

Envelope Reconstruction with Equivalent Wind Loads

August 27-31, 2023

16th International Conference on FLORENCE - ITALY Wind Engineering

Vincent Denoël

Buffeting analysis

1964: Wind Tunnel Testing World Trade Center (Drs. J. E. Cermak and A.G. Davenport in the Colorado State University boundary layer wind tunnel)

THE ALAN G. DAVENPORT WIND LOADING CHAIN

The two approaches to wind loads on complex structures

Wind tunnel testing

Martin Martin Martin Martin

Time [s]

Computational Fluid Dynamics

Part I: Equivalent Static Wind Loads

Gust Response Factor

Davenport, 1964-1967

1-DOF Mass-spring oscillator - drag only

$$\begin{aligned} x_{\max} &= x_{\max} \\ c\dot{x} + kx = f(t) \\ \dot{x} \\ kx_{\max} = f_{E} \end{aligned} \qquad x_{\max} = \max_{t} x(t) \end{aligned}$$

$$x_{\max} = \bar{x} + \Delta x_{\max} = \bar{x} + g \sigma_x$$
$$x_{\max} = \bar{x} \left(1 + g \frac{\sigma_x}{\bar{x}} \right) = \text{GRF} \, \bar{x}$$
$$f_{\text{E}} = k \, x_{\max} = \text{GRF} \, k \bar{x} = \text{GRF} \, \bar{f}$$

1-DOF torsional oscillator (balanced cantilever bridge)

$f_1(t)$

To use $f_{\rm E} \propto f$ doesn't work anymore !

GRF fails if small or zero average

However, we could use $f_{\mathrm{E},2} \neq f_{\mathrm{E},1}$ to create a torsional response

1-DOF torsional oscillator (balanced cantilever bridge)

$$\frac{k_T}{\ell} \theta_{\max} = f_{E,2} - f_{E,1}$$

$$\frac{h_B}{\ell} x_{\max} = f_{\mathrm{E},2} + f_{\mathrm{E},1}$$

Nb. of LOADS = Nb. of responses Problem is now properly closed (but be careful again, this is an example)

\mathcal{X}_1 x_2 $f_{\mathrm{E},2}$ $f_{\mathrm{E},1}$ $f_1(t)$ August 27. -FLORENCE $f_2(t)$

(1) 2-DOF Mass-spring oscillator - drag only Same problem, modeled as a 2-DOF structure (but $x_2(t) = \frac{1}{2}x_1(t) \quad \forall t$) x_1 x_2

Static : replace dynamic analysis by static analysis **Equivalent** (to what?) : should reproduce the same maximum response

$$\mathbf{M}\ddot{\mathbf{x}} + \mathbf{C}\dot{\mathbf{x}} + \mathbf{K}\mathbf{x} = \mathbf{f}$$
$$\mathbf{z}(t) = \mathbf{A}\mathbf{x}(t)$$

Find \mathbf{f}_{E} such that: $\mathbf{K}\mathbf{x}_{\mathrm{E}} = \mathbf{f}_{\mathrm{E}}$ and $\mathbf{A}\mathbf{x}_{\mathrm{E}} = \mathbf{z}_{\mathrm{max}}$

Is the problem well posed? Is the solution unique?

Nb. of *LOADS* = Nb. of *RESPONSES* \longleftrightarrow **AK**⁻¹ is square

$$\mathbf{z}_{\max} = \max_{t} \mathbf{z}(t)$$

Under-determined

Over-Determined

Average loading : **f**

Covariance of the loading : $\Sigma_{\mathbf{f}} = \mathbb{E}\left[\mathbf{f} \mathbf{f}^{T}\right]$

Gust Response Factor

1967

Davenport, 1967

 $M\ddot{x} + Cx + Kx = f$ $z(t) = \mathbf{a}^T \mathbf{x}(t)$ $z_{\max} = \max_{t} z(t)$ $z(t) = \mathbf{b}^T \mathbf{f}(t)$ Find \mathbf{f}_{E} such that: $\mathbf{K}\mathbf{x}_{\mathrm{E}} = \mathbf{f}_{\mathrm{E}}$ and $\mathbf{a}^{T}\mathbf{x}_{\mathrm{E}} = z_{\mathrm{max}}$

