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Summary
Laminar-turbulent transition is ubiquitous in viscous fluid flows and is critical in many en-
gineering applications. While it can be beneficial to enhance mixing, increase heat transfer
or avoid flow separation, it also increases the skin friction that, for instance, drastically in-
creases the fuel consumption of aircraft. Understanding the laminar-turbulent transition is
thus key to devising control strategies that can promote or delay the onset of turbulence. In
many cases, the laminar-turbulent transition originates from external disturbances that en-
ter the flow field and are amplified by instability mechanisms. Among all types of instability,
linear convective instability mechanisms are usually the most dominant in flows that evolve
from a laminar to a turbulent regime in space. These mechanisms amplify and propagate
the disturbances in a preferential direction, away from the source. Once the amplified dis-
turbances have reached a threshold amplitude, nonlinear interactions rapidly break them
down into large-scale turbulent motions. By using linear stability equations, the instabil-
ity mechanisms supported in a flow field can be studied before the nonlinear breakdown.
However, existing numerical methods are not suitable for describing convective instabil-
ity mechanisms in real flow applications. Traditional one-dimensional equations can only
tackle flows that slowly develop towards the propagation direction of the disturbances and,
if more dimensions are included in the equations, the results become sensitive to the nu-
merical domain boundaries. The description of convective instabilities in complex flows
is thus always compromised by insufficient result accuracy. The objective of this work is
to propose a methodology that enables a fully-elliptic representation of convective insta-
bility mechanisms in two-dimensional flows. The proposed approach solves the stability
equations formulated as an eigenvalue problem in a moving frame of reference to obtain
eigenfunctions that decay towards the truncation boundaries, i.e., remain localized within
the computational domain. Hence, the corresponding solutions are independent of the nu-
merical domain length and boundary conditions. The eigenfunctions are then introduced
into the stationary-frame flow field and integrated in time to obtain the finite-time dynamics
of the instability mechanisms. After decomposing the resulting time-dependent wave pack-
ets into their individual frequencies, the traditional N -factor and neutral curves are recon-
structed. The approach is validated by considering the incompressible flat-plate boundary
layer. Whereas the traditional one-dimensional stability equations are acknowledged for
delivering valid results for this slowly developing flow, two-dimensional stability analyses
in the stationary frame of reference are notoriously tainted by the sensitivity of the results
to the domain length. By using the proposed moving-frame approach, this sensitivity is-
sue is eliminated and the resulting N -factor and neutral curves are shown to be in excel-
lent agreement with one-dimensional methods. The moving-frame approach is then used
to study the linear stability of a laminar shock-wave/boundary-layer interaction. Because
this flow case supports strong in-plane gradients, it provides the opportunity to demon-
strate the effectiveness of the moving-frame methodology for capturing convective insta-
bility mechanisms in highly two-dimensional flows. The dominant spanwise wavenum-
ber and frequency yielding the largest amplification of perturbations in the present shock-
induced recirculation bubble are identified. The convective instability mechanisms are then
characterized by decomposing the growth rates of both localized eigenfunctions and time-
dependent wave packets into their physical energy-production processes. Finally, a remark-
ably good agreement is found between the time-dependent wave packets and frame-speed-
dependent eigensolutions.
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Resumé
La transition laminaire-turbulent est un phénomène omniprésent dans les écoulements et
a un rôle critique dans beaucoup d’applications d’ingénierie. Alors que la turbulence peut
être bénéfique pour améliorer le mélange de composants, les transferts de chaleur ou éviter
la séparation d’un écoulement, elle augmente également la friction sur les surfaces qui, par
exemple, accroît la consommation de carburant des avions. Il est donc essentiel de com-
prendre les mécanismes de la transition laminaire-turbulent pour développer des straté-
gies de contrôle permettant, soit de promouvoir, soit de retarder l’apparition de la turbu-
lence. Dans la majorité des cas, la transition est causée par des perturbations extérieures
qui entrent dans l’écoulement et sont ensuite amplifiées par des mécanismes d’instabilité.
Parmi les différents types de mécanisme, les instabilités convectives linéaires sont les plus
présentes dans les écoulements dont le régime varie spatialement de laminaire à turbulent.
Ces instabilités amplifient et propagent les perturbations dans une direction préférentielle.
Une fois que l’amplitude des perturbations atteint un certain seuil, les interactions non
linéaires prennent le dessus et l’écoulement devient turbulent. Les mécanismes d’instabilité
peuvent être étudiés avant l’apparition des interactions non linéaires avec les equations
linéaires de stabilité. Cependant, les méthodes numériques existantes ne sont pas adaptées
aux instabilités convectives pour des écoulements réels. Les traditionnelles équations unidi-
mensionnelles ne fournissent des résultats précis que pour les écoulements évoluant lente-
ment dans la direction de propagation des perturbations. Si plus d’une dimension spatiale
est considérée dans les équations, les résultats sont inévitablement dépendants du domaine
numérique. La représentation des instabilités convectives dans des écoulements complexes
est donc compromise par des résultats peu fidèles à la réalité. L’objectif de cette thèse est
de proposer une méthodologie permettant de résoudre les équations elliptiques de stabil-
ité pour des écoulements avec des gradients importants dans deux dimensions. L’approche
proposée consiste à résoudre un problème aux valeurs propres formulé dans un référen-
tiel mobile afin d’obtenir des fonctions propres qui décroissent vers les limites du domaine
numérique. Cela permet aux solutions d’être indépendantes de la longueur du domaine et
des conditions aux limites. Les fonctions propres sont ensuite introduites dans l’écoulement
en référentiel stationnaire et intégrée dans le temps afin d’obtenir la dynamique temporelle
des perturbations. En décomposant ces paquets d’onde temporels avec une transformée
de Fourier, les courbes de stabilité neutre et d’amplification sont calculées. Pour valider
l’approche, une couche limite incompressible se développant lentement sur une plaque
plane est considérée. Alors que les équations unidimensionnelles fournissent des résul-
tats précis, les équations bidimensionnelles formulées dans un référentiel fixe délivrent des
résultats qui dépendent de la longueur du domaine. En éliminant cette dépendance avec
l’approche du référentiel mobile, les courbes de stabilité neutre et d’amplification de la
couche limite sont en parfait accords avec celles des méthodes unidimensionnelles. La
présente méthode est ensuite appliquée à une interaction onde de choc / couche limite
laminaire. Caractérisé par de forts gradients dans deux dimensions, cet écoulement permet
de valider la méthode. Les longueurs d’onde et les fréquences des perturbations les plus
amplifiées sont dès lors identifiées. En décomposant l’énergie de perturbations associée
aux solutions propres et aux paquets d’onde temporels en des contributions individuelles,
les mécanismes d’instabilité convective sont caractérisés. Finalement, les similarités entre
les mécanismes liés aux fonctions propres obtenues à différentes vitesses de référentiel et
aux paquets d’onde à différents temps sont mises en avant.
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1
Introduction

The aviation industry faces new technological challenges to decrease fuel consumption and
greenhouse-gas emissions. In this context, a significant lever to achieve higher efficiency
is to reduce drag, that opposes the motion of an object in a fluid. For commercial aircraft,
the skin-friction drag contributes to 40-50% of the total drag and is mostly influenced by
the regime of the fluid flow over the surface. The skin-friction drag is much lower when the
flow is quiet and orderly, i.e., laminar, than when it is turbulent. Usually, the flow over the
foremost part of the aerodynamic surface is in a laminar regime while the rest of the flow is
turbulent. In commercial aircraft, the transition from laminar to turbulent flow occurs early
on the wings and fuselage such that 80% of the total skin-friction drag is due to the turbulent
regime. There is thus a need to devise surfaces that can support a longer laminar region by
delaying or even completely suppressing the transition from a laminar to a turbulent flow.
For instance, achieving 50% of laminar flow over the upper surface of a commercial aircraft
could reduce the total drag by 6.4%, which in turn would reduce the fuel consumption by
7.8% (Tucker et al., 2014). It is thus important to consider the impact of laminar-turbulent
transition on aerodynamic surfaces when targeting effective drag reduction strategies.

The laminar-turbulent transition can play a significant role in many other engineering
applications and is not always detrimental. For instance, turbulent flows can be sought in
chemical reactors to increase the mixing between different species. In low-speed regimes,
such as wind turbines, having a turbulent flow allows reducing or even avoiding flow sepa-
ration that tends to massively increase the pressure drag. In high-speed aerospace applica-
tions, the presence of shock waves in a laminar flow can yield large separation bubbles that
can drastically decrease the flow rate in engine inlets. This effect can be mitigated by forcing
an earlier transition to a turbulent flow that naturally supports smaller separation regions.
In contrast, during the reentry phase of spacecraft in the atmosphere, the heat transfer from
the high-temperature flow to the vehicle surfaces must be mitigated by delaying the laminar-
turbulent transition. All in all, considering its ubiquitous presence in fluid flows and its no-
table impact on the performance of many engineering applications, the laminar-turbulent
transition remains a critical research topic nowadays.

1.1. Laminar-turbulent transition
The study of the laminar-turbulent transition has been initiated by Reynolds (1883) with
experiments on the water flow in a pipe. After introducing a dye at the inlet of the pipe, the
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2 1. Introduction

Figure 1.1: Sketch by Barkley (2016) of the flow regimes modeled after the experimental observations of Reynolds
(1883) in a pipe flow.

fluid motion was monitored and different regimes have thus been identified. A sketch of
the setup and of the regimes is proposed in figure 1.1. At low speeds, the regime is laminar
and the dye smoothly follows the water flow. Because the molecular diffusion is very weak,
there is almost no mixing and the dye filament remains well defined. When increasing the
speed, a swirling, and even chaotic, motion of the dye and a rapid mixing are observed; the
flow is considered as being turbulent. A major finding of Reynolds (1883) was that a higher
velocity induces an earlier onset of the turbulent regime. This onset is the laminar-turbulent
transition. Although the transition does not occur spontaneously, neither in space nor in
time, its intermittent character makes it perceived as a sudden emergence of turbulence.
According to these observations, Reynolds proposed a single non-dimensional number

ReL = UL

ν
, (1.1)

to assess the regime of a fluid flow by considering only three quantities, namely a charac-
teristic velocity U , a characteristic length L and the kinematic viscosity ν of the fluid. The
underlying concept of the Reynolds number is to compare the ratio of the inertial forces
(i.e., shear rate U /L) over the viscous forces (i.e., dissipation rate ν/L2). In practice, it al-
lows determining if the flow is laminar or turbulent by assessing whether the shear rate is
weak or strong with respect to the dissipation rate, respectively. Finally, this implies that
the Reynolds number can be used to predict under which conditions the laminar-turbulent
transition occurs.

The mechanisms yielding the imbalance between inertial and viscous forces can be fun-
damentally different from one flow configuration to another. In this thesis, only external
wall-bounded flows, in particular flat-plate boundary layers, are considered. The bound-
ary layer is one of the most fundamental and ubiquitous flows since it develops over any
solid surface with a velocity different from the fluid. The fluid viscosity enforces the flow to
have the same velocity as the surface and, in turn, it leads to the emergence of a velocity
gradient from the surface to the surrounding flow in a direction perpendicular to the sur-



3 1.1. Laminar-turbulent transition

Figure 1.2: Skin-friction coefficient c f as a function of the Reynolds number Rex for laminar (Blasius, 1908) and
turbulent (White, 1974) flat-plate boundary-layers. A typical transitional c f from laminar to turbulent flows is
indicated by the red curve.

face. The resulting thin shear layer is the so-called boundary layer. It is associated with
viscous mechanisms and thus energy dissipation, which are responsible for the skin friction
on aerodynamic surfaces.

As the boundary layer develops along the solid surface, the amount of fluid that is en-
trained into it continuously increases. The velocity gradient perpendicular to the surface de-
creases and the inertial forces become more dominant as the boundary layer grows down-
stream. This evolution thus promotes the laminar-turbulent transition and can be thor-
oughly characterized by a Reynolds number defined as a function of the streamwise coordi-
nate x, starting from the onset of the boundary layer:

Rex = ue x

ν
. (1.2)

The characteristic velocity is the streamwise velocity ue at the edge of the boundary layer.
This is equivalent to a velocity evaluated in the freestream, away from the solid wall. Ac-
cording to this definition, the Reynolds number can be interpreted as a non-dimensional
measure of the streamwise location from the leading edge. The laminar-turbulent transi-
tion in boundary layers can be noticed through the evolution of the skin-friction coefficient
that drastically increases (red curve in figure 1.2) and achieves a local maximum when the
highly energetic turbulent state takes over downstream of the smooth, ordered laminar state
at large Reynolds numbers. In view of the dramatic changes in the flow behavior after transi-
tion, it is crucial to identify and understand the mechanisms underlying this phenomenon.

1.1.1. Transition in boundary layers
In boundary-layer flows, different routes to turbulence exist that mostly depend on the dis-
turbance level of the environment. On the one hand, if the environment contains only low-
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Figure 1.3: Representation of the natural laminar-turbulent transition for a flat-plate boundary layer, taken from
White (1974).

amplitude disturbances, the laminar-turbulent transition is said to be natural (Tani, 1969;
Reshotko, 1976; Kachanov, 1994; Saric et al., 2003) and follows several stages from the linear
growth of the disturbances to the turbulent breakdown. The different stages are depicted in
figure 1.3 for a flat-plate boundary layer. This type of transition is the focus of the present
work. On the other hand, for large disturbances in the surrounding environment (e.g., large
surface roughness, intense freestream turbulence,...), the linear-growth mechanisms are by-
passed (Morkovin, 1969, 1994; Andersson et al., 1999; Reshotko, 2001) and the breakdown to
turbulence occurs very rapidly. In order to give an overview of the underlying mechanisms,
the routes to turbulence are presented in the following by considering the incompressible
flat-plate boundary layer with zero-pressure gradient.

In natural laminar-turbulent transition, the first stage prior to the perturbation-growth
process corresponds to the receptivity, that is the mechanism allowing an external distur-
bance to enter the boundary layer (Morkovin, 1969; Reshotko, 1984; Goldstein & Hultgren,
1989; Saric et al., 2002). For instance, the receptivity mechanisms transfer freestream dis-
turbances, that usually contain a broad range of frequencies and wavelengths, into partic-
ular waves that can intrinsically exist in the boundary layer. The nature of the external dis-
turbances can be acoustic, kinematic or entropic depending on whether they are pressure
waves, vortices or temperature variations, respectively. Note that surface irregularities are
not disturbances to the boundary layer per se but can be part of the receptivity process by
altering how external disturbances are transferred into the boundary layer. Once entered in
the boundary layer through receptivity, the external disturbances can essentially be viewed
as initial conditions of the process governing the evolution of the perturbations. Depending
on the flow configuration, the amplitude, the frequency or the phase of the initial perturba-
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tions, different types of instability mechanisms can be triggered.
The second stage of transition corresponds to the amplification and propagation of two-

dimensional waves in the flow field in the streamwise direction (i.e., for increasing x, from
left to right in figure 1.3) through a primary instability mechanism. Note that, depending
on the flow configuration, an instability mechanism can attenuate or amplify perturba-
tions while also being responsible for their spatial propagation. In this regard, the critical
Reynolds number Recrit is defined so as to characterize the flow conditions under which
at least one frequency is amplified in space and time. For the boundary layer, only one
type of unstable primary mechanism exists and causes the growth of the so-called Tollmien-
Schlichting waves, depending on their location and their spectral content (Tollmien, 1928;
Schlichting, 1933; Schubauer & Skramstad, 1948; Mack, 1984). The process governing the
amplification of the primary waves is linear and occurs over a slow viscous time scale tν =
L2/νwhile traveling downstream at a phase speed cTS, that is a fraction of the characteristic
speed ue , i.e., cTS ≈ 0.4ue . Hence, the perturbations grow under the linear regime over an
extensive region of the flow before they reach large amplitudes.

The nonlinear breakdown yielding turbulence does not result immediately from the am-
plification of primary Tollmien-Schlichting instability waves but, instead, emerges from the
growth of linear secondary instability waves. This is the third stage of the natural laminar-
turbulent transition and, similarly to the primary-instability stage, it can be analyzed using
linear stability theory (Herbert, 1988). The secondary instabilities are three-dimensional
waves and are a consequence of the slight distortion of the flow by the primary instability
waves. Usually, the secondary instabilities emerge when the amplitude of the primary in-
stabilities produce significantly strong inflection points in the distorted flow field. These
secondary instabilities have a typical growth rate that is much larger than that of primary
waves. This third stage of the transition thus results in a rapid amplification of the distur-
bances, that scales with the convective time tU =L/U , over a relatively short streamwise ex-
tent before the nonlinear breakdown. In other words, once secondary instability waves set
in, the laminar flow rapidly breaks down to a turbulent flow. This breakdown corresponds to
the actual point where large macroscopic changes are observed in the flow. The transition
Reynolds number Retr is used to denote the spatial location for this onset of turbulence.

Two different scenarios are usually observed when the amplitude of the primary and sec-
ondary waves is large enough to allow nonlinear interaction. These scenarios are denoted as
K-type and H-type transitions after Klebanoff et al. (1962) and Herbert (1988), respectively.
The interaction between the primary and secondary waves yields Λ-vortices that are either
aligned in rows (K-type) or arranged in a staggered pattern (H-type). On the one hand, the
K-type scenario occurs when the Tollmien-Schlichting and secondary waves have the same
frequency. This justifies that the K-type scenario is often referred to as the fundamental tran-
sition. On the other hand, the H-type transition is observed when secondary waves oscillate
at half the frequency of the primary waves. H-type transition is thus often classified as a sub-
harmonic transition. Since H-type transition requires a lower amplitude of the initial distur-
bance to set in and has a higher growth rate than K-type, it is theoretically more likely to
emerge than K-type transition. In practice, however, the presence of low-amplitude stream-
wise vorticity in the freestream can favor the formation of K-type transition whereas H-type
would have been theoretically expected (Herbert, 1988). Finally, although the breakdown of
Λ-vortices to a fully turbulent flow occurs very quickly for both K- and H-type scenarios, a
slight difference is observed between the two types of transition. The aligned Λ-vortices in
K-type transition first form localized regions of turbulence (turbulent spots) before the flow
becomes fully turbulent. In contrast, the formation of turbulent spots is not achievable in
the H-type transition because of the staggered arrangement of Λ-vortices and, instead, the
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vortices spontaneously break down to a chaotic flow. An extensive review of the different
types of nonlinear breakdown is proposed by Kachanov (1994).

Depending on the disturbance level in the environment, the paths of laminar-turbulent
transition can be inherently different. The above discussion focused on low-disturbance
environments that allow for the sequential growth of linear waves. This scenario can be
characterized by the growth of individual eigenmodes at a time (i.e., modal growth). How-
ever, increasing the disturbance level can (partially) bypass these mechanisms (Morkovin,
1969). In extreme cases, the laminar-turbulent transition can be solely triggered by distur-
bances with an amplitude that is large enough to generate turbulence as soon as they enter
the boundary layer. This particular scenario is the actual bypass transition (Morkovin, 1994)
and is usually triggered by intense freestream turbulence or large surface roughness. If only
moderate disturbance levels are present in the surrounding environment, the linear stage of
the evolution of the perturbations still occurs but eigenmode types combine. This can result
in an overall growth that prevails over that of any stable or unstable individual modes. This
intermediate scenario is referred to as transient growth (Landahl, 1980; Hultgren & Gustavs-
son, 1981; Andersson et al., 1999; Reshotko, 2001) and is a consequence of the eigenmodes of
the disturbance flow field being non-orthogonal (Schmid et al., 1993; Trefethen et al., 1993).
In-depth discussions of the differences between modal and non-modal evolution of distur-
bances are proposed by Schmid & Henningson (2001).

The main interest of the present work is to describe the dynamics of the inherent flow
field perturbations, that are given by the individual eigenmodes. This justifies considering
only the evolution of instabilities in a low-disturbance environment. The transient-growth
and bypass scenarios, which are triggered by moderate to high disturbance levels, are thus
presently left out. In this context, different approaches are usually considered to model and
predict the natural transition in boundary layers.

1.1.2. Laminar-turbulent transition in computational fluid dynamics
Depending on the application, numerical modeling of fluid flows is based on different levels
of fidelity that can have an impact on the representation of the laminar-turbulent transition.
On the one hand, high-fidelity approaches such as Direct Numerical Simulation (DNS) and
Large-eddy Simulation (LES) can represent the different stages of the transition from the dis-
turbance growth to the turbulent breakdown without requiring any supplementary closure
model for the transition process. Hence, these approaches can be used to study the funda-
mental aspects of the turbulence breakdown. On the other hand, lower fidelity approaches,
based on Reynolds-Averaged Navier-Stokes (RANS) equations for instance, cannot repre-
sent the actual transition process. The RANS-based simulations tend to eliminate any linear
growth of disturbances present in the early stages of the transition. Since the linear evolution
spans most of the streamwise extent of the natural transition process, the RANS approaches
are inherently unsuitable to represent the laminar-turbulent transition without considering
an additional model dedicated to the prediction of the laminar-turbulent transition. These
transition models can either be theoretical or empirical. In both cases, this requires a-priori
high-fidelity representations of the laminar-turbulent transition, through numerical simula-
tions or experiments, to first study and then model the transition process. This work tackles
the numerical aspects for studying instabilities in a low-disturbance environment in order
to ultimately improve the engineering tools for the prediction of the laminar-turbulent tran-
sition.

A Direct Numerical Simulation solves the nonlinear Navier-Stokes equations by resolv-
ing all scales present in the flows and can thus represent the flow physics with the highest
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fidelity. In the context of laminar-turbulent transition, DNS can be used to assess the com-
plete development of perturbations, from receptivity to turbulence breakdown, for any flow
configuration. The different stages of the transition for a flat-plate boundary layer have, for
instance, been studied with DNS by Rai & Moin (1993) and Rist & Fasel (1995). These stud-
ies corroborated the observations made in experiments, especially regarding the different
types of nonlinear breakdown (e.g., K- and H-type transition) by having a precise control
on the parameters influencing the laminar-turbulent transition. However, since all details
of the fluid flow are targeted with DNS, the approach is computationally expensive and, in
practice, only a few canonical cases can be accurately resolved in a reasonable amount of
time. Hence, DNS is usually not adapted to represent the laminar-turbulent transition for
real engineering applications and can only be used as a substitute of experiments in order
to, for instance, calibrate transition models to be used in RANS approaches (Menter et al.,
2006).

Large-eddy simulations offer better flexibility than DNS regarding the complexity of the
flow configurations since they require fewer computational resources. However, because the
smallest scales of the turbulence are modeled in LES, the solution suffers from a lower level
of fidelity than DNS. These so-called subgrid-scale (SGS) models determine thus the fidelity
of the laminar-turbulent transition representation. On the one hand, if the subgrid model
is too dissipative, the disturbance growth taking place in the transition process cannot be
captured. With such SGS models, an additional modeling of the early stage of transition is
required and LES are thus not adapted anymore to study the fundamental aspects of the
laminar-turbulent transition. On the other hand, for SGS models with non-constant coeffi-
cients, both linear and nonlinear stages of the laminar-turbulent transition can be relatively
accurately represented (Sayadi & Moin, 2012) and LES can be used to build lower-fidelity
models of the transition.

The DNS and LES approaches inherently rely on solving the nonlinear Navier-Stokes
equations and thus require a judicious choice of initial conditions or forcing, especially in
terms of amplitude, to disturb the flow. The choice of initial conditions or forcing can be
made according to the expected response of the flow to the disturbance. However, if the
flow physics is not well known, the choice is most likely arbitrary. In both cases, prescribing
an initial condition or forcing can occult (part of) the response of the flow to the disturbance
if the relevant instability mechanisms are not triggered. Although this argument holds for all
initial-value problems, the choice of initial conditions or forcing becomes even more com-
plicated when solving nonlinear equations because the solutions do not only depend on the
type or shape of an initial condition but also on the amplitude. Furthermore, each individual
disturbance introduced in the flow requires conducting an entire DNS or LES to analyze the
response of the system. Because studying the overall stability of flows genuinely requires
considering a large parameter space of disturbances, the computational cost of DNS and
LES makes them unsuitable for stability analyses. In order to tackle the stability of fluid
flows, another method than DNS and LES is presently necessary. For that purpose, linear
stability methods are more suitable since they can provide information about the distur-
bance growth in a way that is independent of the type and amplitude of initial conditions or
forcing.

1.1.3. Predicting transition with linear stability theory
Linear stability methods allow targeting the perturbation dynamics of a flow at a low com-
putational cost while avoiding the difficulties associated with the initial disturbance or forc-
ing. Since the first successful application of linear stability analyses to the boundary layer
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Figure 1.4: Theoretical (solid line, Tollmien (1928)) and experimental (dots and dashed line, Schubauer & Skramstad
(1948)) neutral curves of an incompressible flat-plate boundary layer for non-dimensional frequencies (vertical
axis) and Reynolds number based on displacement thickness (horizontal axis). Red lines for the theoretical (solid)
and experimental (dashed) critical Reynolds numbers. Figure adapted from Schubauer & Skramstad (1948).

by Tollmien (1928) and Schlichting (1933), these methods have been extensively applied to
a large variety of flows and remain nowadays an important tool to predict laminar-turbulent
transition and, in a general sense, identify flow instabilities.

Since the first experiments of Reynolds (1883), there has been a need for a mathemati-
cal framework that could precisely quantify both the onset of instabilities in fluid flows and
the breakdown to turbulence (Reynolds, 1895). Although the derivation of the boundary
layer equations by Prandtl (1905) led Orr (1907) and Sommerfeld (1909) to elaborate the
corresponding stability equation (namely the Orr-Sommerfeld equation), the first unstable
solutions have only been found twenty years later by Prandtl’s disciples Tollmien (1928) and
Schlichting (1933). In particular, they identified two-dimensional waves whose wavelength
and (un)stable character vary with the Reynolds number. This eventually led them to com-
pute a critical value of the Reynolds number, Recrit, that can be used to determine the onset
of instabilities in the boundary layer. Hence, their work provides the first theoretical evi-
dence of instability waves in the boundary layer. However, because of the technical difficul-
ties in obtaining a low-disturbance environment in wind tunnels, the existence of Tollmien-
Schlichting waves has only been confirmed a decade later by the experiments of Schubauer
& Skramstad (1948). Based on these aforementioned studies, a stability diagram, namely
the neutral curve, can be obtained for identifying the frequencies and Reynolds numbers
for which small-amplitude disturbances in the boundary layer are amplified or damped.
The neutral curve obtained from the measurements of Schubauer & Skramstad (1948) and
the results from stability theory (Schlichting, 1933) are depicted in figure 1.4.

The experiments prove that linear instability waves are present in the boundary layer
and that they can be obtained by solving the linear stability problem. However, the onset of
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linear instability growth in the boundary layer does not correspond to the turbulence break-
down. In other words, the left branch (branch I) of the neutral curve (see figure 1.4) does
not represent the location where the turbulence emerges but instead gives the point where
small-amplitude instability waves start to grow (until reaching the right branch, i.e., branch
II). As described earlier, the natural laminar-turbulent transition follows from perturbations
being amplified by primary and then secondary linear instability mechanisms before at-
taining a sufficiently large amplitude to yield the breakdown to turbulence at Retr. Hence,
there is a significant gap between the onset of the primary instability growth as given by the
neutral curve and the turbulence breakdown. This thus led van Ingen (1956) and Smith &
Gamberoni (1956) to elaborate a semi-empirical method, namely the eN -method, that only
uses the spatial amplification of primary instabilities to predict the onset of turbulence. The
major assumption behind the N -factor method is supported by the fact that the growth of
primary instabilities occurs over a much longer streamwise extent than that of the subse-
quent stages of the transition. However, this method remains semi-empirical in the sense
that the threshold value N , that defines the maximum amplification of the instability waves
over all frequencies, must be a-priori chosen and is based on the experimental assessment
of the turbulence onset. Usually set to N = 9 for quiet flight conditions, the value N can also
be chosen as a function of the turbulence intensity in the freestream (White, 1974). Finally,
given the effectiveness and simplicity of the eN -method, it is still a widely used engineering
tool to predict transition.

This bridge between linear stability analyses and the onset of turbulence reveals the
importance of considering the linear regime. With the advent of the computer age, the
stability equations gained interest for the study of other flow configurations. A compre-
hensive review of the stability of the incompressible boundary layer for various conditions,
such as with pressure gradient, blowing/suction or non-constant temperature field, has
been proposed by Schlichting (1979). Furthermore, with the increasing interest in high-
speed flights, Mack (1984) extended the boundary-layer stability analyses by deriving the
(in)compressible Linear Stability Theory (LST) equations as a more general formulation
than the Orr-Sommerfeld equation, which was limited to the incompressible regime only.
Note that, in its incompressible formulation, the LST equations are equivalent to the Orr-
Sommerfeld equation and are also cast as an eigenvalue problem.

An essential aspect of the Orr-Sommerfeld and LST equations is that they are devised to
assess the linear stability of individual one-dimensional profiles of the flow. In other words,
these equations assume that the flow does not evolve in more than one direction. This
is the so-called parallel-flow assumption. In the case of the boundary layer, which slowly
evolves in the streamwise direction and has a much stronger gradient in the wall-normal di-
rection than in the streamwise direction, accounting for the variation of the velocity profile
in the wall-normal direction only is reasonable. This is illustrated in figure 1.4 by the good
agreement between experiments and theory for most of the neutral curve. However, the
parallel-flow assumption reduces the accuracy of the stability analysis when the flow field
features a larger gradient in the streamwise direction. A typical example of the parallel-flow
assumption being too strong is the deviation of the LST neutral curve from the experimen-
tal measurements at low Reynolds numbers. In fact, in the vicinity of the flat-plate leading
edge, the boundary-layer profiles rapidly evolve in the streamwise direction and, by discard-
ing additional destabilizing effects induced by the streamwise gradient, the LST predicts a
critical Reynolds number that is larger by 30% than the one observed in experiments. Con-
sidering the two dimensionality of the boundary layer is thus essential close to the leading
edge. Given that linear stability methods go beyond the study of transition on the flat-plate
boundary layer and can actually be used to study the linear regime of instability mechanisms
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in highly-dimensional fluid flows, there is a need for more elaborate methods.

1.2. Stability of streamwise flows
Most real applications cannot be reduced to one-dimensional problems, especially if the
flow experiences rapid variations in more than one direction. Typical aeronautic appli-
cations are, for instance, wings, curved fuselage surfaces or surface roughness caused by
joints. Furthermore, in high-speed flows, shock waves introduce discontinuities or very
rapid variations of the flow in a short region. This thesis focuses on the stability of flows
that have large in-plane gradients in the sense that they rapidly evolve in both the stream-
wise and wall-normal directions with only weak to no variation in the third, i.e., spanwise,
direction. These flows are here referred to as streamwise flows. As already suggested by
the low-Reynolds-number boundary layer, stability analysis methods that account for the
higher flow dimensionality are essential to accurately resolve all stabilizing and destabiliz-
ing effects of streamwise flows. Additionally, the spatial evolution of the flow also impacts
how an instability mechanism propagates a disturbance introduced in the flow field.

1.2.1. Instability mechanisms
Disturbances introduced in a flow field vary simultaneously in space and time, but the way
they vary depends on the nature of the instability mechanism. The mechanism can be con-
vective, absolute or global. While the first two can be found in both parallel and spatially-
developing flows, a global mechanism only exists if the flow is at least two-dimensional. The
concept of convective and absolute instabilities was initially developed for plasma physics
by Briggs (1964) and Bers (1984) and then extended to fluid flows by Huerre & Monkewitz
(1985). It aims to describe how a disturbance initially introduced at t = 0 and x = 0 behaves
in space and time when t →∞. A convective instability mechanism carries the disturbance
such that the flow at x = 0 returns back to its initial unperturbed state for t →∞. Hence, a
flow that supports a mechanism that amplifies and transports a perturbation away from its
initial position is convectively unstable. In contrast, an absolute instability mechanism sup-
ports a disturbance growth for all x-locations, such that an absolutely unstable flow never
returns back to its initial, undisturbed state. An illustration of the two instability mecha-
nisms is proposed in figure 1.5. Usually, one flow configuration is not strictly convectively or
absolutely unstable and a threshold from one (un)stable to another (un)stable state often ex-
ists. A spatially-developing flow can have regions that are locally stable, convectively or ab-
solutely unstable. For example, a boundary layer is stable upstream of the critical Reynolds
number and, for more downstream locations, is convectively unstable. The convective in-
stability mechanisms give rise to the Tollmien-Schlichting waves that travel and grow in the
downstream direction with a positive speed. A boundary layer is thus either stable or con-
vectively unstable. In contrast, bluff-body wakes can be stable, convectively or absolutely
unstable, depending on threshold Reynolds numbers. For a two-dimensional cylinder, the
lower limit sets the boundary between a stable and convectively unstable flow while the up-
per limit defines the transition from a convective to an absolute instability mechanism.

In some spatially-evolving flows, a confined spatial region that is absolutely unstable
can trigger a resonant and self-sustained amplification of the perturbation (Pierrehumbert,
1984; Koch, 1985). Chomaz et al. (1988), Huerre & Monkewitz (1990), Chomaz et al. (1991)
and Monkewitz et al. (1993) classified this mechanism as a global instability. This can only
be observed if a large enough region of the flow that is absolutely unstable is surrounded by
stable or convectively unstable regions. If these two conditions are met, any infinitesimal
perturbation entering the absolutely unstable region can indefinitely grow within the con-
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Figure 1.5: Schematic representation of convective (left) and absolute (right) instabilities for an initial disturbance
(blue dot) introduced at t = 0 and x = 0.

fined region of space through feedback mechanisms. Global instability mechanisms thus
contrast with convective or absolute instabilities that either leave the flow in its initial un-
perturbed state or propagate everywhere in space with theoretically infinite-amplitude dis-
turbance when t →∞. A global instability typically arises in the wake of two-dimensional
cylinders for a sufficiently high Reynolds number, i.e., when the pocket of absolutely unsta-
ble flow is large enough. Because of the need for a confined region in space, the concept of
global instability only applies to spatially evolving flows.

For any type of mechanism, the emergence of unstable regions correlates with regions
of the flow where high gradients exist, i.e., in the shear layer. A shear layer can be confined
or not in space, although no universal criterion exists to make a clear distinction. On the
one hand, a confined shear layer, e.g., in the near-wake of a cylinder (Casacuberta et al.,
2018), a roughness element (Loiseau et al., 2014) or in a laminar separation bubble (The-
ofilis & Rodríguez, 2010), can provide the necessary condition for the emergence of a global
(in)stability mechanism. On the other hand, if the shear layer is technically (semi-)infinitely
long, such as in a boundary layer, no instability mechanism can be confined in space and the
flow is ineluctably globally stable. In other words, the localized character of the instability
mechanism is mostly governed by the advection of the flow that redistributes the perturba-
tions in space (Groot, 2018). Hence, if feedback mechanisms are such that the disturbance
remains contained in a finite region of the flow, a global (in)stability mechanism can emerge.
These feedback mechanisms can be caused by (upstream) advection of perturbations or
acoustic waves. A (semi-)infinite boundary layer has a dominant advection component that
reaches from upstream to downstream without finite limit. Accordingly, any disturbance
that is introduced into the flow is convected away in the direction of the dominant advec-
tion component. Note that advection can have the same role in absolutely unstable flows
in the sense that it indefinitely carries the disturbances in both upstream and downstream
directions. The fact that a shear layer is confined or not has not only a physical consequence
on the types of instability that can take place but also on the numerical representation of
these instabilities.

1.2.2. Stability analyses
Linear modal stability analysis can identify the different types of instabilities, provided that
the underlying assumptions are in agreement with the spatial evolution of the flow. In the
following, only modal methods are considered since they provide information about the
general perturbation dynamics. The solutions from these methods are (based on) eigenso-
lutions that can actually represent the individual convective, absolute or global instability
mechanisms that inherently exist in the flow field. The most well-known methods are the
LST equations, the Parabolized Stability Equations (PSE) and the BiGlobal stability equa-
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tions.
The LST equations were the first equations derived to study the stability of flows and

were used to build the neutral curve of the boundary layer. Since each streamwise location
is treated independently from the rest of the flow, the LST method is a local stability method.
Hence, by neglecting any interaction between (un)stable regions of the flow, the LST method
can only identify absolute and convective instabilities. Furthermore, the parallel-flow as-
sumption in LST completely neglects the streamwise gradients, which, by continuity, im-
plies that no velocity in the wall-normal direction is included in the stability equations. For
instance, the slow evolution of the boundary layer in the streamwise direction induces a
wall-normal velocity component that scales with 1/

p
Rex . The non-parallel effects thus be-

come important when approaching the leading edge, i.e., when Rex → 0. Since this aspect
is neglected in LST, discrepancies between the theoretical and experimental neutral curves
of the boundary layer were found at low Reynolds numbers. If accurate solutions are sought
in regions of large in-plane gradients, all flow variations must thus be accounted for in the
stability equations.

In order to improve upon LST, the parallel-flow assumption must be relaxed and this led
to the development of nonlocal methods. These approaches include the contribution of the
slow streamwise evolution of the flow by applying a correction onto the local, zeroth-order
stability solutions, i.e., the LST solutions. The correction is based on a streamwise inte-
gral of the first-order contributions that stem from the in-plane gradients. Because of the
integral-based correction, these methods are referred to as nonlocal methods. In practice,
boundary-value problems based on multiple-scale and Wentzel–Kramers–Brillouin-Jeffreys
(WKBJ) methods were first proposed by Bouthier (1973), Gaster (1974) and Saric & Nayfeh
(1975) to include weak streamwise variations in stability analyses. Later, Herbert & Bertolotti
(1987) and Bertolotti et al. (1992) improved upon the WKBJ approach by introducing the
Parabolized Stability Equations (PSE) that are formulated as an initial-value problem. When
applied to the boundary layer, all above nonlocal methods can predict a critical Reynolds
number that is in excellent agreement with experiments. Nevertheless, the advantage of
the PSE method is that it allows tackling slowly-evolving flows in a computationally effi-
cient way. This computational superiority over the other non-parallel methods comes from
the parabolization of the stability equations. Note that the equations do not represent a
boundary-value problem (or an eigenvalue problem) anymore but, instead, an initial-value
problem in space. Hence, the solutions of the PSE are obtained through a spatial integra-
tion that is initialized from one LST solution obtained at a given upstream location. Strictly
speaking, the PSE is thus not a modal approach since it does not solve an actual eigenvalue
problem. However, it still tracks modal solutions in the sense that it only applies a correc-
tion to the LST eigensolutions to take into account the history of the streamwise evolution
of the flow. Since the advent of the PSE method, it has been applied to a wide variety of
flows and good agreement is usually found with experiments or DNS. However, since the
PSE method is devised to account for slowly evolving flows only, its accuracy decreases
when strong in-plane gradients are involved. Furthermore, the PSE method is inherently
parabolic in the streamwise direction and can only capture an instability wave that travels
downstream (Towne et al., 2019). In order to effectively track this wave, the PSE approach re-
lies on damping all other upstream traveling waves, that are often acoustic waves, and that
would destabilize the spatial integration. The damping introduced by the PSE can, how-
ever, affect the accuracy of the tracked downstream-traveling wave. In order to overcome
this aspect, Towne & Colonius (2015) and Rigas et al. (2017) introduced the One-Way Euler
(ONE) and Navier-Stokes (OWNS) equations as alternative approaches to PSE that both rely
on finding approximate solutions of the exact wave equations. The motivation behind the
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one-way approaches is to perform stability analyses of flows that support multiple traveling
waves with similar growth rates. Nevertheless, these approaches have a higher computa-
tional cost than the PSE approach that usually provides reasonably accurate results for flows
dominated by one downstream-traveling convective instability. Finally, since convective in-
stabilities are not the only type of instability mechanisms that can be encountered in fluid
flows, the applicability of the PSE and ONE/OWNS methods is limited.

Absolute and global instabilities are elliptic mechanisms, in the sense that they can prop-
agate both upstream and downstream without any preferential direction, and, thus, they
cannot be captured by the PSE method. Instead, they require solving actual elliptic sta-
bility equations. Although some ellipticity in the streamwise direction can be introduced
into the nonlocal stability equations by considering the WKBJ method (Monkewitz et al.,
1993), this type of approach is not suitable for highly two-dimensional flows. In order to
circumvent these limitations, two-dimensional stability equations have been introduced by
Pierrehumbert & Widnall (1982), Pierrehumbert (1986), Theofilis (2003) and Theofilis (2011).
The eigenvalue problem formulation of the two-dimensional stability equations is referred
to as the streamwise BiGlobal stability problem. Being fully elliptic and accounting for all
in-plane gradients, the BiGlobal stability equations aim to improve upon the (non)local ap-
proaches. However, the elliptic representation of convective instabilities provided by the
BiGlobal method suffers from critical numerical sensitivities. This aspect is the main moti-
vation of the present work.

1.3. Elliptic description of convective instabilities
The streamwise BiGlobal equations have been applied to numerous flow types and enabled
accurate numerical representations of global instability mechanisms. However, when ap-
plied to represent convective instability mechanisms in the streamwise direction, the results
suffer from a notorious sensitivity to the computational setup. This sensitivity is associated
with the truncation of the numerical domain in the streamwise direction (Ehrenstein & Gal-
laire, 2005; Alizard & Robinet, 2007; Rodríguez et al., 2011; Cerqueira & Sipp, 2014; Garnaud
et al., 2013). TriGlobal stability analyses (Brynjell-Rahkola et al., 2017) also face the same
limitation. The results of Alizard & Robinet (2007, §IV.B.2) suggest that the part of the eigen-
value spectrum that is of interest tends to a continuum as the streamwise domain length
tends to infinity. The reason behind this behavior of the solution stems from the very na-
ture of the convective instabilities and the unconfined character of the corresponding shear
layer.

Only a finite region of space can be tackled in a numerical context and it thus requires to
truncate the flow field at given locations. These locations define the computational domain.
If the shear layer is confined, the boundaries can be placed sufficiently far away from the
region of interest and thus the limits of the domain do not interact with the physical mech-
anisms taking place in the interior of the domain. However, for unconfined shear layers, the
boundaries necessarily truncate the shear layer that evolves from the inlet to the outlet of the
domain. It implies that the behavior enforced at (one of) these two streamwise boundaries
influences the interior dynamics (Groot et al., 2015). Hence, since a convective instability is
carried along with the shear layer, it inevitably interacts with the domain limits.

When eigenfunctions are pinned to the domain boundaries, a continuous branch of
eigenvalues forms in the spectrum. This branch includes all eigenvalues associated with
eigenfunctions that fit in the domain; the minimal wavenumber of the eigenfunctions is
fixed by the imposed domain length. Increasing the domain length decreases the minimal
wavenumber that can be resolved and thus more eigenvalues can be contained in the branch
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of the spectrum. For an infinite domain length, a continuum of eigenvalues eventually
forms in the spectrum. Continuous branches can, for instance, be observed in LST solutions
that are dominated by wall-normal advection or in streamwise BiGlobal stability analyses of
flows with streamwise advection. In the regard of the formation of a continuous spectrum
as the streamwise domain length is increased towards infinity, Theofilis (2011) states that:
"the discretized approximation of the continuous spectrum will always be under-resolved".
More generally, the numerical description of convective instabilities with the streamwise
BiGlobal equations is conditioned by the mathematical treatment at the truncation bound-
aries. For this reason, the literature counts many applications of the BiGlobal method whose
results depend significantly on the computational setup. This aspect motivated the use of
alternative methodologies to tackle convective instabilities in two-dimensional flows.

1.3.1. Alternative methods and their limitations
Alternative approaches accounting for elliptic effects are usually considered to study linear
convective instability mechanisms in two- or three-dimensional flows. First, resolvent and
optimal-perturbation analyses (Farrell, 1988; Trefethen et al., 1993; Schmid & Henningson,
2001; Sipp et al., 2010; Taira et al., 2017; Bugeat et al., 2022) depart from the eigenvalue-
problem formulation by considering a Singular Value Decomposition (SVD) instead. The
SVD methods optimize the growth over all possible input perturbations by evaluating the
temporal evolution of an arbitrary a-priori-chosen energy norm. By definition, the SVD
methods thus restrict the evolution of the perturbations to an optimal scenario only. The re-
sulting optimal solution represents one non-modal perturbation evolution that stems from
a very specific combination of modal solutions. In resolvent analysis, the disturbance shape
corresponding to a given forcing frequency is sought to maximize the amplification. This ap-
proach, therefore, follows a particular forced dynamics; it asks what disturbance is the most
amplified upon imposing a forcing at a constant frequency to the flow. In optimal pertur-
bation analysis, initial conditions are sought to optimize the amplification of a perturbation
norm after a fixed elapsed time. Although the flow is disturbed in an instantaneous sense
rather than being continuously forced, the optimal solutions are particular, because they are
specific to the prescribed elapsed time. To summarize, the elliptic effects are taken into ac-
count by SVD methods at the cost of restricting the solutions to the non-modal perturbation
dynamics instead of the more universal modal perturbation dynamics that was given by the
eigensolutions. The results obtained from the SVD methods are actually so particular that,
in practice, these disturbance dynamics usually cannot be reproduced in an experimental
context. For this reason, White (2002) emphasized the importance of studying non-optimal
perturbation growth instead.

Recent work by Huang & Wu (2017), Zhao et al. (2019), Hildebrand et al. (2020) and Appel
(2020) considered the Harmonic Linearized Navier-Stokes (HLNS) method to study linear
convective instability mechanisms while accounting for elliptic effects. This method evalu-
ates the perturbation problem as a signaling problem; it studies the response of the flow to
a continuous forcing usually applied at the inlet of the domain. In contrast to SVD methods,
the HLNS approach relies on an a-priori chosen particular forcing function and does not
seek any optimal perturbation growth. For a known incoming disturbance environment or
for targeting a specific instability, the HLNS are thus a very reasonable approach for struc-
turing the perturbation dynamics. Nevertheless, the continuous forcing at the inlet of the
domain can occult the inherent dynamics of the flow.

All in all, although the SVD and HLNS methods improve upon the LST or PSE methods
by accounting for elliptic effects, they only provide information about specific dynamics
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of the perturbation. In the present work, the focus is put on finding convective instability
mechanisms that are not associated with particular evolution of the perturbations.

1.4. Thesis motivation and objective
On the one hand, the modal stability equations provide (eigen)solutions that represent the
general perturbation dynamics of a flow field. This, however, comes at the cost of either ne-
glecting elliptical effects or having the interior dynamics that is influenced by the truncation
boundaries. On the other hand, SVD and HLNS methods account for all elliptical effects but
only seek particular solutions that do not necessarily represent the general perturbation dy-
namics. These limitations of SVD, HLNS and BiGlobal methods motivate the development
of a novel approach.

The objective of the present work is thus to describe accurately convective instabilities
in highly two-dimensional flows by devising a numerical methodology that can:

• represent convective instabilities with linear, fully-elliptic equations that account for
all gradients of the flow,

• represent the inherent perturbation dynamics of the flow by avoiding any particular
scenario of the perturbation evolution,

• provide solutions forming a basis that can be used to represent the perturbation evo-
lution by projecting any arbitrary disturbance onto it.

All above requirements point toward the eigenvalue-problem formulation of the stability
problem. The solutions of an eigenvalue problem (in a stationary frame of reference) are not
restricted to any particular frequency or elapsed time; they are valid for (A1)1 all time and
cover (A2) all relevant frequencies for the flow of interest. In this framework, (A3) any per-
turbation can be reconstructed using a particular superposition of eigenmodes (Schmid &
Henningson, 2002; Ehrenstein & Gallaire, 2005; Åkervik et al., 2007, 2008), that actually form
a physical basis. This basis allows reconstructing the response of the flow to a particular
disturbance a-posteriori. Furthermore, it also enables performing receptivity analysis that
describes how arbitrary disturbances in the surrounding environment are entrained into a
particular flowfield (Saric et al., 2002). Finally, if the eigenmodes dominantly contributing
to the amplification of disturbances are known, (A4) the scope of the eigenfunction super-
position can be reduced to that particular subset of modes. The degrees of freedom of the
problem are thus significantly reduced by focusing on the physically relevant dynamics only,
which, in turn, decreases the computational cost. In virtue of these properties, the present
thesis builds upon the BiGlobal approach to tackle the fully-elliptic representation of con-
vective instabilities with setup-independent solutions. For that purpose, a framework based
on the formulation of the two-dimensional stability problem in a moving frame of reference
is proposed.

An additional objective of the thesis is to demonstrate the advantage of this new frame-
work by applying it to perform stability analyses of an incompressible flat-plate bound-
ary layer and a laminar shock-wave/boundary-layer interaction (SWBLI). While the incom-
pressible boundary layer case allows validating the method by comparing it against LST
and PSE methods, the SWBLI case is a flow configuration that needs to be tackled with the

1In this paragraph, the main advantages of an eigenvalue problem formulation in the stationary frame of reference
are labeled (A1) through (A4) for later reference.
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present methodology because it is a highly two-dimensional flow with strong in-plane gra-
dients caused by the shock waves. Studying the SWBLI thus allows demonstrating the ef-
fectiveness of the method in complex flows and gaining insight into the SWBLI stability. In
particular, the present work aims to determine the convective instability mechanisms at the
origin of the amplification of perturbations propagating across the shock-induced separa-
tion bubble.

1.5. Stability analyses in a moving frame of reference: contribu-
tion to the state of the art

The main contributions of this work are twofold. First, the mathematical formulation of the
moving-frame methodology is proposed for the two-dimensional stability equations and
is compared against the traditional stationary-frame approach. This first contribution in-
cludes the validation of the moving-frame approach with stability analyses of an incom-
pressible flat-plate boundary layer. Secondly, the moving-frame methodology is applied to
a laminar SWBLI for which traditional stability techniques, i.e., LST and PSE methods, can-
not appropriately represent convective instabilities.

1.5.1. Novel formulation of the two-dimensional stability problem
An extensive theoretical motivation for formulating the eigenvalue problem in a moving
frame of reference is presented by Groot (2018) and Groot & Schuttelaars (2020). The stream-
wise two-dimensional stability problem has already been considered in a moving-reference
frame before (Mittal & Kumar, 2007; Mittal et al., 2008; Kumar & Mittal, 2012), but only to
specifically target convective instability mechanisms in the wake of a cylinder. By building
upon the work of Groot (2018) and Groot & Schuttelaars (2020), the present thesis goes be-
yond a specific application by providing a complete framework with methodological, physi-
cal and mathematical insight into two-dimensional stability analyses using a moving frame
of reference. A particular emphasis is placed on the fact that using a moving reference frame
allows obtaining localized eigenfunctions that do not depend on the truncation boundary
position or conditions.

