part, and for your continual presence in my life.

Such considerations led to the citation of almost 300 distinct names. Still, a couple of
you have, without a doubt, been left out of these words. To all those I have encountered
during these past four years who remain unnamed, I offer my sincere apologies. I invite
you to reach out, allowing me to, over a drink and heartfelt conversation, tell you face
to face:

‘Thank you’.

Antoine
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Prologue

Synopsis: In a spirited discussion about energy strategies, Anna champions the cause of
cost-effectiveness, while Lucas emphasises the importance of energy return on investment.
As tensions rise, Eva introduces a groundbreaking approach that could bridge their
differences.

Anna: “When we’re talking about which energy sources to choose for the future,
we have to prioritise cost. We owe it to our citizens to ensure that energy remains
affordable. The lowest cost should be our primary objective."

Lucas: “I hear you, Anna, but it’s not just about cost. We need to think about the
energy return on investment. If we’re investing a ton of energy and getting little
in return, it’s not sustainable. We should be aiming for the highest energy return,
which means the lowest invested energy."

Anna: “But Lucas, if we only focus on energy return, we might end up with solutions
that are too expensive."

Eva: “You both have valid points. But what if I told you there’s a way to reconcile
both visions? I recently read a fascinating research thesis that might offer a solution."

Lucas: “Go on, Eva. I’m intrigued."

Eva: “The thesis is called ‘Computing the necessary conditions for the transition of
our energy systems’. It introduces the concept of ‘necessary conditions’. Think of
them as the non-negotiable or minimum requirements to achieve specific objectives.
If applied to our case, it could be about finding the least amount of energy from
various sources needed to meet both cost and energy return objectives."

Anna: “So, you’re saying that this method allows us to determine the minimum
energy required from each source without compromising on cost?"

Lucas: “Or on energy return on investment?"

Eva: “Exactly! By focusing on these necessary conditions, especially when we have
multiple objectives like cost and EROI, we can pinpoint the resources we need for a
smooth energy transition."

Lucas: “And what else does this thesis tell us about energy systems and their transi-
tion ?"

Eva: “I’ll guess you’ll have to read the next pages to find out!"

This is a work of fiction. Names, characters, places and incidents either are products
of the author’s imagination or are used fictitiously. Any resemblance to actual events,
locales, or persons, living or dead, is entirely coincidental. It was first published on the
blog of Pr Damien Ernst. This is a revised version.
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1Introduction

„Repetition makes us feel secure, and variation
makes us feel free.

— Robert Hass (1984)
(Twentieth-century pleasures: prose on poetry)

The 21st is a century of choice.
Choice in the future we want.

While the window of available options has been shrinking as we delayed action
on critical issues like climate change and sustainability, there still exists numerous
possibilities and diverse approaches to implementing them. Selecting among these
alternatives is a challenging endeavour.

This introduction aims to illuminate the complexities associated with such determina-
tions. Notably, we seek to merge our engineering perspective with a recognition that
these decisions are deeply interwoven with human subjectivity and are not merely
mechanical determinations. We aim to elucidate these challenges, leading the reader
to grasp how this thesis’ contributions can significantly inform decision-making
processes.

We navigate these challenges and potential solutions through three distinct lenses.
In Section 1.1, we adopt a bird’s-eye perspective, capturing the breadth of societal
choices looming ahead. Section 1.2 then translates these abstract challenges into
the precise realm of mathematical programming. Lastly, Section 1.3 delves into the
specific application of these concepts within the realm this thesis primarily concerns:
energy systems.
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1.1 Facing Choices

The myriad existential choices of this century are too vast to be encompassed in a
single thesis. Yet, among these, climate, environment, and energy topics increasingly
dominate global discussions, news headlines, and our everyday lives. We can distil
these pivotal choices into fundamental questions, such as:

• What degree of warming do we aspire to limit and mitigate?

• Should we redirect our efforts from other environmental crises towards tackling
climate change?

• Is it sufficient to simply embrace the present abundance and enjoy life, or do
we have a moral obligation to take action?

• Should we primarily pursue technological solutions, societal transformations,
or a combination of both?

• Should nuclear power be favoured over solar panels and wind turbines in the
pursuit of sustainable energy generation?

• Are electric or hybrid cars preferable? What about hydrogen or renewable
ethanol trucks? Is there value in embracing a diverse range of options?

• Should an agricultural area be dedicated to producing crops for animal or
human consumption? Should we cover it with solar panels to produce energy
or with concrete surfaces to install carbon-capture plants? Or, is it more
beneficial to return it to its natural state to promote and preserve biodiversity?

Due to varying history, background, knowledge, and sensibilities, the option one
favours to answer these questions will differ, and it is natural for these questions to
lack definitive answers, as they encompass both rationality and ideology.

Can we rationalise choices ?

By employing scientific tools, we can make diligent efforts to enhance the rationality
surrounding these choices: quantifying disparities in impacts between a +1.5°C and
+2°C warming scenario, tracking the annual rate of species extinction, calculating
carbon and material footprints of technologies or evaluating energy yields from
different crop applications.
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Nonetheless, despite our capacity to apply rational thinking to these options, our final
choices are invariably entwined with our ideological perspectives. This is primarily
because the evaluation of these options is intrinsically tied to our ideological views.
Furthermore, the ultimate decision among the available options is equally rooted in
our ideological standpoints.

Ideology in evaluating options

Supporting this assertion, the primary factor underpinning the ideological foundation
behind choices is tied to the inherent uncertainties associated with evaluating
available choices.

These uncertainties can be divided into two primary categories. The first type arises
due to reliance on random processes. For instance, climate science depends on
complex and chaotic natural phenomena, making accurate predictions challenging.
The second type of uncertainty is related to the lack of complete knowledge. For
example, quantifying the annual rate of species extinction is impossible due to incom-
plete tracking of Earth’s species [MRM04] or obtaining comprehensive information
about the production sources of specific materials for technology footprints can be
challenging.

While quantifying our choice options, we must factor in these uncertainties. This
involves making specific parameter choices and assumptions which are influenced
by our subjective perspectives and biases and influence the evaluation of the options.
For example, when assessing different electricity production methods, an evaluator
might opt for wind profiles favouring wind power plants. Similarly, when comparing
technologies, a modeller with a positive outlook on technological advancements
may assume an enhanced efficiency for certain technologies when projecting future
scenarios.

Therefore, when we are presented with evaluated options to make a choice, it is
crucial to remember that they are contingent upon certain influenced decisions.

Ideology in choosing options

Even after uncertainties are incorporated, personal preferences still play a significant
role in influencing our choices. Let us take two examples.

We can reasonably determine the differences between a +1.5°C and a +2°C world.
Thanks to the extensive work of the IPCC (Intergovernmental Panel on Climate
Change), we know that in a +2°C world compared to a +1.5°C world, we can expect
more frequent and intense heatwaves, higher sea-level rise leading to increased
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coastal flooding, and a higher probability of Arctic ice-free summers [Mas+22].
However, individual inclinations towards short-term profit over long-term prosperity
may lead some to dismiss the dangers of a +2°C world. Second example: even with
knowledge of a substantial number of species facing extinction and the consequential
impact on ecosystem services, some governments might decide to make an ecological
pause to prioritise immediate action on climate change [GGM23].

These decisions reflect our preferences and the goals we prioritise. For some individ-
uals, the primary objective might be minimising the concentration of carbon dioxide
in the atmosphere, while for others, it may be reducing the number of species on the
brink of extinction.

Choosing the preferred option

There are instances where preferences will converge and guide us towards identical
chosen options – for example, reducing consumption benefits both the climate and
biodiversity. However, these preferences can also precipitate divergent outcomes.
As an illustration, combating climate change may necessitate the construction of
low-carbon power plants wherever feasible, a strategy that might conflict with
biodiversity enhancement efforts.

In those instances of conflict, a critical choice must be made regarding which option
to favour. This junction is where ideology takes precedence over rationality, with the
ultimate decision springing not from a detached, systematic comparison of options
but from a nuanced and thoroughly debated dialogue among stakeholders. However,
the intensity of this debate may be lessened depending on the strategy employed to
reach the final decision.

Continuing with our example, the two extreme options are to either build power
plants wherever possible (which, to simplify, would lead to no emissions at the
production stage) or to avoid building any power plants at all (resulting in zero
direct impact on biodiversity). The first potential strategy is the no-compromise
approach, where debates lead to the complete favouring of one option over the other.
While decisive, this approach often fosters considerable tension, leaving one party
unrewarded and discontented.

A second, more harmonious strategy involves determining trade-offs between the
two options to forge a compromise. This might entail reducing the number of power
plants to be constructed, thereby partially satisfying both the goal of minimising
emissions and preserving biodiversity. Such a middle-ground approach can foster
cooperation and mitigate potential discord among stakeholders.
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The third strategy: finding common ground using necessary conditions

Unfortunately, such choices are multifaceted and interdependent, impacting various
objectives simultaneously. Selecting a specific option to represent a trade-off might,
in turn, create tensions with other stakeholders possessing differing preferences. To
navigate these complexities, this thesis proposes a third approach, which involves not
settling on a single, unique option (whether a trade-off or otherwise). Instead, it
seeks to compute the commonalities among numerous options deemed ‘good enough’
for fulfilling the primary objectives while living ground to incorporate the needs of
other stakeholders. These commonalities represent the minimum criteria needed
to satisfy, to some extent, the primary goals, and this is why we refer to them as
‘necessary conditions’.

In the subsequent section, we will delve into some fundamental mathematical
content to formalise the concepts outlined in this section. This will set the stage for a
specialised exploration of the method’s application to the central focus of this thesis:
the energy transition. By identifying and leveraging these ‘necessary conditions’, we
aim to craft a more nuanced, inclusive, and practical approach to decision-making
that genuinely reflects the diverse nature of the challenges we face.

1.2 Modelling Choices

In the complex landscape of decision-making and problem-solving, several methods
are available for modelling choices. These methods range from heuristic tech-
niques, which rely on experience and intuition, to simulation-based methods, such as
Monte Carlo, through game theory models to evaluate strategic interactions between
decision-makers. Each method has unique strengths and applications, catering to
different problems and decision-making scenarios.

In this thesis, the preferred tool is mathematical programming (also called mathe-
matical optimisation or simply optimisation).

Mathematical programming is a potent tool among these methods, especially when
the goal is to optimise a specific objective subject to constraints. It provides a formal
and precise framework that can represent complex relationships and restrictions,
making it suitable for problems where accuracy and optimisation are paramount.
Whether maximising profits in a business setting, minimising energy consumption in
engineering, or balancing multiple objectives in government planning, mathematical
programming offers a flexible and scalable solution.
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Defining Mathematical Programming: Objectives, Variables and Constraints

Although mathematical programming encompasses a range of methodologies, it can
be distilled into three primary elements: objectives, variables, and constraints.

In a book by Avriel and Golany [AG96], this field of mathematics is articulated as
follows:

“Mathematical programming in its simplest form deals with the problem of maximis-
ing a real-valued function, such as the profit resulting from operating a system (or
minimising a real-valued function, such as operating cost), subject to constraints,
such as capacities or operating conditions, expressed as equations or inequalities."

The central concept in this definition is the optimisation (i.e. maximisation or min-
imisation) of a specific function. Functions serve as mathematical expressions that
encode various preferences in the form of real numbers. For example, one function
might represent the total power capacity of installed power plants worldwide, while
another could quantify the number of species going extinct each year. Generally, we
would aim to maximise the first function and minimise the second. In optimisation
terminology, the functions we strive to optimise are referred to as objective functions,
or simply objectives, and commonly denoted by the letter f .

An objective function takes one or several unknowns, known as decision variables,
as input. These variables represent elements in a system with various possible
values from which we can choose. In mathematical terms, when a specific value is
assigned to each variable, it forms a solution to the optimisation problem. This can
be equated to a potential option we consider in everyday language. For example, in
our previous problem, the set of variables could represent the decision to build or
not build a power plant at each potential location. A solution would then specify
a particular set of sites for construction. In mathematical programming, sets of
variables are typically represented as n-dimensional vectors labelled with the symbol
x = (x1, · · · , xi, · · · , xn). Each variable can adopt values from specific sets, such as
real or natural numbers. When these sets are combined, they form a subset of the
n-dimensional space, which Luenberger, Ye, et al. [LY+84] designates as S. The
notation f(x) then provides us with the value of the objective function for the given
solution x ∈ S.

The mathematical formalism described above, especially using n-dimensional vectors,
offers a decisive advantage: it can represent an expansive array of potential solutions.
This is invaluable in real-world scenarios, such as the power plant location example,
where numerous configurations must be compared. By representing each of these
possibilities, we equip ourselves with a comprehensive view of available options,
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ensuring no potential solution is overlooked. However, this strength also presents
challenges. As the number of variables n grows, the number of potential solutions
rises exponentially. Specifically, if each variable can take on v possible values, the
total number of solutions becomes vn. While capturing a vast range of possibilities
is beneficial, sifting through this immense solution space can be computationally
intensive and time-consuming. In many cases, the number of solutions can be
overwhelming, making it difficult to pinpoint the most optimal one. This underscores
the delicate balance between ensuring comprehensiveness in solution representation
and the practical challenges of processing and evaluating such a vast array of
options.

Our definition’s third and final component consists of constraints, which “limit the
selection of decision variable values" as described by Luenberger, Ye, et al. [LY+84].
Constraints serve as the boundaries within the mathematical framework, defining
the feasible region for the decision variables that we refer to as X . Combinations of
variable values within these boundaries are termed feasible solutions. For example, a
constraint might limit the amount of resources available for building power plants.
These constraints capture the real-world limitations and considerations that must be
accounted for when seeking to optimise the objective functions. As elaborated in the
definition mentioned earlier, constraints are expressed as equations or inequalities
in mathematical programming. More formally, these constraints can take the form
of inequalities gj(x) ≤ 0 or equalities hk(x) = 0, where gj and hk are real-valued
functions of the decision variables x.

Bringing these three components together, we can articulate the general mathe-
matical programming problem in the manner described by Luenberger, Ye, et al.
[LY+84]:

Maximise (or minimise): f(x)

Subject to: gj(x) ≤ 0, j = 1, 2, . . . ,m

hk(x) = 0, k = 1, 2, . . . , p

x ∈ S

(1.1)

Modelling rationally

Wrapping up our discussion of these three elements, we must touch upon how
modelling embeds rationality. Essentially, the embodiment of rationality in modelling
comes down to the judicious selection of variables and constraints that aptly mirror
the physical phenomena under investigation. It is essential to remember that every
model is an abstract representation of the real world (hence the oft-quoted phrase,
“All models are wrong, but some are useful"). However, not all models are of equal
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merit. To make a model that is more in sync with reality and thus more ‘rational’, it
is vital to include relevant variables and impose genuine constraints.

For instance, when modelling water flow in a river, one might select variables such
as riverbed slope, water volume, and sediment content. Constraints could include
the maximum capacity of the riverbed or even governmental regulations on water
usage. Over-simplifying by neglecting sediment interaction could result in incorrect
predictions about erosion rates or water flow speed, emphasising the importance of
model precision and relevance.

Even if they serve a very different purpose, crafting an accurate representation
of objectives is vital for fostering rational decisions. Indeed, while variables and
constraints enable us to closely mirror real-world phenomena and restrict what is
possible or implausible in the real world, objectives primarily guide our selection
among the feasible solutions. Grounding objectives in reality is thus crucial to ensure
that the chosen solution aligns with genuine, tangible goals.

Parameters

The last key element in this optimisation model is known as parameters. Parameters
are fixed values, for instance, the cost of a technology or the wind potential in a
particular area, that help define the objective and constraint functions. Together with
the problem’s formulation – how we define variables, constraints, and objectives –
parameters are pivotal in infusing our models with a sense of real-world rationality.

To illuminate this concept, let us specify the preceding general formulation by
exploring the specific case of linear programming. Linear programming is a subfield
of mathematical programming in which, according to Bertsimas and Tsitsiklis [BT97],
the problem involves “minimising [(or maximising)] a linear [...] function subject
to linear equality and inequality constraints." Highlighting the significance of this
method, Luenberger, Ye, et al. [LY+84] aptly remarked: “Linear programming is,
without doubt, the most natural mechanism for formulating a vast array of problems
with modest effort."
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In this context, the objective and constraint functions can be represented as weighted
sums of variable components, that is, wT x =

∑n
i=1wixi, where wi ∈ R. Given this

structure, a typical linear programming problem can be framed as follows:

Maximise (or minimise):
n∑

i=1
cixi

Subject to:
n∑

i=1
uijxi ≤ 0, j = 1, 2, . . . ,m

n∑
i=1

vikxi = 0, k = 1, 2, . . . , p

xi ∈ R, i = 1, 2, . . . , n

(1.2)

Although this formulation relates more closely to the general definition proposed
in 1.1, linear programming problems are often presented in a standard form, such
as:

Minimise:
n∑

i=1
cixi

Subject to:
n∑

i=1
ai1xi = b1

· · ·
n∑

i=1
aimxi = bm

xi ≥ 0, i = 1, 2, . . . , n

(1.3)

For a deeper exploration of the equivalence between the general and standard forms
of linear programming, readers are encouraged to consult the comprehensive work
by Bertsimas and Tsitsiklis [BT97].

The standard form can be further condensed into the following:

Minimise: cT x

Subject to: Ax = b

x ≥ 0

(1.4)

where A is an m× n matrix, b is m-dimensional vector and c a n-dimensional vector.
The ensemble of real-valued numbers within these vectors and matrices constitutes
what is commonly called parameters.

To further clarify these concepts, we delve into an illustrative example below.
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Example 1. Linear Optimisation Problem: Production Planning for a
Manufacturing Company
Suppose a manufacturing company produces two products, A and B, using two
machines, M1 and M2. The goal is to determine the optimal production mix of
products A and B to maximise profit while considering the constraints of machine
capacity. The elements of the optimisation problem are the following:

• Objective Function: Maximise profit, given by the profit contribution per
product and the production quantity.

• Decision Variables: xA and xB, representing the quantity of products A
and B to be produced.

• Constraints: Machine hours required for production and machine avail-
ability.

Next, we define parameters that will serve in the linear definition of our con-
straints and objectives:

1. Profit Contribution: The profit per unit for products A and B. For instance,
cA = 10 (profit per unit for A) and cB = 12 (profit per unit for B).

2. Machine Hours Required: The number of machine hours required to pro-
duce one unit of each product on machines M1 and M2. Example values
could be:

• aA1 = 2 hours per unit of A on M1

• aA2 = 1 hour per unit of A on M2

• aB1 = 1 hour per unit of B on M1

• aB2 = 3 hours per unit of B on M2

3. Machine Availability: The available machine hours for machines M1 and
M2. For example, b1 = 40 hours for M1 and b2 = 30 hours for M2.

Mathematical Formulation: We can then formulate the linear programming
problem as follows:

Maximise: 10xA + 12xB

Subject to: 2xA + 1xB ≤ 40

1xA + 3xB ≤ 30

xA ≥ 0, xB ≥ 0

(1.5)

The solution to this linear optimisation problem will give the optimal production
quantity of products A and B that maximises profit while adhering to machine
capacity constraints.
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Parametric uncertainty

In the preceding sections, we mentioned how uncertainty was prevalent in any
choices. In mathematical programming, uncertainty reveals itself primarily in param-
eters. The technical term for this form of uncertainty is parametric (or parameter)
uncertainty and can generally be divided into two categories: aleatoric and epistemic
uncertainty. These two types of uncertainty align with the challenges mentioned in
the prior section regarding the inherent biases that can arise when attempting to
quantify complex problems. We present them briefly.

Aleatoric uncertainty comes from inherent variability or randomness in a system
or process. It represents the unpredictability associated with things like inherent
randomness in a physical system or the variability of human behaviour. For example,
in a dice roll, the outcome is random, and the uncertainty about what number will
come up is aleatoric. This type of uncertainty is typically irreducible because it arises
from fundamental randomness in the system.

Epistemic uncertainty comes from a lack of knowledge or information about the
process or system. It could be due to incomplete data, lack of understanding of
the underlying processes, or errors in model structure. Epistemic uncertainty can
often be reduced through further research, more data collection, or improvement in
modelling techniques.

To manage parametric uncertainty, practitioners employ a suite of techniques, each
catering to different levels of complexity and intricacy. At its simplest, scenario
analysis evaluates the impacts of several scenarios, affecting the values of some pa-
rameters, on the optimisation result. Sensitivity analysis investigates how changes in
one or multiple input parameters influence the output, identifying critical variables
that might sway the results considerably. The Monte-Carlo method uses random sam-
pling to estimate the potential outcomes and their probabilities, offering a statistical
understanding of the risks involved. Delving into more advanced strategies, stochas-
tic programming incorporates known probability densities into the optimisation.
Robust optimisation aims for solutions that remain viable across a spectrum of uncer-
tain parameter values, emphasising resilience over optimality. Chance-constrained
programming ensures constraints are met with a specified confidence level, account-
ing for uncertainty’s inherent risks. Lastly, fuzzy optimisation navigates ambiguity
with fuzzy sets and logic, ideal for decision-making when parameters are vague or
imprecise.

While these methods are designed to address and manage uncertainty, they do not
claim to eliminate it. The essence of addressing uncertainty is to better understand
and account for it, not to eradicate it. The decisions we make – such as choosing
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specific scenarios, setting the parameter range for sensitivity and robust optimi-
sation, or selecting probability density functions for Monte Carlo and stochastic
programming – are pivotal. These choices are critical as they directly impact both
the objective function and the constraints and, consequently, the problem’s solution
– the set of variable values that lead to the optimal objective function value. As
elucidated in the previous section, these choices are far from impartial; they often
reflect personal preferences and are susceptible to biases. These biases can then
propagate through the model, leading to a solution influenced by how uncertainty
and individual perspective have been integrated into the problem.

Choosing the best solution

As highlighted in Section 1.1, personal preferences and biases can still influence
which solution is optimal, even when there is no uncertainty surrounding the
parameters. This highlights the importance of having robust strategies to navigate
different options.

In the context of mathematical programming, the ‘no compromise’ strategy consists
of selecting the solution (i.e. a specific set of variable values) that maximises (or
minimises) one objective function f (among a series of competing objectives). We
typically refer to this methodology as mono-objective optimisation. This approach
represents a clear and decisive method but may overlook nuances and potential
synergies between objectives.

The second strategy is more complex and flexible, focusing on evaluating and se-
lecting solutions that represent trade-offs between competing objectives, meaning
that they are not optimal for any single objective but may offer a more balanced
solution overall. In mathematical programming, this strategy can be implemented
using multi-objective optimisation techniques to find the best compromises between
different objectives. The collection of these compromise solutions is often called
the Pareto front or the set of efficient solutions. These represent solutions where no
objective can be improved without worsening at least one other objective. The iden-
tification and analysis of the Pareto front enable a more nuanced understanding of
the trade-offs and potential synergies between different objectives, facilitating more
informed and balanced decision-making. For those interested in a deeper exploration
of these concepts, more details about multi-objective optimisation techniques and
the formalisation of the Pareto front can be found in Appendix A.2.

Multi-objective optimisation addresses some of the constraints of mono-objective
optimisation but introduces its limitations. One notable restriction arises from the
fact that only a finite number of objectives can be modelled. This limitation is
grounded in several realities.
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Firstly, while it is possible to consider many objectives, doing so can become increas-
ingly cumbersome and less actionable. Incorporating an extensive set of objectives
might complicate the optimisation process and detract from focusing on the most
crucial goals. Secondly, modellers do not always know which objectives might be
pertinent to their problem. The relevance of objectives can depend on various
contextual factors, and it may not always be clear which ones should be prioritised.
Finally, some objectives are inherently challenging to model. For instance, quanti-
fying social unrest caused by the construction of new infrastructure is far from an
exact science, as it requires the integration of complex human dynamics that resist
simple mathematical characterisation.

Structural uncertainty

These constraints on the number and nature of objectives that can be incorporated
into a model can be seen as a specific instance of a more comprehensive limitation
known as structural or model uncertainty.

Structural uncertainty refers to the uncertainty that arises from choosing a par-
ticular model structure or framework to represent a physical system, process, or
phenomenon. Unlike parameter uncertainty, which is associated with the specific
values of the parameters within a model, structural uncertainty is related to the
form and equations of the model itself. Indeed, it is rare for a model to perfectly
encapsulate all the intricacies and complexities of the real-world system it represents.
Decisions must thus be made regarding the level of detail when modelling different
system components, and these choices might diverge between various models, lead-
ing to structural differences between them. For example, in modelling the climate
system, there might be various ways to represent cloud physics or ocean currents.
These choices induce structural uncertainty, meaning there is uncertainty in how
well the model reflects the real physical system and how well the conclusions drawn
from this model will generalise in the real world.

Selecting a series of objectives to optimise is an integral part of these modelling
choices. This decision is not merely a technical task but reflects underlying as-
sumptions and priorities. The choice of objectives to be optimised reveals what is
considered important in the representation of the physical system or process and
may influence the model’s behaviour and results.

Near-optimal spaces

Addressing structural uncertainty presents a real challenge. Yue et al. [Yue+18]
observe that even the employment of “larger and more complex models to better
represent the world dynamics” fails to eradicate structural uncertainties completely.
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According to Pfenninger et al. [PHK14], from this observation, it follows “that
interesting solutions are likely not to be the single global optimum."

To put this into context, especially within the realm of mono-objective optimisation:
The optimal solution of an optimisation problem, as framed in (1.1), refers to the
variable values, x⋆, that adhere to constraints and either maximise or minimise the
value of f(x) depending on the problem’s aim. It is worth emphasising that multiple
such optimal sets of values can exist. For instance, two distinct solutions, xA and
xB, might yield identical objective values. The crux of what Yue et al. [Yue+18] and
Pfenninger et al. [PHK14] are underscoring is that, given the persistence of structural
uncertainty and the inevitable imperfections in our models, the determined x⋆ might
not encapsulate the true optimal. As a result, it is prudent to explore alternative
solutions. However, if we believe our model to be reasonably accurate, solutions
that closely align with the optimum are likely the most pertinent.

This has prompted researchers to devise techniques for exploring near-optimal space
– meaning the investigation of solutions whose objective values, though subopti-
mal, are closely aligned with the optimal objective value. From a mathematical
perspective, this equates to exploring solutions derived from the original set of
feasible solutions X . In the context of the minimisation of a positive function f , the
near-optimal solution space can be defined as:

X ϵ = {x ∈ X |f(x) ≥ (1 + ϵ)f(x⋆)} (1.6)

This equation illustrates that the epsilon-optimal space (more generally referred to
as the near-optimal space) encompasses solutions whose objective values diverge
from the optimal objective value by a factor of ϵ. More information on this topic can
be found in Appendix A.

One of the cornerstone approaches in this domain is the MGA (Modelling to Generate
Alternatives). This is more than a specific methodology; it can be broadly interpreted
as “any method used to systematically search the near-optimal solution space for
alternative solutions” [Yue+18]. This term was first coined in the 1980s by Brill Jr
[Bri79] and applied to land use planning. In recent years, it has regained attention
and been applied to different domains, including energy systems, as explained in
Section 1.3.

Necessary conditions

MGA encompasses a diverse array of methodologies, each implying distinct decision-
making strategies. Many of these strategies leverage MGA techniques to churn out a
broad spectrum of alternative solutions, allowing decision-makers a rich pool from
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which to select. While comprehensive, we postulate that this approach enhances
the likelihood of pinpointing a solution that resonates with everyone involved.
Nonetheless, a potential pitfall of this approach is the sheer volume of options it
might produce, which could inundate and potentially confound decision-makers,
potentially paralysing rather than facilitating constructive discourse. Consequently,
as we emphasised at the end of Section 1.1, we advocate for another approach:
seeking commonalities between these alternative solutions satisfying all stakeholders
and then building on this shared foundation.

In the context of mathematical programming, we coin these shared agreements or
overlaps as ‘necessary conditions’. Think of them as the non-negotiable benchmarks
(e.g. a cap on the number of power plants) that must be met to achieve desired
outcomes (e.g. capping species extinction over a decade). To delve deeper without
becoming overly intricate (comprehensive details are offered in subsequent chapters
and Appendix A), we represent conditions as functions of variables, symbolised as
ϕ. The particularity of these functions is that they exclusively yield values of 0 or 1.
Then, we define a necessary condition as a condition that is valid (i.e. equal to 1)
for all near-optimal solutions. Formally, if X ϵ designates an ϵ-optimal space and ϕ
characterises a condition, then ϕ is a necessary condition for ϵ-optimality if it holds
true for every solution within X ϵ, i.e.

∀x ∈ X ϵ : ϕ(x) = 1 . (1.7)

To summarise this section, this thesis positions its focus on near-optimal space ex-
ploration. While most methodologies in this sphere focus on identifying alternative
solutions, our research diverges by probing the commonalities among these alterna-
tives. This is achieved through techniques tailored to discern necessary conditions.
This nuanced perspective aligns seamlessly with our broader goal: to enrich the
nuanced human discussions at the heart of decision-making, even in contexts steeped
in mathematical rigour.

In the upcoming section, we will delve into the specific scenarios linked to the energy
transition where we employed these methodologies and elucidate the particular
types of necessary conditions we aimed to uncover.

1.3 Making Choices for the Energy Transition

The energy transition is one of the most pressing challenges of our time, representing
a complex interplay between technological innovation, political regulation, social
acceptance, and environmental responsibility. As the world grapples with the urgent
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need to reduce carbon emissions and embrace sustainable energy solutions, the path
towards an efficient and resilient energy system is fraught with uncertainty and
multidimensional objectives.

Mathematical optimisation is a powerful tool to help us make decisions in this
complex area. This thesis uses this tool to address two specific questions about the
energy transition in Europe and Belgium. We go beyond the usual limitations of
energy system optimisation models by using necessary conditions, providing valuable
answers to guide decision-making.

The following sections delve into the complexities of choosing future energy systems,
explaining why optimisation models are well-suited for addressing the questions at
hand and examining the strengths and weaknesses of Energy System Optimisation
Models (ESOMs). Ultimately, we detail the type of necessary conditions we determine
to help make relevant choices regarding these questions.

