J. Inorg. nucl. Chem., 1967, Vol. 29, pp. 915 to 923. Pergamon Press Ltd. Printed in Northern Ireland

ISOMORPHISM AND POLYMORPHISM OF THE COMPOUNDS Li₃PO₄, Li₃AsO₄ AND Li₃VO₄

P. TARTE

University of Liege, Department of General Chemistry, Liege

(Received 14 July 1966)

Abstract—The structural study of the compounds Li_3PO_4 , Li_3AsO_4 and Li_3VO_4 lias been made by X-ray powder diffractometry and i.r. absorption spectroscopy. In addition to a previously described structure, which has been found for Li_3PO_4 and Li_3AsO_4 only and must be considered as a high temperature form, a new, low-temperature form, has been found for Li_3PO_4 , Li_3AsO_4 and Li_3VO_4 . The following unit cell dimensions (in angstroms) have been deduced from X-ray powder patterns:

Low temperature form:	ortho	rhombic	Pmm21-C27
	a	Ь	с
Li ₂ PO ₄	6.13	5.25	4.87
Li ₃ AsO ₄	6.27	5.38	4.95
Li ₃ VO ₄	6.33	5.45	4.96
High temperature form:	orthor	hombic	Pmna-D2h16
Li ₃ PO ₄	6.12	10.48	4.93
Li ₃ AsO ₄	6-28	10.76	5.05

Both structures are extremely similar, and are characterized by four-fold co-ordination of lithium, as deduced from the study of the $^{\circ}Li^{-1}Li$ isotopic shifts in the spectra. Vibrational interactions between some LiO₄ stretching frequencies and the PO₄, AsO₄ or VO₄ bending frequencies are revealed by abnormal $^{\circ}Li^{-1}Li$ isotopic shifts.

INTRODUCTION

THE STRUCTURE of Li_3PO_4 has been accurately determined by ZEMANN⁽¹⁾ who found that all cations (P and Li) are tetrahedrally co-ordinated. No similar detailed study has been done for Li_3AsO_4 and Li_3VO_4 , but isotypism between these three compounds is suggested by X-ray powder diffraction data of ZEMANN⁽¹⁾ and BLASSE.⁽²⁾

The i.r. spectra of these compounds were investigated in this laboratory as a part of a more general study of the vibrational behaviour of Li—O bonds;⁽³⁾ but lack of reproducibility of some preliminary results induced a systematic reinvestigation by both X-ray and i.r. methods, which eventually led to the conclusion that Li_3PO_4 and Li_3AsO_4 exhibit polymorphism, with very intimately related structures.

EXPERIMENTAL

Synthesis of the compounds was first attempted by wet methods, starting from moderately concentrated solutions of LiCl and Na_3PO_4 (or Na_3ASO_4). This leads, however, to badly crystallized precipitates, irrespective of temperature or concentration conditions. Only by hydrothermal treatment (4 days at 245°C) was precipitated Li₃PO₄ converted into a fairly well crystallized phase (some diffuseness remained however, in the X-ray powder diagram) which, as will be shown later on, is the low-temperature form of Li₃PO₄.

All other phases (pure compounds and solid solutions) were prepared by dry methods, starting

⁽¹⁾ J. ZEMANN, Acta crystallogr. 13, 863 (1960).

⁽²⁾ G. BLASSE, Z. anorg. allg. Chem. 331, 44 (1964).

⁽³⁾ P. TARTE, Spectrochim. Acta 20, 238 (1964); ibid. 21, 313 (1965).

from Li₂CO₃, NH₄H₂PO₄, (NH₄)₂HAsO₄ and V₂O₅: the stoicheiometric quantities of the necessary compounds are thoroughly mixed and ground, then slowly heated in covered Pt crucibles up to 900°C. This temperature is maintained for 4–5 hr, this duration being quite sufficient for completion of the reaction. The samples are, either air quenched, or submitted to a slow cooling in the furnace. ⁷Li and ⁶Li compounds are not isotopically pure: the former corresponds to the natural isotopic abundance (92.6% ⁷Li), the latter is 95% pure in ⁶Li.

The i.r. spectra were registered with Unicam SP100 (NaCl and KBr prisms) and Perkin-Elmer 112 (CsBr prism) spectrometers. The KBr disc method has been used throughout; no ionic exchange occurred in the discs, as shown by running some nujol mulls.