By using a moving frame of reference, the eigensolutions solve the linearized Navier-
Stokes equations in an instantaneous sense. This implies that the property of being valid
for all time, i.e., property (A1) of the eigenvalue problem in the stationary reference frame is
lost. Nevertheless, properties (A2), (A3), and (A4) are preserved. In other words, the eigenso-
lutions’ validity for all times is sacrificed for a localized, computational-setup-independent
nature and to avoid the restriction associated with optimal-growth scenarios. Due to their
instantaneous validity, these eigensolutions actually represent perfect initial conditions that
can be introduced into the linearized Navier-Stokes equations. The present method thus
proposes to integrate these initial conditions in time in order to assess the temporal evo-
lution of the perturbations in the flow. This approach is similar to the PSE methodology
but improves upon it in the sense that there is no assumption on the flow evolution or on
the type of instability mechanisms that can be resolved. With the moving-frame approach,
the perturbation characteristics that are important for practical purposes (such as amplifi-
cation and neutral curves) are recoverable with all elliptic effects being taken into account.
Furthermore, it improves upon traditional time-marching approaches (Rist & Fasel, 1995;
Hader & Fasel, 2019; Browne et al., 2019) in the sense that the present results are indepen-
dent of the choice of the initial conditions and of the speed of the reference frame (as long
as localized solutions are obtained). To demonstrate the working principles of the method,
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the methodology is applied to convectively unstable wall-bounded shear flows.

1.5.2. Applications of the methods
Two streamwise developing flows are presently considered to demonstrate the effectiveness
of the moving-frame approach: the classical incompressible boundary layer over a flat plate
and the laminar shock-wave/boundary layer interaction. In both cases, the main goals are,
first, to obtain localized eigenfunctions that are independent of the numerical setup and,
second, to use these solutions as the initial condition of the temporal perturbation problem
to reconstruct the traditional amplification curves.

Incompressible flat-plate boundary layer
The incompressible flat-plate boundary layer is the archetype of convectively unstable non-
parallel, wall-bounded shear flows. Furthermore, since the boundary layer is only slowly
developing in the streamwise direction, LST and PSE methods can provide relatively accu-
rate stability results. Although the boundary layer is a relatively simple shear flow, it reaches
from the inlet to the outlet of the numerical domain and, thus, stability analyses of the
boundary layer with the BiGlobal method are untractable. In this regard, Alizard & Robinet
(2007) could not obtain converged, setup-independent solutions. Furthermore, compar-
isons with (non)local methods can only rely on prescribing setup-dependent eigenvalues of
the BiGlobal spectrum as (complex) forcing frequencies of the spatial LST and PSE meth-
ods. In this sense, the BiGlobal results of the incompressible boundary layer in a stationary
frame of reference are actually solutions particularized to specific domain size and trunca-
tion boundaries. Hence, these solutions cannot describe the general perturbation dynamics
of the boundary layer and do not allow reconstructing the neutral curve (Alizard & Robinet,
2007; Niessen, 2017). The importance of considering non-optimal growth in the boundary
layer has also been identified by Sipp & Marquet (2012), who could not recover the sub-
optimal, i.e., traditional, neutral curve with the optimal forcing approach, especially branch
II.

For these reasons, the boundary layer is an ideal case to demonstrate the principles of
the moving-frame method and, most importantly, to compare the two-dimensional local-
ized perturbations with the results traditionally obtained with LST and PSE methods by re-
constructing neutral and amplification curves.

Shock-wave/boundary-layer interaction
The second flow configuration is a SWBLI that is a ubiquitous phenomenon in high-speed
aerodynamics. The SWBLI significantly impacts aircraft performance and can, for instance,
promote laminar-turbulent transition, cause excessive heating of aerodynamics surface, gen-
erate pressure losses in engine intakes or even induce local fatigue of structures (Délery
& Dussauge, 2009). Since the first discoveries of SWBLI, it has been extensively studied
over numerous configurations; reviews of the work accomplished over the past decades
have been proposed by Délery et al. (1986); Dolling (2001); Babinsky & Harvey (2011) and
Gaitonde (2015). Considerable efforts have also been invested to reveal the mechanisms
governing the breathing of the recirculation bubble, the oscillations of the shock system or
the laminar-turbulent transition. However, comprehensive research work is still required to
understand these unsteady phenomena. Since no study converged to a consensus regard-
ing the origin of the unsteadiness, there is a need for an appropriate method to identify and
distinguish the governing mechanisms supported by SWBLI configurations. This thesis con-
tributes to that aspect by considering two-dimensional linear stability analyses of a laminar
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SWBLI case with the moving-frame approach. The main results are summarized in an article
published in Physics of Fluids (Niessen et al., 2023).

Considering the case of a SWBLI first aims to demonstrate the effectiveness of the moving-
frame method for a more complex, highly two-dimensional flow that inherently requires
a two-dimensional formulation of the stability equations. Second, since the LST and PSE
methods are not strictly applicable in two-dimensional flows, convective instability mech-
anisms could not be accurately captured in SWBLI (Sansica et al., 2013, 2016). Although el-
liptic methods were considered in past studies, only optimal perturbation growth (Dwivedi
et al., 2020) or domain-dependent BiGlobal results (Guiho et al., 2016) could be obtained.
A novel perspective on convective instabilities in SWBLI is proposed by considering the
moving-frame approach. The characteristics of the most amplified perturbations in SWBLI
are identified and, using the perturbation energy equation, the three-dimensional mecha-
nisms responsible for the perturbation growth across the shock-induced bubble are charac-
terized.

1.6. Thesis outline
The present thesis is structured in six chapters as follows. After this introduction, Chapter 2
builds upon the state-of-the-art of linear stability theory to present the mathematical for-
mulation of the two-dimensional stability equations in both stationary and moving frames
of reference. This chapter also discusses the consequences of using a moving frame of refer-
ence and proposes a framework for the corresponding stability analyses. Furthermore, the
perturbation energy equation is presented in order to decompose the growth rate into its
individual contributions.

Chapter 3 discusses the numerical strategies to solve the stability problem. First, the
mathematical aspects of pseudospectral and finite-difference discretization approaches are
presented. Secondly, the methodologies to solve both the initial- and boundary-value prob-
lems are discussed.

By considering the incompressible flat-plate boundary layer as a first application of the
methodology, Chapter 4:

• verifies that using a moving frame of reference eliminates the numerical sensitivity
due to truncation boundaries when targeting convective instability mechanisms,

• demonstrates that eigensolutions obtained in a moving frame of reference are instan-
taneously valid in the stationary frame of reference,

• reconstructs the traditional neutral and N -factor curves that are independent of the
moving-frame eigensolutions.

In particular, it is demonstrated that using a moving frame of reference is arguably necessary
to tackle convective instabilities from the perspective of the two-dimensional stability prob-
lem and that the numerical representation of convective instabilities with the stationary-
frame eigenvalue problem is not reasonable.

The above points are also addressed for the stability analyses of the shock-wave/boundary-
layer interaction in Chapter 5. In addition, the novel description of convective instabilities
in shock-wave/boundary-layer interaction allows identifying:

• the critical frequency and spanwise wavenumber that yield the largest amplification
through the shock-induced bubble,
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• the inherent mechanisms that destabilize the flow and produce the perturbation en-
ergy.

Finally, Chapter 6 concludes this work by discussing, on the one hand, different perspectives
regarding the moving-frame approach and, on the other hand, how future work could build
upon the present methodology to carry stability analyses of complex flow fields.
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Transient growth analysis of oblique shock-wave/boundary-layer interactions at Mach
5.92. Physical Review Fluids 5 (1), 063904.

EHRENSTEIN, U. & GALLAIRE, F. 2005 On two-dimensional temporal modes in spatially
evolving open flows: the flat-plate boundary layer. Journal of Fluid Mechanics 536, 209–
218.

FARRELL, B. F. 1988 Optimal excitation of perturbations in viscous shear flow. Physics of
Fluids 31 (8), 2093–2102.

GAITONDE, D. V. 2015 Progress in shock wave/boundary layer interactions. Progress in
Aerospace Sciences 72, 80–99.

GARNAUD, X., LESSHAFFT, L., SCHMID, P. J. & HUERRE, P. 2013 Modal and transient dynam-
ics of jet flows. Physics of Fluids 25 (4), 044103.

GASTER, M. 1974 On the effects of boundary-layer growth on flow stability. Journal of Fluid
Mechanics 66 (3), 465–480.

GOLDSTEIN, M. E. & HULTGREN, L. S. 1989 Boundary-layer receptivity to long-wave free-
stream disturbances. Annual Review of Fluid Mechanics 21 (1), 137–166.

GROOT, K. J. 2018 BiGlobal Stability of shear flows spanwise & streamwise Analyses. PhD
thesis, TU Delft and von Karman Institute for Fluid Dynamics.

GROOT, K. J., PINNA, F. & VAN OUDHEUSDEN, B. W. 2015 On closing the streamwise BiGlobal
stability problem: the effect of boundary conditions. Procedia IUTAM 14, 459–468.

GROOT, K. J. & SCHUTTELAARS, H. M. 2020 Accurate numerical approximation of the abso-
lute stability of unbounded flows. Physica D: Nonlinear Phenomena 402, 132224.

GUIHO, F., ALIZARD, F. & ROBINET, J. C. 2016 Instabilities in oblique shock wave/laminar
boundary-layer interactions . Journal of Fluid Mechanics 789, 1–35.



22 References

HADER, C. & FASEL, H. F. 2019 Three-dimensional wave packet in a Mach 6 boundary layer
on a flared cone. Journal of Fluid Mechanics 885, R3.

HERBERT, T. 1988 Secondary Instability of Boundary Layers. Annual Review of Fluid Mechan-
ics 20 (1), 487–526.

HERBERT, T. & BERTOLOTTI, F. 1987 Stability analysis of nonparallel boundary layers. Bul-
letin of the American Physical Society 32 (2079), 590.

HILDEBRAND, N., CHOUDHARI, M. M. & PAREDES, P. 2020 Predicting boundary-layer tran-
sition over backward-facing steps via linear stability analysis. AIAA Journal 58 (9), 3728–
3734.

HUANG, Z. & WU, X. 2017 A local scattering approach for the effects of abrupt changes on
boundary-layer instability and transition: a finite-reynolds-number formulation for iso-
lated distortions. Journal of Fluid Mechanics 822, 444–483.

HUERRE, P. & MONKEWITZ, P. A. 1985 Absolute and convective instabilities in free shear
layers. Journal of Fluid Mechanics 159, 151–168.

HUERRE, P. & MONKEWITZ, P. A. 1990 Local and Global Instabilities in Spatially Developing
Flows. Annual Review of Fluid Mechanics 22, 473–537.

HULTGREN, L. S. & GUSTAVSSON, L. H. 1981 Algebraic growth of disturbances in a laminar
boundary layer. Physics of Fluids 24 (6), 1000–1004.

VAN INGEN, J. 1956 A suggested semi-empirical method for the calculation of the boundary
layer transition region. Tech. Rep. VTH-74. Delft University of Technology.

KACHANOV, Y. S. 1994 Physical mechanisms of laminar boundary-layer transition. Annual
Review of Fluid Mechanics 26, 411–482.

KLEBANOFF, P. S., TIDSTROM, K. D. & SARGENT, L. M. 1962 The three-dimensional nature
of boundary layer instability. Journal of Fluid Mechanics 12 (1), 1–34.

KOCH, W. 1985 Local instability characteristics and frequency determination of self-excited
wake flows. Journal of Sound and Vibration 99 (1), 53–83.

KUMAR, B. & MITTAL, S. 2012 On the origin of the secondary vortex street. Journal of Fluid
Mechanics 711, 641–666.

LANDAHL, M. T. 1980 A note on an algebraic instability of inviscid parallel shear flows. Jour-
nal of Fluid Mechanics 98 (2), 243–251.

LOISEAU, J.-C., ROBINET, J.-C., CHERUBINI, S. & LERICHE, E. 2014 Investigation of the
roughness-induced transition: global stability analyses and direct numerical simulations.
Journal of Fluid Mechanics 760, 175–211.

MACK, L. M. 1984 Boundary-layer linear stability theorys. In AGARD 709, Special Course of
Stability and Transition of Laminar Flows. North Atlantic Treaty Organization.

MENTER, F. R., LANGTRY, R. & VÖLKER, S. 2006 Transition Modelling for General Purpose
CFD Codes. Flow, Turbulence and Combustion 77 (1-4), 277–303.



23 References

MITTAL, S., KOTTARAM, J. J. & KUMAR, B. 2008 Onset of shear layer instability in flow past a
cylinder. Physics of Fluids 20 (5), 054102.

MITTAL, S. & KUMAR, B. 2007 A stabilized finite element method for global analysis of con-
vective instabilities in nonparallel flows. Physics of Fluids 19 (8), 088105.

MONKEWITZ, P. A., HUERRE, P. & CHOMAZ, J.-M. 1993 Global linear stability analysis of
weakly non-parallel shear flows. Journal of Fluid Mechanics 251, 1–20.

MORKOVIN, M. 1994 Transition in open flow systems-a reassessment. Bulletin of the Ameri-
can Physical Society 39, 1882.

MORKOVIN, M. V. 1969 On the many faces of transition. In Viscous Drag Reduction (ed. C. S.
Wells), pp. 1–31. Boston, MA: Springer US.

NIESSEN, S. E. M. 2017 BiGlobal stability analysis: laminar shock-wave/boundary-layer in-
teractions. Master’s thesis, University of Liège, Faculty of Applied Sciences.

NIESSEN, S. E. M., GROOT, K. J., HICKEL, S. & TERRAPON, V. E. 2023 Convective instabilities
in a laminar shock-wave/boundary-layer interaction. Physics of Fluids 35 (2).

ORR, W. M. 1907 The Stability or Instability of the Steady Motions of a Perfect Liquid and
of a Viscous Liquid. Proceedings of the Royal Irish Academy. Section A: Mathematical and
Physical Sciences 27, 69–138.

PIERREHUMBERT, R. T. 1984 Local and global baroclinic instability of zonally varying flow.
Journal of the Atmospheric Sciences 41 (14), 2141–2162.

PIERREHUMBERT, R. T. 1986 Universal short-wave instability of two-dimensional eddies in
an inviscid fluid. Physical Review Letters 57 (17), 2157–2159.

PIERREHUMBERT, R. T. & WIDNALL, S. E. 1982 The two- and three-dimensional instabilities
of a spatially periodic shear layer. Journal of Fluid Mechanics 114, 59–82.

PRANDTL, L. 1905 Über flüssigkeitsbewegung bei sehr kleiner reibung. In Verhandlungen
des dritten Internationalen mathematikerkongresses in Heidelberg: vom 8. bis 13. august
1904, pp. 485–491. BG Teubner.

RAI, M. M. & MOIN, P. 1993 Direct numerical simulation of transition and turbulence in a
spatially evolving boundary layer. Journal of Computational Physics 109 (2), 169–192.

RESHOTKO, E. 1976 Boundary-layer stability and transition. Annual Review of Fluid Mechan-
ics 8 (1), 311–349.

RESHOTKO, E. 1984 Environment and receptivity. In AGARD 709, Special Course of Stability
and Transition of Laminar Flows.

RESHOTKO, E. 2001 Transient growth: A factor in bypass transition. Physics of Fluids 13 (5),
1067–1075.

REYNOLDS, O. 1883 An experimental investigation of the circumstances which determine
whether the motion of water shall be direct or sinuous, and of the law of resistance in
parallel channels. Philosophical Transactions of the Royal Society of London 174, 935–982.



24 References

REYNOLDS, O. 1895 On the dynamical theory of incompressible viscous fluids and the de-
termination of the criterion. Philosophical Transactions of the Royal Society of London. A
186, 123–164.

REYNOLDS, W. C., KAYS, W. M. & KLINE, S. J. 1958 Heat transfer in the turbulent incom-
pressible boundary layer. Tech. Rep. NASA-MEMO-12-3-58W.

RIGAS, G., COLONIUS, T. & BEYAR, M. 2017 Stability of wall-bounded
fows using one-way spatial integration of Navier-Stokes equations, arXiv:
https://arc.aiaa.org/doi/pdf/10.2514/6.2017-1881.

RIST, U. & FASEL, H. F. 1995 Direct numerical simulation of controlled transition in a flat-
plate boundary layer. Journal of Fluid Mechanics 298, 211–248.

RODRÍGUEZ, D. A., TUMIN, A. & THEOFILIS, V. 2011 Towards the foundation of a global
modes concept. In 6th AIAA Theoretical Fluid Mechanics Conference.

SANSICA, A., SANDHAM, N. & HU, Z. 2013 Stability and unsteadiness in a 2D laminar shock-
induced separation bubble. In 43rd AIAA Fluid Dynamics Conference.

SANSICA, A., SANDHAM, N. D. & HU, Z. 2016 Instability and low-frequency unsteadiness in
a shock-induced laminar separation bubble. Journal of Fluid Mechanics 798, 5–26.

SARIC, W. S. & NAYFEH, A. H. 1975 Nonparallel stability of boundary-layer flows. Physics of
Fluids 18 (8), 945–952.

SARIC, W. S., REED, H. L. & KERSCHEN, E. J. 2002 Boundary-layer receptivity to freestream
disturbances. Annual Review of Fluid Mechanics 34 (3), 291–319.

SARIC, W. S., REED, H. L. & WHITE, E. B. 2003 Stability and transition of three-dimensional
boundary layers. Annual Review of Fluid Mechanics 35 (1), 413–440.

SAYADI, T. & MOIN, P. 2012 Large eddy simulation of controlled transition to turbulence.
Physics of Fluids 24 (11), 114103.

SCHLICHTING, H. 1933 Zur enstehung der turbulenz bei der plattenströmung. Nachrichten
von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse
1933, 181–208.

SCHLICHTING, H. 1979 Boundary-Layer Theory, 1st edn. McGraw-Hill.

SCHMID, P. J. & HENNINGSON, D. S. 2001 Stability and transition in shear flows. Springer.

SCHMID, P. J. & HENNINGSON, D. S. 2002 On the stability of a falling liquid curtain. Journal
of Fluid Mechanics 463, 163–171.

SCHMID, P. J., HENNINGSON, D. S., KHORRAMI, M. R. & MALIK, M. R. 1993 A study of eigen-
value sensitivity for hydrodynamic stability operators. Theoretical and Computational
Fluid Dynamics 4 (5), 227–240.

SCHUBAUER, G. B. & SKRAMSTAD, H. K. 1948 Laminar-Boundary-Layer Oscillations and
Transition on a Flat Plate. Tech. Rep. NACA-TR-909. NACA.

SIPP, D. & MARQUET, O. 2012 Characterization of noise amplifiers with global singular
modes: the case of the leading-edge flat-plate boundary layer. Theoretical and Compu-
tational Fluid Dynamics 27 (5), 617–635.



25 References

SIPP, D., MARQUET, O., MELIGA, P. & BARBAGALLO, A. 2010 Dynamics and control of global
instabilities in open-flows: a linearized approach. Applied Mechanics Reviews 63 (3), 389–
26.

SMITH, A. M. O. & GAMBERONI, N. 1956 Transition, Pressure Gradient and Stability Theory.
Tech. Rep. ES-26388. Douglas Aircraft Company, El Segundo, California.

SOMMERFELD, A. 1909 Ein Beitrag zur hydrodynamischen Erklärung der turbulenten Flüs-
sigkeitsbewegungen. In Proceedings of the 4th International Mathematical Congress, pp.
116–124. Rome.

TAIRA, K., BRUNTON, S. L., DAWSON, S. T. M., ROWLEY, C. W., COLONIUS, T., MCKEON,
B. J., SCHMIDT, O. T., GORDEYEV, S., THEOFILIS, V. & UKEILEY, L. S. 2017 Modal analysis
of fluid flows: an overview. AIAA Journal 55 (12), 4013–4041.

TANI, I. 1969 Boundary-layer transition. Annual Review of Fluid Mechanics 1 (1), 169–196.

THEOFILIS, V. 2003 Advances in global linear instability analysis of nonparallel and three-
dimensional flows. Progress in Aerospace Sciences 39 (4), 249–315.

THEOFILIS, V. 2011 Global linear instability. Annual Review of Fluid Mechanics 43 (1), 319–
352.

THEOFILIS, V. & RODRÍGUEZ, D. 2010 Structural changes of laminar separation bubbles in-
duced by global linear instability. Journal of Fluid Mechanics 655, 280–305.

TOLLMIEN, W. 1928 Über die entstehung der turbulenz. 1. mitteilung. Nachrichten von der
Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1929,
21–44.

TOWNE, A. & COLONIUS, T. 2015 One-way spatial integration of hyperbolic equations. Jour-
nal of Computational Physics 300, 844–861.

TOWNE, A., RIGAS, G. & COLONIUS, T. 2019 A critical assessment of the parabolized stability
equations. Theoretical and Computational Fluid Dynamics 33 (3), 359–382.

TREFETHEN, L. N., TREFETHEN, A. E., REDDY, S. C. & DRISCOLL, T. A. 1993 Hydrodynamic
stability without eigenvalues. Science 261 (5121), 578–584.

TUCKER, A. A., SARIC, W. S. & REED, H. L. 2014 Laminar flow control flight experiment
design and execution. In 52nd Aerospace Sciences Meeting. National Harbor, Maryland.

WHITE, E. B. 2002 Transient growth of stationary disturbances in a flat plate boundary layer.
Physics of Fluids 14 (12), 4429–4439.

WHITE, F. 1974 Viscous fluid flow. McGraw-Hill, New York.

ZHAO, L., DONG, M. & YANG, Y. 2019 Harmonic linearized Navier-Stokes equation on de-
scribing the effect of surface roughness on hypersonic boundary-layer transition. Physics
of Fluids 31 (3), 034108.





2
Stability theory for fluid flows

This chapter presents the mathematical foundations of the linear stability theory for ideal-
gas flows. The governing equations for both compressible and incompressible flows are first
derived in §2.1 and are thereafter linearized in §2.2 to obtain the system of equations that
govern the evolution of linear disturbances in a fluid flow. Based on these equations, the
direct stability problem formulated in the traditional stationary frame of reference is de-
rived in §2.3 by considering a two-dimensional modal ansatz. For the sake of completeness,
this section also discusses the traditional perturbations ansatzes yielding the Linear Stability
Theory (LST) and Parabolized Stability Equations (PSE) problems. The continuous adjoint
stability problem is then derived in §2.4 and the different types of boundary conditions used
to close the perturbation and stability equations are presented in §2.5.

The motivation to depart from the traditional stationary frame of reference when tack-
ling two-dimensional convective instabilities is discussed in §2.6, and a formulation of the
two-dimensional stability problem in a moving frame of reference is proposed. Several fun-
damental concepts regarding this novel formulation are elaborated and comparisons are
made against the fixed-frame stability problem. In order to provide a more practical per-
spective on the moving-frame method, §2.7 presents various approaches to characterize
and interpret the solutions. In particular, it shows how the traditional stationary-frame N -
factor curves, that are widely used to predict the laminar-turbulent transition through the
eN -method, can be built. Finally, §2.8 provides the tools to decompose the instability mech-
anisms into their individual contributions. The theoretical development of this last section
provides a useful framework to gain an in-depth insight into the most critical mechanisms
at the origin of the convective instabilities in a flow field.

2.1. Navier-Stokes equations
The physical problem for compressible flows is governed by the non-dimensional Navier-
Stokes equations

∂ρ

∂tf
+u j

∂ρ

∂xf, j
+ρ ∂u j

∂xf, j
= 0, (2.1a)

ρ
∂ui

∂tf
+ρu j

∂ui

∂xf, j
=− ∂p

∂xf,i
+ 1

Re

∂τi j

∂xf, j
, (2.1b)
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ρ
∂T

∂tf
+ρu j

∂T

∂xf, j
=−γEc

∂u j

∂xf, j
p + γEc

Re
φ+ γ

RePr

∂q j

∂xf, j
, (2.1c)

with ρ the density, p the pressure, and ui the velocity components in the xf-, y- and z-
directions for indices i = 1,2,3, respectively. The subscript ‘f’ indicates that the frame of
reference is stationary and, since only convective frames in the streamwise direction will be
considered later, this notation only strictly applies to the x-coordinate and does not affect
the y- and z-directions that are always stationary. The energy equation (2.1c) is based on
the internal energy e = cv T (with the isochoric heat capacity cv ) and provides a transport
equation for the temperature only. If based on the enthalpy h = cp T (with the isobaric heat
capacity cp ), the energy equation would involve an additional temporal derivative of the
pressure acting as source term to the temperature-transport equation. Being more cumber-
some, especially when considering stability analyses, this latter formulation is not retained
in the present work. Considering Newtonian fluids only, i.e., fluids for which dissipation
depends linearly on the strain rate, the viscous stress tensor τi j is given by the constitutive
law

τi j =µ
(
∂ui

∂xf, j
+ ∂u j

∂xf,i

)
+λ ∂uk

∂xf,k
δi j , (2.2)

with the first and second viscosity coefficients, µ= µ(T ) and λ= λ(T ), respectively, that de-
pend only on the temperature. Furthermore, the Stokes’ hypothesis is presently used such
that λ=−2/3µ. The dissipation function φ represents the conversion of viscous-stress dis-
sipation into heat and is given by

φ= τi j
∂ui

∂xf, j
. (2.3)

Finally, the contribution of heat flux in the energy equation is governed by Fourier’s law

q j =−κ ∂T

∂xf, j
, (2.4)

where the thermal conductivity κ = κ(T ) is function of the temperature only. Assuming
calorically perfect gases with a constant heat capacity ratio γ= cp /cv = 1.4, the dimension-
less ideal-gas equation

p = ρT

γM 2 , (2.5)

is used. Substituting the equation of state (2.5) into the Navier-Stokes equations (2.1) al-
lows eliminating the pressure (or density) from the system. The formulation of the Navier-
Stokes equations (2.1) and ideal-gas law (2.5) is based on the non-dimensional Eckert, Mach,
Reynolds and Prandtl numbers that are given by

Ec
(a)= u2

e

cp Te
, M

(b)= ue

ae
, ReL

(c)= ρe
ueL

µe
, Pr

(d)= cpµe

κe
, (2.6)

respectively, with freestream quantities indicated by subscript ‘e’ and with the length L de-
noting a generic length scale. The global length scale ` is introduced so that Re = Re` =
ρe ue`/µe = 1. For ideal gases, the speed of sound a, that is used in the definition of the
Mach number, is defined by

√
γRT with the perfect-gas constant R = 287J/(kg ·K). Finally,

the fact that only calorically perfect gases are considered allows establishing a relation be-
tween the fluid viscosity and the conductivity as follows

κ(T ) = γR

(γ−1)Pr
µ(T ) . (2.7)
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The Sutherland’s law is used to determine the temperature dependency of both the viscosity
and conductivity coefficients through

µ(T ) =µref

(
T

Tref

) 3
2 Tref +Ts

T +Ts
, (2.8)

with constant parameters µref = 1.716×10−5 kg/(m·s), Ts = 110.4K, Tref = 273.15K and Pr =
0.72.

Since incompressible flows are also considered in the present work, the Navier-Stokes
equations (2.1) can be simplified accordingly. The incompressibility hypothesis for homoge-
neous and isotropic flows considers that density remains constant under any circumstance,
i.e., the total derivative of the density Dρ/Dt = ∂ρ/∂t +ui∂ρ/∂xi = 0. This implies that the
density ρ is no longer an unknown of the problem and can thus be fixed to a constant value
(here ρ = 1). Furthermore, the present incompressible flows are assumed isothermal. The
temperature T thus does not need to be considered anymore and the energy equation (2.1c)
becomes superfluous. Under these hypotheses, the system of equations (2.1) reduces to the
Navier-Stokes equations for incompressible flows

∂u j

∂xf, j
= 0, (2.9a)

∂ui

∂tf
+u j

∂ui

∂xf, j
=− ∂p

∂xf,i
+ 1

Re

∂2ui

∂xf, j∂xf, j
. (2.9b)

The divergence-free condition, introduced by the continuity equation (2.9a), enforces the
isochoric character of the flow and allows simplifying the viscous stress tensor (2.2) in the
incompressible momentum equations (2.9b).

Casting all equations together, the Navier-Stokes equations for both compressible and
incompressible flows in a fixed frame of reference can be written in the abbreviated form

B
(
qf

) ∂qf

∂tf
=N

{
qf

}
(2.10)

with B a real-valued operator and N {•} the nonlinear Navier-Stokes operator. Note that
the formulation of the energy equation with the internal energy makes B diagonal while
an enthalpy-based formulation would introduce one or two off-diagonal components de-
pending on whether p or ρ is eliminated from the system of equations through the equation
of state. The primitive variables, that represent the instantaneous flow field, are given by
qf(xf, y, z, t ) = [u , v , w ,T ,ρ]T

f or qf(xf, y, z, t ) = [u , v , w , p]T
f for compressible or incompress-

ible flows, respectively. The superscript ‘T’ indicates the real transpose operator. Note that,
for the incompressible-flow formulation, there is no temporal derivative for the pressure and
thus the row corresponding to the continuity equation in the operator B only contains ze-
roes; B is singular in the incompressible case. Considering the Navier-Stokes equations al-
lows now formulating the perturbation equations that govern the evolution of disturbances
in a flow field.

2.2. Perturbation equations
The disturbances in a flow field are studied by expanding the instantaneous flow qf variables
into a base-flow component Q , that satisfies the stationary Navier-Stokes equations ∂Q/∂t =
N

{
Q

}
= 0, and a perturbation field q ′

f such that

qf(xf, y, z, t ) =Q(xf, y, z)+εq ′
f,r (xf, y, z, t ) , for ε¿ 1, (2.11)
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where the subscript ‘r ’ indicates taking the real part of a complex variable. Because pertur-
bations are usually interpreted as waves in the frequency domain through Fourier transfor-
mations, the perturbation component q ′

f is represented by a complex variable. Neverthe-
less, the physical representation of the instantaneous flow qf cannot be complex and the
decomposition (2.11) thus only includes the real part of the perturbation field. To obtain
the perturbation equations, the expansion (2.11) is introduced into the Navier-Stokes equa-
tions (2.10) that are then expanded around the base-flow solution

B(Q)

[
ε
∂q ′

f

∂tf
+O (ε2)

]
=N

{
Q +εq ′

f

}
=N

{
Q

}
︸ ︷︷ ︸

=0

+ε ∂N
∂ε

q ′
f︸ ︷︷ ︸

L (Q)q ′
f

+O (ε2) . (2.12)

Since all operators are real-valued, the subscript ‘r ’ is omitted on the perturbation variables.
Upon neglecting the higher-order terms O (ε2), the perturbation equations are finally given
by

B(Q)
∂q ′

f

∂tf
=L (Q)q ′

f , (2.13)

with L the linearized Navier-Stokes operator, that is a function of base-flow variables only.
Similarly to the nonlinear Navier-Stokes equations (2.1), the linearized equations (2.13) rep-
resents an initial-value problem. It is important to notice that a base flow Q is not equiv-
alent to a mean flow; the former is a solution of the steady Navier-Stokes equations, while
the second is a statistically time averaged flow that does not satisfy the steady equations.
Mean flows are used, for instance, in Reynolds Averaged Navier-Stokes (RANS) approaches,
whereas base flows are sought for the present linearized Navier-Stokes approach. The base

flow is computed a-priori so as to satisfy N
{

Q
}
= 0 and is then considered as a parameter

in the perturbation equations that is independent of the perturbation field.

2.2.1. A note on perturbed variables in compressible flows
For incompressible flows, the derivation of the linearized operator is relatively straightfor-
ward and follows from the system of equations (2.9) in which ui and p are the only instan-
taneous variables. However, the derivation of the operator for compressible flows is more
cumbersome since it involves more variables and equations. First, it is important to consider
the additional primitive flow variables T and ρ that are tied together through the equation of
state for the perturbation variables. The relation between T ′, ρ′ and p ′ can be derived by in-
troducing the expansion equation (2.11) for the instantaneous T , ρ and p into the ideal-gas
equation (2.5) as follows

p = p +εp ′
f =

1

γM 2 (ρ+ρ′
f)(T +T ′

f )

= 1

γM 2 (ρT +ερT ′
f +εTρ′

f +ε2ρ′
fT

′
f ) . (2.14)

Upon neglecting the high-order terms, the zeroth- and first-order equations are given by

O (ε0) : p = ρT

γM 2 , (2.15a)

O (ε1) : p ′
f =

ρT ′
f +Tρ′

f

γM 2 = P

(
T ′

f

T
+ ρ′

f

ρ

)
, (2.15b)
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and represent the equations of state for the base flow and perturbations, respectively. Sec-
ond, since the coefficients µ, λ and κ depend on the temperature field and thus vary in
space, they must also be decomposed into base-flow and perturbation components. How-
ever, instead of considering these perturbation components as additional unknowns of the
perturbation equations, the three instantaneous coefficients, that depend only on the tem-
perature field, are expanded in a Taylor series around the base-flow temperature T . For µ′

f,
this gives

µ(T +εT ′
f ) =µ(T )+ε ∂µ

∂T
T ′

f︸ ︷︷ ︸
µ′(T )

+O (ε2) . (2.16)

Hence, all three perturbations µ′, λ′ and κ′ can be replaced by the temperature perturbation
T ′

f , up to coefficients depending only on the base-flow variables, and are thus not unknowns
of the perturbation equations anymore. To simplify further the final equations, the spatial
derivatives of both the base-flow µ, λ and κ and the perturbations µ′, λ′ and κ′ involved in
the momentum and energy equations (2.1b) can be replaced using the chain rule by

∂µ

∂xf,i
= dµ

dT

∂T

∂xf,i
, (2.17a)

∂µ′
f

∂xf,i
= dµ

dT

∂T ′
f

∂xf,i
+ d2µ

dT
2

∂T

∂xf,i
T ′

f , (2.17b)

which hold for λ and κ too. Hence, introducing the equations (2.15), (2.16) and (2.17) into
the compressible linearized operator allows reducing the perturbation variables to either
q ′

f = [u′ , v ′ , w ′ ,T ′ ,ρ′]T
f or q ′

f = [u′ , v ′ , w ′ ,T ′ , p ′]T
f , as usually considered in the literature.

2.2.2. Finding solutions of the initial-value perturbation problem
The perturbation equations (2.13) represent an initial-value problem that can be solved by
an integration in time and, since B(Q) and L (Q) are constant over time, the solutions of
(2.13) can be written in the exponential matrix form

qf(xf, y, z, tf) = eB−1L tf qf,0(xf, y, z) , (2.18)

which links the initial condition qf,0 to its next state qf at time t . This is, however, con-
ditioned by B that must be invertible. While it is often the case in the compressible-flow
formulation of the perturbation equations (2.13), the operator B becomes singular in the
incompressible-flow formulation because the continuity equation has no temporal deriva-
tive. Nevertheless, the exponential matrix is often barely tractable numerically for real flow
configurations with many degrees of freedom and only model problems can be solved. Hence,
it is necessary to rely on numerical strategies in order to perform the temporal integration
of the perturbation equations (2.13). This is discussed in Chapter 3.

Besides the capability of solving the perturbation equations (2.13), there is a need for an
appropriate initial condition. The main interest behind the introduction of disturbances in
a flow field lies in finding the mechanisms that lead to rapid and large amplifications of the
perturbations, i.e., the mechanisms that are at the origin of large-scale phenomena such as
laminar-turbulent transition, shock-induced bubble breathing, vortex street behing a cylin-
der and so on. It is therefore of paramount importance to select initial conditions q0 that
can trigger these mechanisms. Otherwise, if the initial condition is not appropriately cho-
sen, the instability mechanisms might not be revealed and the conclusion about the flow
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stability could be biased. Hence, different strategies exist to target the relevant solutions of
the perturbation problem and can be classified into three main categories (Schmid & Hen-
ningson, 2001; Schmid, 2007; Schmid & Brandt, 2014; Taira et al., 2017) that are discussed in
what follows. As pointed out in the introduction, the forcing problem (see the HLNS method
for two-dimensional flows, Huang & Wu (2017); Zhao et al. (2019); Hildebrand et al. (2020);
Appel (2020)) is not further discussed since the forcing can occult the inherent perturbation
dynamics.

Relevant solutions to the initial-value problem can be found by considering the optimal-
growth approach (Schmid & Henningson, 2001; Schmid, 2007) that searches for the initial
condition to the perturbation equations (2.13) that maximizes an energy norm at each time
instant. In this approach, the problem is cast in a Singular Value Decomposition (SVD) prob-
lem and restricts the perturbation dynamics to particular solutions. These solutions are so
particular that they have never been observed in experiments and thus do not provide in-
formation about the general perturbation dynamics. Hence, White (1974) argued that con-
sidering sub-optimal-growth scenarios is just as important as optimal solutions. For these
reasons, the optimal perturbation approach is not considered.

Another approach consists in introducing wave packets into the perturbation equations
(Gaster, 1967; Hader & Fasel, 2019). The temporal evolution of the wave packets is then
sought by numerically evaluating equation (2.18). However, the spatio-temporal charac-
ter of wave packets makes them less intuitive to interpret than wave trains and the resulting
temporal signal is often decomposed into individual wave-train-type frequencies. These fre-
quencies can then be studied independently from each other in order to determine which
ones are associated with the most critical instability mechanisms (see §2.7). However, a
careful choice of the initial condition, e.g., wave-packet location, size or frequency content,
is required in order to trigger all relevant mechanisms. The present thesis aims to tackle this
aspect by proposing a new type of initial conditions that contain all necessary frequency
content and that avoid any inadvertent transient behavior arising from arbitrarily chosen
initial conditions that do not satisfy the governing equations at the initial time. These ideal
initial perturbations are given by the moving-frame linear stability problem. Before present-
ing this problem, the linear stability equations in the stationary frame of reference are first
derived.

2.3. Linear stability problem
The linear stability problem relies on casting the perturbation equations into an eigenvalue
problem. It thus provides solutions that are building blocks of the perturbation dynamics
instead of solutions that emerge from a response to an initial value. In a fixed-frame of ref-
erence, the resulting modal solutions are used to assess the long-time stability of flows. For
instance, the modal stability equations have yielded the local stability methods, i.e., LST and
Orr-Sommerfeld methods (Orr, 1907; Sommerfeld, 1909; Mack, 1984), that are formally ap-
plicable to parallel flows only. When extended to nonparallel, slowly-evolving flows, the lin-
ear stability problem can be cast into the PSE (Bertolotti et al., 1992) or, for two-dimensional
problems, into the BiGlobal stability equations (Theofilis, 2003). In a moving-frame of ref-
erence, it is later shown that the results from the linear stability problem are only valid at
t = 0 but then form ideal candidates for initializing the initial-value perturbation problem.
Hence, the solutions to the stability problem are either valid for long- or initial-time behav-
ior. To obtain finite-time solutions without being restricted to the optimal growth scenario,
the present method is based on both perturbation and stability problems. The mathemati-
cal formalism of the latter is given in the present section.
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The formulation of the stability problem relies on prescribing a harmonic behavior of
the perturbations in the spatial direction(s) where the base flow is homogeneous, i.e., direc-
tion(s) where the base flow has strictly no dependency. Hence, a spatial variation of the base
flow in one direction must reflect into the perturbation field. In linear stability problems,
the temporal evolution of the perturbations is also assumed harmonic in time.

2.3.1. Two-dimensional stability equations
Many base-flow configurations are laminar flows that evolve essentially in two spatial direc-
tions and, although the actual physical space is three-dimensional, it is often sufficient to
consider the two-dimensional stability equations with two inhomonegenous and one ho-
mogeneous direction to capture the essential perturbation dynamics. When considering
wall-bounded flows, the monochromatic character of the perturbations is imposed either
in the spanwise z- or streamwise x-direction whereas the wall-normal direction is always
kept inhomogeneous because of the strong wall-normal gradient imposed by the boundary
layer. In the present work, only streamwise developing flows are considered and thus the
spanwise direction is assumed homogeneous. The modal, two-dimensional perturbation
ansatz is thus written

q ′
f(xf, y, z, t ) = q̃f(xf, y)ei(βz−ωftf) , (2.19)

where q̃f is the vector of amplitude functions and ωf is the angular frequency. These newly
introduced variables are all complex in general and, for this reason, taking the real part of
the perturbation in the expansion (2.11) is necessary to guarantee that the perturbation vec-
tor q ′

f is a real-valued quantity in the physical space. The real-valued β parameter is the
wavenumber in the spanwise direction and is a-priori prescribed to enforce the monochro-
matic character of the perturbations in this direction. Upon introducing ansatz (2.19) into
the linearized Navier-Stokes equations (2.13), the linear stability problem forms the so-called
streamwise BiGlobal stability equations

A (Q ;β)q̃f =−iωfB(Q)q̃f , (2.20)

that are written in the form of a complex-valued generalized eigenvalue problem withωf the
eigenvalue and q̃f the eigenvector. The operators B(Q) and A (Q ;β) are real- and complex-
valued, respectively. A (Q ;β) contains all partial derivatives in space and depends on the
a-priori prescribed spanwise wavenumber. The eigenvalue problem is homogeneous and
requires spatial, homogeneous boundary conditions to close the system (see details in §2.5).
When deriving the operator A (Q ;β) from the linearized perturbation operator L , the first
and second order derivatives in the spanwise direction of the perturbations are replaced by

∂ ·
∂z

= iβ · , ∂2 ·
∂z2 =−β2 · , (2.21)

respectively. In contrast, the spanwise derivatives of the base-flow variables ∂Q/∂z vanish
since the base flow is assumed homogeneous in the z-direction. Small variations ∂Q/∂z ¿
∂Q/∂xf and ∂Q/∂z ¿ ∂Q/∂y would be acceptable if a three-dimensional base flow is consid-
ered, and could be included into the BiGlobal stability problem without introducing signif-
icant distortion of the solutions. Nevertheless, in this thesis, only strictly two-dimensional
flows are considered and spanwise variations of the base flow are not included in the equa-
tions. The complete set of equations can be found in Appendix A and the numerical strategy
to solve the problem is discussed in Chapter 3.
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2.3.2. One-dimensional stability equations
In some particular configurations, the base flow has no or a very limited spatial evolution
in one of the two dimensions. In the case of open flows bounded by a solid wall, the largest
gradients are often in the wall-normal direction y and this can thus be assumed as the only
inhomogeneous direction. In those cases, the stability problem can be reduced to a (quasi-
)one-dimensional problem. The first formulation of the stability equations for boundary
layers was proposed by Orr (1907) and Sommerfeld (1909) and involves the parallel flow
assumption that neglects any spatial variation in both x- and z-directions. The equations
were later extended by Mack (1984) as the Linear Stability Equations (LST) to be valid for
both compressible and incompressible parallel flows. The modal ansatz of the LST is given
by

q ′
f(xf, y, z, t ) = q̃f(y)ei(αxf+βz−ωftf) , (2.22)

with α the real-valued wavenumber in the streamwise direction. Note that the mode shape
q̃f depends only on the wall-normal direction. Assuming that the spanwise wavenumber β
is a-priori imposed as for the streamwise BiGlobal approach, introducing ansatz (2.22) into
the linearized Navier-Stokes equations (2.13) yields the temporal or spatial LST eigenvalue
problem depending on whether temporal or spatial solutions are sought. When seeking
temporal solutions, the streamwise wavenumber α is prescribed and the linearized Navier-
Stokes equations (2.13) reduce to the temporal LST eigenvalue problem

A (Q ;α,β)q̃f =−iωfB(Q)q̃f . (2.23a)

Instead, if spatial solutions are sought, the frequencyω is imposed and the spatial LST eigen-
value problem

Aα(Q ;ω,β)q̃f =−iαBα(Q)q̃f +α2Cα(Q)q̃f , (2.23b)

is to be solved. In this latter formulation, the operators Bα and Cα include all terms related
to the first and second streamwise derivatives of the perturbation field, respectively, and Aα

including all remaining terms. In spatial and temporal analyses, the prescribed values ω or
α are real numbers. However, when considering spatio-temporal analysis, complex values
for ω or α are prescribed. This third type of analysis is particularly useful to determine the
convective or absolute character of instabilities (Briggs, 1964; Bers, 1984; Monkewitz et al.,
1993; Delbende et al., 1998; Huerre & Rossi, 2009). Finally, it is important to emphasize that
the LST equations are devised for local stability analysis and are strictly applicable to parallel
flows only; the LST method is thus barely suitable for real flow applications. If it is nonethe-
less applied to more complex flows, solutions can be contaminated by relatively large model
errors depending on the actual spatial evolution of the flow. In order to (partly) overcome
this restriction, Bertolotti et al. (1992) introduced the Parabolized Stability Equations (PSE)
that can account for the slow variation of the flow in the streamwise direction.

2.3.3. Nonlocal and parabolized stability equations
The PSE approach is based on a Wentzel–Kramers–Brillouin-Jeffreys (WKBJ) approximation
in the streamwise direction in which the ansatz for the perturbation is given by

q ′
f = q̃f(εp xf, y) e

i(
∫

xf
α(εp x̄f)dx̄f+βz−ωftf) , (2.24)
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where εp is a small number that allows for the slow evolution of both q̃f andα in the stream-
wise direction. This implies that the first and second derivatives take the form

∂q ′
f

∂xf
=

(
εp
∂q̃f

∂xf
+ iαq̃f

)
ei(

∫ xf α(εp x̄f)dx̄f−ωftf) , (2.25a)

∂2q ′
f

∂x2
f

=
(
�
�
��

ε2
p
∂2q̃f

∂x2
f

+εp

(
2iα

∂q̃f

∂xf
+ i

dα

dxf
q̃f

)
−α2q̃f

)
ei(

∫ xf α(εp x̄f)dx̄f−ωftf) , (2.25b)

where high-order terms in εp can be neglected. Introducing the ansatz (2.24) into the pertur-
bation equation (2.13) hence yields the nonlocal perturbation equation that can be written
in the general form

(Aα+εpAα,np)q̃f =αBαq̃f +α2Cαq̃f +εp
dα

dxf
Dαq̃f +εpαEα

∂q̃f

∂xf
+εpFα

∂q̃f

∂xf
, (2.26)

with Aα, Bα and Cα being the same as for the spatial LST equations, whereas Dα, Eα and Fα

are specific operators introduced by the fact that q̃f and α can slowly evolve in the stream-
wise direction. Furthermore, the operator Aα,np accounts for all non-parallel-flow effects of
the base flow. Equation (2.26) can be solved with a multiple-scale approach (Gaster, 1974),
that decomposes the problem into subproblems based on the order of εp , or with the PSE
approach that instead uses the parabolized formulation of equation (2.26). When consid-
ering the PSE approach, the solutions are marched in the streamwise direction (Bertolotti
et al., 1992) and this thus offers much better performances than a multiple-scale approach.
However, as a consequence of the parabolic character of the PSE, the method is strictly lim-
ited to flows with instabilities that are convected downstream. If absolute or global instabil-
ity mechanisms are present somewhere in the flow, the spatial-marching procedure of the
PSE method breaks down when approaching these locations. In contrast, the multiple-scale
method can still be used (Monkewitz et al., 1993) by analyzing the turning points emerging
from the breakdown of the WKBJ approximation.

An important aspect of using equation (2.24) is the ambiguity introduced by the stream-
wise dependency in both q̃f and α in the sense that they can both contain the spatial growth
of the perturbation in the streamwise direction. In other words, while the total spatial growth
given by the multiplication of q̃f and the exponential factor is constant, the part of growth
being included in q̃f and α is not known and is thus ambiguous. In order to eliminate this
ambiguity, an auxiliary condition ∫

y
q̃ H

f M
∂q̃f

∂xf
dy = 0, (2.27)

is used at each step of the spatial integration of PSE and allows transferring the spatial
growth rate included in q̃f to the complex wavenumber α. The superscript ’H’ denotes the
Hermitian transpose and the weight M can be arbitrarily defined such that it isolates only
one or more components of q̃f, or such that it is compatible with the definition of a pertur-
bation energy (see §2.7.1). Alternative compatibility conditions exist and, for instance, can
be based on the maximum of q̃f at each x-station instead of considering an integral value
(Gaster, 1974; Bertolotti et al., 1992). In this work and in recent literature, an integral value is,
however, always preferred over a pointwise value because it reduces the impact of the spa-
tial discretization on the results. Finally, it is important to notice that, while the ambiguity
is eliminated with equation (2.27), the reduction of the spatial growth rate to an algebraic
number remains based on the arbitrarily defined M weight, especially when it comes to
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compressible flows. A thorough discussion about this weight matrix is proposed in §2.7.3.
Similarly, the multiple-scale method needs an auxiliary condition as it considers eigenvalue
problems for each εp -scale (Hinch, 1991).

The PSE approach is an initial-value problem in space, which contrasts with LST and
BiGlobal approaches that are boundary-value problems, and it thus requires selecting an
appropriate initial condition. In practice, this initial condition is a solution of the LST equa-
tions but this implies that the initial condition is not an exact solution of the PSE equation
and thus transient solutions exist over few streamwise stations downstream of the initial lo-
cation. Hence, in order to avoid contaminating the actual PSE solution by any transient, it
is often preferred to initialize the PSE far upstream of the region of interest. However, for
a boundary layer for instance, the flow becomes less and less parallel when decreasing the
Reynolds number, i.e., approaching the leading edge. This means that, at more upstream
stations, the LST solution carries a larger model error and thus generates a stronger tran-
sient when introduced into the PSE. Hence, initializing the marching method to solve the
PSE approach can be a tedious task for some flow cases. It is shown in the following that
the present moving-frame approach for the two-dimensional stability equations avoids this
transient behavior since it uses an initial condition that satisfies the initial-value problem.

Although strictly applicable to a limited number of flow configurations, the LST and PSE
methods are still relevant for the present work. In fact, the LST and PSE methods were at
the premise of flow stability analyses and remain widely used in the literature for many flow
configurations that are not strictly one-dimensional or slowly evolving. These methods are
used in the present work to provide a comparison basis for the incompressible boundary
layer (see Chapter 4) to compare with the results from the two-dimensional perturbation
problem.

2.4. Adjoint linear stability problem
The adjoint formulation of the stability eigenvalue problem can be required for various rea-
sons. First, the adjoint eigenfunctions can be used to identify the regions of the flow that are
most sensitive to disturbance growth (Giannetti & Luchini, 2007; Brandt et al., 2011), which
is highly valuable from both a numerical and physical point of view. Second, the sensitivity
problem based on the adjoint and direct eigensolutions allows performing analytic deriva-
tion, i.e., without resorting to any type of numerical differentiation (Schmid & Brandt, 2014;
Alves et al., 2019). Third, the adjoint eigensolutions combined to their direct counterparts
can be used to reconstruct any arbitrary disturbance field by projecting it onto the eigenba-
sis (Schmid & Henningson, 2002; Ehrenstein & Gallaire, 2005; Åkervik et al., 2007, 2008).

An essential ingredient for deriving the adjoint problem is the definition of the inner
product between two arbitrary vectors f1(x, y) and f2(x, y) that is given by

〈 f1, f2〉 =
Ï

f H
1 f2 dxf dy , (2.28)

in its continuous formulation. Using the inner product to multiply the direct eigenvalue
problem (2.20) by an arbitrary vector f̃ †

f allows writing〈
f̃ †

f , (A + iBωf) q̃f

〉
= 0. (2.29)

The relationship given by equation (2.29) is at the core of the derivation of the adjoint equa-
tion. Keeping the continuous formulation throughout the rest of the derivation results in the
so-called continuous adjoint equations, that can be subsequently discretized. In contrast, if
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the direct problem (2.20) is first discretized, the discrete inner product is then required and
the final equation corresponds to the so-called discrete adjoint equation. Since the deriva-
tion of the continuous and discrete adjoint problems slightly differs from this point of the
derivation onward, only the continuous form is kept for sake of conciseness throughout
the present Chapter 2. The discretized formulation and the differences with its continuous
equivalent are discussed in Chapter 3, which focuses on numerical aspects.