Choosing future energy systems

The energy transition challenge is rooted in complex decisions encompassing a
range of technological, political, and social factors. In the context of this thesis, our
investigation centres on two pivotal questions:

1. What type of power system is required in Europe to reduce carbon emissions
effectively?

2. Which strategies should be implemented to ensure the sustainability of the
entire energy system in Belgium?

These probing inquiries, integral to regional and global sustainability, have been
the subject of rigorous research in the existing literature [PHK14]. They form the
foundational pillars of the case studies examined in the articles that constitute our
research.

Using mathematical programming for planning the energy transition

Mathematical programming emerges as an ideal tool to tackle complex questions
that pervade various domains, particularly in the context of energy systems.

The primary reason for its suitability lies in a shared characteristic among the two
addressed questions: they present a broad spectrum of potential answers stemming
from the interplay of two intricate factors.
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Firstly, there is a multitude of available technologies that can satisfy the same energy
demand. For instance, low-carbon electricity can be generated through various
means, such as nuclear power plants, solar panels, wind turbines, or gas plants
equipped with carbon capture, utilisation, and storage (CCUS) technologies. This
multifaceted landscape extends to whole-energy systems, where cars might be fueled
by electricity, hydrogen, or other e-fuels, and houses can be heated using electricity
or low-carbon synthetic gas.

Secondly, there are numerous ways in which the different components of the system
can be configured and interconnected. For instance, questions arise regarding the
number and capacity of wind turbines to deploy, their optimal locations, and the
necessary storage backup, among others. When examining the entire energy system,
we could be confronted with whether synthetic methane should be produced locally
or remotely, utilising CO2 captured on-site or remotely [Dac+23], and whether to
use on-site or imported hydrogen.

From a mathematical perspective, the feasible solution space is vast. Mathemat-
ical optimisation is inherently tailored to sift through such expansive realms of
possibilities, pinpointing the most suitable choices.

A further rationale for the aptness of mathematical programming is its capability to
seamlessly incorporate objectives into the decision-making process. The questions
under scrutiny often have multifaceted implications spanning economic, ecological,
and social dimensions. Through optimisation, we can systematically traverse the
spectrum of potential solutions, aligning them with these diverse objectives to ensure
a holistic approach to problem-solving.

Energy System Optimisation Models

The suitability of this tool for addressing energy modelling questions has not only
inspired a multitude of researchers to adopt it but has also led to the definition of a
distinct category of energy system models within the community, known as Energy
System Optimisation Models, or ESOMs [PHK14]. As defined by DeCarolis et al.
[DeC+17], by employing optimisation techniques, ESOMs enable us to identify the
optimal combination, arrangement, and operation of technologies and resources
necessary to achieve a specific objective (e.g. meeting some energy demand at
minimum cost) within predetermined technological (e.g. power plant ramping
limits) and societal (e.g. limiting greenhouse gas emissions) constraints.

The widespread use of ESOMs in energy modelling is well-founded, as highlighted
by a series of strengths identified by DeCarolis et al. [DeC+17]:
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1. They provide a consistent accounting framework that clearly defines the techno-
economic performance characteristics across all modelled processes, ensuring
uniformity and precision.

2. They enable the quick and efficient pursuit of normative goals, even within the
most intricate and multifaceted systems.

3. They can illustrate diverse energy futures, aligning with and reflecting the
broader objectives of energy and environmental policies.

4. They can encapsulate interactions between different sectors, yielding com-
prehensive and cross-cutting insights that are often elusive when confined to
models targeting specific sectors.

Limitations of ESOMs

However, while these models excel at determining the optimal combination of
technologies and resources based on a specific objective, they often fail to address
our subjective, personal ideologies and values.

As stated by Pfenninger et al. [PHK14] “energy systems models are neither certain nor
value-free; rather, they are situated in an area where both the decision stakes and the
system uncertainties are high. They are, therefore, examples of post-normal science,
which implies seeking a diverse set of opinions, including from non-experts."

Post-normal science [Rav99] recognises the limitations of traditional scientific prac-
tices in addressing complex issues where facts are uncertain, and values are disputed.
In the context of energy systems models, this approach acknowledges that there may
be no clear ‘right’ decision and that ethical and social considerations play a significant
role. Rather than relying solely on conventional scientific inquiry, post-normal sci-
ence calls for a broader, more inclusive dialogue that integrates diverse preferences,
including those of non-experts.

These limitations are intimately tied to the inherent structural uncertainty present
in ESOMs, as highlighted by Yue et al. [Yue+18]. The sources of this uncertainty
are multifaceted and can include, for example, “the default ESOM formulation that
ignores the heterogeneity among decision-makers in the energy system, the manner
in which non-economic considerations factor into energy purchasing decisions, and
the role that politics, social norms, and culture play in shaping public policy."
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Employing necessary conditions to accommodate diverse preferences

Using methodologies to incorporate diverse preferences in energy system optimi-
sation is thus indispensable. As mentioned above, multi-objective techniques in
mathematical programming can accommodate multiple aims. However, these tech-
niques often fall short in integrating non-economic, ethical and social considerations
or preferences from non-experts. This shortcoming is often attributed to the inherent
difficulty in quantifying or precisely modelling these factors.

Instead of attempting to encompass all preferences through modelling alone, we
propose that embracing the concepts of near-optimal space and necessary conditions
offers a more robust solution.

Exploring the near-optimal space can unearth solutions that, although less optimal
per the modelled objectives, might align well with unmodelled ones. This potential is
precisely why there has been a revival in the use of the MGA methodology in energy
system modelling, as evidenced by the works of DeCarolis [DeC11] and DeCarolis
et al. [DeC+16]. Such endeavours have invigorated interest in these techniques. For
instance, James and Ilkka [JI17] pioneered new exploration algorithms, while Li
and Trutnevyte [LT17] merged MGA with Monte-Carlo exploration aiming to reduce
parametric uncertainty. Furthermore, the methodology’s adaptability and robustness
are highlighted by research such as Pedersen et al. [Ped+21], Neumann and Brown
[NB21], and Grochowicz et al. [Gro+23], effectively employed MGA in strategising
the evolution of energy systems.

Among this framework, the computation of necessary conditions is a methodology
that can elucidate factors that guarantee a specific degree of performance for the
optimised objectives while providing room for discussions that can integrate unmod-
eled factors. This strategic approach is at the core of the three articles constituting
this thesis’s contributions.

In their basic formulation, briefly presented in the previous section, conditions
are typically functions with binary outcomes. In our work on energy systems, the
focus was directed towards a particular type of condition, which yields distinct
insights highly pertinent for energy system optimisation. Specifically, we zeroed
in on conditions framed as constrained sums of variables:

∑n
i=1 dixi ≥ c, where

di ∈ 0, 1 ∀i. This type of condition holds true if the cumulative variable values of
a given solution surpass the real-valued threshold, denoted by c ∈ R. A necessary
condition is then obtained by determining the threshold that validates the condition
across all solutions within a designated near-optimal space. This threshold ensures
the attainment of a specific suboptimality level linked to this near-optimal space.
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To provide context, let us examine a power system expansion scenario. Within this
framework, we aim to determine the capacities of specific power plants, such as
onshore wind turbines in Europe. As indicated in [DE22], the optimal capacities
for these wind turbines might span several hundreds of GW. However, this capacity,
while cost-effective, might not meet other objectives.

By computing an appropriate necessary condition, we can discern the least capacity
needed for onshore wind turbines to attain a specific near-optimality level (char-
acterised by the sub-optimality coefficient ϵ) in cost while giving leeway to other
objectives. This necessary condition, modelled as the constrained sum of unknown
wind turbine capacities, corresponds to the condition that is valid for all solutions
whose objective value is not lesser than (1 + ϵ) times the optimal objective value.
The right-hand side c of this condition corresponds to the minimum capacity needed
to be installed to ensure that the cost does not exceed this value. In the case study
of Dubois and Ernst [DE22], this minimal value is 0 for a less than ϵ = 5 per cent
hike in cost.

In the initial article presented in this thesis, we unearthed similar insights for
transmission, offshore wind, photovoltaic, and Li-Ion battery capacities, as referenced
in [DE22]. The sequel [Dub+23] pivoted its focus onto resources, identifying the
least local and imported resources necessary to optimise both cost and energy
return on investment. The concluding paper [DE23] delves into the impacts of
spatio-temporal resolution on necessary conditions.

1.4 Roadmap

In this introduction, we have charted the thought process that directed our attention
to the formalisation of necessary conditions aimed at enhancing decision-making
and their application within the energy transition context.

The rest of this thesis is structured around the three articles that collect the contribu-
tions of this thesis. These are in order of publication:

• Computing necessary conditions for near-optimality in capacity expansion plan-
ning problems [DE22] by Antoine Dubois and Damien Ernst, published at the
2022 Power Systems Computation Conference in Porto.

• Multi-objective near-optimal necessary conditions for multi-sectoral planning
[Dub+23], by Antoine Dubois, Jonathan Dumas, Paolo Thiran, Gauthier
Limpens and Damien Ernst, published in Applied Energy in 2023.
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• Impacts of spatial and temporal resolutions on the near-optimal spaces of energy
system optimisation models [DE23], by Antoine Dubois and Damien Ernst,
published at the 2023 Innovative Smart Grid Technologies conference in
Grenoble.

In what follows, each chapter is devoted to a specific article. Every chapter adheres
to a consistent structure. It begins by pinpointing the central research question that
drove the article, followed by an exposition of the idea for tackling this question.
The latter part of each chapter presents the published version of the article. This
is prefaced by an overview of the article’s primary contributions, an account of the
division of labour among the authors, and some reading pointers for those who may
wish to skip or streamline certain sections.

In a nutshell, Chapter 2 lays the foundational groundwork by introducing and
formalising the concepts of epsilon-optimality and necessary conditions. This is
illustrated through a study of power network expansion planning across Europe.
Chapter 3 broadens these concepts to encompass multi-objective optimisation.
While the geographic focus narrows to Belgium, the study widens its sectoral lens
to account for various energy carriers. Lastly, Chapter 4 delves into the influence
of model complexity on necessary conditions, conducting a detailed spatiotemporal
analysis of the European power system reminiscent of the first article’s focus.

Then, Chapter 5 concludes this thesis by briefly revisiting the critical insights
gleaned from the three presented papers and highlighting the myriad of research
opportunities they unveil.

At the end of this thesis, two appendices have been included for additional un-
derstanding. The first, denoted as Appendix A, consolidates all the mathematical
developments on near-optimal spaces and necessary conditions discussed throughout
this thesis, providing readers with a centralised reference. The subsequent Appendix
B outlines supplementary efforts that, although not directly contributing to the
thesis’s primary outcomes, played a foundational role in feeding our main research.
These efforts led to the development of various software tools and the publication of
the following articles:

• Model Reduction in Capacity Expansion Planning Problems via Renewable Gener-
ation Site Selection [Rad+21] by David Radu, Antoine Dubois, Mathias Berger,
and Damien Ernst, presented at the 2021 IEEE Madrid PowerTech.

• Siting renewable power generation assets with combinatorial optimisation [Ber+22]
by Mathias Berger, David Radu, Antoine Dubois, Hrvoje Pandžić, Yury Dvorkin,
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Quentin Louveaux, and Damien Ernst, published in Optimization Letters in
2022.

• Assessing the impact of offshore wind siting strategies on the design of the Euro-
pean power system [Rad+22] by David Radu, Mathias Berger, Antoine Dubois,
Raphaël Fonteneau, Hrvoje Pandžić, Yury Dvorkin, Quentin Louveaux, and
Damien Ernst, published in Applied Energy in 2022.

• The energy return on investment of whole-energy systems: Application to belgium
[Dum+22] by Jonathan Dumas, Antoine Dubois, Paolo Thiran, Pierre Jacques,
Francesco Contino, Bertrand Cornélusse, and Gauthier Limpens, published in
Biophysical Economics and Sustainability in 2022.
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2Exploring near-optimal spaces

2.1 The Question

How do solutions that deviate slightly from optimality behave?

The question that brought us on the path of near-optimal space exploration appeared
as we worked on the task of renewable power plants siting (see Appendix B for more
detail on this research). During this research, we devised algorithms to pinpoint
the most suitable locations across Europe for placing renewable assets according
to different individual criteria. Given a sufficiently granular spatial resolution, this
meant discerning optimal positions from potentially thousands of viable spots for
hundreds of installations.

While our algorithms yielded singular cost-optimal solutions, they failed to elucidate
if other solutions, slightly suboptimal, would suggest similar or divergent site recom-
mendations. If the sets of recommended locations varied significantly for marginally
different objective values, then the confidence in the conclusions drawn from the
optimal set would be severely undermined. This prompted the following questions:
How can we validate the robustness of our recommendations? Is there a way to
algorithmically ascertain the consistency of these solutions?

2.2 The Idea

These questions first prompted our interest in 2020. Other people had asked
themselves these questions before, and several others have since then, leading to a
substantial increase in publications on near-optimal spaces and related techniques
within the past three years.

However, we observed that many existing techniques fell short of providing clear
insights. As previously noted, many aimed to generate an extensive set of alternative
solutions. This approach has two main drawbacks: (i) it can be computationally
demanding (with computational effort increasing with the number of alternative solu-
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tions sought), and (ii) it may not serve decision-makers effectively by overwhelming
them with too many options.

Rather than focusing on generating many solutions, we reframed the problem. We
aimed to determine how to derive valuable insights with minimal computational
effort. This shift in perspective led us to conceptualise the idea of necessary condi-
tions. These conditions spotlight elements shared across all alternative solutions,
offering a streamlined approach and enabling efficient computational techniques for
their identification.

2.3 The Paper: Computing Necessary Conditions
for Near-Optimality in Capacity Expansion
Planning Problems

This article was presented at the 22nd Power Systems Computation Conference held
in Porto in June 2022.

2.3.1 Paper’s contributions

This article marks the start of our exploration into near-optimal spaces and necessary
conditions. Its primary contributions can be summarised as:

1. Establishing the mathematical framework for exploring near-optimal spaces.

2. Demonstrating how the necessary condition approach offers valuable insights
into power system expansion planning.

2.3.2 Authors’ contributions

This paper is a collaborative effort between Professor Ernst and myself. The research
idea was initially presented by me, outlining the thought process discussed in
Chapter 1. Together, we developed the mathematical formulation of ϵ-optimal spaces
and necessary conditions. Additionally, I designed and conducted the experiments
for the case study, demonstrating the methodology. The writing of the paper was
primarily led by me, with supervision from Professor Ernst.
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2.3.3 Reading tips

The material covered in Section III, “Problem Formulation", which introduces
the concepts of ϵ-optimality and necessary conditions, and Section IV, “Proposed
Method", which outlines the methodology for deriving necessary conditions, has
been rephrased and included in Appendix A. Therefore, it may be redundant for
readers who have already gone through this appendix. However, Section III can still
be valuable for having a rapid understanding of the various concepts discussed in
the presentation of the test case in Section V, “Test Case".
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Abstract—In power systems, large-scale optimisation problems
are extensively used to plan for capacity expansion at the supra-
national level. However, their cost-optimal solutions are often
not exploitable by decision-makers who are preferably looking
for features of solutions that can accommodate their different
requirements. This paper proposes a generic framework for
addressing this problem. It is based on the concept of the
epsilon-optimal feasible space of a given optimisation problem
and the identification of necessary conditions over this space.
This framework has been developed in a generic case, and an
approach for solving this problem is subsequently described for a
specific case where conditions are constrained sums of variables.
The approach is tested on a case study about capacity expansion
planning of the European electricity network to determine
necessary conditions on the minimal investments in transmission,
storage and generation capacity.

Index Terms—Capacity expansion planning, decision-making,
epsilon-optimality, necessary conditions, optimisation

I. INTRODUCTION

In the coming decades, the European power system will
have to face the challenges related to the integration of massive
amounts of renewable energy sources and a high level of
electrification of the heating, transport and industrial sectors.

The size and level of integration of the European elec-
tricity network (i.e., at the transmission level, thousands of
substations and power lines connecting them) entail a level
of complexity in planning this transition that requires using
detailed optimisation models. The increased sophistication of
these models comes with drawbacks. In particular, these mod-
els essentially focus on unique cost-based optimal solutions
that are too restrictive and do not encompass the different
requirements of many stakeholders intervening in the decision
process for new investments in capacity.

In our opinion, it is preferable to provide necessary
conditions in capacity investments that guarantee a
constrained suboptimality and provide a common ground over
which decision-makers can settle and create solutions that
accommodate their needs. For example, we could compute
the minimum required investment in transmission lines per
country to ensure a maximum deviation of 10% from the

Antoine Dubois is a Research Fellow of the F.R.S.-FNRS, of which he
acknowledges the financial support.

optimum. Alternatively, one might be interested in knowing
if a particular technology - for example, Li-Ion battery or
some renewable energy source (RES) type - is necessary for
a cost-efficient energy transition.

In this paper, a framework is presented to derive necessary
conditions for ϵ-optimality and applied to a capacity
expansion planning problem. In Section II, we discuss the
literature related to the optimisation concepts that underlie the
framework. The optimisation framework itself is presented in
Section III. Section IV specifies this framework to the case
of conditions consisting of constrained sums of variables
and provides a fully-defined methodology for computing
non-implied necessary conditions in such a context. This
methodology is afterwards illustrated on an expansion
planning problem in Section V. Section VI concludes with
the description of future research directions. Finally, Appendix
A gathers more detailed data on the modelling of the network
used in the test case.

II. LITERATURE REVIEW

Decision-making based on optimisation results is a complex
task. Indeed, this exercise lies at the frontier between human
intelligence and machine power whose coupling is challeng-
ing [1], sometimes referred to as post-normal science [2].
Decision-making is linked to deep uncertainties [3] where,
among other topics, the desirability of alternative outcomes
corresponding to different policy objectives is subject to dis-
agreement among stakeholders. These uncertainties and dis-
agreements imply that relying on a single cost-based optimum
is often not sufficient. Indeed, there is no guarantee that the
findings obtained via this optimum will be robust regarding
parameter perturbation, nor that they will satisfy conflicting
objectives. Moreover, as shown in [4], cost-optimal scenarios
are not adequate to approximate real-world problems, such
as those encountered in the context of the energy transition.
This problem highlights the need for the “role of optimisation
model methods to be re-thought in full recognition of these
limitations”, as suggested in [5]. Those authors advocate op-
timisation methods that “should be used to generate planning
alternatives, facilitate their evaluation and elaboration, provide
insights and serve as catalysts for human creativity”.
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We argue that such a re-thinking can be achieved by
orienting the use of optimisation methods in the search for
conditions that are respected across multiple feasible solutions
and guarantee a constrained level of suboptimality. The advan-
tage of this approach over unique cost-optimal solutions is to
provide decision elements that all stakeholders can agree on
and built on using their creativity.

Those solutions can be obtained in a variety of ways. One
possibility is the use of multi-objective (or multi-criteria) opti-
misation [6]. In this field, one searches not for a single solution
but a set of efficient or Pareto-optimal solutions, translating
some trade-offs between objectives. A notable drawback with
these methods is the general assumption of knowing which
objectives are at stake in the problem and being able to model
in some form those objectives. Objectives that are a priori
unknown (either because of lack of knowledge or unconscious
biases) or non-modellable are, thus, left apart.

A technique that circumvents this limitation is what some
authors refer to as “Modeling to Generate Alternatives” [7].
It consists of exploring solutions located in the inferior or
suboptimal region of an optimisation problem [8]. The un-
derlying motivation of this approach is that this region might
contain solutions that are better in terms of some unmodelled
objectives. Several authors, such as [9], [10], [11], [12] or
[13], exploit this technique. However, their main objective is
to show the variety of solutions that can be extracted rather
than to systematically compute conditions that are respected
by those solutions. In this paper, we present a framework that
puts the identification of such conditions at the centre of the
optimisation process.

Finally, in the domain of multi-objective optimisation,
[14] have surveyed advanced data-driven methods for
extracting commonalities among Pareto-optimal solutions.
Our framework aims at providing the ground for developing
such techniques in suboptimal spaces.

III. PROBLEM FORMULATION

Let us consider the following optimisation problem

min
x∈X

f(x) (1)

with X being the feasible space and f : X → R+ the objective
function. Let x∗ be an optimal solution. We define an ϵ-optimal
space as follows:

X ϵ = {x ∈ X | f(x) ≤ (1 + ϵ)f(x∗), ϵ ≥ 0}.

The set X ϵ, depicted in Figure 1, contains only the feasible
solutions with an objective value no greater than (1+ϵ)f(x∗).
We define ϵ as the suboptimality coefficient of such a space, i.e.
specifying by how much the objective values of the solutions
in the space deviate at most from the optimal objective value.

Let us define conditions as functions ϕ : X → {0, 1}. Our
goal is to identify, among a set Φ of conditions, the ones which
are true for any solutions in X ϵ. These conditions are called

Fig. 1. Three-dimensional representation of an ϵ-optimal space. In the
horizontal plane, the space of feasible solutions X ⊂ R2 is depicted while
the vertical axis represents the objective function. The red dot is the optimal
solution x∗ corresponding to the minimal value of the objective function
over the feasible space. The blue space coincides with the hyper-plane
f(x) = (1 + ϵ)f(x∗) allowing one to determine the ϵ-optimal space X ϵ

shown in green.

necessary conditions for ϵ-optimality, where the parameter
ϵ allows one to monitor the level of suboptimality of those
necessary conditions. Mathematically,

ΦX ϵ

= {ϕ ∈ Φ | ∀x ∈ X ϵ : ϕ(x) = 1}
is the set of necessary conditions for a given feasible space
X , sets of conditions Φ and suboptimality coefficient ϵ.

A. Non-implied necessary conditions on sets of parametric
conditions

The goal of the methodology presented in this paper is to
support decision-makers in their decision process. However,
as explained in the next paragraph, even for a single set of
conditions, an infinite number of necessary conditions can
be derived. Such quantity of information can not be used
efficiently to take decisions. In this section, the concept of
non-implied necessary condition is introduced as a solution to
this problem.

Let consider the feasible space X = R and and a set of
parametric conditions of the type

Φ = {ϕc(x) := x ≥ c|c ∈ R}.
This set contains an infinite number of conditions and can lead
to identifying an infinite number of necessary conditions, with
which decision-makers might find it cumbersome to deal.

For instance, let ϕ1(x) := x > 1 be a necessary condition
for ϵ-optimality (i.e. ∀x ∈ X ϵ : ϕ1(x) = 1). This automatically
implies that all ϕc where c < 1 are necessary conditions.
Indeed ∀x ∈ X ϵ : x > 1 ⇒ x > c. The only condition
that cannot be implied to be a necessary condition from
the knowledge of other necessary conditions is the necessary
condition ϕc with the largest value of c.

This necessary condition is what constitutes a non-implied
necessary condition. This is a condition that cannot be implied
to be a necessary condition from the sole knowledge of other
conditions that constitute necessary conditions. To minimise
the number of necessary conditions that need to be identified
and presented to decision-makers, the focus should be placed
on the identification of non-implied necessary conditions.
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(a) (b)
Fig. 2. Graphical illustration of implication using spaces over which condi-
tions are true.

The notion of implication can be formalised by defining the
space over which a condition ϕ is true,

Iϕ = {x ∈ X | ϕ(x) = 1}.
A condition ϕ2 implies ϕ1 if Iϕ2

⊂ Iϕ1
, i.e. ϕ1 is true for all

x ∈ X over which ϕ2 is true. Considering sets of parametric
conditions, Iϕ2 = Iϕ1 happens only if both conditions are
equal. Using this notion, conditions can be defined to be
necessary conditions if the space over which they are true
encloses X ϵ, and non-implied necessary conditions if this
space does not include any of the spaces over which other
necessary conditions are true. Mathematically, the set of non-
implied necessary conditions for ϵ-optimality is defined as

Φ
X ϵ

= {ϕ ∈ ΦX ϵ | ∀ϕ′ ∈ ΦX ϵ \ {ϕ} : Iϕ′ ̸⊂ Iϕ}.
Figure 2a provides an illustration of two necessary condi-

tions ϕ1 and ϕ2, with ϕ2 implying ϕ1. Considering a set of
conditions Φ = {ϕ1, ϕ2} containing uniquely ϕ1 and ϕ2, the
set of necessary conditions is given by ΦX ϵ

= {ϕ1, ϕ2}, and
the set of non-implied necessary conditions by Φ

X ϵ

= {ϕ2}.
Figure 2b provides an illustration of two other necessary
conditions ϕ3 and ϕ4, with no implication. Considering a set
of conditions Φ = {ϕ3, ϕ4}, then Φ

X ϵ

= ΦX ϵ

= Φ.

IV. PROPOSED METHOD

In this section, a specific instance of the generic problem
specified in Section III is considered. This instance is
characterised by conditions consisting of parametric
constrained sums of variables. We show how for each
value of the parameter defining these sums, a unique non-
implied necessary condition can be determined.

Theorem 1. Let X ⊂ Rn, f : X → R+ and

Φd = {ϕc
d(x) := dTx ≥ c | c ∈ R},

where x ∈ X , be a set of conditions consisting of constrained
sums of variables dTx =

∑n
i=1 dixi defined by d ∈ {0, 1}n.

Let c∗ = minx∈X ϵ dTx then

ϕc∗
d := dTx ≥ c∗

is the only element in the set of non-implied necessary
conditions Φ

X ϵ

d .

Proof. Let us first show that the set of necessary conditions
is equal to

ΦX ϵ

d = {ϕc
d|c ≤ c∗}.

By definition,
c∗ = min

x∈X ϵ
dTx

is the smallest value that dTx can take over X ϵ. This implies
that

ϕc∗
d (x) := dTx ≥ c∗

is true for all x ∈ X ϵ. Similarly, if c < c∗, we know that

dTx ≥ c∗ > c

is true for all x ∈ X ϵ. Thus, all conditions ϕc
d such that c ≤ c∗

are necessary conditions. For c > c∗ however, at the optimum
x∗
ϵ = argminX ϵ dTx, we have

dTx∗
ϵ = c∗ < c

which implies that the condition

ϕc
d(x) := dTx > c

is not true for all x in X ϵ, as x∗
ϵ ∈ X ϵ. Therefore, all

conditions ϕc
d such that c > c∗ are not necessary conditions.

Now let us prove
Φ

X ϵ

d = {ϕc∗
d }.

This means that all ϕc
d with c < c∗ are implied by and do not

imply ϕc∗
d . This can be shown by proving that, for any c < c∗,

Iϕc∗
d

⊂ Iϕc
d

and Iϕc
d
̸⊂ Iϕc∗

d
.

We have Iϕc∗
d

⊂ Iϕc
d

because, as shown before, for any x,
if ϕc∗

d (x) is true, ϕc
d(x) with c < c∗ is also true. Moreover,

Iϕc
d
̸⊂ Iϕc∗

d
. Indeed, the element x such that

dTx = c

is an element of Iϕc
d

but not of Iϕc∗
d

.

V. TEST CASE

This methodology will now be applied to a specific test case.
The test case is articulated around the problem of capacity
expansion planning of the European electricity grid within
the objective of the European Union to be carbon-neutral by
2050. Typically, the objective of this problem is to determine
capacity investments in transmission, generation and storage
assets as well as operation of those assets to satisfy electrical
demand while minimising capital and marginal costs.

Decision-makers might be interested in knowing the nec-
essary conditions on the required amount of capacity to be
invested in each of those technologies at the European and
national levels to ensure that they do not experience more
than a well-specified level of cost-suboptimality.

Our methodology will be applied to this problem for
computing non-implied necessary conditions for achieving ϵ-
optimality on five technologies. More specifically, required
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minimum investments are first computed for groups of lines
at the European, national and individual-line levels. Then,
necessary conditions are determined for storage and RES
generation, including onshore wind, offshore wind, and utility-
scale PV, over the whole network.

In the following section, a short contextualisation of the
test case is presented. The test case is then defined following
the terms of the methodology presented above. It is followed
by a short analysis of the optimal solution of the expansion
planning problem before describing necessary conditions.

A. Context
The geographical scope of the expansion planning problem

is set to Europe. All countries in the European continent are
included, except for Russia, Iceland and some small countries
such as Cyprus, Malta and Liechtenstein. In this problem, the
network is represented as a grid made up of nodes and lines.
When applied at the European level, nodes are generally clus-
tered by country while lines correspond to aggregations of pre-
existing or planned transmission lines between these countries.
Figure 3a shows the nodes and lines forming the network. In
addition, generators and storage devices are attached to each
of those nodes. The temporal scope of the problem is set to
one full year, corresponding to the year 2050. More details on
the modelling of the network can be found in Appendix A.

B. Optimisation problem
The expansion planning problem is solved using linear

optimisation via the open-source tool PyPSA [15]. In this
context, the elements composing problem (1) are described
briefly below.

Objective function f . The objective of the problem is to
minimise the total annual system cost. To be more specific,
the objective function f corresponds to the sum of annualised
capital fixed costs and variable costs of generation, storage
and transmission across the network.

Feasible space X . The feasible space can be modelled as
X = {x ∈ Rn|Ax ≥ b, A ∈ Rm×n,b ∈ Rm} with m ∈ N
and n ∈ N0. The variables x correspond to investment
(i.e. how much capacity must be added where and to what
technology) and operational variables (e.g. which quantity
of energy each generator must produce at each time step).
All variables are continuous, as investments are continuous
and unit commitment is not modelled. The bounds on those
variables are composed via technical and physical constraints
modelled as linear constraints. In addition, a constraint
imposing a 99% reduction on CO2 emissions compared to
1990 levels is added. This value is set Europe-wise and is
not set to 100% to ensure the feasibility of the problem.

Set of conditions Φ. As in Section IV, to compute non-implied
necessary conditions corresponding to minimum capacity in-
vestments, sets of conditions of form

Φd = {dTxI ≥ c | c ∈ R}

(a) Initial capacity.

(b) Additional capacity to be cost-optimal.
Fig. 3. European electricity grid representation with the width of lines
proportional to capacity in GW.

are used, with xI a vector of size |I| that collects the different
investment variables and d ∈ {0, 1}|I|. Depending on the type
of investment variables for which a non-implied necessary
condition is desired, it suffices to define an appropriate d, i.e.
whose elements corresponding to the required variables are
set to 1, and others to 0.

Suboptimality coefficient ϵ. As mentioned above, necessary
conditions are valid for a given value of the suboptimality
coefficient ϵ. In this study, necessary conditions are computed
for different values of ϵ - ranging from 0% (i.e. optimality) to
20% - to see how minimal capacity investment evolves with
the suboptimality coefficient.