The X-ray powder diffraction diagrams were obtained by the reflection method with a CGR diffractometer, using $CuX\alpha$ radiation.

FIG. 1.—Schematic diagram of the X-ray diffraction patterns of the high and lowtemperature forms of Li₃AsO₄ (low-angle region only).

RESULTS

X-ray powder diffraction data

All samples of Li_3PO_4 prepared by the dry method give identical powder diffraction diagrams, irrespective of the type of thermal treatment (quenching or slow cooling). Apart from a slight discrepancy in the value of the *b* axis, this diagram may be completely indexed on the basis of the structure and cell dimensions proposed by ZEMANN,⁽¹⁾ and there is no doubt about the identity of the phases.

The behaviour of Li_3AsO_4 is, however, somewhat different: samples removed from the furnace at 900 or 850°C and air quenched give an X-ray powder diagram which is very similar to, and is easily indexed by comparison with the Li_3PO_4 pattern. But samples slowly cooled down, and removed from the furnace at 600°C exhibit a diagram which, although clearly related to the preceding, is more simple (Fig. 1).

This diagram may be tentatively indexed by comparison with the preceding one, the same $h \ k \ l$ indices being assigned to corresponding low-angle reflexions. This leads to a complete indexing of the new diagram where, however, all k indices are even: this suggests that the b axis should be halved. The observed reflections seem to follow the limiting conditions: h00 and 00l: h and l = 2n, 0k0: no conditions, hk0: no condition; h0l: h + l = 2n; 0kl: no conditions.

The corresponding space group is $Pmn2_1-C_{2\nu}^7$. This type of structure (which will be called the low temperature form) is easily reconverted into the high-temperature form by heating to 850° and air-quenching: the transformation is thus reversible. The following unit cell dimensions have been deduced from the X-ray powder diagrams:

> Li₃AsO₄, high: $a_0 = 6.28_0$ $b_0 = 10.76_4$ $c_0 = 5.05_6$ Å Li₃AsO₄, low: $a_0 = 6.27_6$ $b_0 = 5.38_6$ $c_0 = 4.95_5$ Å

The assumed error is ± 0.01 Å.

916

Relative				
intensity	dobs.	h k l	d _{cate} .*	$d_{csic.} - d_{obs.}$
44	5.383	010	5.385	+0.002
≫100	4.087	110	4.087	0.000
100	3,890	101	3.999	-0.001
>100	3.646	0 1 1	3.647	-0.001
>100	2 146	52.0.0	2 120	-0.001
14	5.140	200	2 152	-0.008
0.4	0.710		3.122	+0.007
94	2.710	210	2./11	+0.001
(00)	2.693	020	2.093	0.000
100	2.410	002	2.477	+0.001
10	0.077		2.414	-0.002
48	2.311	211	2.378	+0.001
?	2.365	021	2.366	+0.001
10	2.249	012	2.250	+0.001
24	2.212	121	2.213	+0.001
40	2.118	112	2.118	0.000
7	2.042	220	2.043	+0.001
24	1.946	202	1.944	-0.002
		210	1.949	+0.003
18	1.927	301	1.927	0.000
31	1.888	221	1.889	+0.001
28	1.829	212	1.829	0.000
17	1.814	3 1 1	1.814	0.000
12	1.794	030	1.795	+0.001
16	1.750	122	1.750	0.000
3	1.726	130	1.726	0.000
3	1.688	031	1.688	0.000
14	1.652	320	1.652	0.000
26	1.630	131	1.629	-0.001
14	1.598	[302	1.598	0.000
		103	1.597	-0.001
13	1.579	F0 1 3	1.579	0.000
		222	1.577	-0.002
26	1.567	321	1.567	0.000
47	1.558	230	1.558	0.000
15	1.553	[3 1 2	1.532	0.001
		L1 1 3	1-531	-0.002
5	1.506	410	1.506	0.000.
7	1.454	032	1.453	-0.001
13	1.441	411	1.441	0.000
30	~[1.410	213	1.410	0.000
	~_1.408	023	1.407	-0.001
12	1.374	[322	1.374	0.000
		123	1.374	0.000
8	1.355	420	1.355	0.000
24	1.320	232	1.319	-0.001
21	1.317	140	1.316	0.001
21	1.315	3 3 1	1.313	-0.002
8	1.308	421	1.307	-0.001
30	1.297	041	1.299	+0.002
		L3 0 3	1.296	-0.001
30	1.286	412	1.287	+0.001
15	1.273	141	1.272	-0.001
12	1.261	313	1.260	-0.001
12	1.238	004	1.239	+0.001
		[240	1.237	-0.001

• For the following unit cell dimensions: $a_0 = 6.276$, $b_0 = 5.386$, $c_0 = 4.955$ Å.