In the continuous formulation, the adjoint eigenvector q̃ †
f is defined after integrating the

orthogonality relationship (2.29) by parts such that〈(
A † − iω∗

f B†
)

q̃ †
f , f̃f

〉
= b , (2.30)

must valid for all f̃f. The operators A † =A H and B† =BH are defined as the continuous ad-
joint operators and the superscript ’∗’ denotes the complex conjugate. The continuous for-
mulation of the adjoint operators uses the superscript ’†’ in order to distinguish it from the
discrete formulation, that will be derived in Chapter 3. The term b represents the boundary
term that appears from the integration by parts and is set to zero, i.e., b = 0, in what follows.
In practice, this is conditioned by a careful selection of homogeneous boundary conditions.
After requiring that equation (2.30) is satisfied for any arbitrary vector q̃f, the continuous
adjoint equations can be written as

A †q̃ †
f = iω∗

f B†q̃ †
f , (2.31)

where the vector q̃ †
f is the adjoint eigenvector. The complete set of equations can be found

in Appendix A. The fact that the eigenvalue problem is a generalized eigenvalue problem im-
plies that the adjoint and direct eigenvectors are not orthogonal, but satisfy a bi-orthogonality
relationship,

0 =
〈

q̃ †
f, j ,A q̃f,k

〉
−

〈
q̃ †

f, j ,A q̃f,k

〉
=

〈
A †q̃ †

f, j , q̃f,k

〉
−

〈
q̃ †

f, j ,A q̃f,k

〉
=

〈
iω∗

f, j B
†q̃ †

f, j , q̃k

〉
−

〈
q̃ †

f, j ,−iωf,kBq̃f,k

〉
=−i(ωf, j −ωf,k )

〈
q̃ †

f, j ,Bq̃f,k

〉
, (2.32)

with indices j and k for the j th and kth eigenvalue/-vector. This implies that 〈q̃ †
f, j ,Bq̃f,k〉 = 0,

if the corresponding eigenvalues ωf, j and ωf,k are not equal. The functions q̃ †
f, j and q̃f,k are

said to be orthogonal with respect to the inner product with weight B. As a result, direct and
adjoint eigenfunctions can be normalized such that

〈
q̃ †

f, j ,Bq̃f,k

〉
= δ j k =

 1 for j = k ,

0 for j 6= k .
(2.33)

Usually, the stability problems are highly non-normal in the sense that the operator A is
not self-adjoint. The resulting eigenfunctions are thus not orthogonal, i.e.,

〈
q̃f, j , q̃f,k

〉 6= δ j k ,
and rather satisfy the bi-orthogonality relationship (2.32). This implies that adjoint eigen-
functions do not correspond to the Hermitian transpose of the direct eigenfunctions and
vice-versa. An important source of non-normality in stability problems stems from the
first-derivative terms that must take opposite signs in the direct and adjoint formulations
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of the equations. This is a consequence of the integration by parts to obtain equation (2.30).
Hence, flows supporting a strong advection of the perturbation are often highly non-normal
(Schmid & Henningson, 2001; Schmid, 2007; Bagheri et al., 2009; Schmid & Brandt, 2014).
This type of non-normal operator reflects into direct and adjoint eigenfunctions that are
spatially disjoint in the directions where the advection component is large (Åkervik et al.,
2008; Marquet et al., 2009). This is illustrated in Chapters 4 and 5.

2.4.1. Eigenfunction expansion
The eigenvectors are the building blocks of the perturbation dynamics since they can form a
basis for projecting any disturbance field onto it. Hence, the two-dimensional perturbation
field q ′

f(xf, y, t ) can be written as a linear combination of the two-dimensional eigenvectors

q ′
f(xf, y, t ) =

∞∑
k=1

ak q̃f,k (x, y)e−iωf,k tf , (2.34)

with ak the complex-valued expansion coefficients that need to be determined. Note that
the homogeneous direction, that has no impact on the final result, is omitted in the present
derivation for sake of conciseness. Considering the initial conditions q ′

f,0 = q ′
f(xf, y, tf = 0),

the expansion at tf = 0 is given by

q ′
f,0 =

∞∑
k=1

ak q̃f,k (x, y) . (2.35)

Using the weighted inner product (2.33) allows writing

〈
q̃ †

f,l ,Bq ′
f,0

〉
=

〈
q̃ †

f,l ,B
∞∑

k=1
ak q̃f,k (xf, y)

〉
= δlk ak , (2.36)

that finally provides an expression for the expansion coefficients

al =
〈

q̃ †
f,l ,Bq ′

f,0

〉
. (2.37)

This shows that, once the solutions of both adjoint and direct eigenvalue problems are com-
puted, the temporal evolution of an arbitrary perturbation can be obtained at all times by
projecting it onto the eigenbasis. Although the series is supposed to include an infinite num-
ber of terms, a finite number N of terms can be used in practice but it requires to evaluate
the convergence of the series with respect to N . This approach was used for reduced-order
modeling by Ehrenstein & Gallaire (2005), Åkervik et al. (2007) and Garnaud et al. (2013) to
study the stability of boundary layers, separation bubbles and jet flows, respectively.

2.5. Boundary conditions
In order to leverage the benefit of linear stability methods, that is to form a basis for the per-
turbation dynamics, the solutions are presently required to be independent of the trunca-
tion boundary positions and conditions. Satisfying this requirement for arbitrary homoge-
neous truncation boundary conditions is possible only if the eigensolution naturally decays
to arbitrarily small amplitudes when approaching the truncation boundaries. This behavior
is defined as "being localized" in the interior of the domain. While two-dimensional global
instability mechanisms are, by definition, represented by localized eigenfunctions (Gian-
netti & Luchini, 2007; Robinet, 2007; Groot et al., 2018), it is later demonstrated that the for-
mulation of the two-dimensional stability problem in a moving frame of reference, derived
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in the next section, enables the spatial localization of convective instability mechanisms.
Such requirement implies that the boundary conditions have no influence on the solution
and, thus, the truncation boundaries do not force the interior perturbation dynamics. Sensi-
tivity studies are performed in Chapters 4 and 5 to evaluate the impact of the different types
of boundary conditions on the results.

The two main types of boundary conditions applied to the perturbation variables are the
traditional Dirichlet and Neumann conditions. The former, that imposes a vanishing pertur-
bation at the boundary, is particularly suitable for the solid wall (y = 0) where perturbations
of the velocity components and temperature are supposed to be physically zero. Further-
more, since all sought solutions are required to be localized in space, their decay in the two
x- and y-directions towards the truncation boundary allows imposing the Dirichlet bound-
ary condition at the freestream and in-/outlet streamwise boundaries. The Neumann con-
dition imposes that the derivative of the perturbations is zero at the boundary. Because all
boundary conditions must be homogeneous, a Neumann condition is often imposed when
the actual behavior at the truncation boundaries is not known a-priori. In other words, a
Neumann condition is typically imposed at locations where no strict physical constraints
exist, in contrast to solid walls for instance. Hence, it is traditionally used for all variables in
the wall-normal direction for the freestream truncation boundary and, for the streamwise
BiGlobal stability equations, in the streamwise direction. Although it is well established
(Malik, 1990; Pinna, 2012; Groot, 2013; Niessen, 2017) that using Neumann conditions in
the freestream allows obtaining a converged solution in wall-bounded flows, imposing such
behavior in the streamwise direction for convective instabilities leads to setup-dependent
solutions (Theofilis, 2003).

At the solid boundary, there is a need to prescribe physically relevant conditions, that ac-
tually enforce zero amplitude for the velocity and temperature perturbations. However, no
physical boundary condition exists for the pressure perturbation. In incompressible flows,
the pressure is not a thermodynamic quantity but instead only acts as a Lagrange multiplier
to ensure that the divergence of the velocity field remains zero. Although the pressure field
can be defined up to an arbitrary constant, prescribing the pressure at the boundaries is not
trivial and different methods have been proposed. A procedure that is often followed in sta-
bility analyses is to impose the pressure compatibility condition at the solid wall (Theofilis,
2003; Pinna, 2012). This condition is obtained by evaluating the y-momentum equation at
the wall while assuming that all other perturbations vanish. This leads to the simple relation

∂p ′
f

∂y
= 1

Re

∂2v ′
f

∂y2 , (2.38)

in incompressible flows, while the compressible compatibility equations is given by

∂p ′
f

∂y
= 1

Re

[(
2
∂µ

∂T
+ ∂λ

∂T

)
∂T

∂y
+ (2µ+λ)

∂

∂y

]
∂v ′

f

∂y
+ 1

Re

(
2
∂µ

∂T
+ ∂λ

∂T

)
∂V

∂y

∂T ′
f

∂y
. (2.39)

Although it is a widely used approach, an important flaw of the compatibility condition is
that it does not bring any new information at the boundary because it re-uses a field equa-
tion, i.e., the y-momentum equation as defined in the rest of the domain, nor ensure that
the velocity field is divergence free in the incompressible limit. Hence, by not enforcing ex-
plicitly a divergence-free velocity field at the boundary with equation (2.38), spurious pres-
sure modes are found to contaminate the physical solution. Evaluating the effect of these
spurious modes is important to ensure accurate results and, in some cases, this can require
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changing the numerical setup such that they are not in the vicinity of the modes of interest
(Niessen, 2017).

In order to improve the traditional compatibility condition, Theofilis (2017) proposes
to use, at the boundary, the Linearized Pressure Poisson Equation (LPPE). By incorporat-
ing both the momentum and continuity equations, the LPPE does not represent a physical
boundary condition for the pressure per se but instead acts as means to enforce the pres-
sure such that the velocity field is divergence-free at the boundaries. Furthermore, since
the pressure is defined up to an arbritrary constant, a fixed value is prescribed at one single
point of the domain. The rest of the pressure field is governed by the field equations in the
domain interior and the LPPE at the boundaries. Doing so, the LPPE allows removing the
pressure spurious modes without affecting the physical modes. For isothermal flows in the
incompressible limit, the LPPE at the solid wall can be written(

∂2

∂x2
f

+ ∂2

∂y2 + ∂2

∂z2

)
p ′

f =−2
∂V

∂y

∂v ′
f

∂y
. (2.40)

Although Niessen (2017) considered the LPPE for compressible flows by assuming that the
Mach number tends to zero at the solid wall, the equations did not account for the temper-
ature dependence of the viscosity and conduction coefficients. The resulting equations are
thus not strictly applicable. However, it was shown that this incomplete formulation allowed
removing the spurious modes without affecting the physical modes. An improvement to this
compressible formulation of the LPPE would actually rely on having a pressure condition at
the wall in the form of a Poisson equation for compressible flows. Such formulation has
actually been derived by Toutant (2017) in the form of an anisothermal low-Mach Poisson
equation. As a final remark regarding the boundary conditions, another possible approach
is to use a staggered grid (Robinet, 2007; Pinna, 2012) for the pressure variable such that it
allows virtually avoiding to prescribe any pressure boundary condition. To avoid using a
staggered grid, all flow cases considered in the present work make use of the LPPE condi-
tion at the wall whereas the traditional compatibility condition is used for the freestream
truncation boundary.

2.6. Linear stability analysis in a moving frame of reference
The use of a moving frame of reference to resolve two-dimensional convective instabilities
is motivated by the fact that the base-flow advection of perturbations in the streamwise di-
rection introduces a streamwise exponential growth of the eigenfunctions (Groot & Schut-
telaars, 2020) when solving the eigenvalue problem (2.20) in the fixed frame of reference. By
considering a moving frame of reference instead, the advection imposed by the base flow
can be largely mitigated. The advection-induced growth is thus reduced and the eigen-
functions can be localized in the streamwise direction, which is essential to obtain setup-
independent solutions.

In order to derive the present method, the perturbation equations (2.13) are first formu-
lated in a moving frame of reference. Second, the two-dimensional stability equations are
derived. Since only applications with convective instabilities traveling in the streamwise di-
rection are targeted, a moving frame of reference that travels at a constant speed cf in the
streamwise direction is considered (cf > 0 for downstream displacement). The spatial coor-
dinate x and the time t in the Galilean moving frame of reference are related to the xf and tf

of the fixed frame of reference according to

x = xf − cftf, t = tf , (2.41)
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respectively. Note that the wall-normal and spanwise directions are not affected by the
change of streamwise reference frame. The derivatives with respect to xf and tf can then
be transformed into derivatives with respect to x and t as

∂ •

∂xf
= 0 + ∂ •

∂x

∂x

∂xf
= ∂ •

∂x
,

∂ •

∂tf
= ∂ •

∂t

∂t

∂tf
+ ∂ •

∂x

∂x

∂tf
= ∂ •

∂t
− cf

∂ •

∂x
.

(2.42)

Inserting the expression for the derivatives (2.42) into the linearized Navier-Stokes equa-
tions, the perturbation equations (2.13) in the moving frame of reference can be written

B
∂q ′

∂tf
=B

(
∂q ′

∂t
− cf

∂q ′

∂x

)
=L (Q)q ′ , (2.43)

which introduces an additional term incorporating the effect of the moving frame. Note
that, regarding the element-wise structure of equations (2.13), the newly introduced cf-term
always occurs in pairs with the streamwise advection term −UB∂q ′/∂x in L (Q)q ′.

In order to derive the stability equations in the moving frame of reference, the ansatz

q ′′′(x, y, z, t ) = q̃(x, y)ei(βz−ωt ) , (2.44)

is used. Note that the ansatz (2.44) now prescribes a fixed shape function in the moving
frame of reference and thus slightly differs from the ansatz (2.19) that assumes a constant
shape function in the stationary frame of reference. Since the perturbation shape of con-
vective instabilities is not constant in space over time in a fixed frame of reference, it is
thus more reasonable to prescribe ansatz (2.44) than the traditional ansatz (2.19). Upon
imposing ansatzes (2.19) and (2.44), i.e., respectively looking for constant-frequency dis-
turbances in the fixed or moving frame of reference, different shape functions will result.
These shape functions can be transferred from one frame to the other through the relation-
ship q ′′′

f (xf, y, z, tf) = q ′′′(x, y, z, t ). However, the shape function obtained through the moving-
frame ansatz (2.44) will not ’fit’ in the fixed-frame ansatz (2.19) for non-zero tf if ω and ωf

are both required to be constant. In §2.6.2, this point is further addressed by generalizing
ansatz (2.19).

Inserting the modal ansatz (2.44) into the linearized Navier-Stokes equations (2.43) yields
the direct eigenvalue problem(

A
(
Q(x + cft , y);β

)
+ cfB

∂

∂x

)
q̃(x, y) =−iωBq̃(x, y) , (2.45a)

in the moving frame of reference. Considering the inner product (2.28), the adjoint eigen-
value problem in the moving frame is then given by

A †
(
Q(x + cft , y);β

)
q̃ †(x, y)− cf

∂

∂x

(
B†q̃ †(x, y)

)
= iω∗B†q̃ †(x, y) . (2.45b)

Note that these problems also need to be closed with boundary conditions, that are exactly
the same as for the stationary frame of reference. Hence, the discussions in §2.5 still hold
for equations (2.45). Considering a moving frame of reference thus introduces an additional
parameter cf in the system of equations. This frame speed must be adequately selected in
order to find converged eigensolutions that have localized eigenfunctions in the streamwise



42 2. Stability theory for fluid flows

direction. An initial choice for the frame speed can be the group speed of the sought instabil-
ity since, as later demonstrated in §2.7.3, both speeds are closely related. If the group speed
is not known a-priori, the phase speed can be used as a first estimate, as it is often close to
the group speed for convective instabilities. In practice, both phase and group speeds can be
approximated with LST calculations at few streamwise stations. The Gaster’s transformation
(Gaster, 1962), that relates the group speed with the wavenumber and the frequency of spa-
tial and temporal analyses, respectively, could even be considered to obtain a first guess for
the frame speed. In any case, a parametric analysis on the frame speed must be conducted
to assess the effectiveness of the method and identify the frame speeds of interest. This will
be illustrated with practical use of the moving frame of reference in Chapters 4 and 5. In
order to clarify the consequences of using a moving frame of reference for stability analy-
ses, several aspects of the moving-frame eigensolutions are tackled in the next subsections,
especially regarding their interpretation and their relation with the fixed-frame solutions.

2.6.1. Obtaining time-dependent solutions without model errors
In the moving frame of reference, the base flow depends on t , while it was independent of
tf in the stationary frame of reference. To evaluate this effect, the base-flow quantities are
expanded in a Taylor series in t with respect to t = 0,

Q(x + cft , y) =Q(x, y)+ cft
∂Q

∂xf
(x, y)+O

(
(cft )2

2!

∂2Q

∂x2
f

(x, y)

)
, (2.46)

where t is to be interpreted as an elapsed time. This reveals that the base flow can be as-
sumed to be constant in t when permitting an error of O

(
cft ∂Q/∂x̄

)
, which is small when cf,

t or ∂Q/∂x̄ is small. By evaluating the eigenvalue problem (2.45a) for the base flow at t = 0,
the eigensolutions are exact solutions of the linearized Navier-Stokes equations. Hence, the
eigensolutions satisfying (2.45a) must be interpreted in an instantaneous sense at t = 0 only.
Note that the fact that the solutions are exact at t = 0 contrasts with LST and PSE for which
the model error exists for all time and streamwise locations.

For non-zero t , the eigensolutions satisfying equation (2.45a) can be integrated in time
to account for all unsteady effects due to the moving reference frame. That is, the lin-
earized Navier-Stokes equations (2.13), i.e., the fixed-reference-frame initial-value problem,
are solved while specifying eigensolutions to (2.45a) as the initial condition. In particular,
solutions will be sought as

q ′
f(xf, y, z = 0, tf) = eB−1L tf q̃(xf(tf = 0), y) , (2.47)

which is similar to equation (2.18), except that the third dimension is assumed homoge-
neous in equation (2.47). This formulation allows both reducing the computational cost and
avoiding to prescribe a domain width in the third dimension that must be imposed such as
to fit the spanwise modulation of the wave packet. Note that this approach is consistent with
the two-dimensional base flows that are considered in the present work.

The initial-value-problem formulation is very similar to the spatial marching approach
used in PSE analyses. However, the model error induced by the spatial parabolization in PSE
does not exist in the proposed time-marching approach since the equations are fully elliptic
in space and no high-order term is discarded. Hence, the time-marched solutions will not be
subject to any model error for t ≥ 0, up to the chosen numerical strategy, which is discussed
in Chapter 3.
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2.6.2. Relation with the fixed frame of reference: a complex Doppler shift
It has been established that the moving-frame eigensolutions are instantaneously-exact so-
lutions of the linearized Navier-Stokes equations at time t = 0. However, a clarification is
needed regarding how the eigenvalueω, in particular its real and imaginary parts, should be
interpreted. To this purpose, the instantaneous behavior of the moving-frame eigensolution
in the fixed frame of reference is analyzed in what follows.

Ansatz (2.19) falls short of representing the behavior of the moving-frame eigensolution,
because it does not capture the streamwise translation effect imposed by the moving frame.
To include this effect in the fixed frame, it is essential to depart from imposing the same con-
stant ωf for the entire eigenvector, i.e., all eigenfunctions or the components of the eigen-
vector q̃f, corresponding to the same eigensolution. This leads to the following generalized
fixed-frame ansatz

q ′′′
f (xf, y, z, tf) = q̃(xf, y)ei(βz−Γf(xf,y,tf)tf), (2.48)

where q̃ represents the eigenvector that satisfies the eigenvalue problem in the moving
frame of reference, i.e., equation (2.45a), and

Γf(xf, y, tf) =



ωf,ũ 0 · · · 0

0 ωf,ṽ 0
...

. . .
...

0 0 · · · ωf,p̃

 (2.49)

is assumed to depend on xf, y , and tf. This generalized ansatz poses the question how the
individual components evolve in time if the moving-frame eigenvector, q̃(xf, y), is imposed
in the fixed frame of reference; hence it is evaluated for xf, not x. To this end, the way in
which each of the components (ũ, ṽ , . . . , p̃) can behave is left as general as possible by in-
troducing an ωf,q̃ per component q̃ of q̃ and allowing each of these functions to depend on
the independent variables xf, y , and tf.

After substituting ansatz (2.48) into the linearized Navier-Stokes equations, partial deriva-
tives have to be evaluated as follows

∂q ′′′
f

∂tf

(a)=
(
−iΓfq̃ − itf

∂Γf

∂tf
q̃

)
×ei···,

∂q ′′′
f

∂xf

(b)=
(
∂q̃

∂xf
− itf

∂Γf

∂xf
q̃

)
×ei···;

∂2q ′′′
f

∂x2
f

(c)=
(
∂2q̃

∂x2
f

−2itf
∂Γf

∂xf

∂q̃

∂xf
− t 2

f

(
∂Γf

∂xf

)2

q̃ − itf
∂2Γf

∂x2
f

q̃

)
×ei···.

 (2.50)

The partial y- (and cross) derivatives yield very similar results. Since the instantaneous be-
havior is targeted, the time is set to tf = 0, which reduces the right-hand side of all derivatives
to the first terms. This assumption is also necessary in order to allow ‘factoring’ the expo-
nential from the equations after substituting the ansatz. Finally, introducing the ansatz into
the fixed-frame linearized Navier-Stokes equations yields

L
(
Q(xf, y)

)
q̃(xf, y) =−iBΓf(xf, y, tf) q̃(xf, y), for tf = 0. (2.51)

This formulation is much more complicated than an eigenvalue problem and is not meant to
be solved directly. Instead, its (instantaneous) solutions are obtained by solving the moving-
frame eigenvalue problem (2.45a); equation (2.51) is only a tool that helps the physical in-
terpretation of the solutions to (2.45a) at tf = t = 0 in the fixed frame of reference.
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By comparing problem (2.51) against (2.45a), upon moving the term with cf to the right-
hand side in equation (2.45a), it follows the relation

− iBΓfq̃ =−iB



ωf,ũ ũ

ωf,ṽ ṽ
...

ωf,p̃ p̃

=−iωBq̃ − cfB
∂q̃

∂x
. (2.52)

The intended relationship between ωf,q̃ and ω can be directly inferred by realizing that this
system of equations is satisfied if the component-wise relationship

ωf,q̃ (x, y) =ω− i
cf

q̃

∂q̃

∂x
(x, y) (2.53)

holds for all individual components q̃ of the complex q̃ . Considering that equation (2.45a)
is solved as an eigenvalue problem, ω is constant in that case. The presence of q̃ in equa-
tion (2.53), however, rendersωf,q̃ dependent on x, y and this dependency changes per eigen-
function q̃ . This is why it is necessary to generalize ansatz (2.19). The fact that the growth
rate and frequency/wavenumber associated with different eigenfunctions (e.g., ũ versus ṽ)
in the same eigenvector are different is not new (Alizard & Robinet, 2007; Ehrenstein & Gal-
laire, 2005) and also arises when describing perturbations with other approaches that ac-
count for non-parallel effects (Gaster, 1974; Saric & Nayfeh, 1975; Bertolotti et al., 1992).

From a physical point of view, equation (2.53) can be understood as a complex Doppler
shift. First, express q̃ as |q̃(x, y)|eiθ(x,y) where θ is real, so that both the streamwise wavenum-
ber αq̃ ,r (x, y) = ∂θ/∂x and the corresponding streamwise wavelength λ= 2π/αq̃ ,r are real as
well. Further expanding the right-hand side of (2.53) then yields

ωf,q̃ (x, y) =ω− icf
∂

∂x

(
ln |q̃ |+ iθ

)=ωr +αq̃ ,r cf + i

(
ωi − cf

∂ ln |q̃ |
∂x

)
. (2.54)

The real part of equation (2.54) represents the change in frequency according to the stream-
wise wavelength of the perturbation and the frame speed as attributed to the Doppler effect.
Next to the temporal growth imposed byωi , the imaginary part of equation (2.54) represents
a translation effect of the disturbance in xf with time due to the moving frame. This can be
observed by recognizing that the term −cf∂ ln |q̃ |/∂x reduces (increases) the perturbation
magnitude wherever the magnitude is locally increasing (decreasing) in the streamwise di-
rection. Figure 2.1 illustrates this by considering the absolute value of ansatz (2.48), after
having substituted equation (2.54), and choosing an arbitrary functions f , a substitute for
one component of q̃ , to be Gaussian in xf and setting ωi = 0 to isolate the translation effect.
For small times, the function f (xf − cftf,0), which represents the translated version of the
function f (xf,0), is approximated by

f (xf,0)exp

(
−cftf

∂ ln | f |
∂x

(xf − cftf,0)

)
, (2.55)

where the argument in the exponential represents the effect of the term −cf∂ ln |q̃ |/∂x in
equation (2.54). The second argument of the partial x-derivative of ln | f | is set to zero, be-
cause ansatz (2.44) imposes the assumption that f is independent of time. It will be verified
in Chapters 4 and 5, that if eigensolutions are specified as the initial condition for equa-
tion (2.13), this results in a time-dependent solution that instantaneously translates in xf

with the speed cf.
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Figure 2.1: Streamwise magnitude evolution of a perturbation f ′ withωi = 0 as represented with the moving-frame
modal ansatz (2.44, solid black) at t = 0, the moving-frame modal ansatz (2.44, dashed black line), and the general-
ized fixed-frame ansatz (2.19, solid red) using the Doppler shift (2.54), where f = f (x, t ) represents the eigenfunc-
tion in the moving reference frame.

2.7. Characterizing the spatio-temporal evolution of instabilities
This section proposes several concepts to characterize the evolution of two-dimensional
wave-packet instabilities. Building upon the concept of perturbation energy, this section
further establishes the relation between perturbation growth and eigengrowth when moving-
frame eigensolutions are used as initial condition of the perturbation equations. Further-
more, a method based on the Fourier transform of the two-dimensional spatio-temporal
wave packets is introduced in order to reconstruct amplification curves. These curves rep-
resent a practical tool for stability analysis of flows with convective instabilities and, in par-
ticular, are key for the eN method, one of the most useful engineering tools for the prediction
of laminar-turbulent transition.

2.7.1. Perturbation energy
The perturbation energy E is a scalar quantity that allows casting the perturbation field q ′,
made of several components that do not necessarily evolve the same way, into one represen-
tative variable. Hence, on the one hand, the perturbation energy provides a simple measure
of the overall amplification of a disturbance in a flow field and, on the other hand, it allows
deriving a balance equation (see §2.8) that can be used to determine what mechanisms pro-
duce perturbation energy and how the energy transfers between perturbation components.
The perturbation energy includes all variables that are governed by a transport equation and
is given as the integral

E(tf) =
1

2

∫
Vf

q ′H
f M q ′

f dVf , (2.56)

over a generic, finite volume Vf with infinitesimal volume elements dVf = dxf dy dz. For com-
pressible flows, the energy weight M is given by

M =M (xf, y, z) = diag

(
ρ,ρ,ρ,

ρ

γEcT
,

T

γM 2ρ

)
, (2.57)

as originally formulated by Chu (1965) for the perturbation field q ′
f = [u′ , v ′ , w ′, ,T ′ ,ρ′]T

f , i.e.
density formulation of the equations. Instead, if the perturbation equations are formulated
with the pressure perturbation (Groot, 2013), i.e., using q ′′′

f = [u′ , v ′ , w ′ ,T ′ , p ′]T
f , the energy-
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weight M is given by

M =M (xf, y, z) =



ρ 0 0 0 0

0 ρ 0 0 0

0 0 ρ 0 0

0 0 0 ρ

EcT
− 1

T

0 0 0 − 1
T

1
P


, (2.58)

and is not diagonal anymore. The two energy norms are nevertheless equivalent (see Ap-
pendix A). With the weight M , the perturbation energy E is essentially made of two different
components such that E = Ek +Ep (Chu, 1965). The first component is the kinetic energy
Ek that only involves the velocity components (first three rows of M ) and the second is the
generalized potential energy Ep that only considers the thermodynamic variables (last two
rows of M ).

In incompressible flows, only transport equations for the velocity components are con-
sidered and this implies that, in the absence of pressure imposed at boundaries, the pressure
work is conservative and only bridges the energy transfer between velocity components via
the continuity equation. Hence, the pressure perturbation does not have a net contribution
to the perturbation energy and, as originally suggested by Reynolds (1895), the perturbation
energy in incompressible flows reduces to the perturbation kinetic energy

Ei (t ) =
∫
Vf

(|u′
f|2 +|v ′

f|2 +|w ′
f|2

)
dVf . (2.59)

This is equivalent to considering M = diag(1,1,1,0), which has constant coefficients in
space, in contrast to the compressible formulations.

For both compressible and incompressible flows, the perturbation energy is based on
the definition of a matrix containing multiplicative coefficients that can be arbitrarily de-
fined as long as the resulting quantity is positive definite and a monotone, non-increasing
function in time if no external source is involved (Chu, 1965; Hanifi et al., 1996; Padilla Mon-
tero & Pinna, 2021). Hence, the energy computed in different systems, i.e., computed with
different energy weight matrices M , is often inconsistent from one system of equations to
another and quantitative comparisons are often not possible. In the context of perturbation
energy in perfect-gas flows, the spatially-dependent matrix (2.57) that was originally defined
by (Chu, 1965) is, however, the most used in the literature.

If the modal ansatz (2.19) in the stationary frame of reference is considered, the pertur-
bation energy corresponding to a single eigensolution can be expanded as

E(tf) =
2π

β
e(2ωf,i tf)

Ï
q̃ H

f M q̃f dxf dy = 4π

β
e(2ωf,i tf)Ẽf , (2.60)

where the integration in the spanwise direction yields a constant contribution of spanwise
wavelength β to the perturbation energy. It is therefore more appropriate to omit the span-
wise direction and restrict the attention to the in-plane energy only. The absolute measure
of energy as given by equation (2.60) is, however, often not of interest since the perturbation
problems are linear, i.e., independent of the magnitude of the perturbation. Instead, it is
much more relevant to consider the evolution of the perturbation energy, i.e., to consider an
energy-based temporal growth rate as introduced in the next section.
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2.7.2. Perturbation energy growth and eigengrowth
In order to obtain a global measure of the temporal growth rate in the stationary frame of
reference, the temporal derivative of the energy is considered,

dE

dtf
(tf) =R

{∫
Vf

q ′H
f M

∂q ′
f

∂tf
dVf

}
=R

{∫
V

q ′HM

(
∂q ′

∂t
− cf

∂q ′

∂x

)
dV

}
, (2.61)

where R{·} represents taking the real part. This equation holds for all times. Considering
tf = 0 and the moving-frame modal ansatz (2.44) for q ′ in equation (2.56), the initial energy
growth rate can be written as

σ(tf = 0) = 1

2E

dE

dtf
(tf = 0) =ωi − 1

2Ẽ
R

{
cf

Ï
q̃ HM

∂q̃

∂x
dx dy

}
, (2.62)

with Ẽ = 1/2
Î

q̃ HM q̃ dx dy the perturbation energy of a single eigensolution in the mov-
ing frame. The presence of the cf-term in equation (2.62), but also in the imaginary part of
the Doppler shift equation (2.54), begs the question of an artificial contribution of the mov-
ing frame to the net energy growth when introducing a moving-frame eigenfunction in the
stationary frame of reference. In order to assess the impact of the second right-hand-side
term in equation (2.62) on the energy growth, this term is divided into boundary and interior
contributions through integration by parts in the streamwise direction:

I :=
Ï

q̃ HM
∂q̃

∂x
dx dy =

∫
y

q̃ HM q̃ dy
∣∣∣xout

xin

−
Ï

q̃ H ∂M

∂x
q̃ dx dy −

Ï
∂q̃ H

∂x
M q̃ dx dy

=
∫

y
q̃ HM q̃ dy

∣∣∣xout

xin

−
Ï

q̃ H ∂M

∂x
q̃ dx dy − I∗ . (2.63)

Inserting the above relation back into equation (2.62), the relationship between the instan-
taneous perturbation growth and eigengrowth can be obtained as follows

σ(tf = 0) =ωi − cf

4Ẽ
(I + I∗)

=ωi + cf

4Ẽ

Ï
q̃ H ∂M

∂xf
q̃ dxf dy − cf

4Ẽ

∫
y

q̃ HM q̃ dy
∣∣∣xout

xin︸ ︷︷ ︸
Boundary term ωi ,io

. (2.64)

If all eigenfunctions are small at the in-/outflow boundaries, i.e., if eigenfunctions are lo-
calized in the streamwise direction, the boundary term ωi ,io vanishes and the growth of
the eigensolutions obtained in the moving frame of reference corresponds to the instan-
taneous growth of the perturbation in the fixed frame of reference, up to a corrective factor
induced by a streamwise variation of the M -matrix. According to equation (2.64), the cor-
rected eigengrowth rate can be defined as

ωi ,c =ωi + cf

4Ẽ

Ï
q̃ H ∂M

∂xf
q̃ dxf dy , (2.65)

and is only different from ωi if the M -matrix has x-dependent coefficients.
A necessary condition to ensure domain-independence of an eigensolution from a com-

putational perspective is to be able to make all components of q̃ arbitrarily small at the trun-
cation boundaries, by placing the truncation boundaries far enough away from the region
of interest for example. The boundary term in equation (2.64) is a relevant measure of the
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amplitude of the eigenfunctions at the boundaries. Since the choice of M is arbitrary in the
previous development, it can be chosen such that it selects individual eigenfunctions from
q̃ . If all eigenfunctions in q̃ are negligibly small at the boundaries, i.e., if they are all local-
ized in the interior of the domain, the boundary term in equation (2.64) is always inactive.
In that case, the instantaneous perturbation growth at tf = 0 equalsωi for all eigenfunctions
corresponding to that solution when M is constant. If M depends on the streamwise coor-
dinate, a constant correction (see equation (2.65)) must be taken into account such that the
instantaneous perturbation growth at tf = 0 equals ωi ,c . The two cases, i.e., with constant
and non-constant M matrices, will be considered in practical applications in Chapters 4
and 5, respectively.

2.7.3. Spatial amplification and N -factor curves
With the present formulation of the problem, the solutions take the form of two-dimensional
wave packets having characteristics distributed in space, which can be inconvenient to ana-
lyze. In order to ease the representation of these wave packets, the perturbation energy (2.56)
is now associated with the spatial coordinates

xE (tf)
(a)=

∫
Vf

xf q ′H
f M q ′

f dVf∫
Vf

q ′H
f M q ′

f dVf

yE (tf)
(b)=

∫
Vf

y q ′H
f M q ′

f dVf∫
Vf

q ′H
f M q ′

f dVf

, (2.66)

that are defined, respectively, as the x(f)- and y-energy centroids of the wave packet, in the
fixed frame of reference. Hence, the temporal evolution of the perturbation energy can be
translated into a spatial evolution and the characteristics of a temporal wave packet, such
as its energy growth rate, can be easily analyzed in space. In order to quantify the instan-
taneous velocity with which the wave packets propagate in the streamwise direction, the
group speed cg is defined as

cg(tf) =
dxE

dtf
. (2.67)

As later illustrated in Chapter 4 (§4.3), if the eigenfunctions corresponding to a given eigen-
solution are localized, then cg(tf) → cf as tf → 0.

In addition to the energy centroids, the streamwise and wall-normal extrema are consid-
ered to assess the spatial extent of the wave packets. These locations are determined by the
locations where the spatial distribution of energy has decayed by a factor 10−3 away from
the maximum. This corresponds to the xf and y-locations where the criteria∫

q̃ HM q̃ dy(∫
q̃ HM q̃ dy

)
max

(a)= 10−3 and

∫
q̃ HM q̃ dx(∫
q̃ HM q̃ dx

)
max

(b)= 10−3 , (2.68)

are satisfied, respectively. In this work, the upstream and downstream extrema are denoted
by xu and xd, respectively, while the near-wall and freestream bounds of the wave packet are
labeled yw and ye, respectively.

While the perturbation energy, spatial centroids and extrema provide information re-
garding the global evolution of the wave packet, each single frequency constituting the wave
packet can possibly be amplified differently in space and time. Therefore, when it comes
to identifying the most amplified (range of) frequencies, it is relevant to decompose the
wave packet into its individual frequency components. Considering individual frequencies
is equivalent to PSE and LST, which focus on wave-train-type instabilities only, but now with
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the superior elliptic representation that is inherently provided by the two-dimensional per-
turbation problem (2.13). In order to decompose the wave packet, the perturbation energy
per individual frequencyΩf is defined as

Ê(xf;Ωf) =
1

2

∫
q̂(xf, y ;Ωf)

HM (xf, y) q̂(xf, y ;Ωf)dy , (2.69)

where the variables with hats, q̂ , correspond to the Fourier transform of the reconstructed
perturbation variables, q ′,

q̂(xf, y ;Ωf) =
∫ Ts

0
q ′

f(xf, y, z = 0, tf)e+iΩftf dtf, Ωf ∈R , (2.70)

with the sampling period Ts . The real-valued angular frequency Ωf is introduced in order
to distinguish the Fourier-transform frequency from the eigenvalues. The spatial evolution
of the Fourier coefficients can be assessed by reconstructing the individual amplification
∆N -factor curves and the streamwise wavenumber α based on Ê(xf;Ωf):

∆N (xf,Ωf) =
1

2
ln

Ê(xf;Ωf)

Ê0(xf,0;Ωf)
, α(xf,Ωf) =− i

2

∂ ln Ê(xf;Ωf)

∂xf
, (2.71)

with xf,0(Ωf) a streamwise reference location. Preferably, the reference location xf,0(Ωf) is
the location where the spatial growth rate αi is zero. In order to determine the maximum
amplification at each streamwise location, the envelope

∆Nmax(xf) = max
Ωf

(∆N (xf,Ωf)) , (2.72)

is evaluated. Note that an amplification ∆N -curve that is normalized based on its corre-
sponding neutral-growth location is a so-called N -factor curve. If all curves are normalized
this way, their envelope can be directly used in the eN method. With the tools presented
above, the moving-frame approach can be applied to various flow configurations and pro-
vides practical flow-stability information that can be interpreted in a similar manner as with
the traditional LST and PSE methods.

2.8. Physical mechanisms with growth-rate decomposition
The underlying mechanisms of an instability can be identified by decomposing the growth
rate into its individual contributions. In particular, Chu (1965) derived an equation that de-
scribes the (temporal) evolution of the perturbation energy and each term of this equation
can be used to assess its contribution to the overall growth of the perturbation energy. Later,
Padilla Montero & Pinna (2021) extended the work of Chu (1965) to three-dimensional per-
turbations in a two-dimensional base flow in the y z-plane. One particular aspect of this
extended equation is that it accounts for boundary terms that are non-zero if the pertur-
bations are not localized in the domain. In this thesis, the perturbation energy equation is
formulated in the x y-plane and, although only localized solutions are presently sought and
so the contributions from the boundaries must vanish, these boundary terms are kept in the
equation for sake of completeness.

Following Chu (1965), the perturbation energy equation can be obtained by considering
the temporal derivative of the energy (2.61) alongside the linearized Navier-Stokes equa-
tions (2.13). Note that, while the scaling of each individual equations of the system, i.e.,
momentum, energy and continuity equations, can be arbitrary in the perturbation equa-
tions (2.13), the equations must be scaled appropriately when deriving the energy equation
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in order to ensure that the energy fluctuations from one equation to another are compati-
ble. In order to be consistent with the definition of the perturbation energy, the linearized
Navier-Stokes equations are scaled such that B =M and the perturbation energy equation
in the stationary frame of reference is thus given by

dE

dtf
=R

{∫
Vf

q ′H
f M

∂q ′
f

∂tf
dVf

}
=R

{∫
Vf

q ′H
f L q ′

fdVf

}
. (2.73)

Upon assuming the spanwise direction as homogeneous and factoring out the temporal
growth rate σ(tf) from the stationary-frame perturbation, the temporal evolution of the per-
turbation energy in the x y-plane is given by

σ(tf) =
1

2E

dE

dtf
= 1

2Ĕ

Ï
q̆ H

f A q̆fdxf dy , (2.74)

with A from the stability equation (2.20), q̆f(xf, y, tf) =R
{

q ′
f(xf, y, z = 0, tf)

}
e(−σ(tf)tf) and Ĕ =

1/2
Î

q̆ H
f M q̆f dxf dy . The right-hand-side term of equation (2.74) allows decomposing the

temporal growth rate into its individual contributing terms. Following the same procedure
for the perturbation energy of moving-frame eigensolutions, the temporal eigengrowth ωi

can be decomposed as follows

ωi = 1

2E

dE

dt
= 1

2Ẽ
R

{Ï
q̃ HA q̃dx dy + cf

Ï
q̃ HM

∂q̃

∂x
dx dy

}
, for t → 0, (2.75)

which, up to the contribution of the moving-frame advection, is similar to equation (2.74).
In order to interpret the individual terms that are gathered in the right-hand side of equa-
tions (2.74) and (2.75), the contribution to the temporal growth rate is decomposed into
different categories

σ(tf) = Rstress︸ ︷︷ ︸
Reynolds

stress

+ Rheat︸ ︷︷ ︸
Reynolds
heat flux

+ AU + AV + AW︸ ︷︷ ︸
Advection

+Dfrict. +Dcond.︸ ︷︷ ︸
Dissipation

+P +Fb
tf=0= ωi − Acf , (2.76)

where the Reynolds-stress and Reynolds-heat-flux production (R), the advection (A) and
the dissipation (D) terms usually have the largest contribution to the perturbation growth.
The terms included in Fb are boundary-forcing terms, that must vanish in the context of
the present work, and the contribution P includes all the remaining production terms that
contribute to a much smaller extent (by at least one order of magnitude) to the perturbation
energy than the other terms explicitly written in equation (2.76). This has been observed by
Chu (1965), Weder et al. (2015) and Padilla Montero & Pinna (2021), as well as in this thesis,
for all considered flow applications. Note that, the temporal eigengrowth can be decom-
posed in a similar manner such that, when tf = 0, ωi =σ(0)+ Acf .

The Reynolds-stress term, denoted by Rstress, is commonly interpreted as producing a
velocity perturbation through the advection of the base-flow velocity by the velocity pertur-
bations. The Reynolds-stress term includes the following contributions

Rstress
(a)= Rŭ∗ v̆ +R|ŭ|2 +Rv̆∗ŭ +R|v̆ |2 +Rw̆∗ŭ +Rw̆∗ v̆ , (2.77)
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Rŭ∗ v̆
(b)= −R

{Ï
ŭ∗v̆ρ

∂U

∂y

dxf dy

Ĕ

}
, R|ŭ|2

(c)= −R

{Ï
|ŭ|2ρ ∂U

∂xf

dxf dy

Ĕ

}
,

Rv̆∗ŭ
(d)= −R

{Ï
v̆∗ŭρ

∂V

∂xf

dxf dy

Ĕ

}
, R|v̆ |2

(e)= −R

{Ï
|v̆ |2ρ ∂V

∂xf

dxf dy

Ĕ

}
,

Rw̆∗ŭ
(f)=−R

{Ï
w̆∗ŭρ

∂W

∂xf

dxf dy

Ĕ

}
, Rw̆∗ v̆

(g)= −R

{Ï
w̆∗v̆ρ

∂W

∂y

dxf dy

Ĕ

}
.

A similar interpretation can be made for the Reynolds-heat-flux production terms, denoted
by Rheat, that produce a specific disturbance entropy

γM2 s̆ = γ

γ−1

T̆

T
− p̆

P
= 1

γ−1

T̆

T
− ρ̆

ρ
, (2.78)

by in-plane advection effects of the base-flow temperature layer. The Reynolds-heat-flux
production terms can be decomposed into

Rheat
(a)= R s̆∗ŭ +R s̆∗ v̆ , (2.79)

R s̆∗ŭ
(b)= −R

{Ï
s̆∗ŭρ

∂T

∂xf

dxf dy

Ĕ

}
, R s̆∗ v̆

(c)= −R

{Ï
s̆∗v̆ρ

∂T

∂y

dxf dy

Ĕ

}
.

Since the perturbations are mostly confined in the shear-layer, which has a much smaller
characteristic length scale in the wall-normal direction than in the streamwise direction, the
quantities involving the wall-normal derivatives are often much larger than the streamwise-
derivative terms. Hence, the Reynolds-stress and Reynolds-heat-flux terms that involve
the wall-normal derivative of the base-flow quantities often prevail over the terms involv-
ing the derivative in the x-direction. The wall-normal Reynolds stress and heat-flux orig-
inate in the linearization of the advection terms of the Navier-Stokes equations and they
involve the wall-normal velocity perturbation component, that thus moves (infinitesimally)
the base-flow quantities upward, away from the wall. For this reason, each of these wall-
normal-based Reynolds production terms are related to the so-called lift-up effect that is a
convective-like mechanism often observed in non-modal perturbation analysis (Schmid &
Henningson, 2001).

The terms denoted by A contribute to the energy growth through the advection of the
perturbations by one of the base-flow velocity components (or by the moving frame of ref-
erence) and are given by

AU
(a)= −R

{Ï
U q̆ HM

∂q̆

∂xf

dxf dy

Ĕ

}
, AV

(b)= −R

{Ï
V q̆ HM

∂q̆

∂y

dxf dy

Ĕ

}
,

AW
(c)= −R

{Ï
βW q̆ HM q̆

dxf dy

Ĕ

}
, Acf

(d)= +R

{Ï
cfq̆ HM

∂q̆

∂xf

dxf dy

Ĕ

}
.

(2.80)

For the integrands of these contributions to be locally positive, the projection of the vector
−q̆ HM ∂q̆/∂xf, j onto the base-flow velocity vector [U ,V ,W ]T must be positive. A positive
value can be interpreted as that the base-flow velocity field stretches the perturbation in
space. The moving-frame advection term, equation (2.80d), vanishes for the perturbations
q̆ because they are only evaluated in the stationary frame of reference (cf = 0). However,
when considering the moving-frame eigenfunctions, i.e., q̆ = q̃ for tf = 0 in equation (2.76),
the moving-frame advection term can be non-zero if the M -matrix is not constant in the
x-direction.
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The energy growth can be attenuated through the dissipation by friction (Dfrict.) or con-
duction (Dcond.), which are both characterized by terms involving the second derivatives of
the velocity or temperature perturbations, respectively. Following Chu (1965), these terms
are hereafter integrated by parts in order to introduce boundary terms and simplify their in-
terpretation. This can be exemplified by considering the streamwise velocity perturbation
component of the x-momentum perturbation equation

Ï
ŭ∗

(
µ
∂2ŭ

∂y2 + dµ

dT

∂T

∂y

∂ŭ

∂y

)
dxf dy

Ĕ
=

[∫
µŭ∗ ∂ŭ

∂y

dxf

Ĕ

]ye

0︸ ︷︷ ︸
part of Fb

−
Ï

µ

∣∣∣∣∂ŭ

∂y

∣∣∣∣2 dxf dy

Ĕ︸ ︷︷ ︸
part of Dfrict.

. (2.81)

The first right-hand-side term is a boundary term that belongs to Fb, and thus vanishes for
localized perturbations, while the second term is part of the internal friction. The above ex-
ample of integration by parts holds for all second derivative terms of the momentum and
energy equations. This comes from the fact that each single term with a second derivative
of the velocity or temperature perturbations always appears in combination with a term
involving the first derivative of the viscosity or conductivity coefficients. Applying the inte-
gration by parts allows decomposing, on the one hand, the friction-induced dissipation into
different contributions as

Dfrict.
(a)= Dfrict.,x +Dfrict.,y +Dfrict.,z +Dfrict.,cross , (2.82)

Dfrict.,x
(b)= − 1

Re

Ï [
(2µ+λ)

∣∣∣∣ ∂ŭ

∂xf

∣∣∣∣2

+µ
(∣∣∣∣ ∂v̆

∂xf

∣∣∣∣2

+
∣∣∣∣∂w̆

∂xf

∣∣∣∣2)] dxf dy

Ĕ
,

Dfrict.,y
(c)= − 1

Re

Ï [
(2µ+λ)

∣∣∣∣∂v̆

∂y

∣∣∣∣2

+µ
(∣∣∣∣∂ŭ

∂y

∣∣∣∣2

+
∣∣∣∣∂w̆

∂y

∣∣∣∣2)] dxf dy

Ĕ
,

Dfrict.,z
(d)= −β

2

Re

Ï [
(2µ+λ) |w̆ |2 +µ(|ŭ|2 +|v̆ |2)

] dxf dy

Ĕ
,

Dfrict.,cross
(e)= − 1

Re
R

{Ï
λ

[
∂ŭ∗

∂xf

(
∂v̆

∂y
+ ∂w̆

∂z

)
+ ∂v̆∗

∂y

(
∂ŭ

∂xf
+ ∂w̆

∂z

)
+ iβw̆∗

(
∂ŭ

∂xf
+ ∂v̆

∂y

)]
dxf dy

Ĕ

}
,

and, on the other hand, the dissipation of the perturbation energy by conductive heat trans-
fer as

Dcond. =− 1

EcPrRe

Ï [∣∣∣∣ ∂T̆

∂xf

∣∣∣∣2

+
∣∣∣∣∂T̆

∂y

∣∣∣∣2

+β2 ∣∣T̆ ∣∣2

]
dxf dy

Ĕ
. (2.83)

Based on the same argument as for the Reynolds-stress and Reynolds-heat-flux terms, the
dissipation terms involving the second derivative of the perturbations in the wall-normal
direction, i.e., the |∂ • /∂y |2-terms, are usually the most stabilizing contributions in wall-
bounded flows. For this reason, the analysis of the heat-conduction-induced dissipation
can often be reduced to

DT̃ ,y =− 1

EcPrRe

Ï ∣∣∣∣∂T̆

∂y

∣∣∣∣2
dxf dy

Ĕ
, (2.84)

that is usually the largest contribution to equation (2.83). Similarly, equation (2.82c) is also
found to be the largest contribution to equation (2.82a) for all flow cases considered in the
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present work. Hence, considering the individual contributions

Dũ,y
(a)= − 1

Re

Ï
µ

∣∣∣∣∂ŭ

∂y

∣∣∣∣2 dxf dy

Ĕ
,

D ṽ ,y
(b)= − 1

Re

Ï
(2µ+λ)

∣∣∣∣∂v̆

∂y

∣∣∣∣2 dxf dy

Ĕ
, (2.85)

Dw̃ ,y
(c)= − 1

Re

Ï
µ

∣∣∣∣∂w̆

∂y

∣∣∣∣2 dxf dy

Ĕ
,

instead of the term (2.82c) as a whole arguably simplifies the physical interpretation of the
wall-normal friction-induced dissipation Dfrict.,y . These aspects are clarified in Chapters 4
and 5 where the different contributions to the energy growth are quantified for different flow
cases.