Computation of non-implied necessary conditions. As a
reminder, the computation consists in the following steps:

1) Compute an optimal solution x∗ for problem (1).
2) For a given suboptimal coefficient ϵ, compute an ϵ-

optimal space X ϵ using this solution.
3) For this ϵ and a value of d, extract a non-implied

necessary condition by solving minx∈X ϵ dTx.
4) Repeat step (2) and (3) to obtain non-implied necessary

conditions for different values of ϵ and d.

C. Optimal solution.

Figure 3 shows the initial topology - with the widths of
lines proportional to their capacity in GW - and how much
capacity should be added to be optimal (i.e. obtained from x∗).
Table I lists the optimal capacities for the technologies that are
expanded in the problem. Capacities of lines are expressed in
TWkm, i.e. the power capacity installed over a given distance.
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TABLE I
OPTIMAL CAPACITIES.

TWkm GW

AC DC AC+DC Onshore wind Offshore wind Utility PV CCGT OCGT Li-Ion

128 90 218 168 327 367 49 0 249
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0 5 10 15 20
Suboptimality coefficient  (%)

0

10

20

30

40

50

60

Ne
w 

ca
pa

cit
y 

(T
W

km
)

FR
DE
GB
NO

(b) Sum of the capacities of country lines.
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(d) Sum Li-Ion batteries capacities.
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offshore wind, utility PV and sum of the three).

Fig. 4. Non-implied necessary conditions on new capacity for different levels of suboptimality.

For transmission, with the addition of 146 TWkm of lines,
the initial 72 TWkm is tripled. Capacity is added to almost
all lines, but major investments are made in some countries
like Germany and France. In these particular cases, the sums
of the optimal capacities of the lines connected to the country
are equal to 79 TWkm (from an initial capacity of 21 TWkm)
and 57 TWkm (from 23 TWkm).

The capacities of RES, including onshore wind, offshore
wind and utility PV, are massive, reaching 862 GW across
the three technologies. Gas plants are also deployed though
on a smaller scale due to the constraint on CO2 emissions.
Finally, a substantial amount of Li-Ion batteries is built all
around Europe with the main hub being in Spain where a lot
of PV is also deployed. Note that the initial capacity of these
technologies (i.e., RES, storage and gas) are null.

From this optimal solution, the ϵ-optimal spaces correspond-
ing to the values of ϵ listed in the previous section are defined
and necessary conditions for transmission, Li-Ion storage and
RES generation are computed.

D. Necessary conditions on transmission capacity
In this case, the variables of interest correspond to

transmission capacity variables, i.e. how much capacity - in

TWkm - should be added to each line. We minimise capacity
in TWkm (i.e. the power capacity of the line multiplied by
its length) because this value is a good representative of
both the physical and economic investments in transmission
assets. Necessary conditions are first computed for the sum
of capacities of all lines in the network. The analysis is then
refined by looking at the sum of capacities of lines connected
to a given country and, finally, at the capacities of unique lines.

Whole network. The first non-implied necessary conditions
to be ϵ-optimal consist of the required minimum capacity to
be added to the whole network. These are obtained by setting
to one all values of d corresponding to transmission capacity
investment variables. The other values of d are set to zero.

Figure 4a shows the values of the required new capacity
to sustain a certain ϵ-optimality for different values of ϵ. The
required new capacity drops rapidly for small values of ϵ and,
for a suboptimality coefficient ϵ of 10%, it has already been
divided by a factor two compared to the optimum. However,
for larger ϵ, the decrease slows down, and the necessary
conditions start reaching a slowly decreasing plateau around
60 TWkm.
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National lines. These first results show how much capacity
should be added to the initial network to keep costs above
a certain ϵ-optimality. National transmission system operators
could also be interested in the minimum capacity required
to connect their country to the rest of the system. It can be
identified by setting all values in d to zero except for those
corresponding to the lines connected to a given country, in
which case they are set to one.

Figure 4b focuses on the four countries with the highest
added incumbent capacity (in TWkm) in the optimal solution.
In decreasing-capacity order, those are France, Germany,
Great Britain and Norway. For the two last ones, the
necessary additional capacity converges to 0 TWkm for a
suboptimality coefficient ϵ of less than 5% even though
they had around 20 TWkm of new installed capacity in
the optimal solution. France and Germany start from an
even higher capacity level in the optimal solution, with
58 and 34 TWkm of added incumbent capacity. When
the coefficient ϵ reaches 20%, they still have a non-zero
additional capacity, with respectively 5 and 8 TWkm, but the
decrease is greater than 90% for France and 75% for Germany.

Individual lines. Necessary conditions can be used to identify
critical lines in the network. In this case, only one value in d is
set to 1. Figure 4c shows the value of the necessary conditions
for the four lines with the largest capacity increase (in TWkm)
in the optimal solution: ES-FR, FR-IT, FR-GB, and DE-FR.

The main conclusion drawn from this graph is that no
individually line needs to be necessarily expanded to avoid
a suboptimality greater than 2.5%.

E. Necessary conditions on storage capacity
In the model, there is no pre-existing storage capacity and

investment can be made at each bus. In the optimal set-up,
249 GW of Li-ion batteries are built and store 98 TWh over
the simulated year. However, Figure 4d shows the necessary
condition reaches 0 GW for a suboptimality coefficient ϵ as
small as 5%.

F. Necessary conditions on RES capacity
Finally, investments in renewable energy sources, includ-

ing onshore and offshore wind turbines and utility-scale PV
panels, are analysed. Four types of necessary conditions are
computed: one per technology corresponding to the required
minimum in new capacity for that technology and one for
the required minimum in the sum of capacities in the three
technologies. As for storage, a greenfield approach is used and
the new capacity is equal to the total capacity that is installed.

Figure 4e shows that investments in renewable energies are
essential as the minimum capacity required to be ϵ-optimal
does not drop below 600 GW even as the suboptimality
coefficient ϵ rises to 20%. However, this is less clear for each
RES technology individually. While the minimum requirement
for offshore wind stays consistent with increasing values of
the suboptimality coefficient ϵ, the necessary conditions for
onshore wind and utility PV converge to 0 GW.

VI. CONCLUSION AND FUTURE WORK

In this paper, a framework offering a change of focus for
optimisation model methods was presented and applied for
capacity expansion planning. Deviating from cost-optimal
focused studies, we advocate for the search of non-implied
necessary conditions for ϵ-optimality to inform decision-
makers efficiently.

The concepts required to define this search in a generic
case were formalised. A methodology was then presented
to derive necessary conditions in the specific context where
conditions consist of constrained sums. Finally, to illustrate
the framework, this methodology was applied to a test case
related to capacity expansion planning at the European level,
focusing on the minimum investments in transmission, storage
and generation required for ϵ-optimality.

This work sets the ground for further developments of the
presented framework. First, the framework was specified for
a fixed set of parameters that define the shape of the feasible
space X and of the objective function f . Changing the value
of the parameters could thus impact X and f , and in turn, the
optimal solution and the ϵ-optimal spaces X ϵ. As a result, there
is no guarantee that necessary conditions found for a fixed set
of parameters would remain the same for a different set of
parameters. The concept of necessary conditions could thus be
extended to overcome this limitation by defining sets of meta-
necessary conditions valid for different sets of parameters. De-
termining such necessary conditions and providing guarantees
on implications would require more advanced techniques than
the one presented in this article.

Second, in this paper, we only presented an algorithmic
solution for computing non-implied necessary conditions in
the context where conditions consist of constrained sums
of variables. It would be interesting to propose algorithmic
solutions for other types of conditions.

Third, while we focused on cost-based ϵ-optimality, this
concept and the one of necessary conditions can naturally be
extended to other objectives.

Finally, it would be interesting to investigate whether other
fields than capacity expansion planning could benefit from
the framework introduced in this paper.

APPENDIX

Modelling and optimising the network is done using PyPSA
[15] in conjunction with REplan [16].

A. Topology - Buses and Lines

The initial topology of the network is based on the
TYNDP18 2027 reference grid developped by ENTSO-E [17].
It consists of bi-directional net transfer capacities (NTC)
between countries or regions inside countries. To obtain a one-
node-per-country topology, nodes are clustered per country,
outgoing lines capacities are summed, and intra-country lines
are removed.
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Connections are modelled as bi-directional links using a
transportation model. The initial capacity of each line is set
to the maximum of both NTCs. Lines crossing seas are con-
sidered to be HVDC cables, while other lines are represented
as HVAC lines. For simulating the N-1 stability constraint,
the maximum power flow across any line is set to 70% of its
installed capacity (as suggested in [18]).

For keeping the expansion realistic, an upper bound is fixed
on the maximum capacity per line. This upper bound is set
based on the NTCs of the ’Global Climate Action 2040’
scenario of TYNDP2018. However, to provide some slack to
the model, this capacity is multiplied by a pre-defined factor
of 3. Note that for a multiplication factor equal to 2, around
5% of the load was shed in the optimal solution.

B. Load

The model is solved at a 2-hourly resolution. At each time
step, the load must be satisfied or, is shed for a cost of
3ke/MWh. Hourly load series per country are extracted from
the Open Power System Data project [19]. The reference year
used in this model is 2018.

C. Generation and Storage Technologies

The model contains generation and storage technologies.
For each technology, one representative plant is used per
node where the pre-existing capacity or capacity expansion
potential is not null. As detailed below, some of these
technologies are expandable and others are not.

Technologies with expandable capacity. Dispatchable capac-
ity can be deployed in the form of CCGT and OCGT. They
are the only technologies that produce CO2 emissions when
generating electricity.

Short-term storage can be built as Li-Ion batteries. Those
batteries are characterised by two elements: their peak power
capacity and the maximum duration during which they can
discharge this power. In the test case, this second element is
fixed to 4 hours and multiplying by the peak power gives the
storage capacity of the battery.

For these three technologies, no initial capacity and no upper
limit on the amount of new capacity are considered.

Three types of renewable energy sources are added to the
model: onshore wind generators, offshore wind generators and
utility-scale PV power plants. The per-country capacity factors
profiles are obtained through Renewables.ninja, presented
in [20], [21], while expansion potential are computed via
GLAES [22]. GLAES is parametrised such that, on a
cumulative basis, a maximum of 447 GW can be built for
onshore wind, 1077 GW for offshore wind and 1150 GW for
PV. No initial capacity is considered. The energy produced
by those generators can be curtailed without incurring any
supplementary cost.

Technologies with fixed capacity. New investments in nu-
clear power are not considered. Generators in Belgium and
Germany, and those commissioned before 1980, are removed

from the model. Using the JRC Open Power Plants database
[23], this leads to 94GW of capacity which is in line with the
projections made in the 2016 EU Reference Scenario [24].

Hydro-power is modelled through the addition of pre-
existing run-of-river generators with a capacity of 34 GW,
reservoirs with 105 GW and pumped-hydro storage with 55
GW. Capacities and locations around Europe are extracted
from the JRC Hydro-power plants database [25]. For more
information on the modelling of input flows, the interested
reader can refer to the supplementary material of [26].

D. Input parameters and data

All experiments can be reproduced using the code which
is available at [27]. The input data used for generating the
results presented in this paper can be retrieved in [28] and
is preprocessed using the open-source tool EPIPPy [29]. The
repository also contains the output of the PyPSA runs and a
document describing the techno-economic parameters used in
the model and the sources from which they were determined.
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3Expanding the exploration to
multiple objectives

3.1 The Question

How to expand near-optimal space exploration techniques
to multi-objective spaces?

In 2021, our collaborative efforts with the Catholic University of Louvain (UCLou-
vain) led us to explore the energy return on investment (EROI) concept. Scholars
from this institution had already examined the implications of maximising this metric
on Belgium’s electricity storage requirements [LJ18]. This partnership enabled us to
broaden the scope of the study, encompassing entire energy systems and juxtaposing
EROI-based analysis with cost-focused evaluations. The output of this joint research
was captured in the work by Dumas et al. [Dum+22], which is elaborated upon in
Appendix B.

While independent evaluations of both cost and EROI objectives offer valuable
insights, the availability of multi-objective techniques presents an opportunity to
examine these objectives in tandem. However, as underscored in the introduction,
these techniques come with challenges. This collaboration presented an opportunity
to determine how to combine multi-objective optimisation techniques and near-
optimal space exploration to forge a more insightful and comprehensive approach.

3.2 The Idea

We identified a foundational contribution to advance the techniques of near-optimal
space exploration in a multi-objective setting: crafting a clear definition of near-
optimal space within the realm of multi-objective optimisation. This refined defini-
tion paves the way for deploying any Modelling to Generate Alternative algorithms in
multi-objective setups. Using this definition, necessary conditions can be efficiently
computed, necessitating only a minor adjustment rooted in the multi-objective
near-optimal space to which they align.
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3.3 The Paper: Multi-Objective Near-Optimal
Necessary Conditions for Multi-Sectoral
Planning

This paper was published in “Applied Energy", an Elsevier journal, in 2023.

3.3.1 Paper’s contributinos

Using the previous paper as a foundation, this article offers dual contributions:

1. Broadening the near-optimal space concepts to multi-objective optimisation.

2. Demonstrating the application of necessary conditions within a multi-objective
framework, emphasising the diverse insights obtainable from this approach.

3.3.2 Authors’ contributions

This paper represents one of the outputs of a collaborative effort between researchers
from the University of Liège and UCLouvain. Dr Gauthier Limpens and Dr Jonathan
Dumas led this initiative, and several articles were published. Together with Paolo
Thiran and I, it was collectively decided to expand upon the methodology presented
in [DE22] to incorporate multi-objective optimisation. The decision to include energy
investment as a primary objective alongside cost was informed by previous work
conducted at UCLouvain, benefiting from the expertise of their researchers in the
field. Additionally, UCLouvain significantly contributed by developing EnergyScope
TD, a tool created by Dr Limpens and currently maintained, notably by Paolo Thiran.
Collaborating closely with Dr Dumas, I then tailored this tool to suit the specific
requirements of this paper. Dr Dumas also provided invaluable guidance and support
in designing the experiments and structuring the paper. As the lead author, I was
responsible for the mathematical formulation, overseeing the experiments, and
spearheading the writing process. Professor Ernst provided supervision and offered
numerous insightful ideas to refine the mathematical formulation. All co-authors
played an active role in the writing and review process, providing regular feedback
and suggestions to enhance the quality of the article.
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3.3.3 Reading tips

The content of Section 2, “Problem statement", which revisits and extends the
concepts introduced in [DE22] to include multi-objective optimisation, has been
reformulated and incorporated into Appendix A. As a result, readers who have
already studied this appendix may find it redundant. However, this section can still
provide valuable insight into understanding the different concepts used in the case
study described in Section 3.
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Abstract

In the energy transition context, restructuring energy systems and making informed decisions on the optimal energy
mix and technologies is crucial. Energy system optimisation models (ESOMs) are commonly used for this purpose.
However, their focus on cost minimisation limits their usefulness in addressing other factors like environmental sus-
tainability and social equity. Moreover, by searching for only one global optimum, they overlook diverse alternative
solutions. This paper aims to overcome these limitations by exploring near-optimal spaces in multi-objective optimisa-
tion problems, providing valuable insights for decision-makers. The authors extend the concepts of epsilon-optimality
and necessary conditions to multi-objective problems. They apply this methodology to a case study of the Belgian
energy transition in 2035 while considering both cost and energy invested as objectives. The results reveal opportu-
nities to reduce dependence on endogenous resources while requiring substantial reliance on exogenous resources.
They demonstrate the versatility of potential exogenous resources and provide insights into objective trade-offs. This
paper represents a pioneering application of the proposed methodology to a real-world problem, highlighting the
added value of near-optimal solutions in multi-objective optimisation. Future work could address limitations, such as
approximating the epsilon-optimal space, investigating parametric uncertainty, and extending the approach to other
case studies and objectives, enhancing its applicability in energy system planning and decision-making.

Keywords: Energy system modelling; multi-objective optimisation; multi-sectoral planning; near-optimality;
necessary condition; suboptimal space

1. Introduction

The undergoing energy transition requires deep re-
structuring of energy systems in the long term. The
objective is to maintain comparable energy services
while replacing fossil fuels with sustainable alterna-
tives. Achieving this goal necessitates significant trans-
formations in the supply chain, conversion processes,
and utilisation methods. Energy system planning is re-
quired to guide this restructuring and determine the ap-
propriate mix of energy sources and technologies to sat-
isfy a community’s or region’s future energy demand.
The goal of this process is to inform decision-makers
to allow them to plan an efficient and sustainable trans-

∗Corresponding author
Email address: antoine.dubois@uliege.be (Antoine

Dubois)

formation of energy systems. Energy system optimisa-
tion models (ESOMs) are commonly preferred in en-
ergy system planning [1] due to their ability to explore
and analyse multiple design solutions. These models
utilise optimisation techniques to explore a wide range
of possibilities for the energy system, providing answers
to technical questions regarding future challenges.

However, the use of ESOMs often limits the quality
of insights they provide, thus reducing their usefulness
for decision-makers. Typically, these insights are de-
rived from a single cost-optimal solution, whereas deci-
sions are often made based on various indicators. While
cost is a crucial indicator for assessing the affordabil-
ity and viability of an energy system, focusing solely
on this objective can overlook other significant factors,
such as environmental sustainability and social equity.
Additionally, these insights might not meet the needs of
stakeholders with differing interests.

Preprint submitted to Elsevier September 14, 2023



Approaches such as scenario analysis, multi-
objective optimisation, and near-optimal space analysis
are effective methodologies to surmount the indicated
limitation. Scenario analysis enables the indirect in-
tegration of objectives by altering the fundamental as-
sumptions underpinning the model. In contrast, multi-
objective optimisation directly incorporates these objec-
tives into the model itself. Near-optimal space analy-
sis, the third method, facilitates the inclusion of objec-
tives that can not be modelled in the decision-making
process. In the subsequent sections, we delve into the
shortcomings of an overly cost-focused approach. Sub-
sequently, we elucidate these three methodologies, their
drawbacks, and the potential advantages of merging
multi-objective optimisation with near-optimal space
analysis.

1.1. The cost as leading indicator - limits and solutions

ESOMs determine the energy system configurations
that minimise or maximise a specified objective. Most
studies choose the cost as the objective, and the best
configuration is the most cost-effective [1]. This choice
is historical, as explained by Pfenninger et al. [2]. In-
deed, the first ESOMs (from the MARKAL/TIMES [3]
and MESSAGE [4] models) were initially designed for
cost minimisation. More recent models followed this
trend, such as Dispa-SET, which optimises the opera-
tion cost [5]. The study of Yue et al. [6] highlights that
by default, ESOMs ignore non-economic factors enter-
ing into energy investment decisions and how politics,
social norms, and culture shape public policies. This
claim is also supported by Pfenninger et al. [2], who
specifies that energy system models focus heavily on
economic and technical aspects. This focus is inade-
quate for energy system planning as this problem in-
volves multiple stakeholders with different policy ob-
jectives, for whom cost-optimal solutions might not be
satisfying. For instance, a model might focus on the
cost-effectiveness of integrating wind turbines into a
power grid, neglecting diverse stakeholder needs. Gov-
ernments may prioritise economic growth, environmen-
tal bodies aim for carbon reduction, and residents might
value landscape preservation. Thus, cost-effective so-
lutions like wind turbines may not align with all stake-
holders’ varying objectives in energy planning. More-
over, several studies have demonstrated that ignoring
non-economic factors increases the uncertainty of the
models [2, 6]. Fazlollahi et al. [7] also states that, due to
uncertainty in some parameters, it is insufficient for en-
ergy system sizing to rivet on a unique mono-objective
optimal solution. Finally, Trutnevyte [8] shows how

cost-optimal scenarios do not adequately represent real-
world problems. However, there exist methods for go-
ing beyond cost and considering non-economic factors.
Some of these methods are presented in the following
sections.

1.1.1. Scenario analysis
The first approach to incorporate non-economic fac-

tors is scenario analysis. Scenario analysis involves op-
timising the same model over multiple scenarios with
different values for some parameters. Differences be-
tween scenarios can result from uncertainties over tech-
nological or economic parameters - e.g. future cost of
technology. However, they can also stem from politi-
cal (e.g. nuclear decommissioning) or social considera-
tions (e.g. limitation of onshore wind turbines or trans-
mission lines development). Using scenarios that differ
through those considerations allows for studying the ef-
fects of non-economic factors. For instance, the study
by Fujino et al. [9] compares a fast-growth, technology-
oriented scenario to a slow-growth, nature-oriented one.
However, as stated in the review of Hughes and Stra-
chan [10], this scenario approach tends to simplify so-
cial and political dynamics.

1.1.2. Multi-objective optimisation
A second approach to include non-economic factors

is multi-objective optimisation. This approach allows
for optimising several objectives simultaneously, high-
lighting the trade-offs that can be obtained. More for-
mally, while different methods exist to apply multi-
objective optimisation (e.g. weighted-sum approach,
integer cut constraints, ϵ-constraint method, evolution-
ary algorithm), they exhibit the common goal of ob-
taining solutions from a Pareto optimal set, also called
the Pareto front. This Pareto front is composed of ef-
ficient solutions, i.e. solutions that are at least better
than any other solutions in one objective. Thus, it is
composed of the set of optimal trade-offs between the
studied objectives, i.e. any solution that is not part of
the Pareto front is worse in all objectives than at least
one solution in the Pareto front. Using multi-objective
optimisation, the cost can still be optimised while con-
sidering other indicators. For instance, Becerra-López
and Golding [11] conducted a study of a Texas power
generation system analysing the trade-offs between eco-
nomic and exergetic costs, i.e. the cumulative exergy -
entropy-free energy - consumption. They demonstrated
how these trade-offs provide insights to the decision-
makers by not focusing exclusively on economic cost.
Other objectives, such as water consumption, grid de-
pendence on imports or energy system safety, are com-
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Figure 1: Graphical abstract showing the structure of the paper. The figures are miniatures of figures located further in the document.

pared to cost by Fonseca et al. [12, 13]. They show how
much the assessed criteria impact the design and oper-
ation of distributed energy systems. A final example of
an alternative objective often combined with the cost is
the amount of carbon emissions [14].

1.1.3. Near-optimal spaces analysis
A third methodology that allows taking social and

political factors into account is the study of near-
optimal spaces, also called sub-optimal or epsilon-
optimal spaces. The idea is to analyse solutions close
to the optimal solution to understand how the use of re-
sources and technologies varies when allowing a slight
deviation in the objective function. This paradigm goes
further than multi-objective optimisation, as mentioned
by DeCarolis [15]. It allows incorporating unmodelled
objectives, typical of social factors, as they are unknown
or difficult to model. Indeed, the near-optimal region
might contain solutions that are worse in terms of the
main objective - e.g. the cost of the system - but better
in unmodelled objectives such as risk or social accep-
tance. This concept was introduced in the 1980s by Brill
et al. [16]. The authors proposed the first method for ex-
ploring those spaces: the Hop-Skip-Jump method. This
algorithm was coined as part of a broader exploration
methodology that the authors refer to as Modelling to
Generate Alternatives (MGA). This methodology was
brought back recently and applied to energy system
modelling by DeCarolis [15] and DeCarolis et al. [17].
They led to a renewed interest in such methods. Au-
thors such as Price and Keppo [18] developed new ex-
ploration algorithms while Li and Trutnevyte [19] com-
bined MGA with Monte-Carlo exploration to minimise
parametric uncertainty.

There are several ways of extracting insights from
near-optimal spaces. Most researchers exploring near-

optimal spaces focus on computing numerous near-
optimal solutions from which they derive insights [18,
19, 20, 21]. An alternative approach is to use meth-
ods to obtain such insights directly without needing to
compute many alternative solutions [22]. The authors of
Dubois and Ernst [23] took this approach by introducing
the concept of necessary conditions for near-optimality,
i.e. conditions that are true for every solution in the
near-optimal space. For instance, this can provide in-
sights into the required capacity in a given technology to
retain a certain level of system cost-effectiveness. More
specifically, Dubois and Ernst [23] showed how, for in-
stance, at least 200 GW of new offshore wind need to
be installed Europe-wise to stay within 10% of the cost
optimum.

1.2. Research gaps, scientific contributions and organ-
isation

The exploration of near-optimal spaces has been
used in mono-objective optimisation problems but not,
according to the author’s best knowledge, in multi-
objective optimisation problems. However, these meth-
ods could also be valuable in multi-objective optimi-
sation setups. Indeed, while modelling and integrat-
ing more objectives, multi-objective optimisation still
leaves aside some unmodeled objectives. Analysing so-
lutions in the near-optimal space of multi-objective op-
timisation problems is a method to address this issue.
This paper thus aims to fill this gap by:

1. extending the concepts related to near-optimal
spaces to multi-objective optimisation;

2. computing necessary conditions in a multi-
objective context to highlight the range of insights
that can be derived from them.
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The first point is addressed in Section 2 by first introduc-
ing the mathematical concepts of near-optimality and
necessary conditions in a single-objective framework
(see Section 2.1) and then extending them to multi-
objective optimisation (see Section 2.2). Section 3 then
translates those concepts to a real case study: the multi-
sectoral expansion of the Belgian energy system. The
results of this case study, including necessary conditions
representing the necessary amount of different energy
resources, are presented in Section 4 before highlight-
ing the contributions of this paper in Section 5. We can
already highlight one of those contributions: the open-
source release of the code [24] and the data [25] used to
achieve this study. The graphical representation of the
organisation of this paper is depicted in Figure 1.

2. Problem statement

In this section, the methodological contribution is de-
scribed. It is illustrated in a mathematical form to en-
hance its universality. Indeed, this method could be ap-
plied to other problems than ESOM. It will be applied
in Section 3 to an ESOM formulation to facilitate un-
derstanding of this method.

The first part of this section introduces the concepts
of epsilon-optimal space and necessary conditions for
single-objective optimisation [23]. The second part ex-
tends these concepts to multi-objective optimisation by:

1. generalising the optimisation problem to multiple
objectives,

2. presenting generic notions related to multi-
objective optimisation, including the image of the
feasible space, efficient solutions, and the Pareto
front, and

3. explaining the extension of the concepts of epsilon-
optimality and necessary conditions to multi-
objective optimisation.

2.1. Single-objective optimisation
2.1.1. Optimisation problem and epsilon-optimality

Let X be a feasible space and f : X → R+ an objec-
tive function in the positive reals. The single-objective
optimisation problem is

min
x∈X

f (x) . (1)

Let x⋆ denote an optimal solution to this problem that
is: x⋆ ∈ arg minx∈X f (x).

Definition 1. An ϵ-optimal space, with ϵ ≥ 0, is defined
as follows

Xϵ =

{
x ∈ X | f (x) ≤ (1 + ϵ) f (x⋆)

}
. (2)

0 x1 0.75
0

f1(x1 )
f1(x1 )(1 + 1)

6
f1(x)

Epsilon-optimal space 
Optimum x1

Figure 2: Graphical representation of an ϵ-optimal space of a mono-
objective optimisation problem in X = R+. The function f1 that is
minimised is shown in blue. Its minimum is located at x⋆1 . Using this
value and its corresponding objective value f1(x∗1) allows to determine
an ϵ-optimal space Xϵ with ϵ = ϵ1. The values of the different param-
eters and functions used in this example are described in Appendix A.

Comment: The ϵ-optimal space is the set of the feasi-
ble solutions x ∈ X with objective value f (x) no greater
than (1 + ϵ) f (x⋆). The deviation from the optimal ob-
jective value is measured via ϵ, called the suboptimality
coefficient. Figure 2 illustrates those concepts. A note
must be made on the specific case f (x⋆) = 0. In this
case, Xϵ resumes to arg minx∈X f (x), making the analy-
sis of near-optimal spaces trivial.

2.1.2. Necessary conditions
The concepts of condition, necessary condition, and

non-implied necessary condition introduced in this sec-
tion allow determining features which are common to
all solutions in a given ϵ-optimal space. We illustrate
each definition using an example.

Definition 2. A condition is a function ϕ : X → {0, 1}.
A set of conditions is denoted Φ.

Example: Let the feasible space X be the set of reals,
i.e. X = R, then, the set of conditions Φ could be the
set of conditions of the form ϕc(x) B x ≥ c with x ∈ X
(thus x ∈ R) and c ∈ R.

Definition 3. A necessary condition for ϵ-optimality is
a condition which is true for any solutions in Xϵ . For a
feasible space X, set of conditions Φ and suboptimality
coefficient ϵ, ϕ ∈ Φ is a necessary condition if

∀x ∈ Xϵ : ϕ(x) = 1 . (3)

The set of all necessary conditions for ϵ-optimality in Φ
is denoted ΦX

ϵ

.
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Example: Let us consider that the epsilon-optimal
space is given by Xϵ = [0, 1]. Then, the condition
ϕ0(x) B x ≥ 0 is respected by all x ∈ Xϵ , making
ϕ0 a necessary condition. Moreover, it is straight-
forward to show that the set of all conditions in Φ
which are necessary is ΦX

ϵ

= {ϕc | c ≤ 0}. Indeed, any
condition ϕc(x) B x ≥ c is true overXϵ = [0, 1] if c ≤ 0.

As shown in Dubois and Ernst [23], necessary con-
ditions can provide insights into features common to
many near-optimal solutions. However, depending on
how conditions are defined, their study also claims the
number of necessary conditions can be infinite, which is
counterproductive in providing insights. This situation
happens, for instance, in our previous example. Indeed,
the set ΦX

ϵ

= {ϕc | c ≤ 0} contains an infinite number of
necessary conditions. To limit the number of conditions,
we introduce the concept of non-implied necessary con-
ditions.

Definition 4. A non-implied necessary condition for ϵ-
optimality is a necessary condition ϕ ∈ ΦX

ϵ

that is not
implied by any other necessary condition ϕ′ ∈ ΦX

ϵ

\

{ϕ}, where ΦX
ϵ

is the set of necessary conditions for ϵ-
optimality. The set of non-implied necessary conditions
is denoted Φ

Xϵ

.