917

P. TARTE

As mentioned above, no change in the crystal structure is observed when Li_3PO_4 is slowly cooled down; but samples prepared by hydrothermal methods (see experimental part) show the same X-ray powder diagram as the low-temperature Li_3AsO_4 .

$$Li_3PO_4$$
 low: $a_0 = 6.13$, $b_0 = 5.25$, $c_0 = 4.87$ Å

It is thus evident that Li_3PO_4 exhibits the same polymorphism as Li_3AsO_4 , the structure described by ZEMANN⁽¹⁾ being related to the high-temperature form. In this case, the transformation does not seem to be reversible; it is very probable, however, that the transformation takes place at a much lower temperature for Li_3PO_4 than for Li_3AsO_4 , and thus is too sluggish to be easily detected.

Up to the present time, one type of structure only has been found for Li_3VO_4 and is of the low-temperature type, with the unit cell dimensions: $a_0 = 6.33_5$, $b_0 = 5.45_5$, $c_0 = 4.96_0$ Å. All attempts to prepare a high temperature structure by heating Li_3VO_4 up to 950°C and quenching were unsuccessful, either because the transformation temperature is higher than 950°C, or because the high temperature structure structure cannot be quenched. The matter should be re-investigated by high-temperature diffractometry.

Some solid solutions $Li_3(P, As)O_4$ and $Li_3(P, V)O_4$ were also prepared. Their type of structure depends on the relative amounts of P, As and V.

The indexed spacings of the low temperature form of Li_3AsO_4 are collected in Table 1. Indexed powder diagrams of the other phases (Li_3PO_4 high and low, Li_3AsO_4 high and Li_3VO_4) are available on request to the author.

I.R. absorption spectra

Assignment of the bands. It has been shown in previous papers⁽³⁾ that the absorption bands related to the stretching vibrations of LiO_4 tetrahedra are generally found in the 400-550 cm⁻¹ region. Apart from the totally symmetric mode v_1 (which, anyway is i.r. inactive), these vibrations are easily identified by a ⁶Li-⁷Li isotopic shift which amounts to about 6 per cent of the observed frequency. This is true, however, only in the absence of important vibrational interactions between LiO_4 tetrahedra and the other co-ordinated groups present in the structure.

According to these principles, the value of the ⁶Li-⁷Li isotopic shift has been used to class the bands into three different categories:

(a) The bands free from any significant isotopic shift are assigned to the tetrahedral anion (PO₄, AsO₄ or VO₄) vibrational frequencies. This is always the case for the stretching frequency v_3 . This is also true, but only as a first approximation, for the PO₄ bending frequency.

(b) The bands which exhibit an isotopic shift of about 20-25 cm⁻¹ must be assigned to stretching vibrations of the LiO_4 tetrahedra.

(c) Some bands in the Li_3AsO_4 and Li_3VO_4 spectra are characterized by low or erratic values of the isotopic shift. It is highly probable that these bands are related to mixed vibrations involving both a stretching motion of the LiO_4 tetrahedra, and a bending motion of either AsO_4 or VO_4 tetrahedra.

Representative spectra of the different phases are given in Figs. 2-4. The observed frequencies and the assignments are collected in Tables 2-4. These results confirm, for the high temperature structure, the tetrahedral co-ordination of lithium, already

FIG. 2.-I.R. spectra of the high- and low-temperature forms of Li₃PO₄.

Ł

P. TARTE

L-7Li3PO4		H-Li3PO4		Assignment
	۴Li	7Li	$\Delta_{\mathcal{V}}$	
	1153	1153	0 7	
~1093	1109	1109	0	V ₂ PO ₄
1038	1035	1036	(+1)	
	622	620	-27	
~598	608	604	-4	PAPOA
	601	592	-9]	
	554	516		
~534	532			
519	517	~500	~-177	
484	479	460	-19	LiO,
~472	452	431	-21	stretching
449	427			0
~392	403	385	-18	
(348)	330	307	-23	

TABLE 2.-I.R. VIBRATIONAL FREQUENCIES AND ASSIGNMENT FOR Li_PO4

deduced from X-ray data by ZEMANN,⁽¹⁾ and show that the tetrahedral co-ordination of lithium is retained in the low temperature structure.