Assume Gaussian response : $z_{\rm max} =$

Assume same peak factor : $f_{E,i}^{LRC} = \rho_{zf,i} f_{\max,i}$

- Memoryless I/O relation
- No dynamics
- Gaussian response
- (Unique peak factor)

$$= g\sigma_z = g\frac{\sigma_z^2}{\sigma_z} = \frac{g}{\sigma_z}\sum_i \sum_j b_i b_j \operatorname{cov}_{f,ij}$$
$$= \frac{g}{\sigma_z}\sum_i b_i \sum_j b_j \operatorname{cov}_{f,ij} = g\sum_i b_i \rho_{zf,i}\sigma_{f,i}$$

$$f_{E,i}^{\mathrm{LRC}} = \rho_{zf,i} f_{\max,i}$$

- Memoryless I/O relation No dynamics
- Gaussian response
- (Unique peak factor)

- Simple interpretation : most probable load
- Link with cond. sampling
- No overshooting of enveloppe (iif Gaussian)

The Load-Response Correlation method

a drawback :

The Load-Response Correlation method and the Conditional Sampling Technique have equivalent loads are applied where pressures are measured

Timeline

 $M\ddot{x} + C\dot{x} + Kx = f$ $z(t) = \mathbf{a}^T \mathbf{x}(t) \simeq \mathbf{a}^T q(t) \boldsymbol{\phi}_i$ $z_{\rm max} =$ Find \mathbf{f}_{E} such that: $\mathbf{K}\mathbf{x}_{\mathrm{E}} = \mathbf{f}_{\mathrm{E}}$ and $\sim oldsymbol{\phi}_i$ $\mathbf{f}_E^{ ext{MIL}} = \mathbf{M} \boldsymbol{\phi}_i$

Equivalent loads are applied where the mass is

$$= \max_t z(t)$$

$$\mathbf{a}^T \mathbf{x}_{\mathrm{E}} = z_{\mathrm{max}}$$

- Deformation = Mode shape Resonant Response
- Extension to multiple modes

LRC

Response

background

(wrong otherwise)

Load pattern

Most probable load (conditional, Gaussianity)

Simple physical meaning

MIL

resonant

(wrong otherwise)

Inertial loads

(conditional, Gaussianity)

Timeline

$\mathbf{f}_{\mathrm{E}} = W_b \mathbf{f}_{\mathrm{E}}^{\mathrm{LRC}} + \sum_{i} W_{r,i} \mathbf{f}_{\mathrm{E},i}^{\mathrm{MIL}}$

- Weighted combination of LRC and MIL methods
- Degenerates into LRC and MIL
- In original formulation: nodal background & modal resonant
- Different variants :

- ...

- without modal correlation (Holmes, 1999)
- with modal correlation (Chen & Kareem, 2001)
- including non-proportional damping (Blaise & Denoël, 2013)

 $W_b = \frac{\sigma_{z,b}}{\sigma_z} \quad ; \quad W_{r,i} = \sum_j \rho_{q,ij} \frac{\sigma_{z,r_j}}{\sigma_z}$

- 7-span viaduct (6@300m + 1@305m)
- Subject to turbulent wind :
 - Drag only
 - Spectrum : ENV1991-1.4, Annex B
 - Linearized loading (Gaussian)
- Model :
 - 84 Euler-Bernoulli finite elements
 - Mass = 10 to/m, $EI=10^{13} Nm^2$
- Analysis :
 - Time domain simulation
 - DT=0.04s, 65536 steps, T=2621 s

 Δ

Mode 1, f=0.549 Hz

Mode 3, f=0.665 Hz

Mode 5, f=0.931 Hz

Mode 7, f=1.200 Hz

Mode 8, f=2.192 Hz

Illustration - overview of dynamic behavior

ICWE 16

Illustration

Envelope = (Zero-mean) + $3.5 \cdot$ (Standard deviation)