Example: In our example, the only non-implied nec-
essary condition is ϕ0, i.e. Φ

Xϵ

= {ϕ0}. The set of
necessary conditions is ΦX

ϵ

= {ϕc | c ≤ 0}. In this set,
ϕ0 implies all other conditions and is not implied by
any of them. Indeed, for any x, knowing that x ≥ 0 is
true implies that x ≥ c when c ≤ 0. Thus, knowing
that ϕ0 is a necessary condition implies that any ϕc with
c ≤ 0 is a necessary condition, whatever the ϵ-optimal
space. On the opposite, it is not possible to imply that
ϕ0 is a necessary condition from the knowledge of other
necessary conditions in the set ΦX

ϵ

= {ϕc | c ≤ 0}. This
defines ϕ0 as a non-implied necessary condition.

The interested reader can find a more formal definition
of implication leading to alternative definitions of non-
implied necessary conditions in Appendix B.

2.1.3. Non-implied necessary condition computation
This section presents the detailed computation of a

particular type of non-implied necessary condition to
provide a practical sense of these concepts. It demon-
strates how to compute a non-implied necessary condi-
tion from a set of conditions taking the form of con-
strained sums of variables. In the case studies described
in Section 3, this type of condition is used to study the

minimum amount of energy that can be driven from dif-
ferent sources.

Let X ⊂ Rn be a feasible space, f : X → R+ an
objective function to minimise over this space, and Φd
a set of conditions defined as follows:

Φd =

{
ϕc

d(x) = dT x ≥ c
}

, (4)

where x ∈ X, d ∈ {0, 1}n and c ∈ R. The conditions are
constrained sums of variables dT x =

∑n
i=1 dixi. In this

particular case, Dubois and Ernst [23] have proven that
ϕc⋆

d = dT x ≥ c∗ with c∗ = minx∈Xϵ dT x is the only non-
implied necessary condition that can be derived from
Φd. The value c∗ represents the minimum value that
dT x can take over the set Xϵ , that is when allowing a
deviation of ϵ from the optimal value f (x⋆). Algorithm
1 illustrates the computation of this value in three steps.

Algorithm 1: Computation of a non-implied
necessary condition - Single-objective case

Data:
f - objective function,
X - feasible space,
ϵ - suboptimality coefficient,
d - binary vector defining the conditions dT x

Result: c∗

Steps:
1. Solve minx∈X f (x) to obtain x⋆.
2. Build Xϵ by adding the constraint

f (x) ≤ (1 + ϵ) f (x⋆) to X.
3. Solve c∗ = minx∈Xϵ dT x.

Example: Let us illustrate this algorithm on the trav-
ellings salesman problem. This problem aims to find
the shortest possible route a salesman can take to visit a
set of cities exactly once and return to the starting city.
Mathematically, we can model this problem in the fol-
lowing way. Let G = (V, E) be a complete undirected
graph, where V = {1, 2, ..., n} is the set of cities, and
E is the set of edges connecting the cities. Each edge
e = (i, j) has a non-negative weight w(e) representing
the distance between city i and city j. Let xi j be a bi-
nary decision variable equal to 1 if the salesman travels
directly from city i to city j in the tour and 0 other-
wise. The objective is to minimise the total distance
travelled by the salesman, i.e.: min

∑
(i, j)∈E wi jxi j. This

objective must be met under a series of constraints we
will not detail here. Let us assume now that there are
two types of routes: paved and gravel. The salesman
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wants to avoid taking gravel routes while maintaining a
path that is not much longer than the optimal path. This
new path can be obtained using Algorithm 1. Step 1
consists in solving the original problem. Using the op-
timal solution of this problem, one can perform step 2
by adding the constraint f (x) ≤ (1 + ϵ) f (x⋆) to the ini-
tial problem. In this constraint, x is a vector containing
all xi j, f (x) =

∑
(i, j)∈E wi jxi j, and x⋆ is the optimal solu-

tion. The value of ϵ can vary depending on the relative
increase in path length the salesman is willing to ac-
cept. The third step can then be performed by setting an
appropriate d. As the salesman wants to minimise the
number of gravel routes travelled, all values of d cor-
responding to this type of route are set to 1. The value
c∗ obtained as the optimal value of this third step gives
the minimal number of routes that must be taken to en-
sure that the total length of the path travelled does not
deviate by more than ϵ of the optimal length.

2.2. Multi-objective optimisation

This section extends the concepts presented previ-
ously to multi-objective optimisation while introducing
notions specific to this type of optimisation problem.

2.2.1. Problem formulation
Let f := ( f1, · · · , fk, · · · , fn) be a vector of n objective

functions such that ∀k fk : X → R+. We seek to min-
imise these functions over the feasible space X, which,
using the notation of Ehrgott [26], we note:

“ min
x∈X

” f(x) . (5)

Let Y be the image of X in the objective space:

Y = f(X) = {y ∈ Rn | y = f(x) for some x ∈ X} . (6)

This space is the image of X under the objective func-
tions f, and f(x) := ( f1(x), · · · , fk(x), · · · , fn(x)). There-
fore, Y ∈ Rn

+ and each of its components yk are defined
by yk = fk(x) for some x ∈ X.

2.2.2. Efficient solutions and Pareto front
A way to highlight compromises between the ob-

jectives ( f1, · · · , fk, · · · , fn) is to compute efficient (or
Pareto optimal) solutions. As defined by Ehrgott [26]:

Definition 5. A feasible solution x̂ ∈ X is called effi-
cient when there is no other x ∈ X such that ∀k fk(x) ≤
fk(x̂) and fi(x) < fi(x̂) for some i, that is, no other
x ∈ X has a smaller or equal value in all objectives
( f1, · · · fk, · · · , fn) than x̂.

According to Ehrgott [26], multiple denominations exist
for the set of efficient points. This paper uses ‘Pareto
front’ to indiscriminately name the set of efficient points
or their image in the objective space.

Definition 6. A Pareto front PX is the set

PX =

{
x̂ ∈ X |∄x ∈ X,

∀k fk(x) ≤ fk(x̂),∃i fi(x) < fi(x̂)
}
.

(7)

In the objective space, a Pareto front is defined as:

PY =

{
ŷ ∈ Y |∄y ∈ Y,

∀k yk ≤ ŷk,∃i yi < ŷi

}
.

(8)

A Pareto front can be composed of an infinity of points.
Thus, it is typical to compute a subset of the efficient
solutions which compose it. This set is named approx-
imated Pareto front. It is denoted by PX,m (or equiv-
alently PY,m) where m is the number of points in the
approximation.

Definition 7. An approximate Pareto front PX,m, with
m ∈ N, is a subset of m efficient solutions in the Pareto
front PX.

Several techniques exist to obtain those efficient solu-
tions, the two most famous being the ‘weighted-sum
approach’ and the ‘ϵ-constraint method’ [26]. The
weighted-sum approach consists of solving:

min
x∈X

n∑
k=1

λk fk(x) ∀k λk > 0 . (9)

The ϵ-constraint method resolves in solving:

min
x∈X

f j(x)

s.t. fk(x) ≤ ϵk for k = 1, · · · , n and k , j ,
(10)

where ∀k ϵk ∈ R.

2.2.3. Multi-criteria epsilon-optimal spaces
Starting from a Pareto front PX, it is possible to

define an ϵ-optimal space, given a suboptimality co-
efficients vector of deviations in each objective: ϵ =
(ϵ1, · · · , ϵk, · · · , ϵn) ∈ Rn

+. This space is denoted by Xϵ

in the decision space and Yϵ in the objective space.
In the mono-objective setup, the ϵ-optimal space is

defined as the set of points x ∈ X whose objective value
f (x) do not deviate by more than an ϵ fraction from the
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Figure 3: Graphical representation of an ϵ-optimal space of a multi-objective optimisation problem in X = R+. The two functions to be minimised
f1 and f2 are represented in blue and red, respectively, and their respective minimums are x⋆1 and x⋆2 . The Pareto front PX containing all efficient
solutions is represented in orange. Figure 3a shows in purple the full ϵ-optimal space Xϵ for a suboptimality coefficient vector ϵ = (ϵ1, ϵ2). As
shown in Equation (12), this space is the union of sub-spaces that can be computed from efficient solutions. Figure 3b shows how one of these
subspaces, corresponding to the efficient solution x̂, can be computed. From the value x̂, the corresponding objective values f1(x̂) and f2(x̂) are
obtained. This allows to determine all the solutions in X whose objective value is smaller than fk(x̂)(1 + ϵk) for k ∈ 1, 2. The values of the different
parameters and functions used in this example are described in Appendix A.

optimal objective value, i.e. f (x) ≤ (1 + ϵ) f (x⋆). In a
multi-objective case, there is no optimum but a set of
efficient points composing the Pareto front. This leads
us to define the ϵ-optimal space as follows:

Definition 8. In a multi-objective optimisation problem,
the ϵ-optimal space Xϵ , with ϵ = (ϵ1, · · · , ϵk, · · · , ϵn) ∈
Rn
+, is the set of points x whose objective values fk(x) do

not deviate by more than an ϵk fraction from the objec-
tive values fk(x̂) of at least one solution x̂ of the Pareto
front PX for all k. It is the space

Xϵ =

{
x ∈ X |∃x̂ ∈ PX,

∀k fk(x) ≤ (1 + ϵk) fk(x̂)
}

.
(11)

Alternatively, this space can be defined as:

Xϵ =
⋃
x̂∈PX

{
x ∈ X |∀k fk(x) ≤ (1 + ϵk) fk(x̂)

}
. (12)

Figure 3 depicts a graphical representation of an
ϵ-optimal space in a multi-objective framework and
how it is built from efficient solutions.

Definition (11) relies on the entire Pareto front. How-
ever, practically, only a subset PX,m of m efficient points
of the Pareto front is computed and used to obtain an
approximation of the ϵ-optimal space, denoted Xϵm.

Definition 9. An approximation Xϵm, with m ∈ N, of an
ϵ-optimal space Xϵ is the space

Xϵm =

{
x ∈ X |∃x̂ ∈ PX,m,

∀k fk(x) ≤ (1 + ϵk) fk(x̂)
}

.
(13)

Alternatively, this space can be defined as:

Xϵm =
⋃

x̂∈PX,m

{
x ∈ X |∀k fk(x) ≤ (1 + ϵk) fk(x̂)

}
. (14)

The alternative formulation defines Xϵm as a union of
spaces, where each space is the set of points whose ob-
jective value in each fk does not deviate by more than
an ϵk fraction from the objective values fk(x̂) of one so-
lution x̂ in the approximated Pareto front PX,m. Figure 4
shows three examples of approximate ϵ-optimal spaces
Xϵm in the objective space (therefore noted Yϵm) using
three approximated Pareto fronts PY,m, with different
numbers and spread of efficient solutions.

2.2.4. Necessary conditions
In the multi-objective optimisation framework, nec-

essary conditions and non-implied necessary conditions
for ϵ-optimality can be defined in the same manner as
in the one-dimensional setting (see definitions 3 and 4,
respectively). The only difference stems from the re-
placement of Xϵ by Xϵ .
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Figure 4: Graphical representations in the objective space of approximations Yϵm of an ϵ-optimal space of a multi-objective optimisation problem
based on three different approximate Pareto front PY,m. The axes correspond to the two functions to minimise, i.e. f1 and f2. The boundary
of the image of the feasible space Y is represented in blue in the three cases. The part of this boundary corresponding to the entire Pareto front
PY is drawn in orange. The complete ϵ-optimal space Yϵ corresponding to this Pareto front is coloured in light purple. Each graph corresponds
to a different approximate Pareto front PY,m. These sets of points are represented in brown. From each of these points, part of the approximate
ϵ-optimal spaces can be computed, and their union is represented in solid purple. The values of the different parameters and functions used in this
example are described in Appendix A.

2.2.5. Non-implied necessary condition computation

The computation of a non-implied necessary condi-
tion from conditions of type dT x ≥ c presented in Sec-
tion 2.1.3 is generalised to the multi-criteria case. In the
mono-objective case, it was sufficient to minimise the
sum dT x over Xϵ to obtain the value c∗ corresponding
to the non-implied necessary condition dT x ≥ c∗. How-
ever, in a multi-objective setup, we do not have access
to Xϵ but to its approximation Xϵm, which is the union
of several subsets, each corresponding to one point in
PX,m (i.e. a subset of the Pareto front). The minimum
over this space can thus be obtained by taking the min-
imum of the minima of dT x over each of these subsets.
Even with this approach, Xϵm being a subset of Xϵ , min-
imising dT x over it will only provide an upper bound c̃
of the value c∗, i.e. c̃ ≥ c∗. Algorithm 2 shows how this
value can be obtained.

There is no guarantee that the condition dT x ≥ c̃ is a
(non-implied) necessary condition. Indeed, it could be
the case that for a solution x ∈ Xϵ \ Xϵm that dT x < c̃.
To make the upper bound c̃ as close as possible to the
real minimal value c∗, one must reduce the size of the
differenceXϵ \Xϵm. Minding this gap can be done by im-
proving the number and spread of efficient solutions in
the approximated Pareto front. As defined by Alarcon-
Rodriguez et al. [27], solutions with a good spread can
be seen as having good coverage of the actual Pareto
front. The three graphs of Figure 4 show visually how,
by increasing the number and the spread of efficient so-
lutions drawn from the Pareto front, the approximated
ϵ-optimal space covers a more significant subset of the
points of the entire ϵ-optimal space.

Example: Let us continue with the travelling sales-
man problem introduced in Section 2.1.3. We intro-

Algorithm 2: Computation of a non-implied
necessary condition - Multi-objective case

Data:
X ∈ Rn - feasible space,
f - objective functions,
m - number of points,
ϵ - vector of suboptimality coefficients,
d - binary vector defining the conditions dT x

Result: c̃
Steps:

1. Draw m points x̂(1), . . . x̂(i), . . . x̂(m) of the Pareto
front using an appropriate method.

2. For all i ∈ [1, 2, . . . ,m], compute c(i) = min dT x
over the space {x ∈ X | ∀k fk(x) ≤ (1 + ϵk) fk(x̂(i))}.

3. Take the minimum c̃ = mini∈[1,2,...,m] c(i) of these
values to find the appropriate condition ϕc̃.

duce a new set of non-negative weights t(e) represent-
ing the time needed to travel between city i and j.
We now have two objectives: the total distance trav-
elled f (x) =

∑
(i, j)∈E wi jxi j and the total time travelled

g(x) =
∑

(i, j)∈E ti jxi j to visit all cities. Minimising these
two objectives might lead to different solutions. We can
use appropriate techniques to determine efficient solu-
tions x̂ from the Pareto front, expressing the trade-offs
between these two objectives. If the salesman is still
interested in avoiding the gravel routes while maintain-
ing close-to-optimal length and time of travel, we can
employ Algorithm 2. For a fixed set of suboptimality
coefficients, step 2 implies adding two constraints to the
initial problem and minimising dT x for each efficient
solution. As in the mono-objective case, the only values
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of d set to 1 are the ones corresponding to gravel routes.
Finally, step 3 will give us a value c̃, which expresses an
upper bound on the minimum number of gravel routes
the salesman needs to take to avoid deviations in time
and length larger than ϵ1 and ϵ2.

3. Case study

In this section, a case study using an ESOM will il-
lustrate the concepts and methodology presented in the
previous section. First, the context of the case study and
the question to which it tries to provide an answer are
presented. The modelling tool used to implement the
methodology is then introduced, and its main features
are detailed. Finally, each element introduced in Sec-
tion 2 is specified to the case study.

3.1. Context

In the European Green Deal [28], the European Com-
mission raised the European Union’s ambition to re-
duce GHG emissions to at least 55% below 1990 lev-
els by 2030. Then by 2050, Europe aims to become
the world’s first carbon-neutral continent. Europe still
relies massively on fossil fuels to satisfy its energy con-
sumption (∼ 75% coming from coal, natural gas and oil
according to the International Energy Agency [29]) as
well as non-energy usages (e.g. chemical feed-stocks,
lubricants and asphalt for road construction [30]). The
use of these fuels is the primary source of GHG emis-
sions. Carbon-neutral sources of energy must thus be
developed to curb emissions. The possibilities are nu-
merous, and one of the coming decade’s main chal-
lenges will be deciding which resources to invest in.
Several criteria will motivate these choices.

The most common criterion for discriminating be-
tween options is cost. Indeed, as highlighted by Pfen-
ninger et al. [2] and DeCarolis [15], most studies use the
cost indicator to plan the energy transition. This choice
makes sense as the cost of investment, maintenance and
operation of the energy system impacts the final con-
sumers’ energy bill. Thus, minimising the system cost
is a social imperative to allow every citizen access to
affordable energy.

A lesser-known indicator, encompassing technical
and social challenges, is the system’s energy return
on investment (EROI). When defined system-wise, the
EROI is a ratio that measures the usable energy deliv-
ered by the system (Eout) over the amount of energy
required to obtain this energy (Ein) [31]. When the
amount of energy required to deliver a given energy ser-
vice increases, the EROI of the system decreases. In

some sense, EROI measures the ease with which energy
is extracted to transform it into a form that benefits soci-
ety. There are various manners of defining Ein and Eout,
and incidentally, the EROI of a system. These defini-
tions depend mainly on what parts of the energy cas-
cade - as presented in Brockway et al. [32] or Dumas
et al. [33] - are considered. This paper considers that in-
vested energy Ein encompasses the energy used to build
the system infrastructure, ‘from the cradle to the grave’,
and to operate this system. Following the methodology
of Dumas et al. [33], Eout will correspond to the final
energy consumption (FEC) of the system, as defined in
the European Commission [34] standard. FEC is the to-
tal energy, measured in TWh, consumed by end-users. It
encompasses the energy directly used by the consumer
and excludes the energy used by the energy sector, e.g.
deliveries and transformation.

While cost and EROI can be linked (e.g. the trans-
port of energy resources will increase both the system
cost and invested energy), they are not fully correlated
and favouring one or the other can lead to different
system configurations, as illustrated later in Section 4.
Both criteria can be included in the decision process by
modelling them as objectives in optimisation problems.
These objectives can be optimised individually or co-
optimised using multi-criteria optimisation techniques.
In this case study, we will show how, using these ob-
jectives in the methodology presented in Section 2, the
following question can be addressed:

Which resources are necessary to ensure a transition
associated with sufficiently good cost and EROI?

Indeed, the answer to this question can be obtained by
computing necessary conditions corresponding to the
minimum amount of energy that needs to come from
these resources.

This question is, however, relatively broad, and for
the sake of conciseness, it needs to be specified. On
top of decision criteria, considerations such as energy
independence (enhanced with the Russian invasion of
Ukraine) and social acceptance (e.g. the ‘not-in-my-
backyard’ phenomena) are paramount in planning the
energy transition. These considerations will impact the
type of resources that will be exploited. Indeed, the
first consideration incentivises a push for domestically
produced energy, while the latter favours the opposite.
The first tends to minimise the amount of exogenous
resources in the system, while the latter minimises the
amount of energy coming from endogenous resources.
To consider these elements, the previous question can
be refined to:
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Which endogenous or exogenous resources are
necessary to ensure a transition associated with
sufficiently good cost and EROI?

This study focuses on one of the European countries:
Belgium. Belgium made the same commitments for
2030 and 2050 as the European Union [35]. Thus,
it faces the challenge of replacing its fossil-based
economy with carbon-free solutions while striking
the right balance between endogenous and exogenous
resources. Belgium’s population density exacerbates
this challenge. In 2019, Belgium had the second-
highest population density in Europe (excluding Malta)
with 377 people per km2, behind the Netherlands
(507 people per km2) [36]. The available land for
onshore energy development is thus limited, while
offshore production is limited to around 8 GW of wind
potential [37]. Other domestic resources such as solar,
biomass, waste, or hydro also have limited potential.
This situation entails a small local energy potential
compared to its demand. The study Limpens et al.
[38] evaluates that available local Belgian resources
can only cover 42% of the country’s primary energy
consumption. This situation strongly impacts the type
of resources Belgium must rely on.

Therefore, the question that will be addressed in this
case study is:

Which endogenous or exogenous resources are
necessary in Belgium to ensure a transition asso-
ciated with sufficiently good cost and EROI?

3.2. EnergyScope TD

To answer this question, an appropriate ESOM is
needed. The commitments set for 2035 and 2050 cover
all sectors of the economy, not just electricity produc-
tion. To achieve net zero ambitions, carbon-neutral so-
lutions must be implemented for electricity, heat, mobil-
ity, and non-energy. These different sectors can be mod-
elled using an open-source whole-energy system model
such as EnergyScope TD (ESTD) [39].

ESTD can be categorised as an ESOM. According
to Contino et al. [40], ESTD is a whole-energy sys-
tem model, i.e. a model that captures the different en-
ergy sectors exhaustively. Moreover, ESTD optimises
the energy system with an hourly resolution and has
the advantage of having a simple mathematical formu-
lation compared to other models [39]. Using optimisa-
tion techniques, it determines the investment decisions
and sizing of various technologies (e.g. wind turbines,

gas power plants, boilers) as well as the selection of re-
sources (e.g. wind, gas, diesel) required to meet differ-
ent types of end-use demand (EUD) listed in Appendix
C; and the hourly operation of the system. Mathemati-
cally, ESTD models the energy system as a linear pro-
gramming problem. It takes a series of parameters as
input and outputs the values of investment and opera-
tional variables determined by minimising an objective
while respecting a series of constraints. The objective
is a linear function; constraints are linear equalities or
inequalities.

Parameters and variables can be indexed temporally.
The default temporal horizon T is one year with an
hourly resolution. To reduce the computational burden
of the optimisation, the horizon is clustered by selecting
a number of typical days, 12 by default. Thus, time-
dependent parameters and variables are indexed by a
typical day td and an hour h. The only exception is
storage technologies, whose energy levels are computed
over all the hours of the year t to allow storage longer
than a day up to seasonal. The equivalence between the
original hourly-resolution temporal horizon and the typ-
ical days is done via a time-indexed set T HT D(t) as-
sociating each hour t of the year with a corresponding
couple (td, h) = T HT D(t). This set is essential to un-
derstand some of the equations in the rest of this section.

ESTD has been extensively used and validated in the
Belgian case [33, 38, 41, 42, 43, 44]. More specif-
ically, in Limpens et al. [38], the authors studied the
2035 Belgian energy system using ESTD and built the
corresponding data set. This year is a trade-off between
a long-term horizon where policies can still be imple-
mented and a horizon short enough to define the future
of society with a group of known technologies. To build
on these resources, we will model the Belgian energy
system for 2035.

To finish this section, it is essential to note that while
the results presented in this paper are valid for Belgium,
they could easily be extended to other countries. In-
deed, ESTD has already been used to model the energy
systems of other countries such as Switzerland [45, 46]
and Italy [47]. Moreover, adapting those models to im-
plement the methodology presented in this paper only
requires minor modifications, as presented in the fol-
lowing sections.

3.3. Feasible space

In the initial optimisation problem

“ min
x∈X

” f(x) , (15)
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the first element to define is the feasible space X over
which the optimisation is performed. This study mod-
elled the feasible space using ESTD as a linear program-
ming problem. Therefore, the problem to solve has the
following form:

“ min
x

” f(x)

s.t. Ax ≥ b ,
(16)

where x is the vector of variables of the problem, while
A and b are a matrix and vector of parameters, respec-
tively. More information on the specific variables, pa-
rameters and constraints used in ESTD can be found in
Limpens et al. [39] and the model’s documentation [48].

3.3.1. Constraint on GHG emissions
A constraint that is of particular interest given the

context of this case study is the limit on GHG emissions,
i.e.

GWPtot ≤ 35 [MtCO2-eq/y] . (17)

In this section, we briefly describe how this constraint
is defined. The total yearly GHG emissions of the sys-
tem are computed using a life-cycle analysis (LCA) ap-
proach. Thus, they include the GHG emissions along
the whole life cycle, i.e. ‘from the cradle to the grave’ of
the technologies and resources considered in ESTD. In
ESTD, the global warming potential (GWP) expressed
in MtCO2-eq./year is used as an indicator to aggregate
emissions of different GHG. Then, the yearly emissions
of the system, which are denoted GWPtot, are defined as
follows:

GWPtot =
∑

j∈T ECH

GWPconstr( j)
li f etime( j)

+
∑

i∈RES

GWPop(i) ,

(18)

where T ECH and RES are the sets of technologies
and resources modelled in ESTD. GWPconstr represents
the GWP for the construction of a technology, while
GWPop gives the GWP linked to the operation of a re-
source. More specifically, GWPconstr( j) is the GWP
of technology j over its entire lifetime allocated to
one year based on the technology lifetime li f etime( j).
GWPop(i) is the GWP related to the use of resource i
over one year.

The 35 MtCO2-eq/y limit chosen in this case study
comes from the following reasoning. According to the
International Energy Agency (IEA), Belgium’s 1990
territorial GHG emissions were approximately 105
MtCO2-eq [29]. Thus, the targets of the European

Green Deal imply reaching 47 MtCO2-eq/y in 2030 and
0 MtCO2-eq/y in 20501. By conducting a linear inter-
polation between these dates, the 2035 Belgian GHG
emissions should reach approximately 35 MtCO2-eq/y.
This target is used as a hard constraint for GWPtot in the
model: GWPtot ≤ 35 [MtCO2-eq/y].

3.4. Objectives

The second step in formalising the problem consists
in choosing appropriate objectives. As mentioned at the
start of this section, our interest lies in solutions with
a sufficiently good cost and EROI. This choice implies
optimising the system by minimising cost and maximis-
ing EROI. To better match the methodology presented
in Section 2 where functions are minimised, Ein (i.e.
the energy invested in the system) will be used as ob-
jective instead of EROI (the equivalence is detailed in
the following). The following sections define precisely
the two objectives used in the case study.

3.4.1. System cost
The first objective is the total annual cost of the sys-

tem, f1 = Ctot, defined as:

Ctot =
∑

j∈T ECH

(τ( j)Cinv( j) +Cmaint( j)) +
∑

i∈RES

Cop(i) .

(19)

The yearly system cost is the sum of τ( j)Cinv( j), the an-
nualised investment cost of each technology with Cinv

the total investment cost and τ the annualisation fac-
tor, Cmaint( j), the operating and maintenance cost of
each technology and Cop(i), the operating cost of the
resources. This last variable is equal to

Cop(i) =
∑

t∈T |{h,td}∈T HT D(t)

cop(i)Ft(i, h, td) , (20)

where cop(i) is the cost of resource i in [€/MWh] and
Ft(i, h, td) corresponds to the use in [MWh] of resource
i at time (h, td). The values of cop(i) for each resource
used in the study case are given in Tables 1 and 2. The
study of Limpens et al. [39] or the online documentation
[48] provides more detail on this indicator.2

1Practically, the 2050 target is to be climate neutral, meaning the
GHG emission can be greater than 0 but must be compensated by
carbon capture.

2In the mathematical formulation of the model, an additional fac-
tor top(h, td) is added to equation (20), (22), and (26). This parameter
is set to 1 in the implementation of the model used in this case study.
It is thus removed from equations for clarity.
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3.4.2. Energy invested in the system
The second objective f2 is Ein, the energy invested in

the system over one year:

Ein =
∑

j∈T ECH

Econstr( j)
li f etime( j)

+
∑

i∈RES

Eop(i) , (21)

with Econstr( j), the energy invested to built technology j,
annualised by dividing it by its lifetime, and Eop(i) the
energy to operate, i.e. produce, and transport resource
i over one year. Similarly to the cost indicator, this last
variable is equal to

Eop(i) =
∑

t∈T |{h,td}∈T HT D(t)

eop(i)Ft(i, h, td) , (22)

where eop(i) is the energy invested (in [MWh/MWh]) to
obtain one MWh of the resource i. The values of eop(i)
for each resource used in the study case are given in
Tables 1 and 2. More detail is provided by Dumas et al.
[33] (in which Ein is referred to as Ein,tot).

Minimising Ein would be equivalent to maximising
EROI, i.e. Eout/Ein, if Eout, which in our case is the
FEC, was constant. It is not the case in ESTD. In this
model, only the values for the EUD, presented in Ta-
ble C.5, are fixed. While EUD measures an energy
service, FEC measures the quantity of energy used to
deliver this service. FEC is thus always measured in
[TWh], while the unit for EUD will depend on the de-
mand. For instance, the EUD for heat will be measured
in [TWh] while [Mt-km] will be used for mobility. Us-
ing technology-dependent conversion factors, FEC can
be converted into EUD and vice-versa. For instance, in
ESTD, a FEC of 1 kWh of electricity supplies an EUD
of 5.8 passenger-km with a battery-electric car. As the
conversion factors depend on the installed technologies,
which depend on the optimisation results, FEC is an out-
put of the ESTD model and is not constant. Nonethe-
less, the constant EUD cannot be employed directly as
Eout to compute the EROI, as it is an energy service,
not an amount of energy. Therefore, the FEC is used to
compute Eout and, incidentally, the EROI of the system.

3.5. Pareto front

Once all the elements of the initial optimisation prob-
lem (5) are set up, one can compute efficient solutions
from the Pareto front using one of the methods de-
scribed in Section 2.2.2. This case study uses a modified
version of the ϵ-constraint method. It is applied by min-
imising Ein over the feasible space with the additional
constraint Ctot ≤ ϵ(1+C⋆

tot) where ϵ ∈ R+ and C⋆
tot is the

cost-optimal value, i.e. solving

min
x∈X

Ein

s.t. Ctot ≤ (1 + ϵ)C⋆
tot

(23)

This method is a slight modification of the method de-
scribed in equation (10) where ϵ is a relative rather than
absolute value. It has the benefit of defining the con-
straint proportionally to the optimal value in the asso-
ciated objective and thus be directly interpretable. For
instance, if the optimal cost is 75 B€, one would use
ϵ values of 1, 5, and 10% instead of absolute values of
75.75, 78.75 and 82.5 B€. To obtain several points over
the Pareto front, the method was repeated for different
values of ϵ in ]0,Ce

tot/C
⋆
tot[ where Ce

tot is the value of Ctot

at the Ein optimum and C⋆
tot is the cost optimum.