Although the P term in equation (2.76) contributes to a much smaller extent to the per-
turbation energy than most of the terms presented above, the complete expansion of the
remaining production term is given in the following for sake of completeness:

P
(a)= Pmom +P∇P +Ps,T +Pdil +PQ , (2.86)

Pmom
(b)= −R

{Ï
ŭ∗ρ̆U

∂U

∂xf

dxf dy

Ĕ
+

Ï
ŭ∗ρ̆ V

∂U

∂y

dxf dy

Ĕ

}

−R

{Ï
v̆∗ρ̆U

∂V

∂xf

dxf dy

Ĕ
+

Ï
v̆∗ρ̆ V

∂V

∂y

dxf dy

Ĕ

}

−R

{Ï
w̆∗ρ̆U

∂W

∂xf

dxf dy

Ĕ
+

Ï
w̆∗ρ̆ V

∂W

∂y

dxf dy

Ĕ

}
,

P∇P
(c)= −R

{Ï
ρ̆∗ŭ

1

ρ

∂P

∂xf

dxf dy

Ĕ
+

Ï
ρ̆∗v̆

1

ρ

∂P

∂y

dxf dy

Ĕ

}
,

Ps,T
(d)= −R

{Ï
T̆ ∗ρ̆

U

γEcT

∂T

∂xf

dxf dy

Ĕ
+

Ï
T̆ ∗ρ̆

V

γEcT

∂T

∂y

dxf dy

Ĕ

}
,

Pdil
(e)= −R

{Ï
T̆ ∗p̆

1

T

∂U

∂xf

dxf dy

Ĕ
+

Ï
T̆ ∗p̆

1

T

∂V

∂y

dxf dy

Ĕ

}

−R

{Ï
|ρ̆|2 T

γM2P

∂U

∂xf

dxf dy

Ĕ
+

Ï
|ρ̆|2 T

γM2P

∂V

∂y

dxf dy

Ĕ

}
,

PQ
(f)=−R

{Ï
T̆ ∗Q̆

T

dxf dy

Ĕ

}
.

The disturbance heat Q̆ per unit volume, defined by Chu (1965) and Padilla Montero & Pinna
(2021), includes all contributions involving terms R

{
T̆ ∗ŭ

}
, R

{
T̆ ∗v̆

}
and R

{
T̆ ∗w̆

}
that mul-

tiply (the derivatives of) the viscosity and conductivity coefficients. Hence, the specific dis-
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turbance heat Q̆ writes

Q̆ = 1

Re

(
2µ− dµ

dT
T

)(
2
∂U

∂xf

∂ŭ

∂xf
+ ∂U

∂y

(
∂ŭ

∂y
+ ∂v̆

∂xf

)
+ ∂V

∂xf

(
∂ŭ

∂y
+ ∂v̆

∂xf

)
+2

∂v̆

∂y

∂V

∂y

+∂W

∂xf

(
iβ ŭ + ∂w̆

∂xf

)
+ ∂W

∂y

(
iβ v̆ + ∂w̆

∂y

))

+ 1

Re

(
2λ− dλ

dT
T

)(
∂U

∂xf
+ ∂V

∂y

)(
∂ŭ

∂xf
+ ∂v̆

∂y
+ iβ w̆

)

+ 1

Re

dµ

dT
T̆

(
2

(
∂U

∂xf

)2

+
(
∂U

∂y

)2

+2
∂U

∂y

∂V

∂xf
+

(
∂V

∂xf

)2

+2

(
∂V

∂y

)2

+
(
∂W

∂xf

)2

+
(
∂W

∂y

)2)

+ 1

Re

dλ

dT
T̆

((
∂U

∂xf

)2

+2
∂U

∂xf

∂V

∂y
+

(
∂V

∂y

)2)

+ 1

EcPrRe

[
∂

∂xf

(
T̆
∂k

∂T

∂T

∂xf

)
+ k

T

∂T

∂xf

∂T̆

∂xf
+ ∂

∂y

(
T̆
∂k

∂T

∂T

∂y

)
+ k

T

∂T

∂y

∂T̆

∂y

]
. (2.87)

Since obtaining Q̆ in this form requires integrating by part several terms, boundary terms
emerge that are related to forces, pressure and heat fluxes imposed at the domain bound-
aries. These boundary terms must all vanish for localized perturbations and are all included
into Fb that is given by

Fb
(a)= R {Fτ}+R

{
Fp

}+R
{
Fq

}+R
{
FµT

}
, (2.88)

Fτ
(b)=

∫
(ŭ∗τ̆xx )

∣∣
x

dy

Ĕ
+

∫
(v̆∗τ̆y y )

∣∣
y

dxf

Ĕ
+

∫
(ŭ∗τ̆x y )

∣∣
y

dxf

Ĕ

+
∫

(v̆∗τ̆x y )
∣∣

x

dy

Ĕ
+

∫
(w̆∗τ̆xz )

∣∣
y

dxf

Ĕ
+

∫
(w̆∗τ̆y z )

∣∣
x

dy

Ĕ
,

Fp
(c)=

∫
(p̆∗ŭ)

∣∣
x

dy

Ĕ
+

∫
(p̆∗v̆)

∣∣
y

dxf

Ĕ
,

Fq
(d)=

∫
1

T
( T̆ ∗q̆x )

∣∣
x

dy

Ĕ
+

∫
1

T
( T̆ ∗q̆y )

∣∣
y

dxf

Ĕ
,

FµT

(e)=
∫ [

T̆ ∗ŭ

(
2

dµ

dT

∂U

∂xf
+ dλ

dT

∂U

∂xf
+ dλ

dT

∂V

∂y

)
+ T̆ ∗v̆

(
dµ

dT

∂U

∂y
+ dµ

dT

∂V

∂xf

)
+ T̆ ∗w̆

(
dµ

dT

∂W

∂xf

)]∣∣∣∣∣
x

dy

Ĕ

+
∫ [

T̆ ∗ŭ

(
dµ

dT

∂U

∂y
+ dµ

dT

∂V

∂xf

)
+ T̆ ∗v̆

(
dλ

dT

∂U

∂xf
+2

dµ

dT

∂V

∂y
+ dλ

dT

∂V

∂y

)
+ T̆ ∗w̆

(
dµ

dT

∂W

∂y

)]∣∣∣∣∣
y

dxf

Ĕ
,

with the disturbance shear stresses

τ̆xx
(a)= 1

Re

[
(2µ+λ)

∂ŭ

∂xf
+λ

(
∂v̆

∂y
+ iβw̆

)]
, τ̆x y

(b)= µ

Re

(
∂ŭ

∂y
+ ∂v̆

∂xf

)
,

τ̆y y
(c)= 1

Re

[
(2µ+λ)

∂v̆

∂y
+λ

(
∂ŭ

∂xf
+ iβw̆

)]
, τ̆xz

(d)= µ

Re

(
iβŭ + ∂w̆

∂xf

)
, (2.89)

τ̆zz
(e)= 1

Re

[
(2µ+λ)iβw̆ +λ

(
∂ŭ

∂xf
+ ∂v̆

∂y

)]
, τ̆y z

(f)= µ

Re

(
iβv̆ + ∂w̆

∂y

)
,
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and the disturbance heat fluxes

q̆x
(a)= − k

EcPrRe

∂T̆

∂xf
, q̆y

(b)= − k

EcPrRe

∂T̆

∂y
, q̆z

(c)= −iβ
k

EcPrRe
T̆ . (2.90)

Considering all terms independently allows making an energy budget that can be used to
identify the most critical mechanisms that are inherent to an instability. Usually, this trans-
lates into focusing on the three contributions R, A and D that are often at least one order
of magnitude larger than the other terms. Note that, for incompressible cases, the number
of terms can be drastically reduced since all contributions associated with the temperature
(or entropy) perturbation vanish. Therefore, only Reynolds-stress Rstress, advection A and
friction-induced-dissipation (Dfrict.) terms are involved in the instability mechanisms of in-
compressible flows. A further theoretical discussion regarding the different contributions in
incompressible (free-shear-layer) flows was proposed by Groot (2018). In the present con-
text, the perturbation energy budget is considered in Chapters 4 and 5 to determine the un-
derlying mechanisms of convective instabilities in the incompressible boundary layer and
the shock-wave/boundary-layer interaction, respectively.
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3
Numerical methodology

In this chapter, the numerical methodologies that are used to discretize and solve the eigen-
value and initial-value problems are presented. First, the finite-difference and pseudospectral-
collocation methods are detailed for the spatial discretization of the equations and the deriva-
tion of the differentiation matrices, that are used to replace the partial derivative operators in
the equations, is discussed. Two different mapping formulas are then proposed to map the
discrete points to the physical space when using pseudospectral collocation methods. Sec-
ondly, the approaches for solving the eigenvalue and initial-value problems are presented
and some specific characteristics related to the spatial integration of the Parabolized Stabil-
ity Equations (PSE) are discussed. Finally, an overview of the practical aspects regarding the
implementation of these numerical methodologies is proposed.

3.1. Spatial discretization
The finite-difference and pseudospectral Chebyshev-Gauss-Lobatto methods are used to
discretize the partial differential equations in space. The major difference between the two
methods is that the former is built on compact support while the latter relies on global func-
tions that span the entire domain. On the one hand, finite-difference approaches provide
flexibility regarding the grid geometry and allow managing the computational requirements
in a relatively easy way. However, this often comes at the cost of accuracy and undesir-
able oscillatory behavior close to boundaries (Runge phenomenon). On the other hand, the
Chebyshev-Gauss-Lobatto method is computationally more expensive but allows minimiz-
ing the discretization error and the Runge phenomenon. Furthermore, while the Chebyshev-
Gauss-Lobatto is appropriate to discretize eigenvalue problems, the fact that each individ-
ual grid point depends on all other points introduces substantial difficulties when it comes
to solving initial-value problems. In this case, it is preferred to use finite-difference meth-
ods that evaluate the derivatives at one discrete location by using only a few neighboring
points. Therefore, both Chebyshev-Gauss-Lobato and finite-difference methods are con-
sidered depending on the application. This section presents the two approaches and their
corresponding differentiation matrices.

3.1.1. Polynomial interpolation and differentiation matrices
In its general formulation, a polynomial differentiation approach allows obtaining the coef-
ficients of the differentiation matrices for a discrete grid with Nξ distinct nodes that are ar-
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bitrarily spaced. For the Chebyshev-Gauss-Lobato method, a global span of Nξ nodes with a
specific distribution is considered to minimize the discretization error. For finite-difference
approaches, the polynomial differentiation is first considered on a subset of nξ < Nξ arbi-
trarily spaced nodes and the global differentiation matrix is then constructed after isolating
the nodes of interest in each subdomains. This specific aspect will be discussed in §3.1.3.
To keep the formulation general, let first represent an arbitrary function f (ξ) on Nξ distinct
discrete nodes ξ j with the Lagrange interpolating polynomials as

f (ξ) ≈ fNξ
(ξ) =

Nξ∑
j=1

ψ j (ξ) f j , (3.1)

where f j = f (ξ j ) is the value taken by the function f at the discrete nodes ξ j and fNξ
(ξ) is the

interpolated function. The functions ψ j (ξ) are trial functions and span Nξ discrete nodes.
Considering collocation methods, it is required that ψ j (ξk ) = δ j k and it can be satisfied by
considering the basis polynomials of degrees j −1 = 0, ..., Nξ−1:

ψ j (ξ) =
Nξ∏

m=1
m 6= j

(
ξ−ξm

ξ j −ξm

)
, j = 1,2, ..., Nξ . (3.2)

Evaluating the l-derivative of the interpolant fNξ
(ξ) with respect to ξ at the discrete point ξk

yields

f (l )
Nξ

(ξk ) = d l

dξl

(
Nξ∑
j=1

ψ j (ξ) f j

)
ξ=ξk

=
Nξ∑
j=1

(
d l

dξl
ψ j (ξ)

)
ξ=ξk

f j , (3.3)

or, in matrix form,
f(l ) = D(l )

ξ
f , (3.4)

with the coefficients

D (l )
ξ,k, j =ψ(l )

j (ξk ) = d l

dξl
ψ j (ξk ) . (3.5)

The matrix elements D (l )
ξ,k, j form together the differentiation matrix and are independent of

the function f . Note that, in the above developments, the distribution of discrete point ξ j

is arbitrary and their choice become relevant only when selecting a particular spatial dis-
cretization scheme. With this general formulation, a differentiation matrix can be built by
only knowing the distribution of discrete nodes and the interpolating functions. The dif-
ferentiation matrix allows obtaining, a posteriori, the derivative of any arbitrary function f
on a given grid and can be used in place of (partial) differential operators when discretizing
(partial) differential equations.

In order to deal with two-dimensional flows, the polynomial interpolation is extended to
a second dimension η, that comprises Nη distinct discrete nodes, and the interpolant (3.1)
thus becomes

f (ξ,η) ≈ fNξ×Nη (ξ,η) =
Nξ∑
j=1

Nη∑
k=1

ψ j (ξ)φk (η) f j ,k , (3.6)

with f j ,k = f (ξ j ,ηk ) andφk (η) the interpolating functions in the second dimension. Accord-
ingly, the derivatives in each dimension are given by

∂ fNξ×Nη (ξ,η)

∂ξ
=

Nξ∑
j=1

Nη∑
k=1

fk, j
∂ψ j (ξ)

∂ξ
φk (η) , (3.7)
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∂ fNξ×Nη (ξ,η)

∂η
=

Nξ∑
j=1

Nη∑
k=1

fk, jψ j (ξ)
∂φk (η)

∂η
, (3.8)

or written in term of the individual differential operators Dξ or Dη in each dimension

∂ fNξ×Nη (ξ,η)

∂ξ
=

Nξ∑
j=1

Nη∑
k=1

Nξ∑
m=1

fk,mDξ,m, jψk (ξ)φk (η) , (3.9)

∂ fNη×Nη (ξ,η)

∂η
=

Nξ∑
j=1

Nη∑
k=1

Nη∑
m=1

Dη,k,m fm, jψ j (ξ)φk (η) . (3.10)

In practice, in order to cast a discretized two-dimensional field fNη×Nη into an actual one-
dimensional vector, the following stack-column vector form is used

fNξ×Nη =



f11 f12 . . . f1Nξ

f21 f22
...

...
. . .

...

fNη1 . . . . . . fNηNξ


=⇒ fNξ×Nη =



f11

...

fNη1

f12

...

fNη2

...

f1Nξ

...

fNηNξ



. (3.11)

and according to equations (3.9) and (3.10), the differentiation matrices can be obtained by
computing the one-dimensional differentiation matrices individually. In fact, considering
the Kronecker product

Am×n ⊗Bp×q =


a11B . . . a1n B

...
. . .

...

am1B . . . amn B

=Cnq×mp , (3.12)

for arbitrary matrices Am×n (with coefficients ai j for 0 < i ≤ m and 0 < i ≤ n) and Bp×q , the
first derivative operators (3.9) and (3.10) can be obtained in matrix form as

2Dξ = Dξ⊗ INη , 2Dη = INξ
⊗ Dη, (3.13)

and the second derivative operators as

2Dξξ = D2
ξ
⊗ INη , 2Dηη = INξ

⊗ D2
η, 2Dξη = Dξ⊗ Dη, (3.14)

with 2D denoting the two-dimensional differentiation matrices. The matrices INξ
and INη

are square identity matrices of sizes Nξ and Nη, respectively. The differentiation matrices
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Figure 3.1: Non-zero coefficients of the two-dimensional Chebyshev pseudospectral differentiation matrices for
Nξ = Nη = 4. See §3.1.2 for detail.

can thus be applied to obtain the spatial derivative of any two-dimensional field fNη×Nη

written in the stack-column form (3.11). For sake of visualization, the non-zero elements
of the pseudospectral differentiation matrices (see later §3.1.2 for detail) with Nξ = Nη =
4 discrete points in each direction are shown in figure 3.1. Finally, note that integration
matrices can be obtained by inverting the differentiation matrices after setting appropriate
conditions.

3.1.2. Chebyshev-Gauss-Lobatto pseudospectral methods
Stability analyses are highly sensitive to the numerically-computed gradient and, for this
reason, the pseudospectral methods are often used in the literature to benefit from their
spectral accuracy and thus minimize the impact of the numerical discretization on the re-
sults. The Chebyshev-Gauss-Lobatto method (Canuto et al., 2006) is the most used method
in the literature when it comes to discretizing stability equations. Since the present work
aims to find setup-independent solutions, using the Chebyshev-Gauss-Lobatto approach
allows isolating the effectiveness of the moving-frame method from the formulation of the
numerical derivatives. The Chebyshev-Gauss-Lobatto approach is based on the Lagrange
polynomials distributed on a cosine grid

ξ j = cos

(
( j −1)π

Nξ−1

)
, j = 1,2, ..., Nξ, (3.15)

in the interval [−1,1]. Considering the Gauss-Lobatto grid distribution, the Lagrange inter-
polating polynomials ψ(ξ) can be rewritten with Chebyshev polynomials. These polynomi-
als are solutions of the Sturm-Liouville equation

(1−ξ2)
∂T 2

Nξ−1

∂ξ2 (ξ)−ξ
∂TNξ−1

∂ξ
(ξ)−N 2

ξTNξ−1 = 0, (3.16)

that, after the change of variables ξ= cos(θ), becomes

d 2TNξ−1

dθ2 + (Nξ−1)2TNξ−1 = 0. (3.17)

Solving equation (3.17) gives the Chebyshev polynomials of the first and second kind

TNξ−1 = cos((Nξ−1)θ), UNξ−1 = 1

Nξ−1

dTNξ−1

dθ
= sin((Nξ−1)θ) , (3.18)
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respectively. Transforming back to the ξ-coordinate system with θ = arccos(ξ), the two poly-
nomials finally read

Tk−1 = cos((k −1)arccos(ξ)), Uk−1 =
sin((k −1)arccos(ξ))

sin(arccos(ξ))
, (3.19)

in the domain ξ ∈ [−1,1]. To circumvent the restrictions on the domain size and on the
cosine node distribution, mappings of the discrete nodes to the physical space are usually
considered (see §3.1.4). Finally, the Lagrange polynomials ψi (ξ) on the Chebyshev-Gauss-
Lobatto nodes become

ψ j (ξ) = (−1) j

c j (Nξ−1)2

(
1−ξ2

ξ−ξ2
j

)
dTNξ−1

dξ
= (−1) j+1

c j (Nξ−1)2

(√
1−ξ2

ξ−ξ2
j

)
UNξ−1, (3.20)

where c j =
 2 for j = 1 or j = Nξ

1 for 2 ≤ j ≤ Nξ−1
,

Taking the derivative of ψ j with respect to ξ at node ξk allows obtaining the coefficients

Dξ,k, j =



Dξ,1,1 = 2(Nξ−1)2+1
6 ,

Dξ,k,k =− ξk

2(1−ξ2
k )

for k = 2, ..., Nξ−1,

Dξ,k, j = ck
c j

(−1)k+ j

ξk−ξ j
for k 6= j k, j = 2, ..., Nξ−1,

Dξ,Nξ,Nξ
=− 2(Nξ−1)2+1

6 ,

. (3.21)

such that the Chebyshev pseudospectral differentiation matrix writes

Dξ =



2(Nξ−1)2+1
6 . . . 2 (−1)1+m

1−ξm
. . . 1

2 (−1)1+Nξ

...
. . . . . . (−1)k+ j

ξk−ξ j

...

1
2

(−1)k+1

ξk−1

... − ξk

2(1−ξ2
j )

... (−1)k+Nξ

ξk+1

... (−1)k+ j

ξk−ξ j
. . .

. . .
...

− 1
2 (−1)Nξ+1 . . . 2 (−1)Nξ+m

1+ξm
. . . − 2(Nξ−1)2+1

6



. (3.22)

The matrix (3.22) and its analogue for η can then be used to compute the derivatives of
any function f (ξ,η) at the collocation nodes. For the two directions, the Chebyshev-Gauss-
Lobatto differentiation method relies on a specific grid distribution that cannot be altered.
The domain and node distribution can thus be very restrictive for real flow applications.
In order to have more flexibility when using pseudospectral differentiations, the method-
specific numerical space can be mapped into a more realistic physical space (see §3.1.4).
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3.1.3. Finite-difference method
The differentiation matrix for a finite-difference method on arbitrarily spaced nodes can be
obtained by considering the polynomial differentiation approach on a stencil with nξ ≤ Nξ

nodes. Fornberg (1988); Welfert (1997) developed an approach that computes the coef-
ficients of a global differentiation matrix to evaluate the derivative of a function f (x) at
discrete, arbitrarily spaced nodes through recursion formulas. Using this approach, the
local polynomial differentiation matrices that evaluate the derivative at ξk on the stencil
[ξ̄1, ..., ξ̄i , ..., ξ̄nξ ] = [ξk−nb , ...,ξk , ...ξk+nf ] with nξ = nb +nf + 1 are built. The values nb and
nf indicate the number of nodes to be considered backward and forward with respect to
ξ j , respectively. For a second-order-accuracy finite difference, a central scheme is given for
nb = nf = 1 while a backward scheme is given for nb = 2 and nf = 0. For each subset, recur-
sion formulas are used to construct the polynomial differentiation matrices in an efficient
way. These formulas are obtained by first rewriting the polynomials (3.2) on a subset in the
form

ψ̄nξ,i (ξ̄) =
Ψ̄nξ (ξ̄)

Ψ̄(1)
nξ (ξ̄i )(ξ̄− ξ̄i )

, (3.23)

with

Ψ̄nξ (ξ̄) =
nξ∏

m=0
(ξ̄− ξ̄m) . (3.24)

The subscript nξ indicates the number of points spanned by the polynomials and all func-
tions associated with a stencil, i.e., that do not have a global span Nξ, are indicated with

an overline. Since Ψ̄nξ (ξ̄) and its first-order derivative Ψ̄(1)
nξ (ξ̄) can be obtained through the

recursion formulas

Ψ̄nξ (ξ̄) = (ξ̄− ξ̄nξ )Ψ̄nξ−1(ξ̄) , (3.25a)

Ψ̄(1)
nξ (ξ̄) = (ξ̄− ξ̄nξ )Ψ̄(1)

nξ−1(ξ̄)+ Ψ̄nξ−1(ξ̄) , (3.25b)

the polynomials become

ψ̄nξ,i (ξ̄) =
ξ̄− ξ̄nξ

ξ̄i − ξ̄nξ

ψ̄nξ−1,i (ξ̄) , (3.26a)

ψ̄nξ,nξ (ξ̄) =
Ψ̄nξ−2(ξ̄nξ−1)

Ψ̄nξ−1(ξ̄nξ )
(ξ̄− ξ̄nξ−1)ψ̄nξ−1,nξ−1(ξ̄) . (3.26b)

These polynomials can be derived with respect to ξ according to equation (3.3) but Welfert
(1997) shows that, when considering an arbitrary node distribution, the diagonal terms can-
not be computed recursively. In order to obtain an actual recursion formula for all coeffi-
cients of the differentiation matrix, Fornberg (1988) instead expanded the basis polynomials
as a Taylor series around ξ̄= ξ̄m such that

ψ̄nξ,i (ξ) =
nξ∑

s=0

(ξ̄− ξ̄m)s

s!
ψ̄(s)

nξ,i (ξ̄m) =
nξ∑

s=0

(ξ̄− ξ̄m)s

s!
D̄ (s)
ξ̄,m,i

. (3.27)

Introducing equation (3.27) into the recursive relation (3.26), the coefficients for the local
polynomial differentiation matrix on the stencil [ξ̄1, ..., ξ̄i , ..., ξ̄nξ ] are then given by

D̄ (l )
ξ̄,m,i

=


1

ξ̄nξ
−ξ̄i

(
(ξ̄i − ξ̄m)D̄ (l )

ξ̄,m,i
− l D̄ (l−1)

ξ̄,m,i

)
if i 6= nξ ,

Ψnξ−2(ξ̄nξ−1)

Ψnξ−1(ξ̄nξ
)

(
l D̄ (l−1)

ξ̄,m,i−1
− (ξ̄nξ−1 − ξ̄m)D̄ (l−1)

ξ̄,m,i−1

)
if i = nξ .

(3.28)
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The coefficients for the derivative at ξk (global grid) correspond to the row m = (nξ+nb −
nf)/2 of the local differentiation matrix D̄ (l )

ξ̄,m,i
. Hence, the global differentiation matrix can

be obtained with

D (l )
ξ,k, j = D̄ (l )

ξ̄,m,i
for



k = 1,2, ..., Nξ ,

j = k −nb, ...,k, ...,k +nf ,

m = (nξ+nb −nf)/2,

i = 1,2, ...nξ ,

(3.29)

where the local D̄ (l )
ξ̄,m,i

must be computed for each subset [ξ̄1, ..., ξ̄i , ..., ξ̄nξ ]. For the interior

of the domain, any value nb and nf can be chosen as long as nb +nb ≤ Nξ − 1. Close to
the boundaries, the scheme can be adapted in two different ways. The first approach is to
maintain the type of the scheme, i.e., central, backward or forward, and then decrease the
order of accuracy, i.e., the stencil length, as ξk approaches the boundary. The second strat-
egy consists in maintaining the order of the scheme by swapping the central point of the
derivatives. Hence, at the inlet and outlet boundaries, the spatial differentiation becomes
mostly forward and backward, respectively. This second approach is presently considered
when using the finite-difference method. Finally, note that the above development can be
extended to the direction η in order to form the two-dimensional differentiation matrices
(see §3.1.1). In the present thesis, the Matlab suite developed by Weideman & Reddy (2000)
has been adapted to generate the finite-difference and Chebyshev differentiation matrices
for the discretization of the two-dimensional partial differential operators in rectangular do-
mains.

3.1.4. Mapping to physical space
Although applicable to finite-difference methods, mapping techniques are mostly relevant
for the Chebyshev-Gauss-Lobatto method that is restricted to the square domain [−1,1]×
[−1,1] in two-dimensional cases. To improve upon this restrictive aspect, two mapping
methods are presently considered. Originally proposed by Malik (1990) and extensively used
for one-dimensional stability analyses of wall-bounded flows in the literature, the Malik’s
mapping relies on a bilinear relationship

x = xi xmax(1+ξ)

xmax −ξ(xmax −2xi )
, (3.30)

that maps the streamwise Chebyshev nodes ξ to the physical nodes x defined in the physical
space [0, xmax]. In particular, equation (3.30) maps half the collocation nodes in [0, xi ] and
the other half in [xi , xmax]. When mapping the coordinate η in the y-direction, the Malik’s
mapping is particularly suitable to enforce a high density of nodes close to the wall, in the
region of the boundary layer. This mapping becomes, however, less relevant when the dy-
namics of interest is not in close proximity with a (physical) border of the domain. Instead,
in order to reduce the amount of nodes at the domain boundaries and increase the grid den-
sity in particular regions of space, a bi-quadratic mapping can be used (Groot et al., 2018).
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The formulation of the mapping for the x-direction is given by

x = xmax
aξ2 +bξ+ c

dξ2 +eξ+ c f
, with



a = (xi 2 −3xi 1) ,

b = 1.5(xi 2 −xi 1) ,

c = 0.5(xi 2 +3xi 1) ,

d = 2(2xi 2 −2xi 1 −xmax) ,

e = 0,

f = 2xmax −xi 2 +xi 1 ,

(3.31)

with 0 < xi 1 < xi 2 < xmax, xi 2 < 9xi 1 and 9xi 2 < xi 1 + xmax. The bi-quadratic mapping di-
vides the domain into three parts ([0, xi 1], [xi 1, xi 2] and [xi 2, xmax]), each containing one
third of the collocation nodes. This mapping is particularly suitable for the laminar shock-
wave/boundary-layer interaction because it allows increasing the grid density around the
shock and the bubble in the x-direction. Note that, for the two aforementioned mappings,
a distribution similar to the original cosine distribution is kept near the boundaries in order
to avoid the Runge phenomenon and maintain the numerical properties of the Chebyshev
collocation method.

The mapping functions are applied to the pseudospectral differentiation matrices in or-
der to obtain the spatial derivatives in the physical space. Using the chain rule, the stream-
wise derivative of an arbitrary function f becomes

∂ f

∂x
= dξ

dx

∂ f

∂ξ
, (3.32)

and the differentiation matrices can thus be mapped by

Dx = T ξ
x Dξ, (3.33)

with T ξ
x the discrete analogue of dξ/dx. Hence, the matrix T ξ

x scales the coefficients of the
initial differentiation matrix according to the mapping functions. The same applies to the
wall-normal direction and higher order differentiation matrices.

3.2. Temporal discretization and integration
After discretization in space, the linearized Navier-Stokes equations (2.13) take the semi-
discrete form

B
∂q ′

f

∂t
= Lq ′

f , (3.34)

with B (Q) and L(Q) the matrix equivalent of the operators B(Q) and L (Q), respectively.
The discrete solutions thus read

qf(xf, y, z, tf) = eB−1Ltf qf,0(xf, y, z) , (3.35)

and are exact solutions in time. If B can be inverted, the exponential matrix eB−1Ltf needs to
be evaluated only once in order to obtain the exact temporal solutions at any time instant.
However, the evaluation of the exponential matrix is numerically intractable for large prob-
lems. Although numerical strategies exist to compute the exponential matrix (Ruiz et al.,
2016) explicitly, they are often unsatisfactory in terms of performances when high accuracy
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is required (Moler & van Loan, 2003), especially regarding memory requirements. Hence,
iterative numerical integration methods, that approximate the temporal derivative and ad-
vance the initial-value problem (3.34) in time, are preferred.

The temporal perturbation problem is less stiff when formulated for compressible flows
than for incompressible flows because the former contains at least one temporal deriva-
tive per equation. The compressible-flow perturbation problem can thus be solved with
an explicit Runge-Kutta method without any artifact. For an ordinary differential equation
with time-independent coefficients, the solutions obtained with a generic explicit pth-order
Runge-Kutta method with s steps (s ≥ p) read

qf,n+1 = qf,n +∆t
i=s∑
i=1

bi ki , (3.36)

where n is the index corresponding to the discrete time tn and ∆t is the constant time-step
size such that tn+1 = tn +∆t . The intermediate solutions ki are given by

Bki = L

(
qf,n +∆t

j=s−1∑
j=1

ai j k j

)
. (3.37)

where the matrices B and L include all boundary conditions. Since the Runge-Kutta method
originates from a Taylor expansion of the solutions around time tn , the weights bi must be
chosen such that

∑
i bi = 1. In contrast, the coefficients ai j do not need to satisfy a particular

constraint and can be adapted to obtain variant Runge-Kutta methods. If s = 1, the weight
b1 = 1 and the method reduces to the simple explicit forward Euler method. However, this
method has a limited region of stability and has a slow first-order convergence with respect
to the time-step size. To ensure high accuracy at a reasonable computational cost, the tradi-
tional four-step Runge-Kutta scheme is presently used. Its coefficients are given by

a =


1/2 0 0

0 1/2 0

0 0 1

 , b =



1/6

1/3

1/3

1/6

 . (3.38)

Since the matrices B and L have constant coefficients, the resulting matrix B−1L has to be
evaluated only once. However, this operation is computationally intractable for large prob-
lems and matrix-vector operations must be preferred. In order to optimize the computation
of each ki , the matrix B is thus factorized with the LU-decomposition B = LBUB . This allows
obtaining an optimized Runge-Kutta scheme with the four steps

k1 =U−1
B L−1

B Lqf,n , (3.39a)

k2 =U−1
B L−1

B L
(

qf,n + ∆t

2
k1

)
, (3.39b)

k3 =U−1
B L−1

B L
(

qf,n + ∆t

2
k2

)
, (3.39c)

qf,n+1 = qf,n +∆tk3 . (3.39d)

Note that the boundary conditions are imposed in the B matrix and thus are implicitly en-
forced for each intermediate solution ki (Pathria, 1997). This ensures the numerical stability
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of the integration. Hence, the temporal integration can be conducted with a larger time-step
size than if the boundary conditions were applied only to the last step (3.39d).

On the other hand, the (linearized) Navier-Stokes equations for incompressible flows are
stiff; there is no temporal derivative for the pressure term and, thus, the matrix B is singu-
lar. Hence, an explicit temporal integration cannot be used without an additional strategy,
e.g., a pressure correction method, to circumvent the fact that B cannot be inverted. In con-
trast, implicit time-marching techniques do not rely on the inversion of the matrix B but of
a scheme-dependent operator instead. Although implicit integration techniques are com-
putationally more expensive, they offer a much larger region of numerical stability. Hence,
larger time-step sizes can be used with implicit schemes than with explicit schemes. Since
only linear problems are presently considered, it is found that implicit schemes are compu-
tationally affordable to solve the incompressible-flow perturbation equations. Two differ-
ent schemes are implemented for the implicit time-marching of the initial-value problem.
These are the second-order backward differentiation formula(

B − 2

3
∆tL

)
qf,n+1 =

4

3
qf,n − 1

3
qf,n−1 , (3.40)

and the Crank-Nicolson formula(
B + 1

2
∆tL

)
qf,n+1 = (B −∆tL) qf,n , (3.41)

that both offer second-order accuracy in time. The Crank-Nicolson scheme is a one-step
method that requires only the current time step n to compute the next time instant tn+1. In
contrast, the second-order backward differentiation approach is a two-step method, i.e., it
needs both the previous and current time steps to evaluate the solution at tn+1. To evaluate
the first time step (t1), it is thus required to start the integration with a one-step scheme, e.g.,
a first-order backward differentiation or the Crank-Nicolson scheme, before continuing with
the second-order backward scheme. This lack of consistency during the initial steps justi-
fies considering the Crank-Nicolson scheme when assessing the short-time/instantaneous
behavior of a solution. However, the second-order backward differentiation scheme allows
prescribing a larger time-step size and is thus chosen to compute long-time solutions. As for
the Runge-Kutta approach, the LU decomposition is used at the first time step to inverse the
left-hand-side matrix of equations (3.40) and (3.41), after having imposed the boundary con-
ditions. Although the two implicit schemes can also be used to solve the compressible-flow
perturbation equations for the shock-wave/boundary-layer interaction, they were found to
be computationally more expensive than the explicit Runge-Kutta method. Hence, in the
present work, implicit schemes are used for incompressible flows while explicit integration
is used to solve the compressible-flow perturbation equations.

3.3. The discretized eigenvalue problem
The two-dimensional stability equations (2.20) can be written in their discrete form as

Aq̃f =−iωfB q̃f , (3.42)

with the matrices A and B including the spatial discretization of the base-flow components,
the spatial differentiation operators and the boundary conditions. The solutions of the
eigenvalue problem (3.42) are then determined by finding the roots of

det(A + iωfB ) = 0. (3.43)
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The same applies to the eigenvalue problem formulated in the moving frame of reference
with q̃ the moving-frame eigenfunctions. Note that, when considering the one-dimensional
temporal stability problem (2.23a), the discretized eigenvalue problem takes the same form
as equation (3.42). It can thus be solved in the exact same way, after having prescribed a
value for the wavenumber α. However, when considering the one-dimensional spatial sta-
bility problem (2.23b), the (discretized) eigenvalue problem

Aαq̃f =−iαBαq̃f +α2Cαq̃f , (3.44)

is quadratic and cannot be solved directly. The companion linearization approach is thus
used to rewrite equation (3.44) as a linear generalized eigenvalue problem Aα Bα

0 −I


︸ ︷︷ ︸

Aα,c

 q̃f

iαq̃f


︸ ︷︷ ︸

q̃f,c

=−iα

 0 Cα

I 0


︸ ︷︷ ︸

Bα,c

 q̃f

iαq̃f


︸ ︷︷ ︸

q̃f,c

, (3.45)

with the subscript c denoting the companion vectors and matrices. The companion spatial
eigenvalue problem can thus be solved in the exact same way as the temporal problem.
Once solutions are found, only the first half of the companion eigenvector q̃f,c must be taken
in order to isolate the sought eigenfunctions q̃f.

The temporal and spatial eigenvalue problems have sparse matrices and can thus be
solved with the iterative Arnoldi algorithm in a computationally effective way (Saad, 2011).
Based on a Krylov projection method, the Arnoldi algorithm computes a subset of eigenso-
lutions in an a-priori-prescribed region of the eigenvalue spectrum. The algorithm is imple-
mented in Matlab via the function eigs that relies on the ARPACK routines (Lehoucq et al.,
1998; Wright & Trefethen, 2001). All eigenvalue problems that are considered in the present
work are solved with this function.

3.3.1. Discretization of the adjoint eigenvalue problem
While the discretization of the direct eigenvalue problem immediately followed from its con-
tinuous formulation, two different approaches exist to obtain the discrete form of the adjoint
eigenvalue problem. On the one hand, the adjoint problem can first be derived by starting
from the continuous direct problem (see §2.4) and then discretized. This formulation is the
so-called continuous adjoint problem. The major difficulties with this formulation are that
the problem must be explicitly derived and that appropriate boundary conditions must be
specified. Because only homogeneous boundary conditions are presently considered, the
latter aspect is, however, not an issue. On the other hand, the adjoint eigenvalue problem
can be obtained by Hermitian transposing the discretized direct eigenvalue problem (3.42).
This form of the problem is the so-called discrete adjoint problem and is easily implemented
in a numerical code. However, in general, it does not ensure that actual adjoint boundary
conditions are satisfied. A comparison of the two mathematical formulations is proposed in
the following.

The discrete adjoint eigenvalue problem relies on the discretized form of the inner prod-
uct, given by equation (2.28) in its continuous formulation, that can be written

〈 f1, f2〉 = f H
1 D f2 , (3.46)

with D a real-valued diagonal matrix that accounts for the size of the grid cells. As its con-
tinuous equivalent, the discrete adjoint problem relies on the orthogonality relationship be-
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tween the direct eigenvalue problem and the vector q̃ †
f such that

〈
q̃ †

f , (A + iBωf) q̃f

〉
= 0 =

(
q̃ †

f

)H (
D (A + iBωf) q̃f

)= ((
AH − iB Hω∗

f

)
DHq̃ †

f

)H
q̃f . (3.47)

Because only matrix manipulations are involved, no boundary term appears in the deriva-
tion of the discrete adjoint problem. This contrasts with the continuous formulation that
requires integrating by parts, and thus, dealing with boundary terms. Finally, because D is
diagonal and both B and D are real-valued matrices, equation (3.47) can be written

0 =
((

AH − iB Tω∗
f

)
DHq̃ †

f

)H
q̃f =

((
D−1 AHDH − iB Tω∗

f

)
q̃ †

f

)H
q̃f . (3.48)

The discretized continuous (from equation (2.31)) and discrete adjoint eigenvalue problems
are thus given by

A†q̃ †
f = iω∗

f B Tq̃ †
f , (3.49a)

D−1 AHD q̃ †
f = iω∗

f B Tq̃ †
f , (3.49b)

respectively. Note that the operator B† of the continuous formulation is reduced to B T be-
cause it does not involve any spatial derivative nor any complex-valued numbers. For the
discretized problems, the bi-orthogonality condition (2.32) becomes

〈
q̃ †

f, j ,B q̃f,k

〉
= δ j k =

 1 for j = k ,

0 for j 6= k .
(3.50)

and can be verified numerically.
By inspecting equations (3.49a) and (3.49b), the relationship A† = D−1 AHD can be es-

tablished between the discrete and continuous adjoint problems; the two formulations are
mathematically equivalent. However, the conditions at the boundaries need to be explic-
itly enforced in the continuous formulation while, in the discrete formulation, they are al-
ready included in the coefficient matrices of the direct problem. Hence, small discrepancies
can be found in the numerical results between the continuous adjoint and discrete adjoint
problems. After verifying that the solutions obtained from the continuous and discrete for-
mulations only yielded very minor differences for setup-independent solutions, the discrete
formulation is presently chosen to solve the adjoint eigenvalue problems.

3.4. Spatial integration of the Parabolized Stability Equations
The Parabolized Stability Equations (PSE) are formulated as an initial-value problem in space
and are then solved through spatial integration in the downstream direction (Bertolotti,
1991). A common way to initialize the integration of the PSE is to consider solutions of
the Linear Stability Theory (LST) method at an upstream streamwise station. When applied
to wall-bounded flows, the literature often uses the following spatial discretization tech-
niques for the PSE method. The wall-normal discretization usually relies on the Chebyshev-
Gauss-Lobato pseudospectral method with Malik’s mapping to increase the node density
close to the wall. The streamwise direction is discretized with equally spaced nodes and the
x-derivative is then formulated with a first-order finite-difference scheme. Finally, because
the PSE contain nonlinear terms, each spatial step is solved iteratively. This is usually done
with a predictor-corrector method that applies a correction to α until the normalization
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condition (2.27) is satisfied up to a prescribed criterion. This ensures that all spatial growth
is effectively captured into the streamwise wavenumber α at each x-station and thus that
the streamwise variation of the shape function q̃ remains small, as assumed by the WKBJ
ansatz (2.24).

Using an implicit spatial integration scheme to discretize the PSE in the streamwise di-
rection is essential to solve the problem. In fact, the PSE are not strictly parabolic equations
in nature and still contain some ellipticity that is mostly associated with the streamwise
derivative of the pressure term. Hence, while parabolic equations only contain solutions
that propagate in one direction, the parabolization of the linear perturbation equations
only eliminates some of the (viscous) upstream-traveling waves by neglecting the second-
order terms O (ε2

p ). The main consequence of the parabolization approach is thus that some
upstream-traveling acoustic waves are still present in the system (Li & Malik, 1997; Ander-
sson et al., 1998). To ensure that the problem is well-posed, these waves must be specified
at the outlet of the domain. However, the PSE are solved through spatial marching tech-
niques starting from the inlet and the upstream-traveling acoustic waves are thus under-
specified. Although these waves should physically decay toward the inlet, numerical in-
stabilities caused by the ill-posedness of the problem can lead to spurious growth in the
downstream direction. Spectral analyses of the PSE operator indicate that the numerical
problem is unconditionally unstable if an explicit time-marching scheme is used (Ander-
sson et al., 1998). Hence, in order to damp out upstream-traveling waves and only track
the relevant downstream-traveling wave, solving the PSE must, at least, rely on an implicit
spatial-marching technique.

Considering a first-order implicit scheme makes the system conditionally stable and a
relatively restrictive criterion exists on the size of the spatial discretization ∆x. According
to Andersson et al. (1998), the step size ∆x must be larger than 1/|α| for incompressible
flows. Although this criterion allows solving the PSE, it can be too restrictive in some cases,
especially when considering flows that do not evolve slowly in the streamwise direction.
The criterion also implies that refining the spatial discretization in the streamwise direction
unlikely converges for reasonably small step sizes. Nevertheless, although the minimum-
step-size criterion can be satisfied in some cases, the problem to be solved is ill-posed.
To improve upon this aspect and reduce the minimum step size, two stabilization tech-
niques have been devised. The first approach is a pressure-relaxation method that elimi-
nates the upstream-acoustic waves by removing the term associated with the streamwise
gradient of the pressure-perturbation shape function (Chang et al., 1991; Haj-Hariri, 1994).
It is an arguably valid approach provided that most of the spatial growth rate is included in
the streamwise wavenumber instead of the shape function. Li & Malik (1996) showed that
this stabilization technique allows reducing the minimum step size by two orders of magni-
tude. However, they also observed that neglecting the streamwise pressure term can affect
the value of the computed growth rate in some flow cases. A second stabilization technique
was later proposed by Andersson et al. (1998). Since the second-order terms are eliminated
from the original physical equations when deriving the PSE, Andersson et al. (1998) argued
that the second-order terms that stem from the truncation error of the implicit scheme must
also be discarded. Hence, Andersson et al. (1998) proposed a new formulation of the PSE by
adding a source term to the original equations. The goal is to damp the second-order trun-
cation error and thus prevent the upstream-traveling waves to grow up to the leading order.
Doing so, the minimum step size is drastically reduced and the physical problem remains
unaltered. For more details about the PSE well-posedness and the stabilization techniques,
the reader is referred to the recent work of Towne et al. (2019). In the present work, the
stabilization technique proposed by Andersson et al. (1998) is used to solve the PSE.
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3.5. Computational code and practical implementation
The present computational code is built upon the works of Groot (2013); Niessen (2017) and
Groot (2018) that use a similar approach for solving flow-stability eigenvalue problems in
the stationary frame of reference. The capabilities have nevertheless been extended in order
to provide a tool that can solve:

• the Linear Stability Theory equations,

• the Parabolized Stability Equations,

• the two-dimensional streamwise stability problems (direct, discrete and continuous
adjoint eigenvalue problems),

• the two-dimensional streamwise perturbation problem (initial-value problem),

for both compressible and incompressible flows. For compressible flows, the problems are
solved for the pressure perturbation. However, the density perturbation is always computed
a-posteriori to ease the interpretation of the results when considering the perturbation en-
ergy equation (see Chapter 2). Since the density formulation offers more meaningful results
when it comes to energy transfer, future improvement of the present computational pro-
gram should focus on implementing the density-based equations for both direct and adjoint
problems.

The present tool can solve the initial-value and eigenvalue problems in frames of refer-
ence moving in the streamwise direction. When considering the initial-value problem, the
two-dimensional temporal wave packets are decomposed into their frequency components
by using a Matlab built-in Fast Fourier Transform algorithm. The spatial discretizations can
be made independently for each direction with the Chebyshev-Gauss-Lobato pseudospec-
tral or finite-difference methods. The differentiation matrix based on a finite-difference
scheme can be central, forward or backward at arbitrary degrees of accuracy.

For both initial-value and eigenvalue problems, the core of the computational procedure
consists in setting up the matrices A, L, and B with the appropriate boundary conditions.
The different steps to construct these final matrices are:

(a) Build matrices A, or L, and B without boundary conditions:

(1) Interpolation of the base-flow variables with Matlab’s spline interpolation rou-
tine onto the grid used for stability analyses,

(2) Reshaping the base-flow coefficients in a stack-column vector according to equa-
tion (3.11) (two-dimensional problems only),

(3) Multiplication of the base-flow coefficients with the differentiation matrices ac-
cording to the linear system of equations to be solved,

(b) Enforce zero at node locations corresponding to boundaries, independently of bound-
ary conditions and without reducing the matrix size,

(c) Impose homogeneous boundary conditions for velocity, temperature and, depending
on the case/boundary location, pressure perturbations:

(1) In matrix A for eigenvalue problems or in the right-hand-side matrix for initial-
value problems, the coefficients corresponding to the boundaries are set to one
for Dirichlet conditions while the coefficients of the pseudospectral differentia-
tion matrices Dξ or Dη are imposed for the Neumann conditions,
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Figure 3.2: Matrix A with [Nξ, Nη] = [4,4] built for the stack-column vector q̃ = [ũ , ṽ , w̃ , T̃ , p̃]T from steps (a) to (d)
described in the main text. Colored dots for Dirichlet (orange), Neumann (∂ ·/∂ξ= 0 in green, ∂ ·/∂η= 0 in purple)
and LPPE (fuchsia) boundary conditions.

(2) In matrix B for eigenvalue problem or in the left-hand-side matrix for initial-
value problems, the coefficients at the boundaries remain zero,

(d) At the location where the pressure perturbation is not specified with Dirichlet or Neu-
mann conditions, the compatibility condition (equation (2.38)) or the pressure Pois-
son equation (equation (2.40)) is imposed.

The aforementioned steps are illustrated in figure 3.2. In this example, various boundary
conditions are used in order to illustrate the principle of the matrix construction on the
matrix A and do not represent an actual physical case. In the wall-normal direction, ho-
mogeneous Dirichlet conditions (orange dots) are imposed at the wall for ũ, ṽ , w̃ and T̃
and also at the freestream for w̃ and T̃ . Wall-normal homogeneous Neumann conditions
(purple dots) are imposed in the freestream for ũ, ṽ and p̃. In the streamwise direction,
homogeneous Dirichlet boundary conditions are imposed for ũ at the in-/outlet bound-
aries whereas streamwise homogeneous Neumann conditions (green dots) are imposed for
ṽ , w̃ , T̃ and p̃. For the generalized eigenvalue problems, the discretized operators can be
directly used in the solver. For the initial-value problems, the left-hand-side matrix is first
LU-decomposed and the problems are then advanced in time iteratively.
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4
The incompressible flat-plate

boundary layer
Laminar boundary layers are classical examples of flows that are slowly developing in the
streamwise direction. Traditional methods such as LST and PSE exploit this slowly develop-
ing nature in order to chart the stability characteristics of this flow type, while accepting a
model error. Even though the model error is small for slowly developing flows, it can be com-
pletely removed upon studying the stability of these flows with the BiGlobal approach. As
mentioned in the introduction, the notorious domain dependency of the results presented
in the literature, however, renders their interpretation questionable. To improve upon this
aspect, this chapter applies the moving-frame methodology to the incompressible flat-plate
boundary layer. The objective is to illustrate and discuss the underlying principle of the ap-
proach and then to demonstrate its effectiveness. In particular, reconstructing the neutral
and amplification curves allows comparing the two-dimensional localized perturbations
against the solution of the LST and PSE methods.

The present chapter is structured as follows. The base-flow computation and the numer-
ical setup for stabilty analyses are presented in §4.1. The resulting eigensolutions obtained
in the moving frame of reference are then studied in §4.2 with a particular focus on obtaining
setup-independent, localized eigenfunctions. In this section, the behavior of the solutions
as the speed of the reference frame approaches zero is also considered in order to possibly
recover stationary-frame solutions. In §4.3, the temporal behavior of the flow disturbed with
the moving-frame eigenfunctions is discussed. The amplification and neutral curves for the
flat-plate boundary layer are reconstructed and then compared against the results of the
LST and PSE methods. In §4.4, a Reynolds-Orr energy-budget analysis is proposed to high-
light the main mechanisms characterizing the eigensolutions. To gain further insight into
the working principle of the method, the global mode theory is used in §4.5 to reconstruct
the moving-frame, two-dimensional global eigensolutions with the WKBJ approach. Finally,
an intermediate conclusion is proposed in §4.6.

4.1. Base-flow computation and numerical setup
The most universal boundary layer is the Blasius flow (Blasius, 1908). Although it does not
satisfy the incompressible Navier-Stokes equations exactly, it can be obtained to arbitrary
precision and is independent of critical parameters of the numerical setup (e.g., streamwise
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Table 4.1: Parameters for the flat plate boundary layer reference case (not rounded).

cf/ue Nx xin/` xi 1/` xi 2/` xout/` Ny yi /` ymax/`

0.415 300 0.2×105 2.8×105 5.4×105 8.0×105 50 4.0×103 1.6×105

boundary conditions, leading-edge sharpness) that can be encountered when solving the
full Navier-Stokes equations. Therefore, by eliminating all uncertainties related to the base
flow, all effort can be concentrated on determining the numerical sensitivity associated with
the global stability analysis.

The Blasius self-similar boundary-layer solution is computed at Mach number M = 0
with DEKAF (Groot et al., 2018), a software for high-order computation of (in)compressible
self-similar and developing boundary layers. The largest residual is related to the term
∂2U /∂y2 and equals O (10−15). The discretization is based on Nη = 500 nodes used in the
wall-normal direction, yielding at most O (10−12) differences with the solution on a grid with
2Nη−1 nodes. The x-derivatives of the base-flow quantities are determined with the spectral
differentiation matrix used to discretize the two-dimensional stability problem.