<u>Next:</u> (GRF), CPT, LRC, MIL, COMB

 x_1

•

•

 x_n

 M_1

•

Illustration : Covariance Proper Decomposition (CPT)

ICWE 16

Illustration : Covariance Proper Decomposition (CPT)

Illustration : Covariance Proper Decomposition (CPT)

Illustration - Background/Resonant combinations

ICWE 16

ICWE 16

LRC overshoots other responses than the one that is reconstructed Solution : scale down the ESWL to avoid **overestimation**

Provisional conclusion

LRC

Response

background

(wrong otherwise)

Load pattern

Most probable load (conditional, Gaussianity)

Simple physical meaning

No overshooting

MIL

resonant

(wrong otherwise)

ad Inertial loads ity) (conditional, Gaussianity)

both

Conditional

Possibility to extend

- in the LRC:
 - use of correlation between loads and responses
 - loads are proportional to structural displacements (static only)
- in the MIL :
 - modal contributions to the response are most probable inertial loads • loads are proportional to structural displacements, i.e. modes shapes (resonant only)

when the response reaches its maximum value

Equivalent wind loads: obtained from the most probable deformation of the structure

- 1. Solve equation of motion: compute $\mathbf{x}(t)$ from measured dynamic loads $\mathbf{f}(t)$ • 2. Compute response z(t) from displacements $\mathbf{x}(t)$ (NB: possibly nonlinear) • 3. Build a joint probabilistic model for the response and displacements (joint Gaussian if applicable, this is now a choice, not an assumption)
- 4. Find the most probable (or average) displacement field \mathbf{x}_{E} , conditioned upon the max. response
- 5. Determine the corresponding load distribution

Equivalent wind loads: obtained from the most probable deformation of the structure when the response reaches its maximum value

The bicubic translation model

z Response 3 2 4 μ_z σ_z $\gamma_{3,z}$ $\gamma_{4,z}$

 $\mu_x \
ho_{xz}$

 σ_x

 $\gamma_{3,x}$

 $\gamma_{4,x}$

 $z = \frac{\alpha_z}{b_z} \left(\frac{u_z^3}{3} + a_z u_z^2 + (b_z - 1) u_z - a_z \right)$

 z, u_z

The bicubic translation model

		z Response				
		0	1	2	3	4
Displacement	0		μ_z	σ_z	$\gamma_{3,z}$	$\gamma_{4,z}$
	1	μ_x	$ ho_{xz}$			
	2	σ_x				
	3	$\gamma_{3,x}$				
${\mathcal X}$	4	$\gamma_{4,x}$				

 $z = \frac{\alpha_z}{b_z}$ $x = \frac{\alpha_x}{b_x}$

$$\left(\frac{u_z^3}{3} + a_z u_z^2 + (b_z - 1) u_z - a_z\right)$$
$$\left(\frac{u_x^3}{3} + a_x u_x^2 + (b_x - 1) u_x - a_x\right)$$

Part II: Envelope Reconstruction Problem

The Envelope Reconstruction Problem

Displacements

Displacements

Displacements

Displacements

Displacements

Reconstruction of the envelopes with mid-span displacements only

Don't try to reconstruct everything with displacements only

Reconstruction of the envelopes with : mid-span displacements

and bending moments on supports

We used 13 ESWL. 1. Did we do a good job ? (NB: strength vs. loading)

We used 13 ESWL.

- 1. Did we do a good job ? (NB: strength vs. loading)
- 2. Could we be more efficient? Use12 ESWL? Or less?
- 3. Nb. of ESWL vs. complexity. Why 13 ESWL?
- 4. Difficulty to identify the « best » responses

Envelope : (generous) set of structural responses \mathbf{z}_{max} : axial forces, bending moments, displacements, ground reactions, ...