3.6. Near-optimal spaces

The efficient solutions are used to define approximate
near-optimal spaces Xϵm, with ϵ = (ϵCtot , ϵEin ) following
equation (14) of definition 9. They are unions of spaces
defined around unique, efficient solutions, x̂ ∈ PX,m.
Each space can be easily defined by adding to the origi-
nal ESTD model the two linear constraints, which are:

Ctot(x) ≤ (1 + ϵCtot )Ctot(x̂) , (24)
Ein(x) ≤ (1 + ϵEin )Ein(x̂) . (25)

3.7. Necessary conditions

The last concept to define is the type of necessary
conditions computed in the case study. We are inter-
ested in the necessary resources for a transition with a
sufficiently low cost and invested energy. We will thus
compute the necessary conditions corresponding to the
minimum amount of energy that needs to come from a
specific individual or group of resources. Mathemati-
cally, the set of such conditions would be:

ΦRES =

{ ∑
i∈RES ,

t∈T |{h,td}∈T HT D(t)

Ft(i, h, td) ≥ c
}

, (26)

where RES ⊆ RES is a set of resources, Ft(i, h, td) the
use of resource i at time (h, td) and c ∈ R+. RES can
contain any resource. However, in the context presented
in Section 3.1, we have highlighted a particular interest
in two groups of resources: endogenous and exogenous.
We will focus primarily on those two sets and give a
more detailed description of their resources. In ESTD,
endogenous resources (noted RES endo) include wood,
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cop eop

[€/MWh] [MWh/MWh]

Endogenous resources

Hydro 0 0
Solar 0 0
Waste 23.1 0.0577
Wet biomass 5.76 0.0559
Wind 0 0
Wood 32.8 0.0491

Exogenous resources

Ammonia 76.0 ∗0.174
Ammonia (Re.) 81.8 ∗0.295
Diesel 79.7 0.210
Bio-diesel 120 ∗0.101
Elec. import 84.3 0.123
Gas 44.3 0.0608
Gas (Re.) 118 ∗0.147
Gasoline 82.4 0.281
Bio-ethanol 111 ∗0.101
H2 87.5 0.083
H2 (Re.) 119 ∗0.134
LFO 60.2 0.204
Methanol 82.0 0.0798
Methanol (Re.) 111 ∗0.146

Table 1: 2035 values of cop, cost of the resource [€/MWh], and eop,
energy invested in obtaining 1 MWh of the resource [MWh/MWh],
for each resource. Most values for cop come from [48]. Data for
eop relies on Muyldermans and Nève [49], who used the ecoinvent
database [50]. The values preceded by a ‘∗’ are based on the work by
Orban [51]. Abbreviations: Renewable (Re.), Electricity (Elec.)

c∗op e∗op

[€/MWh] [MWh/MWh]

Hydro 53.7 0.0489
Solar 50.0 0.147
Wind 47.0 0.0350

Table 2: Estimated cost c∗op [€/MWh] and estimated energy invested
in obtaining 1 MWh of the resource e∗op [MWh/MWh] for hydro, solar
and wind. The estimation is done by computing the total cost at the
Ctot optimum and invested energy at the Ein optimum of the technolo-
gies that use these resources (i.e. PV for solar, onshore and offshore
wind for wind and hydro river for hydro) and then dividing it by the to-
tal energy used from these resources at the corresponding optimums,
indicated in Table 4.

wet biomass, waste, wind, solar, hydro, and geother-
mal energy. Exogenous resources (noted RES exo) are
the other resources in the model: ammonia, renew-
able ammonia, imported electricity, methanol, renew-
able methanol, hydrogen, renewable hydrogen, coal,
gas, renewable gas, light fuel oil, gasoline, diesel, bio-
diesel, and bioethanol. Renewable fuels such as renew-
able ammonia, methanol, and gas are assumed to be pro-
duced from renewable electricity. Tables 1 and 2 list the
model’s resources and the associated input parameters
required to compute the cost and invested energy when
employing them.

4. Results

In this section, we provide the answer to the question
that was asked at the beginning of Section 3:

Which endogenous or exogenous resources are
necessary in Belgium to ensure a transition asso-
ciated with sufficiently good cost and EROI?

This answer is obtained by computing necessary con-
ditions corresponding to the minimum amount of en-
ergy coming from specific resources required to ensure
ϵ-optimality in Ctot and Ein. However, before diving
into the necessary conditions, we first analyse how the
system is configured at the two optimums and show
the differences between those configurations. Then, by
analysing efficient solutions, we determine how this sys-
tem evolves when trade-offs are made between Ctot and
Ein. Finally, knowing the Pareto front, we compute ϵ-
optimal spaces and necessary conditions corresponding
to the minimum amount of energy coming from differ-
ent resources in Belgium. The description of the algo-
rithm used to compute those necessary conditions can
be found in Appendix D.

4.1. Analysis of the system configuration at the two op-
timums

The Belgian energy system is analysed when optimis-
ing Ctot and Ein individually, with a maximum carbon
budget GWPtot of 35 MtCO2-eq/y. To set a baseline to
which we can compare the necessary conditions com-
puted in the following sections, we analyse the amount
of endogenous and exogenous resources used at each
optimum. Table 3 shows the value of the two objective
functions at the two optimums and Table 4 details which
energy sources are used in the system.
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Ctot Ein

optimum optimum

Ctot [Be /y] 52.8 56.8
Ein [TWh/y] 74.0 61.0

Table 3: Values of Ctot and Ein objectives at the optimums.

Energy Ctot Ein Max.
[TWh/y] optimum optimum potential

Endogenous 185 164 185

Hydro 0.469 0.486 ∗0.488
Solar 61.5 54.2 ∗61.6
Waste 17.8 4.12 17.8
Wet Biomass 38.9 38.9 38.9
Wind 42.6 43.0 ∗43.0
Wood 23.4 23.4 23.4

Exogenous 202 211 ∞

Ammonia (Re.) 65.6 0 ∞

Bio-diesel 0 3.14 ∞

Elec. import 27.6 27.6 27.6
Gas 28.2 34.5 ∞

Gas (Re.) 4.98 48.5 ∞

H2 (Re.) 19.4 44.8 ∞

Methanol (Re.) 56.4 52.8 ∞

Total 387 375 ∞

Table 4: Amount of energy used from each endogenous and exoge-
nous resource at Ctot and Ein optimums. The last column shows the
maximum potential of each resource. The potentials preceded by a ‘*’
are computed from the maximum capacity and capacity factors of the
technologies using these resources. The other potentials are directly
fixed as parameters.

4.1.1. Results at the cost optimum
The optimal cost C⋆

tot is eqwholeual to 52.8 Be /y.
At this optimum, the total amount of primary energy
used in the system is 387 TWh/y, 48% of which comes
from endogenous resources and the rest from exogenous
resources.

For endogenous resources, the values for wet
biomass, waste and wood are equal to their maximum
potentials - set as input model parameters. This obser-
vation makes sense as the cop of these resources in Ta-
ble 1 indicate they are among the cheapest. The hydro,

solar and wind energy quantities are also very close to
their maximum potential. For these resources, the max-
imum is not set directly on the quantity of energy but on
the capacities of the technologies using these resources.
For instance, the model can install a maximum of 6 GW
of offshore wind turbines and 10 GW of onshore wind
turbines, which are the two technologies using wind as a
resource. These maximum capacities can then be multi-
plied by the capacity factors of the corresponding tech-
nologies to obtain a maximum energy potential. More-
over, these resources are considered free in terms of cost
and invested energy, as shown in Table 1. The cost of
using them arises from the technologies to extract them
from the environment. Table 2 shows approximated val-
ues for cop and eop. They are computed by dividing the
cost or energy invested for building and maintaining the
technologies using them by the total energy used from
these resources - shown in Table 4. These approximated
values show that hydro, solar and wind are among the
cheapest resources, which explains their extensive use.

The model has no maximum potential for exogenous
resources except for imported electricity. This poten-
tial is reached as, even though cop is relatively high
for imported electricity, it does not require any conver-
sion technology to produce the final electricity demand.
Some 65.6 TWh/y of renewable ammonia is used in the
system, 55.4 TWh/y of which is used for electricity pro-
duction and low-temperature heat generation, while the
remaining 10.2 TWh/y is used to satisfy non-energy de-
mand. Most renewable methanol is used to produce
high-value chemicals, even though 3.6 TWh/y of this
resource is used for fuelling boat freight. Finally, gas
(renewable or not) is used to produce heat and electric-
ity and fuel buses for public mobility.

4.1.2. Results at the invested energy optimum
The optimal energy invested E⋆

in amounts to 61
TWh/y. Among the 375 TWh/y of primary energy in
the system, 164 TWh/y (44%) come from endogenous
resources and 211 TWh/y (56%) from exogenous re-
sources. A series of resources, including wet biomass,
wood, wind, hydro and imported electricity, are used
at or near their maximum potential. This is not the
case for waste and solar. In particular, for solar, eop

is about three times higher than any other endogenous
resource. This result can be explained by the higher en-
ergy needed to build 1 GW of PV combined with a low
average capacity factor compared to hydro river plants
or wind turbines. Some electricity is produced using
natural and renewable gas, while ammonia for non-
energy demand is produced from H2 using the Haber-
Bosch process. The remaining amount of gas is used
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to produce heat. Finally, high-value chemicals are pro-
duced using renewable methanol, while 3.14 TWh/y of
bio-diesel is used for boat freight.

4.1.3. Comparison
Table 3 shows how the two objective functions vary

from one optimum to the other. The increase in cost
when optimising Ein is limited to 7.67%. Invested en-
ergy at the Ctot optimum is around 74 TWh/y, represent-
ing an increase of more than 20% from the Ein optimal
value.

As shown in Table 4, the total amount of energy
needed in the system differs only by 3%, but there are
some differences between the two energy mixes. At
the Ctot optimum, the energy coming from endogenous
resources is 21 TWh/y higher, while energy from ex-
ogenous resources is 9 TWh/y smaller. At each opti-
mum, the share of endogenous resources in the energy
mix (48% and 44%, respectively) is close to the maxi-
mum of 42% primary energy coming from endogenous
resources computed by Limpens et al. [38]. These val-
ues confirm the substantial dependence of Belgium on
imported resources to supply its energy consumption.

Looking at individual resources, solar and renewable
ammonia, used to produce electricity when optimising
Ctot, are replaced by fossil and renewable gas at the Ein

optimum. At this optimum, a percentage of the total
80 TWh/y of gas is used to produce high-temperature
heat instead of waste. The additional 35.4 TWh/y of
renewable hydrogen is used for three things: ammonia
production (which is directly imported when optimis-
ing cost), combined heat and electricity production, and
public mobility. Finally, while boat freight is fuelled us-
ing renewable methanol at the Ctot optimum, bio-diesel
is preferred at the Ein optimum.

4.2. Pareto Front

Figure 5 shows the values of Ctot and Ein at the effi-
cient solutions obtained using the method described in
Section 3.5 for values of ϵ equal to 0.25, 0.5, 1.0, 2.5,
5.0 and 7.5%. The two additional points at the curve
extremes correspond to each objective’s optimum. The
axes are labelled both in terms of the absolute values
of the objective functions but also - in parenthesis - in
terms of the deviations of these values from the optimal
objective value, i.e. Ctot/C⋆

tot − 1 and Ein/E⋆
in − 1.

This graph shows that Ein decreases quite rapidly,
saving 10 TWh/y out of 74 TWh/y (∼ -14%) when in-
creasing Ctot by a relatively small amount of 2.5%. This
behaviour can also be interpreted as: choosing the op-
timal cost implies a considerable addition in invested
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Figure 5: Approximated Pareto front showing trade-offs between Ctot
and Ein. On the axis, the absolute values of Ctot and Ein are shown
and completed, in parenthesis, by the deviations from the optimal
objective values in each objective. For instance, for Ctot , the value
Ctot/C⋆

tot − 1 is shown in parenthesis.

energy. Inversely, as already mentioned, Ctot is still rel-
atively low at the Ein optimum, i.e. it only increases by
7.5%.

Figure 6 shows the amount of endogenous and ex-
ogenous resources used at each efficient solution, start-
ing on the left with the cost optimum and moving to-
wards the invested energy optimum on the right. As
stated when comparing optimums, there is only a mi-
nor change for endogenous resources when going from
one optimum to the other. This change, the reduction
of solar and waste energy, appears when allowing a 5%
deviation in cost.

More change is happening for exogenous resources
(Figure 6b). As we increase cost and decrease the in-
vested energy, ammonia is gradually replaced by gas
(both natural and renewable). At a 2.5% cost increase,
the amount of renewable H2 starts increasing. Ammo-
nia is wholly removed from the system at 5%, while nat-
ural gas use reaches its maximum and starts to decline.
The same happens for renewable ammonia when reach-
ing a 7.5% cost increase, and some bio-diesel appears.
Overall, the change in the total amount of exogenous re-
sources used is non-monotonic. Starting to decrease, it
then increases when reaching the 5% threshold, corre-
sponding to the drop in endogenous resources use.

4.3. Necessary conditions

Analysing efficient solutions gives a first apprecia-
tion of the variety of system configurations, offering a
trade-off between different objectives. However, using
the necessary conditions, we can go one step further
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Figure 6: Energy [TWh/y] coming from (a) endogenous and (b) exogenous resources at efficient solutions representing different trade-offs between
Ctot and Ein. The leftmost bars show these values at the Ctot optimum, while the rightmost bar shows these values at the Ein optimum. The bars in
the middle are characterised by their deviation in [%] from the Ctot optimum. Abbreviations: Renewable (Re.), Electricity (Elec.).

by providing features respected by all those solutions
and some slightly less efficient solutions. We use Al-
gorithm 2 to compute non-implied necessary conditions
stemming from different sets of conditions of the type
defined by (26) in Section 3.7. The main parameter
defining these conditions is RES , the set of resources
over which the constrained sum is computed. The out-
put of this algorithm is a value c̃, which defines a non-
implied necessary condition for this set of resources.
Practically, this value represents the minimum amount
of energy that needs to come from this set of resources
to ensure that Ctot and Ein do not deviate by more than
an ϵ fraction from at least one solution in the Pareto
front. We will first compute this c̃ value for conditions
defined using the set of endogenous and the set of ex-
ogenous resources. We will then look at sets containing
one individual resource.

4.3.1. Endogenous vs exogenous resources
In this first section, we compare the values c̃ of non-

implied necessary conditions computed from the sets
ΦRES endo andΦRES exo . These conditions are computed for
different values of deviations ϵ. In this case, the tuples
ϵ = (ϵCtot , ϵEin ) corresponds to all the possible combina-
tions of 1, 2, 5, 10, 20, and 50%.

Comparing Figures 7a and 7b shows that the be-
haviours of the minima in endogenous and exogenous
resources are very different. For endogenous resources,
the minimum for deviations of 1% in both objectives is
already down to 130 TWh/y, representing a 42% and
26% decrease from the Ctot and Ein optima, respec-

tively. This amount is divided by more than two when
the deviation reaches 10% in both objectives, leaving
only 60 TWh/y left from endogenous resources. The
c̃ value then reaches 0 TWh/y when allowing an in-
crease of 50% in Ctot. These results show that energy
from endogenous resources can be reduced by a signif-
icant amount for reasonably low increases in cost and
invested energy.

For exogenous resources, there is little to no de-
crease in the total energy needed. Starting from 202
and 211 TWh/y at the optimums in cost and energy in-
vested, the minimum amount of this type of energy is
still around 174 TWh/y (i.e., -20% and -15% respec-
tively) for deviations of 10%. Most of the decrease is
already present for deviations of 1% with an amount of
energy of 180 TWh/y, which is only 6 TWh/y less than
the energy used at one of the efficient solutions. The c̃
value of non-implied necessary conditions then plateaus
at 174 TWh/y. This result shows how, contrarily to en-
dogenous resources, exogenous resources are essential,
whatever the cost and energy invested. Indeed, to re-
spect a GWPtot constraint of 35 MtCO2-eq/y, at least
174 TWh/y of energy needs to be imported.

4.3.2. Individual exogenous resources
We have shown that a certain amount of exogenous

resources is necessary due to limited endogenous re-
sources. However, the previous results do not show
which specific exogenous resource is essential. This
analysis can be done by computing necessary condi-
tions for groups of conditions Φ{i} where i ∈ RES cor-
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Figure 7: Values c̃ of necessary conditions (in [TWh/y]) for conditions of type ΦRES . The set of resources RES corresponds to endogenous
resources RES endo and exogenous resources RES exo for graph (a) and (b), respectively, while for graphs (c), (d) and (e), this set resumes to a single
resource: renewable methanol, gas and imported electricity, respectively. The values correspond to the minimum amount of energy that needs to
come from these sets of resources to ensure a constrained deviation in Ctot and Ein. These deviations are defined by the suboptimality coefficients
vector ϵ = (ϵCtot , ϵEin ). For (a) and (b), all the combinations of the following percentages are taken as coefficients vectors: 1%, 2%, 5%, 10%, 20%,
and 50%. For (c), (d) and (e), they are limited to the combinations of 1%, 2%, and 5%.

responds to a unique resource. We could perform this
analysis for all individual resources, but in Figure 6b,
the amounts of renewable methanol, gas, and imported
electricity are quasi-constant across the Pareto front.
Therefore, it is interesting to focus on these resources
to see if they are essential or if we can eliminate them
by increasing the cost or the invested energy. In this
section, we analyse non-implied necessary conditions
corresponding to the minimum energy from these three
resources.

The c̃ values of non-implied necessary conditions for
deviations ϵCtot and ϵEin of 1, 2 and 5% are shown in
Figures 7c, 7d, and 7e. We limit the analysis to devia-
tions of 5% as we can see that we are already equal (or
near to) 0 TWh/y for all three resources at this percent-
age. The amount of energy coming from the resources
at the Ctot and Ein optimums are respectively 56.4 and
52.8 TWh/y for renewable methanol, 28.2 and 34.5 for

gas, and 27.6 (at both optima) for imported electricity.
The minimum energy from each resource is around 50%
lower than at the efficient solutions when allowing devi-
ations of 1% in each objective. For renewable methanol
and gas, the amount of necessary energy is more sensi-
tive to deviations in invested energy than to deviations
in cost. However, the conclusion is similar for the three
resources: for a relatively small increase in cost and in-
vested energy, they can be replaced by other resources.

4.4. Analysis and insights from the results
In response to the initial query of this case study,

“Which endogenous or exogenous resources are neces-
sary in Belgium to ensure a transition associated with
sufficiently good cost and EROI?” our analysis offers
multiple insights. Examination of the optimums for
each objective revealed that endogenous resources are
instrumental in achieving an attractive cost and EROI. It
also highlighted that various exogenous resources could
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contribute to this outcome. Looking at points along the
Pareto front, we then refined this analysis. This next
step proved particularly informative for exogenous re-
sources, revealing a spectrum of energy mixes satisfy-
ing reasonable cost and EROI trade-offs. Finally, the
computation of necessary conditions unveiled an inno-
vative perspective. Despite being maximised at the opti-
mums, endogenous resources could be significantly re-
duced with relatively minor increases in cost and in-
vested energy. Conversely, while numerous exogenous
resource mixes offered a good cost and EROI, the total
energy derived from these sources could not fall below
a certain threshold. Necessary conditions also corrobo-
rated the broad range of exogenous mixes available, in-
dicating that no specific resource is indispensable when
accounting for a moderate relaxation of the objectives.

These findings suggest that for Belgium to decar-
bonise its economy, it must substantially rely on im-
ported resources. This necessitates careful management
of factors that can mitigate Belgium’s dependence, such
as enhancing energy efficiency, increasing land use for
renewable energy production, and maintaining positive
geopolitical relations with various providers. Fortu-
nately, allowing for acceptable deviations in cost and
EROI gives Belgium a wide choice in selecting im-
ported energy sources, offering opportunities for diver-
sification and a more reliable energy system.

While this analysis is specific to Belgium, similar
considerations apply to other countries in the European
Union, one of the most densely populated regions glob-
ally. Therefore, it is crucial to evaluate their dependence
on exogenous resources and the potential trade-offs and
opportunities.

5. Conclusion

The ongoing energy transition necessitates profound
restructuring of energy systems over the long term. En-
ergy system optimisation models (ESOMs) are critical
in steering this restructuring and identifying the optimal
blend of energy sources and technologies to meet future
energy demand. However, focusing solely on cost when
using these models limits the value of the insights they
can provide decision-makers.

We address this issue by introducing a methodology
for exploring the near-optimal spaces of multi-objective
problems to answer specific socio-technical questions
and applying it to a specific case study.

Building upon the research of Dubois and Ernst [23],
we extend the principles of epsilon-optimality and non-
implied necessary conditions to multi-objective prob-
lems. These concepts are applied to the case of Bel-

gium’s whole-energy system in 2035, with an emissions
target below 35 MtCO2/y, equating to an approximate
80% reduction compared to 2015 levels [38]. The case
study involved identifying the necessary endogenous or
exogenous resources to ensure a transition with reason-
able cost and EROI. This need is determined by comput-
ing non-implied necessary conditions, representing the
minimum energy amount derived from various resource
sets to ensure a constrained deviation in cost and energy
invested. Our research findings suggest that while Bel-
gium could significantly curtail its consumption of en-
dogenous resources, diminishing reliance on exogenous
resources presents a complex challenge. Furthermore,
our results underscore the versatility of potential exoge-
nous resources.

The current methodology encounters a set of limi-
tations that, if addressed, could enhance the reliability
of the results. The primary constraint relates to the
approximation of the epsilon-optimal space in multi-
objective optimisation problems, which affects the iden-
tification of non-implied necessary conditions. Increas-
ing the number of efficient solutions can improve re-
sults but amplifies computational time. To mitigate this
constraint, future research could examine the influence
of the number and distribution of efficient solutions on
the findings. Another consideration involves the vi-
sual presentation of the results. Specifically, necessary
conditions for constrained deviations in two objectives
can be effectively displayed on a two-dimensional grid.
However, should the objectives exceed two, or if near-
optimal space analysis is merged with parametric un-
certainty analysis, new innovative techniques will be re-
quired to encapsulate the results succinctly.

Potential avenues for future research could contribute
to expanding the current methodology. Firstly, the
method was developed around the concept of neces-
sary conditions. However, other methodologies were
developed to explore near-optimal spaces in a mono-
objective setup as presented, for instance, in Price and
Keppo [18], Li and Trutnevyte [19], Pedersen et al.
[20], Nacken et al. [52]. An interesting research track
would be to extend these methodologies in a multi-
objective setup. Secondly, the current methodology was
developed for fixed feasible spaces and objective func-
tions. Incorporating techniques for addressing paramet-
ric uncertainty, such as sensitivity analysis, would en-
hance the breadth and applicability of the results.

Lastly, extensive research is required to substantiate
the utility of the method across varied contexts. Future
research could replicate the case study for different na-
tions or regions grappling with resource constraints and
challenges of energy dependence. Moreover, while cost
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and invested energy were the primary objectives in this
study, other criteria like land use, water use, or metal re-
sources could be explored. This framework could also
be utilised to answer alternative queries about various
resources or technologies. Ultimately, this approach
could be extended to study near-optimal spaces for var-
ious optimisation problems within and beyond the en-
ergy systems field.
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Appendix A. Numerical values of the epsilon-space
examples

The functions depicted in Figures 2, 3, and 4 are

f1(x) = 10 ∗ (2x − 0.75)2 + 2 and (A.1)

f2(x) = 10 ∗ (x − 0.75)2 + 1.5 . (A.2)

The coordinates of their minimums are (x∗1, f1(x∗1)) =
(0.375, 2) and (x∗2, f2(x∗2)) = (0.75, 1.5), respectively.

One-dimensional epsilon-optimal space

In Figure 2, the ϵ-optimal space Xϵ of a one-
dimensional optimisation problem was obtained by first
computing

(1 + ϵ1) f1(x∗1) = (1 + 0.25) ∗ 2 = 2.5 (A.3)

where ϵ1 = 0.25. Then, the limits of Xϵ can be obtained
by computing the inverse image of this value, i.e. the
set {0.263, 0.487}, which leads to Xϵ = [0.263, 0.487].

Two-dimensional epsilon-optimal space

In Figure 3a and 3b, the Pareto front PX is repre-
sented in green. This set of points respects definition 6
of a Pareto front. Indeed, each point x in the interval
[x⋆1 , x

⋆
2 ] is such that ∄x̂ ∈ X where f1(x̂) < f1(x) and

f2(x̂) < f2(x).
In Figure 3b, a subset of the ϵ-optimal space Xϵ of

a two-dimensional optimisation problem is computed
for a suboptimality coefficients vector ϵ = (ϵ1, ϵ2) =
(0.25, 0.6). This subset is computed from the point
x̂ = 0.6, which is part of PX. To obtain the subset of
Xϵ , the images of x̂, f1(x̂) = 4.025 and f2(x̂) = 1.725,
are computed. Multiplying these values by the corre-
sponding suboptimality coefficients gives

(1 + ϵ1) f1(x̂) = (1 + 0.25) ∗ 4.025 = 5.03 and (A.4)
(1 + ϵ2) f2(x̂) = (1 + 0.6) ∗ 1.725 = 2.76 . (A.5)

The inverse image of these values are {0.0997, 0.65}
for f1 and {0.395, 1.105} for f2. The set of points re-
specting ∀k fk(x) ≤ (1 + ϵk) fk(x̂) are then contained in
[0.395, 0.65].

To obtain the full ϵ-optimal space depicted in Fig. 3a,
one should repeat this process with all points in PX.
However, in this simple example, one can quickly com-
pute the limits of the entire space by using the two opti-
mums, which are the extreme points of the Pareto front.
These limits are obtained by taking the inverse images
of

(1 + ϵ1) f1(x∗1) = (1 + 0.25) ∗ 2 = 2.5 and (A.6)
(1 + ϵ2) f2(x∗2) = (1 + 0.6) ∗ 1.5 = 2.4 , (A.7)

which gives {0.263, 0.487} and {0.45, 1.05}. The lower
and upper bound of Xϵ are then respectively given by
the lower and upper bound of those two sets, i.e. Xϵ =
[0.263, 1.05].

Approximate Pareto fronts and epsilon-optimal spaces

Figures 4a, 4b, and 4c show approximate ϵ-optimal
spaces for three different set of efficient points. These
sets are

1. Fig. 4a: [(2.0, 2.91), (3.41, 1.85), (7.62, 1.5)];
2. Fig. 4b: [(2.9, 2.01), (2.99, 1.97), (3.09, 1.94),

(3.19, 1.91), (3.3, 1.88), (3.41, 1.85), (3.52, 1.82),
(3.64, 1.8), (3.77, 1.77), (3.9, 1.75), (4.03, 1.72)];

3. Fig. 4c: [(2.0, 2.91), (2.06, 2.64), (2.23, 2.40),
(2.51, 2.19), (2.9, 2.01), (3.41, 1.85), (4.03, 1.72),
(4.76, 1.63), (5.61, 1.56), (6.57, 1.51), (7.62, 1.5)].
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Appendix B. Necessary conditions - Advanced defi-
nitions

Appendix B.1. Implication

The implication between two conditions can be defined
mathematically and allow for a more formal definition
of non-implied necessary conditions.

Definition 10. An implication function ψ(ϕ1 | ϕ2) ∈
{0, 1} is a function that indicates whether condition ϕ2
implies condition ϕ1. When ψ(ϕ1 | ϕ2) = 1, then ∀x ∈
X, ϕ2(x) = 1 =⇒ ϕ1(x) = 1. When ψ(ϕ1 | ϕ2) = 0,
then ∃x ∈ X, ϕ2(x) = 1 ≠⇒ ϕ1(x) = 1.

Example: Let us consider conditions ϕ1(x) B x ≥ 1 and
ϕ2(x) B x ≥ 2 of the example introduced in Section
2.1.2. We have that ψ(ϕ1 | ϕ2) = 1. Indeed, for all
x ∈ X, if ϕ2(x) = 1 this means that x ≥ 2, that x ≥ 1
and thus ϕ1(x) = 1. Conversely, ψ(ϕ2 | ϕ1) = 0. Indeed,
there exist several x ∈ X such that ϕ1(x) = 1 and ϕ2(x) =
0. For instance, this is the case for x = 1.5.

Definition 11. A non-implied necessary condition is a
necessary condition ϕ ∈ ΦX

ϵ

that is not implied by any
other necessary condition. It is a necessary condition
ϕ ∈ ΦX

ϵ

such that ∀ϕ′ ∈ ΦX
ϵ

\ {ϕ} : ψ(ϕ | ϕ′) = 0.

Example: The condition ϕ0 respects this definition. In-
deed, for any other condition ϕ′ ∈ ΦX

ϵ

, that is any ϕc

with c < 0, we have ψ(ϕ0 | ϕc) = 0. The proof is
straightforward. For any c < 0, ϕc(c) = 1 as c ≥ c is
true, but ϕ0(c) = 0 as c ≥ 0 is false.

Appendix B.2. Necessary conditions - True spaces

A last way to particularise the definition of (non-
implied) necessary conditions is by defining the space
over which a condition is true.

Definition 12. The space Iϕ is the subset of X where a
condition ϕ is true, that is:

Iϕ =

{
x ∈ X | ϕ(x) = 1

}
. (B.1)

Example: The spaces Iϕc of the conditions ϕc(x) B
x ≥ c are the spaces [c,∞]. These spaces might be-
come more complex to determine when considering, for
instance, conditions using linear combinations of vari-
ables, e.g. ϕ(x) B ax1+bx2 ≥ c with x = (x1, x2) ∈ X =
R2.

Definition 13. A necessary condition for ϵ-optimality
is a condition ϕ such that Xϵ ⊆ Iϕ.

Example: For a set of conditions Φ = {ϕc(x) B x ≥ c}
with x ∈ R and c ∈ R, and a ϵ-optimal space Xϵ =
[0, 1], this definition implies that all conditions ϕc with
c ≤ 0 are necessary, which corresponds to same set as
definition 3. Indeed, the spaces Iϕc = [c,∞] include the
space [0, 1], when c ≤ 0.

Definition 14. Let ϕ1 and ϕ2 be conditions with Iϕ1 and
Iϕ2 the spaces over which they are respectively true,
then the implication function ψ(ϕ1 | ϕ2) is defined as:

ψ(ϕ1 | ϕ2) = Iϕ2 ⊆ Iϕ1 . (B.2)

This formulation fits definition 10 of an implication
function. Indeed, if ψ(ϕ1 | ϕ2) = 1, then it means
Iϕ2 ⊆ Iϕ1 , which in turns implies that ϕ1(x) = 1 for any
x ∈ X for which ϕ2(x) = 1. Similarly, if ψ(ϕ1 | ϕ2) = 0,
it means that Iϕ2 ⊈ Iϕ1 , which means ∃x ∈ X such that
ϕ1(x) = 0 when ϕ2(x) = 1.