The eigensolutions to the direct and adjoint stability problems (2.45) are obtained nu-
merically on a domain that is truncated in the up- and downstream directions, at x = xin and
x = xout, and far from the flat plate at y = ymax (x = 0 corresponds to the leading edge and
y = 0 to the wall). At y = ymax, all perturbation variables are zeroed. The truncation bound-
aries at x = xin and x = xout are respectively referred to as the in- and outflow boundaries.
The streamwise domain length is denoted by L = xout − xin. The literature presents several
attempts in prescribing reasonable boundary conditions at the in- and outflow boundaries,
see for instance Alizard & Robinet (2007), Rodríguez (2010, §5.4.3), Groot (2013, chapter 8)
and Groot et al. (2015). The present goal is to ensure that the solutions are independent
of all truncation boundary conditions through the use of the moving reference frame. Un-
less stated otherwise, homogeneous Neumann conditions are used at the in- and outflow
boundaries. This allows identifying when the solutions become dominant at the boundaries
and, as a consequence, when they do become affected by the specific domain choice.

The problem is discretized with Chebyshev collocation in both x and y . The bi-quadratic
mapping is used in the x-direction, mapping one-third of the collocation points in-between
the points xi 1 and xi 2 > xi 1, each lying within [xin, xout]. The values xi 1 = xin + 1

3 (xout −
xin) and xi 2 = xin + 2

3 (xout − xin) are used for all flat-plate boundary layer results. The Malik
mapping is used for the wall-normal direction y , mapping half the collocation nodes above
and below yi . Further details about the theoretical aspects of the numerical strategy can be
found in Chapter 3.

Velocity and length scales are respectively made non-dimensional with the freestream
speed ue and the global length `. Table 4.1 summarizes the parameters used for the selected
reference case. To demonstrate the principle of the method and reconstruct the traditional
neutral curve, considering only the case β = 0 for all computations is sufficient. However,
because of the physical importance of three-dimensional instabilities, non-zero-β cases for
the shock-wave/boundary-layer interaction are considered in Chapter 5. Note that having
β = 0 and W = 0 allows decoupling the z-momentum equation from the rest of the system
of equations (2.45).
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4.2. Localized eigensolutions in the flat-plate boundary layer
In this section, the direct and adjoint eigenvalue problems (2.45) formulated in the moving
frame of reference are solved. The resulting eigenvalue spectra and eigenfunctions are pre-
sented in §4.2.1 for the reference case. The sensitivity of the localized solutions with respect
to the numerical setup is addressed in §4.2.2 and a specific discussion about the influence
of the domain length on the spectrum is proposed in §4.2.3. The effect of the moving-frame
speed on the eigensolutions is illustrated in §4.2.4 and the choice for cf/ue = 0.415 as a
reference-case frame speed is justified. Finally, an attempt to recover converged eigenso-
lutions in the stationary frame of reference is presented in §4.2.5.

4.2.1. Spectra and eigenfunctions
The spectrum and several direct ũ and adjoint ũ†-eigenfunctions of interest are shown in
figure 4.1 for the reference case with cf/ue = 0.415. As demonstrated later in §4.2.4, the most
unstable eigensolution found at this frame speed has the largest growth rate over all local-
ized solutions found in the cf-parameter space. The spectrum is symmetric about the ωi -
axis, because the eigenvalue problem has real coefficients. The attention is thus restricted to
the most unstable eigenvalues with negativeωr -values (every second one is marked by a red
cross in figure 4.1(b)). The reference case and eigenmode selection are justified in §4.2.4.

The modes of interest, i.e., the non-spurious modes with the largest ωi in the boundary
layer, form a branch with 3 sub-branches: the top-left ‘main’ branch, housing modes la-
beled 1 to 6, the rightward ‘side’ branch, in which modes 7 and 8 reside, and the ‘downward’
branch, consisting of the modes with index 9 and greater. The downward branch appears
to continue into the stable half-plane indefinitely. The selected direct eigenmodes for the
streamwise velocity shown in figure 4.1(c–h) represent wave packets: the eigenfunctions
decay at least exponentially toward all truncation boundaries. As illustrated in figure 4.2(a–
c) for the second most unstable mode at cf/ue = 0.415, this eigenfunction decay is observed
for all components, such that ũ, ṽ and p̃ are all wave packets. If the eigensolutions are not
localized, they cannot be treated as if they represent wave packets and should rather be
considered as wave trains. Modes that belong to none of the three branches are discarded
since they are observed to be either dominant outside the boundary layer and are stable
(freestream modes) or physically spurious solutions.

The spectrum inevitably contains physically spurious solutions associated with infinite
eigenvalues because no temporal derivative acts on the pressure in the incompressible-flow
formulation of the eigenvalue problem (Christodoulou & Scriven, 1988). These modes rep-
resent the pressure perturbation field that instantaneously reacts to any change in the ve-
locity perturbation field. Nevertheless, these solutions highly depend on the number of grid
points and identifying them can be done without effort through sensitivity analyses. Note
that the aforementioned physically spurious are different from numerically spurious modes
that, instead, are underresolved solutions because of the spatial discretization. As shown
later, the eigensolutions corresponding to side and downward branches depend on both
grid density and domain length and, thus, according to the definition of Boyd (2001), could
be classified as numerically spurious modes.

The speed at which wave packets propagate downstream is the so-called group speed,
denoted cg, and is defined by equation (2.67). Assuming that the eigensolutions are valid for
small, non-zero times, the shape of the perturbation that is represented is exactly preserved
as it translates downstream with the frame speed. This was illustrated with an arbitrary
function in §2.6.2. Therefore, if this assumption is valid, which is demonstrated in §4.3 for
the present boundary layer, the group speed of the represented wave packet is exactly equal
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Figure 4.1: (a) ω-spectrum for the reference case cf/ue = 0.415 with (b) zoom on the black rectangle in (a).
Converged and unconverged solutions are indicated by dark and light colors, respectively. (c–n) isocontour of
|ũ|/|ũ|max (dotted black, level: 1/9), (c–h) isocontours of direct eigenfunctions R{ũ}/|ũ|max and (i –n) adjoint
eigenfunctions R{ũ†}/|ũ†|max (colored lines, from minimum (gray) to maximum (red) with ∆ = 2/9) correspond-
ing to the eigenvalues identified by crosses in (a,b) for increasing label index in (b) from the top to bottom row.
Boundary layer height indicated by U = 0.99ue -isocontour (dashed).
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Figure 4.2: (a–c) Direct and (d– f ) adjoint velocity and pressure perturbation fields for the second most unstable
mode at cf/ue = 0.415. Isocontour of (a,d) |ũ|/|ũ|max, (b,e) |ṽ |/|ṽ |max and (c, f ) |p̃|/|p̃|max (dotted black, level: 1/9).
Isocontours of direct eigenfunctions (a) R{ũ}/|ũ|max, (b) R{ṽ}/|ṽ |max, (c) R{p̃}/|p̃|max and adjoint eigenfunctions
(d) R{ũ†}/|ũ†|max, (e) R{ṽ†}/|ṽ†|max and ( f ) R{p̃†}/|p̃†|max (colored lines, from minimum (gray) to maximum
(red) with ∆= 2/9). Boundary layer height indicated by U = 0.99ue -isocontour (dashed).

to the frame speed. This implies that a guess for the frame speed can be obtained from the
knowledge of the typical group speed for the instability mechanism of interest. Gaster &
Grant (1975, figure 6) showed that a wave packet initiated by a pulse in a boundary layer has
a group speed cg ≈ 0.4ue . If no group speed is known, it is usually close to the typical phase
speed. In particular, for Tollmien-Schlichting waves, it is known that cph =ωf,q̃ /αq̃ ,r . 0.4ue

White (1991). A further discussion about the phase speed and the critical layer, i.e., the wall-
normal locations where the phase speed corresponds to the streamwise base flow velocity,
is proposed in §4.2.4 where the influence of the frame speeds on the solution is discussed.

The adjoint eigenfunctions that are associated with localized direct eigenfunctions, shown
in figures 4.1(i –n) and figure 4.2(d– f ), do not all decay toward the boundaries, depending
on which branch they belong to. In the case of the main branch, all direct and adjoint eigen-
functions display the aforementioned decay toward the boundaries. These solutions are
shown to be independent of the numerical setup in §4.2.2. In contrast, the adjoint eigen-
functions corresponding to the side and downward branches always interact with the inlet
and outlet boundaries, even though the corresponding direct eigenfunctions exhibit the ap-
propriate decaying behavior. This implies that localized direct eigenfunctions are insuffi-
cient indicators for the independence of the numerical setup. It is actually found that the
interaction of the adjoint, direct or both types of eigenfunctions with the boundaries always
makes the eigensolutions sensitive to the boundary conditions and domain length. Hence,
in this flow case, all solutions that belong to the side and downward branches depend on
the numerical setup. A further quantification of the numerical sensitivity is proposed in the
following section. Note that, although non-localized solutions are not converged and thus
do no represent physical solutions, they are included here to provide a complete overview
of the eigensolutions obtained with the moving frame of reference.
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Table 4.2: Mode properties and relative errors (ε =|ωref −ω|/|ωref|) in the eigenvalue for the reference parameters
given in Table 4.1 with respect to the parameter changes: xout/` = 7.0×105 (fixing the density Nx /L); Nx = 260;
the use of homogeneous Dirichlet in-/outflow boundary conditions; and ymax/` = 1.4× 105 (fixing Ny = 50 and

yi = 4.0× 103). Two modes along the main branch for cf/ue = 0.415, labeled in figure 4.1(a) and most unstable
mode (main branch) for cf/ue = 0.47 (figure 4.5(a)). The reported digits are truncated (not rounded) and those that
are tainted by the largest reported error are underlined.

Mode
properties

cf/ue 0.415 0.415 0.470

Mode# 1 5 1

ωr `/ue −1.54607445982×10−5 −1.48826×10−5 −3.84287728×10−5

ωi `/ue +3.0143827834 ×10−6 +2.33523×10−6 −3.07160739×10−7

Relative
|ω|-errors

εL 1.4×10−4 5.9×10−4 1.5×10−5

εNx 9.3×10−11 2.5×10−7 3.1×10−10

εBC 1.5×10−10 2.0×10−6 1.5×10−9

εymax 2.3×10−4 2.2×10−4 3.7×10−4

4.2.2. Sensitivity to the numerical setup
The numerical dependency on the setup parameters is summarized in table 4.2 for two
modes at cf/ue = 0.415 along the main branch and labeled in figure 4.1(a) and for the most
unstable mode at cf/ue = 0.47 (see later figure 4.5(a)). The relative error ε in the eigen-
value’s magnitude is determined by varying the following numerical aspects independently:
the streamwise domain length (εL , fixing the relative resolution Nx /L), the resolution in the
streamwise direction (εNx ), the boundary conditions (εBC) and the domain height (εymax , fix-
ing the resolution in the boundary layer by keeping Ny and yi constant). Overall, relative
errors of O (10−4) are attained. When representing convective instability mechanisms with
the streamwise BiGlobal approach, these small errors are unprecedented; spectra computed
in the stationary frame of reference presented in the literature experienced O (1) errors while
changing the streamwise domain length. Before elaborating further, it should be mentioned
that εymax is the largest contributor to the overall eigenvalue error. This suggests that, with
the issues related to the streamwise direction being tackled, εymax now features the slowest
convergence rate. Accordingly, the reference case and the convergence study were selected
by reducing εymax to a reasonably low level and then by using that level as a target for the
other errors.

The error introduced by the finite domain length, εL , representing a primary source of
error in the literature (Ehrenstein & Gallaire, 2005; Alizard & Robinet, 2007; Åkervik et al.,
2008), can be made smaller than εymax using the moving frame of reference. Altering the
resolution in the streamwise direction yields a very small error, εNx , due to the use of the
spectral scheme with Nx = 260 to 300 nodes. It should be emphasized that these numbers
of nodes are not at all necessary to obtain converging solutions for the reference case; us-
ing Nx = 100 nodes for mode ‘1’ results in an error comparable to εymax . The truncation
boundary conditions represent the other primary uncertainty throughout the literature. By
changing from homogeneous Neumann to homogeneous Dirichlet conditions, a remark-
ably small εBC is obtained, that is equivalent to εNx .

These results conclusively demonstrate that the obtained solutions are independent of
the numerical setup. The negligible influence of the streamwise domain length and trunca-
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tion boundary conditions on the eigensolutions of the main branch is observed to be directly
related to the small amplitude of both the direct and adjoint eigenfunctions at the trunca-
tion boundaries. The spatial decay of the eigenfunctions within the domain allows placing
the truncation boundaries at a far enough, but finite distance, so that the eigeninformation
is virtually unaffected.

Only the modes along the main branch are found to converge; the side and downward
branches persistently depend on the domain length. Although the direct eigenfunction de-
cays toward the boundaries for the side and downward branches, it is observed that the
adjoint eigenfunction does not. Figure 4.1(l ,m) shows that the adjoint eigenfunctions cor-
responding to modes 7 and 9 are dominant at the boundary, for example. Therefore, it is
suspected that this prevents the solution from converging while increasing L. The depen-
dency of the side and downward branch on the domain length is further illustrated and dis-
cussed in subsection §4.2.3. Due to their independence of the computational setup, only the
main-branch eigensolutions are considered in §4.3 to obtain the perturbation-amplification
information (e.g., amplification or neutral curves) in a given region in space.

The magnitude of the direct and adjoint eigenfunctions at the boundaries is quantified
with the cf-correction term, derived in equation (2.64), and is shown in figure 4.3 for varying
frame speeds and two distinct domain lengths. For sake of clarity, only the values at the in-
let boundary are shown in figure 4.3 because it is found that the cf-correction terms at the
in- and outlet locations have the same order of magnitude and are highly correlated. The
Pearson coefficients are 0.999 for both the short- and long-domain cases. This strong corre-
lation indicates that, as the wave packet interferes with one boundary, an artificial structure
emerges from the opposite boundary. By requiring the cf-correction term to be several or-
ders of magnitude smaller than ωi , the main-branch solutions can be uniquely identified
from the rest of the (entire) spectrum.

As the frame speed is increased above cf/ue ≈ 0.41, the cf-correction term for both the
direct and adjoint eigenfunctions corresponding to the most unstable solutions strongly di-
minishes at both the in- and outlet, implying that the eigenfunctions become localized in
the interior of the domain. The amplitude of the adjoint eigenfunctions at the truncation
boundaries decreases at a slower rate than that of the direct eigenfunctions when frame
speed increases, which is likely the consequence of the more upstream location of the for-
mer functions. The adjoint solutions are representative of the region where the system is
most sensitive to external variations (Schmid & Brandt, 2014). This suggests that the decay
of both the direct and adjoint eigenfunctions toward the truncation boundaries is required
for the eigensolution to be independent of the numerical setup. Figure 4.3 demonstrates
that this can be achieved for a fixed domain length if a large enough frame speed is used.
Comparing the short-domain (panels (a,c)) against the long-domain solutions (b,d) also in-
dicates that a lower frame speed can be used if the domain length is increased. However,
solutions at high frame speeds require a finer grid in the streamwise direction than at low
frame speeds because the wavelength of the eigenfunctions decreases. A compromise must
thus be found between grid resolution and domain length. This is further discussed in sub-
section §4.2.5.

4.2.3. Dependency on the domain length
It has just been shown that, for a fixed long domain, the eigenfunctions corresponding to
several eigensolutions can be localized within the domain. These solutions are always found
to belong to the main branch, while the side and downward branches persistently depend
on the domain length. The displacement of these two branches with respect to the outlet
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Figure 4.3: Magnitude of the cf-correction term in equation (2.64) at x = xin for the direct (a,b) and adjoint (c,d)
eigenfunctions with domain length (a,c) L/`= 7.8×105 and (b,d) 9.3×105. Increasing mode indices, as defined in
figure 4.1(a), are indicated with line colors running from red to gray. Modes that are classified as belonging to the
main, side and downward branches are indicated with symbols +, ä and ◦, respectively. The gray patch indicates
log10 |ωi | for all considered modes.

location xout, i.e., the domain length, is shown in figure 4.4.

For more downstream location of the outlet boundary xout, i.e., for longer domain, the
side branch moves approximately linearly down-/rightward, and thus likely never converges.
The downward branch has a more complicated pattern, especially at the junction with the
two other branches. Figure 4.4 shows that modes, that are originally positioned within the
downward branch, merge either with the side or with the main branch. When a mode moves
into the main branch, both adjoint and direct eigenfunctions attain a small amplitude at
the truncation boundaries and this enables convergence with respect to the domain length.
Hence, although the side and downwards branches can be barely distinguished at the junc-
tion, the main branch is easily identified since the eigensolutions are independent of the
domain length. This behavior of the spectrum suggests that more and more main-branch
modes can be resolved by extending the domain. Note that merely translating the domain
downstream is not appropriate, because the adjoint eigenfunctions corresponding to these
modes reach farther and farther upstream.

From these observations it can be concluded that, although still not corresponding to
converged solutions, the side and downward branches could likely be moved to an arbitrar-
ily stable location in the spectrum (ωi < 0) when using a sufficiently large domain in the
streamwise direction. However, using a large domain is computationally expensive and it is
shown in §4.3 that practical stability results, i.e., the amplification and neutral curves, can
be obtained with only one localized eigensolution, i.e., one eigensolution of the rapidly con-
verging main branch. Hence, in practice, it is not necessary to increase the domain length
to resolve stable side and downward branches.
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Figure 4.4: ω-spectrum for the reference case cf/ue = 0.415 for a varying outlet location from xout/`= 8×105 (black)
to 9.5×105 (red) with steps of ∆x/`= 0.1×105 indicated by color scale and with the streamwise grid density fixed
to Nx /L = 1/2600.

4.2.4. Dependency on the speed of the moving frame of reference
The frame speed is the unique free parameter to select prior to solving the eigenvalue prob-
lems (2.45) and its effect on the spectrum can be estimated through the Doppler formula
given by equation (2.54). The Doppler effect dictates that the frequency ωr should decrease
with respect to ωf,r when cf increases. This follows from the real part of equation (2.54) by
considering the positive valuesωf,r andαq̃ ,r of solutions in the stationary frame of reference.
Note that, since the spectrum is symmetric about the ωi -axis, the choice of either positive
or negative ωf,r is actually arbitrary and every ω has a counterpart with the eigenvalue −ω∗.
Upon substituting either solution back into the perturbation ansatz and taking the real part
(see equation (2.11)), they represent the same solution and hence carry an identical physical
interpretation. For the sake of consistency with the traditional treatment of stationary-frame
eigensolutions, negative ωr are considered. Figure 4.5 shows that the considered negative-
ωr solutions move to more negative values as the frame speed is increased, in agreement
with the Doppler effect. Furthermore, the temporal growth rate ωi also depends on the
frame speed; figure 4.5(a) shows an arc-shaped movement of the branches. The maximum
ωi -value is attained at cf/ue = 0.415 approximately, which motivated the choice of this value
as reference case.

By increasing cf, the direct and adjoint eigenfunctions both move upstream, but at dif-
ferent rates with respect to the frame speed. This is depicted in panels (b– f ) and (g –k) of
figure 4.5, where the dotted lines indicate the 1/9 level of the absolute value of the direct ũ-
eigenfunction. The different rate of displacement for the adjoint and direct eigenfunctions
cause them to overlap closely for a limited range of frame speeds. Furthermore, while the
direct (and adjoint) eigenfunctions move upstream for increasing cf, the streamwise extent
of the eigenfunctions decreases and so does the streamwise wavelength. These variations
are expected because the boundary layer becomes thinner when approaching the leading
edge. As a consequence of the smaller wavelength, αq̃ ,r in equation (2.54) increases and the
frequency ωr thus changes faster for larger cf. This can be observed in figure 4.5(a).

Because the frame speed influencesαq̃ ,r andωr , it has also an impact on the phase speed
cph =ωf,q̃ /αq̃ ,r , that can be related to the critical layer. The concept of the critical layer has
been detailed by Lin (1944) and is defined as the location where the phase speed corre-
sponds to the streamwise velocity of the base flow. Since the region around the critical layer
has a high sensitivity to external forcing (Tissot et al., 2017), convective instability mecha-
nisms receive their perturbation energy in this region. As illustrated in figure 4.5(c– f ), the
present results corroborate this behavior because the critical layer lies at the wall-normal
maximum of the eigenfunctions. Furthermore, for all cases, the critical layer is always lo-
cated slightly below the isoline U = cf, that separates the moving-frame base flow into an



88 4. The incompressible flat-plate boundary layer

Figure 4.5: (a) ω-spectrum for different frame speeds from cf/ue = 0.35 to 0.47 with ∆cf/ue = 0.01. Dots for main
branch (converged solutions) and light-colored circles for downward and side branches (unconverged solutions).
(b–k) isocontour of |ũ|/|ũ|max (dotted black, level: 1/9). (b– f ) isocontours of R{ũ}/|ũ|max (colored lines, from min-
imum (gray) to maximum (red) with ∆ = 2/9) corresponding to the most unstable eigenvalues, identified by blue
crosses in (a), for ascending frame speed from the top to bottom row. (g –k) isocontours of R{ũ†}/|ũ†|max(colored
lines, from minimum (gray) to maximum (red) with ∆ = 2/9) corresponding to direct counterpart (b– f , respec-
tively). Boundary layer height indicated by U = 0.99ue -isocontour (dashed). Dash-dotted lines and thick gray lines
indicate U = cf-isocontour and the moving-frame critical layer (cph = (U − cf)), respectively.
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upper region of downstream advection and a lower region of upstream advection. Given the
location of the critical layer, the perturbation energy of the moving-frame eigenfunctions is
thus generated in the region of upstream base-flow advection. This suggests that the local-
ization of the eigenfunctions in the streamwise direction is made possible by having a finite
upstream-traveling flow region, which is introduced by the moving frame of reference. Fi-
nally, because the critical layer is located slightly below the cf-isoline, higher frame speeds
induce more upstream locations of the eigenfunctions.

While increasing cf/ue ≥ 0.415 results in longer main and side branches, decreasing
cfue < 0.415 yields the side branch to coalesce with the main branch. The main branch
thus includes less eigenvalues when the frame speed decreases such that, when cf/ue ≤ 0.4,
the side and main branches completely merge into the downward branch. At this point,
only the downward branch exists and splits into two parts further down the spectrum. Si-
multaneously, the eigenfunctions move downstream, at different rates for the direct and
the adjoint, and have a longer spatial extent. When the direct eigenfunction approaches
the outflow boundary, i.e., when the level |ũ|/|ũ|max = O (10−3) is attained at the bound-
ary, it suddenly latches onto the outflow boundary. Simultaneously, an artificial structure
emerges from the inflow boundary. This behavior is quantified with the cf-correction term
from equation (2.64). The magnitude of this correction was given for all considered modes
and frame speeds in figure 4.3. Again, it shows that the side and downwards branches are
only artifacts of the truncation boundary conditions that could be resolved, i.e., could merge
into the main branch (see figure 4.4), by increasing the domain length while maintaining
a sufficient resolution. When cf/ue approaches 0.35, the splitting point of the downwards
branch moves upwards in the spectrum, that ultimately displays an arc-branch shape, as
described by Lesshafft (2017). At this point, the latching tail from the inlet reaches the down-
stream structure, overwhelming the solution throughout the entire domain; all dynamics are
then dominated by the artificial truncation boundary conditions. As also encountered in
the aforementioned literature, solutions displaying this feature are strongly affected by the
artificial boundary conditions, domain size and discretization in the x-direction. Despite
changes in the process by which the downward branch splits and how the eigenfunctions
interact with the boundary, applying finite-difference schemes in the streamwise direction
also results in artificial structures that span the entire domain at cf/ue = 0.35. The results of
Alizard & Robinet (2007, §IV.B.2, for cf = 0, i.e., obtained in the stationary frame of reference)
suggest that the arc-shaped spectra presently obtained for too small cf approach a contin-
uum as the streamwise domain length tends to infinity. Numerous analyses presented in
the literature are performed in the stationary reference frame and result in arc-shaped spec-
tra. The present analysis suggests that the domain truncation has a non-negligible artificial
impact on these results.

The main-branch adjoint eigenfunctions also move downstream with an increasing spa-
tial extent when the frame speed decreases but do not interact with the truncation bound-
ary as the direct eigenfunctions do. Instead, the adjoint eigenfunctions converge to a fixed
location as the frame speed decreases, without actually losing their localized nature. This
could at first suggest that the adjoint problem could support domain-independent solu-
tions, while the direct problem does not. This is unfortunately not the case. In particular, al-
though the adjoint solution remains localized for a small enough frame speed, this is not suf-
ficient to ensure a converged spectrum. In fact, an increase (decrease) of the domain length
causes the adjoint eigenfunctions to move downstream (upstream), if the domain cannot
accommodate the direct eigenfunctions. Note that the reverse situation (direct eigenfunc-
tions decay, adjoint eigenfunctions reach one domain boundary) was observed for the side-
and downward-branch solutions. The decay of either the direct or adjoint eigenfunctions
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Figure 4.6: For the most unstable ũ-eigenfunction: downstream location (xd, black), streamwise extent (xd − xu,
red) and minimum wavelength (10×λmin, blue) of the wave packet versus cf. Measured values (symbols), power
(solid lines) and exponential (dashed) fits and outflow boundary xout (dash-dotted). (a) Trend-extrapolation as
cf → 0 (minimum: 0.025ue ) and (b) data and fits.

alone is clearly not sufficient to ensure a domain-independent solution; the current obser-
vations indicate that both need to decay sufficiently toward the truncation boundaries. To
conclude, when keeping the reference domain length fixed, a large enough cf-value is re-
quired to prevent the direct and adjoint eigenfunctions from reaching the outlet truncation
boundary and eliminate the unwanted dependency on the numerical setup. Nevertheless,
as the wavelength of the eigenfunctions decreases with the frame speeds, a denser grid in the
streamwise direction is required to accurately resolve the solutions. This is further discussed
in the next subsection.

4.2.5. The frame-speed limit cf → 0
Previous analyses suggest that the direct eigenfunctions can propagate further downstream
if cf is further decreased while increasing the domain length. Attempting to recover domain-
independent solutions for the stationary reference frame thus sounds reasonable. To deter-
mine if this is possible, the location of the wave packets with respect to the frame speed is
monitored. The boundary-interaction process is from now on identified by the dominant
emergence of an artificial structure at the boundary opposite to the boundary with which
the wave packet collides. Besides corresponding to a large magnitude of the cf-correction
term with respect to ωi , from equation (2.64), the boundary-interaction process is observed
when the ũ-eigenfunction attains at the outflow boundary an O (10−3) relative magnitude
to its absolute maximum value for the reference domain length. Hence, the most up- and
downstream position of the wave packet representing the ũ-eigenfunction, xu and xd, are
respectively defined to be the first and last streamwise positions where this level is mea-
sured. It should be noted that the relative ũ-magnitude indicative of boundary-interaction
can change significantly for different boundary/flow conditions. Furthermore, the mini-
mum wavelength λmin (represented by the real and imaginary part of ũ) for x ∈ [xu, xd] is
measured. The domain length is increased (fixing Nx /L) by displacing, in the downstream
direction, the outlet boundary at a faster rate than the inlet boundary in order to capture
only the most unstable solution along the main branch. Two different displacement rates of
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Table 4.3: Fitting parameters for xd, xd−xu and λmin of the wave packet: p in ac
p
f for the power law, ε in b10εcf for

the base-10 exponential law, the Pearson correlation coefficients evaluated for all data points are given in brackets.

xd xd −xu λmin

Power law −9.0 (0.9999) −7.9 (0.9998) −5.8 (0.9995)

Exponential law −9.5 (0.9979) −8.2 (0.9981) −6.1 (0.9972)

the in- and outlet boundaries are used to capture both the direct and adjoint eigenfunctions
that, as illustrated in figure 4.5, were found to move at two different rates with respect to the
frame speed. The measured variation of xd−xu, xd and λmin with cf is shown in figure 4.6(b);
all increase with decreasing cf. Their growth rates are quantified by fitting a power law and
an exponential law on data points at cf,min and cf,max in figure 4.6. The resulting parame-
ters are reported in Table 4.3. Based on the results that could be obtained with the available
computational resources, significantly larger correlations were found for the power law.

These data-driven extrapolations indicate that all quantities become extremely large
when cf → 0, which renders the numerical problem barely tractable in the limit of the sta-
tionary frame of reference. This can be explained as follows. As stated by Groot & Schut-
telaars (2020), the advection term of the stability equations induces an exponential spa-
tial growth of the direct eigenfunctions. Lowering the frame speed thus increases the con-
tribution of the streamwise advection term in stability equations and the eigenfunctions
thus rapidly reach large amplitude at the truncation boundaries. Generally speaking, this
advection-induced growth makes the stationary frame problem untractable. Furthermore,
λmin increases at a much lower rate than xd − xu. Therefore, both the number of points in
the streamwise direction and the domain length have to be increased as cf → 0, so that the
problem is more computationally demanding when cf becomes small.

4.3. Finite-time evolution of wave packets
In the following, the main-branch eigensolutions obtained in the moving frame of reference
are introduced into the initial-value problem. First, it is verified that they are valid in an
instantaneous sense and that they can be used as initial condition. This property of the
eigensolutions implies that inadvertent transients are avoided in the initial-value problem.
Secondly, upon time-marching for a large enough time and Fourier transforming the wave
packets, the most important stability-theory results, i.e., neutral and individual-frequency
amplification curves, are recovered. This illustrates how the proposed methodology can be
used in practice.

4.3.1. Instantaneous characteristics of wave-packets
In the stationary frame of reference, the eigeninformation is representative of the long-time
dynamics. In case convective perturbations are considered, the asymptotically-long-time
behavior is arguably irrelevant in describing perturbations. In fact, they will leave the region
of interest (Groot & Schuttelaars, 2020, §6.2) and (in reality) attain finite amplitudes after a
finitely long time. This justifies the use of a moving frame of reference, which, instead, re-
stricts the interpretation of the eigensolutions to representing the instantaneous dynamics
only. According to equation (2.64), the growth indicated by the eigenvalue in the moving
frame of reference exactly represents, for an incompressible flow, the initial growth of the
eigenfunctions introduced in the stationary frame of reference. A main objective of this sec-
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Figure 4.7: Snapshots at different time instants of the temporal evolution of the u′-perturbation (real part in
coloured lines, from min- (gray) to maximum (red) with ∆ = 2/9, scaling the maximum to unity) initialized with
the most least stable eigenfunction for cf/ue = 0.47. Boundary layer height indicated by U = 0.99ue -isocontour
(dashed).

tion is to verify this relationship.

To address this particular feature of the solutions in the stationary frame of reference,
the eigenfunctions (both the real and imaginary parts) obtained in the moving frame of
reference are used as initial conditions for the linearized Navier-Stokes equations (2.13)
and integrated in time. This is done with an implicit second-order scheme with step size
∆t ue /` = 80. The rest of the numerical setup is exactly the same as for the eigenvalue
problem, except the streamwise discretization. For the sake of affordable computational
cost, a 16th order central-finite-difference scheme (in the interior of the domain) with 600
uniformly-spaced grid points replaces the streamwise Chebyshev grid. In this configura-
tion, the absolute change in the eigenvalues with respect to the Chebyshev discretization is
O (10−11).

For the analysis of the time-evolving perturbations for small times, eigensolutions cor-
responding to high frame speeds are selected for which the most unstable eigenvalue of the
main branch lies close to the real axis (ωi ≈ 0). In particular, two frame speeds, cf/ue = 0.470
and 0.465, are used, which correspond to a situation where the main branch is completely
stable and another with only one unstable mode (see figure 4.5). The spatio-temporal evo-
lution of the least stable eigenfunction as a wave packet for cf/ue = 0.47 is shown in fig-
ure 4.7. When time advances, the wave packet travels downstream and widens. As long
as the outflow boundary is not reached, the perturbation is localized within the domain
and unaffected by the boundary conditions. The shape of the wave packet is distorted with
respect to the initial eigenfunctions as a consequence of the streamwise variation of the
base flow. These observations are confirmed by all time-marching simulations in which a
moving-frame eigensolution was used as the initial condition.

In figure 4.8(a), the growth rates measured for the six least stable time-marched solu-
tions are compared to their respective eigengrowth ωi , with ωi the imaginary part of the
eigenvalues computed in the moving frame of reference. When approaching the time in-
stances t → 0+, the measured growth rate in the fixed frame of reference smoothly ap-
proaches the eigenvalue in the moving frame of reference. This is observed for all main-
branch modes for the two tested frame speeds. Equation (2.64) is thus verified numerically.
The comparison between the short-time behavior and the eigensolutions is completed by
measuring the wave-packet group speed (see equation (2.67)). In the stationary reference
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Figure 4.8: (a) Temporal growth rate (measured with perturbation kinetic energy) in the stationary reference frame
and (b) measured speed of the wave packets, initialized from the sixth least stable eigenfunctions (labeled from
most unstable M1 to more stable M6) computed in the moving frame of reference at cf/ue = 0.47 (black) and 0.465
(red). Eigengrowthωi in (a) and frame speed cf in (b) indicated by dashed lines. Neutral temporal growth indicated
by crosses in (a).

frame and at tf = 0, the wave packet moves at the speed of the frame of reference in which
the eigensolutions are computed figure 4.8(b). That is, at tf = 0, the group speed of the so-
lutions is equal to the frame speed. For longer elapsed times, the growth rate and group
speed deviate from the values corresponding to the eigensolution as a consequence of the
base-flow development. In particular, the group speed of the wave packet decreases as the
boundary layer grows. Similarly, experiments of Schubauer & Skramstad (1948) showed that
the phase speed of the Tollmien-Schlicthing waves decreases with the growing boundary
layer. All these observations qualitatively agree with the results of §4.2.4; by decreasing the
frame speed for the eigenvalue problem, the wave packets move downstream.

The previous observations confirm that the formulation of the eigenvalue problem in
a moving frame of reference yields eigensolutions whose characteristics represent the in-
stantaneous perturbation dynamics in the fixed frame of reference, at tf = 0. In this sense,
initializing the time-integration with eigensolutions is free from unpredictable transient be-
havior. As mentioned before, this approach is very similar to the PSE approach, which is
initiated from an LST eigenfunction. For that problem, however, there is a short-lived tran-
sient for the very first marching steps, because the LST solution does not account for several
terms that newly appear in the PSE system. In the case of the time-evolution of the BiGlobal
eigenfunctions, no such transient occurs because the eigensolutions are exact instantaneous
solutions of the full, linearized Navier-Stokes equations.

The usual way to quantify perturbation growth with solutions of the LST and PSE ap-
proaches is to consider N -factor curves, i.e., the natural logarithm of the amplification of dis-
turbances with a single frequency. In the present context, the amplification of wave packets,
that contain a band of frequencies, is considered as they travel downstream. Since N -factor
curves are targeted, only eigenfunctions with stable eigenvalues are used as initial condi-
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Figure 4.9: Perturbation amplification downstream of the neutral point in the stationary reference frame, initialized
from the least stable eigenfunctions belonging to the main branch (labeled from most unstable M1 to more stable
M6) as obtained in the moving frame of reference at cf/ue = 0.47 (black) and 0.465 (red).

tions for the two frame speeds cf/ue = 0.465 and 0.47. For the former speed, this implies
marching the solutions along the branch from the second-most unstable mode onward.
Hence, for both considered speeds, all selected wave packets decay initially (σ(0) < 0), as
indicated in figure 4.8(a), before reaching a minimum amplitude. At the specific time where
the minimum is attained, i.e., when the temporal growth reaches zero (indicated by crosses
in figure 4.8(a)), the perturbations start growing while still being advected downstream. This
point is referred to as a neutral point and is denoted with tf = tf,neutral. All amplification
curves E(tf) are scaled by their respective E(tf,neutral) at the neutral point, similarly to LST
and PSE, and are shown in figure 4.9.

Taking the envelope of the amplification curves E(tf) unfortunately does not compare
with the actual LST and PSE envelopes because of the very definition of the N -factor curves.
From the perspective of the LST and PSE approaches, individual N -factor curves represent a
disturbance with a single frequency. By forming the envelope over all relevant frequencies,
it can be determined which frequency is amplified most at a certain streamwise location.
However, since wave packets containing a narrow band of frequencies are presently consid-
ered, they cannot be expected to dictate the entire N -factor envelope. In the following, the
N -factor curves are instead reconstructed by considering a Fourier transform of the wave
packets to isolate the amplification curves at each frequency. The exact same information
as from the PSE and LST approaches can thus be extracted, with all elliptic effects included.

4.3.2. Amplification and neutral curves: a wave-train interpretation
The individual frequency information, i.e., the wave-train information, can be obtained
from the wave packets by performing a Fourier transformation in time. To further ensure
consistent and accurate comparisons between the present method and PSE, a measure of
the spatial growth has to be chosen. In non-parallel flows, the shape function of the per-
turbation evolves in the streamwise direction and this must be accounted for when assess-
ing the overall perturbation growth in space. Hence, in contrast to parallel flows (or under
the parallel-flow hypothesis), in which the perturbation growth is entirely defined by the
complex spatial wavenumber, the perturbation growth in non-parallel flows depends on the
choice of the norm and measurement technique used to quantify the spatial evolution of the
shape functions. This has been extensively discussed by Gaster (1974); Herbert & Bertolotti
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Table 4.4: Properties of the initial conditions (i.e., the moving-frame main-branch eigensolutions) used to construct
the N -factor and neutral curves in figure 4.10. The initial-condition number labels all different initial conditions
used for reference in the text, while the mode number refers to the place of the eigenvalue in the spectrum for a
given frame speed.

Initial condition #ic cf/ue Mode # (ω`/ue )×10−5 (xE /`)×10−4 (xd /`)×10−5

1 0.525 1 −8.143−1.719i 3.912 0.716

2 0.525 2 −8.015−1.897i 4.169 0.756

3 0.500 1 −5.902−0.732i 6.263 1.090

(1987); Bertolotti et al. (1992); Govindarajan & Narasimha (1995); Herbert (1997) for PSE and
by Fasel & Konzelmann (1990) for DNS. In what follows, the wall-normal integration of the
individual-frequency perturbation energy (equation (2.69) with kinetic-energy norm (2.59))
and streamwise perturbation velocity are considered. The latter is given by

Êu(xf;Ωf) =
∫

|û(xf, y ;Ωf)|2dy . (4.1)

Relying on integral measurements allows removing any uncertainty regarding the choice
of a wall-normal location where the growth/amplification is measured (Gaster, 1974). The
sampling period for the Fourier transform is chosen as T ≈ 2.7×106`/ue .

To achieve a converged Fourier-transform at a specific fixed streamwise location in the
stationary frame of reference, a wave packet needs to be sufficiently far away from this point
as time tends both to zero and infinity. In the context of reconstructing the N -factor en-
velope and the most upstream portion of the neutral curve, it is necessary to disturb the
flow with an eigensolution whose eigenfunctions are located relatively far upstream. In fact,
the near-neutral solutions obtained for cf/ue = 0.47 and 0.465 are not located far enough
upstream to capture the most upstream neutral point, which indicates that neutrally-stable
eigensolutions (wave packets) do no imply neutrally-stable wave trains. The entire neu-
tral curve can be reconstructed by selecting the least stable main-branch eigensolution for
cf/ue = 0.525, which is located upstream of the kinetic-energy-based critical Reynolds num-
ber Recrit,Ê & 7.23×104 (Reδ∗,crit,Ê ≈ 463) as predicted by PSE. Figure 4.10(a) demonstrates
the agreement between the wave-packet and PSE N -factor curves, independently of the
measurement method, i.e., using either the kinetic energy or the streamwise velocity. The
neutral curve, depicted in figure 4.10(b), is also completely recovered by the time-integrated
wave-packet for both measurement methods. This shows that, by initializing the time-
integration procedure with only one single eigenfunction, stability information for all rel-
evant individual frequencies is captured. From here onward, the presently used initial con-
dition is indicated with the label #ic = 1.

It should be emphasized that the N -factor and neutral curves can be reconstructed suc-
cessfully with other initial conditions than just the most unstable eigensolution at cf/ue =
0.525. In fact, these curves are observed to be independent of the choice of the eigenso-
lution, as long as its eigenfunctions are located far enough upstream. This is here demon-
strated by initializing the time integration with different eigensolutions. The second-most
unstable eigensolution along the main branch at the same frame speed (cf/ue = 0.525), la-
beled #ic = 2, and the most unstable main-branch solution at a much smaller frame speed
(cf/ue = 0.5), #ic = 3, are considered. Further details about these initial conditions are pre-
sented in table 4.4. The comparison between the results obtained when using the differ-
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Figure 4.10: (a) Individual-frequency N -factor curves for PSE (solid) and the time-dependent wave-packet solu-
tions (dashed and pluses for first and second most unstable modes at cf/ue = 0.525 (#ic = 1 and 2, respectively),
squares for most unstable at cf/ue = 0.5 (#ic = 3)) with spatial growth based on kinetic energy Ê . Angular frequen-
cies indicated by color level fromΩf`/ue = 1.256×10−4 (gray) to 2.885×10−4 (red) with∆Ωf`/ue = 1.16×10−5. (b)
Neutral curve for LST (black line), PSE (red and blue lines) and the wave packets (crosses and pluses for #ic = 1 and
2, resp., and squares for #ic = 3) with spatial growth based on Ê (blue) and Êu (red).

ent initial conditions is illustrated in figure 4.10. Since the eigenfunctions corresponding to
initial conditions #ic = 2 and 3 are located downstream with respect to those of #ic = 1, a
converged Fourier transform can only be obtained at streamwise stations Rex & 0.75×105

(Reδ∗ & 473) for initial condition #ic = 2 and Rex & 1.09× 105 (Reδ∗ & 568) for #ic = 3. In
the overlapping regions of space where the Fourier transform converges when using the dif-
ferent initial conditions, the information is practically identical (|∆x|/`≈ 3×102, |∆Nmax| ≈
5×10−4 atΩf`/ue = 1.488×10−4). Hence, this demonstrates that the choice of eigensolution
as initial condition does not constrain the physics. It is expected that the independence of
the N -factor and neutral curves with respect to the initial condition extends to the use of all
other eigensolutions with localized eigenfunctions that are located sufficiently far upstream.

This observation suggests that the N -factor and neutral curves can possibly be recon-
structed with any initial condition. If the initial condition does not exactly solve the moving-
frame eigenvalue problem, the time-integrated solution is, however, highly prone to con-
tamination by inadvertent transients. A similar transient behavior exists in the context of
the PSE spatial marching approach, which is initialized with an LST solution that does not
exactly satisfy the PSE problem, as mentioned before. In slowly-evolving flows, the transient
behavior can be very manageable. However, in arbitrarily more complicated flow fields the
contamination by the transient can be very difficult, if not impossible, to eliminate or even
identify. Because the presently considered eigensolutions satisfy the full, linearized Navier-
Stokes equations instantaneously, transients are identically avoided when using them as
initial conditions. Hence, the localized eigenfunctions obtained in a moving frame of refer-
ence are arguably the most appropriate choice for the initialization of a wave-packet time-
integration approach.
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Since the eigenfunctions belonging either 1) to another mode along a branch at the same
frame speed or 2) to an eigensolution at another frame speed have different streamwise lo-
cations and extent, each corresponding time-integrated wave packet covers a different re-
gion in space. The streamwise extent of the spatial region where Fourier coefficients con-
verge depends on the location of the eigenfunctions and on the temporal evolution of the
amplitude of the time-integrated wave packet. The latter can be restrictive if the magni-
tude of the Fourier coefficients reaches a level that is so low that they cannot be accurately
captured numerically, i.e., due to arithmetic underflow. Nevertheless, as demonstrated pre-
viously, if an overlapping region exists between two time-integrated wave packets, the N -
factor curves are identical; the disturbance physics is not affected by which eigensolution is
chosen. This degree of freedom allows covering individual spatial regions of the flow, which
can be particularly useful for flows that develop quickly in distinct regions separated by a
long streamwise extent. In the case of the flat-plate boundary layer, when seeking for N -
factor curves in a specific region, it is thus not necessary to integrate wave packets that lie
upstream of the entire neutral curve. It is only necessary to ensure that the eigenfunctions
lie sufficiently upstream of the relevant region for the frequency of interest. For instance,
selecting the most unstable eigenfunction at cf/ue = 0.45, which has a downstream magni-
tude |ũ|/|ũ|max < O (10−5) for Rex & 3.5×105, is suitable if instability information is sought
downstream of this location.

As a rule of thumb when applying the present methodology, the time integration should
always be initialized with eigenfunctions located far enough upstream of the region of inter-
est. In regard to the observed upstream movement of the eigenfunctions upon increasing
the frame speed, it is recommended to consider eigensolutions in the large frame-speed
limit. If the growth of perturbations is sought for additional downstream locations, and if
that cannot be appropriately captured by the use of the upstream initial condition, a smaller
frame speed should be considered.

Obtaining the N -factor curves from the time-integration of moving-frame eigensolu-
tions has many advantages over other approaches, at least as it can be synthesized from
the application to the flat-plate boundary layer. Non-elliptic equations like LST and PSE
are discarded in the following discussion since the present method targets the application
to quickly developing flows, for which these methods are inapplicable. First, in contrast
to frequency-forcing approaches, only one wave-packet solution, represented by the eigen-
solution, is required to excite all relevant frequencies in a given region of interest. Hav-
ing to repeat monochromatic simulations for a large number of individual frequencies and
determining the spatial distribution of the forcing function (Fasel & Konzelmann, 1990) is
avoided. Although the latter forcing function could be determined with an optimal-forcing
approach, the perturbation-amplification scenario is then restricted to the optimal one and
this would obstruct reconstructing the (inherently non-optimal) monochromatic N -factor
curves and the corresponding neutral curves. This is reflected by the results of Sipp & Mar-
quet (2012), who argue that branch II is not appropriately captured in the region where the
optimal forcing is strong. The same argument likely applies to the use of an initial condition
obtained in optimal-perturbation analysis, in the spatial range where the growth is non-
modal/transient. Therefore, since non-optimal stability information is presently sought,
disturbing a flow with moving-frame eigensolutions is arguably more appropriate than the
singular vectors obtained in the optimal-perturbation or in resolvent analysis, or a multitude
of monochromatic waves. These analyses close the methodological aspects of the moving-
frame approach for stability analysis. In the following, theoretical aspects are discussed in
order to better understand the moving-frame eigensolutions.
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4.4. Reynolds-Orr energy budget of the moving-frame eigensolu-
tions

It has been established that the eigenmodes in the side and downward branches have the
distinguishing property with respect to the main branch that they are domain dependent
because the corresponding adjoint eigenfunctions are not localized. It is still unknown, how-
ever, whether a specific significance can be assigned to the eigensolutions’ specific arrange-
ment in the different branches of the spectrum at a given frame speed, and what mecha-
nisms are involved. The goal of the present section is twofold. First, it aims to determine
the distinguishing physical mechanisms from mode to mode in the main branch. Secondly,
other characteristics of the non-physical side and downward branches with respect to the
main branch are investigated in order to identify them in future studies. These points are
addressed by analyzing the wavenumber of the two-dimensional eigensolutions and then
applying the Reynolds-Orr energy equation presented in §2.8.

Usually, spectra consist of a fundamental mode and its harmonics. Higher harmonics
have a more oscillatory spatial structure, characterized by small wavelengths, and therefore
are more strongly damped by viscous dissipation. This explains that these modes should,
far enough down the spectrum, become stable. In the present case, however, figure 4.1 sug-
gests that the streamwise wavelength of one eigenfunction with respect to the next along
the branch is relatively constant. In fact, the wavelength does not decrease, as would be ex-
pected from higher harmonics. In order to quantify this aspect, a mean wavenumber based
on the kinetic perturbation energy (see equation (2.59)) is defined as

αmean =−i

Ï (
ũ∗ ∂ũ

∂x
+ ṽ∗ ∂ṽ

∂x

)
dx dyÏ (|ũ|2+|ṽ |2)dx dy

, (4.2)

which allows reducing the (x, y)-dependent wavenumber into one scalar value. Figure 4.11
shows the real part of αmean for cf/ue = 0.415 and 0.470 with two different scalings. Fig-
ure 4.11(a) reveals that, if scaled with `, the wavenumber decreases when considering more
stable solutions along the main branch, as indicated by the filled circles. The wavelength
of the main-branch eigenfunctions appears to increase at approximately the same rate as
the length of the wave packets. This is emphasized in figure 4.11(b) by the relatively con-
stant number of wavecrests per wave-packet length for the eigenfunctions along the main
branch. This clearly suggests that the modes along the main branch are not higher har-
monics of the most unstable mode. If scaled with `, the wavenumber of the solutions on
the side branch increases. However, when scaled by the wave-packet length, the number
of wavecrests per wave packet decreases for both the side and downward branches. This
again indicates that modes further down these two branches are not higher harmonics. This
observation hints that the stabilization of the modes along a branch is unlikely due to vis-
cous dissipation acting on the streamwise wavelength of the eigenfunctions. A mechanism
other than dissipation must be causing the greater stability of these modes. To assess which
mechanism is responsible, the Reynolds-Orr decomposition of the temporal growth rate is
used.

The different terms of the perturbation energy are presented in §2.8 for compressible
flows. In particular, the growth-rate decomposition was given by equation (2.76). Consider-
ing an incompressible flow drastically reduces the decomposition such that

ωi = Rũ∗ ṽ +R|ũ|2 +Rṽ∗ũ +R|ṽ |2 +Dfrict. + AU + AV + AW + Acf +Pp̃ . (4.3)
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Figure 4.11: Real part of the mean wavenumber (equation (4.2)) for the different modes along the main (filled cir-
cles), side (open circles) and downward (crosses) branches for cf/ue = 0.415 (black) and cf/ue = 0.47 (red). The
wavenumber is scaled by (a) the Blasius length ` and (b) the wave packet length xd − xu , where xu and xd are de-
fined as the most up-/downstream locations of the iso-contour at which |ũ| =|ũ|max/9. The scaling by 2π converts
the angular wavenumbers into “number of waves” per unit of the used length scale.

All terms in equation (4.3) can be obtained from the compressible-flow formulation, pro-
vided that ρ = 1 and that the incompressible-flow energy norm (2.59) is used. The only terms
requiring additional manipulation when departing from the compressible-flow formulation
are the Pp̃ and Dfrict. contributions, that are given by

Dfrict.
(a)= 1

Re

Ï ∣∣∣∣∂ũ

∂y

∣∣∣∣2 dx dy

Ẽ︸ ︷︷ ︸
Dũ,y
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(b)= −R
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Ẽ

}
.


(4.4)

The terms that have the largest contribution to the growth rate ωi for the modes along the
three branches are shown in figures 4.12(a) and 4.13(a) for cf/ue = 0.415 and 0.470, respec-
tively. As established before, the stabilization of the modes further down the branch does
not appear to relate to the streamwise wavelength of the eigenfunctions. This is further
demonstrated by the very small size of the dissipation terms (4.4a) involving the streamwise
derivatives of ũ and ṽ , contributing for less than 2% to the growth rate of the most unstable
mode. This means that the streamwise wavelength is so large that these streamwise dis-
sipation terms are almost inactive. For this reason, these contributions, along with other
insignificant terms, are included in the remainder in figures 4.12(a) and 4.13(a).