Reconstruction : isn't that clear ? (no matter origin of envelop — dynamic or not)

$M\ddot{x} + C\dot{x} + Kx = f$ $\mathbf{z}(t) = \mathbf{A}\mathbf{x}(t)$

Find \mathbf{f}_{E} such that: $\mathbf{K}\mathbf{x}_{\mathrm{E}}$ =

Find $\{\mathbf{f}_{\mathrm{E},i}\}$ such that, for $\mathbf{K}_{\mathbf{X}}$ and $\hat{\mathbf{z}}_{\max}$ $\|\mathbf{z}_{\max} - \hat{\mathbf{z}}_{\max}\|$ is m

$$\mathbf{z}_{\max} = \max_{t} \mathbf{z}(t)$$

$$= \mathbf{f}_{E} \text{ and } \mathbf{A}\mathbf{x}_{E} = \mathbf{z}_{\max}$$

$$\mathbf{x}_{E,i} = \mathbf{f}_{E,i}, \quad \mathbf{A}\mathbf{x}_{E,i} = \mathbf{z}_{\max,i},$$

$$\mathbf{x}_{E,i} = \max_{i=1,\cdots,n} |\mathbf{z}_{\max,i}|$$
hinimum

Envelope : (generous) set of structural responses : axial forces, bending moments, displacements, ground reactions, ...

Which envelope? Absolute, Relative values, Units (!?), Consider strength.

Constraints : the $\{\mathbf{f}_{\mathrm{E},i}\}$ should look realistic

Freedom :

Find $\{\mathbf{f}_{\mathrm{E},i}\}$ such that, for \mathbf{K}_{Σ} and $\hat{\mathbf{z}}_{\max}$ $\|\mathbf{z}_{\max} - \hat{\mathbf{z}}_{\max}\|$ is m

- the number of ESWL should not be too large (but it depends on the complexity)
- maybe allow for some over-estimation / under-estimation

$$\mathbf{x}_{\mathrm{E},i} = \mathbf{f}_{\mathrm{E},i}, \ \mathbf{A}\mathbf{x}_{\mathrm{E},i} = \mathbf{z}_{\max,i},$$

 $\mathbf{x} = \max_{i=1,\cdots,n} |\mathbf{z}_{\max,i}|$
ninimum

Adaptive Descent solution

Step 1 : consider 1 major response & associated ESWLStep 2 : find worst reconstructed responseStep 3 : define new ESWL & iterateNB: needs a starting point

Envelope reconstruction rate

Quality of a good reconstruction algorithm :

- fast convergence
- high terminal convergence rate

Our freedom: overestimation and underestimation

Our freedom: overestimation and underestimation

Our freedom: overestimation and underestimation

Find
$$\{\mathbf{f}_{\mathrm{E},i}\}$$
 such that, for $\mathbf{K}\mathbf{x}_{\mathrm{E},i} = \mathbf{f}_{\mathrm{E},i}$, $\mathbf{A}\mathbf{x}_{\mathrm{E},i} = \mathbf{z}_{\max,i}$,
and $\hat{\mathbf{z}}_{\max} = \max_{i=1,\cdots,n} |\mathbf{z}_{\max,i}|$
 $\|\mathbf{z}_{\max} - \hat{\mathbf{z}}_{\max}\|$ is minimum

Envelope is reconstructed :

- within chosen/agreed over- and under-estimations (10%-20%)
- faster convergence rate —

Underestimation :

- could be accepted if smaller or secondary elements (but then, don't include them in responses)
- to be discussed with client

Overestimation:

- pay attention to excessive costs
- to be discussed with client

Timeline

The basis of ESWLs

ICWE 16

$$\begin{aligned} \mathbf{M}\ddot{\mathbf{x}} + \mathbf{C}\dot{\mathbf{x}} + \mathbf{K}\mathbf{x} = \mathbf{f} \\ \mathbf{z}(t) = \mathbf{A}\mathbf{x}(t) \\ \end{aligned} \quad \mathbf{z}_{\max} = \mathbf{f}_{\max} \end{aligned}$$
Find \mathbf{f}_{E} such that: $\mathbf{K}\mathbf{x}_{\mathrm{E}} = \mathbf{f}_{\mathrm{E}}$