Definition 15. A non-implied necessary condition is a
necessary condition ϕ ∈ ΦX

ϵ

that is true over a space
which does not include any of the spaces over which
other necessary conditions are true. It is a necessary
condition ϕ ∈ ΦX

ϵ

such that ∀ϕ′ ∈ ΦX
ϵ

\ {ϕ} : Iϕ′ ⊈ Iϕ.

Figure B.8 illustrates these concepts, where ϕ2 implies
ϕ1 as Iϕ2 ⊂ Iϕ1 . They are both necessary conditions
because they are true over Xϵ . Finally, if no other con-
ditions exist in the set Φ = {ϕ1, ϕ2}, then ϕ2 is a non-
implied necessary condition as no other necessary con-
dition implies it.

Figure B.8: Graphical illustration of implication using spaces over
which conditions are true, adapted from Dubois and Ernst [23]. The
four spaces that are represented are the feasible spaceX, the ϵ-optimal
space Xϵ , and the spaces Iϕ1 and Iϕ2 where conditions ϕ1 and ϕ2 are
respectively true. Both these conditions are necessary as Xϵ ⊂ Iϕ1
and Xϵ ⊂ Iϕ2 . Moreover, ϕ2 implies ϕ1 as Iϕ2 ⊂ Iϕ1 .

Appendix C. Types of end-use demand in
EnergyScope-TD

Four main types of EUD are considered in the
model: electricity, heat, transport, and non-energy de-
mand. Electricity is further divided between lighting
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Algorithm 3: Computation of one non-implied
necessary condition for a given set of resources
and suboptimality coefficients vector. Adapta-
tion of Algorithm 2 to the case study.

Data:
X ∈ Rn - feasible space defined via ESTD,
f = (Ctot, Ein),
m - number of points,
ϵ = (ϵCtot , ϵEin ),
RES - a set of resources

Result: c̃
Steps:

1. Compute the two optimums C⋆
tot = arg minXCtot

E⋆
in = arg minX Ein (and derive Ce

tot the value of
Ctot at the Ein optimum).

2. Apply method (23) for m − 2 values of ϵ in
]0,Ce

tot/C
⋆
tot[ to obtain points x̂(2), . . . x̂( j), . . . x̂(m−1)

of the Pareto front. Points x̂(1) and x̂(m) correspond
to the Ctot and Ein optimums, respectively.

3. For all j ∈ [1, 2, . . . ,m], compute

c( j) = min
∑

i∈RES ,
t∈T |{h,td}∈T HT D(t)

Ft(i, h, td) (D.1)

over the space

{x ∈ X | Ctot(x) ≤ (1 + ϵCtot )Ctot(x̂( j)),

Ein(x) ≤ (1 + ϵEin )Ein(x̂( j))},
(D.2)

where Ctot(x) and Ein(x) represent the values of
the two objectives at solution x.

4. Take the minimum c̃ = min j∈[1,2,...,m] c( j) to find the
non-implied necessary condition:

ϕc̃ =
∑

i∈RES ,
t∈T |{h,td}∈T HT D(t)

Ft(i, h, td) ≥ c̃ , (D.3)

and other electricity uses. Heat is subdivided into high-
temperature heat for industry, low temperature for space
heating, and low temperature for hot water. Mobility is
composed of public and private passenger mobility and
freight demands. Finally, the non-energy demand in-
cludes demand for ammonia, methanol, and high-value
chemicals (HVCs). Table C.5 lists the values for each
EUD type in 2035 based on Limpens [53].

EUD type Unit EUD

Electricity (other) TWhe 62.1
Lighting TWhe 30.0
Heat high T. TWh 50.4
Heat low T. (SH) TWh 118
Heat low T. (HW) TWh 29.2
Passenger mobility Mpass.-km 194
Freight Mt-km 98.0
Non-energy TWh 53.1

Table C.5: 2035 Belgian end-use demand (EUD) value by type based
on Limpens [53]. Abbreviations: temperature (T.), space heating (SP),
hot water (HW), passenger (pass.).

Appendix D. Computation of non-implied neces-
sary conditions for the case study

Algorithm 3 is an adapted version of Algorithm 2 al-
lowing to compute a non-implied necessary condition
for a fixed set of resources RES and suboptimality co-
efficients vector ϵ.
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4Explaining how model complexity
affects necessary conditions

4.1 The Question

Does system configuration change faster around the optimum
when systems are more complex ?

Retrieving the optimal solution to an optimisation problem can be a cumbersome task.
Considering this optimum as insufficient and searching for alternative near-optimal
solutions makes the problem even more computationally intensive.

Several strategies can be employed to curb the necessity for extensive solution explo-
rations. Primarily, the choice of a specific Modelling to Generate Alternative (MGA)
technique can significantly influence efficiency. Generating many solutions with no
precise objective can be less productive than targeted efforts, like those employed in
computing necessary conditions. Another way to economise computational effort is
by limiting the variations in the sub-optimality coefficient, ϵ. For instance, one might
opt to use just 1% and 10% as values rather than 1%, 2.5%, 5%, and 10%. Such a
strategy, though computationally sparing, might curtail a deeper understanding of
how solutions diverge with increasing allowable deviations. This could subsequently
reduce the insights available for decision-making.

However, these considerations warrant a caveat. If solutions show minimal alter-
ations upon deviation from the optimum, then a comprehensive exploration of the
near-optimal space might be redundant. But how can we determine this trait of
the optimum’s neighbourhood? It is not evident, but we conjecture that the com-
plexity of a model could serve as an indicator of this trait. For instance, a model
with a broader spectrum of technological choices (indicative of higher complexity)
might demonstrate a more pronounced solution shift upon small alterations in the
objective value, given its increased number of alternatives. Conversely, a model with
a more realistic representation of specific technologies (e.g., introducing ramping
constraints on generator production) might shrink the near-optimal space. Hence,
we endeavoured to probe: Does increased system complexity precipitate a faster or
slower shift in configuration near the optimum?
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4.2 The Idea

Defining the complexity of a model, especially within the domain of energy modelling,
is complex. The intricacy can hinge on multiple factors: the model’s sectoral and
technological breadth, the granularity with which it portrays the inner mechanics of
technologies, or the specific features incorporated to more authentically simulate
real-world scenarios. To discern how complexity influences near-optimal spaces, we
concentrated on one facet that dictates a model’s complexity: its spatiotemporal
resolution. This dimension was chosen owing to its quantifiable nature, compared
to other features such as the fidelity of representation of a technology. For instance,
in a network, the spatial resolution can easily be gauged by tallying the number of
nodes, and the temporal resolution pertains to the level of time aggregation, e.g.
one hour, one day, or one week.

Next arose the challenge of selecting an appropriate metric to assess how the near-
optimal space morphs across models of varying spatiotemporal resolutions. One
viable approach might involve calculating the ‘volume’ of the near-optimal space for
each distinct resolution and comparing them across resolutions for fixed sub-optimal
coefficients. Yet, computing the volume of a multi-dimensional polyhedron remains
intricate. Consequently, we opted for a more straightforward approach based on
our previous work by using the variation of necessary conditions over assorted
resolutions as our evaluative criterion. Although this may not wholly capture the
essence of the near-optimal space’s evolution, it embarks on a preliminary pathway
to garner insights.
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4.3 The Paper: Impacts of Spatial and Temporal
Resolutions on the Near-Optimal Spaces of
Energy System Optimisation Models

This article was accepted for presentation at the IEEE PES Innovative Smart Grid
Technologies Europe 2023 conference.

4.3.1 Paper’s contributions

The main contributions of this paper are as follows:

1. It pioneers the study of how spatial and temporal resolutions impact the values
of necessary conditions for near-optimality.

2. To steer further research in this domain, it furnishes a comprehensive set of
observations detailing these impacts.

4.3.2 Authors’ contributions

Professor Ernst and myself co-authored this article. I initiated the research idea,
conducted the experiments, and took the lead in the writing process. Professor Ernst
provided supervision and guidance throughout the entire process.

4.3.3 Reading tips

Although Tables II to IV may appear dense and contain numerous results, the
conclusions derived from these findings are straightforward and summarised in
Section IV.B as three key observations. Rather than attempting to interpret the tables
independently, readers should direct their attention to these concise observations for
a clear understanding of the results.
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Abstract—Over the past years, the rising penetration of re-
newable energy in power systems has led to the need for more
detailed energy system models. Specifically, spatial and temporal
resolutions have become increasingly important, and multiple
studies have investigated their impact on the optimal solutions
to energy system optimisation problems. However, these studies
have yet to be conducted for near-optimal solutions, which can
provide valuable insights to decision-makers. This paper aims
to initiate this research by examining the effects of spatial and
temporal resolutions on the values of necessary conditions for
near-optimality. In particular, we investigate how spatiotemporal
resolution changes affect minimal capacity investments in the
European electricity grid. Our analysis leads to three key
observations. Firstly, we show that minimal capacities for near-
optimality exhibit similar trends to optimal capacities when each
resolution varies. Secondly, the resolutions that result in higher
optimal capacities are also the ones where minimal capacities
deviate the least from the optimal capacities. Thirdly, as a result
of the second observation, spatial or temporal resolution changes
have a greater impact on minimal capacities for near-optimality
than on optimal capacities. We conclude by suggesting solutions
to expand this research track and gain a deeper understanding of
the impact of spatiotemporal resolution on near-optimal spaces.

Index Terms—spatiotemporal resolution, near-optimal space,
necessary condition, energy system optimisation model, European
power grid

I. INTRODUCTION

Energy system optimisation models (ESOMs) are exten-
sively used to plan the transition to low-carbon power systems
at local, national and international levels [1]. These models al-
low for determining the best system investment and operation
for optimising an objective, typically cost.

However, researchers have recently highlighted the im-
portance of going beyond classic cost-optimal analysis by
studying near-optimal solutions [2]. These solutions, while less
cost-efficient, might be better in terms of other objectives -
e.g. energy efficiency, ecological concerns, or social factors -
which might be challenging to model. Near-optimal solutions
analyses have shown how different the system can become
when allowing for slight deviations in cost [3]–[6].

Antoine Dubois is a Research Fellow of the F.R.S.-FNRS, of which he
acknowledges the financial support.

The results of studies using ESOMs are also affected by
the complexity with which energy systems are modelled. This
complexity depends on the features that are included in the
model. Including more numerous and complex features while
providing more detailed studies leads to more complex models,
which are, in turn, more time-consuming to model and more
challenging to solve. One feature that can easily be modified to
tune the complexity of a model is its spatiotemporal resolution.
This feature has become increasingly important with the
increased penetration of new renewable energy technologies,
such as photovoltaic (PV) panels and wind turbines in energy
systems. Different studies have thus explored the impact of
spatial and temporal resolution on the cost-optimal solution
of ESOMs [7]–[11]. However, the impact of this form of
complexity on near-optimal solutions has yet to be explored. In
this paper, we initiate research in this area by analysing how
spatial and temporal resolution affects necessary conditions
for epsilon-optimality - a concept introduced by [5]. This
analysis is done on a case study whose context is the European
electricity grid modelled using the open-source ESOM PyPSA.

II. LITERATURE REVIEW

An extensive range of ESOMs exhibiting different features
exists [1]. Classical features include the models’ temporal,
geographical and sectoral scopes, the range of modelled
technologies, and the complexity with which they are mod-
elled. Some models implement special features such as price-
responsive demands, endogenous technological learning, or
macroeconomic interactions. The number and sophistication
of these features determine the complexity of each model.
Among those features, the model’s spatiotemporal resolution
is paramount. According to [1], setting it appropriately is the
second key step in any ESOM application. When modelling
energy systems with high renewable energy penetration, a high
- typically hourly - resolution is required to represent the
system dynamics properly. For system models representing
networks, the spatial resolution depends on the number of
modelled nodes. For instance, a spatial resolution of one
node per country is often used to model transnational power
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systems. Still, some representations can be much more pre-
cise, e.g., a thousand nodes for the European power system
represented by PyPSA-Eur [12].

Some studies have shown how the spatiotemporal resolution
affects the quality of the system modelling and the analysis
it serves. As highlighted in [7], spatial resolution can impact
the system’s estimated cost. Depending on the grid model,
this cost can be over- or underestimated. Another impact
mentioned by [7] is the sub-optimal capacity investment in
technologies such as wind and solar when using low spatial
resolution. Spatial resolution can also impact the curtailment
of renewable sources [8]. The impact of temporal resolution is
non-negligible, either. Indeed, as mentioned in [9], aggregating
this resolution inappropriately can introduce errors in model
outputs and the derived insights. For instance, as stated in
[10], a simplified resolution implies an under-evaluation of
cost. It can also lead to understating the importance of wind
generation and energy storage while overstating the value
of solar generation. The work of [11] also supports the
underinvestment in wind technology.

Overall, improving spatiotemporal resolution leads to better
estimating the system’s needs. Another way of improving the
quality of insights derived from ESOMs is to look beyond
cost-optimal solutions. This approach was first proposed in a
case unrelated to energy system modelling [13]. It was recently
applied to ESOMs by [2] and has since been used by several
researchers [3]–[5], [14], [15]. These authors have proposed
different approaches for exploring the near-optimal space, i.e.,
the space of solutions with an objective value close to the
optimal objective value. Some propose computing a series of
near-optimal solutions and analysing their properties [3], [14],
[15]. Others are searching for near-optimal solutions exhibiting
specific properties, e.g., those with a minimum capacity in
some renewable technology [4], [5]. Authors of [5] translated
this second approach through the computation of ϵ-optimal
necessary conditions, i.e., conditions which are true for any
solution whose cost is, at most, 1 + ϵ times more expensive
than the cost optimum. More specifically, the methodology
consists of computing an ϵ-optimal space X ϵ defined as:

X ϵ = {x ∈ X | f(x) ≤ (1 + ϵ)f(x⋆)} ∀ϵ ≥ 0 , (1)

where X is the problem feasible space, f : X → R+ an
objective function (e.g., the cost), x⋆ an optimal solution, and ϵ
the suboptimality coefficient that measures the deviation from
the cost-optimal value. This space contains all the solutions
whose objective value does not deviate by more than ϵ from the
optimal objective value. Necessary conditions for ϵ-optimality
can then be computed to derive insights from this space. Those
are conditions (i.e. functions ϕ : X → {0, 1}) which are
true for every element in X ϵ. For instance, using conditions
corresponding to constrained sums of investment variables, the
authors of [5] showed that for a deviation ϵ of 10%, capacity
investment in onshore wind, storage, PV, transmission, and
offshore wind could be reduced to 0%, 0%, 15%, 50%, and
60% of their optimal capacities, respectively.

These studies were performed with a fixed spatiotemporal
resolution and have thus not explored whether increasing it
improves the quality of the insights derived from near-optimal
solutions. In this paper, we take the first step in filling this
gap by exploring how spatial and temporal resolution impacts
necessary capacity investments for near-optimality.

III. CASE STUDY

This case study explores the required minimum investments
in power transmission, generation, and storage capacities
across the European continent to achieve, by 2030, a 99%
reduction in greenhouse gas (GHG) emissions compared to
1990 levels while ensuring near-optimality in cost. The goal
is to analyse the impact of spatial and temporal resolution on
these investments.

To model the European electricity network, the open-source
tool PyPSA (Python for Power System Analysis) [16] is used.
As described in its online documentation [17], PyPSA allows
for “simulating and optimising modern power systems that
include features such as conventional generators with unit
commitment, variable wind and solar generation, storage units,
coupling to other energy sectors, and mixed alternating and
direct current networks”. It is “designed to scale well with
large networks and long time series”. This case study uses
PyPSA to plan capacity expansion, i.e., determine how much
capacity needs to be deployed for each expandable technology
at each network node.

PyPSA has been used to model the European network
through the PyPSA-Eur project [12]. This model has already
been used and validated in a series of studies [5], [18], [19].
In this case study, the default version of the model [20] is
used with a few modifications. In addition to onshore and
offshore wind, capacities of PV, CCGT (combined cycle gas
turbine), OCGT (open cycle gas turbine), transmission, and
storage can be extended. The power density of offshore wind
is set to 10 MW/km2 [21] instead of the default 2 MW/km2.
A limit of two times the existing capacity is set on link and
line capacities. We consider it a reasonable upper bound on
what is possible to build in less than ten years. Finally, nuclear
power plants can produce at nominal capacity but have a
ramping limit of 10% of nominal capacity per hour, upwards
and downwards.

The modelled network contains 6763 lines and 3642 substa-
tions [20], and time series for electrical demand and variable
renewable generators are available at an hourly resolution.
However, the model can be clustered to decrease the number
of substations - also referred to as nodes - and, therefore, the
number of lines. The temporal resolution can also be reduced
by averaging over every n snapshot, where n is a positive
integer. This paper studies the following level of clustering:
100, 200, and 400 nodes for spatial resolution and 2, 4 and 6
hours for temporal resolution. The lower limit of a six-hourly
resolution was set as decreasing the temporal resolution further
led to unreliable storage behaviour.

The cost-optimal network configurations are first computed
for all combinations of these resolutions. For each of these
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optimal configurations, we analyse the sums of new capacities
installed for PV panels, wind turbines (i.e., the sum of new
capacities of onshore and offshore wind), and transmission
(i.e., the sum of new capacities of lines and links) across
the European network. Mathematically, we can denote these
sums by dTxI with xI a vector of size |I| that collects the
different investment variables and d ∈ {0, 1}|I|. For instance,
the only values equal to 1 in d could correspond to the
investment capacities in wind turbines. The sum would then
equal the sum of wind capacities across the network. By
changing the values in d, we can obtain investment capacities
for different technologies. These sums take different values
for each solution to the problem. We denote the value of these
sums at the optima by c∗n,h where n and h represent the spatial
and temporal resolution of the model, counted respectively in
nodes and hours.

Once the optima are computed, the methodology developed
in [5] allows determining the minimum new capacity invest-
ment needed in PV, wind and transmission to ensure cost ϵ-
optimality. To compute the minimum new capacity required in
renewable technologies to stay ϵ-optimal, we use conditions
of the form ϕ(xI) := dTxI ≥ c with c ∈ R+. If we minimise
this sum over X ϵ, we obtain a value cϵn,h equal to the minimal
new capacity that needs to be deployed to be ϵ-optimal (see
[5] for a proof). These values depend on the model’s spatial
and temporal resolution and the sub-optimality coefficient. In
this case study, we limit our analysis to an ϵ of 10%.

IV. RESULTS

We first analyse the optimal values c∗n,h of new capacities
for PV, wind and transmission to see how the system behaves
at the optima when changing the resolution. We then analyse
how near-optimal solutions are impacted by looking at the
minimal new capacities cϵn,h for these technologies and how
these impacts compare to the ones on the optimal capacities.

A. Analysis of optimal solutions

The optimal solutions are computed for time resolutions
of 6, 4, and 2 hours and spatial resolutions of 100, 200,
and 400 nodes (in order from the least complex system to
the most complex). Table I shows the optimal costs for all
combinations of resolutions. The values range between 64.4
and 69.8 BC/y, and there is a clear trend: the more complex
the network, the higher the cost. Rising investment costs
primarily drive the increases. Indeed, increasing the temporal
resolution from 6 hours to 2 hours adds between 1 to 2 BC/y
in generation capacity investment. This rise is linked to the

TABLE I: System costs [BC/y] at the optimal solutions for
different spatial and temporal resolutions.

hours [h]
nodes [n] 6 4 2

100 64.4 67.4 68.4
200 64.7 67.8 68.7
400 65.9 68.8 69.8

switch from solar to wind capacity, as shown in Table II. While
the added wind capacity is only half that removed for PV, the
average wind capital cost is around four times more expensive,
explaining the overall rise in investment cost. Improving the
temporal resolution decreases the importance of PV because
it reveals the mismatch between solar production and demand
peaks, making this technology less attractive as it needs to
be combined with storage. The increase in storage observed
when moving from six to two-hourly resolution confirms
this and explains the additional 1.7 to 2.3 BC/y increase
in cost. As shown in Table II, transmission investment also
increases with the temporal resolution, allowing the absorption
of unsmoothed production peaks.

PV and wind capacities increase when using a better spatial
resolution. This increase can be explained by the better spatial
representation of renewable sources linked to the increased
number of nodes in the model. Indeed, in the PyPSa-Eur
model, wind and PV capacity can be installed at each node and
are associated with a node-specific capacity factor time series.
When aggregating nodes to reduce the spatial resolution, the
capacity factors of different nodes are averaged, leading to
losing some of the better capacity factor signals. This increase
in renewable generation again implies greater needs in storage
capacity which adds between 1.3 to 1.9 BC/y to the total
cost. To finish this analysis, let us note that there is no
clear tendency when looking at the evolution of transmission
capacity with spatial resolution. Indeed, the capacity rises from
100 to 200 nodes before dropping again when reaching 400
nodes. This behaviour is difficult to analyse as topological
changes, impacting the total length of the lines and, thus,
their capacities in TWkm, occur when modifying the number
of nodes in the network. Thus, in the rest of the paper, the
analysis of transmission capacity is limited to its evolution
with temporal resolution.

B. Analysis of necessary conditions

This section analyses how temporal and spatial resolutions
affect the necessary conditions corresponding to the minimal
new capacities in PV, wind and transmission and how these
impacts compare to the ones on the optimal new capacities.
This analysis is divided into three observations derived the
results shown in Tables II to IV.

Observation 1: Optimal and minimal capacities follow the
same trends when modifying spatial and temporal resolutions.

The values cϵn,h for ϵ = 10% are shown in Table II. The
effect of spatiotemporal resolution on these values is similar
to its impact on optimal values c∗n,h. Firstly, increasing the
temporal resolution decreases the minimal PV capacities while
increasing wind and transmission capacities. Secondly, an
increase in spatial resolution increases PV and wind capacities.
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TABLE II: New capacities c∗n,h at the optima, minimum new capacities cϵn,h with ϵ = 10%, and ratio cϵn,h/c
∗
n,h.

PV Wind Transmision
n\h 6 4 2 6 4 2 6 4 2
100 488 399 388 297 342 346 76.0 80.3 81.7

c∗n,h 200 498 410 395 [GW] 312 356 363 [GW] 76.6 81.7 83.6 [TWkm]
400 513 429 416 324 365 371 70.9 75.5 76.4
100 125 85.8 79.8 128 160 163 11.9 14.8 15.2

cϵn,h 200 130 92.9 85.8 [GW] 146 178 182 [GW] 13.7 16.2 16.7 [TWkm]
400 144 109 102 157 189 193 11.6 13.9 14.2
100 25.6 21.5 20.5 43.0 46.9 47.0 15.7 18.4 18.7

cϵn,h/c
∗
n,h 200 26.2 22.6 21.8 [%] 46.8 50.0 50.1 [%] 17.9 19.8 20.0 [%]

400 28.2 25.5 24.5 48.4 51.7 52.1 16.4 18.4 18.6

Observation 2: A resolution leading to a higher optimal
capacity than another resolution also leads to a smaller
deviation of the minimal capacity from this optimal capacity.

Table II shows the ratios cϵn,h/c
∗
n,h between minimal and

optimal new capacities. The first observation is that these
ratios vary within narrow ranges. For transmission capacity,
the ratios vary between approximately 15% and 20%. This
result means that there exist near-optimal solutions costing
at most 10% more than the optimal cost and where there is
only 15 to 20% of the new transmission capacity installed
at the optimum. For PV capacity, these ratios are contained
in the range [20 : 30]%; for wind capacity, the range is
approximately [40 : 50]%. However, these percentages exhibit
structured differences: their variations follow the same trends
as optimal capacities. Indeed, the resolutions that lead to
higher percentages for each technology have larger optimal
capacities. This result can be explained as follows. If the
capacity of a technology is larger at the cost optimum for
a given resolution, it implies that this technology is more
economically valuable at this resolution. When computing the
minimum capacity for ϵ-optimality, the model searches for
alternative solutions using other technologies for a cost close
to the optimum. If the minimised technology is economically
advantageous, finding economically attractive alternatives to
replace it is challenging, which makes this technology difficult
to minimise. Therefore, if a technology is more advantageous
at one resolution than another, it has a larger optimal capacity
at this resolution and leads to a smaller deviation from this
optimum when trying to minimise this technology under a
constrained cost deviation. Mathematically, if for resolutions
na and resolution nb, we have c∗na,h

> c∗nb,h
(which, following

observation 1, also implies cϵna,h
> cϵnb,h

), then observation 2
states that the following inequality is respected:

cϵna,h/c
∗
na,h > cϵnb,h

/c∗nb,h
. (2)

This statement is also true if the resolution variation is
temporal instead of spatial.

Observation 3: Modifying the spatial or temporal resolution
has more impact on minimal than optimal capacities.

This statement means that the relative difference between
the minimal capacities at two different resolutions is greater
than the relative difference between the optimal capacities
associated with these same resolutions. Mathematically, let n1

and n2 be two different spatial resolutions, with n1 being the
higher of the two (e.g. n1 = 400 and n2 = 100), we have:

|cϵn2,h/c
ϵ
n1,h − 1| > |c∗n2,h/c

∗
n1,h − 1| (3)

where the first term and second term represent the relative
difference between the minimal and optimal capacities, respec-
tively. This result is a consequence of the previous observation
and can be proven using (2) where na is a resolution with
higher optimal and minimal new capacities than nb. We
differentiate between two cases.

Case 1: The higher resolution corresponds to the one with the
higher capacity, i.e., n1 = na and n2 = nb. Ineq. (2) becomes:

cϵn1,h/c
∗
n1,h > cϵn2,h/c

∗
n2,h (4)

⇔ c∗n2,h/c
∗
n1,h > cϵn2,h/c

ϵ
n1,h (5)

⇒ |c∗n2,h/c
∗
n1,h − 1| < |cϵn2,h/c

ϵ
n1,h − 1| (6)

where (5) ⇒ (6) as cϵn1,h
> cϵn2,h

and c∗n1,h
> c∗n2,h

.

Case 2: The higher resolution corresponds to the one with the
lower capacity, i.e., n1 = nb and n2 = na. Ineq. (2) becomes:

cϵn2,h/c
∗
n2,h > cϵn1,h/c

∗
n1,h (7)

⇔ cϵn2,h/c
ϵ
n1,h > c∗n2,h/c

∗
n1,h (8)

⇒ |cϵn2,h/c
ϵ
n1,h − 1| > |c∗n2,h/c

∗
n1,h − 1| (9)

where (8) ⇒ (9) as cϵn1,h
< cϵn2,h

and c∗n1,h
< c∗n2,h

.

We obtain the same conclusion, which is also valid if the
temporal resolution varies. In our case study, case 1, where the
better resolution corresponds to the higher optimal capacity,
is valid for wind and transmission capacity for both types
of resolutions. It is also valid for PV capacity for spatial
resolution, while the variation of PV with temporal resolution
corresponds to case 2.

This observation is illustrated by comparing capacities at
lower resolutions to those at the case study’s best temporal and
spatial resolutions, i.e., h0 = 2 and n0 = 400. Table III thus
contains the deviations of optimal (or minimal) new capacities
at lower temporal resolutions (i.e., h = 6 and h = 4) from
the optimal (or minimal) new capacities at the best temporal
resolution h0 = 2, i.e., |c∗n,h/c∗n,h0

− 1| (or |cϵn,h/cϵn,h0
− 1|).

Then, Table IV shows the same type of deviations but from
the capacities at the best spatial resolution n0 = 400, i.e.,
|c∗n,h/c∗n0,h

− 1| and |cϵn,h/cϵn0,h
− 1|.
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TABLE III: Deviations |c∗n,h/c∗n,h0
− 1| of optimal new ca-

pacities and deviations |cϵn,h/cϵn,h0
− 1|, with ϵ = 10%, of

minimal new capacities from best temporal resolution h0 = 2.
Abbreviation: Transmission (Trans.).

PV [%] Wind [%] Trans. [%]
n\h 6 4 6 4 6 4
100 25.7 2.85 13.9 1.07 6.94 1.79

|c∗n,h/c
∗
n,h0

− 1| 200 26.3 3.95 14.0 1.74 8.41 2.22
400 23.4 3.28 12.8 1.73 7.29 1.22
100 56.6 7.60 21.3 1.28 21.8 1.98

|cϵn,h/c
ϵ
n,h0

− 1| 200 51.8 8.20 19.6 1.99 17.7 2.99
400 41.7 7.22 19.0 2.27 18.3 2.11

By analysing the values of these two tables, the third
observation is obvious: deviations are more significant for
minimal new capacities for ϵ-optimality than for optimal new
capacities.

V. CONCLUSION

In this paper, we initiate the research on the impact of
spatial and temporal resolutions on necessary conditions for
near-optimality of energy system optimisation models. This
new research track starts with the analysis of the expansion
planning of the European power grid and necessary conditions
for ϵ-optimality corresponding to the minimal new PV, wind
and transmission capacities. The impact of spatial and tempo-
ral resolution on these values is explored and compared to the
impacts on cost-optimal new capacities for these technologies.
Three key observations are derived from this analysis. Firstly,
the results show that minimal and optimal capacities exhibit
the same behaviour when resolutions are modified. In particu-
lar, PV, wind and transmission capacities increase with better
spatial resolution, while a higher temporal resolution positively
impacts only the capacity for wind and transmission. A second
observation is that the resolutions for which more capacity
is installed at the optimum correspond to the ones where it
is the hardest to minimise this capacity when allowing for a
constrained cost deviation. Thirdly, we show that temporal and
spatial resolution variations impact minimal capacities more
than optimal ones.

This study provides a first insight into the impacts of
spatial and temporal resolution on near-optimal solutions. This
research track could be continued in the following ways. First,
analysing the optimal and near-optimal solutions for higher
and lower resolutions might increase the reliability of our three
observations. Similarly, necessary conditions for different val-
ues of ϵ could be evaluated to see if these observations hold
for other levels of near-optimality. Secondly, we chose to study
the effect of spatiotemporal resolution on near-optimal space
using necessary conditions. However, other methods have
been developed to analyse near-optimal solutions. A natural
extension of this paper is to study the impact of resolution on
the insights obtained with these methods. Finally, we tested
the resolutions’ impacts on a specific case study using one
ESOM. Studies using different models must be performed to
understand those impacts holistically.