For a more detailed consideration, the main branch is first analyzed by considering both
figures 4.12 (mode # 1 through 6) and 4.13 (# 1 − 5). The energy budget reveals that the
Reynolds-stress Rũ∗ ṽ is the most destabilizing contribution for all the main-branch modes.
More importantly, the variation of ωi is highly correlated with that of Rũ∗ ṽ . The Pearson
correlation coefficient is 0.995 for both cf/ue = 0.415 and 0.47. This establishes that Rũ∗ ṽ

dominantly controls the instantaneous growth rate of the main-branch modes. The imag-
inary part of Rũ∗ ṽ consists of two main factors: R{ũ∗ṽ} and ∂U /∂y . Figures 4.12(b) and
4.13(b) show that the overall shape of R{ũ∗ṽ} is relatively invariant along the main branch.
In fact, the decrease of the Reynolds-stress term along the main branch is mostly brought by
the downstream displacement of the corresponding eigenfunctions, which causes the wave
packets to experience a diminishing shear magnitude, ∂U /∂y . This is supported by correla-
tion coefficients of −0.998 and −0.9991 between the position of the wave packet, measured
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Figure 4.12: Analysis of the solutions for cf/ue = 0.415. (a) Most dominant terms in the ωi -budget (equation (4.3))
for the different modes along the main (filled circles), side (open circles), and downward (crosses) branches. (b)
Regions where ũ and ṽ are locally out of phase (dark red, R{ũ∗ ṽ} <−3×10−3Ẽmax < 0, produces ωi ) and in phase
(black, R{ũ∗ ṽ} > 3×10−3Ẽmax > 0, destroys ωi ). Isocontour of |ũ|/|ũ|max (dotted black, level: 6×10−2). Contours
are elevated in y based on their mode number. Horizontal lines indicate where the imaginary part of Rũ∗ ṽ and ω
switch sign. The mode numbers corresponding to the first and last considered modes along the main and down-
ward branch are indicated. The top and bottom insets illustrate the behavior of arbitrary complex-valued waves in
the out-of-phase and in-phase regions, respectively.

Figure 4.13: Analysis of the solutions for cf/ue = 0.470, see figure 4.12.
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by the streamwise energy centroid xE, and the imaginary part of Rũ∗ ṽ for the frame speeds
cf/ue = 0.415 and 0.470, respectively. A very similar argument applies to the dissipation term
Dũ,y . Upon displacing the eigenfunctions downstream, the height of the boundary layer in-
creases as the square root of x and the wall-normal support of the eigenfunctions increases
at this rate as well. This means that ∂2ũ/∂y2 is expected to decrease as 1/x. The correlation
coefficients between xE and the imaginary part of Dũ,y are 0.9993 and 0.996 for cf/ue = 0.415
and 0.47, respectively.

Second, the downward-branch modes are considered. This is best done with figure 4.12,
because at this frame speed the branch has a large number of modes (mode # 9−29). Just like
for the main-branch modes, the Reynolds-stress term Rũ∗ ṽ represents the dominant contri-
bution to the growth rate. All other terms are relatively constant in this particular case. The
stabilizing effect (imaginary part of Rũ∗ ṽ < 0) of the Reynolds-stress term for higher modes
deserves some more attention. The shear ∂U /∂y is always positive for the flat-plate bound-
ary layer and thus the Reynolds-stress term can only reduce the growth rate for higher modes
if R{ũ∗ṽ} = ũr ṽr + ũi ṽi changes sign. If R{ũ∗ṽ} > 0 (< 0) then the two complex-valued
streamwise traveling wave-functions ũ and ṽ are in (out of) phase, as illustrated in the in-
sets of figure 4.12(b). Figure 4.12(b) also shows that, while the magnitude of R{ũ∗ṽ} relative
to Ẽmax is always approximately the same, the region representing an in-phase correlation
between ũ and ṽ (black) outweighs the out-of-phase region (red) for higher modes on the
downward branch. A positive value of R{ũ∗ṽ} yields a negative Rũ∗ ṽ contribution toωi . This
therefore implies the more stabilized character of the solutions for modes that are located
further along the downward branch.

Finally, side-branch modes are investigated, i.e., mode # 6−19 in figure 4.13. The imag-
inary part of Rũ∗ ṽ is always positive and relatively constant in this case. This is reflected by
the weak decrease in the ratio of the size of the out-of-phase region to that of the in-phase
region that is compensated by the increase of ∂U /∂y as the side-branch modes move up-
stream (see figure 4.13(b)). For the side branch, the dissipation term Dũ,y represents the
largest contribution to the growth rate. As for the main branch, this is related to the stream-
wise position of the wave packets in the boundary layer. Quantitatively, a correlation coeffi-
cient of 0.958 between Dũ,y and xE is found.

Besides Rũ∗ ṽ and Dũ,y , two other terms are considered as well. The longitudinal Reynolds-
stress term R|ũ|2 contribution is observed to always have a small but significant destabilizing

effect, which is a consequence of the negative ∂U /∂x in a flat-plate boundary layer. Just like
Rũ∗ ṽ , the dependence of R|ũ|2 on ∂U /∂x causes this term to be strongly correlated with the
streamwise position of the eigenfunctions (main branch correlation coefficients: −0.990 and
−0.998 for cf/ue = 0.415 and 0.470, respectively; downward branch: −0.9992; side branch:
−0.967). The contribution of the other Reynolds-stress terms Rṽ∗ũ and R|ṽ |2 amounts to
about 0.0006% and 1.3% of the total growth rate of the most unstable mode, which justifies
their factorization into the remainder term. Lastly, the cf-correction term, expressed as Acf

in the present context, is always insignificant with respect to the other terms. This is em-
phasized by the small size of this term as shown in the figure, even after it is amplified by a
factor 102. This is desired, as it indicates that the deviation of the instantaneous growth of E
from the eigenvalue growth ωi is negligibly small (see equation (2.64)).

The delineation of the terms that contribute to ωi has revealed the main behavior of
the modes along the different branches. The main and side branches represent solutions
with similar R{ũ∗ṽ} shapes that displace in the streamwise direction. The difference in the
behavior of the modes along the main and side branch is the direction in which the eigen-
functions are displaced as more stable eigenmodes are considered. The downward branch,
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instead, represents solutions that sit at approximately the same x-location, while the so-
lutions’ R{ũ∗ṽ} shape deforms significantly, representing relative phase changes of ũ with
respect to ṽ .

4.5. Global mode theory in a moving frame of reference
This section uses the global mode theory (Huerre & Monkewitz, 1990; Chomaz et al., 1991;
Monkewitz et al., 1993) to illustrate how the two-dimensional eigensolutions can be recon-
structed with the WKBJ approach, that allows extending the local LST method to spatially
developing flows. Alizard & Robinet (2007) and Rodríguez (2010) have shown the relation-
ship between local and global solutions for the flat-plate boundary-layer case before, by
using the complex frequency provided by BiGlobal simulations as input for the LST and PSE
approaches. It is presently demonstrated how to independently approximate the moving-
frame solutions, i.e., without using information from the solution obtained with the BiGlobal
approach. This also gives the opportunity to highlight the similarities and differences be-
tween the nonlocal and global solutions.

4.5.1. Nonlocal perturbation approach
The WKBJ ansatz has already been introduced in §2.3.3 for the PSE approach and allows
accounting for the variation of the perturbations from one streamwise station to another.
In contrast to the PSE approach that solves both the zeroth- and first-order εp equations at
once, an actual WKBJ approach separates the zeroth and first-order terms into a set of two
equations solved sequentially. At the leading-order, the nonlocal stability equation (2.26) is
given by

(Aα+εpAα,np)q̃f =αBαq̃f +α2Cαq̃f . (4.5)

Keeping all non-parallel-flow terms, included in Anp, at the leading order allows obtain-
ing the local solutions by only solving equation (4.5). This avoids solving the composite,
multiple-scale problem to include the non-parallel effects (Siconolfi et al., 2017). If Anp is
dropped, the parallel assumption on the base-flow evolution is enforced back and the sys-
tem is thus here referred to as parallel WKBJ. Strictly speaking, the parallel WKBJ is inconsis-
tent since the perturbations would be allowed to evolve while the flow variables are assumed
constant in the streamwise direction. However, this approach is useful to illustrate the effect
of the non-parallel-flow terms Anp on the local perturbation solutions.

To reconstruct ’global’ solutions that are similar to the eigensolutions found with the
two-dimensional stability equations, equation (4.5) is formulated in the moving frame of ref-
erence. Note that, in this case, converting the solution properties between reference frames
is relatively simple since the Doppler shift formula (2.54) reduces to the simple algebraic re-
lation ωf = ω+αcf. In the past, local analyses have thus been applied in moving frames of
reference to study convective or absolute instability mechanisms in various flows (Deissler,
1987; Brevdo, 1988; Wright et al., 2000; Arratia et al., 2018), including the Blasius bound-
ary layer (Brevdo, 1995). The reconstruction of an equivalent global solution in the moving
frame of reference has, however, not been attempted.

Unfortunately, the local results of Brevdo (1995) cannot be directly compared to the
present two-dimensional global stability results because a manipulation of the local ap-
proaches is required to approximate the global solutions. This justifies using the global
theory in the present work. The global theory in a stationary frame of reference was pre-
sented by Huerre & Monkewitz (1990), Chomaz et al. (1991) and thoroughly developed by
Monkewitz et al. (1993). For a more practical perspective of the global theory, the reader
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is referred to the book of Huerre & Rossi (2009). Furthermore, Juniper et al. (2011), Ju-
niper & Pier (2015), and Siconolfi et al. (2017) have used the approach to compare global
modes computed with BiGlobal and (non)local approaches for several flow cases that sup-
port global instability mechanisms in the stationary frame of reference. Hence, domain-
independent solutions could be obtained for these flow cases without having to resort to a
moving-reference-frame formulation.

4.5.2. Approximation of the global eigenvalues
The global theory is applied according to the following steps in order to obtain the global
solution frequency ωg in a moving frame of reference. First, the streamwise spatial distri-
bution of the absolute frequencies ω0 is sought by finding a solution of equation (4.5) with
zero group speed, in a given frame of reference. When such a solution exists at one spatial
location, an absolute instability mechanism is supported locally in the flow. Second, the
absolute frequencies are used to determine the turning-point frequency ωs , which provides
the lowest-order approximation of the global frequency. Third, the correction ωε, that ac-
counts for the effects of the streamwise variation of α, is computed in order to evaluate the
global frequency ωg =ωs +εpωε.

In order to determine the x-distribution of absolute frequencies, the pair (ω0(x),α0(x))
satisfying

∂ω

∂α

∣∣∣∣
(ω0,α0)

= 0, (4.6)

is sought by solving the eigenvalue problem (4.5). Since the equations are solved in a moving
frame of reference, the equation (4.6) is equivalent to finding convective solutions in the sta-
tionary reference frame that satisfy ∂ωf/∂α= cf. Finding the pairs satisfying equation (4.6) is
done by sequentially solving the temporal and spatial formulations of the eigenvalue prob-
lem (4.5), i.e., solving forω (givenα) and then forα (givenω), respectively. Note that another
approach based on a sensitivity analysis with the adjoint eigensolutions could also be used
(Alves et al., 2019). For the present computations, condition (4.6) is satisfied numerically up
to O (10−8ue ) for each streamwise location along the boundary layer.

The lowest-order approximation of the global eigenvalue is given by the unique fre-
quency ωs = ω0(Xs ), which satisfies ∂ω0/∂x = 0. The location x = Xs is referred to as a
second-order turning point and is found by continuing analytically the function ω0(x) into
the complex plane. This is done by using a rational interpolation of the discrete ω0(x) (Ju-
niper & Pier, 2015; Siconolfi et al., 2017) with the Chebfun Matlab library (Driscoll et al.,
2014). The resulting interpolating function of ω0(x) is then evaluated in the complex x-
plane. The evaluation of ω0(x) in the relevant region of the complex x-plane is shown in
figure 4.14(a) for the incompressible boundary layer in the moving frame of reference with
cf/ue = 0.415. In this reference frame, the flow accommodates a spatial pocket of absolute
instabilities for real x (black dotted line in figure 4.14(a)). Since ωs,i can only be positive at
x = Xs if there is some local region of the complex x-plane where ω0,i > 0, having an ab-
solutely unstable region is a necessary condition for the emergence of a global instability
(Chomaz et al., 1991). The frequencies ωs computed with both non-parallel (black open
circle) and parallel (red open circle) WKBJ are compared against the BiGlobal solution in
figure 4.14(b). The numerical values of Xs and ωs are reported in table 4.5. The solution in-
cluding all non-parallel contributions is more unstable and is thus a better approximation of
the most unstable BiGlobal eigenvalue than that excluding the non-parallel effects. This is in
agreement with the observation of Gaster (1974) on the incompressible flat-plate boundary
layer and, as mentioned in § 1.1.3, this also illustrates why the parallel assumption yields a
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Figure 4.14: (a) Contour level of the imaginary part of the analytically continued absolute frequency I (ω0(X )) with
the non-parallel WKBJ in the complex X -plane. The dotted line highlights the real axis forω0,i < 0 (red) andω0,i > 0
(black). Xs is the center of the saddle point in the double turning point region for the non-parallel WKBJ. (b) Main
branch with cf/ue = 0.415 for BiGlobal (blue), parallel (ωg , red) and non-parallel (ωg , black) WKBJ equations. Open
circles indicate the leading-order frequency ωs for WKBJ.

Table 4.5: Parameters corresponding to the most unstable mode for cf/ue = 0.415 as approximated using local and
global stability approaches. The parameters xE and αmean are based on the direct ṽ-eigenfunction.

Xs /`×10−5 ωs `/ue ×105 ωg `/ue ×105 xE /`×10−5

’Parallel’ WKBJ 2.6571−0.4564i −1.6269+0.2944i −1.596+0.2833i 3.3423

WKBJ 2.8504−0.2726i −1.5670+0.3128i −1.538+0.3015i 3.4065

BiGlobal −− −− −1.546+0.3014i 3.4965

more stable neutral curve.
A better approximation thanωs can be obtained for the global eigenvaluesωg by consid-

ering the first-order correction term ωε, which also allows obtaining the other global modes
along the branch. This correction term follows from a separate analysis in the close vicinity
of x = Xs , where the WKBJ expansion breaks down, and is given by

ωε =− i

2

∂2ω0

∂α2

∂α0

∂x
+

(
n + 1

2

)√
∂2ω0

∂x2

∂2ω0

∂α2 , ∀n = 0,1,2... (4.7)

with the partial derivatives being evaluated at (x,α,ω) = (Xs ,α0,ω0). The imaginary part of
the square-root term is presently negative, which, as observed by Monkewitz et al. (1993),
Juniper et al. (2011) and Siconolfi et al. (2017), is usually the case. Hence, the case n = 0 cor-
responds to the most unstable global mode and n > 0 yields more stable modes. Note that
the correction term ωε proposed by Monkewitz et al. (1993) includes an additional compo-
nent δω that accounts for viscous and first-order base-flow effects. For the present study
and following Siconolfi et al. (2017), these two contributions are part of the zeroth-order
eigenvalue problem (4.5) and thus are already included in both ω0 and ωs .

The approximations of the most unstable global eigenvalue (i.e., n = 0) obtained for the
boundary layer in the moving frame with cf/ue = 0.415 are given in table 4.5. It shows that
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Figure 4.15: (a) Direct (|ũ| = |ũ|max/9) and (d) adjoint (|ũ†| = |ũ†|max/9) eigenfunctions corresponding to the most
unstable global mode at cf/ue = 0.415 determined by the WKBJ approach excluding (red) or including (black)
parallel-flow effects, and the BiGlobal approach (blue). (b,e) Imaginary and (c, f ) real part of the streamwise

wavenumber corresponding to the direct (b,c) and adjoint (e, f ) eigenfunction for parallel WKBJ (red,α(†)
g (x)), non-

parallel WKBJ (black, α(†)
g (x)), and BiGlobal (blue, αṽ (†) extracted at constant heights y/` = 1972 (direct) and 946

(adjoint), cropped for |ṽ |/|ṽ |max < 10−4).

the approximationsωg with or without the parallel-flow assumption match the most unsta-
ble BiGlobal eigenvalue better thanωs . Accordingly, small relative errors |ω−ωg |/|ω| = 3.4%
(parallel) and 0.44% (non-parallel) are observed when comparing to the BiGlobal eigenvalue
ω. Other BiGlobal eigenvalues on the main branch and the corresponding approximations
ωg for n = 1,2, . . . ,6 are also shown in figure 4.14(b). The overall match between the BiGlobal
eigenvalues and the approximation with the WKBJ approach is deemed very good, espe-
cially from the perspective of having used an approach that arguably represents a low-order
approximation.

4.5.3. Approximation of the global eigenfunctions
The global direct and adjoint eigenfunctions can be reconstructed with the WKBJ approach.
In particular, the present work focuses on obtaining a leading-order approximation for the
most unstable solution (i.e., n = 0). This approximation is obtained by evaluating ansatz (2.24),
with the turning-point frequency ωs and considering x to be real. It relies on the fact that
solving the local eigenvalue problem (4.5) for ωs in the region of Xs yields a double α-
solution. When x departs upstream and downstream from Xs , the two α(ωs , x) solutions
become more distinct, thus forming two branches. The two α-solutions are labeled as fol-
lows. One solution, referred to as α+, has αi > 0 as |x| → ∞ and the other solution α− is
defined for αi < 0 as |x| → ∞. Note that this definition does not imply continuity of the
α±(x)-branches in x. From now on, referring to an α-branch implies the combination of
the function α(x) and the corresponding local shape functions of the perturbation in the
wall-normal direction.

Since the global eigenfunctions must be localized solutions, only theα-solutions that de-
cay as x →±∞ are selected. For the direct eigenfunctions, this implies that the α+-branch
ought to be considered as x →+∞ and α− as x →−∞. In practice the α+-branch is made to
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dictate the direct global eigenfunctions’ behavior for x > Xc and the α−-branch for x < Xc ,
where Xc is chosen to be the location whereα+

i =α−
i . Reconstructing the adjoint eigenfunc-

tions is done similarly. The adjoint wavenumber is equal to the complex conjugate of the
direct wavenumber (Juniper & Pier, 2015) and the shape function in the wall-normal direc-
tion is based on the adjoint equation of the zeroth-order direct problem (4.5) with frequency
ω†

s = ω∗
s . The local wavenumber of the direct and adjoint global eigenfunctions, αg (x) and

α†
g (x), are thereby related to the α±-branch through

αg (x) =
 α+(x) for x > Xc

α−(x) for x < Xc

, α†
g (x) =

 (α−(x))∗ for x > Xc

(α+(x))∗ for x < Xc

. (4.8)

The shape of the global eigenfunctions in the wall-normal direction is governed by the lo-
cal shape functions corresponding to the α-branches. In practice, these shape functions
have an arbitrary phase and amplitude at each individual streamwise location. In order to
fit these functions in the WKBJ ansatz (2.24), they are presently normalized by dividing the
direct and adjoint functions by their complex value at y/` ≈ 1972 and at 946, respectively.
These heights correspond to the collocation nodes for which the shape functions ṽ and ṽ†

are close to attaining their unique maximum value in the wall-normal direction in the do-
main of interest. The normalization is based on a constant y-value because it ensures that
there is no streamwise growth at that height. The choice of the normalization is arbitrary
and considering ũ, p̃, or even a different height yields small changes only. The present nor-
malization yields the best match between the solutions corresponding to the different ap-
proximation methods. In figure 4.15, the direct (panel (a)) and adjoint (panel (d)) BiGlobal
eigenfunctions corresponding to the most unstable mode are compared against the WKBJ
approximations with and without the parallel-flow assumption. The WKBJ and BiGlobal
approaches thus yield solutions that have a very similar amplitude distribution and the dis-
crepancies are further reduced when including all non-parallel effects. The streamwise spa-
tial growth rate and wavenumber, shown in figures 4.15(b,e) and (c, f ), respectively, are also
in very good agreement. As indicated in table 4.5 by the location of the streamwise energy
centroid, xE , including all non-parallel effects allows obtaining a solution that lies closer
to the BiGlobal eigenfunction. Hence, the WKBJ approach and the global mode theory ap-
plied in a moving frame of reference provide a very good approximation of the moving-frame
eigensolutions for the flat-plate incompressible boundary layer. Applying the global mode
theory to this case demonstrates how the moving frame of reference transforms the fixed-
frame problem, that is governed by one downstream-traveling wave, into an elliptic prob-
lem for which the leading solution is a combination of downstream- and upstream-traveling
waves.

4.6. Intermediate conclusion
This chapter focused on applying the moving-frame methodology on the two-dimensional
flat-plate boundary layer. It allowed showing the working principles of the method and how
to interpret the moving-reference-frame results, especially by reconstructing the N -factor
and neutral curves.

An important aspect was to show that the dependency of the eigenvalue problem on
the numerical setup can be eliminated by using a moving frame of reference. In formulat-
ing the eigenvalue problem this way, the eigenfunctions describing convective mechanisms
become localized in the streamwise direction. That is, the eigenfunction amplitude can be
made arbitrarily small at the truncation boundaries by placing those boundaries far enough
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from the region of interest. As a consequence, converged solutions can be obtained that are
independent of the imposed truncation boundary conditions.

Upon computing the eigenvalue spectrum for the flat-plate boundary-layer case for an
appropriate speed of the reference frame, the most unstable solutions arrange themselves
in three branches. The modes along all branches are found to represent different configu-
rations of the Reynolds-stress energy production term; they are not higher harmonics of the
most unstable mode. Only the main branch contains modes that are independent of the
computational setup (resolution, truncation boundary positions and conditions). The ef-
fects of the variation of the domain length and frame speed on the two-dimensional eigenso-
lutions have been studied. For a given domain length, localized eigenfunctions can be found
if the frame speed and the streamwise discretization are large enough. This is a consequence
of the reduced streamwise extent of the eigenfunctions for a larger frame speed. In contrast,
in attempting to recover converged solutions for the stationary reference frame, the results
suggest that the streamwise domain length and resolution must be considerably extended
at a rate that is inversely proportional to the frame speed. This demonstrates that obtaining
domain-independent solutions representing convective perturbation mechanisms requires
the use of a moving frame of reference and that obtaining such solutions in the stationary
reference frame is arguably not possible. Finally, since the flow is only slowly developing in
the streamwise direction, a WKBJ method for the nonparallel stability equations formulated
in the moving frame of reference was used to confirm the results; the main-branch eigen-
solutions can be recovered and are in good agreement with the results obtained with the
present two-dimensional approach.

A main benefit of the present approach is that the moving-frame eigensolutions solve
the stationary-frame linearized Navier-Stokes equations in an instantaneous sense. Hence,
in contrast to the situation in the stationary frame of reference, the eigensolutions in the
moving frame of reference do not solve the linearized Navier-Stokes equations for all times
but only for tf = 0. To obtain the time-dependent solutions, the stationary-frame linearized
Navier-Stokes equations are integrated in time with the moving-frame eigenfunctions used
as the initial conditions. As demonstrated in Chapter 2, the present analyses showed that
the resulting instantaneous growth and movement of the perturbations match the eigenin-
formation. By using the eigenfunctions of the main branch as initial conditions for the time-
integration of the initial-value problem and by performing a Fourier transform of the time-
integrated wave-packet, the N -factor and neutral curves are recovered. These curves were
shown to be in excellent agreement with PSE results. Importantly, the converged Fourier
coefficients are independent of the frame speed and of the choice of the eigenmodes be-
longing to the main branch. Hence, for the flat-plate boundary layer, time-marching only a
single wave packet is sufficient to reconstruct the N -factor and neutral curves for a stream-
wise region of interest. The only requirement is to find an eigensolution with a spatially-
localized eigenfunction that is located sufficiently upstream of the region where converged
Fourier coefficients are sought. In practice, obtaining complete N -factor and neutral curves
requires finding eigenfunctions located upstream of the neutral point.

A considerable aspect of using the moving-frame eigenfunctions as initial conditions is
that transients are avoided when time-marching the solutions. Avoiding transients is essen-
tial in obtaining uncontaminated N -factor curves. This contrasts with the usual situation in
which the LST solutions are used to initialize the spatial marching of the PSE. The LST solu-
tions do not solve the PSE at a given streamwise station and hence a transient solution be-
havior is inevitable. No such transient behavior has to be dealt with in the present methodol-
ogy, because the eigensolutions are instantaneously exact solutions to the linearized Navier-
Stokes equations. Furthermore, by having formulated the problem as an eigenvalue prob-
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lem and then use the obtained moving-frame eigensolutions as initial conditions, the dy-
namics has not been restricted to an optimal-growth scenario as would be the case with
SVD methods. Instead, the present approach provides a lower bound for the growth, rather
than an upper bound. Having access to this lower bound allows reconstructing the tradi-
tional N -factor and neutral curves.
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5
The laminar

shock-wave/boundary-layer
interaction

The present chapter considers a laminar shock-wave/boundary-layer interaction (SWBLI)
flow and has two main objectives. First, it aims to demonstrate that formulating the two-
dimensional streamwise stability equations in a moving frame of reference allows obtaining
eigensolutions that are independent of the truncation boundaries. In particular, it extends
the verification of Chapter 4 to two- and three-dimensional perturbations in a rapidly evolv-
ing flow that inherently necessitates an elliptic formulation of the stability equations to cap-
ture all in-plane gradients. The second objective is to identify and characterize the insta-
bility mechanisms related to convective instabilities in the laminar SWBLI. In practice, af-
ter having reconstructed the individual-frequency amplification curves, the frequencies and
spanwise wavenumbers yielding the largest spatial amplification across the shock-induced
bubble are identified. The corresponding instability mechanisms are then thoroughly ana-
lyzed by decomposing the material derivative of the perturbation energy into its individual
physical mechanisms.

To address these two objectives, the present chapter is structured as follows. In §5.1, an
overview of the SWBLI physics is proposed. A particular emphasis is put on the instabilities
in SWBLI and on the methodologies used in past studies to identify them. Thereafter, §5.2
discusses the flow configuration, the numerical setup and the Selective Frequency Damp-
ing (SFD) method used to obtain the steady base-flow solution. In §5.3, the initial condi-
tions, i.e., the moving-frame eigensolutions, used to disturb the flow are presented. This sec-
tion also proposes an in-depth analysis of the eigengrowth mechanisms. The initial-value
problem is then solved in §5.4 to obtain the finite-time evolution of the perturbation wave
packets. By applying the Fourier transform on these temporal solutions, the individual-
frequency amplification curves are reconstructed. In §5.5, the physical mechanisms respon-
sible for the growth of the most amplified wave packets are characterized. Finally, an inter-
mediate conclusion is proposed in §5.7.
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5.1. Context: SWBLI and instabilities
Shock-wave/boundary-layer interaction is a ubiquitous phenomenon in high-speed aero-
dynamics that significantly impacts aircraft performance by, for instance, promoting laminar-
turbulent transition, causing excessive heating of aerodynamic surfaces, creating pressure
losses in engine intakes or even local fatigue of the solid structures (Délery & Dussauge,
2009). SWBLI is present in applications ranging from the transonic to hypersonic regime and
a comprehensive understanding of its physics is required to devise effective and efficient
high-speed vehicles. The first observations of SWBLI were made on airfoils by Ferri (1939)
and, shortly later, thorough experimental studies have been published with normal (Don-
aldson, 1944), compression ramp (Liepmann, 1946; Ackeret et al., 1947) and normal/oblique
(Fage & Sargent, 1947) shock waves. Since then, SWBLI has been extensively studied over
numerous flow configurations; the progress accomplished over the past decades have been
reviewed by, e.g., Délery et al. (1986), Dolling (2001),Babinsky & Harvey (2011), Gaitonde
(2015) and Gaitonde & Adler (2023). Considerable efforts have been invested to reveal the
mechanisms governing the unsteadiness of the SWBLI, such as breathing of the recircula-
tion bubble, oscillations of the shock system, or laminar-turbulent transition, but compre-
hensive research is still required to better understand these phenomena.

The unsteadiness of the SWBLI often refers to low-frequency oscillations of the inter-
action region (Dolling, 2001). Numerous computational and numerical investigations have
been conducted to determine the physical mechanisms at the origin of this unsteadiness
and have led to a classification of the mechanisms into two main categories. On the one
hand, Beresh et al. (2002), Ganapathisubramani et al. (2007), Ganapathisubramani et al.
(2009) and Wu & Martín (2008) suggested that the SWBLI acts as an amplifier of upstream in-
coming disturbances that enter the shock-induced separated boundary layer. Recent stud-
ies have also demonstrated the importance of what is referred to as an upstream-influence
shock (Tester et al., 2018; Lash et al., 2021; Nutter et al., 2021; Sebastian & Lu, 2021), an os-
cillating shock that is located far upstream of the interaction and whose frequency content
could be correlated with the unsteadiness of the shock-induced bubble. The related stud-
ies rely on the statistical correlation of the incoming perturbations and the low-frequency
response of the interaction region. However, this approach does not seem applicable for
all cases as, for example, Wu & Martín (2008) did not find a significant correlation in one
of their configurations. On the other hand, Touber & Sandham (2008), Touber & Sandham
(2009), Pirozzoli & Grasso (2006), Dussauge et al. (2006), Piponniau et al. (2009), Grilli et al.
(2012), Sansica et al. (2016), Pasquariello et al. (2017), Adler & Gaitonde (2018) and Sasaki
et al. (2021) showed evidence of mechanisms that have a more intrinsic character. In fact,
this second theory propounds that a feedback mechanism can cause downstream distur-
bances, present in the aft-shock region, to be entrained and amplified within the recircu-
lation bubble. In turbulent SWBLI, Clemens & Narayanaswamy (2014) have suggested that
the two types of mechanisms are always present together, with the intrinsic one becoming
more dominant as the separation region increases. In laminar/transitional SWBLI, accord-
ing to Sansica et al. (2016), Dwivedi et al. (2020), Bonne et al. (2019) and Bugeat et al. (2022),
the low-frequency unsteadiness is not a self-sustained mechanism and thus needs to be
forced. However, since the interaction region acts as a low-pass spatial amplification filter
(Sansica et al., 2016; Bugeat et al., 2022), the low-frequency oscillations do not need to be
forced necessarily at a low frequency. Furthermore, Sansica et al. (2016) and Bonne et al.
(2019) have argued that the low-frequency oscillations can originate from upstream trav-
eling waves that are triggered by instability mechanisms or a laminar-turbulent transition
process taking place in the downstream portion of the interaction region. Ultimately, al-
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though remarkable progress has been made during the past decade, no consensus has been
reached regarding the origin of this unsteadiness.

Several instability mechanisms in laminar and turbulent SWBLI have been investigated
in past studies. Among all of them, global mechanisms are of particular interest because
they represent localized modes that are intrinsic to the interaction region. Oscillatory global
modes at the origin of the low-frequency breathing and the downstream vortex shedding
were found by Nichols et al. (2017) and Pirozzoli et al. (2010) in turbulent SWBLI. However, in
laminar (shock-induced) separation bubbles, only a global stationary mode has been found
so far (Robinet, 2007; Hildebrand et al., 2018; Rodríguez et al., 2020), that is responsible for
a two-to-three-dimensional topological change of the separation bubble. Although Robinet
(2007) suggested that a three-dimensional bubble is a prerequisite for the low-frequency
oscillations in laminar SWBLI, the non-oscillatory global instability mechanism cannot be
held responsible for sustaining the unsteadiness. In this sense, Guiho et al. (2016) concluded
that laminar SWBLIs in a broad range of conditions are globally stable and thus convective
instability mechanisms should be considered.

Convective instabilities in laminar SWBLI were tackled by Yao et al. (2007) and Sansica
et al. (2014) through the response of the flow to external forcing with Direct Numerical Simu-
lations (DNS) and/or Large Eddy Simulations (LES). However, as mentioned in the introduc-
tion (Chapter 1), these methods require judicious initial conditions or forcing to perturb the
(convectively unstable) flow and their relatively high computational cost restricts the study
of the perturbation dynamics to a limited range of forcing configurations. To circumvent this
limitation, Yao et al. (2007) and Sansica et al. (2016) relied on Linear Stability Theory (LST)
and Parabolized Stability Equations (PSE) approaches to examine the growth of perturba-
tions through convective instability mechanisms in laminar SWBLI. The stability results are
in good agreement with DNS for weak oblique shocks. However, for strong interactions, the
results are affected by the parallel or slow-evolution assumptions on which LST or PSE rely,
respectively. Furthermore, although streamwise variations are better captured by PSE, the
parabolized formulation of the equations in the streamwise direction prevents capturing
the upstream response to downstream forcing. For these reasons, studying the stability of
SWBLI requires considering fully-elliptic equations.

The streamwise BiGlobal stability problem is particularly suitable to identify instability
mechanisms in SWBLI and has yielded different outcomes in the past. On the one hand,
Robinet (2007), Pirozzoli et al. (2010) and Nichols et al. (2017) have highlighted the presence
of the previously described global instability mechanisms that are localized in the shock-
induced separation bubble. On the other hand, Guiho et al. (2016) have identified convective
instability mechanisms that can be activated by external perturbations entering the bubble
before being swept away by the flow. However, since the analyses are conducted in a sta-
tionary frame of reference, the results corresponding to convective instabilities are tainted
by their sensitivity with respect to the truncation boundaries, i.e., domain length, boundary
conditions, and streamwise discretization. Hence, because unstable global modes are not
found, Guiho et al. (2016) could only conclude that their laminar SWBLIs are globally sta-
ble. The present work improves the characterization of the three-dimensional convective
instability mechanisms in a two-dimensional laminar SWBLI flow with the moving-frame
methodology.

5.2. Flow configuration and numerical setup
The flow considered in the present study consists of an incident shock that impinges on a
laminar flat-plate boundary layer (figure 5.1). Experimental measurements of a similar flow
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Table 5.1: Flow parameters for the laminar shock-wave/boundary-layer interaction.

M ue [m/s] Ec Te,total [K] pe,static [Pa] Ree [1/m] Rex0 Reximping. θincident

1.7 452.12 1.156 277.73 2.3×105 3.5×107 7×105 1.785×106 37.93◦

θincident

Incident shock

Reatta
chment shock

Expansion waves

Separatio
n shock

Separation bubbleDividing streamline

Boundary-layer

thickness δ99

Sonic line M = 1

Figure 5.1: Schematic of a shock-wave/boundary-layer interaction with laminar separation bubble.

have been conducted by Giepman (2016) for various shock-wave angles, impinging loca-
tions and regimes of the incoming boundary layers. The present numerical analyses are con-
ducted on one flow configuration for which the laminar-turbulent transition occurs down-
stream of the incident shock. The main setup parameters are summarized in table 5.1. The
incoming laminar boundary layer enters the numerical domain at xf,0/` = Rexf,0 = 7× 105

with thickness δ0/` = Reδ0 = 5073. The freestream Mach and unit Reynolds numbers are
M = 1.7 and Ree = 1/` = 3.5× 107 [m−1], respectively. The incident shock is generated in
the freestream with a 2◦ wedge, has an angle θincident = 37.93◦, and impinges on the laminar
boundary layer at ximping./`= Reximping. = 1.785×106. The measurements by Giepman (2016)
indicate that the laminar-turbulent transition takes place as a consequence of the pertur-
bation development in the SWBLI. When using a computational approach to simulate the
flowfield without an artificial/numerical stabilization technique, this particular unsteadi-
ness prevents the simulation from reaching a laminar steady state. Furthermore, the spe-
cific experimental conditions feature a wall-temperature distribution that varies in time and
that would thus prevent finding a steady-state solution. To avoid complications introduced
by such a boundary condition, and because no further information about perturbations is
provided by the experiment anyway, a close but more canonical case is considered here, in
which the wall is assumed to be adiabatic.

5.2.1. Numerical setup
The base flow is obtained by solving the compressible Navier-Stokes equations via finite-
volume DNS (Hickel et al., 2014). The time-integration is achieved with an explicit fourth-
order Runge-Kutta scheme and the temporal resolution is fixed by a global time step such
that the Courant-Friedrichs-Lewy condition CFL < 1 is satisfied for each grid point in the
domain. The spatial discretization in the streamwise direction x relies on a uniform Carte-
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sian structured grid with Nx points and the domain length for the base flow is L/`= 2.5365×
106. In the wall-normal direction y , the grid is stretched with a hyperbolic function in or-
der to cluster grid points near the wall in the shear-layer region (∆y+ < 1) and around the
shock-impingement location. The domain height is H/`= 0.76095×106, i.e., 150 times the
boundary-layer height at the inlet. The convective fluxes are evaluated with a third-order
weighted essentially non-oscillatory (WENO) scheme coupled with the Harten–Lax–van Leer
contact (HLLC) approximate Riemann solver. The viscous fluxes are computed with a second-
order central difference scheme. The effectiveness of the present flux-reconstruction method
in obtaining non-oscillatory SWBLI flows has been previously assessed by Niessen (2017).

The boundary conditions are imposed as follows. A compressible flat-plate boundary-
layer profile is prescribed at the inlet and the incident oblique shock, emanating from the
upper boundary, is imposed by a Rankine-Hugoniot condition. The solid wall (y = 0) is an
adiabatic surface on which the no-slip condition for the velocity is enforced (i.e., ui = 0).
At the outflow, a homogeneous Neumann condition in the streamwise direction governs all
variables. To avoid shock-wave reflections on the domain borders, a Riemann-invariant-
based non-reflective condition is imposed at all truncation boundaries.

5.2.2. Steady-state solution: Selective Frequency Damping method
Stability analysis relies on the evolution of perturbations around a base-flow solution Q , that
is a laminar equilibrium solution of the governing equations (2.1). The base-flow solution
must thus satisfy the steady Navier-Stokes equations

∂Q

∂tf
=N (Q) = 0. (5.1)

Since the present flow naturally becomes unsteady, the Selective Frequency Damping (SFD)
method (Åkervik et al., 2006; Jordi et al., 2014; Casacuberta et al., 2018) is used in order to
drive the unsteady flow field qf towards Q . The SFD approach contrasts with past stability
analyses carried out on laminar SWBLI (Robinet, 2007; Yao et al., 2007; Sansica et al., 2014;
Guiho et al., 2016; Sansica et al., 2016; Hildebrand et al., 2018; Cerulus et al., 2021), which
used long-time nonlinear saturation of two-dimensional DNS to obtain stable steady-state
base-flow solutions. This latter approach to obtain the laminar base flow is effective solely
when the considered laminar flow is stable to all two-dimensional perturbations. For the
present case, the flow configuration contains a strong shock-induced separation region with
laminar-turbulent transition downstream of the separation-bubble apex, which thus pre-
vents reaching a steady-state naturally. By considering the SFD approach, the instability
mechanisms triggering the transition can be damped out and thus, upon achieving a negli-
gible residual, an unstable steady-state base-flow solution can be accurately obtained.

In the SFD approach, a source term is introduced into the Navier-Stokes equations (2.1)
that is proportional to the high-frequency content (qf −qlf) of the flow. The field qlf repre-
sents a low-pass filtered version of the flow field qf and serves as an approximation of the
unknown base-flow solution Q . Following Åkervik et al. (2006), an exponential filter is cho-
sen to calculate qlf and the modified Navier-Stokes equations are therefore given by

∂qf

∂tf
=N (qf)−χs (qf −qlf) , (5.2a)

∂qlf

∂tf
= qf −qlf

∆s
, (5.2b)

with the positive real-valued parameters ∆s and χs representing the bandwidth of the filter
and the feedback control parameter, respectively. In the present case, χsδ0/ue = 0.65 and
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Figure 5.2: (a) SFD residual εs = ||qf −qlf||L2 /
√

Sf as a function of the physical time. Perturbation shape in space

when εs = 10−8 (indicated by × in (a)): (b) (u−U )/max(|u−U |); (c) (v−V )/max(|v−V |); (d) (ρ−ρ)/max(|ρ−ρ|); (e)
(p −P )/max(|p −P |) (colored lines, 20 contours from minimum (-1, gray) to maximum (1, red)). (b–e) Boundary-
layer edge (δ90, dashed); U = 0 (dash-dotted).

∆s ue /δ0 = 1.64 are used. The effectiveness of the SFD in driving qf towards qlf is assessed by
monitoring the L2-norm of the unsteady residual εs = ||qf −qlf||L2 /

√
Sf, with Sf the surface

area of the two-dimensional domain. Upon driving the residual to zero, the low-pass filtered
variable qlf satisfies the steady Navier-Stokes equations and the steady-state base-flow Q
is thus given by qlf. For the present case, the residual saturates at O (10−9) as depicted in
figure 5.2(a).

As thoroughly demonstrated by Casacuberta et al. (2018), the SFD method relies on a
strategical choice of the two parameters ∆s and χs to effectively and efficiently converge to
low residual levels. In particular, in the presence of an unsteady, two-dimensional global
mode, Casacuberta et al. (2018) propose the unleash technique to determine optimal coeffi-
cients that maximize the convergence rate. First, the least stable steady mode that rules the
convergence rate is evaluated when χs 6= 0, i.e., when the time-integration is controlled with
the SFD forcing term. In the present case, this steady mode corresponds to an expansion of
the separation bubble (figure 5.2(b −e)) with a growth rate ωi`/ue = −2.434× 10−8. Since
the growth rate is negative, the flow is effectively driven towards a steady-state solution for
which the bubble expansion becomes less and less dominant. Second, a white-noise per-
turbation of magnitude εs is superimposed to the base flow Q = qlf, that has been obtained
at a certain low residual εs . The time-integration is then pursued with χs = 0, i.e., without
the SFD forcing term. In this uncontrolled time-integration (with χs = 0), the most unstable,
two-dimensional global mode must establish with an exponential growth rate that corre-
sponds to the slope of the temporal evolution of ||qf −Q||L2 . When using this technique,
Casacuberta et al. (2018) indicate that the exponential growth could be preceded by an alge-
braic growth that rapidly becomes overwhelmed by the exponential growth of the most un-
stable global mode, if it exists. In the present case, the unleash technique, however, reveals
only an algebraic growth that is not followed by any exponential growth. This thus indicates
that the present SWBLI does not support any unstable, two-dimensional global mode. Ac-
cordingly, the SFD coefficients could not be optimized with the unleash technique. Despite
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Figure 5.3: (a) Isocontours of ρ/ρe . (b) U /ue -velocity profiles, magnified by a factor 30Reδ0
, at streamwise loca-

tions xf/`× 10−6 = 1,1.25,1.5,1.75,2,2.25. Locus of generalized inflection points (dashed red line) and dividing
streamline (dotted red line). (a,b) δ90 = δ(U = 0.90ue ) in dashed black line and U = 0 in dash-dotted line. (c)
∂U /∂y evaluated at the wall for grids Nx ×Ny = 500×250 (solid black), 1000×500 (dashed red), and 2000×1000
(solid blue).

being not optimal, the aforementioned parameters did prove to be effective.

5.2.3. Base-flow results
The density field ρ of the base flow is presented in figure 5.3(a) in which the dashed black
and dash-dotted white lines indicate the boundary-layer thickness (δ90 = δ(U = 0.9ue )) and
the zero-velocity (U = 0) isoline, respectively. A zoom-in representation of the separation
bubble is shown in figure 5.3(b) along with the velocity profiles at several streamwise lo-
cations. The dividing streamline (dotted red line) and the zero-velocity isocontour (dash-
dotted black line) show that the separation region is relatively long (Lsep/` ≈ 6.50 × 105)
compared to the boundary-layer thickness. The separation bubble has the typical trian-
gular shape of laminar SWBLI and no secondary recirculation is found for the present case.
Finally, for the same flow configuration, Niessen (2017) showed very good agreement with
free-interaction theory (Chapman et al., 1958).

A sensitivity analysis performed on the domain length confirms that the inflow and out-
flow boundaries do not interact with the long separation bubble and thus do not influence
the results. The Riemann boundary conditions effectively avoid reflections that would im-
pact the interior of the domain. Finally, grid convergence of the results is demonstrated in
figure 5.3(c) by means of ∂U /∂y evaluated at the wall for three different mesh sizes. The
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coarsest grid consists of Nx ×Ny = 500×250 points, with Nx and Ny the number of points
in the streamwise and wall-normal directions, respectively. The intermediate grid is two
times denser and the finest grid is four times denser than the coarsest grid in both direc-
tions. The length of the separation bubble, i.e., the distance between the two x-locations
where ∂U /∂y |y=0 = 0, is Lsep/`×10−5 = 6.36, 6.48, and 6.50 from the least dense to the dens-
est grid. This shows that the solution converges and that, with a further resolution increase,
the difference in the separation length would be negligible. For the stability analyses, the
base-flow solution on the densest grid is used.

Two-dimensional, unsteady global modes are found not to exist by using the unleash
technique of the SFD method. Moreover, as later commented on in §5.3, three-dimensional,
global modes, steady or unsteady, are neither expected nor recovered in the present com-
putational effort. According to Robinet (2007), the three-dimensional steady global mode,
associated with the spanwise modulation of the bubble, is unstable only if a secondary recir-
culation exists within the two-dimensional separation bubble. Since there is no secondary
recirculation for the present configuration, the flow is expected to be globally stable. Fur-
thermore, Avanci et al. (2019) proposed a geometrical criterion to determine whether the
separation bubble is convectively or absolutely unstable. This criterion is based on the rel-
ative position between the dividing streamline (i.e., zero-mass flux isoline) and the locus of
inflection points of the streamwise velocity profile in the wall-normal direction. In partic-
ular, they showed that, for incompressible flows, upstream propagation of disturbances is
expected if the inflection points yI lie below the zero-mass-flux isoline yD (i.e., in the re-
gion where the streamwise mass flux is negative). If this is the case, an absolute instability
mechanism is expected in the separation region. For compressible flows, these locations
can be defined as

∂

∂y

(
ρ
∂U

∂y

)∣∣∣∣∣
yI

(a)= 0,
∫ yD

0
ρU dy

(b)= 0 (5.3)

As shown in figure 5.3(b), the wall-normal coordinate of the dividing streamline yD (dotted
red line) is located below the generalized inflection point yI (dashed red line). Hence, upon
extrapolating the criterion to the compressible regime, it is expected that the flow is not
absolutely unstable but rather exhibits solely convective instability mechanisms.

5.3. Initial conditions: eigensolutions
In order to ensure the effectiveness of the present approach, it is key to consider eigensolu-
tions that do not depend on the truncation boundaries, i.e., eigensolutions that have both
localized direct and adjoint eigenfunctions. As for the incompressible boundary layer, an
eigenfunction is deemed localized in the domain when (at least) an O (1)-relative change in
the domain length yields less than an O (10−4)-relative change in both the real and imaginary
parts of the eigenvalue. It is furthermore demanded that the eigenvalue converges when in-
creasing the domain length. Based on these requirements, three different types of modes
can be identified in the SWBLI. After presenting the numerical setup in §5.3.1, the spectra
and eigenfunctions corresponding to these modes are discussed in §5.3.2. The underlying
mechanisms of the eigengrowth are then analyzed in §5.3.3 and the influence of the frame
speed on the solutions is discussed in §5.3.4 in order to identify the ideal initial conditions
to disturb the flow.
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Table 5.2: Stability-analysis reference parameters representative of the most unstable 2D and 3D cases.

cf/ue β` Nx xin/` xout/` Ny yi ,1/` yi ,2/` ymax/`

#1 0.628 0 1900 0.8×106 2.6×106 160 50×103 −− 3×105

#2 0.557 9.06×10−5 2400 0.8×106 3.0×106 120 12×103 3×104 1×105

#3 0.587 9.06×10−5 2400 0.8×106 3.0×106 120 12×103 3×104 1×105

#4 0.615 25.5×10−5 2400 0.8×106 3.0×106 120 12×103 3×104 1×105

5.3.1. Numerical setup for the eigenvalue problem
The computational domain for the eigenvalue problem is truncated in the up- and down-
stream directions, at x = xin and x = xout, and far from the flat plate at y = ymax (x = 0 cor-
responds to the leading edge and y = 0 to the wall). The truncation boundaries at x = xin

and x = xout are respectively referred to as the in- and outflow boundaries. The streamwise
domain length is denoted by L = xout − xin. Homogeneous Neumann conditions are used
at the in- and outflow boundaries for all perturbation variables in order to allow perturba-
tions to be large at the boundaries if the dynamics in the interior of the domain demands
it. At y = ymax, velocity and temperature perturbations are required to vanish. The direct
and adjoint eigenvalue problems are discretized with a fourth-order central finite-difference
scheme in x and Chebyshev collocation in y . The grid incorporates Nx and Ny discrete
points in the streamwise and wall-normal directions, respectively. In the wall-normal di-
rection y , the Malik mapping is used in order to place one-half of the collocation points in
[0, yi ,1] and the other in [yi ,1, ymax] for the two-dimensional case. Since eigenfunctions have
a slower decay and a smaller wavenumber in the wall-normal direction for two-dimensional
cases than for three-dimensional cases, the Malik mapping is not suitable for solutions cor-
responding to non-zero β. Hence, for the three-dimensional (β 6= 0) cases, the collocation
points in y-direction are instead mapped with the bi-quadratic mapping into three distinct
regions [0, yi ,1], [yi ,1, yi ,2] and [yi ,2, ymax], each having one-third of the collocation points.
Furthermore, the domain height for non-zero β can also be reduced because of a much
faster decay of the solutions of interest in the freestream compared to the two-dimensional
case. Table 5.2 summarizes the parameters used for the selected reference cases. Since the
base-flow and stability grids are different, the base-flow solution is spline interpolated onto
the grids specifically designed for the stability analysis. Further details about the discretiza-
tion and approach to numerically solve the problem can be found in Chapter 3.

5.3.2. Spectra and eigenfunctions
Solving the streamwise stability problem in the moving frame of reference implies finding
eigensolutions in a large parameter space of a-priori prescribed (cf,β)-combinations. Ex-
ploring this space from point to point reveals significant variations of the structure of the
eigenvalue spectrum and this allows identifying various types of unstable modes. The dif-
ferent types of modes are classified according to their relative location with respect to the
bubble apex when they achieve their maximum temporal growth rate. Hence, for any (cf,β)-
combination, upstream-type (’U’) and downstream-type (’D’) modes are found dominant
upstream and downstream of the bubble apex, respectively. For large enough β, an addi-
tional mode that is dominant in the bubble apex can be found and is labeled as an apex-
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Figure 5.4: Most unstable modes for cf = 0.628ue and β = 0. (a) ω-spectrum with eigenvalues corresponding to
(non)localized eigenfunctions indicated by (gray) black dots, (b–e) direct and ( f –i ) adjoint eigenfunctions. (b–c, f –
g ) Downstream- and (d–e,h–i ) upstream-type modes. (b–i ) Isocontour of |ũ|/|ũ|max (solid black, level: 1/9), (b–e)
isocontours of R(ũ)/|ũ|max (colored lines, from minimum (gray) to maximum (red) with ∆ = 2/9, with the phase
set to zero where |ũ|max is attained) and ( f –i ) isocontours of R(ũ†)/|ũ†|max (colored lines, from minimum (gray)
to maximum (red) with ∆= 2/9, with the phase set to zero where |ũ†|max is attained) . (b–i ) U = 0.9ue -isocontour
(dashed black), dividing streamline (dotted black) and U = 0-isocontour (dash-dotted).

type mode (’A’). In the following, an analysis of the two-dimensional solutions (β= 0) is first
proposed before considering solutions related to β> 0. Although it is shown in §5.4 that the
largest amplification of perturbation definitely stems from three-dimensional mechanisms,
studying the two-dimensional case allows better understanding how the solutions vary in
the (cf,β)-space.