Complexity = 1

Complexity = 2

Complexity ~ 100-500

- PSWLs are affected by the nature of the response, i.e. Background or Resonant
- PSWLs, as such, are not necessarily optimum to reconstruct the envelope

Observations : very good start, as expected

poor terminal reconstruction rate

Solutions :

- allow some over-estimation TBD with clients (i)
- (ii) use some PSWLs, then Adaptive descent
- (iii) (linearly) combine PSWLs

ICWE 16

Acceptable range of values for combination coefficients

 $\mathbf{f}_{\mathrm{E}} = w_1 \mathbf{f}_{\mathrm{E},1} + w_2 \mathbf{f}_{\mathrm{E},2}$

 $\mathbf{f}_{\mathrm{E}} = w_1 \mathbf{f}_{\mathrm{E},1}^{\mathrm{PSWL}} + w_2 \mathbf{f}_{\mathrm{E},2}^{\mathrm{PSWL}}$

Reconstruction rate

 $\mathbf{f}_{\mathrm{E}} = w_1 \mathbf{f}_{\mathrm{E},1} + w_2 \mathbf{f}_{\mathrm{E},2}$

 $\mathbf{f}_{\mathrm{E}} = w_{1} \mathbf{f}_{\mathrm{E},1}^{\mathrm{PSWL}} + w_{2} \mathbf{f}_{\mathrm{E},2}^{\mathrm{PSWL}}$

Comb. 1	Comb. 2
-0.16	-0.92
-0.45	1.00
1.00	-0.50
-0.04	-0.47
0.31	-0.08
-0.38	0.05
-0.14	-0.05

Comb. 1	Comb. 2	Comb. 3
-0.16	-0.92	-0.05
-0.45	1.00	1.00
1.00	-0.50	0.18
-0.04	-0.47	0.16
0.31	-0.08	-0.10
-0.38	0.05	0.02
-0.14	-0.05	0.21

0.16

0.16

Comb. 1	Comb. 2	Comb. 3
-0.16	-0.92	-0.05
-0.45	1.00	1.00
1.00	-0.50	0.18
-0.04	-0.47	0.16
0.31	-0.08	-0.10
-0.38	0.05	0.02
-0.14	-0.05	0.21

...

. . .

Principal static wind loads

Advantages :

provide a number of combination coefficients simple and efficient (no over-estimation required)

provide to client / design engineers a minimum number of load distributions that are realistic

73

Future Challenges and Conclusions

- Challenges : Large roofs, Silos, Cooling tower, Bridges, ...

- Non-Symmetric envelopes - Nonlinear responses, $\mathbf{z}(t) = \mathbf{A}\mathbf{x}(t)$ - Design/Extreme values - Several wind incidences

See beyond buffeting

Traditional « engineering solutions » (vs. Al ...)

The Wind Tunnel Lab Thomas Andrianne

PhD students

N. Blaise, S. Hippola, J. Heremans, M. Esposito Marzino, T. Canor, H. Vanvinckenroye, M. Geuzaine, F. Rigo, K. Theunissen

Visiting scholars

Academic partners

Public funding FNRS, National Fund for Scientific Research FRIA, National Fund for Industrial and Agricultural Research <u>SPW</u>, Walloon Public Services

WT partners CSTC, Nantes Politecnico di Milano

Industrial partners

ARUP, Besix, Ecostal, Greisch, Lindab-Astron, Ney & Partners, Sweco, Taylor Devices, Tower Pros, VK, Weynand, Web Structures

Editors IJWEIA, W&S, Wind MDPI

Illustrations

OpenArt

Envelope Reconstruction with Equivalent Wind Loads

August 27-31, 2023

16th International Conference on FLORENCE - ITALY Wind Engineering

Vincent Denoël

Backup slides

77

$$M' = T \qquad ; \qquad M'' = p$$

Second derivative of bending moment

78