TABLE IV: Deviations |c∗n,h/c
∗
n0,h

−1| of optimal new capaci-
ties and deviations |cϵn,h/c

ϵ
n0,h

− 1|, with ϵ = 10%, of minimal
new capacities from best spatial resolution n0 = 400.

PV [%] Wind [%]
n\h 6 4 2 6 4 2

|c∗n,h/c
∗
n0,h − 1| 100

200
4.77
2.82

6.97
4.46

6.58
5.08

8.11
3.66

6.31
2.39

6.93
2.38

|cϵn,h/c
ϵ
n0,h − 1| 100

200
13.6
9.79

21.5
15.0

21.8
15.8

18.3
6.77

15.1
5.82

16.0
6.10

REFERENCES

[1] J. DeCarolis, H. Daly, P. Dodds, I. Keppo, F. Li, W. McDowall,
S. Pye, N. Strachan, E. Trutnevyte, W. Usher, M. Winning, S. Yeh,
and M. Zeyringer, “Formalizing best practice for energy system
optimization modelling,” Applied Energy, vol. 194, pp. 184–198, 2017.
[Online]. Available: https://doi.org/10.1016/j.apenergy.2017.03.001

[2] J. DeCarolis, S. Babaee, B. Li, and S. Kanungo, “Modelling to generate
alternatives with an energy system optimization model,” Environmental
Modelling & Software, vol. 79, pp. 300–310, 2016. [Online]. Available:
https://doi.org/10.1016/j.envsoft.2015.11.019

[3] F. G. Li and E. Trutnevyte, “Investment appraisal of cost-optimal and
near-optimal pathways for the uk electricity sector transition to 2050,”
Applied Energy, vol. 189, pp. 89–109, 2017. [Online]. Available:
https://doi.org/10.1016/j.apenergy.2016.12.047

[4] F. Neumann and T. Brown, “The near-optimal feasible space
of a renewable power system model,” Electric Power Systems
Research, vol. 190, p. 106690, 2021. [Online]. Available: https:
//doi.org/10.1016/j.epsr.2020.106690

[5] A. Dubois and D. Ernst, “Computing necessary conditions for near-
optimality in capacity expansion planning problems,” Electric Power
Systems Research, vol. 211, p. 108343, 2022. [Online]. Available:
https://doi.org/10.1016/j.epsr.2022.108343

[6] A. Dubois, J. Dumas, P. Thiran, G. Limpens, and D. Ernst,
“Multi-objective near-optimal necessary conditions for multi-sectoral
planning,” Applied Energy, vol. 350, p. 121789, 2023. [Online].
Available: https://doi.org/10.1016/j.apenergy.2023.121789
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5Conclusion

To encapsulate the findings of this thesis, it is instructive to revisit the numerical
insights obtained across our various case studies.

For example, our research in [DE22] revealed the necessity to deploy hundreds of
TWkm of transmission lines, along with hundreds of GW of wind turbines and solar
panels, to realise cost-optimality while simultaneously achieving 99% reduction in
carbon emissions across Europe. However, using necessary conditions, we noted that
these infrastructure capacities could be significantly reduced – by factors greater
than two in the case of transmission lines and solar panels – with only minor
cost deviations – a 10% increase in both cases. This phenomenon was further
corroborated in [DE23]. Our comprehensive analysis also suggested consistent, albeit
subtle, impacts arise from the spatial and temporal resolutions concerning necessary
conditions. Delving further into [Dub+23], our focus shifted from technologies
to resources, utilising our methodology to unveil several insightful observations.
Notably, by allowing a modest increase of 1% in both cost and energy investment,
the reliance on local energy sources can be trimmed by magnitudes of several tens
of per cent relative to the optimums. As we increase this deviation, the decline in
local energy source utilisation persists. Conversely, imports stabilise, underscoring
their vital role in the forthcoming energy transition. Finally, our methodology also
revealed that by accommodating cost and energy investment deviations of as little
as 5%, each individual resource possesses viable alternative substitutes.

The key message from our findings is thus one of caution. The significant shifts in
necessary capacities and resources resulting from small increases in objectives un-
derscore the need for a more nuanced presentation of energy optimisation outcomes.
Rather than grandiose claims asserting that specific measures are the pinnacle of
certain objectives, it is crucial to emphasise the inherent fragility and conditional
nature of these conclusions.

This cautionary note is not exclusive to others; it also applies to the articles presented
in this thesis. While the results are intriguing, their standalone value is limited.
Their relevance is intrinsically tied to the specific case studies from which they were
derived. In areas riddled with complexity and uncertainty, like energy systems, it is
essential to approach exact numerical outcomes with caution; even general trends
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should be treated with discernment. For instance, the insights from [DE23] on the
impact of spatiotemporal resolution, though illuminating, are likely bound to their
particular case study and should be judiciously applied elsewhere.

This sentiment of caution holds especially true for developing methodologies. The
growing popularity of near-optimal space analysis techniques in energy system
planning is evident, as reflected by the influx of recent scholarly works on the
subject. In just the past two years, there has been a significant uptick in publications
in this domain, with notable studies like [CKB22], [Fio+22], [IBD22], [Cha+23],
[LPP23], [NB23], [Ped+23], [Pri+23], [ST23], [Sch+23], and [Shi23].

We are certainly encouraged by this growing interest in the field. However, caution
is in order: these methodologies are not a cure-all, and there is always room for
refinement. In the spirit of advancing knowledge, we offer several avenues for
further research. There are numerous ideas we would have loved to explore given
more time, and we hope others will take up the mantle in our stead.

Fighting parametric and structural uncertainty in unison

In Section 1.2, we introduced near-optimal space analysis through the prism of
structural uncertainty, which we had presented as a complement to parametric
uncertainty. To reiterate, we emphasised that even with no uncertainty in parameter
values, we can not be sure of the veracity of our results. This observation goes both
ways, and addressing structural uncertainty does not absolve us from addressing
parametric uncertainty.

It is thus paramount to address parametric and structural uncertainties in tandem.
Steps in this direction have already been taken, with pivotal research such as the
work by Li and Trutnevyte [LT17], which merges Monte-Carlo simulation with MGA
techniques, and the recent study by Neumann and Brown [NB23].

We contend that precious insights can be gleaned only when both forms of uncer-
tainty are concurrently considered. As such, every research endeavour grappling
with complex decision-making should adopt this dual approach. Achieving this
goal demands a practical shift in optimisation modelling tools. Indeed, they must
embed methodologies that combat uncertainty to simplify and generalise their
application.

Attention must also be drawn to the significance of multi-model assessments. While
methods to address structural uncertainty are available, they are inherently con-
strained by the model’s limitations representing the system under investigation.
Distinct models showcase varied characteristics, each adeptly representing specific
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aspects of the system and overlooking others. Therefore, it is imperative to examine
the same issues using diverse tools. One strategy could involve integrating these
tools to enhance the precision of outcomes [Cha+23]. Yet, equally significant, if not
more so, is the development of comprehensive frameworks that facilitate a seamless
comparison of model-derived results [Nik+21].

More, better, faster

The adage “more solutions is better" is not without its caveats. While many solutions
broaden the understanding of the system under the loop, it simultaneously demands
more computational time, increased computational resources, and, as underscored
in the introduction, an additional cognitive effort to process the growing volume of
information.

Researchers doing near-optimal space exploration must be meticulous about this
challenge. Indeed, the process of solving optimisation problems is already resource
and time-intensive. Introducing a plethora of alternative solutions further amplifies
these demands, with each added solution proportionally increasing both time and
resource requirements. Finally, this challenge becomes even more pronounced when
paired with the recommended inclusion of parametric uncertainty.

The first point of attention resides in the methods used to explore near-optimal
spaces. Methods such as “Hop, Skip and Jump" [Bri+90], which aim to unearth
maximally distinct solutions, rely on iterative processes. The number of iterations
can be adjusted, offering a trade-off between computational demand and precision.
On the other hand, some approaches pull out all the stops, aiming to identify ‘all’
near-optimal solutions – hence the term Modelling All Alternatives ([Ped+21] and
[Ped+23]). To make this viable, they often deploy optimisation tricks to trim down
the dimensionality of the near-optimal space.

As we have consistently emphasised throughout this document, many strategies seek
alternative solutions without a clear, pre-defined insight. Building a methodology,
such as necessary conditions computation, designed to derive specific types of
insights effectively counter computational challenges. We thus advocate for the
continued development of methodologies in this vein.

Secondly, Chapter 4 provided insight into how complexity might influence near-
optimal spaces. Without revisiting the details, the central idea is that identifying
markers indicative of the ‘size’ of the near-optimal space could preemptively guide
us about the computational resources necessary for achieving a specific precision
level. Although the research showcased in [DE23] establishes an initial foundation,
further research is warranted to substantiate this hypothesis. Specifically, we believe
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it is crucial to investigate the influence of complexity on different methods of near-
optimal space exploration across various case studies.

Another promising direction is examining the interplay between approaches address-
ing parametric and structural uncertainties. These sources of uncertainty might seem
distinct at a cursory glance, but when viewed within the mathematical programming
framework, methods to combat them essentially explore multiple feasible solutions.
It is evident for structural uncertainty management, especially near-optimal space
analysis, as its primary goal is to analyse a more significant portion of the feasible
region around the optimum. For parametric uncertainty, it is a little more complex
as managing it can cause two distinct effects on the mathematical representation of
the problem.

On the one hand, when tested parameters shape the objective function without
altering the feasible region (for instance, during a sensitivity analysis of technol-
ogy costs), managing parametric uncertainty entails tracing the movement of the
optimum across solutions within a fixed feasible region. This is akin to address-
ing structural uncertainty, indicating a potential overlap in methods that could be
harnessed to avoid redundant computations.

On the other hand, if the parameters sway the constraints, such as when altering
the operational range of a power plant, the feasible region shifts. Under these
conditions, the once fixed feasible region becomes dynamic, revealing solutions
that would have been unseen using near-optimal space analysis. It should then
make sense to amalgamate the techniques tailored for both uncertainties. However,
even in this case, it is paramount to remain vigilant about potential overlaps, as
demonstrated by [Gro+23].

As it stands, this conceptual overlap between uncertainties remains relatively un-
charted territory. However, tapping into this interplay could pave the way for more
computationally efficient strategies to navigate uncertainty.

Multi-objective expansion

Near-optimal space analysis is critical to indirectly incorporate objectives not ex-
plicitly modelled into the decision-making framework. Yet, when these objectives
can be directly modelled, integrating them via multi-objective techniques becomes
a logical choice. Surprisingly, a scant amount of research examines multi-objective
optimisation alongside near-optimal space analysis.

A notable exception is the work by [Fio+21] and [Fio+22], which pioneered a
method to probe solutions beyond the Pareto front. This emerging intersection of
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multi-objective optimisation and near-optimal space exploration was also the driving
force behind our study, [Dub+23]. Given the inherent complexities of melding these
approaches, we earnestly believe that further research in this domain is not just
beneficial but essential.

Multi-stage expansion

Incorporating multiple objectives into optimisation for decision-making is pertinent,
as is integrating various stages. Indeed, single-stage optimisation – i.e., modelling
requirements for a specific, distant future year – provides valuable insights. However,
real decision-making relies on practical milestones for achieving this future vision.

A considerable amount of research has ventured into the multi-stage optimisation of
energy systems, as evidenced by studies such as [KS10], [Pon+16], [LSC18], and
[Vic+20]. Yet, to our best knowledge, it appears that methods to manage structural
uncertainty remain under-explored in this context.

Multi-stage optimisation in energy planning typically involves fine-tuning the op-
eration and scale of an energy system across multiple temporal intervals, often
spanning years. Within each of these periods, the system’s operations are broken
down and decided upon (sometimes hourly), while investment choices are made at
each interval. Two main paradigms exist. The first one, perfect foresight, assumes
that decision-makers have complete and accurate information about all future events
and outcomes. In other words, they can ‘see’ the future perfectly. This is, however,
not realistic. The second model, termed ‘myopic foresight’, is grounded in the idea
that decision-makers factor in only the immediate or very near future while charting
their course. Although realistic, this model is not without pitfalls. It might not
capture the full benefits or costs that would be apparent if a longer time horizon
were considered, such as with perfect foresight models.

This leads us to ponder: could near-optimal space analysis, primarily through the
lens of necessary conditions, be employed to refine myopic foresight? The under-
lying rationale here would be to determine, for each time interval, the necessary
investment in each sized technology. This approach could help strike a balance –
ensuring a constrained deviation from the target objective while offering flexibility
in options for ensuing periods. While we are still grappling with the mechanics
of melding this with existing multi-stage optimisation techniques – owing to our
developing understanding – it is unmistakably clear that this notion has the potential
to pioneer transformative research avenues.
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Making better choices

To wrap up this conclusion, we would like to expound on the theme of ‘multiplicity’
that has subtly woven its way through our discussion. As presented in Section 1.3,
this thesis’ work has set its stage in the realm of the energy transition. Yet, it
is essential to underscore that the methodologies developed are not restricted to
this domain. Instead, they are universally applicable to intricate decision-making
challenges where mathematical programming is the right tool.

Intriguingly, the term MGA (Modelling to Generate Alternatives) was first introduced
not in the context of energy but rather in the arena of land use planning [BCH82].
However, given the pressing challenges in the energy sector, the energy community
is embracing these techniques, working to expand our comprehension of structural
uncertainty management.

Though there is a budding interest in diversifying the application of these tools
across other sectors [El +22], there is still vast, untapped potential. Thus, we urge
scholars across diverse research domains to delve deeper into this subject, exploring
its numerous possibilities.

This assertion underscores a more global recommendation: there exists an imper-
ative to refine our decision-making tools continually. This refinement is two-fold:
firstly, enhancing the methods and, secondly, facilitating their assimilation by the
decision-makers. Delving into what this second point means from a modelling
standpoint, we would like to cite an insightful passage from [DeC11]. This work has
been instrumental in guiding the research trajectory presented in this thesis, aptly
encapsulating the challenges inherent to the field:

“Analysis aimed at informing decision-makers should involve them from the outset
of the project. Modellers should aim for transparency through open-source code
and data, well-written documentation, and selective use of ESOM features to avoid
unnecessary complications. Reports should focus on communicating robust insights
rather than singular projections. Caveats should be communicated, but modellers
should avoid vague statements that unintentionally call into question the study
findings. Future uncertainty should be adequately addressed."

Though penned with energy modelling as the backdrop, these principles resonate
across sectors.

Their adoption becomes all the more urgent when we recognise that choices that
will sculpt the future of our next century are being made just as you read the final
words of this thesis.
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AMathematical Concepts Summary

This chapter aims to summarise the mathematical concepts presented in [DE22] and
[Dub+23]. In Section A.1, the concepts of ϵ-optimal spaces and necessary conditions
are introduced for a mono-objective setup. Section A.2 then expands these notions
to multi-objective problems.

A.1 Mono-objective

Let us start with a mathematical formulation of the problem. The mathematical
problems that we are trying to solve using the following methodologies can be
written:

min
x∈X

f(x) , (A.1)

where

• X a feasible space,

• x is a feasible solution,

• f an objective function, and

• f(x) the objective value of x.

We set ourselves in a generic setup where the feasible space X can be of any form.
The objective function f : X → R+, however, is restricted to lie in the positive
reals. This restriction is necessary for the methods that will be described in the rest
of this section. However, it is often reasonable, particularly in the case of energy
systems optimisation problems, where common objectives such as cost, invested
energy, quantity of materials, etc., are positive.
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A.1.1 Epsilon-optimal spaces

Starting from the optimal solution(s) x⋆ of the initial problem, we can define near-
optimal spaces, also called suboptimal spaces or inferior regions. We make mention
of several spaces because, for the same optimal objective, several near-optimal
spaces can be defined depending on the desired suboptimality level. To measure this
level of suboptimality and characterise the different near-optimal spaces, we use a
suboptimality coefficient ϵ ≥ 0.

We can define an epsilon-optimal or ϵ-optimal space using the optimal objective and
this coefficient.

Definition 1. Let X be a feasible space, let f : X → R+ be an objective
function and let ϵ ≥ 0. Then, if f(x⋆) is the optimal objective value, that is
f(x⋆) = minx∈X f(x), the ϵ-optimal space X ϵ is the space

X ϵ = Ω(X , f, ϵ) =
{
x ∈ X | f(x) ≤ (1 + ϵ)f(x⋆)

}
. (A.2)

A solution x ∈ X ϵ is called an ϵ-optimal solution.

The ϵ-optimal space is the set of the feasible solutions x ∈ X with objective value
f(x) no greater than (1 + ϵ)f(x⋆). The suboptimality coefficient ϵ specifies by how
much the objective values f(x) of the feasible solutions in the near-optimal space
deviate at most from the optimal objective value.

In the rest of this work, we will use the notation X ϵ to refer to an ϵ-optimal space,
rather than Ω(X , f, ϵ). This notation has the advantage of conciseness but makes
abstraction of the influence of f on epsilon-optimal spaces. Let us note that for all
the developments made in this thesis, the objective function f is considered constant;
therefore, we do not face this problem.

To give a better sense of the notion of epsilon-optimal space to the reader, Figure A.1
and A.2 illustrate those concepts with X = R and X = R2, respectively.

A note must be made on the specific case f(x⋆) = 0. In this case, X ϵ resumes to
arg minx∈X f(x), making the analysis of near-optimal spaces trivial.
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Fig. A.1.: Source [Dub+23]. Graphical representation of an ϵ-optimal space of a mono-
objective optimisation problem in X = R+. The function f1 that is minimised is
shown in blue. Its minimum is located at x⋆

1. Using this value and its correspond-
ing objective value f1(x∗

1) allows to easily determine an ϵ-optimal space X ϵ with
ϵ = ϵ1.

Fig. A.2.: Source [DE22]. Three-dimensional representation of an ϵ-optimal space. In
the horizontal plane, the space of feasible solutions X ⊂ R2 is depicted while
the vertical axis represents the objective function. The red dot is the optimal
solution x∗ corresponding to the minimal value of the objective function over the
feasible space. The blue space coincides with the hyper-plane f(x) = (1+ϵ)f(x∗),
allowing one to determine the ϵ-optimal space X ϵ shown in green.
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A.1.2 Necessary conditions

The concepts of condition, necessary condition, and non-implied necessary condition
introduced in this section allow determining features which are common to all
solutions in a given ϵ-optimal space. A common example is used to illustrate the
definitions.

Definition 2. Let X be a feasible space, a condition is a function ϕ : X → {0, 1}.
A set of conditions is denoted Φ.

Example: Let the feasible space X be the set of reals, i.e. X = R, then, the set of
conditions Φ could be the set of conditions of the form ϕc(x) := x ≥ c with x ∈ X
(thus x ∈ R) and c ∈ R.

We search to identify, among a set Φ of conditions, the ones which are true for any
solutions in an ϵ-optimal space X ϵ. These conditions are called necessary conditions
for ϵ-optimality.

Definition 3. Let X ϵ be an ϵ-optimal space and ϕ be a condition, then ϕ is a
necessary condition for ϵ-optimality if it is true for any solutions in X ϵ, i.e.

∀x ∈ X ϵ : ϕ(x) = 1 . (A.3)

Let Φ be a set of conditions, the set of conditions ϕ ∈ Φ which are necessary
conditions for ϵ-optimality is denoted ΦX ϵ

.

Example: Let us consider that the epsilon-optimal space is given by X ϵ = [0, 1]. Then,
the condition ϕ0(x) := x ≥ 0 is respected by all x ∈ X ϵ, making ϕ0 a necessary
condition. Moreover, it is straightforward to show that the set of all conditions in Φ
which are necessary is ΦX ϵ = {ϕc | c ≤ 0}. Indeed, any condition ϕc(x) := x ≥ c is
true over X ϵ = [0, 1] if c ≤ 0.

To provide an alternative definition for necessary conditions, we can introduce a
new space corresponding to the set of solutions for which a condition is true.

Definition 4. Let X be a feasible space and ϕ be a condition, the space Iϕ ⊆ X
is the space where a condition ϕ is true, that is:

Iϕ =
{
x ∈ X | ϕ(x) = 1

}
. (A.4)
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Example: The spaces Iϕc of the conditions ϕc(x) := x ≥ c are the spaces [c,∞]. These
spaces might become more complex to determine when considering, for instance,
conditions using linear combinations of variables, e.g. ϕ(x) := ax1 + bx2 ≥ c with
x = (x1, x2) ∈ X = R2.

Comparing this space for a given condition to an ϵ-optimal space allows determining
if it is necessary.

Definition 5. Let X ϵ be an ϵ-optimal space, let ϕ be a condition, and let Iϕ be
the space over which this condition is true, then ϕ is a necessary condition for
ϵ-optimality if Xϵ ⊆ Iϕ.

Example: For a set of conditions Φ = {ϕc(x) := x ≥ c} with x ∈ R and c ∈ R, and a
ϵ-optimal space X ϵ = [0, 1], this definition implies that all conditions ϕc with c ≤ 0
are necessary, which corresponds to same set as definition 3. Indeed, the spaces
Iϕc = [c,∞] include the space [0, 1], when c ≤ 0.

A.1.3 Non-implied necessary conditions

The goal of necessary conditions is to provide insights into features common to many
near-optimal solutions to provide interesting insights to decision-makers. However,
depending on how conditions are defined, the number of necessary conditions can
be infinite. Dealing with such a quantity of information is not efficient for decision-
making. This situation happens, notably, in our previous example. Indeed, the set
ΦX ϵ = {ϕc | c ≤ 0} contains an infinite number of necessary conditions. To limit
the number of conditions, we introduce the concepts of implication and non-implied
necessary conditions.

Informally, a condition ϕ1 implies a condition ϕ2 if knowing that ϕ1(x) is true implies
that ϕ2(x) is true. Then, if ϕ1 is a necessary condition and implies ϕ2, we can infer
that ϕ2 is also necessary, making this information redundant. To provide a more
concise set of necessary conditions, we will search for all necessary conditions which
are not implied by other necessary conditions.

To make this search more formal, let us define the notion of implication mathemati-
cally.
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Definition 6. Let X be a feasible space, ϕ1 : X → {0, 1} and ϕ2 : X → {0, 1}
be two conditions, an implication function ψ(ϕ1 | ϕ2) ∈ {0, 1} is a function
that indicates whether condition ϕ2 implies condition ϕ1, i.e.

ψ(ϕ1 | ϕ2) =

1 if ∀x ∈ X , ϕ2(x) = 1 =⇒ ϕ1(x) = 1,

0 if ∃x ∈ X , ϕ2(x) = 1 ≠⇒ ϕ1(x) = 1.
(A.5)

Example: Let us consider conditions ϕ1(x) := x ≥ 1 and ϕ2(x) := x ≥ 2. We have
that ψ(ϕ1 | ϕ2) = 1. Indeed, for all x ∈ X , if ϕ2(x) = 1 this means that x ≥ 2, that
x ≥ 1 and thus ϕ1(x) = 1. Conversely, ψ(ϕ2 | ϕ1) = 0. Indeed, there exist several
x ∈ X such that ϕ1(x) = 1 and ϕ2(x) = 0. For instance, this is the case for x = 1.5.

The implication function can also be defined using spaces over which conditions are
true as defined at Definition 4.

Definition 7. Let ϕ1 and ϕ2 be conditions with Iϕ1 and Iϕ2 the spaces over
which they are respectively true, then the implication function ψ(ϕ1 | ϕ2) is
defined as:

ψ(ϕ1 | ϕ2) = Iϕ2 ⊆ Iϕ1 . (A.6)

Comment: This formulation fits the previous definition of an implication function.
Indeed, if ψ(ϕ1 | ϕ2) = 1, then it means Iϕ2 ⊆ Iϕ1 , which in turns implies that
ϕ1(x) = 1 for any x ∈ X for which ϕ2(x) = 1. Similarly, if ψ(ϕ1 | ϕ2) = 0, it means
that Iϕ2 ̸⊆ Iϕ1 , which means ∃x ∈ X such that ϕ1(x) = 0 when ϕ2(x) = 1.

Using this definition of implication, we can now differentiate between necessary
conditions and non-implied necessary conditions.

Definition 8. Let ΦX ϵ
be a set of necessary conditions for ϵ-optimality, the

necessary condition ϕ ∈ ΦX ϵ
is a non-implied necessary condition for ϵ-

optimality if it is not implied by any other necessary condition ϕ′ ∈ ΦX ϵ \ {ϕ}.
The set of non-implied necessary conditions is denoted ΦX ϵ

.

Example: In our example with Φ = {ϕc(x) := x ≥ c} with x ∈ R and c ∈ R, and
X ϵ = [0, 1], the only non-implied necessary condition is ϕ0, i.e. ΦX ϵ

= {ϕ0}. Indeed,
as shown in the previous section, the set of necessary conditions is ΦX ϵ = {ϕc | c ≤
0}. In this set, ϕ0 implies all other conditions and is not implied by any of them.
Indeed, for any x, knowing that x ≥ 0 is true implies that x ≥ c when c ≤ 0. Thus,
knowing that ϕ0 is a necessary condition implies that any ϕc with c ≤ 0 is a necessary
condition, whatever the ϵ-optimal space. On the opposite, it is not possible to imply
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that ϕ0 is a necessary condition from the knowledge of other necessary conditions in
the set ΦX ϵ = {ϕc | c < 0}. This defines ϕ0 as a non-implied necessary condition.

Using Definition 6 of implication, we can refine the previous definition.

Definition 9. Let ΦX ϵ
be a set of necessary conditions for ϵ-optimality and let ψ

be an implication function, the necessary condition ϕ ∈ ΦX ϵ
is a non-implied

necessary condition for ϵ-optimality if ∀ϕ′ ∈ ΦX ϵ \ {ϕ} : ψ(ϕ | ϕ′) = 0.

Example: The condition ϕ0 respects this definition: for any other condition ϕc ∈ ΦX ϵ
,

that is any ϕc with c < 0, we have ψ(ϕ0 | ϕc) = 0. The proof is straightforward: for
any c < 0, ϕc(c) = 1 as c ≥ c is true, but ϕ0(c) = 0 as c ≥ 0 is false.

A third version can be written using spaces over which conditions are true.

Definition 10. Let ΦX ϵ
be a set of necessary conditions for ϵ-optimality, the

necessary condition ϕ ∈ ΦX ϵ
is a non-implied necessary condition for ϵ-

optimality if is true over a space Iϕ which does not include any of the spaces I ′
ϕ

over which other necessary conditions ϕ′ ∈ ΦX ϵ \ {ϕ} are true, i.e. a necessary
condition such that ∀ϕ′ ∈ ΦX ϵ \ {ϕ} : Iϕ′ ̸⊆ Iϕ.

Figure A.3 illustrates these concepts. The left part of the figure (A.3a) shows two
necessary conditions ϕ1 and ϕ2, with ϕ2 implying ϕ1. They are necessary conditions
because the spaces over which they are respectively true include the ϵ-optimal space.
Then, ϕ2 implies ϕ1 as Iϕ2 ⊂ Iϕ1 . These two characteristics imply that if we consider
the set of conditions Φ = {ϕ1, ϕ2} containing uniquely ϕ1 and ϕ2, then the set of
necessary conditions is given by ΦX ϵ = {ϕ1, ϕ2}, and the set of non-implied neces-
sary conditions by ΦX ϵ

= {ϕ2}. The right part of the figure (A.3b) shows another
case with two necessary conditions ϕ3 and ϕ4, with no implication. Considering a
set of conditions Φ = {ϕ3, ϕ4}, then we have two non-implied necessary conditions,
i.e. ϕ3 and ϕ4, and we have that ΦX ϵ

= ΦX ϵ = Φ.

(a) (b)

Fig. A.3.: Source [DE22]. Graphical illustration of implication.

A.1 Mono-objective 85



Computation of a non-implied necessary condition

This section focuses on a specific type of condition, consisting of a constrained sum of
variables to give a practical sense of the concepts presented in the previous sections.
First, we prove that there is a unique, non-implied, necessary condition for this
kind of condition. Then, we detail how to compute the value characterising this
condition.

Theorem 1. Let X ⊂ Rn be a feasible space, f : X → R+ be an objective
function and

Φd = {ϕc
d(x) := dT x ≥ c | c ∈ R}, (A.7)

be a set of conditions consisting of constrained sums of variables dT x =
∑n

i=1 dixi

where x ∈ X and d ∈ {0, 1}n.

Let c∗ = minx∈X ϵ dT x then

ϕc∗
d := dT x ≥ c∗ (A.8)

is the only element in the set of non-implied necessary conditions ΦX ϵ

d .

Proof. Let us first show that the set of necessary conditions is equal to

ΦX ϵ

d = {ϕc
d|c ≤ c∗}. (A.9)

By definition, c∗ = minx∈X ϵ dT x is the smallest value that dT x can take over X ϵ.
This implies that ϕc∗

d (x) := dT x ≥ c∗ is true for all x ∈ X ϵ. Similarly, if c < c∗, we
know that dT x ≥ c∗ > c is true for all x ∈ X ϵ. Thus, all conditions ϕc

d such that
c ≤ c∗ are necessary conditions.

For c > c∗ however, at the optimum x∗
ϵ = arg minX ϵ dT x, we have dT x∗

ϵ = c∗ < c.
This implies that the condition ϕc

d(x) := dT x > c is not true for all x in X ϵ, as
x∗

ϵ ∈ X ϵ. Therefore, all conditions ϕc
d such that c > c∗ are not necessary conditions.

Now let us prove that the set of non-implied necessary conditions resumes to one
element, i.e.

ΦX ϵ

d = {ϕc∗
d } . (A.10)
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This means that all ϕc
d with c < c∗ are implied by and do not imply ϕc∗

d .

This can be shown by proving that, for any c < c∗,

Iϕc∗
d

⊂ Iϕc
d

and Iϕc
d

̸⊂ Iϕc∗
d

. (A.11)

We have Iϕc∗
d

⊂ Iϕc
d

because, as shown before, for any x, if ϕc∗
d (x) is true, ϕc

d(x)
with c < c∗ is also true. Then, Iϕc

d
̸⊂ Iϕc∗

d
. Indeed, the element x such that dT x = c

is an element of Iϕc
d

but not of Iϕc∗
d

.