Two-dimensional eigensolutions (β= 0)
The region of the spectrum containing the most unstable eigenvalues for β = 0 is shown
in figure 5.4(a). The eigenvalues corresponding to the upstream- and downstream-type
modes align in two distinct branches, that together form a V in the unstable half-plane of
the spectrum. The left branch (more negative ωr ) contains eigenvalues associated with
downstream-type eigenfunctions (see figure 5.4(b,c)) while the right branch (less negative
ωr ) represents eigensolutions that are here dominant upstream of the apex (figure 5.4(d ,e)).
The corresponding adjoint eigenfunctions are shown in figure 5.4( f , g ) and (h, i ) for the
downstream- and upstream-type modes, respectively. The most unstable two-dimensional
mode is reached by the downstream-type mode when prescribing cf/ue = 0.628 ± 0.001.
This frame speed is slightly greater than the sonic speed with respect to the freestream
(Me cf/ue = 1.7×0.628 = 1.068).

Regarding the numerical sensitivity of the two-dimensional solutions, an O (10−4)-relative
change of the most unstable downstream-type eigenvalue is found when the domain in- and
outlet are displaced by +20% and +10%, respectively. For the same variations of the domain
length, the most unstable upstream-type eigenvalue experiences instead an O (10−5)-relative
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Figure 5.5: Most unstable modes at cf = 0.587ue and βud` = 9.06× 10−5. (a) ω-spectrum with eigenvalues cor-
responding to (non)localized eigenfunctions indicated by (gray) black dots, (b– f ) direct and (g –k) adjoint eigen-
functions. (b,g ) Apex-type, (c–d ,h–i ) downstream-type and (e– f , j –k) upstream-type modes. (b–k) Isocontour
of |ũ|/|ũ|max (solid black, level: 1/9), (b– f ) isocontours of R(ũ)/|ũ|max (colored lines, from minimum (gray)
to maximum (red) with ∆ = 2/9, with the phase set to zero where |ũ|max is attained) and (g –k) isocontours of
R(ũ†)/|ũ†|max (colored lines, from minimum (gray) to maximum (red) with ∆ = 2/9, with the phase set to zero
where |ũ†|max is attained) . (b–k) U = 0.9ue -isocontour (dashed black), dividing streamline (dotted black) and
U = 0-isocontour (dash-dotted).

change. Finally, increasing the domain height by 25% yields a O (10−4)-relative change in
the most unstable eigenvalue of each mode type. Hence, two-dimensional eigensolutions
with localized eigenfunctions, indicated by black dots in figure 5.4(a), are deemed indepen-
dent of the numerical setup whereas solutions associated with non-localized eigenfunctions
(gray dots in figure 5.4(a)) still depend on the truncation boundaries.

Three-dimensional eigensolutions (β> 0)
An exploration of the (cf,β)-space reveals that the different types of modes reach their max-
imum growth rate for different combination of (cf,β). Upstream- and downstream-type
solutions reach their maximum growth rate for β` ≈ βud` = 9.06× 10−5 and cf/ue = 0.557
(upstream) and 0.587 (downstream). These solutions are shown in figure 5.5. As for the
two-dimensional case, the adjoint eigenfunctions of all observed, localized, and unstable
upstream-type modes are located downstream of the direct eigenfunctions and reach past
the dividing streamline into the bubble. This represents an upstream-influence effect in the
sense that the eigensolution is sensitive to the region occupied by the adjoint eigenfunc-
tions, which for this case is located downstream of the direct eigenfunctions.

For large enough β, a third type of unstable mode is observed that is mostly dominant
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Figure 5.6: Most unstable apex modes at cf = 0.615ue andβa`= 25.5×10−5. (a)ω-spectrum with eigenvalues corre-
sponding to (non)localized eigenfunctions indicated by (gray) black dots, (b–d) direct and (e–g ) adjoint eigenfunc-
tions. (b–g ) Isocontour of |ũ|/|ũ|max (solid black, level: 1/9), (b–d) isocontours of R(ũ)/|ũ|max (colored lines, from
minimum (gray) to maximum (red) with∆= 2/9, with the phase set to zero where |ũ|max is attained), (e–g ) isocon-
tours of R(ũ†)/|ũ†|max (colored lines, from minimum (gray) to maximum (red) with ∆= 2/9, with the phase set to
zero where |ũ†|max is attained). (b–g ) U = 0.9ue -isocontour (dashed black), dividing streamline (dotted black) and
U = 0-isocontour (dash-dotted).

in the vicinity of the apex of the separation bubble. For the (cf,β)-combination shown in
figure 5.5, there are only localized apex modes (as it is observed to have branched off from
the downstream-mode branch). The corresponding direct and adjoint eigenfunctions are
shown in figure 5.5(b,g ). Depending on the value of β, especially when it is large, multiple
unstable apex-type modes can be found and the eigenvalues thus form a branch in the up-
per half-plane of the spectrum. The largest growth rate for the apex-mode, which also corre-
sponds to the largest overall growth rate found for the present SWBLI in the (cf,β)-parameter
space, is attained when cf/ue = 0.615 and β`= βa`= 25.5×10−5. The resulting spectrum is
shown in figure 5.6(a). As shown in figure 5.6(b,g ), the direct and adjoint eigenfunctions
for βa are all located close to the bubble apex and are very similar to the apex modes for
the case β=βud. Although the apex-type mode at βa reaches the largest eigengrowth of the
entire (cf,β)-parameter space, its very localized character in space implies that the mecha-
nism only takes hold in a very limited spatial region around the bubble. In contrast, while
the upstream- and downstream-type modes have a smaller temporal growth rate, their effect
is distributed over a longer streamwise extent. It can thus be expected that these character-
istics of the eigensolutions impact their time evolution in the shock-induced bubble. The
effect of β is discussed in detail in section §5.4 by considering the initial-value problem.

All values of β and cf for three-dimensional modes are used throughout the paper as ref-
erence cases in order to establish typical results obtained in the moving frame of reference.
The spanwise wavenumbers are comparable to the findings in the literature (Robinet, 2007;
Dwivedi et al., 2020; Bugeat et al., 2022) for laminar SWBLI. In particular, Dwivedi et al. (2020)
found β`=βδ∗0 /Reδ∗0 = 2.6/9660 = 26.9×10−5, where δ∗0 is the inlet displacement thickness,
with transient growth analysis of a hypersonic SWBLI. This β-value corresponds closely to
βa`= 25.5×10−5. The present frame speed also appears to be of a similar magnitude to the
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group speeds that are found to be relevant by Dwivedi et al. (2020).
A careful verification shows that the most unstable eigensolutions are independent of

the computational set-up, i.e., domain size and resolution. On the one hand, at cf/ue = 0.58
andβud`= 9.06×10−5, an O (10−5)-relative change in the most unstable up- and downstream-
type eigenvalue is observed when displacing the domain outlet by 20%, while maintaining
the same streamwise grid density, and when decreasing the streamwise resolution by 25%,
for the same domain. An O (10−4)-change in the most unstable upstream and downstream-
type eigenvalues is observed when increasing the domain height or decreasing the wall-
normal resolution by 50%. The apex-type mode is less sensitive to the domain size, as a
consequence of its smaller spatial support. A 50%-increase of the domain height or a 20%-
change in the outlet locations yields at most an O (10−5)-relative change in the most un-
stable apex-type eigenvalue. Having shorter wavelengths in both directions, the apex-type
modes are more sensitive to the grid resolution than the other modes. This is demonstrated
by decreasing either the streamwise or wall-normal resolution by 25%, which induces at
most an O (10−4)-relative variation in the most unstable apex-type eigenvalues. In conclu-
sion, the convergence of the solutions is verified for all above parameters. In particular, it
is observed that any O (1)-relative change in the set-up parameters yields a negligible vari-
ation in the eigensolutions. This aspect significantly improves upon the O (1) variation of
the eigenvalues with respect to the set-up parameters observed in past SWBLI studies based
on a stationary-frame eigenvalue problem. It can thus be argued that the dependency of
the eigensolutions with respect to the streamwise truncation boundaries that is usually ob-
served in the stationary reference frame is effectively eliminated by solving the eigenvalue
problem in the moving frame of reference. This setup-independence enables using the
presently found solutions to identify physical instability mechanisms in SWBLI.

5.3.3. Instability mechanisms and in-depth eigengrowth analysis
In the following analysis, the mechanisms that contribute to the two- and three-dimensional
instabilities are discussed. In particular, the growth rate associated with the eigensolutions
is decomposed into its different contributions according to equation (2.76). Among all the
terms of the perturbation/stability equations, only few have a significant contribution to the
energy growth. A careful inspection that includes all terms shows that terms contributing
more than 5% to the temporal growth rate dictate its overall trends across all considered
cases. The present analyses focus only on those terms. By including all other terms in the
remainder, the decomposition of the eigengrowth rate, i.e., equation (2.76) with tf = 0 and
q̆ = q̃ , reduces to

ωi = Rũ∗ ṽ +R|ũ|2︸ ︷︷ ︸
Reynolds stresses

+ R s̃∗ ṽ +R s̃∗ũ︸ ︷︷ ︸
Reynolds heat fluxes

+Dũ,y +Dw̃ ,y +DT̃ ,y︸ ︷︷ ︸
Dissipation

+ AU + AV + Acf︸ ︷︷ ︸
Advection

+ remainder.

(5.4)
The contributions to the growth rate are presented in figure 5.7 for the most unstable two-
dimensional (upper panels (a) and (b): β = 0) and three-dimensional (lower panels (c)
through (e): β> 0) localized modes presented in §5.3.2. All upstream-type modes are shown
in the left-most panels (a) and (c) and all downstream-type modes in the center panels (b)
and (d). The apex-type modes for β= βa are shown in panel (e), while the apex-type mode
found atβ=βud is presented with dashed lines among the downstream-type modes in panel
(d). Note that some terms of equation (5.4) contribute less than 5% to the growth rate from
case to case but are nevertheless included for cross-comparison purposes, whereas no term
included in the remainder has an individual contribution larger than 5%.
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Figure 5.7: Relative contribution of the dominant terms to the ωi -budget for the most unstable modes identified
in §5.3. (a–b) cf = 0.628ue and β = 0, (c–d) cf = 0.587ue and βud` = 9.06× 10−5 and (e) cf = 0.615ue and βa` =
25.5×10−5. (a,c) Upstream-type, (b,d) downstream-type (solid lines) and apex-type (dotted lines, (d)) and (e) βa
apex-type modes. Colors indicate the Reynolds-stress and heat-flux (red), advection (blue) and dissipation (black)
terms. Terms in gray contribute to less than 5% to ωi . For β 6= 0 (c–e), the dominant friction-induced dissipation
terms are added up (open circles): solid black lines ended by closed circles for Dũ,y contribution and dash-dotted
black lines for Dw̃ ,y contribution.

Reynolds-stress and Reynolds-heat-flux terms Rũ∗ ṽ and R s̃∗ ṽ

The largest contribution to the perturbation energy growth is the production term induced
by the Reynolds stress Rũ∗ ṽ , for all mode types. This is a consequence of both the large wall-
normal gradient ∂U /∂y > 0 and the substantial region where R{ũ∗ṽ} < 0. More precisely, for
all cases, the ũ and ṽ-eigenfunctions are mostly in anti-phase, i.e., R{ũ∗ṽ} < 0 (interpreting
ũ and ṽ as waves in the x y-plane), in the shear-layer where ∂U /∂y > 0 is large. The region
where ũ and ṽ are in-phase, i.e., R{ũ∗ṽ} > 0, is much smaller. This yields a significant imbal-
ance between the productive and destructive regions leading to a largely positive Rũ∗ ṽ -term.
This mechanism is illustrated in figure 5.8(b–c) with the most unstable two-dimensional
upstream-type mode. For the downstream- and apex-type modes, the anti-phase region
is even more prevalent, such that Rũ∗ ṽ contributes to at least 75% of the energy growth of
the downstream- and apex-type modes, while it does not exceed 55% for upstream-type
modes. Furthermore, the relative contribution per mode type of the Rũ∗ ṽ Reynolds-stress
to the growth rate is similar for both two- and three-dimensional cases. Only one signifi-
cant difference in Rũ∗ ṽ is, however, observed between the most unstable two- and three-
dimensional downstream-type modes. When considering more stable modes, the contri-
butions of the wall-normal Reynolds stress Rũ∗ ṽ and heat-flux R s̃∗ ṽ decrease for upstream-
type solutions while they both increase for downstream- and apex-type modes. However,
at βud, it is found that Rũ∗ ṽ is larger for the most unstable downstream-type mode than for
the second-most unstable downstream-type mode. In fact, comparing the energy budget of
the two-dimensional downstream-type modes (figure 5.7(b)) and of the three-dimensional
apex-, and downstream-type modes (figure 5.7(d , e)) suggests that the downstream-type
and apex-type modes are closely related.
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Figure 5.8: Decomposition of the Rũ∗ ṽ and R s̃∗ ṽ terms for the most unstable two-dimensional upstream-type
mode at cf = 0.628ue . (a) Velocity gradient ∂U /∂y and (d) temperature gradient −∂T /∂y (filled isocontours with
levels from 0.05 (black) to 1.65 (red) with ∆ = 0.2). Regions where (b) ũ and ṽ are locally in anti-phase (dark red,
R{ũ∗ ṽ}×ρe`

2 <−4×10−11Ẽ < 0) and in phase (gray, R{ũ∗ ṽ}×ρe`
2 > 4×10−11Ẽ > 0), and (e) s̃ and ṽ are locally in

anti-phase (dark red, R{s̃∗ ṽ}×ρe`
2 <−4×10−11Ẽ < 0) and in phase (gray, R{s̃∗ ṽ}×ρe`

2 > 4×10−11Ẽ > 0). (c, f )
Positive (solid, R{q̃} ≥ 2×10−2|ũ|max) and negative (dashed, R{q̃} ≤ 2×10−2|ũ|max) regions for q̃ = ṽ (red filled
contour), (c) q̃ = ũ (orange filled contour), ( f ) q̃ = s̃ (orange filled contour). (c, f ) Black lines represent the limits
of regions in (b,e), respectively: solid for positive and dashed for negative isocontours. (a– f ) Dividing streamline
(lower dotted line) and U = 0.90ue -isocontour (upper dotted line).

The production of entropy perturbation by the wall-normal base-flow heat flux, i.e.,
the R s̃∗ ṽ -term, is the second-most destabilizing mechanism for all mode types, except for
the three-dimensional upstream-type modes. Since the temperature gradient in the wall-
normal direction is negative, regions that positively (negatively) contribute to the energy
growth are the spatial regions where R{s̃∗ṽ} > 0 (R{s̃∗ṽ} < 0), i.e., regions where s̃ and ṽ are
in-phase (out-of-phase). This behavior is illustrated in figure 5.8(e, f ) and is the exact oppo-
site of the Rũ∗ ṽ term. Furthermore, R s̃∗ ṽ is highly correlated with the wall-normal Reynolds
stress Rũ∗ ṽ when moving along each branch. This is demonstrated by the Pearson correla-
tion coefficient between Rũ∗ ṽ and R s̃∗ ṽ that is 1.000 and 0.994 for two-dimensional up- and
downstream-type modes, respectively, 0.998 for three-dimensional upstream-type modes
and 0.999 for βa apex modes. Again, the behavior of the βud downstream- and apex-type
modes (see figure 5.7(d)) does not follow the typical behavior observed for all other modes
and no correlation was found.

For three-dimensional modes, the relation between Rũ∗ ṽ and R s̃∗ ṽ can differ since in-
creasing the spanwise wavenumber tends to increase the ratio |ũ|max/|T̃ |max, which, if this
was the only variation, would automatically reduce the relative contribution of R s̃∗ ṽ with re-
spect to Rũ∗ ṽ . The variation of the ratio |ũ|max/|T̃ |max, which increases by a factor 3 fromβ=
0 to β = βa for upstream-type three-dimensional eigenfunctions, significantly reduces the
contribution R s̃∗ ṽ to the growth rate of the corresponding modes. In contrast, the velocity-
temperature ratio of downstream-type modes is larger by a factor of about 1.5 only, atβ=βa,
which is mostly balanced by a net productive region of R s̃∗ ṽ being twice smaller at β = βa

than atβ= 0. Hence, while the R s̃∗ ṽ term is much less dominant in three-dimensional versus
two-dimensional upstream-type modes, its relative contribution to the growth rate remains
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relatively constant in downstream- and apex-type modes.

Reynolds-stress and -heat-flux terms R|ũ|2 and R s̃∗ũ

The different length scales in x and y imply that the Reynolds stress R|ũ|2 and heat-flux R s̃∗ũ

terms, which involve the streamwise gradient of the base flow, contribute to a smaller extent
to the growth rate than Rũ∗ ṽ and R s̃∗ ṽ . The contribution of R|ũ|2 is governed by the size of

the streamwise velocity perturbation and by the streamwise gradient ∂U /∂x, where the lat-
ter is the only factor that dictates the sign of R|ũ|2 . Hence, the deceleration of the flow in the
shear layer toward the bubble apex has a destabilizing effect through the R|ũ|2 -term. This
is especially observed for upstream- and apex-type modes, while the opposite effect occurs
for the downstream-type modes that are subjected to ∂U /∂x > 0 behind the bubble apex.
Note that the contribution of R|ũ|2 is relatively large in upstream-type modes, especially at
βud for which it is the second largest contribution to the growth rate and thus prevails over
R s̃∗ ṽ . One reason for the significant contribution R|ũ|2 for larger β comes from the larger
magnitude of ũ. The second reason is the reduction of the wall-normal extent of the eigen-
functions; for larger β, they are more confined in the shear layer (where ∂U /∂x < 0 has the
largest magnitude) and thus have a much smaller wall-normal extent in the recirculation
bubble (where ∂U /∂x > 0). For downstream modes, the reason for R|ũ|2 being much less
negative when β increases is explained by the eigenfunctions being dominant close to the
apex, where ∂U /∂x is approximately anti-symmetric, i.e., it has the opposite sign on either
side and equivalent magnitude in absolute value.

Finally, it can be observed that R s̃∗ũ is strongly destabilizing for all upstream modes,
while barely contributing to the growth of other modes at all. The large productive contri-
bution of R s̃∗ũ comes 1) from the positive temperature gradient in the streamwise direction
upstream of the bubble apex and 2) from s̃ and ũ being mostly out-of-phase in the separated
shear layer. In contrast, either the similar size of the productive and destructive regions or
the anti-symmetry of the streamwise temperature gradient with respect to the bubble apex
strongly restrains the contribution of R s̃∗ũ in downstream or apex modes, respectively.

Advection terms
Advection terms quantify how much the perturbation structure stretches or shrinks in the
x- and y- directions. This implies that, if the divergence of the in-plane base-flow velocity is
zero, the contributions of the advection terms to the energy growth cancel out. Although the
compressibility of the flow induces a non-zero velocity divergence, it is presently observed
that the U -advection approximately cancels the V -advection (see figure 5.7). For this rea-
son, advection terms are deemed conservative and are not considered as contributing to the
growth rate.

For the solutions upstream of the bubble apex, the streamwise velocity of the base flow
decreases in x and the perturbations are thus squeezed in this direction by a certain amount
while being stretched in the wall-normal direction by approximately the same amount as the
perturbations are carried upward by the separated shear-layer. The opposite behavior is ob-
served for modes that are dominant downstream of the bubble apex. For three-dimensional
downstream- and apex-type modes, the effect of advection is, however, mitigated by the
fact that these modes are located close to the bubble apex, about which point the advec-
tion effects are approximately anti-symmetric and thus balanced. This results in an overall
stretching/shrinking effect that is much smaller than for two-dimensional modes. However,
the advection terms in the upstream-type modes are barely affected when considering non-
zeroβ. It is evident that the most dominant instability mechanisms of upstream-type modes
are highly similar in two- and three-dimensional cases, while two- and three-dimensional
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downstream modes are noticeably different. A general observation is that the mechanisms
in apex- and downstream-type modes are more prone to vary with respect to β than in the
upstream-type modes. The latter are thus more easily identified among the other modes
(of the entire spectrum). Nevertheless, the energy budget indicates mechanisms that are
distinguishable from branch to branch and thus allows classifying the modes into different
categories.

Artificially introduced by the use of a moving frame of reference, the term Acf is impor-
tant to consider in the energy budget (see figure 5.7). It can be decomposed into two con-
tributions: one from the streamwise boundaries and another one from the x-derivative of
the M -matrix (see equation (2.64)). Since the present eigensolutions have localized eigen-
functions, the contribution of the boundary integral is orders of magnitude smaller than the
contribution from the M -matrix. Furthermore, because the most common base-flow term
in the M -matrix is the density ρ, the derivative ∂ρ/∂x has the greatest influence on the x-
derivative of the M -matrix. This implies that the sign of Acf , and so of the correction used in
equation (2.64), can be related to the streamwise variation of the density, which depends on
the relative position of the eigenfunctions with respect to the bubble apex. Hence, having
∂ρ/∂x < 0 upstream of the apex stretches the eigenfunction and thus produces perturbation
energy. In other words, the upstream eigensolutions are rendered more unstable in the mov-
ing frame of reference than they should in an instantaneous sense in the stationary frame of
reference. Although much smaller, the same effect is observed for apex modes. In contrast,
(two-dimensional) downstream modes are subjected to a stabilizing effect induced by the
moving frame of reference.

Dissipation terms
Since the net contribution of the advection terms to the growth rate is virtually zero, the
dissipation terms are arguably the most stabilizing contributions of the energy growth rate.
The only exception is the most unstable downstream mode that has a relatively large neg-
ative contribution from R|ũ|2 . For all cases, moving downward along a branch in the eigen-
value spectrum is observed to be accompanied with more energy being dissipated through
the dissipation terms (5.4). After integrating by parts these terms, it follows that their magni-
tude mostly depends on the absolute magnitude of the wall-normal derivatives of the eigen-
functions, i.e., the spatial structure of the perturbation in the wall-normal direction. On
the one hand, this implies that highly oscillatory eigenfunctions in the wall-normal direc-
tion are much more prone to dissipating energy through the dissipation terms than eigen-
functions with a larger wavelength. On the other hand, eigenfunctions with a small wall-
normal support dissipate more energy than eigenfunctions with a larger extent. Hence, in
two-dimensional modes, the facts that the wall-normal extent of |T̃ | is shorter than that of
|ũ| and that |T̃ |max/|ũ|max ≈ 2 translates into a dissipation Dũ,y that corresponds to only
35–40% of DT̃ ,y . In contrast, in three-dimensional modes, the larger ratio |ũ|max/|T̃ |max

tends to increase the dissipation Dũ,y with respect to DT̃ ,y . This is especially observable

in upstream-type modes for which the ratio |ũ|max/|T̃ |max is three times larger at βud than at
β= 0. Remarkably, the dissipation term DT̃ ,y contributes to less than 2% of the growth rate,
in absolute value, at βud, while it is as large as 12% for the least unstable two-dimensional
upstream mode. Finally, whenβ departs from zero, the spanwise velocity perturbation com-
ponent develops and the dissipation of energy through Dw̃ ,y increases. With the present β
values, Dw̃ ,y varies from a relatively weak stabilizing effect in upstream-type modes to an
important stabilizing effect that can be greater than or equal to Dũ,y in downstream- and
apex-type modes. Since the eigenfunctions of apex-type modes are highly confined in the
bubble apex and thus have a similar wall-normal extent, the relative size of the dissipation
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terms indicates how large the different components are with respect to each other.
As part of the first step of the moving-frame methodology, the above discussion allows

gaining insight into the core mechanisms behind the eigengrowth. In particular, this helps
understanding how the wave packets are amplified for small elapsed times. In order to study
the complete behavior of convective mechanisms in SWBLI, the second stage of the present
approach is to disturb the flow with eigenfunctions and then track the finite-time evolution
of the wave-packet perturbation across the shock-induced bubble. To do this, the behavior
of the eigensolutions with respect to the frame speed must be understood in order to select
the ideal initial condition.

5.3.4. Dependency on the speed of the moving frame of reference
The characteristics of the eigensolutions, in particular the spatial extent and location of the
eigenfunctions and their eigengrowth, depend on the prescribed frame speed. Understand-
ing how exactly the solutions behave with respect to the frame speed is necessary for several
reasons. First, an appropriate choice for the frame speed is required to obtain localized
eigenfunctions in a given domain. Second, knowing the relation between the location of the
eigenfunctions and the frame speed allows possibly adapting the domain to track instability
mechanisms in the stationary frame. Note, however, that the results for the incompress-
ible boundary layer suggest that it is not always possible to obtain accurate solutions for
zero frame speed without having to simultaneously let both the streamwise domain size
and resolution tend to infinity. Third, after establishing the relation between the position
of the eigenfunction and the frame speed, the initial condition for the linearized Navier-
Stokes equations can be appropriately chosen so as to yield stability information in a region
of interest, e.g., to construct amplification curves with eigenfunctions that are upstream of
a neutral-growth region. In the following, the overall dependency of the eigensolutions with
respect to the frame speed is thus established for the present SWBLI configuration.

The variation of the eigensolutions with cf yields several important insights. Figure 5.9 il-
lustrates the frame-speed dependency of the instantaneous growth rate and the streamwise
locations/extents of representative, localized direct and adjoint eigenfunctions for both βud

and βa. Outside the frame-speed range shown, the spectrum does not contain eigenso-
lutions whose eigenfunctions are localized for the present domain length. Nevertheless,
each mode type achieves a maximum growth rate within the considered range of frame
speeds. The most unstable downstream- and upstream-type modes (βud` = 9.06× 10−5)
attain their maximum at cf = 0.587ue and 0.56ue , respectively. For the apex modes, the max-
imum growth rate is reached at cf = 0.615ue and 0.63ue for β`= 25.5×10−5 and 9.06×10−5,
respectively.

All eigenfunctions move in the x-direction when the frame speed varies and, in general,
increasing cf causes the direct and adjoint eigenfunctions to displace upstream and down-
stream, respectively. This is recorded in terms of the streamwise locations xE , xu and xd of
the eigenfunctions, as defined by equations (2.66) and (2.68) for t = 0. For the incompress-
ible flat-plate boundary layer, the adjoint eigenfunctions move upstream when increasing
the frame speed (Chapter 4). Note, however, that the presence of the shock in the flow
likely prevents some of the eigenfunctions to displace freely along the shear layer. Hence,
on the one hand, downstream-type modes at all considered β-values and apex-type modes
for β = βa barely move upstream of the shock-impinging location when the frame speed
is increased. The eigenfunctions corresponding to these mode types at high frame speeds
are mostly located in the vicinity of the bubble apex and have a relatively short streamwise
extent. In contrast, upstream-type modes can move through the bubble apex and, when ap-
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Figure 5.9: Variation of the initial-condition characteristics (t = 0 only) with respect to the frame speed cf. (a–c)
Upstream-, (d– f ) downstream-, and (g –i ) apex-type modes for (a– f ) βud` = 9.06× 10−5 and (g –i ) βa` = 25.5×
10−5. Crosses, pluses and stars rank modes from most unstable to third-most unstable. Dotted line for unique
apex-type mode at βud. (a,d ,g ) Temporal growth rate ωi , (b–c,e– f ,h–i ) streamwise energy centroid xE (black),
upstream xu (blue) and downstream xd (red) extrema of the (b,e,h) direct and (c, f ,i ) adjoint eigenfunctions. (b–
c,e– f ,h–i ) Gray lines indicate streamwise coordinates of separation (xsep.), bubble apex (xapex) and reattachment
(xatt.).

proaching this particular location, the eigensolutions’ characteristics are only slightly dis-
rupted. In general, the solutions appear to be more unstable when they are located closer to
the bubble apex in the streamwise direction as a consequence of the strong velocity gradi-
ents involved. For all cases, a mode achieves its maximum growth rate at the frame speed for
which the energy centroids of the direct and adjoint eigenfunctions are the closest; the over-
lap of the direct and adjoint eigenfunctions is likely maximized. Finally, it is important to
notice that the solutions belonging to different branches can, for some (cf,β)-combinations,
feature similar characteristics. Hence, in some cases, it can be more difficult to distinguish
and track mode types in the eigenvalue spectrum.

Since eigenfunctions move and their extent increases/decreases when changing the frame
speed, extreme values of the frame speed inevitably lead to eigenfunctions that interact with
the truncation boundaries. Hence, because localized eigenfunctions are sought to ensure
the effectiveness of the present method, it is required to understand the process that leads
an eigenfunction to interact with the truncation boundaries. The most frequent type of in-
teraction, that was discussed in Chapter 4, is caused by the displacement of the eigenfunc-
tion toward the inlet or outlet truncation boundary. A large amplitude at the streamwise
boundaries, which is quantified by equation (2.68a) evaluated at the boundary, implies that
the eigensolutions highly depend on the boundary conditions and domain length. As men-
tioned previously, a high numerical dependency is here defined as when an O (1)-change in
the domain length induces at least an O (10−4)-change in the eigenvalue. For the present
outlet location, the most unstable eigensolution for the up-/downstream and apex modes
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at β` = 9.06× 10−5 becomes domain-dependent for cf < 0.38ue , 0.5ue and 0.3ue , respec-
tively. The onset of the interaction with the domain limit can be observed in figure 5.9(b)
with the downstream extent of the upstream-type eigenfunctions reaching the location of
the outlet boundary (xf/` = 3.0× 106) as the frame speed decreases. For the same mode
type, an increase of the frame speed causes the eigenfunctions to move toward the inlet
boundary before interacting with it when cf > 0.73ue . In contrast, downstream-type modes
are observed to reach only the outlet boundary (at low frame speeds) because their upstream
propagation (as the frame speed is increased) is strongly slowed down by the shock. Further-
more, close to the bubble apex, the downstream-type eigenfunctions feature a much higher
streamwise wavenumber and, although the reference cases are converged with respect to
the streamwise resolutions, a denser grid would be required to resolve downstream modes
at cf > 0.73ue . A very similar observation is made for the apex-type modes at βa, that can be
resolved with the present discretization up to cf = 0.75ue . As a final remark, it is important
to emphasize that the tendency of the eigenfunctions to interact with the truncation bound-
aries is not an issue per se. This tendency must be understood, however, in order to find the
most upstream, domain-independent localized eigenfunctions, for example.

For the present flow case, no two- or three-dimensional localized eigensolutions were
found when decreasing the frame speed to zero, i.e., when the eigenvalue problem is solved
in the stationary frame of reference. This situation is similar to that of the incompressible
boundary layer and this suggests that the present SWBLI case does not support a globally
unstable mechanism. Hence, it is necessary to consider eigensolutions for a non-zero frame
speed in order to describe the pertinent instability mechanisms. More specifically, from
now on, frame speeds that yield sufficiently upstream and setup-independent eigenfunc-
tions are selected as initial conditions to solve the initial-value problem (2.13) and to obtain
converged Fourier coefficients (2.69) for streamwise locations of interest.

5.4. Finite-time evolution of perturbations
In the following, the most amplified perturbation content, i.e., spanwise wavelength and
frequency, is determined. The eigensolutions only provide the largest instantaneous growth
rate; their relation to the most amplified disturbance is yet to be identified. Hence, to char-
acterize the spatial evolution of the convective instabilities, the SWBLI flow is disturbed with
eigensolutions. The finite-time evolution of wave-packet perturbations can thus be assessed
by solving the initial-value problem (2.13) in the stationary frame of reference. In order to
represent the perturbation evolution as individual-frequency amplification curves, as tradi-
tionally provided by the LST and PSE approaches, the wave-packet signal is converted into
the monochromatic, wave-train representation using the Fourier-transform approach de-
tailed in §2.7.3.

First, the flow is disturbed with the apex- and upstream-type eigenfunctions at βa and
βud, respectively. The particular initial conditions are chosen based on the β-values maxi-
mizing the instantaneous growth rate (for all β- and cf-values). Later, the effect of varying
β is studied while using both initial conditions. Since amplification curves over the largest
streamwise extent of the shock-induced bubble are sought, the most upstream initial con-
dition, per mode type, is considered in order to obtain converged Fourier coefficients in
the region of interest. The highest frame speed for which localized solutions are found is
cf = 0.73ue . Note that the initial condition must be localized in space to ensure that the re-
sulting temporal solution is not a boundary-dependent wave-train solution but is instead
a wave packet containing a broad range of frequencies. All the solutions considered to
initialize the temporal problem are independent of the numerical setup. Using these ini-
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Figure 5.10: (a) Amplification curves and (b) envelope of amplification factor curves normalized at xf,0/`= 1.77×
106. (a) Apex mode at βa (dashed) and upstream mode at βud (solid) for frequencies Ωr `/ue ×105 ranging from
2.077 (light red) to 4.845 (dark red) with step 0.23. Envelopes of individual amplification curves indicated by blue
lines and filled circles. (b) Envelope for upstream- (solid) and apex-type (dashed) modes at different β (colored
lines). Filled circles for envelopes at βud and βa of panel (a). Vertical dash-dotted lines: streamwise location of the
bubble apex and reattachment.

tial conditions, the instantaneous validity of the eigensolutions, that can be assessed with
equation (2.64), is verified for small elapsed times. Note that, in compressible flows, the cor-
rected eigengrowthωi ,c (equation (2.65)) accounts for the non-constant M matrix and thus
ωi ,c 6= ωi . In contrast, for incompressible flows, the definition of the energy norm leads to
ωi ,c = ωi (see Chapter 4). For the present SWBLI case, the corrected eigengrowth rate ωi ,c

and the instantaneous energy growth rate σ(tf) are equal up to O(10−6) and O(10−5) rela-
tive errors for upstream- and apex-type modes, respectively. A similar result holds when
comparing the instantaneous group speed cg(tf) (equation (2.67)) against the frame speed
cf. In this framework, eigensolutions are thus demonstrated to be representative of the in-
stantaneous perturbation dynamics. For longer-time dynamics, the Fourier coefficients of
the time-evolved wave packets are computed and are presented in figure 5.10(a). All curves
are normalized at xf,0/`= xapex/`= 1.77×106, which corresponds to the most upstream lo-
cation where converged Fourier coefficients can be found for the apex-type modes since no
eigenfunction of this mode type can be found far upstream of the bubble apex.

The Fourier coefficients in figure 5.10(a) show that, although the apex-type modes have
the largest growth rate around the incident shock, they do not yield the largest amplification-
factor envelope over the extent of the bubble. This behavior was expected from the apex-
type eigensolutions shown in figure 5.9: the large growth rate is achieved only over a very
small streamwise extent of the bubble. In contrast, the upstream-type wave packet at βud

covers a much longer extent of the shock-induced bubble in the streamwise direction, and
despite a relatively smaller growth rate as suggested by the eigensolutions, yields the largest
spatial amplification in the SWBLI. Following this reasoning, downstream-type modes can
only cover a shorter streamwise extent of the bubble than that of upstream modes. Since
their corresponding temporal growth rate is smaller than or equal to that of upstream-type
modes, downstream-type modes yield only a smaller overall amplification and thus are omit-
ted for sake of conciseness.
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Figure 5.11: Spatial amplification of upstream-type wave packets for β = βud. Individual-frequency amplifica-
tion curves obtained from initialization with (a) the three most unstable eigenfunctions of the upstream-type
family (from most unstable to least unstable: squares, crosses and pluses) at cf/ue = 0.73 and (b) the most un-
stable eigenfunction at cf/ue = 0.67 (pluses), 0.70 (crosses) and 0.73 (squares). Colored lines for frequencies
Ωf`/ue ×105 = 0.2307, 0.3461, and 0.3922 (light to dark red).

A parametric study on the spanwise wavenumber is performed in order to identify the
criticalβ-values yielding the largest perturbation amplification. To do this, a range ofβ/βud-
values from 0 to 1.5 is considered for the upstream-type mode. For the apex-type mode,
β/βa-values ranging from 0.25 to 1.5 are considered. Both cases have uniform steps of 0.25.
The frame speed used to obtain the initial conditions is kept at cf = 0.73ue for all cases. The
resulting amplification envelopes are given in figure 5.10(b) for upstream-type (solid) and
apex-type (dashed) modes. These results indicate that, for the present SWBLI conditions,
the most critical three-dimensional convective instabilities are characterized by a spanwise
wavelengthλz /`≈ 2π/(βud`) = 6.9×104, which is approximately 10.7 times smaller than the
length of the bubble (Lsep/`≈ 6.5×105), and a frequency of about f = 9.3(±0.58)kHz at the
reattachment point. With the present selection of discrete β-values used for the paramet-
ric study, the uncertainty on the most-amplified spanwise wavelength reasonably scales to
about ±2.7% of the bubble length.

Considering the bubble length as a reference length, the characteristic frequency of the
present convective mechanisms corresponds to a Strouhal number St = f Lsep/ue = 0.38
that is in the medium-frequency range (St = 0.3−0.5) of the frequencies that can be found
in SWBLIs (Guiho et al., 2016; Larchevêque, 2016; Sansica et al., 2016; Bonne et al., 2019;
Pasquariello et al., 2017; Nichols et al., 2017; Bugeat et al., 2022). While Bonne et al. (2019)
associated these medium frequencies with large-scale breathing motions of the bubble in
transitional SWBLIs, Nichols et al. (2017), Sasaki et al. (2021) (turbulent) and Bugeat et al.
(2022) (laminar) suggest instead that medium frequencies represent convective instability
mechanisms of the shear-layer and that the bubble breathing occurs in the low-frequency
range (St < 0.1). In this range, the breathing motion would be associated with a low-frequency
global mode encompassing the entire recirculation region (Robinet, 2007; Nichols et al.,
2017; Bugeat et al., 2022). Since the wave packets observed in the present flow configuration
are dominant in the shear-layer, the present linear convective mechanisms are arguably not
representative of a self-sustained large-scale breathing of the bubble.

Theβ-parameter study suggests that the spanwise wavenumberβ=βud yields the largest
amplification when using the upstream-type initial condition. Remarkably, it also maxi-
mizes the amplification of the apex-type initial condition, as observed for the case with the
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β-value closest to βud, that is β = 0.5βa ≈ βud. Hence, although βa yields the maximum
growth rate of the apex-type mode, it does not lead to the maximum amplification. The so-
lutions initialized with the upstream- and apex-type modes withβ≈βud are found to display
similar characteristics. For example, the most amplified frequency at the reattachment point
is similar (9.3±0.58kHz) and, as quantified later in figure 5.12, the mechanisms underlying
the growth are very similar. This shows that the most amplified disturbance can be identified
with more than one type of initial condition and thus that βud effectively yields the largest
amplification. Note that disturbing the flow with the upstream-type solutions is preferred
over downstream- or apex-type modes in the sense that the region of converged Fourier co-
efficients reaches farther upstream of the shock-induced bubble and spans a much larger
streamwise extent of the perturbation growth in the flow.

To further ensure that the most critical dynamics are effectively captured by one initial
condition, a sensitivity study is conducted by disturbing the flow with, on the one hand,
the three most unstable solutions of the upstream-type family at cf/ue = 0.73 and, on the
other hand, the most unstable upstream-type eigenfunctions obtained at cf/ue = 0.67, 0.70,
and 0.73. The amplification curves are shown in figure 5.11 at three different frequencies
and are indistinguishable from one initial condition to another. As for the incompressible
flat-plate boundary layer, the only difference is observed in the spatial extent of the region
within which converged Fourier coefficients could be obtained; the more upstream the ini-
tial condition, the longer the spatial extent. Hence, when using the present methodology, it
is strongly advised to consider the most upstream and localized initial condition. This can
be done by changing (usually increasing) the frame speed. Since amplification curves are
independent of the frame speed and eigenfunctions, a single localized initial condition is
sufficient to identify the most-amplified perturbation dynamics.

5.5. Physical mechanisms of the most amplified three-dimensional
perturbations

The most amplified perturbations across the shock-induced bubble have been identified,
the present section discusses the mechanisms that contribute to the three-dimensional in-
stabilities responsible for this growth. To characterize these mechanisms, the upcoming
analyses rely on the energy-budget methodology (Chapter 2) where only the terms that con-
tribute more than 5% to the temporal growth rate are considered. The decomposition of the
growth rate (equation (2.76)) is thus reduced to

σ(tf) = Rŭ∗ v̆ +R|ŭ|2︸ ︷︷ ︸
Reynolds stresses

+ R s̆∗ v̆ +R s̆∗ŭ︸ ︷︷ ︸
Reynolds heat fluxes

+Dŭ,y +Dw̆ ,y +DT̆ ,y︸ ︷︷ ︸
Dissipation

+ remainder, (5.5)

where all other terms individually contributing less than 5% to the energy growth and the
terms related to the advection of perturbations are included in a remainder that itself, i.e.,
the sum of the neglected terms, represents less than 10% of the growth rate. To track the evo-
lution of the contributions, the different terms are computed along xE (tf) of the temporally-
evolving wave packets and are shown in figure 5.12; panels 5.12(a–d) show the results for
the upstream-type mode and 5.12(e–h) for the apex-type mode.

As a consequence of the large wall-normal gradient ∂U /∂y > 0 and the substantial re-
gion where ŭ and v̆ are out-of-phase (i.e., R{ŭ∗v̆} < 0), the Reynolds stress Rŭ∗ v̆ is the largest
contribution to the growth rate, for both the upstream- and apex-type wave packets. Fur-
thermore, Rŭ∗ v̆ is strongly activated in the region of the bubble apex as the wave packets
move downstream such that it reaches its largest destabilizing contribution downstream of
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Figure 5.12: Streamwise variation of the dominant contributions to the temporal growth rate (equation (5.5)) of
the temporal wave packets: (a,e) Rŭ∗ v̆ (solid) and R s̆∗ v̆ (dashed), (b, f ) R|ŭ|2 (solid) and R s̆∗ŭ (dashed), (c,g ) Dŭ,y
(solid) and DT̆ ,y (dashed), (d ,h) temporal growth rate σ(t ). (a–d) Upstream- and (e–h) apex-type modes for rele-

vantβ-values with contributions atβud andβa highlighted by thicker line. (a–h) Vertical lines: streamwise location
of the bubble apex and reattachment.
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Figure 5.13: Wall-normal Reynolds stress for differentβ (columns (a–d)) at several locations of the x-centroid (rows
(i –v)) of the upstream-type wave packet. Isocontours of R{ŭ∗ v̆/Ĕ }×ρe`

2 indicated by colored lines from −9×
10−10 (red) to −0.5×10−10 (gray) with ∆= 0.5×10−10. Boundary-layer edge (δ90, dashed) and dividing streamline
(dotted).

the bubble apex, in close vicinity of the incident shock. In this region, the factor ρ∂U /∂y > 0
is relatively constant in the streamwise direction. Consequently, as shown in figure 5.13, the
large size of Rŭ∗ v̆ in the apex region is caused by a significant growth of R{ŭ∗v̆/Ĕ } down-
stream of the shock.

A similar behavior is observed for the Reynolds heat-flux R s̆∗ v̆ . For the upstream-type
wave packets, however, the contribution of R s̆∗ v̆ is an order of magnitude smaller than that
of Rŭ∗ v̆ . This follows from: 1) the smaller wall-normal gradient ∂T /∂y , 2) the reduced un-
balance between the out-of-phase and in-phase regions of s̆ and v̆ , and 3) the smaller rel-
ative magnitude of T̆ compared to ŭ. These last two effects are, nonetheless, mitigated for
apex-type wave packets such that R s̆∗ v̆ and Rŭ∗ v̆ together produce most of the perturbation
energy, especially in the immediate vicinity of the bubble apex.

The Reynolds stress Rŭ∗ v̆ and heat-flux R s̆∗ v̆ are both maximized over the span of the
shock-induced bubble at βud, which also maximizes the amplification envelope. This can
be explained by considering the evolution of R{ŭ∗v̆/Ĕ } as depicted in figure 5.13. For an
increasing spanwise wavenumber, R{ŭ∗v̆/Ĕ } increases in magnitude and, simultaneously,
covers a smaller area in space. These two variations have an antagonistic effect on the in-
tegral value Rŭ∗ v̆ that thus attains a maximum for β = βud. The Reynolds heat-flux R s̆∗ v̆

features a similar behavior, but to a lesser extent following both its smaller magnitude and
weaker dependency on β than those of Rŭ∗ v̆ . Hence, the wall-normal Reynolds stress Rŭ∗ v̆
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arguably governs the amplification of convective perturbations across the SWBLI.
Depending on the wave-packet location in the bubble, the streamwise Reynolds-stress

R|ŭ|2 and Reynolds-heat-flux R s̆∗ŭ terms contribute to producing or destroying perturbation
energy. The positive or negative contribution of these terms depends on the streamwise gra-
dient of the streamwise base-flow velocity, ∂U /∂x, that has opposite signs on the two sides
of the bubble. Hence, when the incoming perturbation crosses the bubble apex, R|ŭ|2 and
R s̆∗ŭ rapidly become stabilizing as the flow accelerates and eventually reach their maximum
stabilizing contribution in the aft-bubble region. R|ŭ|2 becomes as large as 30% of Rŭ∗ v̆ in
absolute value. Thereby, R|ŭ|2 prevents the maximum temporal growth to occur in the post-
shock region (see figure 5.12(d)). Instead, the temporal growth rate is maximum upstream
of the apex when R|ŭ|2 produces perturbation energy along Rŭ∗ v̆ . Hence, while the Reynolds
stress Rŭ∗ v̆ term is usually the largest contribution to the growth rate in wall-bounded flows,
the contribution R|ŭ|2 plays a significant role in the present flow configuration in which the
streamwise velocity rapidly varies in the streamwise direction.

The contribution of the streamwise Reynolds-stress R|ŭ|2 to the perturbation energy be-
comes more significant as β increases. This is further supported by the Pearson-correlation
coefficient, when comparing the streamwise variation of Rŭ∗ v̆ with the temporal growth rate.
This coefficient decreases from 0.99 (β= 0) to 0.82 (β= 1.5βud), for the upstream-type wave
packet, while the correlation between Rŭ∗ v̆+R|ŭ|2 and the temporal growth rate remains con-
stant. For the apex-type wave packet, slightly weaker correlations are found, except when
additionally including the wall-normal Reynolds-heat-flux term that produces significant
perturbation energy alongside Rŭ∗ v̆ .

The dissipation terms for the upstream- and apex-type modes are given in figure 5.12(c,g ),
respectively. These terms present one of the main differences between the aforementioned
mode types, which is explained by their high correlation with both the spatial extent and
wavenumber of the wave packet. Hence, the dissipation terms of the apex-type wave pack-
ets, that have a short streamwise extent and wavelength, are much stronger than those of
upstream-type wave packets. Furthermore, since the amplitude of T̆ and ŭ are similar for
the apex-type mode, DT̆ ,y and Dŭ,y dissipate a similar amount of perturbation energy. In

contrast, upstream-type wave packets have a much larger ratio |ŭ|/|T̆ |, especially for in-
creasing β, and are thus mostly stabilized by Dŭ,y .

5.6. Temporal wave packets and eigenfunctions
It has been demonstrated that the eigensolutions are instantaneously valid. An eigenfunc-
tion used as an initial condition of the temporal perturbation problem renders an instan-
taneous growth rate at t = 0 that deviates gradually from the eigengrowth rate for t > 0.
In this section, the comparison is extended for non-zero elapsed times. In particular, the
perturbation wave packets at different time instants are compared against eigensolutions
for different frame speeds. First, a qualitative comparison of the eigenfunctions and wave
packets is proposed. Second, the temporal instantaneous growth and eigengrowth rates are
decomposed into their individual contributions to the perturbation energy equation and are
then compared for different time instants and frame speeds.

Once initialized from a moving-frame eigenfunction, the wave packet naturally evolves
in time and moves from one spatial location to another. For this initial-value problem, time
is the governing parameter. In contrast, obtaining moving-frame eigenfunctions at differ-
ent locations relies on solving the stability eigenvalue problem for various frame speeds. For
both initial-value and eigenvalue problems, the spatial location of the solutions is unknown.
Furthermore, the relationship between space, time and frame speed is a-priori unknown. In
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order to compare the behavior of the instability mechanisms as predicted by the initial-value
and eigenvalue problems, the eigenfunctions and temporal wave packets are compared at
identical locations of their energy centroids. To do this, the frame speeds of the eigenso-
lution are identified such that the streamwise energy centroid of the corresponding eigen-
function matches against the streamwise centroid of the temporal wave packet obtained at
different time instants. The results for β = βud are shown in figure 5.14 for all three types
of eigenfunctions and the most amplified wave packet as found in §5.4. These results show
that the finite-time response is remarkably well represented by the eigensolutions. In par-
ticular, the upstream-type eigenfunction at different frame speeds is a good representation
of the evolution of the temporal wave packet in the upstream region of the bubble apex.
As depicted in figure 5.15(a), this similarity likely stems from the correlation between the
streamwise evolution of the wave-packet group speed and the eigensolution frame speeds.
Figure 5.15(b) also shows good agreement between the temporal and eigengrowth rates.
Nevertheless, the characteristics of the upstream-type eigensolutions start deviating from
the temporal evolution for locations downstream of the bubble apex. At these locations, the
two other mode types emerge with equally large growth rates and thus likely influence the
temporal evolution (see figure 5.15(b)). In order to clarify this behavior, the physical under-
lying mechanisms of the eigenfunctions and the wave packets are investigated.

The perturbation energy equations, that are given in reduced forms by equations (5.4)
and (5.5) for the eigengrowth and wave-packet growth rates, respectively, are considered.
The results are shown in figure 5.15 for the wave packets at different time instants (black
lines and symbols) and the eigenfunctions at different frame speeds. For the following anal-
yses, the advection terms are taken out from the remainder of equation (5.5). Although the
sum of these terms cancels out, they vary rapidly in space and are thus relevant to com-
pare the evolution of the solutions across the bubble. Figure 5.15( f ) shows that the spatial
variation of the advection terms is remarkably similar between wave packets and eigenfunc-
tions. In particular, the evolution of AU and AV for upstream-type eigensolutions over the
streamwise extent of the bubble gives a very good representation of the advection mecha-
nisms taking place in the temporal wave packet. When the wave packet and eigenfunction
move through the bubble apex, the transition of the advection term AV from a productive
to a destructive contribution, and, vice versa for AU , is similar for both solutions. Note that
this transition was also observed between upstream and downstream-type eigensolutions
in §5.3.3. Although the other mode types cannot estimate the contribution of the advection
terms in the entire shock-induced bubble, they still give a good representation of these con-
tributions downstream of the bubble apex. In fact, the advection terms have similar behav-
ior and amplitude for all mode types downstream of the incident shock. As a final remark,
figure 5.15( f ) clearly demonstrates that the AU and AV terms have antagonistic contribu-
tions at any location in the flow for all cases. Hence, as mentioned previously, the overall
contribution of the advection terms to the growth rate is several orders of magnitude lower
than the contribution of the Reynolds-stress, Reynolds-heat-flux and dissipation terms; ad-
vection terms neither significantly produce nor destroy perturbation energy in the present
case.