5

ł

Deformation of the PO₄, AsO₄ and VO₄ tetrahedra. In all compounds investigated, the ν_3 antisymmetric stretching vibration of the anion is represented by 2 bands of unequal intensity. This doubling may be due to some deformation of the PO₄, AsO₄ or VO₄ tetrahedron, or to vibrational couplings between anions in the same unit cell, or both. This problem is easily solved by the study of dilute solid solutions:^(4.5)

(4) K. WICKERSHEIM, R. LEFEVER Ct B. HANKING, J. chem. Phys. 32, 271 (1960).

⁽³⁾ P. TARTE, Bull. Acad. R. Sci. Belg. 46, 169 (1960); idem. Spectrochim. Acta 18, 467 (1962).

V

4

í,

FIG. 4.-I.R. spectra of the high- and low-temperature forms of Li₃AsO4.

P. TARTE

⁶ Li ₃ VO ₄	⁷ Li ₃ VO ₄	Δ _ν	Assignment
884	884	07	v _a VO ₄
805	803	(-2)	
537	512	-257	
490	463	-27	LiO6
463	443	-20	stretching
430	415	-15	5
397	387	107	Mixed frequencies
366	355	-11	LiO, stretching
		-	and VO, bending
314	317	(+3)	

ABLE 3I.R.	VIBRATIONAL	FREQUENCIES	AND	ASSIGNMENT	FOR	Li ₃ VO	1
------------	-------------	-------------	-----	------------	-----	--------------------	---

in this case, the vibrational couplings are suppressed, and any multiplicity of the absorption corresponding to a degenerate vibrational mode, here the v_3 mode of the tetrahedron, must be assigned to the suppression of the degeneracy, and thus to some deviation from the ideal T_d symmetry.

In the dilute solid solutions studied, namely $Li_3(X, Y)O_4$ with $(X, Y) = (P_{0.08}As_{0.02})$, $(P_{0.08}V_{0.02})$, $(As_{0.08}P_{0.02})$ and $(V_{0.08}P_{0.02})$, the absorption corresponding to the triply degenerate v_3 mode of the *dilute* anion is always represented by one single band, thus proving that the anion has retained its full tetrahedral T_d symmetry.

This is true for both types of structures studied here, namely the high- and lowtemperature forms, and this result is in full agreement with ZEMANN's structural data on the high temperature form of Li_3PO_4 .

Structural relations between the low- and the high-temperature forms. The great similarity between the X-ray powder diagrams of the low- and the high-temperature forms and the reversible character of the transformation suggest that the transition does not involve important structural rearrangements.

This hypothesis is fully substantiated by the i.r. spectra: both types of structures are characterized by the occurrence of non-deformed PO_4 tetrahedra, and by the four

	L-Li ₃ AsO4			H-Li,A	sO4	
⁶ Li	'Li	$\Delta_{\mathcal{V}}$	°Li	'Li	$\Delta_{\mathcal{V}}$	Assignment
~869	870	(+1)	888	888	07	
824	824	0	831	831	0	voAsO4
~556	539	~-17	~567	~553	~-147	LiO4
523	499	-24	531	507	-24	stretching
	468					
473	456	-17	474	447	-27	
445	424	21	424	402	-22	
	~413					
394	385	-9	400	368	(-32)]	Mixed frequencies
380	366	-14				LiO ₄ stretching and
345			322	306	-16	AsO, bending

TABLE 4 .--- I.R. VIBRATIONAL FREQUENCIES AND ASSIGNMENT FOR LigASO,

T

Isomorphism and polymorphism of the compounds Li₃PO₄, Li₃AsO₄ and Li₃VO₄ 923

fold co-ordination of lithium. Moreover, the extreme similarity of the i.r. patterns shows that the structural analogy between the two forms goes very far indeed, and that the two structures should differ by minor details only.

Acknowledgements—The research reported in this paper has been sponsored in part by the Air Force Cambridge Research Laboratories under Contract AF 61(052)-917 through the European Office of Aerospace Research. The author gratefully acknowledges the financial support given to his laboratory by the Fonds National de la Recherche Scientifique.

Y

1

\$