The value c∗ represents the minimum value that dT x can take over the set X ϵ, that is
when allowing a deviation of ϵ from the optimal value f(x⋆). Algorithm 1 illustrates
the computation of this value in three steps.

Algorithm 1: Computation of a non-implied necessary condition - Single-
objective case
Data:
f - objective function,
X - feasible space,
ϵ - suboptimality coefficient,
d - binary vector defining the conditions dT x

Result: c∗

Steps:
1. Solve minx∈X f(x) to obtain x⋆.

2. Build X ϵ by adding to the original problem the constraint f(x) ≤ (1 + ϵ)f(x⋆).

3. Solve c∗ = minx∈X ϵ dT x.

Example: Let us illustrate this algorithm on the travelling salesman problem. This
problem aims to find the shortest possible route that a salesman can take to visit
a set of cities exactly once and return to the starting city. Mathematically, we
can model this problem in the following way. Let G = (V,E) be a complete
undirected graph, where V = {1, 2, ..., n} is the set of cities, and E is the set of
edges connecting the cities. Each edge e = (i, j) has a non-negative weight w(e)
representing the distance between city i and city j. Let xij be a binary decision
variable equal to 1 if the salesman travels directly from city i to city j in the tour
and 0 otherwise. The objective is to minimise the total distance travelled by the
salesman, i.e.: min

∑
(i,j)∈E wijxij . This objective must be met under a series of

constraints we will not detail here. Let us assume now that there are two types of
routes: paved and gravel. The salesman wants to avoid taking gravel routes while
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maintaining a path that is not much longer than the optimal path. This new path
can be obtained using Algorithm 1. Step 1 consists of solving the original problem.
Using the optimal solution of this problem, one can perform step 2 by adding to
the initial problem the constraint f(x) ≤ (1 + ϵ)f(x⋆). In this constraint, x is a
vector containing all xij , f(x) =

∑
(i,j)∈E wijxij , and x⋆ is the optimal solution. The

value of ϵ can vary depending on the relative increase in path length the salesman is
willing to accept. The third step can then be performed by setting an appropriate d.
As the salesman wants to minimise the number of gravel routes travelled, all values
of d corresponding to this type of route are set to 1. The value c∗ obtained as the
optimal value of this third step gives the minimal number of routes that must be
taken to ensure that the total length of the path travelled does not deviate by more
than ϵ of the optimal length.
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A.2 Multi-objective

This section extends the concepts presented for mono-objective optimisation to multi-
objective optimisation. Using the notation of Ehrgott [Ehr05], our initial problem
is:

“ min
x∈X

” f(x) . (A.12)

where:

• X is a feasible space,

• x is a feasible solution,

• f = (f1, · · · , fk, · · · , fn) is a vector of n objective functions, and

• f(x) = (f1(x), · · · , fk(x), · · · , fn(x)) is the vector of objective values of x in
each objective.

Similarly to the mono-objective case, we consider objectives whose images lie in the
positive reals, i.e. ∀k fk : X → R+. In this formulation, the “min" notation signifies
that all functions in the vector f are to be minimised.

Let us also note that the feasible space is a sub-space of the decision space where
the variables take their values, whose image is called the objective space, where the
objective functions take their values.

In the following sections, we will sometimes refer to Y, the image of the feasible
space in the objective space:

Definition 11. Let X be a feasible space and let f = (f1, · · · , fk, · · · fn) be a
vector of objectives function with ∀k fk : X → R+, then the image of the feasible
space is

Y = f(X ) = {y ∈ Rn
+ | y = f(x) for some x ∈ X } . (A.13)

This definition implies Y ∈ Rn
+ and y = (y1, · · · , yk, · · · , yn) with yk = fk(x) ≥ 0 for

some x ∈ X .
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A.2.1 Efficient solutions and Pareto fronts

One way to highlight compromises between the objectives f1, · · · , fk, · · · , fn is to
compute efficient or Pareto optimal solutions. Following the definition of Ehrgott
[Ehr05]:

Definition 12. Let X be a feasible space and f = (f1, · · · , fk, · · · , fn) be a
vector of n objectives, a feasible solution x̂ ∈ X is called efficient when there is
no other x ∈ X such that ∀k fk(x) ≤ fk(x̂) and fi(x) < fi(x̂) for some i, that
is, no other x ∈ X has a smaller or equal value in all objectives f1, · · · fk, · · · , fn

than x̂.

According to Ehrgott [Ehr05], multiple denominations exist for the set of efficient
points. This thesis uses the term Pareto front to indiscriminately name the set of
efficient points or their image in the objective space.

Definition 13. Let X be a feasible set and f = (f1, · · · , fk, · · · , fn) be a vector
of n objectives, a Pareto front PX is the set of all efficient solutions, i.e.

PX =
{
x̂ ∈ X | ̸ ∃x ∈ X ,∀k fk(x) ≤ fk(x̂), ∃i fi(x) < fi(x̂)

}
. (A.14)

We note PY the image of the Pareto front in the objective space.

A Pareto front can be composed of an infinity of points. Thus, it is typical to compute
a subset of the efficient solutions which compose it. This set is named approximated
Pareto front. It is denoted by PX ,m (or equivalently PY,m) where m is the number of
points in the approximation.

Definition 14. Let PX be a Pareto front and m ∈ N. Then, an approximate
Pareto front PX ,m is a subset of m efficient solutions from PX .

Several techniques exist to obtain those efficient solutions, the two most famous
being the ‘weighted-sum approach’ and the ‘ϵ-constraint method’ [Ehr05].

The weighted-sum approach consists of solving:

min
x∈X

n∑
k=1

λkfk(x) ∀k λk > 0 . (A.15)
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The ϵ-constraint method resolves in solving:

min
x∈X

fj(x)

s.t. fk(x) ≤ ϵk for k = 1, · · · , n and k ̸= j ,
(A.16)

where ∀k ϵk ∈ R.

A.2.2 Epsilon-optimal spaces

Starting from a Pareto front PX and given a suboptimality coefficients vector of
deviations in each objective: ϵ = (ϵ1, · · · , ϵk, · · · , ϵn) ∈ Rn

+, it is possible to define
an ϵ-optimal space. This space is denoted by X ϵ in the decision space and Yϵ in the
objective space.

In the mono-objective setup, the ϵ-optimal space is defined as the set of points x ∈ X
whose objective value f(x) do not deviate by more than an ϵ fraction from the
optimal objective value, i.e. f(x) ≤ (1 + ϵ)f(x⋆). In a multi-objective case, there is
no optimum but a set of efficient points composing the Pareto front. This leads us to
define the ϵ-optimal space as follows:

Definition 15. Let X be a feasible space, let f = (f1, · · · , fk, · · · , fn) be a
vector of n objectives, and let ϵ = (ϵ1, · · · , ϵk, · · · , ϵn) ∈ Rn

+ be a vector of n
suboptimality coefficients, then the ϵ-optimal space X ϵ is the set of points x
whose objective values fk(x) do not deviate by more than an ϵk fraction from
the objective value fk(x̂) of at least one solution x̂ of the Pareto front PX , for all k.

It is the space

X ϵ =
{
x ∈ X |∃x̂ ∈ PX , ∀k fk(x) ≤ (1 + ϵk)fk(x̂)

}
. (A.17)

This definition can be interpreted to see the ϵ-optimal space as the union of sub-
optimal spaces associated with each point of the Pareto front. An equivalent mathe-
matical definition is, therefore:

X ϵ =
⋃

x̂∈PX

{
x ∈ X |∀k fk(x) ≤ (1 + ϵk)fk(x̂)

}
. (A.18)

Figure A.4 depicts a graphical representation of an ϵ-optimal space in a multi-
objective framework and how it is built from efficient solutions.
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Fig. A.4.: Source [Dub+23]. Graphical representation of an ϵ-optimal space of a multi-
objective optimisation problem in X = R+. The two functions to be minimised
f1 and f2 are represented in blue and red, respectively, and their respective
minimums are x⋆

1 and x⋆
2. The Pareto front PX , containing all efficient solutions,

is represented in orange. Figure A.4a shows in purple the full ϵ-optimal space X ϵ

for a suboptimality coefficient vector ϵ = (ϵ1, ϵ2). As shown in Equation (A.18),
this space is the union of sub-spaces that can be computed from efficient solutions.
Figure A.4b shows how one of these subspaces, corresponding to the efficient
solution x̂, can be computed. From the value x̂, the corresponding objective
values f1(x̂) and f2(x̂) are obtained. This allows to determine all the solutions in
X whose objective value is smaller than fk(x̂)(1 + ϵk) for k ∈ 1, 2.

Definition (A.17) relies on the entire Pareto front. However, practically, only a subset
PX ,m of m efficient points of the Pareto front is computed and used to obtain an
approximation of the ϵ-optimal space, denoted X ϵ

m.

Definition 16. Let X be a feasible space, let f = (f1, · · · , fk, · · · , fn) be a
vector of n objectives, let ϵ = (ϵ1, · · · , ϵk, · · · , ϵn) ∈ Rn

+ be a vector of n sub-
optimality coefficients, and let PX ,m with m ∈ N be an approximate Pareto front.

Then, an approximation X ϵ
m of an ϵ-optimal space X ϵ is the space

X ϵ
m =

{
x ∈ X |∃x̂ ∈ PX ,m,∀k fk(x) ≤ (1 + ϵk)fk(x̂)

}
. (A.19)

As for Definition 15, we can provide an alternative formulation defining X ϵ
m as a

union of spaces, where each space is the set of points whose objective value in each
fk does not deviate by more than an ϵk fraction from the objective values fk(x̂) of
one solution x̂ in the approximated Pareto front PX ,m:

X ϵ
m =

⋃
x̂∈PX ,m

{
x ∈ X |∀k fk(x) ≤ (1 + ϵk)fk(x̂)

}
. (A.20)
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Figure A.5 shows three examples of approximate ϵ-optimal spaces X ϵ
m in the objective

space (therefore noted Yϵ
m) using three approximated Pareto fronts PY,m, with

different numbers and spread of efficient solutions.
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Epsilon-optimal space 
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Points y

(a) Few well-spread points

2 6 10
f1
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f 2

(b) Numerous badly-spread points
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f 2

(c) Numerous well-spread points

Fig. A.5.: Source [Dub+23]. Graphical representations in the objective space of approx-
imations Yϵ

m of an ϵ-optimal space of a multi-objective optimisation problem
based on three different approximate Pareto front PY,m. The axes correspond
to the two functions to minimise, i.e. f1 and f2. The boundary of the image of
the feasible space Y is represented in blue in the three cases. The part of this
boundary corresponding to the full Pareto front PY is drawn in orange. The full
ϵ-optimal spaces Yϵ corresponding to this Pareto front is coloured in light purple.
Each graph corresponds to a different approximate Pareto front PY,m. These sets
of efficient points are represented in brown. From each of these points, part of the
approximate ϵ-optimal spaces can be computed, and their union is represented
in solid purple.

A.2.3 Necessary conditions

In the multi-objective optimisation framework, necessary conditions and non-implied
necessary conditions for ϵ-optimality can be defined in the same manner as in the
one-dimensional setting (see definitions 3 and 8, respectively). The only difference
stems from the replacement of X ϵ by X ϵ. Nonetheless, we illustrate the computation
of a specific type of non-implied necessary condition to illustrate the differences with
the one-dimensional case, stemming from the approximation of the epsilon-optimal
space.
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Computation of a non-implied necessary condition

The computation of a non-implied necessary condition from conditions of type
dT x ≥ c presented in Section A.1.3 is generalised to the multi-criteria case. In the
mono-objective case, it was sufficient to minimise the sum dT x over X ϵ to obtain the
value c∗ corresponding to the non-implied necessary condition dT x ≥ c∗. However,
in a multi-objective setup, we do not have access to X ϵ but to its approximation X ϵ

m,
which is the union of several subsets, each corresponding to one point in PX ,m (i.e.
a subset of the Pareto front). The minimum over this space can thus be obtained by
taking the minimum of the minima of dT x over each of these subsets. Even with
this approach, X ϵ

m being a subset of X ϵ, minimising dT x over it will only provide an
upper bound c̃ of the value c∗, i.e. c̃ ≥ c∗.

Algorithm 2 shows how this value can be obtained.

Algorithm 2: Computation of a non-implied necessary condition - Multi-objective
case
Data:

X ∈ Rn - feasible space,
f - objective functions,
m - number of points,
ϵ - vector of suboptimality coefficients,
d - binary vector defining the conditions dT x

Result: c̃
Steps:

1. Draw m points x̂(1), . . . x̂(i), . . . x̂(m) of the Pareto front using an appropriate
method.

2. For all i ∈ [1, 2, . . . ,m], compute c(i) = min dT x over the space
{x ∈ X | ∀k fk(x) ≤ (1 + ϵk)fk(x̂(i))}.

3. Take the minimum c̃ = mini∈[1,2,...,m] c
(i) of these values to find the

appropriate condition ϕc̃.

There is no guarantee that the condition dT x ≥ c̃ is a (non-implied) necessary
condition. Indeed, it could be the case that for a solution x ∈ X ϵ \ X ϵ

m that dT x < c̃.
To make the upper bound c̃ as close as possible to the real minimal value c∗, one
must reduce the size of the difference X ϵ \ X ϵ

m. This can be done by improving
the number and spread of efficient solutions in the approximated Pareto front. As
defined by Alarcon-Rodriguez et al. [AAG10], solutions with a good spread can
be seen as having good coverage of the actual Pareto front. The three graphs of
Figure A.5 show visually how, by increasing the number and the spread of efficient

94 Chapter A Mathematical Concepts Summary



solutions drawn from the Pareto front, the approximated ϵ-optimal space covers a
more significant subset of the points of the entire ϵ-optimal space.

Example: Let us continue with the travelling salesman problem introduced in Sec-
tion A.1.3. We introduce a new set of non-negative weights t(e) representing the time
needed to travel between city i and j. We now have two objectives: the total distance
travelled f(x) =

∑
(i,j)∈E wijxij and the total time travelled g(x) =

∑
(i,j)∈E tijxij to

visit all cities. Minimising these two objectives might not lead to the same solutions.
Using appropriate techniques, we can determine efficient solutions x̂ from the Pareto
front, expressing the trade-offs between these two objectives. If the salesman is still
interested in avoiding the gravel routes while maintaining close-to-optimal length
and time of travel, we can employ Algorithm 2. For a fixed set of suboptimality coef-
ficients, step 2 implies adding two constraints to the initial problem and minimising
dT x for each efficient solution. As in the mono-objective case, the only values of d
set to 1 are the ones corresponding to gravel routes. Finally, step 3 will give us a
value c̃, which expresses an upper bound on the minimum number of gravel routes
that the salesman needs to take to avoid deviations in time and length larger than ϵ1
and ϵ2.
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BComplementary Work

This thesis is nested within the realm of the energy transition. Aside from our contri-
butions regarding near-optimal spaces, we also delved into several complementary
research queries. These explorations set the stage for the questions we pursued and
enriched the answers we formulated.

This section intends to offer a concise overview of these parallel research endeavours.
The output of this work can be categorised into two primary forms: research articles
and open-source software. The research papers cover two topics, renewable plan
siting and energy return on investment, which are briefly presented in the following
sections of this chapter. We then close this chapter by briefly describing our software
contributions.

B.1 Sizing, siting and complementarity

All research articles presented in this thesis share a foundational theme: capacity
expansion planning. Capacity expansion planning refers to determining the optimal
locations and capacities for deploying various assets within a given energy system.
In the context of this thesis, our geographical scope encompassed Europe or Belgium,
and the assets involved ranged from power generation, transmission, and storage
technologies to e-fuel production or transport. This process is also commonly referred
to as ‘sizing’ in the context of energy systems planning.

For any low-carbon energy system heavily reliant on renewable energy, the genera-
tion assets encompass intermittent sources such as solar and wind energy. Precise
spatial and temporal resolutions are required to accurately model the dynamics of
systems dependent on variable energy sources. This level of precision involves iden-
tifying the specific locations for each production centre, commonly called ‘siting’.

Various methodologies exist for siting renewable plants, aiming to make the most of
the diverse signals and resources available across large geographical areas. In the
context of Dr David-Constantin Radu’s thesis titled “Siting Strategies for Variable
Renewable Generation Assets in Capacity Expansion Planning Frameworks" [Rad21],
we actively contributed to the development of three articles that explore innovative
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siting techniques. The central theme of these methods revolves around the concept
of complementarity, which seeks to harness the benefits of diverse resources across
extensive geographical scopes.

In the following sections, we present the concept of siting and provide a concise
overview of three articles that utilised complementarity as a tool for siting.

B.1.1 Siting or where to build wind turbines

Historically, determining where to install wind power plants followed a simple
maxim: erect them where the wind is strongest. The default strategy was to situate
wind assets in regions with consistent, robust wind resources – sites with superior
average capacity factors that promised maximum electricity generation [Ber+20].
However, wind turbine siting can be optimised based on diverse criteria beyond
wind intensity.

For instance, Wu et al. [Wu+17] proposed siting wind generators in parts of Africa
to minimise peak hourly residual demand over a year. Similarly, studies by Short and
Diakov [SD12] and W. Zappa and M. van den Broek [WM18] designed programs
for residual demand minimisation over specific periods. Pereira et al. [Per+14]
targeted wind farm placements to curtail residual demand variance, while Becker
and Thrän [BT18] centred on wind power placement in Germany with a focus on
site correlation and the weight of existing installations. A novel approach discussed
in [Ber+20] and featured in subsequent research, including ours, focuses on siting
that maximises the complementarity of production profiles across sites.

This complementarity revolves around the synchronous relationship between re-
newable energy production at different sites given their spatiotemporal traits. It is
about how varying production patterns across locations can offset each other. For
example, when considering wind energy, the wind might be gusting strongly in the
plains of Northern Europe during the afternoon while being relatively calm on the
Mediterranean coast – yet picking up speed there by night. Similarly, for solar energy,
sunlight might be peaking on Spain’s southern coast by mid-morning. At the same
time, Northern Germany could only experience strong sunlight by early afternoon
due to differences in latitude and typical cloud coverage patterns. Strategic siting
based on these complementary profiles can help achieve a steady and dependable
renewable energy output.

A challenge with these innovative siting methodologies is their computational com-
plexity, particularly for expansive geographical scopes and extended periods. In
an ideal setting, every potential site would be represented in a large-scale capacity
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expansion, each having unique capacity factors. This approach, however, translates
to millions of constraints, rendering it untenable to optimise even over a year. Simpli-
fications are then in order – like aggregating production time series or determining
wind production capacities for broader areas rather than specific sites. Yet, as we
coarsen temporal or spatial resolutions, the precision in estimating required instal-
lations and associated costs wanes. Indeed, accurate estimation of capacities and
costs in renewable energy systems relies heavily on detailed modelling of renewable
energy assets [PHK14]. For instance, in a study led in the USA, using 356 profiles for
wind and 134 profiles for solar instead of one single profile per state (i.e. 48 profiles
per resource) led to capacity differences exceeding 32 GW, equivalent to 10% of the
total installed capacity for solar PV [KC16]. Similarly, in a recent assessment of the
European power system, Frysztacki et al. [Fry+21] found that modelling renewables
with 1024 profiles resulted in 10.5% lower system costs compared to more simplified
setups using only 37 profiles (one per country) per renewable resource.

To ensure results with meaningful precision, we are inherently bound to the origi-
nal complexity, prompting a need for alternate solutions. This context frames the
underlying goal of the three articles presented in the forthcoming section: craft-
ing innovative siting methods grounded in complementarity while enhancing the
efficiency of such approaches.

B.1.2 Siting using complementarity

The first of these three articles, “Siting Renewable Power Generation Assets with
Combinatorial Optimisation" [Ber+22], elaborates different strategies for sitting
renewable power generation assets. In particular, it presents a combinatorial op-
timisation model that minimises simultaneous low electricity production events
from chosen sites, using spatiotemporal complementarity. The model and associated
algorithms – such as greedy, local search, and relaxation-based heuristics – are
benchmarked against a state-of-the-art mixed-integer programming solver using
a realistic case study of onshore wind power plant siting in Europe. The study
concludes that the model can efficiently identify optimal deployment patterns, with
several heuristics consistently outperforming the solver at a lower computational
cost. However, it also found that onshore wind power plants are unlikely to consis-
tently meet a constant share of electricity demand even with optimised siting. Lastly,
the model proves robust in cross-validation analysis, leveraging historical data to
predict performance on unseen climatological data, except in extreme edge cases.
Future research directions include a closer algorithmic analysis and the introduction
of economic considerations into siting decisions.
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This first paper showed how to select renewable sites to meet some demand but
ignored the electricity transmission constraints. These transmission constraints can
be considered by using an appropriate capacity expansion model (CEP). However,
solving these problems with many renewable energy generation sources is compu-
tationally heavy, as the number of variables and constraints increases linearly with
the number of sites available. In the article “Model Reduction in Capacity Expansion
Planning Problems via Renewable Generation Site Selection" [Rad+21], we propose
a two-stage method to mitigate the computational complexity of capacity expan-
sion planning problems while maintaining an accurate representation of variable
renewable energy sources (RES). The first stage involves a screening process to
identify and discard less significant RES sites, reducing the spatial dimension of the
problem. The second stage utilises the selected sites to determine the optimal config-
uration of the power system in a CEP problem. The method, tested on an EU case
study, shows the ability to identify over 90% of optimal sites while decreasing peak
memory consumption and computation time by up to 41% and 46%, respectively.
Future work may focus on refining the parameters used in the first-stage screening
routine and integrating the proposed heuristic into a more structured form, such as
a Benders-like decomposition framework.

We used this two-stage method in a third paper called “Assessing the impact of off-
shore wind siting strategies on the design of the European power system" [Rad+22]
to assess how different offshore wind siting strategies can influence the design and
economics of the European power system. The study compared two siting schemes
at the first stage: one that maximises aggregate power output and another that max-
imises spatiotemporal complementarity. Two variations of these schemes were also
explored, wherein the number of sites was determined country-by-country. Findings
indicate that the complementarity-based siting criterion can lead to system designs
that are up to 5% cheaper than those relying on the power output-based scheme,
assuming no constraints related to country-based deployment targets. However,
when such constraints are enforced, the power output-based scheme is consistently
2% cheaper than the complementarity-based strategy. This paper contributes to
understanding offshore wind power plants’ potential role in the European power
system. It provides crucial insights into how plant siting strategies can impact system
design and economics. The study’s findings can guide policymakers and stakeholders
in decision-making concerning renewable energy infrastructure development. For
future research, we suggest integrating the siting of other RES technologies into
the two-stage method, enhancing network modelling, evaluating the impact of unit
commitment costs and constraints on system designs for different siting schemes,
and representing the effect of short-term RES uncertainty in dispatch decisions.

These articles present innovative approaches to siting. However, working on them
also awoke the authors to a limitation of capacity expansion planning models: an
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emphasis on optimal solutions, often overlooking near-optimal alternatives. This
constrained viewpoint is especially problematic when making granular decisions,
like choosing hundreds of sites out of thousands, where varied configurations might
yield similarly valuable results. To address this challenge, we were inspired to delve
into the realm of near-optimal space exploration, which became the main thread of
this thesis.

B.2 Energy return on investment

In the energy system optimisation realm, most research focuses on cost as the
defining objective. Consequently, the optimal configuration offers the highest cost-
effectiveness [DeC+17]. Undoubtedly, cost is paramount in evaluating an energy
system’s economic feasibility and sustainability. However, anchoring solely on this
factor might sidestep other critical dimensions like environmental sustainability and
social equity. An alternative, albeit lesser-known metric, encapsulating technical and
societal challenges, is the system’s energy return on investment (EROI).

At a systems level, EROI manifests as a ratio that gauges the amount of usable energy
delivered by the system (Eout) against the energy used to obtain that energy (Ein)
[DGJ21]. Consequently, a rise in the energy required to render a specific energy
service inversely affects the system’s EROI. In essence, EROI sheds light on the
efficiency of deriving energy to metamorphose it into a societal benefit. EROI is
interesting to study in parallel to cost because, while certain elements can influence
both – like transportation of energy resources surging the system cost and invested
energy - they are not strictly tied, and prioritising one might yield divergent system
configurations.

Our exploration of EROI was propelled by an alliance with scholars from the Catholic
University of Louvain (UCLouvain). Their previous endeavours in this domain, such
as in works like [LJ18], served as the foundation for two new papers. The inaugural
paper is summarised at the end of this section, while the second one has already been
described in Chapter 3. This collaborative endeavour was primordial in determining
the precise definition of EROI deployed in both research articles. Indeed, given
the numerous approaches to quantify Ein and Eout, and by extension, the resulting
EROI for a system, establishing a clear and consistent definition becomes imperative.
Such clarity ensures that the findings and conclusions drawn from the case studies
presented in these works are both relevant and unambiguous. In parallel, Adrien
Orban’s master’s research [Orb22], conceived in the same collaborative backdrop,
delivered a refined version of the energy investment prerequisites for various energy
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sources, significantly enriching the capacity expansion planning discussed in both
papers.

The methodology presented in this work was leveraged, as detailed in [Dum+22],
to analyse a comprehensive energy system using EROI as the objective, contrasting
it with results from a cost-optimised system. While the 2035 Belgian energy system
served as the primary case for evaluation, this innovative approach is versatile
and can be adapted to different scales, from national to international contexts.
Moreover, this research advanced further by undertaking a global sensitivity analysis
to discern key parameters influencing EROI uncertainty, utilising the polynomial
chaos expansion technique.

Beyond the techno-economic findings, it is noteworthy to highlight a significant
societal conclusion from the paper, which aligns with the decision-making focus
of this thesis. The declining EROI raises concerns about meeting climate goals
without socio-economic implications, particularly for fossil-fuel-dependent nations
like Belgium. This decline suggests that countries might face challenges maintaining
current lifestyles while achieving carbon neutrality. Our research underscores the
need for policymakers and scholars to re-evaluate energy and economic models,
mainly as most models are premised on constant or growing demand. A reduced
EROI means fewer services, prompting inquiries about which sectors should be
prioritised. This research emphasises the need for a deeper understanding of whole-
energy systems using the EROI metric. It calls for more research into renewable
fuels, especially regarding their cost, availability, and energy investment.

B.3 Tools for expansion planning

Several tools were developed to evaluate complementarity and facilitate renewable
asset siting and capacity expansion planning at the European scale. This develop-
ment was a substantial part of the first two years of this thesis. In addition, we
contributed to the modelling tool EnergyScope TD and its Python version as part of
our collaboration with the Catholic University of Louvain. This section provides an
overview of these tools and their use in this thesis.

B.3.1 EPIPPy

In the preceding papers and [DE22; DE23], we performed siting and capacity
expansion planning at the European scale. The first step to achieve this is to access
appropriate data and establish an efficient data pipeline. To address this need, we
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developed a Python library called EPIPPy (Expansion Planning Input Preprocessing
in Python), which is available on GitHub [DRa].

EPIPPy offers a range of functions and scripts for preprocessing various data sources,
including generation data (such as hydro capacities and flows, existing and potential
capacities, and capacity factors), geographical data (such as country and sub-region
shapes), population data, green-house gases emissions, yearly and hourly load,
technological parameters such as cost, and network topologies. The library simplifies
the preprocessing of these data sources, providing a convenient tool for subsequent
analysis.

B.3.2 resite

For the studies [Rad+21; Rad+22; Ber+22], we developed the resite library [DRc]
to support the development and modification of siting algorithms while maintaining
a consistent processing pipeline.

The resite library consists of a pipeline with two main steps. In the first step, the
territory (e.g., Europe) is divided into sub-regions and sites corresponding to the
epicentres of these regions are defined. The sub-regions can either correspond
to predefined administrative regions (e.g. countries, NUTS - Nomenclature of
territorial units for statistics) or be created using a Voronoi partition. The region’s
shape, geographical position of the epicentre and data retrieved using EPIPPy allow
associating with each site, power generation time series, existing and potential
capacities for different technologies, and the load to be satisfied at this site.

The second step involves the siting process, which entails selecting a subset of sites
that meet a predefined criterion. For example, the criterion could be selecting the
n sites that result in maximum production over a given period. resite allows the
integration of siting algorithms written in various optimisation modelling languages,
such as pyomo, docplex, gurobipy, and Julia. The pipeline can be easily configured
to switch between different languages and adapt to specific requirements.

B.3.3 REplan

Capacity expansion planning is a well-studied problem, and various tools exist in
Python and other languages to support its analysis. PyPSA (Python for Power System
Analysis) [BHS18] is a widely used library. While PyPSA enables the modelling of
linear capacity expansion planning problems, it lacks an automated pipeline for
modelling large networks like the European network. To address this limitation, the
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PyPSA-Eur project, initiated by Hoersch et al. [Hoe+18], “provides an open model
dataset of the European energy system at the transmission network level".

In this thesis, we extensively used PyPSA and the PyPSA-Eur dataset for developing
and testing ideas (notably in [DE22] and [DE23]). However, to assess the impact of
siting techniques on capacity expansion planning results and enhance flexibility, we
developed the REplan library [DRb]. REplan is built on PyPSA and draws inspiration
from the PyPSA-Eur project. It offers tools that simplify the setup and simulation
of grid expansion planning while facilitating the integration of output from siting
algorithms. In addition to providing flexibility, one of the goals of the development
of REplan was its possible expansion to a more extensive scope than Europe.

B.3.4 EnergyScope TD

In the studies presented in [DE22] and [DE23], the focus was predominantly on
power systems. However, we ventured beyond this and broadened the sectoral scope
of our research to multi-carrier energy systems in [Dub+23].

To achieve this broader perspective, we sought a comprehensive whole-energy system
modelling tool that could represent various energy sectors. We selected EnergyScope
TD (ESTD) for this purpose. ESTD provides the capability to model and optimise
a system, integrating many technologies (e.g., wind turbines, gas power plants,
boilers) and a range of resources (e.g., wind, gas, diesel) to cater to diverse end-use
demands.

Dr Gauthier Limpens is credited for developing this tool during his PhD research, as
documented in [Lim21]. The tool’s mathematical foundation and data processing
interface were initially constructed in GAMS. However, as we employed ESTD for our
case studies, we recognised the need for more versatility and developed a Python-
based version for data processing. Although this did not replace the primary GAMS
version, it facilitated the replication of our experiments and sparked subsequent
explorations in the same direction.
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