As indicated by figure 5.15, all dominant contributions to the upstream-type eigengrowth
rate are in good agreement with the contributions to the wave-packet growth rate. The main
discrepancies are observed in close proximity to the bubble and are mostly noticeable on
the Reynolds stress R|ũ|2 and dissipation DT̃ ,y . For R|ũ|2 , the difference between the eigen-
solutions and the wave packet stems from the eigenfunctions being spread over two distinct
parts located upstream and downstream of the apex (see figure 5.14(b) at cf = 0.53ue ). Since
the streamwise gradient ∂U /∂x in the shear layer has an opposite sign on either side of the
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Figure 5.14: Evolution at βud of (a) the temporal wave packet initialized from the most unstable upstream eigen-
function at cf = 0.73ue , (b–d) the most unstable (b) upstream-, (c) apex- and (d) downstream-type eigenfunctions
at different frame speeds. (a–d) Isocontours of R(ũ′)/|ũ′|max (colored lines, from minimum (gray) to maximum
(red) with∆= 2/9, with the phase set to zero where |ũ′|max is attained). U = 0.9ue -isocontour (dashed black), divid-
ing streamline (dotted black) and U = 0-isocontour (dash-dotted). The eigenfunctions and wavepackets are labeled
from #0 to #7 (bottom to top) and the y-axis is scaled accordingly. (c,d) Gray patches if no localized eigenfunction
found at the location of the wave packet.
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Figure 5.15: Spatial evolution of (a) the frame (colored lines) and group (black line) speeds and (b– f ) the dominant
contributions to the energy growth for the three-dimensional eigenfunctions and wave packets at βlow: (b) growth
rate (ωi`/ue )× 106, (c) Reynolds stresses Rũ∗ ṽ (solid) and Reynolds heat-fluxes R s̃∗ ṽ (dashed), (d) R|ũ|2 (solid)

and R s̃∗ũ (dashed), (e) dissipation terms Dũ (solid) and DT̃ (dashed) and ( f ) U -advection (solid) and V -advection
(dashed) for upstream- (red), apex- (blue) and downstream-type (gray) modes at the frame speeds indicated in
panel (a). (a– f ) The group speed and the terms contributing to temporal growth rate (σ`/ue )× 106 of the wave
packet are in black. Streamwise location of bubble apex indicated by vertical dotted gray line.
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bubble apex, the productive contribution of R|ũ|2 significantly increases when a structure
rapidly emerges in the downstream part of the bubble. The wave-packet evolution across
the incident shock does not experience this relatively complex behavior of the eigenfunc-
tions but, instead, evolves smoothly from the upstream to the downstream region of the
bubble. Nevertheless, once the wave packet and eigenfunctions are fully supported in the
downstream part of the bubble, the Reynolds stresses R|ũ|2 and R|ŭ|2 are again similar. The
temperature dissipation term DT̃ ,y of the upstream-type eigensolutions also features a sud-
den variation near the bubble apex. In this case, it is due to a rapid decrease of the ratio
|ũ|max/|T̃ |max. In §5.3.3, it was found that this ratio is relatively large for upstream-type
eigenfunctions whereas it is much smaller for downstream- and apex-type modes. How-
ever, the magnitude of the variation of DT̃ ,y and R|ũ|2 does not strongly impact the overall
growth rate of the eigensolutions that, as shown in figure 5.15(b), follows relatively well the
evolution of temporal growth rate of the perturbation wave packet.

The fact that the eigengrowth and wave-packet growth rates are in good agreement stems
from the two most dominant contributions, i.e., the wall-normal Reynolds stress and heat
flux, that are very similar for the temporal wave packet and upstream-type eigensolutions.
Again, the largest differences are observed near the apex but are much less significant and
rapid than for R|ũ|2 and DT̃ ,y . For the present case, the difference only translates into a mild
underestimation of Rũ∗ ṽ and R s̃∗ ṽ , in absolute value, by the upstream-type eigenfunctions.
Near the apex, figure 5.15 shows that the apex- (blue) and downstream-type (gray) modes
emerge with dominant contributions. They are as large as in the upstream modes (red sym-
bols) and thus approach the evolution of the temporal wave packet in the region down-
stream of the shock. In fact, the apex-type eigenfunctions offer a slightly better estimation
of the time-dependent mechanisms for locations downstream of the bubble apex.

Further characterization of the eigenfunction switch at the shock location is beyond the
present scope, but this particular aspect deserves clarification in future work. A possible ap-
proach to assess these effects in the temporal evolution is to project a wave packet used as an
initial condition onto an eigenbasis and track the evolution of the projection coefficients as
the wave packet evolves in time. In this way, the weights of the different modes contributing
to the temporal wave packet can be determined and, accordingly, the contribution of each
mode to the wave-packet evolution throughout the shock could be quantified. Although
the described analysis is insightful to fully characterize how each component participates
in the perturbation evolution, it can be concluded that, except around the apex, the mech-
anisms yielding the largest amplification in the bubble can essentially be characterized by
eigenfunctions. Hence, the wave-packet dynamics in the present flow case are deemed well
represented by eigensolutions even if the most representative eigensolution likely switches
from an upstream-type to an apex-type mode as time advances.

5.7. Intermediate conclusion
In this chapter, linear stability analyses of a laminar SWBLI were performed to, first, assess
the effectiveness of the moving-frame approach and, second, determine the most amplified
convective disturbance mechanisms. The laminar SWBLI base-flow field was obtained by
using the selective frequency damping approach, which, prior to linear stability analyses,
indicates that the flow does not support the temporal growth of a disturbance in a fixed re-
gion of space. This means that no two-dimensional global instabilities exist in the present
configuration and, thus, at least all two-dimensional instability mechanisms should be con-
vective. Furthermore, as part of the linear stability analyses, no three-dimensional global
modes were found. Hence, because 1) the flow supports large gradients and 2) no localized
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eigensolutions could be found in the stationary frame of reference, studying the stability of
the present SWBLI arguably requires solving the two-dimensional stability problem using
the moving-frame approach.

As demonstrated for the incompressible boundary layer, the moving frame allows cap-
turing convective mechanisms as eigensolutions with eigenfunctions that are localized in
the streamwise direction. Hence, the solutions can be made independent of the computa-
tional setup (truncation-boundary positions and conditions and grid resolution) and this
allowed identifying three types of unstable, localized modes (upstream-, downstream- and
apex-type modes) for a wide range of spanwise wavenumbers and frame speeds. The char-
acteristic frequency of these instability mechanisms is at least one order of magnitude larger
than what is usually observed for the low-frequency breathing of the bubble and none of the
linear mechanisms found could be related to any low-frequency unsteadiness of the SWBLI.
Instead, the medium-frequency mechanisms that are presently found represent convective
instability mechanisms of the separated shear layer and can enter the reverse-flow region.

By considering the finite-time evolution of the wave-packet perturbations obtained from
the initial-value problem using the moving-frame eigenfunctions as initial condition, the
spatial evolution of the convective instabilities has been assessed. First, the perturbation
amplification is quantified by reconstructing the individual-frequency amplification curves
by Fourier-transforming the signal. To the greatest extent, this allows determining the most
amplified perturbation content of the SWBLI, in particular in terms of the most amplified
spanwise wavenumber, which is found to be as large as about 10% of the bubble length, and
frequency, which is about 9kHz at the streamwise location of the reattachment. Second, the
perturbation wave packet is decomposed into the individual components that contribute
to its growth. It is observed that the wall-normal Reynolds stress produces most of the dis-
turbance energy over the whole extent of the SWBLI. Nevertheless, although the streamwise
Reynolds stress has a smaller magnitude, it can interfere either productively or destructively
with the wall-normal Reynolds stress depending on whether the wave-packet is located up-
stream or downstream of the bubble apex. This contribution of the streamwise Reynolds-
stress results in an overall upstream shift of the maximum temporal growth and intensi-
fies when increasing the spanwise wavenumber β. At a particular spanwise wavenumber
β = βud, the (integral) wall-normal Reynolds-stress and Reynolds-heat flux of the temporal
wave-packet are maximized along the complete spatial extent of the shock-induced bubble.
By analyzing the variation of the spatial organization of the dominant factors that appear
in the integrand of the wall-normal Reynolds-stress term as β increases, it is found that its
maximum magnitude increases, while the area over which it is active shrinks so that it leads
the integral value to reach a maximum for β = βud. In turn, the largest amplification in the
present flow configuration is achieved for this wavenumber, which also corresponds to the
spanwise wavenumber that displays the maximum growth rate of the moving-frame initial
condition.

A major finding is that the moving-frame eigensolutions provide a remarkably good es-
timation of the evolution of the time-dependent wave packet. Although a switch from one
eigensolution to another near the apex likely occurs, the largest amplification of the wave
packet and its underlying mechanisms are mostly represented by one type of eigensolution
at a time. Hence, this allows concluding that the moving-frame eigensolutions provide a
very reasonable expectation for the spatio-temporal evolution of the wave-packet perturba-
tions. This is very useful, because this means that the eigensolutions can be used to guide
the more expensive wave-packet calculations in determining the most-amplified perturba-
tion content.

Without having applied the moving-frame methodology to other flow configurations,
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the present results suggest that this approach opens the way for the structured characteriza-
tion of the laminar-turbulent transition of separation bubbles in general (including the in-
compressible, transonic, and hypersonic regimes), starting from the homogeneous, linear,
convectively unstable disturbance mechanisms. It is likely that separation bubbles show
similar, more, or fewer mode types and that modes other than the upstream-type mode can
dominate in particular conditions. Future research efforts should be invested in thoroughly
exploring the behavior of the newly found mechanisms for other flow configurations (vary-
ing Mach number, Reynolds number, shock strength, etc.).

As a final remark, it important to emphasize that only an insight into primary convec-
tive instabilities in SWBLI is presently proposed and nonlinear effects, that take place when
the perturbation amplitude becomes significantly large, are not considered. Assessing non-
linear mechanisms, however, requires a judicious choice of initial conditions. By using the
moving-frame solutions, a careful control of these initial conditions is possible and this thus
provides a structured strategy that can be applied to study the route from linear perturbation
growth to laminar-turbulent transition in SWBLI.
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6
Conclusion

In the context of laminar-turbulent transition and flow stability analyses, the present the-
sis focused on studying linear convective instability mechanisms in fluid flows with rapid
variations in both wall-normal and streamwise directions. Since gradients in a flow field
are at the core of the instability mechanisms, all gradients must be accounted for in stability
analyses in order to accurately describe the perturbation dynamics. However, the traditional
formulations of the stability equations either neglect the spatial variation of the flow or faces
a major numerical issue.

Nowadays, the aforementioned limitations still prevent capturing the general perturba-
tion dynamics of convective instabilities in (at least) two-dimensional flows. This aspect has
motivated the present work that targets an accurate, fully-elliptic representation of this par-
ticular type of instabilities without restriction on the in-plane gradients. The objectives of
this thesis were two-fold. First, a novel approach for stability analysis of convective insta-
bilities was proposed with all the elements necessary for the interpretation of the solutions.
Second, the convective instability mechanisms in a laminar shock-wave/boundary-layer in-
teraction were studied with the proposed methodology.

6.1. Representation of convective instabilities in two-dimensional
flows

The literature presents many attempts to describe convective instability mechanisms in
two-dimensional flows, especially in flows that develop in the streamwise direction. On the
one hand, the traditional Linear Stability Theory (LST) and Parabolized Stability Equations
(PSE) methods do not account for large gradients in the streamwise direction. On the other
hand, the fully-elliptic two-dimensional stability problem, i.e., the so-called BiGlobal stabil-
ity problem, provides solutions that are tainted by a notorious sensitivity of the solutions to
the truncation boundaries (domain length, boundary conditions and discretization). In fact,
when aiming to represent two-dimensional convective instabilities in a stationary frame of
reference, the corresponding solutions are characterized by eigenfunctions that grow expo-
nentially from the inlet to the outlet of the domain. Hence, on the one hand, the solutions
are rapidly conditioned by numerical overflow issues taking place within the domain limits;
an eigenfunction reaches from very low amplitude at the inlet to very high amplitude at the
outlet. Accordingly, increasing the domain length makes the conditioning of the problem
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worse since more exponential growth must be contained in the domain. On the other hand,
this implies that the eigenfunctions have a non-zero amplitude at the truncation bound-
aries; the eigensolutions thus depend on the boundary locations and conditions. If two-
dimensional convective instabilities are sought, it is thus essential to tackle the mechanisms
at the origin of this unbounded growth that prevents obtaining an accurate numerical rep-
resentation of the solutions.

In the linear system that governs the perturbation evolution, the advection component
inherently translates into an exponential growth that allows the transport of perturbations
in a particular direction. Hence, since a convective instability mechanism continuously
sweeps a disturbance introduced in the flow, the effect of the advection translates into a spa-
tial exponential growth in the direction of the propagation. However, since the BiGlobal sta-
bility problem in the stationary frame of reference inherently targets the long-time evolution
of perturbations, the eigenfunctions representing convective instabilities must include the
advection-induced growth in the streamwise direction. Because convective disturbances
leave the flow undisturbed in the long-time horizon, the BiGlobal framework is arguably not
reasonable to describe convective instability mechanisms. Hence, the literature proposes
other methods that instead focus on the finite-time representation of this type of instabili-
ties.

The finite-time response of a two-dimensional flow field can be studied with the optimal-
perturbation method, resolvent analysis or the Harmonic Linearized Navier-Stokes (HLNS)
approach. While the first two rely on solving an optimization problem, the HLNS method
solves the linearized perturbation problem with a temporal forcing usually imposed at the
domain inlet. Because the optimal-perturbation and resolvent analysis methods seek ini-
tial conditions or forcing that maximize the amplification of the perturbation in the flow,
they constrain the study of the flow stability to very specific scenarios that are physically
not realizable; the optimal perturbation growth is likely not reproducible in an experimen-
tal context. Although the HLNS approach does not constrain the perturbation dynamics to
an optimal scenario only, forcing a flow with an arbitrary function can condition the flow
response to the specific forcing and thus occult the inherent perturbation dynamics. There-
fore, because all three aforementioned approaches provide particular results, it is question-
able whether they can unambiguously represent convective instabilities in two-dimensional
flows.

All the above considerations pose a fundamental problem regarding the ambiguity be-
hind the representation of two-dimensional convective instabilities. On the one hand, the
BiGlobal stability problem inherently focuses on the long-time horizon that is conflicting
with the representation of convective instabilities that are continuously transported by the
flow. Hence, looking for perturbations for an indefinitely long time translates into seek-
ing solutions that have likely left the region of interest. Although the eigensolutions form
together a basis that is valid for all times and that can be used to project arbitrary distur-
bances onto, there is still the question about the validity of the projection coefficients that
are sensitive to the numerical setup. On the other hand, although seeking a finite-time so-
lution is much more reasonable for this type of instabilities, having to resort to a particular
scenario is too restrictive. Hence, there is a need to find a compromise between the two
approaches; the long-time dynamics must be abandoned for the finite-time dynamics and,
in turn, no particular growth scenario must be favored such that the general perturbations
dynamics of convective instabilities can be obtained. In this context, this thesis proposed a
novel approach for the representation of convective instabilities in two-dimensional flows
by considering a moving frame of reference.
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6.2. A novel perspective with the moving-frame methodology
The present framework developed for the representation of convective instabilities with the
two-dimensional stability problem is built on the BiGlobal eigenvalue problem formulated
in a moving frame of reference. In this frame of reference, the advection-induced growth is
reduced and thus the eigensolutions feature localized eigenfunctions that do not reach from
the inlet to the outlet of the domain. Hence, the notorious numerical dependence of the
two-dimensional streamwise eigensolutions on the truncation boundaries can be effectively
removed.

In the moving frame of reference, the base flow is time dependent. This must be ne-
glected upon casting the perturbation problem in an eigenvalue problem. Nevertheless, the
eigensolutions solve the stationary-frame linearized Navier-Stokes equations in an instan-
taneous sense only; the moving-frame eigensolutions do not solve the linearized Navier-
Stokes equations for all times. This property of the eigensolutions was sacrificed in order
to obtain a setup-independent basis for the general dynamics that is not restricted to the
optimal-growth scenario. Losing this property moreover implied that the time-asymptotic
interpretation that usually accompanies eigenvalue analyses is lost as well. Nevertheless,
this interpretation was anyway arguably unsuitable in the context of convective perturba-
tions, because they are swept out of the region of interest after a finite time.

The other usual properties of an eigenvalue problem formulated in the stationary frame
of reference are preserved in the sense that there is no restriction to a particular frequency,
any perturbation can be reconstructed by a superposition of the eigenmodes, and the scope
of the eigenfunction expansion can be reduced to the dominant eigenmodes. Furthermore,
the selection of the dominant eigenmodes can be based on the imaginary part of the eigen-
values obtained in the moving frame of reference; it is a non-trivial result that these values
represent the instantaneous perturbation growth only if the moving-frame eigenfunctions
are localized. Because the moving-frame eigenfunctions are instantaneously-valid solutions
satisfying the stationary-frame equations for zero elapsed time, they are ideal candidate to
initialize the integration of the perturbation equations. Hence, in order to obtain the finite-
time evolution of the perturbations, the present approach proposes to integrate in time the
moving-frame eigensolutions introduced in the stationary-frame equations. It is equivalent
to the spatial marching technique on which the PSE method relies, except that the present
approach has no model error because all base-flow gradients are accounted for.

The eigenfunctions obtained in the moving frame of reference take the form of spatially
distributed wave packets that contain a band of frequencies. After disturbing the flow in
the stationary-frame problem with these two-dimensional eigenfunctions, the finite-time
dynamics of temporal wave packets are thus recovered. However, in the context of stability
analysis, the interpretation of wave-packet instabilities is less usual than single-frequency
wave trains. Hence, in order to recover more traditional results, but with all in-plane gradi-
ents being now accounted for, the present approach relies on decomposing the wave packets
into their individual-frequency components with Fourier transforms. This allows obtaining
neutral and amplification curves of the perturbations in a given flow field. Ultimately, the
amplification curves can be used to reconstruct the traditional N -curves on which the eN -
method relies to predict the laminar-turbulent transition in a flow.

6.3. Key results and discussions
In the present work, the moving-frame method was applied to two flow configurations. First,
the incompressible flat-plate boundary layer was considered because it is the archetype
of non-parallel flows that support only convective instabilities and its base flow is repro-
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ducible up to arbitrary precision. Since this flow is only slowly evolving in the streamwise
direction, the LST and PSE methods can be used without introducing large model errors.
The traditional stationary-frame BiGlobal framework, however, fails in providing an accu-
rate representation of the convective instability solutions that do not depend on the trun-
cation boundaries. The flat-plate boundary layer is thus a judicious choice to validate the
present methodology while also highlighting the superiority of the proposed moving-frame
approach over the traditional stationary-frame BiGlobal method.

Secondly, the moving-frame method was applied to a laminar shock-wave/boundary-
layer interaction (SWBLI). The first motivation for considering the SWBLI was to demon-
strate the effectiveness of the method for highly two-dimensional flows. The second moti-
vation was to contribute to a better understanding of the convective instability mechanisms
in SWBLI. It was made possible with the moving-frame approach that improves the repre-
sentation of the linear perturbation dynamics by avoiding both optimal scenarios and as-
sumptions on the spatial variation of the flow. The key results obtained in both the flat-plate
boundary layer and the SWBLI are discussed in the following.

6.3.1. The moving-frame methodology
A first key result is that the dependency of the eigenvalue problem with respect to the trunca-
tion boundaries can be effectively eliminated by using a moving frame of reference. By for-
mulating the eigenvalue problem this way, the eigenfunctions describing convective mecha-
nisms become localized in the streamwise direction. As a consequence, converged solutions
can be obtained that are independent of the imposed truncation boundary conditions. For
the two base-flow configurations considered in the present thesis, sensitivity analyses per-
formed on the spatial discretization, domain length and boundary conditions demonstrated
that, for a given frame speed, the sensitivity of the eigensolutions to the numerical config-
uration in the streamwise direction can be made as small as in the wall-normal direction.
According to the inherent decay of shear-layer instabilities in the freestream, the literature
usually reports that the numerical sensitivity to wall-normal boundary conditions is rea-
sonably low. Hence, placing both wall-normal and streamwise truncation boundaries suffi-
ciently far from the region of interest allows obtaining results that are arguably independent
of the numerical setup.

Obtaining setup-independent eigensolutions relies on obtaining direct and adjoint eigen-
functions that are both localized. This result is not surprising in the sense that the overlap
of the direct and adjoint eigenfunctions describes where the solutions are the most sensitive
to any physical or numerical variation of the base flow or setup. In the eigenvalue spec-
trum of the boundary layer, it was found that converged eigenvalues form a main branch
that is distinguishable from unconverged eigenvalues, which instead lie on side and down-
ward branches. Only the main branch contains eigensolutions associated with direct and
adjoint eigenfunctions that are both localized. Hence, the amplitude of both direct and
adjoint eigenfunctions at the truncation boundary can be correlated with the numerical
dependency of the solutions with respect to the numerical setup. In practice, for a given
numerical setup, determining the amplitude at the truncation boundaries allows a rapid
identification of converged solutions in an eigenvalue spectrum, especially when the spec-
trum is much more convoluted than that of the boundary layer. This approach was used to
highlight relevant solutions for the SWBLI. Nevertheless, finding these solutions still relies
on an appropriate choice of frame speed.

The frame speed is the key parameter of the method since, for a given numerical setup,
it allows recovering eigensolutions with localized eigenfunctions. It is thus essential to un-



153 6.3. Key results and discussions

derstand how eigensolutions behave with respect to the frame speed. A general observation
is that, for a given type of mode, a high-frame-speed eigenfunction has a shorter spatial ex-
tent, a smaller wavelength and is located more upstream than an eigenfunction obtained at
a lower frame speed. Hence, the numerical requirement to resolve an eigensolution with a
localized eigenfunctions depends on the frame speed. A thorough analysis of the boundary-
layer eigensolutions with respect to the frame speed showed that the variation of the spatial
extent and wavelength with respect to the frame speed does not occur at the same rate. In
particular, it was shown that the grid density must be continuously increased when lowering
the frame speed. That is, finding converged solutions in the stationary frame of reference is
likely impossible for the flat-plate boundary layer. This finding is in agreement with the fact
that the boundary layer is globally stable for all Reynolds numbers. These results emphasize
the need for using the moving-frame approach with a frame speed chosen such that the spa-
tial extent and wavelength of the eigenfunctions are supported by the numerical setup. In
other words, from a numerical point of view only, the frame speed is a tool to find localized
solutions for a given setup.

Once the moving-frame eigensolutions are identified, the proposed methodology relies
on disturbing the flow with the corresponding eigenfunctions in order to study the finite-
time perturbation dynamics of the convective instabilities. A major finding is that the so-
lutions of the eigenvalue problem solved in a moving frame of reference are remarkably
convenient to initialize the perturbation problem for two main reasons. The first reason
is that the moving-frame eigensolutions satisfy the temporal perturbation equations and
are thus instantaneously valid for zero elapsed time. For both flow cases, it was verified
that the eigengrowth rate and frame speed of the moving-frame eigensolutions are the same
as the temporal growth rate and group speed of the wave packets, respectively; the initial
short-time perturbation dynamics coincide with the dynamics predicted by the moving-
frame eigensolutions. Hence, the moving-frame eigensolutions indicate the main features
of the instability mechanisms in an instantaneous sense, ahead of solving the (initial-value)
perturbation problem. Furthermore, this brings an additional interpretation of the frame
speed that is not only a numerical tool to find localized eigensolutions but also represents
the physical group speed at which the wave packet moves in the flow field. Finally, having
moving-frame eigensolutions that satisty the perturbation equations for zero elapsed time
also implies that the time response of the flow to these initial conditions is not polluted by
any inadvertent transients. This improves upon the PSE method for which the spatial inte-
gration is initialized with LST solutions that do not exactly satisfy the PSE .

The second motivation for using moving-frame eigenfunctions as initial conditions is
that the amplification curves are independent of the frame speed and the mode chosen to
initialize the problem. For the incompressible boundary layer, this was demonstrated by
considering modes along the main branch that were obtained at different frame speeds or
were different from the most unstable one. After Fourier transforming the temporal wave
packets, the N -factor and neutral curves were reconstructed for the different modes and
frame speeds. In regions of converged Fourier coefficients, no difference were found for the
curves obtained with the different initial conditions. Note that obtaining converged Fourier
coefficient is guaranteed if the amplitude of the signal, i.e., the temporal wave packet, van-
ishes at the initial and final times, up to numerical precision. Hence, more upstream eigen-
functions can resolved more upstream locations with converged Fourier coefficients. The
exact same conclusion was found for the SWBLI. The only difference that is observed when
disturbing a flow with different moving-frame eigenfunctions comes from not recovering
information for streamwise stations located upstream of the initial condition. Hence, a key
requirement of the present method is to use initial conditions that are located upstream
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of the region where perturbation growth is expected. Although meeting this requirement
can be difficult for some flow configurations, this is arguably the main limitation of the
moving-frame approach. In both the incompressible flat-plate boundary layer and the lam-
inar SWBLI, it was possible to find such upstream solutions, but it may be more difficult in
other cases (SWBLIs or much broader classes of flows). A solution to this would be to rely on
a wave packet tracking strategy to increase the flexibility in tracking the eigenfunctions as β
and cf, or other parameters, are varied.

All aforementioned results demonstrate the effectiveness of the present methodology
in providing practical stability information without assumption on the flow field evolution.
Hence, the fully-elliptic representation of the general perturbation dynamics of convective
instabilities is arguably made possible with the moving-frame method. Besides the above
general observations made on the two considered flow configurations, specific results asso-
ciated with the SWBLI deserve some more attention.

6.3.2. Convective instabilities in a shock-wave/boundary-layer interaction
The SWBLI was obtained with direct numerical simulations that indicated that the laminar-
turbulent transition takes place downstream of the shock-induced bubble apex. Because
the flow is inherently unsteady, the selective frequency damping method was used to drive
the flow toward a steady state that is key for linear stability analyses. This allowed obtain-
ing an unstable laminar SWBLI base flow, up to numerical precision. Prior to using the base
flow in actual stability analyses, continuing the simulations without the selective-frequency-
damping forcing term, i.e., using the so-called unleash technique, suggested that the present
SWBLI does not support two-dimensional global modes and is rather convectively unstable.
This conclusion was strengthened by the fact that the dividing streamline is located beneath
the generalized inflection point line and thus that no absolute instability exists in the separa-
tion bubble. Finally, the linear stability analyses conducted in the moving frame of reference
with the frame speed decreased to zero, i.e., toward the stationary frame of reference, indi-
cated again that the present SWBLI does not support unstable two- and three-dimensional
global eigenmodes. From these observations, the flow was deemed convectively unstable
only.

After solving the eigenvalue problem in the moving frame of reference, three types of
localized modes were found in the present laminar SWBLI. The associated eigenvalues ar-
range themselves into distinct branches in the spectrum that were traced in the frame-speed
and spanwise-wavenumber parameter space, abbreviated (cf,β)-parameter space in the fol-
lowing. The three different modes were labeled as upstream, downstream and apex-type
modes depending on the location of the eigenfunctions associated with the most unstable
eigensolutions with respect to the bubble apex. This classification of modes is thus strictly
valid for the (cf,β)-combinations yielding the largest growth per mode type and the fact that
the frame speed strongly influences the location of the eigenfunctions in the domain can
question the present choice of classification. This is especially the case for upstream-type
modes that can actually be found downstream of the bubble apex for small frame speeds;
they are, however, more stable than the ones located upstream of the apex. Furthermore,
an in-depth analysis of the individual contributions of the eigengrowth rate indicated that
the apex and downstream-type modes can share very similar characteristics for some (cf,β)-
combinations. This thus suggested that apex and downstream-type modes are likely related
to each other and that considering the main components of the eigengrowth rate would
possibly be a better approach to classify the different mode types.

In contrast to the other mode types that cannot move upstream of the incident shock,
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the upstream-type eigenfunctions can likely be moved toward the flat-plate leading edge for
high frame speeds. This suggests that they could possibly be associated with boundary-layer
modes. Figuring this out would require solving the moving-frame eigenvalue problem for a
base flow with a more upstream inlet location. If more upstream inlet locations are consid-
ered, two scenarios can be expected from the observations made in this work. Assuming
a fixed frame speed, these two scenarios likely depend on the location of the separation
bubble with respect to the actual location of a mode of the undisturbed boundary-layer,
i.e., the compressible boundary layer without shock wave. If a mode of the undisturbed
boundary layer is supposed to be located at the same Reynolds number as a SWBLI (up-
stream) mode, the mode found in the eigenvalue spectrum for the SWBLI would most likely
be an actual boundary-layer mode altered by the local dynamics of the separation bubble.
Instead, if a boundary-layer mode exists outside of the separation bubble region, then two
distinct eigenvalues would be found in the spectrum: one for the SWBLI, another one for the
undisturbed boundary layer. If these two scenarios can actually be observed, it would then
suggest that modes can ’interact’ with each other. Hence, decomposing the eigengrowth
rates into their individual contribution would again be essential to unequivocally classify
the mode types.

Since all mode types were found localized in the domain and independent of the numer-
ical setup, it could be verified that, once introduced into the stationary-frame perturbation
equations, the eigensolutions represent the instantaneous characteristics of the temporal
wave packet for zero elapsed time. The only slight difference compared to the flat-plate
boundary layer is in the choice of the energy norm. In fact, in contrast to the incompressible
case, the energy-norm matrix is not constant in space and a base-flow-dependent correction
term must thus be added to the eigengrowth to obtain the instantaneous temporal growth
rate. Nevertheless, because this correction is time-independent, it does not prevent inter-
preting the eigensolutions as instantaneous solutions of the stationary-frame equations.

After the temporal integration of the moving-frame eigenfunctions in the stationary frame
of reference, the frequency-wise amplifications curve were obtained for the shock-induced
separation bubble. This allowed determining the most amplified frequency and spanwise
wavenumber of three-dimensional perturbations in SWBLI. However, no neutral point could
be recovered, and thus no N -factor curve, per se, could be fully reconstructed. The curves
obtained in the SWBLI are rather ∆N -factor curves that depend on the arbitrarily chosen
location for the normalization. Determining neutral points would require initializing the
initial-value problem with more upstream eigenfunctions, that, given the inlet location of
the present base flow, could not be found. Obtaining these eigenfunctions would require
computing another base flow with an inlet that reaches further upstream toward the leading
edge of the flat plate. In this way, a longer portion of the boundary layer ahead of the inci-
dent shock would be captured and actual N -factor curves, i.e., amplification curves defined
from the neutral points onward, could be recovered. The present results, however, already
indicated the most amplified frequencies and spanwise wavenumbers in the region of the
shock-induced bubble and that neutral-growth locations do not exist in this region of the
flow.

The spanwise wavenumbers are an input of the system that require a parameter analy-
sis to determine the largest amplification of perturbations across the shock-induced bubble.
This parameter analysis has first been performed for the moving-frame eigensolutions for all
mode types and indicated which spanwise wavenumbers yield the largest eigengrowth rate.
Then, the moving-frame eigenfunctions were used as initial condition to integrate the per-
turbation equations in time and a sensitivity analysis performed on the spanwise wavenum-
bers allowed identifying the ones associated with the largest perturbation growth. A ma-
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jor finding is that the wavenumbers corresponding to the largest wave-packet amplification
are the same as the wavenumbers associated with the largest eigengrowth rate. Hence, al-
though it was demonstrated that the moving-frame eigensolutions are only strictly valid for
zero elapsed time, the present results showed that they likely give a good estimation of the
temporal evolution of the wave packets. A particular emphasis was thus put on comparing
the temporal evolution of the wave-packet perturbations with the moving-frame eigensolu-
tions obtained at different frame speeds. Remarkably good agreements were found between
the two types of solutions regarding the perturbation structure and growth rates. Further-
more, it was observed that the underlying instability mechanisms were well estimated by
the eigensolutions. In this regard, the present results are a first indication that the eigenso-
lutions can be used to guide more expensive simulations involving the temporal integration
of the (linearized) governing equations.

The fact that the temporal wave packet and the eigensolutions are, however, not exactly
the same likely lies in the governing equations that allow or not for the non-modal evolution
of the perturbation, respectively. This is especially observed for the different moving-frame
mode types that are dominant on either side of the shock-induced bubble. The temporal
evolution of the wave packets suggests that a weak non-modal growth takes place up- and
downstream of the shock while a strong and brief non-modal effect arises around the bubble
apex and induces a switch between two mode types. Furthermore, it is suspected that a
similar mechanism can take place when a boundary-layer mode enters the separated shear
layer. Assessing this effect would help determining whether the upstream-type mode is a
boundary-layer mode or not. This, however, requires a more upstream domain inlet than
presently used. In the end, non-modal growth was not analyzed in the present work but it
is deemed relevant to further investigate how non-modal solutions are related to moving-
frame modal solutions.

On the one hand, the observations made in the SWBLI are comforting in the sense that
the moving-frame method can effectively address the fully-elliptic representation of convec-
tive instabilities in highly two-dimensional flows. On the other hand, some results suggest
that the moving-frame eigensolutions could be interpreted beyond the zero-elapsed-time
constraint and this would require further investigation.

6.4. Outlook
General perspectives regarding the moving-frame methodology are discussed in what fol-
lows. On the one hand, the results obtained in the incompressible flat-plate boundary layer
and SWBLI cases illustrate how the moving-frame method works and how it can be lever-
aged to determine the stability of flows supporting convective instability mechanisms. The
present results show that the moving-frame method improves upon existing methodologies
such as LST or PSE by extending stability analyses to two-/three-dimensional flows, and
optimal-growth or HLNS methods by avoiding specific scenarios of perturbation growth. On
the other hand, the present observations also highlight the limitations and the main require-
ments of the moving-frame approach. Further theoretical investigations are also required
to better assess how the moving-frame eigensolutions can be used to predict the finite-time
evolution of perturbations or to tackle disturbance receptivity in a flow field. All these as-
pects are discussed in the following.

The main difficulty encountered when using the moving-frame method is to find solu-
tions that can be used to identify neutral points, especially in flows with a region of interest,
e.g., a shock-induced bubble, that is located far away from the neutral-growth locations.
In fact, this requires using a long numerical domain such that moving-frame and tempo-
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ral solutions can be captured upstream of the regions where the spatial growth is neutral.
However, obtaining these solutions usually requires increasing the frame speed and thus in-
creasing the need in spatial resolution because the wavelength decreases with larger frame
speed. Hence, requiring both a long numerical domain that contains all regions of interest
and a dense numerical discretization to capture small wavelengths can yield unreasonable
computational costs. In order to minimize this computational requirement, a numerical
methodology that tracks the temporal wave packets would be a very effective approach to
complement the present moving-frame approach. This type of numerical procedure has
recently been devised in direct numerical simulations by Browne et al. (2019) [An efficient
linear wavepacket tracking method for hypersonic boundary-layer stability prediction. J.
Comput. Phys 380] and is a promising tool to extend the field of application of the present
methodology.

When solving an eigenvalue problem to study the linear stability of complex flow fields,
the resulting spectra of eigenvalues can be difficult to interpret, especially if the solutions
are tainted by numerical artifacts. A typical example of complicated spectrum can be found
when solving the two-dimensional stability problem in the stationary frame of reference to
find convective modes. In this case, the very wide arc-shaped branch containing the eigen-
values associated with the modes of interest can lie in the stable or unstable plane of the
spectrum depending on the domain length. Hence, isolating modes can be a tedious task,
especially if they are in the stable plane of the spectrum where most of the other eigensolu-
tions lie. In the present work, it was found that using the moving frame of reference often
simplifies the eigenvalue spectrum. Since the contribution of the streamwise advection is
mitigated, the width of many arc-shaped branches is reduced. More importantly, solutions
that are truly unstable are moved towards the unstable plane, because the solutions are in-
dependent of the numerical setup. Nevertheless, the SWBLI case indicated that, in the pres-
ence of several unstable modes, tracking one given mode type in the spectrum in a large
parameter space is not trivial. Although restricting the tracking to localized eigenfunctions
helps identifying relevant modes, the classification of the different modes used in this work
could be improved. In future work, it is recommended to decompose the eigengrowth into
their individual contribution with the perturbation energy equation and then classify the
eigensolutions according to the actual physical properties of the instability mechanisms.

The flow configurations and, in particular the geometries, considered in the present
work were relatively simple in the sense that the only solid wall is a flat plate. While con-
sidering these flows was ideal to develop the method and validate the results, actual real
flow configurations can be much more complex and future work should focus on applying
the moving-frame method to flows with geometries that depart from the flat plate. Typi-
cal canonical cases supporting convective instabilities that could be considered in the first
place are back-/forward facing steps, airfoil or bluff-body wakes or even micro-ramps. Note
that Mittal et al. (2008) [Onset of shear layer instability in flow past a cylinder. Phys. Fluids
20 (5)] showed that convective instabilities behind a cylinder can be captured in the moving
frame of reference. This can be explained by the fact that the geometry is actually discarded
from the perturbation problem and only the flow field resulting from the presence of the
geometry is necessary to support perturbations. In order to confirm this argument, future
investigations should consider other non-flat-plate cases with the complete moving-frame
framework, and related analyses, proposed in the present work. This would validate the fact
that the role of the moving-frame speed is to mitigate the advection of perturbation by the
base flow.

An important finding of the present work is that the moving-frame eigensolutions ob-
tained at different frame speeds give a good approximation of the temporal wave packets
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for non-zero elapsed times. Nevertheless, eigensolutions and temporal wave packets are
not the same. In particular, the former assume a modal evolution of the perturbations that,
as demonstrated, is strictly valid for zero elapsed time whereas the temporal wave packets
evolve without particular constraint. In order to shed light on the differences between eigen-
solutions and wave packets, a better quantification of the non-modal effects is required.
In particular, superimposing a wave packet onto the moving-frame basis could indicate
whether the temporal evolution of perturbations relies on one mode or a combination of
modes. Such analysis would need to assess the weight of the projection coefficients for each
mode. This investigation can indicate, on the one hand, the contribution of non-modal
effects to the evolution of a perturbation and, on the other hand, how the transition from
one type of instability mechanism to another takes place. From a different perspective, the
contribution of convective- and component-type non-normalities to the overall non-modal
evolution of a perturbation could also be assessed. Furthermore, an in-depth analysis of the
variation of the non-modal effects when departing from stationary-frame to moving-frame
eigensolutions would shed light on the remaining non-modal content in the latter.

A key process in the evolution of perturbations in fluid flows is related to the mecha-
nisms that transfer external disturbances into the shear layer. As mentioned in the introduc-
tion, this process is called receptivity and determines the initial condition of the perturba-
tion evolution. Usually, receptivity analysis relies on finding the initial condition or forcing
yielding the largest perturbation growth in the flow, but these scenarios are physically un-
realizable. Using the moving-frame methodology, receptivity analysis could be extended to
sub-optimal scenarios. The moving-frame adjoint eigensolutions and adjoint initial-value
problem could be used to study how the disturbances that are inherent to a region of in-
terest, e.g., the separation bubble, are effectively forced elsewhere. For instance, an adjoint
solution moving out of the boundary layer and toward the freestream would indicate that
the inherent disturbances are sensitive to freestream turbulence and insensitive to forcing
at the wall. Hence, in addition to study how a perturbation evolves in a flow, the present
method would also be capable to determine how a disturbance initially enters a flow.

Finally, the ultimate perspective of the present methodology is to give the opportunity
to study the evolution of convective instabilities toward their nonlinear breakdown by dis-
turbing the (nonlinear) Navier Stokes equations with the moving-frame eigensolutions. Ap-
proaching this problem is, however, not trivial. For instance, the entire SWBLI flow, and in
particular the region around the incident shock, acts as an amplifier of external (numerical)
disturbances. These disturbances can be difficult to control in direct numerical simulations
and can overwhelm the actual perturbation evolution. Hence, extreme care should be taken
to ignore/control the low-level numerical noise and thus fully benefit from the sharpness
of the eigensolution used as an initial condition. Analyzing the nonlinear evolution of wave
packets in such complicated flow fields can improve the understanding of the mechanisms
behind the route to turbulence. Accordingly, this can provide novel perspectives to advance
in the modeling of the laminar-turbulent transition and to support the development of con-
trol strategies for a greener aviation industry.



A
Perturbation and stability

equations
In this appendix, the perturbation equations in the stationary frame of reference are given
for two-dimensional streamwise base flows, i.e., base flows without spatial variation in the
z-direction, in §A.1. The continuous direct and adjoint BiGlobal stability equations in the
stationary frame of reference are then introduced in §A.2 and §A.3, respectively. Finally, the
equivalence between the (ρ′,T ′) and (p ′,T ′)-based energy matrices is demonstrated in §A.4.

A.1. Perturbation equations in the stationary frame of reference
The perturbation equations are formulated for the vector q ′′′

f = [u′
f, v ′

f, w ′
f ,T ′

f ,ρ′
f]

T and are the
(x,y)-plane equivalent of the equations derived by Padilla Montero & Pinna (2021) [Anal-
ysis of the instabilities induced by an isolated roughness element in a laminar high-speed
boundary layer. Journal of Fluid Mechanics 915]. As mentioned in Chapter 2, the com-
bination of the (ρ′,T ′)-formulation with the internal energy equation (2.1c) is preferred in
order to have diagonal matrices that multiply the temporal derivative terms. This avoids
any convoluted energy transfer between the continuity and energy equations caused by the
pressure-temperature coupling through the temporal derivative terms. Since these equa-
tions are used for the finite-time dynamics of the perturbations, they are formulated in the
stationary frame of reference.
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x-momentum perturbation equation
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y-momentum perturbation equation
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z-momentum perturbation equation
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Internal energy perturbation equation
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A.2. Direct stability equations in a moving frame of reference

Continuity stability equation
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x-momentum stability equation
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y-momentum stability equation

−iωρṽ +ρ
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U − cf

) ∂ṽ

∂x
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∂ṽ

∂y
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∂ṽ

∂z
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+ ṽ
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U
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∂x
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∂y

)
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T
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∂y
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∂y
+ T̃

∂ρ
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+ ρ̃ ∂T

∂y

)
+ λ

Re

(
∂2ũ

∂x∂y
+ ∂2ṽ
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∂w̃

∂y

)

+ µ
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(
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∂x∂y
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∂y2 −β2ṽ + iβ
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∂y
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∂ũ
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)
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∂x
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)
+ T̃

(
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∂x∂y
+ ∂2V

∂y2
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+ 1
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∂ũ
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∂y
+ ∂V

∂x

)

+iβT̃
∂W

∂y
+ T̃

(
∂2U

∂x∂y
+ ∂2V

∂x2 +2
∂2V

∂y2
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(
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)
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d2µ
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[
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∂x

(
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)
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∂T
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]
(A.2c)
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z-momentum stability equation

−iωρw̃ +ρ
((

U − cf

) ∂w̃

∂x
+V

∂w̃

∂y
+ iβW w̃ + ũ

∂W

∂x
+ ṽ

∂W

∂y

)
+ ρ̃

(
U
∂W

∂x
+V

∂W

∂y

)

=− iβ

γM 2

(
T ρ̃+ρT̃

)
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(
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∂ũ

∂x
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∂ṽ
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)
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(
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∂ũ
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∂y

]
(A.2d)

Internal energy stability equation

−iωρT̃ +ρ
((

U − cf

) ∂T̃

∂x
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)
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U
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∂x
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∂T
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∂ũ
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)(
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)
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∂ũ

∂x

∂U

∂x
+ iβũ
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A.3. Continuous adjoint stability equations in a moving frame of
reference

Continuity adjoint stability equation

iωρ̃† +ρ
(
∂ũ†

∂x
+ ∂ṽ†
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+ iβw̃†

)
+ ρ̃†

(
∂U

∂x
+ ∂V

∂y

)
−

(
U − cf

) ∂ρ̃†

∂x
−V

∂ρ̃†

∂y
+ iβW ρ̃†

+ ρ2

P
ũ†

(
U
∂U

∂x
+V

∂U
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= 0 (A.3a)

x-momentum adjoint stability equation

iωρũ† +ρ
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cf −U
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y-momentum adjoint stability equation
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+ ṽ† ∂V

∂y
+ w̃† ∂W

∂y
+ T̃ †

γEcT

∂T

∂y

)
+ P

ρ
ρ̃† ∂ρ

∂y

=− 1

γM 2

(
T
∂ρ̃†

∂x
+ρ ∂T̃ †

∂x
+ T̃ † ∂ρ

∂x
+ ρ̃† ∂T

∂x

)

+ λ

Re

[
∂2ũ†
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∂ṽ†

∂y
−4

∂T

∂y

T̃ †

T

∂V

∂y
−2

∂T

∂x

T̃ †

T

(
∂U

∂y
+ ∂V

∂x

)]
(A.3c)

z-momentum adjoint stability equation
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Internal energy adjoint stability equation
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∂ũ†

∂y
+ ∂ṽ†
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A.4. Energy weight matrices
This section aims to show the equivalence between the two energy weight matrices pre-
sented in Chapter 2. Since the derivation apply to both moving and stationary frame of
reference, all subscripts ‘f’ are dropped in what follows for sake of clarity. These matrices are
given by

M = diag

(
ρ,ρ,ρ,

ρ

γEcT
,

T

γM 2ρ

)
, (A.4)

for the density formulation of the perturbations equations, i.e., for q ′ = [u′ , v ′ , w ′ ,T ′ ,ρ′]T,
and

M =



ρ 0 0 0 0

0 ρ 0 0 0

0 0 ρ 0 0

0 0 0 ρ

EcT
− 1

T

0 0 0 − 1
T

1
P


, (A.5)

for the pressure formulation, i.e., for q ′′′ = [u′ , v ′ , w ′ ,T ′ , p ′]T. The equivalence between these
two weight matrices can be shown by considering first the matrix (A.5) in the energy integral
given by equation (2.56) such that

E =
∫
V
ρ

(|u′|2 +|v ′|2 +|w ′|2)dV +T ′∗
(
ρ

EcT
T ′− 1

T
p ′

)
+p ′∗

(
− 1

T
T ′+ 1

P
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)
dV (A.6)

=
∫
V
ρ

(|u′|2 +|v ′|2 +|w ′|2) dV︸ ︷︷ ︸
Ek

+
∫
V

ρ

EcT
|T ′|2 + 1

P
|p ′|2 − 1

T
T ′∗p ′− 1

T
p ′∗T ′ dV︸ ︷︷ ︸

Ep

, (A.7)
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with Ek and Ep the kinetic energy and generalized potential energy terms, respectively. Us-
ing the ideal-gas law for perturbations (2.15b) to replace the pressure perturbation by the
density perturbation allows rearranging the potential-energy term as

Ep =
∫
V

ρ

EcT
|T ′|2 + P

T
2 |T ′|2 + P

ρ2 |ρ′|2 + P

ρT
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2 |T ′|2 dV

=
∫
V

ρ

EcT
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T
2 |T ′|2 + P

ρ2 |ρ′|2 dV . (A.8)

Furthermore, considering the ideal-gas law for the base-flow variables to eliminate the pres-
sure P and using the Eckert number Ec = (γ−1)M 2, the potential energy becomes

Ep =
∫
V

ρ

T
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1
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)
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=
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|ρ′|2 dV , (A.9)

such that the perturbation energy is finally given by

E = Ek +Ep =
∫
V
ρ

(|u′|2 +|v ′|2 +|w ′|2)+ ρ

γEcT
|T ′|2 + T

γM 2ρ
|ρ′|2 dV , (A.10)

which is equivalent to considering the matrix (2.57) that followed the definition of the per-
turbation energy as originally proposed by Chu (1965) [On the energy transfer to small dis-
turbances in fluid flow (Part I), Acta Mechanica, vol. 1, no. 3, pp. 215–234].






	Summary
	Resumé
	Introduction
	Laminar-turbulent transition
	Transition in boundary layers
	Laminar-turbulent transition in computational fluid dynamics
	Predicting transition with linear stability theory

	Stability of streamwise flows
	Instability mechanisms
	Stability analyses

	Elliptic description of convective instabilities
	Alternative methods and their limitations

	Thesis motivation and objective
	Stability analyses in a moving frame of reference: contribution to the state of the art
	Novel formulation of the two-dimensional stability problem
	Applications of the methods

	Thesis outline
	titleReferences

	Stability theory for fluid flows
	Navier-Stokes equations
	Perturbation equations
	A note on perturbed variables in compressible flows
	Finding solutions of the initial-value perturbation problem

	Linear stability problem
	Two-dimensional stability equations
	One-dimensional stability equations
	Nonlocal and parabolized stability equations

	Adjoint linear stability problem
	Eigenfunction expansion

	Boundary conditions
	Linear stability analysis in a moving frame of reference
	Obtaining time-dependent solutions without model errors
	Relation with the fixed frame of reference: a complex Doppler shift

	Characterizing the spatio-temporal evolution of instabilities
	Perturbation energy
	Perturbation energy growth and eigengrowth
	Spatial amplification and N-factor curves

	Physical mechanisms with growth-rate decomposition
	titleReferences

	Numerical methodology
	Spatial discretization
	Polynomial interpolation and differentiation matrices
	Chebyshev-Gauss-Lobatto pseudospectral methods
	Finite-difference method
	Mapping to physical space

	Temporal discretization and integration
	The discretized eigenvalue problem
	Discretization of the adjoint eigenvalue problem

	Spatial integration of the Parabolized Stability Equations
	Computational code and practical implementation
	titleReferences

	The incompressible flat-plate boundary layer
	Base-flow computation and numerical setup
	Localized eigensolutions in the flat-plate boundary layer
	Spectra and eigenfunctions
	Sensitivity to the numerical setup
	Dependency on the domain length
	Dependency on the speed of the moving frame of reference
	The frame-speed limit cf0

	Finite-time evolution of wave packets
	Instantaneous characteristics of wave-packets
	Amplification and neutral curves: a wave-train interpretation

	Reynolds-Orr energy budget of the moving-frame eigensolutions
	Global mode theory in a moving frame of reference
	Nonlocal perturbation approach
	Approximation of the global eigenvalues
	Approximation of the global eigenfunctions

	Intermediate conclusion
	titleReferences

	The laminar shock-wave/boundary-layer interaction
	Context: SWBLI and instabilities
	Flow configuration and numerical setup
	Numerical setup
	Steady-state solution: Selective Frequency Damping method
	Base-flow results

	Initial conditions: eigensolutions
	Numerical setup for the eigenvalue problem
	Spectra and eigenfunctions
	Instability mechanisms and in-depth eigengrowth analysis
	Dependency on the speed of the moving frame of reference

	Finite-time evolution of perturbations
	Physical mechanisms of the most amplified three-dimensional perturbations
	Temporal wave packets and eigenfunctions
	Intermediate conclusion
	titleReferences

	Conclusion
	Representation of convective instabilities in two-dimensional flows
	A novel perspective with the moving-frame methodology
	Key results and discussions
	The moving-frame methodology
	Convective instabilities in a shock-wave/boundary-layer interaction

	Outlook

	Perturbation and stability equations
	Perturbation equations in the stationary frame of reference
	Direct stability equations in a moving frame of reference
	Continuous adjoint stability equations in a moving frame of reference
	Energy weight matrices


